WO2017113072A1 - 基于到达时间差定位方法、用户设备及网络设备 - Google Patents

基于到达时间差定位方法、用户设备及网络设备 Download PDF

Info

Publication number
WO2017113072A1
WO2017113072A1 PCT/CN2015/099249 CN2015099249W WO2017113072A1 WO 2017113072 A1 WO2017113072 A1 WO 2017113072A1 CN 2015099249 W CN2015099249 W CN 2015099249W WO 2017113072 A1 WO2017113072 A1 WO 2017113072A1
Authority
WO
WIPO (PCT)
Prior art keywords
tae
network device
location information
base station
rstd1
Prior art date
Application number
PCT/CN2015/099249
Other languages
English (en)
French (fr)
Inventor
薛剑韬
朱伟
苏滨
崔杰
李安俭
李红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112018013201-2A priority Critical patent/BR112018013201A2/zh
Priority to EP15911703.5A priority patent/EP3386248B1/en
Priority to CN201580085282.2A priority patent/CN108370551B/zh
Priority to PCT/CN2015/099249 priority patent/WO2017113072A1/zh
Publication of WO2017113072A1 publication Critical patent/WO2017113072A1/zh
Priority to US16/022,505 priority patent/US10281560B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality

Definitions

  • the present invention relates to a positioning technology, and in particular, to a positioning time difference positioning method, a user equipment, and a network device.
  • the positioning service is a value-added service that provides the corresponding service for the user by using the operator's network (such as the LTE network) to obtain the location information of the mobile terminal user, that is, the latitude and longitude coordinates, and supported by the electronic map platform.
  • the operator's network such as the LTE network
  • people's demand for location services is also increasing day by day, such as security monitoring, emergency rescue, travel guides and many other aspects of the positioning needs.
  • the positioning method based on Time Difference Of Arrival is an important method for realizing positioning services.
  • the TDOA positioning method can be classified into an Observed Time Difference Of Arrival (OTDOA) positioning and an Uplink Time Difference Of Arrival (UTDOA) positioning.
  • OTDOA Observed Time Difference Of Arrival
  • UTDOA Uplink Time Difference Of Arrival
  • the basic principle of the TDOA positioning method is: when there are three or more base stations in the system, the positioning reference signal (Positioning Reference Signal, PRS for short) that is simultaneously transmitted by different base stations, or the UE sends the same to different base stations simultaneously.
  • the Reference Signal Time Difference (RSTD) of the Sounding Reference Signal (SRS) of the uplink transmission determines the location of the User Equipment (UE).
  • RSTD Reference Signal Time Difference
  • SRS Sounding Reference Signal
  • TAE time synchronization error
  • the invention provides a method for locating the time difference based on the arrival time difference, the user equipment and the network device, and solves the problem that the positioning accuracy of the TDOA is not high due to the presence of the TAE in the prior art.
  • a first aspect of the present invention provides a method for locating based on a time difference of arrival, the method comprising:
  • the user equipment UE receives the first positioning signal sent by the first base station at the first moment, and the second positioning signal that is sent by the second base station at the first moment;
  • the UE obtains a first time difference of arrival RSTD1 according to the measurement information of the first positioning signal and the measurement information of the second positioning signal, where the measurement information includes at least one of an arrival time of the positioning signal and a received power of the positioning signal.
  • the UE obtains a time synchronization error TAE according to the first base station location information, the second base station location information, the location information of the UE, and the RSTD1, and reports the TAE to the network device, where the TAE Used for positioning.
  • the UE according to the first base station location information, the second base station location information, location information of the UE, and the RSTD1, Obtain the time synchronization error TAE, including:
  • the UE obtains a second time difference of arrival RSTD2 according to the first base station location information, the second base station location information, and the location information of the UE;
  • the UE calculates a difference between the RSTD1 and the RSTD2, and uses the difference as the TAE.
  • the UE according to the first base station location information, the second base station location information, and the UE The location information is obtained by the second arrival time difference RSTD2, including:
  • the UE calculates a first distance between the UE and the first base station according to the location information of the UE and the first base station location information;
  • the UE calculates a second distance between the UE and the second base station according to the location information of the UE and the second base station location information;
  • the UE calculates a difference between the first distance and the second distance
  • the UE calculates a ratio of the difference to an electromagnetic wave propagation speed, and the ratio is used as the RSTD2.
  • a second aspect of the present invention provides a method for positioning based on an arrival time difference, including:
  • the network device receives the first time synchronization error TAE reported by the UE;
  • the network device performs positioning based on the time difference of arrival TDOA on the at least one UE based on the first TAE.
  • the method further includes:
  • the network device performs weighting processing on the first TAE and at least one of the second TAEs to obtain a target TAE;
  • the network device performs TDOA positioning on the UE or the at least one other UE based on the target TAE.
  • the network device performs a weighting process on the first TAE and the at least one second TAE to obtain
  • the target TAE includes:
  • the network device calculates an average of the first TAE and at least one of the second TAEs to obtain the target TAE.
  • the network device performs weighting processing on the first TAE and the at least one second TAE to obtain
  • the target TAE includes:
  • the network device calculates, according to the preset weight value of the first TAE and the at least one second TAE, a product of a pre-weight value of each TAE and each TAE value, and the product is used as a corresponding to each TAE.
  • Weight TAE
  • the network device adds the first TAE to the weight TAE of at least one of the second TAEs, and uses the added result as the target TAE.
  • a third aspect of the present invention provides a method for positioning based on an arrival time difference, including:
  • the network device acquires a first arrival time difference RSTD1;
  • the network device calculates a second time difference of arrival RSTD2 according to initial location information of the UE;
  • the network device calculates a time synchronization error TAE according to the RSTD1 and the RSTD2;
  • the network device performs positioning based on the arrival time difference TDOA based on the TAE.
  • the calculating, by the network device, the TAE according to the RSTD1 and the RSTD2 includes:
  • the network device calculates a difference between the RSTD1 and the RSTD2, and uses the difference as a target TAE.
  • the calculating, by the network device, the TAE according to the RSTD1 and the RSTD2 includes:
  • the network device calculates a difference between the RSTD1 and the RSTD2, and uses a difference between the RSTD1 and the RSTD2 as a TAE;
  • the network device calculates a difference between the RSTD1 and the TAE, performs positioning calculation according to the difference between the RSTD1 and the TAE, and acquires new location information of the UE;
  • the network device acquires a new RSTD1, and calculates a difference between the new RSTD1 and the new RSTD2 calculated using the new location information, and uses the difference between the new RSTD1 and the new RSTD2 as a new one. TAE;
  • a target TAE is obtained based on the new TAE.
  • the acquiring, by the network device, the first time difference of arrival, RSTD1 includes:
  • the network device receives the first time difference of arrival RSTD1 reported by the UE, and the RSTD1 is calculated by the UE according to the first positioning signal sent by the first base station and the second positioning signal sent by the second base station.
  • the acquiring, by the network device, the first time difference of arrival, RSTD1 includes:
  • the network device calculates a first time difference of arrival RSTD1 according to the first receiving time information and/or the first received power information and the second receiving time information or/and the second received power information.
  • the method before the calculating, by the network device, the second time difference of the difference RSTD2 according to the initial location information of the UE, the method further includes:
  • the network device receives the initial location information reported by the UE.
  • the method before the calculating, by the network device, the second time difference of the difference RSTD2 according to the initial location information of the UE, the method further includes:
  • the network device calculates initial location information of the UE.
  • the method further includes:
  • the network device calculates at least one other TAE
  • the network device performs weighting processing on the TAE and at least one other TAE to obtain a target TAE;
  • the network device performs TDOA positioning based on the target TAE.
  • the network device performs weighting processing on the TAE and the at least one other TAE, and acquiring the target TAE includes :
  • the network device calculates an average of the TAE and at least one of the other TAEs to obtain a target TAE.
  • the network device performs weighting processing on the TAE and the at least one other TAE, and acquiring the target TAE includes :
  • the network device calculates, according to the preset weight value of the TAE and the at least one other TAE, a product of a pre-weight value of each TAE and each TAE value, and uses the product as a weight TAE corresponding to each TAE;
  • the network device adds the TAE to the weight TAE of at least one of the other TAEs, and uses the added result as the target TAE.
  • the method further includes:
  • the network device sends the target TAE to the UE or other UE.
  • a fourth aspect of the present invention provides a user equipment, including:
  • a receiver configured to receive a first positioning signal that is sent by the first base station at the first moment, and a second positioning signal that is sent by the second base station at the first moment;
  • a processor configured to obtain a first time difference of arrival RSTD1 according to an arrival time or an arrival power of the first positioning signal and an arrival time or an arrival power of the second positioning signal, to obtain first base station location information, second base station location information And the location information of the user equipment UE, and obtaining a time synchronization error TAE according to the first base station location information, the second base station location information, the location information of the UE, and the RSTD1;
  • the transmitter is configured to report the TAE to a network device, where the TAE is used for positioning.
  • the processor is specifically configured to:
  • the processor is further specifically used to:
  • a ratio of the difference to an electromagnetic wave propagation speed is calculated, and the ratio is taken as the RSTD2.
  • a fifth aspect of the present invention provides a network device, including:
  • the receiver is configured to receive a first time synchronization error TAE reported by the UE.
  • a processor configured to perform positioning based on the time difference of arrival TDOA on the at least one UE based on the first TAE.
  • the processor is further configured to:
  • TDOA positioning is performed on the UE or the at least one other UE based on the target TAE.
  • the processor is further configured to: calculate the first TAE and the at least one second The average value of the TAE is obtained for the target TAE.
  • the processor is further specifically used to:
  • the first TAE is added to the weight TAE of at least one of the second TAEs, and the result of the addition is taken as the target TAE.
  • a sixth aspect of the present invention provides a network device, including:
  • a receiver configured to acquire a first arrival time difference RSTD1;
  • a processor configured to calculate a second arrival time difference RSTD2 according to initial location information of the UE
  • a second calculating module configured to calculate a TAE according to the RSTD1 and the RSTD2, and perform positioning based on the arrival time difference TDOA based on the TAE.
  • the processor is specifically configured to: calculate a difference between the RSTD1 and the RSTD2, and use the difference as a target TAE.
  • the processor is further specifically used to:
  • a target TAE is obtained based on the new TAE.
  • the receiver is further configured to: receive, by the UE, a first time difference of arrival, RSTD1, where the RSTD1 is The UE calculates the first positioning signal sent by the first base station and the second positioning signal sent by the second base station.
  • the receiver is further configured to: receive the first receiving time information reported by the first base station, and the second receiving time reported by the second base station Information; accordingly,
  • the processor is further configured to calculate a first time difference of arrival RSTD1 according to the first receiving time information and the second receiving time information.
  • the processor is further configured to: after receiving the second time difference of difference RSTD2 according to initial location information of the UE, receive the Initial location information.
  • the processor is further configured to: calculate initial location information of the UE before calculating a second time difference of difference RSTD2 according to initial location information of the UE. .
  • the processor is further configured to: after calculating a time synchronization error TAE according to the RSTD1 and the RSTD2, calculate at least one other TAE;
  • TDOA positioning is performed based on the target TAE.
  • the processor is further configured to: calculate an average value of the TAE and the at least one of the other TAEs , get the target TAE.
  • the processor is further configured to:
  • the TAE is added to the weight TAE of at least one of the other TAEs, and the result of the addition is taken as the target TAE.
  • the method further includes:
  • a transmitter configured to send the target TAE to the UE or other UE.
  • the method based on the arrival time difference provided by the present invention first calculates the TAE, and then performs the TDOA calculation according to the TAE. Since the TAE due to the base station has been subtracted from the positioning calculation, that is, the time synchronization error due to the base station is eliminated, the accuracy of the TDOA positioning can be ensured.
  • FIG. 1 is a system architecture diagram of a method for locating a time difference based on an embodiment of the present invention
  • Embodiment 2 is an interaction flowchart of Embodiment 1 of a method for locating time difference based on an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of Embodiment 2 of a method for locating time difference based on an embodiment of the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 3 of a method for locating time difference based on an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of Embodiment 4 of a method for locating time difference based on an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing an example of weighting processing using the averaging method of the present invention.
  • FIG. 7 is a schematic flowchart of Embodiment 5 of a method for locating an arrival time difference according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of Embodiment 6 of a method for locating an arrival time difference according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of Embodiment 7 of a method for locating an arrival time difference according to an embodiment of the present disclosure
  • FIG. 10 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a first embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram of a second embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a third embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a first embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 16 is a block diagram of a second embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 17 is a block diagram of a third embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 18 is a block diagram of a fourth embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 19 is a block diagram of a fifth embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 20 is a block diagram of a sixth embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 21 is a block diagram of a seventh embodiment of a network device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of Embodiment 1 of a user equipment 900 according to an embodiment of the present disclosure
  • FIG. 23 is a schematic structural diagram of Embodiment 1 of a network device 1000 according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of Embodiment 1 of a network device 1100 according to an embodiment of the present disclosure.
  • FIG. 1 is a system architecture diagram of a method for locating time difference based on an embodiment of the present invention.
  • a UE communicates with a base station 1, a base station 2, and a base station 3, and a network device, a UE, a base station 1, a base station 2, and a base station 3 Communication.
  • the base station 1, the base station 2, and the base station 3 simultaneously transmit positioning signals to the UE, and the UE respectively calculates the receiving time 1 or/and of the positioning signals for the base station 1, the base station 2, and the base station 3.
  • Receive power 1 receive time 2 or / and receive power 2
  • the received power 1, the received power 2, and the received power 3 are converted into a receiving distance 1, a receiving distance 2, a receiving distance 3 by a channel fading model, and then the receiving distance 1, the receiving distance 2, the receiving distance 3 are divided by the electromagnetic wave propagation speed into Reception time 1 to, reception time 2 to, reception time 3 to.
  • the reception time 1 and the reception time 1 are weighted to generate the reception time 4.
  • the reception time 2 and the reception time 2 are weighted to generate the reception time 5.
  • the reception time 3 and the reception time 3 are weighted to generate the reception time 6.
  • the receiving time weight value of receiving time 1 and receiving time 1 to corresponding can be calculated according to the following formula:
  • Reception time 4 w* (reception time 1) + (1-w) (reception time 1 to)
  • the receiving time 4, the receiving time 5, and the receiving time 6 are subtracted two by two to obtain 3 RSTDs, and the UE reports the three RSTDs to the network device, and the network device according to the three RSTDs and the base station 1, the base station 2, and the base station 3
  • the coordinate information lists three hyperbolic equations to find the position information of the UE.
  • the main purpose of the present invention is to calculate the TAE caused by the base station.
  • the TAE is removed in the RSTD, that is, the time difference caused by the base station is eliminated, thereby improving the TDOA positioning accuracy.
  • the network device in the present invention may be a network end device such as a base station, a positioning server, or a private server.
  • the base station in the present invention includes a wireless access point (Wireless Access Point), an RRU (Radio Remote Unit), an RRH (Remote Radio Head), and the like.
  • Embodiment 1 is an interaction flowchart of Embodiment 1 of a method for locating time difference based on an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • the first base station sends a first positioning signal to the UE at the first moment.
  • the second base station also sends a second positioning signal to the UE at the first time.
  • the UE receives the first positioning signal sent by the first base station and the second positioning signal sent by the second base station, and according to an arrival time of the first positioning signal or/and a received power and an arrival time of the second positioning signal, or And the received power calculates the first arrival time difference RSTD1.
  • the UE obtains first base station location information, second base station location information, and location information of the UE.
  • the UE may acquire location information of the first base station and the second base station by sending a request message to the first base station and the second base station.
  • the UE may use other positioning technologies to acquire location information of the UE itself, such as a global positioning system to acquire accurate location information of the UE.
  • the UE obtains a time synchronization error TAE according to the first base station location information, the second base station location information, the location information of the UE, and the RSTD1, and reports the TAE to the network device, where the TAE is used for positioning.
  • the UE may obtain a theoretical RSTD between the first base station and the second base station according to the first base station location information, the second base station location information, and the location information of the UE, according to the theory.
  • the TAD between the first base station and the second base station can be obtained by the RSTD on the above and the actually calculated RSTD1.
  • the TAE is reported to the network device, so that the network device can locate different UEs according to the TAE.
  • the network device receives the TAE reported by the UE, and performs TDOA positioning on the at least one UE based on the TAE.
  • the network device first deducts the TAE from the RSTD during the positioning, and then can perform the positioning according to the TDOA method of the prior art, but is not limited thereto.
  • the UE calculates the TAE based on the actual receiving time of the positioning signal, and according to the first base station location information, the second base station location information, and the location information of the UE, and obtains the TAE caused by the base station, and reports the TAE to the network device.
  • the network device first subtracts the TAE and then performs positioning calculation. Since the TAE due to the base station has been subtracted from the positioning calculation, that is, the time synchronization error due to the base station is eliminated, the accuracy of the TDOA positioning can be ensured.
  • FIG. 3 is a schematic flowchart of Embodiment 2 of the method for locating time difference based on the method according to the embodiment of the present invention.
  • the foregoing step S105 may specifically include:
  • the UE obtains a second time difference of arrival RSTD2 according to the first base station location information, the second base station location information, and the location information of the UE.
  • the UE calculates a difference between RSTD1 and RSTD2, and uses the difference as a TAE.
  • the UE calculates the theoretical RSTD2 between the first base station and the second base station according to the first base station location information, the second base station location information, and the location information of the UE, and then calculates the difference between RSTD1 and RSTD2.
  • the TAE between the first base station and the second base station is calculated.
  • FIG. 4 is a schematic flowchart of Embodiment 3 of the method for locating the time difference based on the method according to the embodiment of the present invention.
  • the foregoing step S201 may specifically include:
  • the UE calculates a first distance between the UE and the first base station according to the location information of the UE and the first base station location information.
  • the UE calculates a second distance between the UE and the second base station according to the location information of the UE and the second base station location information.
  • the UE calculates a difference between the first distance and the second distance.
  • the UE calculates a ratio of the difference between the difference and the electromagnetic wave propagation speed, and uses the ratio as RSTD2.
  • the RSTD2 which should theoretically have can be calculated, and the calculation result is used as a reference for comparison with the actual RSTD, and the accuracy of the calculated TAE can be ensured.
  • FIG. 5 is a schematic flowchart of Embodiment 4 of a method for locating time difference based on an embodiment of the present invention. As shown in FIG. 5, after the TAE is calculated by using the foregoing Embodiments 1 to 2, the method further includes:
  • the network device receives at least one other TAE reported by the UE or at least one other UE.
  • the other TAE is a location other than the known location of the UE in the foregoing embodiment or the UE is located at other time points according to the location information, the positioning signal sent by the first base station, and the location sent by the second base station. Signal calculation is obtained.
  • the other TAE is at least one other TAE reported by at least one other UE.
  • the UE may periodically calculate the TAE, and report the TAE to the network device after each calculation of the TAE, and the network device saves the TAE received each time.
  • the network device performs weighting processing on the first TAE and the at least one other TAE to obtain the target TAE.
  • the first TAE refers to the TAE calculated by the foregoing Embodiments 1 to 2.
  • the network device performs TDOA positioning on the UE or the at least one other UE according to the foregoing target TAE.
  • the location service can be located using the TDOA method of the prior art, except that the TAE is first subtracted from the RSTD and the hyperbolic equation is established according to the RSTD.
  • the network device receives a plurality of other TAEs calculated by the same UE at different locations or at least one other TAE calculated by the at least one UE, and after receiving multiple TAEs, performs weighting processing on the Obtain the target TAE and use the target TAE for TDOA positioning.
  • the weighted TAE combines the TAE data of multiple cycles or multiple UEs, and thus is more accurate, and the result of TDOA positioning based on the average is also more accurate.
  • the average value of the first TAE and the at least one other TAE may be calculated, and the average group is used as the target TAE.
  • the network device may set the number of TAEs that need to be weighted in advance.
  • the network device performs average value processing on the TAEs.
  • FIG. 6 is a schematic diagram of an example of performing weighting processing using the averaging method of the present invention.
  • both UE1 and UE2 receive reference signals transmitted by base station 1 and base station 2, and base station 1 and base station 2 transmit reference signals at the same time, base station 1
  • the time at which the reference signal is received by the UE1 is t1
  • the time at which the reference signal of the base station 2 is received by the UE1 is t2
  • the time at which the reference signal of the base station 1 is received by the UE2 is t3
  • the time at which the reference signal of the base station 2 is received by the UE2 is t4.
  • UE1 calculates the arrival time difference of the reference signal as RSTD1
  • UE2 calculates the arrival time difference of the reference signal as RSTD2 according to the actual location.
  • the average value of the TAE corresponding to UE1 and UE2 can be calculated according to the following formula:
  • TAE ((RSTD1’-RSTD1)+(RSTD2’-RSTD2))/2
  • the network device calculates a product of the pre-weight value of each TAE and each TAE value according to the preset weight value of the first TAE and the at least one second TAE, and uses the product as the product.
  • Each TAE corresponds to a weight TAE.
  • the network device adds the first TAE to the weight TAE of the at least one second TAE, and uses the added result as the target TAE.
  • the TAE obtained by the network device for one location of the UE1 is TAE1
  • the preset weight value is w1
  • the TAE obtained by the UE1 at another location is TAE2
  • the preset weight value is w2
  • the other is
  • the TAE obtained by a location of UE2 is TAE3, and the preset weight value is w3
  • the calculation formula of the target TAE is:
  • TAE w1*TAE1+w2*TAE2+. . . . +w3*TAE3
  • the target TAE may be calculated according to the TAEs of different UEs and their weights. For example, it is assumed that the TAE obtained by the network device for UE1 is TAE1, the preset weight value is w1, and the TAE for UE2 is TAE2, which is pre- Let the weight value be w2, the TAE for UE3 be TAE3, and the preset weight value is w3, then the calculation formula of the target TAE is:
  • TAE w1*TAE1+w2*TAE2+. . . . +w3*TAE3
  • the preset weight value may be set according to the actual situation of the UE. For example, if a certain UE is located in a region with a good channel condition, the weight of the TAE obtained for the UE is determined. The value can be set higher, which means that the TAE is closer to the actual TAE, otherwise the TAE's weight value can be set lower.
  • the UE does not calculate the TAE, but receives the TAE information from the network device.
  • the TAE is obtained by calculating the TAE obtained by the network device by performing positioning calculation on other surrounding UEs, or the TAE is obtained by weighting the TAE reported by the surrounding UE by the network device.
  • the UE receives the first positioning signal sent by the first base station at the first moment and the second positioning signal that is sent by the second base station at the first moment.
  • the UE calculates RSTD1 according to the arrival time of the first positioning signal and the arrival time of the second positioning signal.
  • the UE calculates the RSTD3 formed after the TAE compensates for RSTD1.
  • RSTD3 RSTD1-TAE
  • the UE reports the RSTD3 to the base station or the network device.
  • FIG. 7 is a schematic flowchart of Embodiment 5 of the method for locating time difference based on the method according to the embodiment of the present invention.
  • the execution body of the method is a network device, and the method includes:
  • the network device acquires a first time difference of arrival, RSTD1.
  • the network device may adopt different methods for acquiring RSTD1 according to the sending body of the positioning signal.
  • the network device calculates a second time difference of arrival RSTD2 according to initial location information of the UE.
  • the initial location of the UE may be a fixed preset location, for example, the UE is set on a positioning pole, or the initial location information of the UE may be obtained by other positioning technologies, such as GPS technology, or the UE may also be in a small location. Move within range.
  • the method for the network device to calculate the RSTD2 according to the initial location information of the UE is the same as the foregoing steps S301-S304, except that the execution entity is a network device, and details are not described herein again.
  • the network device calculates the TAE according to the RSTD1 and the RSTD2.
  • the network device performs TDOA positioning based on the TAE.
  • the location service can be located using the TDOA method of the prior art, except that the TAE is first subtracted from the RSTD and the hyperbolic equation is established according to the RSTD.
  • the network device obtains the RSTD1 obtained according to the actual receiving time of the positioning signal, and then calculates the theoretical RSTD2 according to the location information of the UE, and according to the difference between the RSTD1 and the RSTD2, the TAE caused by the base station is obtained, and the positioning is performed.
  • the TAE is first subtracted and then the positioning calculation is performed. Since the TAE has been subtracted due to the base station due to the positioning calculation, That is, the time synchronization error caused by the base station is eliminated, so the accuracy of the TDOA positioning can be ensured.
  • the foregoing step S501 is specifically:
  • the network device receives the first time difference of arrival RSTD1 reported by the UE, and the RSTD1 is calculated by the UE according to the first positioning signal sent by the first base station and the second positioning signal sent by the second base station.
  • FIG. 8 is a schematic flowchart of Embodiment 6 of the method for locating time difference based on the method according to the embodiment of the present invention.
  • the scenario in which the reference signal is sent by the UE that is, the uplink positioning signal transmission scenario
  • the foregoing step S501 is specifically:
  • the network device receives first receiving time information or/and first receiving power information reported by the first base station, and second receiving time information or/and second receiving power information reported by the second base station.
  • the UE sends the positioning signal to the first base station and the second base station at the same time, and the first base station and the second base station respectively receive the positioning signal, and send the receiving time or/and the receiving power of the positioning signal to the network device.
  • the network device calculates RSTD1 according to the first receiving time information or/and the first received power information and the second receiving time information or/and the second received power information.
  • An implementation manner of the foregoing step S503 may be:
  • the network device calculates the difference between RSTD1 and RSTD2, and uses the difference as the target TAE.
  • the present embodiment is applicable to a scenario in which the UE is fixed in a preset position, or uses other positioning technologies to acquire the UE location, that is, the initial location information of the UE is accurate.
  • the UE reports the accurate location information to the network device, and then
  • the RSTD2 calculated by the network device according to the location information can be used as a reference for calculating the TAE.
  • the reference is compared with the RSTD1 calculated by the UE according to the actual receiving time to obtain a TAE, which can ensure the accuracy of the TAE.
  • FIG. 9 is a schematic flowchart of Embodiment 7 of the method for locating the time difference based on the method according to the embodiment of the present invention.
  • another implementation manner of the foregoing step S503 may be:
  • the network device calculates a difference between RSTD1 and RSTD2, and uses RSTD1 and RSTD2. The difference is taken as the TAE.
  • the network device calculates a difference between the RSTD1 and the TAE, performs positioning calculation according to the difference between the RSTD1 and the TAE, and acquires new location information of the UE.
  • the network device acquires a new RSTD1, and calculates a difference between the new RSTD1 and the new RSTD2 calculated by using the new location information, and uses the difference between the new RSTD1 and the new RSTD2 as the new TAE.
  • the network device obtains the target TAE according to the new TAE.
  • the network device may perform the foregoing steps S702 and S703 cyclically according to a preset number of times.
  • the preset number of times may be set according to the following principle: when the calculated location information of the UE converges in the vicinity of a fixed location, the location at this time is considered. The information is already accurate, and the TAE determined at this time is also the accurate TAE, and the loop can be stopped at this time. When the loop ends, the calculated new TAE can be used as the target TAE for the network device to locate different UEs.
  • the TAE calculation may be performed multiple times by using the loop calculation method of the embodiment, and each TAE is calculated based on the previously calculated UE location information, when the loop is repeated multiple times.
  • the calculated TAE is the exact TAE. Therefore, in this embodiment, when the location of the UE is not fixed, an accurate TAE can be calculated to ensure the accuracy of subsequent TDOA positioning.
  • the network device may further perform weighting processing on the plurality of TAEs by using the same method, update the target TAE, and perform TDOA positioning using the target TAE.
  • the method for performing weighting processing on multiple TAEs is the same as the two embodiments in the foregoing step S402, and details are not described herein again.
  • the method further includes: before the step S502, the method further includes:
  • the network device receives initial location information reported by the UE.
  • the UE is in the preset position, that is, the initial location information of the UE is accurate, and the UE reports the accurate location information to the network device, and the RSTD2 calculated by the network device according to the location information can be used as the TAE calculation.
  • the benchmark is obtained by subtracting the RSTD1 calculated by the UE according to the actual receiving time from this reference to obtain a TAE, which can ensure the accuracy of the TAE.
  • the UE moves in a small range, that is, the UE is not fixed in the preset position.
  • the method further includes:
  • the network device calculates the initial location information of the UE.
  • the UE is not in a fixed preset position.
  • the network device may calculate initial location information of the UE by using specific positioning means, where the initial location information belongs to the estimated location information.
  • the target TAE is sent to the UE or other UEs for positioning by the UE or other UEs.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 10 is a block diagram of a first embodiment of a user equipment according to an embodiment of the present invention. As shown in FIG. 10, the user equipment includes:
  • the receiving module 501 is configured to receive a first positioning signal that is sent by the first base station at the first moment, and a second positioning signal that is sent by the second base station at the first moment.
  • the first calculation module 502 is configured to obtain a first arrival time difference RSTD1 according to the measurement information of the first positioning signal and the measurement information of the second positioning signal, where the measurement information includes at least an arrival time of the positioning signal and a receiving power of the positioning signal. One of them.
  • the obtaining module 503 is configured to obtain first base station location information, second base station location information, and location information of the UE.
  • the reporting module 504 is configured to obtain a time synchronization error TAE according to the first base station location information, the second base station location information, the location information of the UE, and the RSTD1, and report the TAE to the network device, where the TAE is used for positioning.
  • the reporting module 504 is specifically configured to: calculate a difference between RSTD1 and RSTD2, and use the difference as a TAE.
  • FIG 11 is a block diagram of a second embodiment of a user equipment according to an embodiment of the present invention.
  • the reporting module 504 includes:
  • the obtaining unit 5041 is configured to obtain a second arrival time difference RSTD2 according to the first base station location information, the second base station location information, and the location information of the UE.
  • the calculating unit 5042 is configured to calculate a difference between RSTD1 and RSTD2, and use the difference as a TAE.
  • the obtaining unit 5041 is specifically configured to:
  • FIG. 12 is a block diagram of a first embodiment of a network device according to an embodiment of the present invention. As shown in FIG. 12, the network device includes:
  • the first receiving module 601 is configured to receive the first TAE reported by the UE.
  • the first positioning module 602 is configured to perform TDOA positioning on the at least one UE based on the first TAE.
  • FIG. 13 is a block diagram of a second embodiment of a network device according to an embodiment of the present invention. As shown in FIG. 13, the network device further includes:
  • the second receiving module 603 is configured to receive at least one second TAE reported by the UE or at least one other UE.
  • the processing module 604 is configured to perform weighting processing on the first TAE and the at least one second TAE to obtain the target TAE.
  • the second positioning module 605 is configured to perform TDOA positioning on the UE or the at least one other UE based on the target TAE.
  • the foregoing network device is used to perform the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the processing module 604 is specifically configured to: calculate an average value of the first TAE and at least one of the second TAEs to obtain a target TAE.
  • FIG 14 is a block diagram of a third embodiment of a network device according to an embodiment of the present invention.
  • the processing module 604 includes:
  • the calculating unit 6041 is configured to calculate, according to the preset weight value of the first TAE and the at least one second TAE, a product of a pre-weight value of each TAE and each TAE value, and the product is used as each TAE corresponds to the weight TAE.
  • the summing unit 6042 is configured to add the first TAE to the weight TAE of the at least one second TAE, and use the added result as the target TAE.
  • Figure 15 is a block diagram of a first embodiment of a network device according to an embodiment of the present invention. As shown in Figure 15, the network device includes:
  • the obtaining module 701 is configured to obtain a first arrival time difference RSTD1.
  • the first calculating module 702 is configured to calculate a second arrival time difference RSTD2 according to the initial location information of the UE.
  • the second calculating module 703 is configured to calculate the TAE according to RSTD1 and RSTD2.
  • the positioning module 704 is configured to perform TDOA positioning based on the TAE.
  • the foregoing network device is used to perform the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the second calculating module 703 is specifically configured to: calculate a difference between RSTD1 and RSTD2, and use the difference as the target TAE.
  • FIG 16 is a block diagram of a second embodiment of a network device according to an embodiment of the present invention.
  • the second computing module 703 includes:
  • the first calculating unit 7031 is configured to calculate a difference between RSTD1 and RSTD2, and use a difference between RSTD1 and RSTD2 as a TAE.
  • the obtaining unit 7032 is configured to calculate a difference between the RSTD1 and the TAE, perform positioning calculation according to the difference between the RSTD1 and the TAE, and acquire new location information of the UE.
  • the second calculating unit 7033 is configured to acquire a new RSTD1, and calculate a difference between the new RSTD1 and the new RSTD2 calculated using the new location information, and use the difference between the new RSTD1 and the new RSTD2 as the new TAE. .
  • the acquiring module 701 is specifically configured to: receive a first time difference of the time, RSTD1, reported by the UE, where the RSTD1 is calculated by the UE according to the first positioning signal sent by the first base station and the second positioning signal sent by the second base station. .
  • the acquiring module 701 is further configured to: receive the first receiving time information reported by the first base station or/and the first receiving power information, and the second receiving time information reported by the second base station, or/and the second Receiving power information; calculating a first time difference of arrival based on the first received time information or/and the first received power information and the second received time information or/and the second received power information RSTD1.
  • FIG. 17 is a block diagram of a third embodiment of a network device according to an embodiment of the present invention. As shown in FIG. 17, the network device further includes:
  • the first receiving module 705 is configured to receive the initial location information reported by the UE before the first calculating module 702 calculates the second time difference of difference RSTD2 according to the initial location information of the UE.
  • FIG. 18 is a block diagram of a fourth embodiment of a network device according to an embodiment of the present invention. As shown in FIG. 18, the network device further includes:
  • the second receiving module 706 is configured to calculate initial location information of the UE before the first calculating module 702 calculates the second time difference of arrival RSTD2 according to the initial location information of the UE.
  • FIG. 19 is a block diagram of a fifth embodiment of a network device according to an embodiment of the present disclosure. As shown in FIG. 19, the network device further includes:
  • the third calculating module 707 is configured to calculate at least one other TAE after the second calculating module 703 calculates the TAE according to RSTD1 and RSTD2.
  • the processing module 708 is configured to perform weighting processing on the TAE and the at least one other TAE to obtain the target TAE.
  • the second positioning module 709 is configured to perform TDOA positioning based on the target TAE.
  • processing module 708 is specifically configured to: calculate an average of the TAE and the at least one other TAE, and obtain the target TAE.
  • FIG. 20 is a block diagram of a sixth embodiment of a network device according to an embodiment of the present invention. As shown in FIG. 20, the processing module 708 includes:
  • the calculating unit 7081 is configured to calculate, according to the preset weight value of the TAE and the at least one other TAE, a product of the pre-weight value of each TAE and each TAE value, and use the product as the weight TAE corresponding to each TAE.
  • the summing unit 7082 is configured to add the TAE to the weight TAE of the at least one other TAE, and use the added result as the target TAE.
  • FIG. 21 is a block diagram of a seventh embodiment of a network device according to an embodiment of the present disclosure. As shown in FIG. 21, the network device further includes:
  • the sending module 7010 is configured to send the foregoing target TAE to the UE or other UE.
  • FIG. 22 is a schematic structural diagram of Embodiment 1 of a user equipment 900 according to an embodiment of the present invention.
  • the user equipment includes: a processor 910, a receiver 920, a transmitter 930, and a storage device.
  • memory 940 can include read only memory and random access memory and provides instructions and data to processor 910, which can be a central processing unit CPU, digital signal processor DSP, application specific integrated circuit ASIC, field programmable Gate array FPGA or other programmable logic device. A portion of memory 940 may also include non-volatile line random access memory (NVRAM). Transmitter 930 is used to generate the signal to be transmitted and to signal.
  • bus system 950 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 950 in the figure. Specifically, in this embodiment:
  • the receiver 920 is configured to receive a first positioning signal that is sent by the first base station at the first moment, and a second positioning signal that is sent by the second base station at the first moment.
  • the processor 910 is configured to obtain a first time difference of arrival (RSTD1) according to an arrival time or/and an arrival power of the first positioning signal and an arrival time or/and an arrival power of the second positioning signal, to obtain the first base station position information and the second base station position.
  • the information and the location information of the UE, and the time synchronization error TAE are obtained according to the first base station location information, the second base station location information, the location information of the UE, and the RSTD1.
  • the transmitter 930 is configured to report the TAE to the network device, where the TAE is used for positioning.
  • the foregoing user equipment 900 is used to perform the foregoing method embodiment of the user equipment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 23 is a schematic structural diagram of Embodiment 1 of a network device 1000 according to an embodiment of the present invention.
  • the network device includes: a processor 1010, a receiver 1020, a transmitter 1030, a memory 1040, and a bus system 1050. .
  • the memory 1040 can include read only memory and random access memory and provides instructions and data to the processor 1010, which can be a central processing unit CPU, a digital signal processor DSP, an application specific integrated circuit ASIC, field programmable Gate array FPGA or other programmable logic device. A portion of the memory 1040 may also include non-volatile line random access memory (NVRAM). Transmitter 1030 is used to generate a signal to be transmitted and to signal.
  • the various components in network device 1000 are coupled together by a bus system 950, wherein bus system 1050 includes a number In addition to the bus, it also includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1050 in the figure. Specifically, in this embodiment:
  • the receiver 1020 is configured to receive a first time synchronization error TAE reported by the UE.
  • the processor 1010 is configured to perform positioning based on the time difference of arrival TDOA on the at least one UE based on the first TAE.
  • the foregoing network device 1000 is used to perform the foregoing method embodiment corresponding to the first type of network device, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 24 is a schematic structural diagram of Embodiment 1 of a network device 1100 according to an embodiment of the present invention.
  • the network device includes: a processor 1110, a receiver 1120, a transmitter 1130, a memory 1140, and a bus system 1150. .
  • the memory 1140 may include read only memory and random access memory, and provides instructions and data to the processor 1110.
  • the processor 1110 may be a central processing unit CPU, a digital signal processor DSP, an application specific integrated circuit ASIC, and field programmable. Gate array FPGA or other programmable logic device. A portion of the memory 1140 may also include non-volatile line random access memory (NVRAM).
  • Transmitter 1130 is used to generate a signal to be transmitted and to signal.
  • the various components in network device 1100 are coupled together by a bus system 1150, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1150 in the figure. Specifically, in this embodiment:
  • the receiver 1120 is configured to acquire a first arrival time difference RSTD1.
  • the processor 1110 is configured to calculate a second arrival time difference RSTD2 according to the initial location information of the UE, calculate a TAE according to the RSTD1 and the RSTD2, and perform positioning based on the arrival time difference TDOA based on the TAE.
  • the foregoing network device 1100 is configured to perform the foregoing method embodiment corresponding to the second type of network device, and the implementation principle and technical effects are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例提供一种基于到达时间差定位方法、用户设备及网络设备,该方法包括:用户设备根据第一基站和第二基站在同一时刻发送的定位信号计算第一到达时间差RSTD1,再根据用户设备的已知位置信息计算第二到达时间差RSTD2,根据RSTD1和RSTD2来计算时间同步误差TAE,再基于TAE进行基于到达时间差TDOA定位。使用该方法在定位计算时已经减去由于基站原因导致的TAE,即消除了由于基站原因导致的时间同步误差,因此能够保证TDOA定位的精度。

Description

基于到达时间差定位方法、用户设备及网络设备 技术领域
本发明涉及定位技术,尤其涉及一种基于到达时间差定位方法、用户设备及网络设备。
背景技术
随着通信业务的发展,定位业务作为移动通信和个人通信服务的一个不可或缺的部分,发挥着重要作用。定位业务是通过运营商的网络(如LTE网络等)获取移动终端用户的位置信息,即经纬度坐标,在电子地图平台的支持下,为用户提供相应服务的一种增值业务。近年来,随着人们物质生活水平的不断提高,人们对位置服务的需求也与日俱增,如在安全监控、紧急救援、出行指南等诸多方面对定位的广泛需求。
目前,基于到达时间差(Time Difference Of Arrival,简称TDOA)的定位方法是一种重要的实现定位业务的方法。根据参考信号的不同流向,TDOA定位方法可以分为根据观察到达时间差(Observed Time Difference Of Arrival,简称OTDOA)定位和根据上行信号到达时间差(Uplink Time Difference Of Arrival,简称UTDOA)定位。其中,TDOA定位方法的基本原理为:当***中存在三个或以上基站时,可以根据不同基站同时发送的下行传输的定位参考信号(Positioning Reference Signal,简称PRS)、或UE给不同基站同时发送的上行传输的探测参考信号(Sounding Reference Signal,简称SRS)的到达时间差(Reference Signal Time Difference,简称RSTD)确定用户设备(User Equipment,简称UE)的位置。
但是,不同的基站因为各自的本地振荡器不同等原因,会产生不同的绝对时间,使得从基站的天线端口产生的信号或接收的信号在时间上不能完全同步,称为时间同步误差(Time Alignment Error,简称TAE)当使用TDOA定位方法进行定位时,TAE会累加到RSTD上,使得TDOA定位存在误差,导致TDOA定位精度不够高。
发明内容
本发明一种基于到达时间差定位方法、用户设备及网络设备,用于解决现有技术由于存在TAE而导致的TDOA定位精度不高的问题。
本发明第一方面提供一种基于到达时间差定位方法,该方法包括:
用户设备UE接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号;
所述UE根据所述第一定位信号的测量信息以及所述第二定位信号的测量信息获得第一到达时间差RSTD1,所述测量信息至少包括定位信号的到达时间和定位信号的接收功率中的一种。
所述UE获得第一基站位置信息、第二基站位置信息以及所述UE的位置信息;
所述UE根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE,并将所述TAE上报给网络设备,所述TAE用于定位。
结合第一方面,在第一方面的第一种可能的实施方式中,所述UE根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE,包括:
所述UE根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2;
所述UE计算所述RSTD1与所述RSTD2的差值,将所述差值作为所述TAE。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述UE根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2,包括:
所述UE根据所述UE的位置信息以及所述第一基站位置信息计算所述UE与所述第一基站的第一距离;
所述UE根据所述UE的位置信息以及所述第二基站位置信息计算所述UE与所述第二基站的第二距离;
所述UE计算所述第一距离与所述第二距离的差值;
所述UE计算所述差值与电磁波传播速度的比值,将所述比值作为所述 RSTD2。
本发明第二方面提供一种基于到达时间差定位方法,包括:
网络设备接收UE上报的第一时间同步误差TAE;
所述网络设备基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位。
结合第二方面,在第二方面的第一种可能的实施方式中,所述网络设备基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位之后,还包括:
所述网络设备接收所述UE或至少一个其他UE上报的至少一个第二TAE;
所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE;
所述网络设备基于所述目标TAE对所述UE或所述至少一个其他UE进行TDOA定位。
结合第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE包括:
所述网络设备计算所述第一TAE与至少一个所述第二TAE的平均值,获取所述目标TAE。
结合第二方面的第一种可能的实施方式,在第二方面的第三种可能的实施方式中,所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE包括:
所述网络设备根据所述第一TAE与至少一个所述第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
所述网络设备将所述第一TAE与至少一个所述第二TAE的权重TAE相加,将相加的结果作为所述目标TAE。
本发明第三方面提供一种基于到达时间差定位方法,包括:
网络设备获取第一到达时间差RSTD1;
所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2;
所述网络设备根据所述RSTD1和所述RSTD2计算时间同步误差TAE;
所述网络设备基于所述TAE进行基于到达时间差TDOA定位。
结合第三方面,在第三方面的第一种可能的实施方式中,所述网络设备根据所述RSTD1和所述RSTD2计算TAE包括:
所述网络设备计算所述RSTD1与所述RSTD2的差值,将所述差值作为目标TAE。
结合第三方面,在第三方面的第二种可能的实施方式中,所述网络设备根据所述RSTD1和所述RSTD2计算TAE包括:
所述网络设备计算所述RSTD1与所述RSTD2的差值,将所述RSTD1与所述RSTD2的差值作为TAE;
所述网络设备计算所述RSTD1与所述TAE的差值,根据所述RSTD1与所述TAE的差值进行定位计算,获取UE的新的位置信息;
所述网络设备获取新的RSTD1,并计算所述新的RSTD1与使用所述新的位置信息计算出的新的RSTD2的差值,将所述新的RSTD1和新的RSTD2的差值作为新的TAE;
根据所述新的TAE获得目标TAE。
结合第三方面,在第三方面的第三种可能的实施方式中,所述网络设备获取第一到达时间差RSTD1包括:
所述网络设备接收所述UE上报的第一到达时间差RSTD1,所述RSTD1为所述UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
结合第三方面,在第三方面的第四种可能的实施方式中,所述网络设备获取第一到达时间差RSTD1包括:
所述网络设备接收第一基站上报的第一接收时间信息和/或第一接收功率信息,以及第二基站上报的第二接收时间信息和/或第二接收功率信息;
所述网络设备根据所述第一接收时间信息和/或所述第一接收功率信息以及所述第二接收时间信息或/和所述第二接收功率信息计算第一到达时间差RSTD1。
结合第三方面,在第三方面的第五种可能的实施方式中,所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2之前,还包括:
所述网络设备接收所述UE上报的所述初始位置信息。
结合第三方面,在第三方面的第六种可能的实施方式中,所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2之前,还包括:
所述网络设备计算所述UE的初始位置信息。
结合第三方面,在第三方面的第七种可能的实施方式中,所述网络设备根据所述RSTD1和所述RSTD2计算时间同步误差TAE之后,还包括:
所述网络设备计算至少一个其他TAE;
所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE;
所述网络设备基于所述目标TAE进行TDOA定位。
结合第三方面的第七种可能的实施方式,在第三方面的第八种可能的实施方式种,所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE包括:
所述网络设备计算所述TAE与至少一个所述其他TAE的平均值,获取目标TAE。
结合第三方面的第七种可能的实施方式,在第三方面的第九种可能的实施方式种,所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE包括:
所述网络设备根据所述TAE与至少一个所述其他TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
所述网络设备将所述TAE与至少一个所述其他TAE的权重TAE相加,将相加的结果作为目标TAE。
结合第三方面的第一种可能的实施方式、第三方面的第二种可能的实施方式、第三方面的第八种可能的实施方式以及第三方面的第九种可能的实施方式中的任一种,在第三方面的第十种可能的实施方式中,所述方法还包括:
所述网络设备将所述目标TAE发送给所述UE或其他UE。
本发明第四方面提供一种用户设备,包括:
接收器,用于接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号;
处理器,用于根据所述第一定位信号的到达时间或到达功率以及所述第二定位信号的到达时间或到达功率获得第一到达时间差RSTD1,获得第一基站位置信息、第二基站位置信息以及所述用户设备UE的位置信息,以及,根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE;
发送器,用于将所述TAE上报给网络设备,所述TAE用于定位。
结合第四方面,在第四方面的第一种可能的实施方式中,所述处理器,具体用于:
根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2;
计算所述RSTD1与所述RSTD2的差值,将所述差值作为所述TAE。
结合第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述处理器,进一步具体用于:
根据所述UE的位置信息以及所述第一基站位置信息计算所述UE与所述第一基站的第一距离;
根据所述UE的位置信息以及所述第二基站位置信息计算所述UE与所述第二基站的第二距离;
计算所述第一距离与所述第二距离的差值;
计算所述差值与电磁波传播速度的比值,将所述比值作为所述RSTD2。
本发明第五方面提供一种网络设备,包括:
接收器,用于接收UE上报的第一时间同步误差TAE。
处理器,用于基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位。
结合第五方面,在第五方面的第一种可能的实施方式中,所述处理器还用于:
接收所述UE或至少一个其他UE上报的至少一个第二TAE;
对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE;
基于所述目标TAE对所述UE或所述至少一个其他UE进行TDOA定位。
结合第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述处理器,进一步具体用于:计算所述第一TAE与至少一个所述第二TAE的平均值,获取所述目标TAE。
结合第五方面的第一种可能的实施方式,在第五方面的第三种可能的实施方式中,所述处理器,进一步具体用于:
根据所述第一TAE与至少一个所述第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
将所述第一TAE与至少一个所述第二TAE的权重TAE相加,将相加的结果作为所述目标TAE。
本发明第六方面提供一种网络设备,包括:
接收器,用于获取第一到达时间差RSTD1;
处理器,用于根据UE的初始位置信息计算第二到达时间差RSTD2;
第二计算模块,用于根据所述RSTD1和所述RSTD2计算TAE,并且,基于所述TAE进行基于到达时间差TDOA定位。
结合第六方面,在第六方面的第一种可能的实施方式中,所述处理器具体用于:计算所述RSTD1与所述RSTD2的差值,将所述差值作为目标TAE。
结合第六方面,在第六方面的第二种可能的实施方式中,所述处理器进一步具体用于:
计算所述RSTD1与所述RSTD2的差值,将所述RSTD1与所述RSTD2的差值作为TAE;
计算所述RSTD1与所述TAE的差值,根据所述RSTD1与所述TAE的差值进行定位计算,获取UE的新的位置信息;
获取新的RSTD1,并计算所述新的RSTD1与使用所述新的位置信息计算出的新的RSTD2的差值,将所述新的RSTD1和新的RSTD2的差值作为新的TAE;
根据所述新的TAE获得目标TAE。
结合第六方面,在第六方面的第三种可能的实施方式中,所述接收器,还用于:接收所述UE上报的第一到达时间差RSTD1,所述RSTD1为所述 UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
结合第六方面,在第六方面的第四种可能的实施方式中,所述接收器,还用于:接收第一基站上报的第一接收时间信息,以及第二基站上报的第二接收时间信息;相应地,
所述处理器,还用于根据所述第一接收时间信息和所述第二接收时间信息计算第一到达时间差RSTD1。
结合第六方面,在第六方面的第五种可能的实施方式中,所述处理器还用于:在根据UE的初始位置信息计算第二到达时间差RSTD2之前,接收所述UE上报的所述初始位置信息。
结合第六方面,在第六方面的第六种可能的实施方式中,所述处理器还用于:在根据UE的初始位置信息计算第二到达时间差RSTD2之前,计算所述UE的初始位置信息。
结合第六方面,在第六方面的第七种可能的实施方式中,所述处理器还用于:在根据所述RSTD1和所述RSTD2计算时间同步误差TAE之后,计算至少一个其他TAE;
对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE;
基于所述目标TAE进行TDOA定位。
结合第六方面的第七种可能的实施方式,在第六方面的第八种可能的实施方式中,所述处理器具体还用于:计算所述TAE与至少一个所述其他TAE的平均值,获取目标TAE。
结合第六方面的第七种可能的实施方式,在第六方面的第九种可能的实施方式中,所述处理器具体还用于:
根据所述TAE与至少一个所述其他TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
将所述TAE与至少一个所述其他TAE的权重TAE相加,将相加的结果作为目标TAE。
结合第六方面的第一种可能的实施方式、第六方面的第二种可能的实施方式、第六方面的第八种可能的实施方式以及第六方面的第九种可能的实施 方式中的任一种,在第六方面的第十种可能的实施方式中,还包括:
发送器,用于将所述目标TAE发送给所述UE或其他UE。
本发明所提供的基于到达时间差定位方法首先计算出TAE,再根据TAE进行TDOA计算。由于定位计算时已经减去由于基站原因导致的TAE,即消除了由于基站原因导致的时间同步误差,因此能够保证TDOA定位的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的基于到达时间差定位方法的***架构图;
图2为本发明实施例提供的基于到达时间差定位方法实施例一的交互流程图;
图3为为本发明实施例提供的基于到达时间差定位方法实施例二的流程示意图;
图4为本发明实施例提供的基于到达时间差定位方法实施例三的流程示意图;
图5为本发明实施例提供的基于到达时间差定位方法实施例四的流程示意图;
图6是本发明使用平均方法进行加权处理的举例示意图;
图7为本发明实施例提供的基于到达时间差定位方法实施例五的流程示意图;
图8为本发明实施例提供的基于到达时间差定位方法实施例六的流程示意图;
图9为本发明实施例提供的基于到达时间差定位方法实施例七的流程示意图;
图10为本发明实施例提供的一种用户设备实施例一的模块结构图;
图11为本发明实施例提供的一种用户设备实施例二的模块结构图;
图12为本发明实施例提供的一种网络设备实施例一的模块结构图;
图13为本发明实施例提供的一种网络设备实施例二的模块结构图;
图14为本发明实施例提供的一种网络设备实施例三的模块结构图;
图15为本发明实施例提供的另一种网络设备实施例一的模块结构图;
图16为本发明实施例提供的另一种网络设备实施例二的模块结构图;
图17为本发明实施例提供的另一种网络设备实施例三的模块结构图;
图18为本发明实施例提供的另一种网络设备实施例四的模块结构图;
图19为本发明实施例提供的另一种网络设备实施例五的模块结构图;
图20为本发明实施例提供的另一种网络设备实施例六的模块结构图;
图21为本发明实施例提供的另一种网络设备实施例七的模块结构图;
图22为本发明实施例提供的一种用户设备900实施例一的结构示意图;
图23为本发明实施例提供的一种网络设备1000实施例一的结构示意图;
图24为本发明实施例提供的一种网络设备1100实施例一的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的基于到达时间差定位方法的***架构图,如图1所示,UE与基站1、基站2、基站3通信,网络设备与UE、基站1、基站2、基站3通信。以TDOA定位过程为例,在该***架构中,基站1、基站2、基站3同时向UE发送定位信号,UE分别计算针对基站1、基站2、基站3的定位信号的接收时间1或/和接收功率1、接收时间2或/和接收功率2、接收时间3或/和接收功率3。将接收功率1、接收功率2、接收功率3通过信道衰落模型转换为接收距离1、接收距离2、接收距离3,再将接收距离1、接收距离2、接收距离3除以电磁波传播速度转换为接收时间1~、接收时间2~、接收时间3~。将接收时间1与接收时间1~加权生成接收时间4。将接收时间2与接收时间2~加权生成接收时间5。将接收时间3与接收时间3~加权生成接收时间6。
可以根据以下公式计算接收时间1和接收时间1~对应的接收时间加权值:
接收时间4=w*(接收时间1)+(1-w)(接收时间1~)
其中,0≤w≤1。
再对接收时间4、接收时间5、接收时间6两两相减,得出3个RSTD,UE将三个RSTD上报到网络设备,由网络设备根据三个RSTD以及基站1、基站2、基站3的坐标信息列出三个双曲线方程来求出UE的位置信息。
本发明的主要目的在于:计算出由于基站原因所导致的TAE,在后续的TDOA定位中,在RSTD中去除TAE,即消除由于基站原因导致的时间差,从而提高TDOA定位精度。
本发明中的网络设备,可以是基站、定位服务器、私有服务器等网络端设备。本发明中的基站,包括无线接入点(Wireless Access Point)、RRU(Radio Remote Unit)、RRH(Remote Radio Head)等。
图2为本发明实施例提供的基于到达时间差定位方法实施例一的交互流程图,如图2所示,该方法包括:
S101、第一基站在第一时刻向UE发送第一定位信号。
S102、第二基站在上述第一时刻也向UE发送第二定位信号。
S103、UE接收上述第一基站发送的第一定位信号以及上述第二基站发送的第二定位信号,并根据第一定位信号的到达时间或/和接收功率以及第二定位信号的到达时间或/和接收功率计算第一到达时间差RSTD1。
S104、UE获得第一基站位置信息、第二基站位置信息以及所述UE的位置信息。
具体地,UE可以通过向第一基站和第二基站发送请求消息来获取第一基站和第二基站的位置信息。UE可以使用其他定位技术来获取UE自身的位置信息,例如全球定位***来获取UE的准确位置信息。
S105、UE根据第一基站位置信息、第二基站位置信息、UE的位置信息以及上述RSTD1,获得时间同步误差TAE,并将TAE上报给网络设备,其中,TAE用于定位。
具体地,UE根据第一基站位置信息、第二基站位置信息和UE的位置信息,可以获得第一基站和第二基站之间的理论上的RSTD,在根据这个理论 上的RSTD和上述实际计算出的RSTD1,即可获得第一基站和第二基站之间的TAE。UE计算出这个TAE之后将TAE上报给网络设备,使得网络设备可以根据TAE对不同的UE进行定位。
S106、网络设备接收UE上报的TAE,并基于TAE对至少一个UE进行TDOA定位。
具体地,网络设备在定位时先在RSTD中减去TAE,进而可以再按照现有技术的TDOA方法进行定位,但并不以此为限。
本实施例中,UE根据定位信号的实际接收时间计算的RSTD1以及根据第一基站位置信息、第二基站位置信息以及UE的位置信息,得出由于基站原因导致的TAE,并将TAE上报网络设备,网络设备在进行定位计算的过程中,首先减去TAE再进行定位计算。由于定位计算时已经减去由于基站原因导致的TAE,即消除了由于基站原因导致的时间同步误差,因此能够保证TDOA定位的精度。
图3为本发明实施例提供的基于到达时间差定位方法实施例二的流程示意图,如图3所示,上述步骤S105可以具体包括:
S201、UE根据第一基站位置信息、第二基站位置信息以及UE的位置信息,获得第二到达时间差RSTD2。
S202、UE计算RSTD1与RSTD2的差值,将差值作为TAE。
本实施例中,UE根据第一基站位置信息、第二基站位置信息以及UE的位置信息计算出第一基站和第二基站之间理论上的RSTD2,再将RSTD1和RSTD2求差值,则可以计算出第一基站和第二基站之间的TAE。
图4为为本发明实施例提供的基于到达时间差定位方法实施例三的流程示意图,如图4所示,上述步骤S201可以具体包括:
S301、UE根据UE的位置信息以及第一基站位置信息计算UE与第一基站的第一距离。
S302、UE根据UE的位置信息以及第二基站位置信息计算UE与第二基站的第二距离。
S303、UE计算第一距离与第二距离的差值。
S304、UE计算上述差值与电磁波传播速度的比值,将该比值作为RSTD2。
通过本实施例可以计算出理论上应该具有的RSTD2,将计算结果作为与实际的RSTD进行比较的基准,能够保证计算出的TAE的准确。
图5为本发明实施例提供的基于到达时间差定位方法实施例四的流程示意图,如图5所示,在通过前述实施例一至实施例二计算出TAE之后,该方法还包括:
S401、网络设备接收UE或至少一个其他UE上报的至少一个其他TAE。
具体地,该其他TAE为UE在除前述实施例中所述的已知位置之外的其它位置或UE在其他时间点,根据位置信息、第一基站发送的定位信号以及第二基站发送的定位信号计算获取。或者,该其他TAE为至少一个其他UE上报的至少一个其他TAE。
可选地,UE可以周期性地计算TAE,并在每次计算出TAE后将TAE上报给网络设备,网络设备将每次接收到的TAE都保存下来。
S402、网络设备对第一TAE与至少一个其他TAE进行加权处理,获取目标TAE。
第一TAE是指通过前述实施例一至实施例二所计算出的TAE。
S403、网络设备基于上述目标TAE对上述UE或上述至少一个其他UE进行TDOA定位。
具体地,定位服务可以使用现有技术的TDOA方法进行定位,只是在定位时需要首先在RSTD中减去TAE,再根据RSTD建立双曲线方程。
本实施例中,网络设备接收同一UE在不同位置所计算出的多个其他TAE或者其他至少一个UE所计算的至少一个其他TAE,并在接收到多个TAE之后,对其进行加权处理,以获取目标TAE,并使用该目标TAE进行TDOA定位。经加权处理的TAE综合了多个周期或多个UE的TAE数据,因此更加精确,基于该平均值进行TDOA定位的结果也更精确。
在上述步骤S402的一种实施方式中,网络设备对第一TAE与至少一个其他TAE进行加权处理时,可以计算第一TAE与至少一个其他TAE的平均值,将该平均值组作为目标TAE。
可选地,网络设备可以事先设置需要进行加权处理的TAE的个数,当接收到的TAE达到预设个数时,网络设备对这些TAE进行平均取值处理。
图6是本发明使用平均方法进行加权处理的举例示意图,如图6所示,UE1和UE2都接收基站1和基站2发送的参考信号,基站1和基站2在同一时刻发送参考信号,基站1的参考信号被UE1接收的时刻为t1,基站2的参考信号被UE1接收的时刻为t2,基站1的参考信号被UE2接收的时刻为t3,基站2的参考信号被UE2接收的时刻为t4。UE1根据实际所在的位置,计算参考信号应该的到达时间差为RSTD1,UE2根据实际所在的位置,计算参考信号应该的到达时间差为RSTD2。假设UE1对应的实际到达时间差为RSTD1’,UE2对应的实际到达时间差为RSTD2’,则可以根据以下公式计算UE1和UE2对应的TAE的平均值:
RSTD1’=RSTD1+TAE=t2-t1+TAE
RSTD2’=RSTD2+TAE=t4-t3+TAE
TAE=((RSTD1’-RSTD1)+(RSTD2’-RSTD2))/2
在上述步骤S402的另一种实施方式中,网络设备根据第一TAE与至少一个第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将该乘积作为每个TAE对应的权重TAE,进而,网络设备将第一TAE与至少一个第二TAE的权重TAE相加,将相加的结果作为目标TAE。
具体地,假设网络设备针对UE1在一个位置所得到的TAE为TAE1,其预设权重值为w1,针对UE1在另一个位置所得到的TAE为TAE2,其预设权重值为w2,针对另一个UE2一个位置所得到的TAE为TAE3,其预设权重值为w3,则目标TAE的计算公式为:
TAE=w1*TAE1+w2*TAE2+。。。。+w3*TAE3
其中,w1+w2+。。。。+w3=1。
或者,目标TAE也可以根据不同UE的TAE及其权重进行计算得出,例如,假设网络设备针对UE1所得到的TAE为TAE1,其预设权重值为w1,针对UE2的TAE为TAE2,其预设权重值为w2,针对UE3的TAE为TAE3,其预设权重值为w3,则目标TAE的计算公式为:
TAE=w1*TAE1+w2*TAE2+。。。。+w3*TAE3
其中,w1+w2+。。。。+w3=1。
需要说明的是,预设权重值可以根据UE的实际情况进行设置,例如,若某个UE位于信道条件比较好的地区,则针对该UE所得到地TAE的权重 值就可以设置的高一些,即说明该TAE的更加接近实际TAE,反之则可以将TAE的的权重值设置的低一些。
另一实施例中,UE不计算TAE,而是从网络设备接收TAE信息。该TAE为网络设备通过对周围其他UE进行定位计算所获取到的TAE,或者,该TAE为网络设备通过收集周围UE上报的TAE,进行加权得到的。
例如,UE接收第一基站在第一时刻发送的第一定位信号、以及第二基站在第一时刻发送的第二定位信号。UE根据第一定位信号的到达时间以及第二定位信号的到达时间计算RSTD1。UE计算TAE补偿RSTD1后形成的RSTD3。
例如:RSTD3=RSTD1-TAE
UE向基站或网络设备上报所述RSTD3。
图7为本发明实施例提供的基于到达时间差定位方法实施例五的流程示意图,如图7所示,该方法的执行主体为网络设备,该方法包括:
S501、网络设备获取第一到达时间差RSTD1。
网络设备根据定位信号的发送主体可以采取不同的获取RSTD1的方法。
S502、网络设备根据UE的初始位置信息计算第二到达时间差RSTD2。
UE的初始位置可以为固定的预设位置,例如,将UE设置在一个定位杆上,或者,也可以通过其它定位技术,如GPS技术得到UE的初始位置信息,或者,UE也可以在一个小范围内移动。
网络设备根据UE的初始位置信息计算RSTD2的方法与上述步骤S301-S304相同,只是执行主体为网络设备,此处不再赘述。
S503、网络设备根据上述RSTD1和上述RSTD2计算TAE。
S504、网络设备基于TAE进行TDOA定位。
具体地,定位服务可以使用现有技术的TDOA方法进行定位,只是在定位时需要首先在RSTD中减去TAE,再根据RSTD建立双曲线方程。
本实施例中,网络设备获取根据定位信号实际接收时间得出的RSTD1,再根据UE的位置信息计算理论上的RSTD2,根据RSTD1和RSTD2的差别,得出由于基站原因导致的TAE,在进行定位计算的过程中,首先减去TAE再进行定位计算。由于定位计算时已经减去由于基站原因导致的TAE, 即消除了由于基站原因导致的时间同步误差,因此能够保证TDOA定位的精度。
另一实施例中,针对参考信号由基站发送的场景,即下行定位信号发送场景,上述步骤S501具体为:
网络设备接收所述UE上报的第一到达时间差RSTD1,所述RSTD1为所述UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
UE计算RSTD1的方法可以参照上述步骤S101-S103的方法,此处不再赘述。
图8为本发明实施例提供的基于到达时间差定位方法实施例六的流程示意图,如图8所示,针对参考信号由UE发送的场景,即上行定位信号发送场景,上述步骤S501具体为:
S601、网络设备接收第一基站上报的第一接收时间信息或/和第一接收功率信息,以及第二基站上报的第二接收时间信息或/和第二接收功率信息。
具体地,UE同时向第一基站和第二基站发送定位信号,第一基站和第二基站分别接收定位信号,并将定位信号的接收时间或/和接收功率发送给网络设备。
S602、网络设备根据上述第一接收时间信息或/和上述第一接收功率信息和上述第二接收时间信息或/和上述第二接收功率信息计算RSTD1。
上述步骤S503的一种实施方式可以为:
网络设备计算RSTD1与RSTD2的差值,将该差值作为目标TAE。
本实施例适用于UE固定处于预设位置,或使用其它定位技术获取UE位置,即UE的初始位置信息是准确的场景,对于这种场景,UE将这个准确的位置信息上报给网络设备,进而网络设备根据该位置信息计算的RSTD2就可以作为计算TAE的基准,通过这个基准与UE根据实际接收时间计算出的RSTD1相减,得出TAE,能够保证TAE的准确。
图9为本发明实施例提供的基于到达时间差定位方法实施例七的流程示意图,如图9所示,上述步骤S503的另一种实施方式可以为:
S701、网络设备计算RSTD1与RSTD2的差值,将RSTD1与RSTD2的 差值作为TAE。
S702、网络设备计算RSTD1与上述TAE的差值,根据RSTD1与上述TAE的差值进行定位计算,获取UE的新的位置信息。
S703、网络设备获取新的RSTD1,并计算新的RSTD1与使用该新的位置信息计算出的新的RSTD2的差值,将新的RSTD1和新的RSTD2的差值作为新的TAE。
S704、网络设备根据新的TAE获得目标TAE。
其中,网络设备可以按照预设次数循环执行上述步骤S702和S703,预设次数的设置可以按照以下原则:当计算出的UE的位置信息收敛在一个固定位置的附近时,则认为此时的位置信息已经准确,则此时所确定出来的TAE也是准确的TAE,此时即可以停止循环。当循环结束时,所计算出的新的TAE就可以作为目标TAE,用于网络设备对不同的UE进行定位。
若UE的位置信息为估计信息,则可以使用本实施例的循环计算方法,进行多次的TAE计算,每次的TAE都基于前一次所计算出的UE位置信息进行计算,当循环多次之后,所计算出的TAE就是准确的TAE。因此,本实施例使得在UE的位置并非固定的情况下,也能计算出准确的TAE,保证后续TDOA定位的准确性。
进一步地,在上述计算出TAE的基础上,网络设备还可以使用同样的方法计算出的多个TAE,对该多个TAE进行加权处理,更新目标TAE,并使用该目标TAE进行TDOA定位。
对多个TAE进行加权处理的方法和前述步骤S402的两种实施方式相同,此处不再赘述。
另一实施例中,针对UE固定处于预设位置,或基于其它定位技术获取UE位置的场景,在上述步骤S502之前,该方法还包括:
网络设备接收UE上报的初始位置信息。
本实施例中,UE固定处于预设位置,即UE的初始位置信息是准确的,UE将这个准确的位置信息上报给网络设备,进而网络设备根据该位置信息计算的RSTD2就可以作为计算TAE的基准,通过这个基准与UE根据实际接收时间计算出的RSTD1相减,得出TAE,能够保证TAE的准确。
另一实施例中,针对UE在小范围内移动,即UE不固定处于预设位置的 场景,在上述步骤S502之前,该方法还包括:
网络设备计算获取所述UE的初始位置信息。
本实施例中,UE并不是处于固定的预设位置,在此场景下,网络设备可以通过特定的定位手段计算出UE的初始位置信息,该初始位置信息属于估算位置信息。
另一实施例中,当网络设备根据上述方法得到目标TAE之后,将该目标TAE发送给上述UE或者其他UE,用于上述UE或其他UE的定位。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图10为本发明实施例提供的一种用户设备实施例一的模块结构图,如图10所示,该用户设备包括:
接收模块501,用于接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号。
第一计算模块502,用于根据第一定位信号的测量信息以及第二定位信号的测量信息获得第一到达时间差RSTD1,其中,所述测量信息至少包括定位信号的到达时间和定位信号的接收功率中的一种。
获取模块503,用于获得第一基站位置信息、第二基站位置信息以及UE的位置信息。
上报模块504,用于根据第一基站位置信息、第二基站位置信息、UE的位置信息以及上述RSTD1,获得时间同步误差TAE,并将TAE上报给网络设备,其中,TAE用于定位。
上述用户设备用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
另一实施例中,上报模块504,具体用于:计算RSTD1与RSTD2的差值,将该差值作为TAE。
图11为本发明实施例提供的一种用户设备实施例二的模块结构图,如图11所示,上报模块504包括:
获取单元5041,用于根据第一基站位置信息、第二基站位置信息以及UE的位置信息,获得第二到达时间差RSTD2。
计算单元5042,用于计算RSTD1与RSTD2的差值,将该差值作为TAE。
另一实施例中,获取单元5041具体用于:
根据UE的位置信息以及第一基站位置信息计算UE与第一基站的第一距离;根据UE的位置信息以及第二基站位置信息计算UE与第二基站的第二距离;计算第一距离与第二距离的差值;计算该差值与电磁波传播速度的比值,将该比值作为RSTD2。
图12为本发明实施例提供的一种网络设备实施例一的模块结构图,如图12所示,该网络设备包括:
第一接收模块601,用于接收UE上报的第一TAE。
第一定位模块602,用于基于第一TAE对至少一个UE进行TDOA定位。
图13为本发明实施例提供的一种网络设备实施例二的模块结构图,如图13所示,在图12的基础上,该网络设备还包括:
第二接收模块603,用于接收UE或至少一个其他UE上报的至少一个第二TAE。
处理模块604,用于对第一TAE与至少一个第二TAE进行加权处理,获取目标TAE。
第二定位模块605,用于基于目标TAE对UE或至少一个其他UE进行TDOA定位。
上述网络设备用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
另一实施例中,处理模块604具体用于:计算所述第一TAE与至少一个所述第二TAE的平均值,获取目标TAE。
图14为本发明实施例提供的一种网络设备实施例三的模块结构图,如图14所示,处理模块604包括:
计算单元6041,用于根据第一TAE与至少一个第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将该乘积作为每个 TAE对应的权重TAE。
加和单元6042,用于将第一TAE与至少一个第二TAE的权重TAE相加,将相加的结果作为目标TAE。
图15为本发明实施例提供的另一种网络设备实施例一的模块结构图,如图15所示,该网络设备包括:
获取模块701,用于获取第一到达时间差RSTD1。
第一计算模块702,用于根据UE的初始位置信息计算第二到达时间差RSTD2。
第二计算模块703,用于根据RSTD1和RSTD2计算TAE。
定位模块704,用于基于上述TAE进行TDOA定位。
上述网络设备用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
另一实施例中,第二计算模块703具体用于:计算RSTD1与RSTD2的差值,将该差值作为目标TAE。
图16为本发明实施例提供的另一种网络设备实施例二的模块结构图,如图16所示,第二计算模块703包括:
第一计算单元7031,用于计算RSTD1与RSTD2的差值,将RSTD1与RSTD2的差值作为TAE。
获取单元7032,用于计算RSTD1与TAE的差值,根据RSTD1与TAE的差值进行定位计算,获取UE的新的位置信息。
第二计算单元7033,用于获取新的RSTD1,并计算新的RSTD1与使用该新的位置信息计算出的新的RSTD2的差值,将新的RSTD1和新的RSTD2的差值作为新的TAE。
另一实施例中,获取模块701具体用于:接收UE上报的第一到达时间差RSTD1,该RSTD1为UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
另一实施例中,获取模块701具体还用于:接收第一基站上报的第一接收时间信息或/和第一接收功率信息,以及第二基站上报的第二接收时间信息或/和第二接收功率信息;根据第一接收时间信息或/和第一接收功率信息以及第二接收时间信息或/和第二接收功率信息计算第一到达时间差 RSTD1。
图17为本发明实施例提供的另一种网络设备实施例三的模块结构图,如图17所示,在图15的基础上,该网络设备还包括:
第一接收模块705,用于在第一计算模块702根据UE的初始位置信息计算第二到达时间差RSTD2之前,接收所述UE上报的初始位置信息。
图18为本发明实施例提供的另一种网络设备实施例四的模块结构图,如图18所示,在图17的基础上,该网络设备还包括:
第二接收模块706,用于在第一计算模块702根据UE的初始位置信息计算第二到达时间差RSTD2之前,计算UE的初始位置信息。
图19为本发明实施例提供的另一种网络设备实施例五的模块结构图,如图19所示,在图18的基础上,该网络设备还包括:
第三计算模块707,用于在所述第二计算模块703根据RSTD1和RSTD2计算TAE之后,计算至少一个其他TAE。
处理模块708,用于对TAE与至少一个其他TAE进行加权处理,获取目标TAE。
第二定位模块709,用于基于目标TAE进行TDOA定位。
另一实施例中,处理模块708具体用于:计算TAE与至少一个其他TAE的平均值,获取目标TAE。
图20为本发明实施例提供的另一种网络设备实施例六的模块结构图,如图20所示,处理模块708包括:
计算单元7081,用于根据TAE与至少一个其他TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将该乘积作为每个TAE对应的权重TAE。
加和单元7082,用于将TAE与至少一个其他TAE的权重TAE相加,将相加的结果作为目标TAE。
图21为本发明实施例提供的另一种网络设备实施例七的模块结构图,如图21所示,在图19的基础上,该网络设备还包括:
发送模块7010,用于将上述目标TAE发送给上述UE或其他UE。
图22为本发明实施例提供的一种用户设备900实施例一的结构示意图,如图22所示,该用户设备包括:处理器910、接收器920、发送器930、存 储器940以及总线***950。
具体地,存储器940可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据,处理器910可以是中央处理器CPU、数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件。存储器940的一部分还可以包括非易失行随机存取存储器(NVRAM)。发送器930用来生成即将发射的信号并将信号发出。用户设备900中的各个组件通过总线***950耦合在一起,其中总线***950除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线***950。具体地,本实施例中:
接收器920,用于接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号。
处理器910,用于根据第一定位信号的到达时间或/和到达功率以及第二定位信号的到达时间或/和到达功率获得第一到达时间差RSTD1,获得第一基站位置信息、第二基站位置信息以及UE的位置信息,以及,根据第一基站位置信息、第二基站位置信息、UE的位置信息以及RSTD1,获得时间同步误差TAE。
发送器930,用于将上述TAE上报给网络设备,该TAE用于定位。
上述用户设备900用于执行前述用户设备对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
上述处理器910的具体实现方式均可参考前述方法实施例部分的记载,在此不再赘述。
图23为本发明实施例提供的一种网络设备1000实施例一的结构示意图,如图23所示,该网络设备包括:处理器1010、接收器1020、发送器1030、存储器1040以及总线***1050。
具体地,存储器1040可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据,处理器1010可以是中央处理器CPU、数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件。存储器1040的一部分还可以包括非易失行随机存取存储器(NVRAM)。发送器1030用来生成即将发射的信号并将信号发出。网络设备1000中的各个组件通过总线***950耦合在一起,其中总线***1050除包括数 据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线***1050。具体地,本实施例中:
接收器1020,用于接收UE上报的第一时间同步误差TAE。
处理器1010,用于基于第一TAE对至少一个UE进行基于到达时间差TDOA定位。
上述网络设备1000用于执行前述第一种网络设备对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
上述处理器1010的具体实现方式均可参考前述方法实施例部分的记载,在此不再赘述。
图24为本发明实施例提供的一种网络设备1100实施例一的结构示意图,如图24所示,该网络设备包括:处理器1110、接收器1120、发送器1130、存储器1140以及总线***1150。
具体地,存储器1140可以包括只读存储器和随机存取存储器,并向处理器1110提供指令和数据,处理器1110可以是中央处理器CPU、数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件。存储器1140的一部分还可以包括非易失行随机存取存储器(NVRAM)。发送器1130用来生成即将发射的信号并将信号发出。网络设备1100中的各个组件通过总线***1150耦合在一起,其中总线***1150除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线***1150。具体地,本实施例中:
接收器1120,用于获取第一到达时间差RSTD1。
处理器1110,用于根据UE的初始位置信息计算第二到达时间差RSTD2,根据RSTD1和RSTD2计算TAE,并且,基于该TAE进行基于到达时间差TDOA定位。
上述网络设备1100用于执行前述第二种网络设备对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
上述处理器1110和发送器1130的具体实现方式均可参考前述方法实施例部分的记载,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种基于到达时间差定位方法,其特征在于,包括:
    用户设备UE接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号;
    所述UE根据所述第一定位信号的测量信息以及所述第二定位信号的测量信息获得第一到达时间差RSTD1,所述测量信息至少包括定位信号的到达时间和定位信号的接收功率中的一种;
    所述UE获得第一基站位置信息、第二基站位置信息以及所述UE的位置信息;
    所述UE根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE,并将所述TAE上报给网络设备,所述TAE用于定位。
  2. 根据权利要求1所述的方法,其特征在于,所述UE根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE,包括:
    所述UE根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2;
    所述UE计算所述RSTD1与所述RSTD2的差值,将所述差值作为所述TAE。
  3. 根据权利要求2所述的方法,其特征在于,所述UE根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2,包括:
    所述UE根据所述UE的位置信息以及所述第一基站位置信息计算所述UE与所述第一基站的第一距离;
    所述UE根据所述UE的位置信息以及所述第二基站位置信息计算所述UE与所述第二基站的第二距离;
    所述UE计算所述第一距离与所述第二距离的差值;
    所述UE计算所述差值与电磁波传播速度的比值,将所述比值作为所述RSTD2。
  4. 一种基于到达时间差定位方法,其特征在于,包括:
    网络设备接收UE上报的第一时间同步误差TAE;
    所述网络设备基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位之后,还包括:
    所述网络设备接收所述UE或至少一个其他UE上报的至少一个第二TAE;
    所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE;
    所述网络设备基于所述目标TAE对所述UE或所述至少一个其他UE进行TDOA定位。
  6. 根据权利要求5所述的方法,其特征在于,所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE包括:
    所述网络设备计算所述第一TAE与至少一个所述第二TAE的平均值,获取所述目标TAE。
  7. 根据权利要求5所述的方法,其特征在于,所述网络设备对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE包括:
    所述网络设备根据所述第一TAE与至少一个所述第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
    所述网络设备将所述第一TAE与至少一个所述第二TAE的权重TAE相加,将相加的结果作为所述目标TAE。
  8. 一种基于到达时间差定位方法,其特征在于,包括:
    网络设备获取第一到达时间差RSTD1;
    所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2;
    所述网络设备根据所述RSTD1和所述RSTD2计算时间同步误差TAE;
    所述网络设备基于所述TAE进行基于到达时间差TDOA定位。
  9. 根据权利要求8所述的方法,其特征在于,所述网络设备根据所述RSTD1和所述RSTD2计算TAE包括:
    所述网络设备计算所述RSTD1与所述RSTD2的差值,将所述差值作为 目标TAE。
  10. 根据权利要求8所述的方法,其特征在于,所述网络设备根据所述RSTD1和所述RSTD2计算TAE包括:
    所述网络设备计算所述RSTD1与所述RSTD2的差值,将所述RSTD1与所述RSTD2的差值作为TAE;
    所述网络设备计算所述RSTD1与所述TAE的差值,根据所述RSTD1与所述TAE的差值进行定位计算,获取UE的新的位置信息;
    所述网络设备获取新的RSTD1,并计算所述新的RSTD1与使用所述新的位置信息计算出的新的RSTD2的差值,将所述新的RSTD1和新的RSTD2的差值作为新的TAE;
    所述网络设备根据所述新的TAE获得目标TAE。
  11. 根据权利要求8所述的方法,其特征在于,所述网络设备获取第一到达时间差RSTD1包括:
    所述网络设备接收所述UE上报的第一到达时间差RSTD1,所述RSTD1为所述UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
  12. 根据权利要求8所述的方法,其特征在于,所述网络设备获取第一到达时间差RSTD1包括:
    所述网络设备接收第一基站上报的第一接收时间信息或/和第一接收功率信息,以及第二基站上报的第二接收时间信息或/和第二接收功率信息;
    所述网络设备根据所述第一接收时间信息或/和所述第一接收功率信息以及所述第二接收时间信息或/和所述第二接收功率信息计算第一到达时间差RSTD1。
  13. 根据权利要求8所述的方法,其特征在于,所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2之前,还包括:
    所述网络设备接收所述UE上报的所述初始位置信息。
  14. 根据权利要求8所述的方法,其特征在于,所述网络设备根据UE的初始位置信息计算第二到达时间差RSTD2之前,还包括:
    所述网络设备计算所述UE的初始位置信息。
  15. 根据权利要求8所述的方法,其特征在于,所述网络设备根据所述 RSTD1和所述RSTD2计算时间同步误差TAE之后,还包括:
    所述网络设备计算至少一个其他TAE;
    所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE;
    所述网络设备基于所述目标TAE进行TDOA定位。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE包括:
    所述网络设备计算所述TAE与至少一个所述其他TAE的平均值,获取目标TAE。
  17. 根据权利要求15所述的方法,其特征在于,所述网络设备对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE包括:
    所述网络设备根据所述TAE与至少一个所述其他TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
    所述网络设备将所述TAE与至少一个所述其他TAE的权重TAE相加,将相加的结果作为目标TAE。
  18. 根据权利要求9、10、16、17任一项所述的方法,其特征在于,还包括:
    所述网络设备将所述目标TAE发送给所述UE或其他UE。
  19. 一种用户设备,其特征在于,包括:
    接收器,用于接收第一基站在第一时刻发送的第一定位信号、以及第二基站在所述第一时刻发送的第二定位信号;
    处理器,用于根据所述第一定位信号的到达时间或/和到达功率以及所述第二定位信号的到达时间或/和到达功率获得第一到达时间差RSTD1,获得第一基站位置信息、第二基站位置信息以及所述用户设备UE的位置信息,以及,根据所述第一基站位置信息、所述第二基站位置信息、所述UE的位置信息以及所述RSTD1,获得时间同步误差TAE;
    发送器,用于所述TAE上报给网络设备,所述TAE用于定位。
  20. 根据权利要求19所述的用户设备,其特征在于,所述处理器,具体用于:
    根据所述第一基站位置信息、所述第二基站位置信息以及所述UE的位置信息,获得第二到达时间差RSTD2;
    计算所述RSTD1与所述RSTD2的差值,将所述差值作为所述TAE。
  21. 根据权利要求20所述的用户设备,其特征在于,所述处理器,进一步具体用于:
    根据所述UE的位置信息以及所述第一基站位置信息计算所述UE与所述第一基站的第一距离;
    根据所述UE的位置信息以及所述第二基站位置信息计算所述UE与所述第二基站的第二距离;
    计算所述第一距离与所述第二距离的差值;
    计算所述差值与电磁波传播速度的比值,将所述比值作为所述RSTD2。
  22. 一种网络设备,其特征在于,包括:
    接收器,用于接收UE上报的第一时间同步误差TAE。
    处理器,用于基于所述第一TAE对至少一个UE进行基于到达时间差TDOA定位。
  23. 根据权利要求22所述的网络设备,其特征在于,所述处理器还用于:
    接收所述UE或至少一个其他UE上报的至少一个第二TAE;
    对所述第一TAE与至少一个所述第二TAE进行加权处理,获取目标TAE;
    基于所述目标TAE对所述UE或所述至少一个其他UE进行TDOA定位。
  24. 根据权利要求23所述的网络设备,其特征在于,所述处理器,进一步具体用于:计算所述第一TAE与至少一个所述第二TAE的平均值,获取所述目标TAE。
  25. 根据权利要求23所述的网络设备,其特征在于,所述处理器,进一步具体用于:
    根据所述第一TAE与至少一个所述第二TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
    将所述第一TAE与至少一个所述第二TAE的权重TAE相加,将相加的结果作为所述目标TAE。
  26. 一种网络设备,其特征在于,包括:
    接收器,用于获取第一到达时间差RSTD1;
    处理器,用于根据UE的初始位置信息计算第二到达时间差RSTD2,根据所述RSTD1和所述RSTD2计算TAE,并且,基于所述TAE进行基于到达时间差TDOA定位。
  27. 根据权利要求26所述的网络设备,其特征在于,所述处理器具体用于:计算所述RSTD1与所述RSTD2的差值,将所述差值作为目标TAE。
  28. 根据权利要求26所述的网络设备,其特征在于,所述处理器进一步具体用于:
    计算所述RSTD1与所述RSTD2的差值,将所述RSTD1与所述RSTD2的差值作为TAE;
    计算所述RSTD1与所述TAE的差值,根据所述RSTD1与所述TAE的差值进行定位计算,获取UE的新的位置信息;
    获取新的RSTD1,并计算所述新的RSTD1与使用所述新的位置信息计算出的新的RSTD2的差值,将所述新的RSTD1和新的RSTD2的差值作为新的TAE;
    根据所述新的TAE获得目标TAE。
  29. 根据权利要求26所述的网络设备,其特征在于,所述接收器,还用于接收所述UE上报的第一到达时间差RSTD1,所述RSTD1为所述UE根据第一基站发送的第一定位信号以及第二基站发送的第二定位信号计算得出。
  30. 根据权利要求26所述的网络设备,其特征在于,所述接收器,还用于接收第一基站上报的第一接收时间信息,以及第二基站上报的第二接收时间信息;相应地,
    所述处理器,还用于根据所述第一接收时间信息和所述第二接收时间信息计算第一到达时间差RSTD1。
  31. 根据权利要求26所述的网络设备,其特征在于,所述处理器还用于:在块根据UE的初始位置信息计算第二到达时间差RSTD2之前,接收所述UE上报的所述初始位置信息。
  32. 根据权利要求26所述的网络设备,其特征在于,所述处理器还用于:在根据UE的初始位置信息计算第二到达时间差RSTD2之前,计算所述UE的初始位置信息。
  33. 根据权利要求26所述的网络设备,其特征在于,所述处理器还用于:
    在根据所述RSTD1和所述RSTD2计算时间同步误差TAE之后,计算至少一个其他TAE;
    对所述TAE与至少一个所述其他TAE进行加权处理,获取目标TAE;
    基于所述目标TAE进行TDOA定位。
  34. 根据权利要求33所述的网络设备,其特征在于,所述处理器具体还用于:计算所述TAE与至少一个所述其他TAE的平均值,获取目标TAE。
  35. 根据权利要求33所述的网络设备,其特征在于,所述处理器具体还用于:
    根据所述TAE与至少一个所述其他TAE的预设权重值,计算每个TAE的预权重值与每个TAE值的乘积,将所述乘积作为每个TAE对应的权重TAE;
    将所述TAE与至少一个所述其他TAE的权重TAE相加,将相加的结果作为目标TAE。
  36. 根据权利要求27、28、34、35任一项所述的网络设备,其特征在于,还包括:
    发送器,用于将所述目标TAE发送给所述UE或其他UE。
PCT/CN2015/099249 2015-12-28 2015-12-28 基于到达时间差定位方法、用户设备及网络设备 WO2017113072A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112018013201-2A BR112018013201A2 (zh) 2015-12-28 2015-12-28 Based on arrival time difference location method, user equipment and network equipment
EP15911703.5A EP3386248B1 (en) 2015-12-28 2015-12-28 Positioning network device and positioning method based on time difference of arrival
CN201580085282.2A CN108370551B (zh) 2015-12-28 2015-12-28 基于到达时间差定位方法、用户设备及网络设备
PCT/CN2015/099249 WO2017113072A1 (zh) 2015-12-28 2015-12-28 基于到达时间差定位方法、用户设备及网络设备
US16/022,505 US10281560B2 (en) 2015-12-28 2018-06-28 Positioning method based on time difference of arrival, user equipment, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099249 WO2017113072A1 (zh) 2015-12-28 2015-12-28 基于到达时间差定位方法、用户设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/022,505 Continuation US10281560B2 (en) 2015-12-28 2018-06-28 Positioning method based on time difference of arrival, user equipment, and network device

Publications (1)

Publication Number Publication Date
WO2017113072A1 true WO2017113072A1 (zh) 2017-07-06

Family

ID=59224225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099249 WO2017113072A1 (zh) 2015-12-28 2015-12-28 基于到达时间差定位方法、用户设备及网络设备

Country Status (5)

Country Link
US (1) US10281560B2 (zh)
EP (1) EP3386248B1 (zh)
CN (1) CN108370551B (zh)
BR (1) BR112018013201A2 (zh)
WO (1) WO2017113072A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715237B (zh) * 2018-11-20 2021-01-01 慧波科技有限公司 無線定位方法
CN112333819A (zh) * 2020-11-05 2021-02-05 京信通信***(中国)有限公司 设备定位方法、装置、计算机设备和存储介质
CN112369085A (zh) * 2018-07-13 2021-02-12 华为技术有限公司 用于网络***中定位移动设备的装置和方法
CN112788734A (zh) * 2019-11-11 2021-05-11 大唐移动通信设备有限公司 时钟偏差确定方法及装置
TWI731634B (zh) * 2020-03-25 2021-06-21 緯創資通股份有限公司 移動路徑判斷方法及無線定位裝置
CN113573229A (zh) * 2020-04-28 2021-10-29 大唐移动通信设备有限公司 一种定位校正方法及装置
CN113939012A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 定位方法及装置
WO2022017376A1 (en) * 2020-07-20 2022-01-27 Mediatek Inc. Procedure to assist network for transmission timing calibration for positioning accuracy enhancement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257753B2 (ja) * 2014-04-21 2018-01-10 三菱電機株式会社 測位装置
US11246107B2 (en) * 2018-11-02 2022-02-08 Qualcomm Incorporated Throughput modification for time delayed carriers
US20220095250A1 (en) * 2019-02-01 2022-03-24 Lg Electronics Inc. Method for measuring location of terminal in wireless communication system and terminal thereof
CN112788733B (zh) 2019-11-11 2021-11-12 大唐移动通信设备有限公司 时钟偏差确定方法及装置
US11294024B2 (en) * 2020-03-10 2022-04-05 Deeyook Location Technologies Ltd. System, apparatus, and/or method for determining a time of flight for one or more receivers and transmitters
CN111818451B (zh) * 2020-07-01 2024-04-05 黄珊 Uwb定位***、基站测绘方法及装置
WO2022213282A1 (en) * 2021-04-06 2022-10-13 Apple Inc. Positioning techniques for user equipment in a network
CN115209345A (zh) * 2021-04-08 2022-10-18 Oppo广东移动通信有限公司 一种定位方法、设备及计算机存储介质
WO2023065086A1 (zh) * 2021-10-18 2023-04-27 北京小米移动软件有限公司 定位方法、装置、通信设备及存储介质
WO2023067817A1 (ja) * 2021-10-22 2023-04-27 株式会社Nttドコモ 端末、及び基地局

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711242A (zh) * 2012-06-08 2012-10-03 华为技术有限公司 测量定位邻居小区参考信号到达时间的方法及终端
CN102724753A (zh) * 2012-06-13 2012-10-10 北京邮电大学 基于到达时间差修正的无线定位方法及终端
CN102958154A (zh) * 2011-08-24 2013-03-06 华为技术有限公司 用户设备的定位方法及装置
CN103261911A (zh) * 2010-12-14 2013-08-21 崔沃在 用于位置测定的基准信号发送方法及***、利用其的位置测定方法、装置及***、利用其的时间同步方法及装置
CN104380816A (zh) * 2012-06-01 2015-02-25 高通股份有限公司 使用聚集otdoa辅助数据获得lte无线基站的时序

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378124B1 (ko) * 1998-12-10 2003-06-19 삼성전자주식회사 이동통신시스템에서단말기의위치추정장치및방법
US6522296B2 (en) * 2001-06-25 2003-02-18 Harris Corporation Method and system for calibrating wireless location systems
WO2005051034A1 (en) * 2003-11-13 2005-06-02 Siemens Communications, Inc. Radio positioning using observed time differences
JP4853218B2 (ja) * 2006-10-13 2012-01-11 株式会社日立製作所 測位システム
US8138078B2 (en) * 2008-07-18 2012-03-20 Teledyne Scientific & Imaging, Llc Mechanically stable diffusion barrier stack and method for fabricating the same
US20100136999A1 (en) * 2008-12-03 2010-06-03 Electronics And Telecommunications Research Institute Apparatus and method for determining position of terminal
KR101191215B1 (ko) 2010-07-16 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
US20130271324A1 (en) * 2012-04-17 2013-10-17 Andrew Sendonaris Systems and methods configured to estimate receiver position using timing data associated with reference locations in three-dimensional space
US9316741B2 (en) * 2012-05-25 2016-04-19 Marvell World Trade Ltd. System and method for determining GPS receiver position
US8848565B2 (en) * 2012-07-12 2014-09-30 Qualcomm Incorporated Method for performing measurements and positioning in a network based WLAN positioning system
US20170009000A1 (en) * 2014-02-26 2017-01-12 Daikin America Inc. Fluoropolymer structures
EP3428689B1 (en) * 2014-03-28 2021-05-19 Mitsubishi Electric Corporation Positioning device
JP6257753B2 (ja) * 2014-04-21 2018-01-10 三菱電機株式会社 測位装置
US9949160B2 (en) * 2015-02-06 2018-04-17 Qualcomm Incorporated Inter-frequency bias compensation for time difference measurements in position determinations
US11997563B2 (en) * 2016-11-23 2024-05-28 Qualcomm Incorporated Enhancements to observed time difference of arrival positioning of a mobile device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261911A (zh) * 2010-12-14 2013-08-21 崔沃在 用于位置测定的基准信号发送方法及***、利用其的位置测定方法、装置及***、利用其的时间同步方法及装置
CN102958154A (zh) * 2011-08-24 2013-03-06 华为技术有限公司 用户设备的定位方法及装置
CN104380816A (zh) * 2012-06-01 2015-02-25 高通股份有限公司 使用聚集otdoa辅助数据获得lte无线基站的时序
CN102711242A (zh) * 2012-06-08 2012-10-03 华为技术有限公司 测量定位邻居小区参考信号到达时间的方法及终端
CN102724753A (zh) * 2012-06-13 2012-10-10 北京邮电大学 基于到达时间差修正的无线定位方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3386248A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112369085A (zh) * 2018-07-13 2021-02-12 华为技术有限公司 用于网络***中定位移动设备的装置和方法
US20210173037A1 (en) * 2018-07-13 2021-06-10 Huawei Technologies Co., Ltd. Apparatus and method for locating a mobile device in a network system
TWI715237B (zh) * 2018-11-20 2021-01-01 慧波科技有限公司 無線定位方法
TWI784342B (zh) * 2019-11-11 2022-11-21 大陸商大唐移動通信設備有限公司 時鐘偏差確定方法、計算設備及電腦存儲介質
CN112788734A (zh) * 2019-11-11 2021-05-11 大唐移动通信设备有限公司 时钟偏差确定方法及装置
TWI731634B (zh) * 2020-03-25 2021-06-21 緯創資通股份有限公司 移動路徑判斷方法及無線定位裝置
CN113573229A (zh) * 2020-04-28 2021-10-29 大唐移动通信设备有限公司 一种定位校正方法及装置
WO2021218666A1 (zh) * 2020-04-28 2021-11-04 大唐移动通信设备有限公司 一种定位校正方法及装置
CN113939012A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 定位方法及装置
CN113939012B (zh) * 2020-06-29 2023-06-23 大唐移动通信设备有限公司 定位方法及装置
WO2022017376A1 (en) * 2020-07-20 2022-01-27 Mediatek Inc. Procedure to assist network for transmission timing calibration for positioning accuracy enhancement
CN112333819B (zh) * 2020-11-05 2022-05-06 京信网络***股份有限公司 设备定位方法、装置、计算机设备和存储介质
CN112333819A (zh) * 2020-11-05 2021-02-05 京信通信***(中国)有限公司 设备定位方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
EP3386248A4 (en) 2019-01-09
US20180306897A1 (en) 2018-10-25
CN108370551B (zh) 2020-07-24
EP3386248A1 (en) 2018-10-10
CN108370551A (zh) 2018-08-03
EP3386248B1 (en) 2020-04-22
US10281560B2 (en) 2019-05-07
BR112018013201A2 (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2017113072A1 (zh) 基于到达时间差定位方法、用户设备及网络设备
US10813170B2 (en) Locating method, system, and related device
CN110971326B (zh) 一种时间同步的方法和装置
WO2021008581A1 (zh) 用于定位的方法和通信装置
CN113785633B (zh) 用于对无线通信装置定位的方法、用于促进定位的方法
US9294875B2 (en) Method for determining position of terminal in cellular mobile communication system
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
US11889336B2 (en) System and methods for rapid round-trip-time measurement
RU2390791C2 (ru) Позиционирование для wlan и других беспроводных сетей
CN111356075A (zh) 一种多站点的定位方法及装置
US11782121B2 (en) Method and device for positioning utilizing beam information
EP4014607A1 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
WO2020187122A1 (zh) 用户设备定位的装置和方法
US20160337808A1 (en) Method and Apparatus for Indoor Location Estimation Among Peer-To-Peer Devices
CN109196926B (zh) 用于估计周转校准因子的方法和设备
CN114095855A (zh) 一种定位方法及装置
CN113228760A (zh) 利用多个接入点进行定位
CN116472466A (zh) 用户设备定位
US20240114481A1 (en) Method for determining positioning integrity based on speed of location estimation
US20230413221A1 (en) Method and system for improved positioning measurement
CN116210293A (zh) 定位测量报告
WO2024033839A1 (en) Position reliability information for device position

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911703

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018013201

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015911703

Country of ref document: EP

Effective date: 20180705

ENP Entry into the national phase

Ref document number: 112018013201

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180627