WO2017084538A1 - 一种二次电池及其制备方法 - Google Patents

一种二次电池及其制备方法 Download PDF

Info

Publication number
WO2017084538A1
WO2017084538A1 PCT/CN2016/105533 CN2016105533W WO2017084538A1 WO 2017084538 A1 WO2017084538 A1 WO 2017084538A1 CN 2016105533 W CN2016105533 W CN 2016105533W WO 2017084538 A1 WO2017084538 A1 WO 2017084538A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
secondary battery
active material
electrolyte
positive electrode
Prior art date
Application number
PCT/CN2016/105533
Other languages
English (en)
French (fr)
Inventor
唐永炳
张小龙
张帆
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to US15/773,805 priority Critical patent/US10790537B2/en
Priority to EP16865715.3A priority patent/EP3379619A4/en
Priority to JP2018521962A priority patent/JP7091242B2/ja
Priority to KR1020187012967A priority patent/KR102091376B1/ko
Publication of WO2017084538A1 publication Critical patent/WO2017084538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of secondary batteries, and particularly relates to a secondary battery using a layered crystal structural material as a positive electrode active material and containing no negative electrode active material, and a preparation method thereof.
  • a secondary battery also called a rechargeable battery, is a battery that can be repeatedly charged and discharged and used multiple times. Compared with a non-reusable primary battery, the secondary battery has the advantages of low cost of use and low environmental pollution.
  • the main secondary battery technologies are lead-acid batteries, nickel-chromium batteries, nickel-hydrogen batteries, and lithium-ion batteries. Among them, lithium-ion batteries are the most widely used, and daily use of mobile phones, notebook computers, digital cameras, etc. are all powered by lithium-ion batteries.
  • the core component of a lithium ion battery usually comprises a positive electrode, a negative electrode and an electrolyte, which realizes electrical energy storage and release by a redox reaction in which ion transport and electron transport phase separation occurs at the interface between the positive electrode, the negative electrode and the electrolyte.
  • the commercial lithium ion battery mainly uses a transition metal oxide (LiCoO 2 , LiNiMnCoO 2 , LiMn 2 O 4 ) or a polyanionic metal compound (LiFePO 4 ) as a positive electrode active material, and graphite or other carbon materials as a negative electrode active material.
  • the ester electrolyte or polymer gel is an electrolyte.
  • lithium ions are extracted from the positive electrode active material and embedded in the negative electrode active material; during discharge, lithium ions are extracted from the negative electrode active material and embedded in the positive electrode active material.
  • negative positive electrode
  • the operating voltage of the conventional lithium ion battery is about 3.7V; and the theoretical capacity of the positive electrode material is limited, so that the energy density of the battery is relatively low, which is difficult to be greatly improved; in addition, the positive active material contains a transition metal element, which makes the material The cost of preparation increases, and on the other hand, the potential harm to the environment after the battery is discarded increases.
  • 201410419495.1 also discloses a rechargeable aluminum ion battery and a preparation method thereof, wherein the positive electrode is a graphite structure carbon material, the negative electrode is high purity aluminum, and the ionic liquid containing an aluminum salt is used as an electrolyte.
  • the current working mechanism of aluminum ion batteries is the redox reaction of aluminum ions between positive and negative electrodes.
  • Al 2 Cl 7 - Al simple substance is formed in the negative electrode and AlCl 4 -, and AlCl 4 - moving to the positive electrode is embedded into the graphite intercalation compound is formed in C n (AlCl 4); the opposite discharge process.
  • the aluminum ion battery Due to the different reaction mechanism, the aluminum ion battery has the advantages of fast charge and discharge speed, long cycle life and good safety. However, the battery operates at a low voltage of only about 2.2V, resulting in a lower energy density (only 40Wh/kg); in addition, the ionic liquid is expensive, leaving the battery at a distance from the actual energy storage application.
  • the battery uses a graphite-based carbon material as a positive electrode and a negative electrode active material, and is completely free of transition metal elements.
  • a graphite-based carbon material as a positive electrode and a negative electrode active material
  • transition metal elements For example, Read and Xu of the US Army Laboratory (Energy Environ. Sci. 2014, 7, 617) have developed a double-graphite secondary battery that uses graphite as both a negative electrode and a positive electrode active material to fluorinate-modified esters.
  • As the electrolyte solvent As the electrolyte solvent, reversible charge and discharge of the battery system was achieved. Rothermel and Placke et al. (Energy Environ. Sci.
  • the reaction principle of the battery is that when charging, the anion in the electrolyte is embedded in the cathode graphite material, and the lithium ion is embedded in the cathode graphite material; when discharging, the anion is released from the cathode material, and lithium ions are separated from the anode material.
  • the negative: positive electrode Although the double graphite battery improves the environmental impact of the battery, the preparation cost of the fluorinated modified ester electrolyte and the ionic liquid electrolyte used in the double graphite battery is very high, the production cost of the battery is still high, and the positive and negative electrodes
  • the active materials are all made of graphite, which makes the quality and volume of the battery rise significantly, which reduces the energy density of the battery.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a secondary battery using graphite or other layered crystal structure material as a positive electrode active material and containing no negative electrode active material to solve the environment of the existing secondary battery. Defects such as high pollution, high manufacturing cost, low energy density, and low operating voltage.
  • the present invention provides a novel secondary battery comprising: a battery negative electrode, an electrolyte, a separator, a battery positive electrode, and a battery case for packaging; wherein,
  • the negative electrode of the battery includes a negative current collector, and does not include a negative active material
  • the electrolyte contains organic additives such as esters, sulfones, ethers, nitriles or olefins;
  • the positive electrode of the battery includes a positive active material layer including a positive active material, wherein the positive active material includes a graphite-based material, a sulfide, a nitride, an oxide or a carbide having a layered crystal structure.
  • the present invention also provides a novel secondary battery comprising: a battery negative electrode, an electrolyte, a separator, a battery positive electrode, and a battery case for packaging; wherein,
  • the negative electrode of the battery includes a negative current collector, and does not include a negative active material
  • the electrolyte contains organic additives such as esters, sulfones, ethers, nitriles or olefins;
  • the positive electrode of the battery includes a positive active material layer including a positive active material, wherein the positive active material is composed of a graphite-based material, sulfide, nitride, oxide or carbide having a layered crystal structure.
  • the invention provides a method for preparing the above secondary battery, comprising: preparing a battery negative electrode; preparing an electrolyte; preparing a separator; preparing a battery positive electrode; and using the battery negative electrode, the electrolyte, the separator, and the battery positive electrode to perform a novel secondary battery Assembly.
  • the main active component of the positive electrode of the secondary battery proposed by the present invention is a material having a layered crystal structure, which is environmentally friendly and low in cost.
  • the negative electrode current collector functions as an electrode to conduct electricity, and also serves as an electrode.
  • the material which reacts with the cation in the electrolyte is equivalent to the action of the negative electrode active material of the secondary battery in the prior art. Therefore, the secondary battery provided by the embodiment of the present invention does not need to further contain the negative electrode active material, thereby significantly reducing the battery weight and cost.
  • the battery energy density is improved;
  • the secondary battery reaction principle proposed by the present invention is: when charging, the anion in the electrolyte is embedded in the cathode graphite layer, the cation in the electrolyte moves to the surface of the anode current collector to form an alloy, and the discharge is reversed.
  • the reaction mechanism significantly increases the operating voltage of the battery (about 4.2V), further increasing the energy density.
  • FIG. 1 is a schematic structural view of a novel secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the working principle of a novel secondary battery using graphite as a positive electrode material and containing no negative electrode material according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a new secondary battery in which graphite is used as a positive electrode material and does not contain a negative electrode material according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a discharge of a novel secondary battery using graphite as a positive electrode material and containing no negative electrode material according to an embodiment of the present invention.
  • the novel secondary battery includes a battery negative electrode 1, an electrolyte 2, a separator 3, a battery positive electrode 4, and a battery case (not shown) for packaging.
  • the battery negative electrode 1 includes a negative electrode current collector and does not include a negative electrode active material;
  • the electrolytic solution contains an ester, sulfone, ether, nitrile or olefin organic additive;
  • the battery positive electrode 4 includes a positive electrode current collector 42 and a positive electrode active material layer 41.
  • the positive electrode active material layer 41 includes a positive electrode active material, a conductive agent, and a binder, and the positive electrode active material includes a graphite-based material, a sulfide, a nitride, an oxide, or a carbide having a layered crystal structure.
  • FIG. 2 is a schematic view showing the working principle of a secondary battery using graphite as a positive electrode material and containing no negative electrode material according to an embodiment of the present invention.
  • FIG. 3 is a schematic view during charging
  • FIG. 4 is a schematic view during discharging, and the present invention is implemented.
  • the anode current collector in the secondary battery of the embodiment of the present invention functions as a material for reacting with the cation in the electrolyte in addition to the conductivity of the electrode, and is equivalent to the action of the anode active material of the secondary battery in the prior art.
  • the battery structure not including the negative electrode active material provided by the embodiment of the present invention can realize a secondary battery capable of performing multiple charge and discharge.
  • an operating voltage of about 4.2 V can be obtained, which significantly increases the operating voltage of the battery.
  • the anode current collector is a conductive material capable of conducting and reversibly embedding or extracting cations.
  • the anode current collector is one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese or an alloy of the foregoing.
  • the anode current collector may include one substance, or may also contain various substances, for example, an alloy which may include one or more of aluminum, copper, iron, tin, zinc, nickel, titanium, and manganese described above.
  • an alloy which may include one or more of aluminum, copper, iron, tin, zinc, nickel, titanium, and manganese described above. The invention is not limited.
  • the anode active material is aluminum.
  • the electrolyte comprises a solvent and an electrolyte.
  • the solvent in the electrolyte can dissociate the electrolyte into cations and anions, and the cations and anions can freely migrate in the solvent.
  • the solvent is an ester, sulfone or ether organic solvent, and diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethyl sulfone or dimethyl ether may be used.
  • the solvent may include a mixture of one or more of an ester, a sulfone or an ether organic solvent, and may include, for example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethyl carbonate as described above.
  • the mixing of one or more of the sulfone or dimethyl ether is not limited in the present invention.
  • the solvent is ethyl methyl carbonate.
  • the anion in the electrolyte is embedded in the positive electrode active material of the layered crystal structure to have a certain limit.
  • the use of ethyl methyl carbonate as a solvent ensures that the anion in the electrolyte is sufficiently embedded in the positive electrode active material, thereby increasing the capacity of the secondary battery. .
  • E the battery energy density
  • C the battery capacity
  • U the battery operating voltage
  • E the increase of the battery capacity is beneficial to increase the energy density of the battery, so the ethyl methyl carbonate as the solvent of the second
  • the secondary battery further increases the energy density of the battery by increasing the battery capacity.
  • the electrolyte in the electrolyte can be dissociated into cations and anions.
  • the electrolyte is a lithium salt, and lithium hexafluorophosphate, lithium tetrafluoroborate or lithium perchlorate may be used in a concentration ranging from 0.1 to 10 mol/L.
  • the electrolyte may include a mixture of one or more of lithium hexafluorophosphate, lithium tetrafluoroborate or lithium perchlorate, which is not limited in the present invention.
  • the electrolyte is lithium hexafluorophosphate; the electrolyte concentration is 4 mol/L.
  • an additive is further included in the electrolyte, which is capable of forming a solid electrolyte membrane (SEI) on the surface of the anode current collector.
  • SEI solid electrolyte membrane
  • the secondary battery of the embodiment of the present invention can form a stable solid electrolyte membrane (SEI) on the surface of the anode current collector during charge and discharge to prevent the anode current collector from being displaced due to volume during charge and discharge.
  • SEI solid electrolyte membrane
  • the additive in the electrolyte can promote the formation of a solid electrolyte membrane (SEI) on the surface of the anode current collector.
  • SEI solid electrolyte membrane
  • the additive is an organic additive containing an ester, a sulfone, an ether, a nitrile or an olefin, and may be selected from vinylene carbonate, ethylene sulfite, propylene sulfite, ethylene sulfate, and cyclobutyl. Sulfone, 1,3-dioxocyclopentane, acetonitrile or long-chain olefin in an amount of from 0.1 to 20% by weight.
  • the additive may include a mixture of one or more of an ester, a sulfone, an ether, a nitrile or an olefin organic additive, and may include, for example, the above-described vinylene carbonate, ethylene sulfite, or sub
  • the mixing of one or more of propylene sulfate, ethylene sulfate, cyclobutyl sulfone, 1,3 dioxetane, acetonitrile or long-chain olefin is not limited in the present invention.
  • the additive is vinylene carbonate.
  • the vinylene carbonate is added in an amount of 2% by weight.
  • the separator is not particularly limited, and it is generally used in the art.
  • the separator 3 may be an insulating porous polymer film or an inorganic porous film, and a porous polypropylene film, a porous polyethylene film, a porous composite polymer film, a glass fiber paper or a porous ceramic separator may be used.
  • the cathode current collector is a conductive material.
  • the cathode current collector is one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese or an alloy of the foregoing.
  • the cathode current collector may include one substance, or may also contain various substances, for example, an alloy which may include one or more of aluminum, copper, iron, tin, zinc, nickel, titanium, and manganese described above.
  • an alloy which may include one or more of aluminum, copper, iron, tin, zinc, nickel, titanium, and manganese described above. The invention is not limited.
  • the positive electrode active material in the positive electrode active material layer has a layered crystal structure capable of reversibly extracting or embedding an anion.
  • the positive electrode active material includes a graphite-based material having a layered crystal structure, a sulfide, a nitride, an oxide, a carbide,
  • graphite materials natural graphite, artificial graphite or graphite sheets
  • Sulfide selected from molybdenum disulfide, tungsten disulfide or vanadium disulfide;
  • Nitride hexagonal boron nitride or carbon doped hexagonal boron nitride
  • molybdenum trioxide molybdenum trioxide, tungsten trioxide or vanadium pentoxide
  • carbides use titanium carbide, tantalum carbide or molybdenum carbide.
  • the positive electrode active material may include a mixture of one or more of a graphite-based material having a layered crystal structure, a sulfide, a nitride, an oxide, and a carbide, or may include different kinds of graphite-based materials, or different
  • the mixing of one or more of the types of sulfides, nitrides, oxides, and carbides is not limited in the present invention.
  • the positive active material is a graphite-based material.
  • the conductive agent in the positive electrode active material layer is also not particularly limited, and it is conventionally used in the art.
  • the conductive agent is one or more of conductive acetylene black, Super P conductive carbon sphere, conductive graphite KS6, carbon nanotube, graphene.
  • the conductive agent may include only one substance, or may also contain a plurality of substances, for example, may include a mixture of one or more of various conductive agents commonly used in the art, and the invention is not limited thereto.
  • the binder in the positive electrode active material layer is also not particularly limited, and it is conventionally used in the art.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, and polyolefin.
  • the binder may include only one substance, or may also contain a plurality of substances, for example, may include a mixture of one or more of various binders commonly used in the art, and the invention is not limited thereto.
  • the ratio of the active material in the positive electrode active material layer 41 to the conductive agent and the binder is not particularly limited, and it is generally used in the art.
  • the amount of the positive electrode active material is 60 - 90% by weight
  • the content of the conductive agent is 30 - 5% by weight
  • the content of the binder is 10 - 5% by weight.
  • the invention has prepared a button battery, which can be reversibly charged and discharged by the battery system test, and the battery preparation process is significantly simplified, the material cost can be reduced by 40%, and the energy density can be increased to 1.3-2 times of the existing commercial lithium ion battery. After the battery is cycled for 200 cycles, the capacity is attenuated by about 10%, and the battery cycle performance is improved.
  • the form of the secondary battery is not particularly limited, and may be commonly used in the art, such as a button battery, a prism battery, a cylindrical battery, a soft battery, and the like.
  • an embodiment of the present invention provides a method for preparing a secondary battery according to an embodiment of the present invention, including the following steps:
  • Step 1 preparing a battery negative electrode
  • the negative electrode of the battery comprises a negative current collector, and does not comprise a negative active material
  • the preparation process is to cut metal foils such as copper, iron, tin, aluminum, etc. into a desired size, and clean the surface for use.
  • Step 2 preparing an electrolyte
  • Step 3 preparing a separator
  • porous polymer film or the inorganic porous film is cut into a desired size, cleaned and used.
  • Step 4 preparing a positive electrode of the battery
  • the positive electrode of the battery is a positive electrode of a graphite battery, and includes a positive active material layer and a positive current collector.
  • the preparation process is to weigh the active material, the conductive agent, and the binder in a certain ratio, and fully grind into a uniform slurry by adding a suitable solvent, and then uniformly apply to the surface of the cathode current collector, that is, formed on the surface of the cathode current collector.
  • the positive electrode active material layer after the slurry is completely dried, it is cut to obtain a battery positive electrode of a desired size.
  • steps 1 - 4 describe the operation of the preparation method of the present invention in a specific order, it is not required or implied that these operations must be performed in this particular order.
  • the preparation of steps 1 - 4 can be carried out simultaneously or in any order.
  • Step 5 assembling the new secondary battery by using the battery negative electrode, the electrolyte, the separator, and the battery positive electrode;
  • the battery is assembled in an inert gas or waterless environment, and the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the battery case to complete the battery. Assembly.
  • the choice of the kind, the kind and the component of the electrolyte additive improve the stability of the anode current collector structure of the embodiment of the invention, the operating voltage of the battery and the battery capacity that can be achieved when the layered crystal structure material is used as the positive electrode, further improve The energy density of the secondary battery of the embodiment of the invention.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.3 mm, cut into a 12 mm diameter disc, wash with ethanol, and dry it as a negative current collector for use.
  • the glass fiber paper was cut into a 16 mm diameter disc, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 0.8g natural graphite, 0.1g carbon black, 0.1g polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil (ie , positive current collector) and vacuum dried.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • the reaction principle of the secondary battery of Embodiment 1 of the present invention is: negative electrode: positive electrode:
  • Electrochemical performance test of the battery The secondary battery prepared in the above secondary battery preparation method was charged at a current density of 100 mA/g until its voltage reached 4.8 V, and then discharged at the same current until the voltage reached 3 V. The battery specific capacity and energy density were measured, and the cycle stability was tested (in terms of the number of cycles, the number of cycles refers to the number of times the battery is charged and discharged when the battery capacity is attenuated to 85%).
  • the electrochemical performance test of the battery of the secondary battery provided by the embodiment 1 of the present invention is compared with the performance of the conventional lithium ion battery, the aluminum ion battery and the double graphite battery mentioned in the background, and the results and comparisons are shown in the table. 1.
  • Table 1 Electrochemical performance parameter table of secondary battery of Example 1 of the present invention and secondary battery of the background art
  • the secondary battery of the first embodiment of the present invention which is different from the various battery reaction principles in the background art has a high operating voltage and a high energy density.
  • the secondary battery positive electrode of the first embodiment of the present invention replaces the lithium-containing compound with graphite, is environmentally friendly, and does not pollute the environment;
  • the negative electrode current collector of the secondary battery of the first embodiment of the present invention In addition to conducting electricity as an electrode, it also acts as a material that reacts with the cations in the electrolyte, and does not need to contain a negative electrode.
  • the active material significantly reduces the battery weight and cost, and increases the energy density of the battery.
  • the anion in the electrolyte is embedded in the cathode graphite layer, and the cation in the electrolyte moves to the surface of the anode current collector. Alloy, the opposite is the discharge, its working voltage is about 4.2V, which improves the working voltage of the battery and increases the energy density of the battery.
  • the secondary battery electrolyte of Example 1 of the present invention is different from the aluminum ion battery in the background art, and thus the reaction mechanism and performance are different.
  • an anion in the electrolytic solution is embedded in the positive electrode graphite layer, and the cation in the electrolyte moves to the surface of the negative electrode current collector to form an alloy, and the discharge is reversed.
  • Its operating voltage is about 4.2V, which increases the operating voltage of the battery, which in turn increases the energy density of the battery.
  • the negative electrode current collector of the secondary battery of the first embodiment of the present invention functions as a material for reacting with the cation in the electrolyte, and does not need to further contain the negative electrode active material. Significantly reduce battery weight and cost, and increase battery energy density.
  • Example 2-11 The preparation process of the secondary battery of Example 2-11 and Example 1 was the same except that the materials used in the preparation of the battery negative electrode were the same, and all the other steps and materials used were the same, while the secondary battery of Example 2-11 was subjected to the battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the negative electrode materials used in Examples 2-11 and their electrochemical properties are shown in Table 2.
  • Table 2 Electrochemical performance parameter table of the secondary battery of Example 1-11 of the present invention
  • the anode current collector is preferably an aluminum foil, which has high specific capacity, good cycle performance and highest energy density.
  • Example 12-34 and Example 1 The secondary battery preparation process of Example 12-34 and Example 1 was the same except that the positive electrode active material used in the preparation of the battery positive electrode was the same, and all the other steps and materials used were the same, and the secondary battery of Example 12-34 was simultaneously subjected.
  • the electrochemical performance of the battery was tested and compared with the performance of Example 1 of the present invention.
  • the positive electrode active materials used in Examples 12-34 and their electrochemical properties are detailed in Table 3.
  • the positive electrode material is preferably a graphite material, and the specific capacity thereof is high. High energy density.
  • Example 35-37 and Example 1 The production process of the secondary battery of Example 35-37 and Example 1 was the same except that the electrolyte material used in the preparation of the electrolytic solution was the same, and all the other steps and materials used were the same, and the secondary battery of Example 35-37 was subjected to the battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the electrolyte materials used in Examples 35-37 and their electrochemical properties are detailed in Table 4.
  • the electrolyte is preferably lithium hexafluorophosphate, which has high specific capacity, good cycle stability, and high energy density.
  • Example 38-42 The preparation process of the secondary battery of Example 38-42 and Example 1 was the same except that the electrolyte concentration used in the preparation of the electrolytic solution was the same, all other steps and materials used were the same, and the secondary battery of Example 38-42 was subjected to the battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the electrolyte concentrations and electrochemical properties used in Examples 38-42 are detailed in Table 5.
  • the electrolyte concentration is preferably 4 M, which has a high specific capacity, good cycle stability, and high energy density.
  • Example 43-52 The preparation process of the secondary battery of Example 43-52 and Example 1 was the same except that the solvent materials used in the preparation of the electrolyte were different, all other steps and materials used were the same, and the secondary battery of Example 43-52 was subjected to a battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the solvent materials used in Examples 43-52 and their electrochemical properties are detailed in Table 6.
  • the solvent is preferably ethyl methyl carbonate, which has a high specific capacity and a high energy density.
  • Example 53-60 The preparation process of the secondary battery of Example 53-60 and Example 1 was the same except that the type of the additive used in the preparation of the electrolytic solution was the same, and all the other steps and materials used were the same, and the secondary battery of Example 53-60 was subjected to the battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the solvent materials used in Examples 53-60 and their electrochemical properties are detailed in Table 7.
  • Table 7 Electrochemical performance parameter table of the secondary battery of Example 53-60 of the present invention
  • the additive is preferably vinylene carbonate, which has good cycle stability.
  • Example 61-67 The preparation process of the secondary battery of Example 61-67 and Example 1 was the same except that the concentration of the additive used in the preparation of the electrolytic solution was different, all other steps and materials used were the same, and the secondary battery of Example 61-67 was subjected to a battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the concentration of the additive used in Examples 61-67 and its electrochemical performance are detailed in Table 8.
  • Table 8 Electrochemical performance parameter table of the secondary battery of Example 61-67 of the present invention
  • the additive concentration is preferably 2% by weight, and the cycle stability is good.
  • Example 68-71 The preparation process of the secondary battery of Example 68-71 and Example 1 was the same except that the separator material used in the preparation of the separator was the same, and all the other steps and materials used were the same, and the secondary battery of Example 68-71 was subjected to the battery.
  • the electrochemical performance test was compared with the performance of Example 1 of the present invention.
  • the separator materials used in Examples 68-71 and their electrochemical properties are detailed in Table 9.
  • Example 72 The preparation process of the secondary battery of Example 72-78 and Example 1 was the same except that the conductive agent, the binder type and the mass fraction used in the preparation of the battery positive electrode were the same, and all the other steps and materials used were the same, and at the same time, Example 72
  • the secondary battery of ⁇ 78 was subjected to electrochemical performance test of the battery and compared with the performance of Example 1 of the present invention.
  • the conductive agent, binder type and mass fraction used in Examples 72-78 are shown in Table 10.
  • Preparation of battery negative electrode Take a copper foil with a thickness of 0.5 mm, cut into a 12 mm diameter disk, wash the copper piece with ethanol, and dry it as a negative electrode current collector for use.
  • the Celgard 2400 porous polymer film was cut into a 16 mm diameter disc, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 0.8g artificial graphite, 0.1g carbon black, 0.1g polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly applied to the surface of the aluminum foil (ie , positive current collector) and vacuum dried.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.3 mm, cut into a 12 mm diameter disk, wash the copper piece with ethanol, and dry it as a negative current collector for use.
  • the glass fiber paper was cut into a 16 mm diameter disc, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 0.7g artificial graphite, 0.2g carbon black, 0.1g polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of aluminum foil and vacuum dry.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.3 mm, cut into a 12 mm diameter disk, wash the copper piece with ethanol, and dry it as a negative current collector for use.
  • the glass fiber paper was cut into a 16 mm diameter disc, washed with acetone, dried and used as a separator.
  • Formulation of electrolyte 2g of lithium tetrafluoroborate is added to 5ml of ethyl methyl carbonate, stirred until lithium tetrafluoroborate is completely dissolved, then ethylene carbonate of 3% by mass is added as an additive, fully stirred and then used as electrolysis Liquid spare.
  • Preparation of battery positive electrode 0.8g artificial graphite, 0.15g carbon black, 0.05g polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and vacuum dry.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take an iron piece with a thickness of 0.3 mm, cut into a 12 mm diameter disk, wash the copper piece with ethanol, and dry it as a negative electrode current collector for use.
  • the glass fiber paper was cut into a 16 mm diameter disc, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 1 g of titanium carbide, 0.15 g of carbon black, 0.05 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and vacuum dried. .
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take a copper foil with a thickness of 0.3mm, cut into a 12mm diameter disc, and clear with ethanol Wash the copper sheet and dry it as a negative current collector.
  • the porous polypropylene film was cut into a 16 mm-diameter wafer, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 1 g of titanium carbide, 0.15 g of carbon black, 0.05 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and vacuum dried. .
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.3 mm, cut into a 12 mm diameter disk, wash the copper piece with ethanol, and dry it as a negative current collector for use.
  • the porous polypropylene film was cut into a 16 mm-diameter wafer, washed with acetone, dried and used as a separator.
  • Preparation of battery positive electrode 1 g of molybdenum disulfide, 0.15 g of carbon black, 0.05 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and vacuumed dry.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • Table 11 Electrochemical performance parameter tables of secondary batteries of Example 79-84 of the present invention
  • Examples 80, 81, and 84 aluminum foil was used as the negative electrode material, and Examples 79, 82, and 83 which used other materials as the negative electrode material had higher specific capacity and higher energy density.
  • Example 79 used a vinylene carbonate having a mass fraction of 2% as an additive, and the cycle stability was better than that of Examples 80-84 using other additives.
  • Example 80 4 M lithium hexafluorophosphate was used as the electrolyte, and Examples 81 and 84, which used other materials as the electrolyte, had higher specific capacity and higher energy density.
  • the form of the secondary battery according to the present invention is not limited to the button type battery, and may be designed in the form of a prismatic battery, a cylindrical battery, a soft pack battery or the like according to the core component.
  • the main active component of the secondary battery proposed by the present invention is a graphite-like material having a layered crystal structure, which is environmentally friendly and low in cost.
  • the secondary battery system of the present invention does not require a negative active material, thereby significantly reducing the battery weight and cost, and increasing the energy density of the battery.
  • the reaction principle adopted by the secondary battery proposed by the invention can reach an operating voltage of about 4.2V, the battery operating voltage is high, and the battery energy density can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种二次电池及其制备方法,所述二次电池包括:电池负极(1)、电解液(2)、隔膜(3)、电池正极(4)以及用于封装的电池壳体;其中,电池负极(1)包括负极集流体,不包含负极活性材料;所述电池正极(4)包括正极活性材料层(41),所述正极活性材料层(41)包括正极活性材料,所述正极活性材料包括具有层状晶体结构的材料;所述电解液(2)包括电解质盐和有机溶剂。该二次电池主要活性成分为具有层状晶体结构的材料,环境友好且成本低;同时,该二次电池体系中无需负极活性材料,因而显著降低电池自重和成本,提升电池能量密度;该二次电池所采用的反应原理显著提高了电池的工作电压,进一步提升电池能量密度。

Description

一种二次电池及其制备方法
优先权声明
本申请要求2015年11月18日递交的、申请号为CN201510796123.5、发明名称为“一种新型二次电池及其制备方法”的中国发明专利的优先权,该发明专利的所有内容在此全部引入。
技术领域
本发明属于二次电池技术领域,具体涉及一种以层状晶体结构材料为正极活性材料且不含负极活性材料的二次电池及其制备方法。
背景技术
二次电池也称为可充电电池,是一种可重复充放电、使用多次的电池。相比于不可重复使用的一次电池,二次电池具有使用成本低、对环境污染小的优点。目前主要的二次电池技术有铅酸电池、镍铬电池、镍氢电池、锂离子电池。其中尤其以锂离子电池应用最为广泛,日常使用的手机、笔记本电脑、数码相机等都是以锂离子电池为电源。锂离子电池的核心组成部件通常包含正极、负极和电解液,它通过发生在正极、负极与电解液界面上的离子传输与电子传输相分离的氧化还原反应来实现电能存储与释放。商用的锂离子电池主要是以过渡金属氧化物(LiCoO2、LiNiMnCoO2、LiMn2O4)或聚阴离子型金属化合物(LiFePO4)为正极活性材料,以石墨或其他碳材料为负极活性材料,酯类电解液或聚合物凝胶为电解液。充电时,锂离子从正极活性材料中脱出,嵌入负极活性材料;放电时,锂离子从负极活性材料脱出而嵌入到正极活性材料中。例如:负极:
Figure PCTCN2016105533-appb-000001
正极:
Figure PCTCN2016105533-appb-000002
然而,传统锂离子电池的工作电压为3.7V左右;且正极材料理论容量有限,使得电池的能量密度较低,较难大幅提升;另外,正极活性材料中包含过渡金属元素,这一方面使得材料的制备成本增加,另一方面也使得电池废弃后对环境的潜在危害加大。
当前业内正在积极研发环境友好、能量密度高的新型二次电池技术。美国斯坦福大学戴宏杰教授课题组研发了一种铝离子电池(Nature,2015,520,325),这种电池以三维多孔石墨为正极材料,铝箔同时作为负极和集流体,含有铝盐的离子液体 (AlCl3/EMImCl)作为电解液。类似地,发明专利(申请号201410419495.1)也公开了一种可充电铝离子电池及其制备方法,其正极为石墨结构碳材料,负极为高纯铝,含有铝盐的离子液体作为电解液。与锂离子电池不同,目前报道的铝离子电池的工作机理是铝离子在正负极之间的氧化还原反应。充电时,Al2Cl7 在负极形成Al单质和AlCl4 ,同时AlCl4 运动到正极嵌入到石墨中形成插层化合物Cn(AlCl4);放电过程则相反。其整个反应过程为:
Figure PCTCN2016105533-appb-000003
由于反应机理不同,这种铝离子电池具有充放电速度快、循环寿命长、安全性好等优点。然而,该电池的工作电压较低,仅为2.2V左右,导致其能量密度较低(仅为40Wh/kg);此外,离子液体价格昂贵,使得该电池离实际储能应用仍有一段距离。
另一方面,研究人员又开发了一种双碳电池。这种电池以石墨类碳材料作为正极和负极活性材料,完全不含过渡金属元素。例如,美国陆军实验室的Read和Xu等(Energy Environ.Sci.2014,7,617)开发了一种双石墨二次电池,其以石墨材料同时作为负极和正极活性材料,以氟化改性酯类作为电解液溶剂,实现了该电池体系的可逆充放电。德国明斯特大学的Rothermel和Placke等(Energy Environ.Sci.2014,7,3412)研发了一种基于离子液体电解液的双石墨电池,亦实现了双石墨电池体系的可逆充放电。这种电池的反应原理是,充电时,电解液中的阴离子嵌入正极石墨材料中,锂离子则嵌入负极石墨材料中;放电时,阴离子从正极材料脱出,同时锂离子从负极材料脱出。例如,负极:
Figure PCTCN2016105533-appb-000004
正极:
Figure PCTCN2016105533-appb-000005
虽然双石墨电池改善了电池对环境的影响,但双石墨电池中使用的氟化改性酯类电解液和离子液体电解液的制备成本非常高,电池的制作成本还是很高,且正负极活性材料都采用石墨,使得电池的质量和体积显著上升,这降低了电池的能量密度。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种以石墨或者其他层状晶体结构材料为正极活性材料且不含负极活性材料的二次电池,以解决现有二次电池存在的环境污染大、制造成本高、能量密度低、工作电压低等缺陷。
为达到上述目的,本发明提出了一种新型二次电池,包括:电池负极、电解液、隔膜、电池正极以及用于封装的电池壳体;其特征在于,其中,
电池负极包括负极集流体,不包含负极活性材料;
电解液包含酯类、砜类、醚类、腈类或烯烃类有机添加剂;
电池正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,其中,所述正极活性材料包括具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物或碳化物。
本发明还提出了一种新型二次电池,包括:电池负极、电解液、隔膜、电池正极以及用于封装的电池壳体;其特征在于,其中,
电池负极包括负极集流体,不包含负极活性材料;
电解液包含酯类、砜类、醚类、腈类或烯烃类有机添加剂;
电池正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,其中,所述正极活性材料由具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物或碳化物组成。
本发明提出了一种制备以上二次电池的方法,包括:制备电池负极;配制电解液;制备隔膜;制备电池正极;利用所述电池负极、电解液、隔膜、电池正极进行新型二次电池的组装。
本发明提出的二次电池正极主要活性成分为具有层状晶体结构的材料,环境友好且成本低;同时,本发明的新型二次电池体系中负极集流体除作为电极起导电作用以外,还作为与电解质中阳离子反应的材料,相当于现有技术中二次电池的负极活性材料的作用,因此本发明实施例所提供的二次电池不需要再包含负极活性材料,因而显著降低电池自重和成本,提升电池能量密度;本发明提出的二次电池反应原理是:充电时,电解液中的阴离子嵌入到正极石墨层中,电解质中的阳离子运动到负极集流体表面形成合金,放电则相反,这种反应机理显著提高了电池的工作电压(约为4.2V),进一步提升能量密度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明一实施例的新型二次电池的结构示意图;
图2为本发明一实施例的以石墨为正极材料且不含负极材料的新型二次电池的工作原理示意图;
图3为本发明一实施例的以石墨为正极材料且不含负极材料的新型二次电池充电时的示意图;
图4为本发明一实施例的以石墨为正极材料且不含负极材料的新型二次电池放电时的示意图。
具体实施方式
以下配合图示及本发明的较佳实施例,进一步阐述本发明为达成预定发明目的所采取的技术手段。
图1为本发明一实施例的新型二次电池的结构示意图。如图1所示,该新型二次电池包括:电池负极1、电解液2、隔膜3、电池正极4以及用于封装的电池壳体(图未绘示)。
其中,电池负极1包括负极集流体,不包含负极活性材料;电解液包含酯类、砜类、醚类、腈类或烯烃类有机添加剂;电池正极4包括正极集流体42和正极活性材料层41,所述正极活性材料层41包括正极活性材料,导电剂、粘结剂,所述正极活性材料包括具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物或碳化物。
图2为本发明一实施例的以石墨为正极材料且不含负极材料的二次电池的工作原理示意图,具体地,图3为充电时的示意图,图4为放电时的示意图,本发明实施例的二次电池充电时,电解液中的阳离子嵌入到负极集流体中,与其形成合金材料5,同时电解液中的阴离子则嵌入层状晶体结构的正极活性材料中;本发明实施例的二次电池放电时,阳离子从合金材料5中脱出,重新回到电解液中,同时嵌入在正极活性材料中的阴离子也脱出,回到电解液中。
本发明实施例的二次电池中的负极集流体除作为电极起导电作用以外,还同时作为与电解质中阳离子反应的材料,相当于现有技术中二次电池的负极活性材料的作用,因此采用本发明实施例所提供的不包括负极活性材料的电池结构,可以实现能够进行多次充放电的二次电池。
本发明实施例的二次电池的新型反应机理,可获得约4.2V的工作电压,显著提高了电池的工作电压。
在本发明实施例中,负极集流体是导电材料,能够导电以及可逆嵌入或脱出阳离子。例如,负极集流体为铝、铜、铁、锡、锌、镍、钛、锰中的一种或前述的合金。
具体地,负极集流体可以包括一种物质,或者也可以包含多种物质,例如可以包括上述的铝、铜、铁、锡、锌、镍、钛、锰中的一种或多种的合金,本发明不作限制。
优选地,所述负极活性材料为铝。
在本发明实施例中,电解液包括溶剂和电解质。
在本发明实施例中,电解液中的溶剂可以使电解质离解成阳离子和阴离子,且阳离子和阴离子可以在溶剂中自由迁移。例如,所述溶剂为酯类、砜类或醚类有机溶剂,可以选用碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、二甲基砜或二甲醚。
具体地,溶剂可以包括酯类、砜类或醚类有机溶剂中的一种或多种的混合,例如可以包括以上所述碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、二甲基砜或二甲醚中的一种或多种的混合,本发明不作限制。
优选地,所述溶剂为碳酸甲乙酯。
电解液中的阴离子嵌入层状晶体结构的正极活性材料中有一定的限度,采用碳酸甲乙酯作为溶剂,能够保证电解液中的阴离子充分嵌入到正极活性材料中,从而增加二次电池的容量。
根据能量密度公式E=C*U可知(E是电池能量密度,C是电池容量,U是电池工作电压),电池容量的提高有利于提高电池的能量密度,因此碳酸甲乙酯作为溶剂的二次电池还因提高了电池容量,进一步提高了电池的能量密度。
在本发明实施例中,电解液中的电解质可以离解成阳离子和阴离子。例如,所述电解质为锂盐,可以选用六氟磷酸锂、四氟硼酸锂或高氯酸锂,且浓度范围为0.1–10mol/L。
具体地,电解质可以包括六氟磷酸锂、四氟硼酸锂或高氯酸锂的一种或多种的混合,本发明不作限制。
优选地,所述电解质为六氟磷酸锂;所述电解质浓度为4mol/L。
进一步地,电解液中还包括添加剂,所述添加剂能够在负极集流体表面形成固体电解质膜(SEI)。
通过采用包括有添加剂的电解液,本发明实施例的二次电池在充放电过程中,可以在负极集流体表面形成稳定的固体电解质膜(SEI),以防止负极集流体在充放电时因体积变化所造成的破坏,使负极集流体结构保持稳定,提高负极集流体的使用寿命和性能,提高二次电池的循环性能。
在本发明实施例中,电解液中的添加剂能够促进在负极集流体表面形成固体电解质膜(SEI)。例如,所述添加剂为含酯类、砜类、醚类、腈类或烯烃类有机添加剂,可以选用碳酸亚乙烯酯、亚硫酸亚乙酯、亚硫酸丙烯酯、硫酸亚乙酯、环丁基砜、1,3‐二氧环戊烷、乙腈或长链烯烃,且添加量为0.1‐20%wt。
具体地,添加剂可以包括酯类、砜类、醚类、腈类或烯烃类有机添加剂中的一种或多种的混合,例如可以包括以上所述碳酸亚乙烯酯、亚硫酸亚乙酯、亚硫酸丙烯酯、硫酸亚乙酯、环丁基砜、1,3‐二氧环戊烷、乙腈或长链烯烃的一种或多种的混合,本发明不作限制。
优选地,所述添加剂为碳酸亚乙烯酯。
优选地,所述碳酸亚乙烯酯的添加量为2%wt。
本发明实施例中,隔膜没有特别限制,采用本领域现有普通常用的即可。例如,隔膜3的成分为绝缘的多孔聚合物薄膜或无机多孔薄膜,可以选用多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、玻璃纤维纸或多孔陶瓷隔膜。
本发明实施例中,正极集流体为导电材料。例如,正极集流体为铝、铜、铁、锡、锌、镍、钛、锰中的一种或前述的合金。
具体地,正极集流体可以包括一种物质,或者也可以包含多种物质,例如可以包括上述的铝、铜、铁、锡、锌、镍、钛、锰中的一种或多种的合金,本发明不作限制。
在本发明实施例中,正极活性材料层中的正极活性材料具有层状晶体结构,能够可逆脱出或嵌入阴离子。例如正极活性材料包括具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物、碳化物,
其中,石墨类材料,选用天然石墨、人造石墨或石墨片;
硫化物,选用二硫化钼、二硫化钨或二硫化钒;
氮化物,选用六方氮化硼或碳掺杂六方氮化硼;
氧化物,选用三氧化钼、三氧化钨或五氧化二钒;
碳化物,选用碳化钛、碳化钽或碳化钼。
具体地,正极活性材料可以包括具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物、碳化物的一种或多种的混合,也可以包括不同种类的石墨类材料、或者不同种类的硫化物、氮化物、氧化物、碳化物的一种或多种的混合,本发明不作限制。
优选地,所述正极活性材料为石墨类材料。
正极活性材料层中的导电剂也没有特别限制,本领域现有普通常用的即可。例如,导电剂为导电乙炔黑、Super P导电碳球、导电石墨KS6、碳纳米管、石墨烯中的一种或多种。
具体地,导电剂可以只包括一种物质,或者也可以包含多种物质,例如可以包括本领域常用的各种导电剂的一种或多种的混合,本发明不作限制。
正极活性材料层中的粘结剂也没有特别限制,本领域现有普通常用的即可。例如,粘结剂为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶、聚烯烃类中的一种或多种。
具体地,粘结剂可以只包括一种物质,或者也可以包含多种物质,例如可以包括本领域常用的各种粘结剂的一种或多种的混合,本发明不作限制。
本发明实施例中,正极活性材料层41中的活性材料与导电剂、粘结剂的配比也没有特别限制,本领域现有普通常用的即可。例如,正极活性材料的份量为60–90%wt,导电剂的含量为30–5%wt,粘结剂的含量为10–5%wt。
本发明已制备出扣式电池,通过电池***测试表明能够实现可逆充放电,且电池制备过程显著简化,材料成本可降低40%,能量密度可提高至现有商用锂离子电池的1.3‐2倍,电池循环200圈后容量衰减为10%左右,电池循环性能提高。
本发明实施例中,二次电池的形态没有特殊限制,本领域常用的即可,例如扣式电池、方形电池、圆柱电池、软包电池等形态。
第二方面,本发明实施例提供了一种制备如本发明实施例所提供的二次电池的方法,包括以下步骤:
步骤1、制备电池负极;
其中,电池负极包括负极集流体,不包含负极活性材料;
具体的,制备过程是将铜、铁、锡、铝等金属箔片裁切成所需尺寸,将表面清洗干净备用。
步骤2、配制电解液;
称取适量电解质盐加入到一定体积溶剂中,充分搅拌溶解后,再加入一定量电解液添加剂,搅拌均匀后备用。
步骤3、制备隔膜;
将多孔聚合物薄膜或无机多孔薄膜裁切成所需尺寸,清洗干净后备用。
步骤4、制备电池正极;
其中,电池正极为石墨类电池正极,包括正极活性材料层及正极集流体。
具体的,制备过程是按一定比例称取活性材料、导电剂、粘结剂,加入适当溶剂中充分研磨成均匀浆料,然后均匀涂覆于正极集流体表面,即在正极集流体表面形成了正极活性材料层;待浆料完全干燥后进行裁切,得所需尺寸的电池正极。
尽管上述步骤1‐4是以特定顺序描述了本发明制备方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作。步骤1‐4的制备可以同时或者任意先后执行。
步骤5、利用所述电池负极、电解液、隔膜、电池正极进行新型二次电池的组装;
在惰性气体或无水环境下组装电池,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入电池壳体,完成电池组装。
本发明实施例所提供的二次电池和制备该二次电池的方法,通过优化电池负极的结构和电池正极活性材料的种类,实现了一种对环境无污染、成本低,以及显著降低电池的重量和体积,提高电池能量密度的二次电池;在此基础上,进一步地,在电池的电解液中增加添加剂,提高二次电池的循环性能;优化负极集流体和正极活性材料的选择,溶剂种类的选择,电解液添加剂的种类与分量,提高了本发明实施例负极集流体结构的稳定性,电池的工作电压以及使用层状晶体结构材料作为正极时所能达到的电池容量,进一步地提高了本发明实施例的二次电池的能量密度。
为了对新型二次电池进行更为清楚的解释,下面结合一些具体实施例来进行说明,然而值得注意的是以下实施例仅是为了更好地说明本发明,并不构成对本发明不当的限定。
实施例1
制备电池负极:取厚度为0.3mm的铝箔,裁切成直径12mm的圆片,用乙醇清洗,晾干作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g六氟磷酸锂加入到5ml碳酸甲乙酯中,搅拌至六氟磷酸锂完全溶解,配置成六氟磷酸锂浓度为4mol/L的电解液,然后加入质量分数为2%的碳 酸亚乙烯酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将0.8g天然石墨、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面(即,正极集流体)并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
本发明实施例1的二次电池的反应原理是:负极:
Figure PCTCN2016105533-appb-000006
正极:
Figure PCTCN2016105533-appb-000007
Figure PCTCN2016105533-appb-000008
电池的电化学性能测试:将上述二次电池制备方法实施例中制备的二次电池通过100mA/g的电流密度充电,直至其电压达到4.8V,然后以相同的电流放电,直至其电压达到3V,测量其电池比容量及能量密度,测试其循环稳定性(以循环圈数表示,循环圈数是指电池容量衰减至85%时电池所充放电次数)。
对本发明实施例1所提供的二次电池进行电池的电化学性能测试,与背景技术中所提到传统锂离子电池、铝离子电池、双石墨电池的性能进行比较,结果及比对情况如表1。
表1:本发明实施例1的二次电池和背景技术中二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000009
从表1中可以看出,采用了不同于背景技术中各种电池反应原理的本发明实施例1中的二次电池,其工作电压高,能量密度大。
与背景技术中的传统锂离子电池相比,本发明实施例1的二次电池正极用石墨替代含锂化合物,环境友好,不污染环境;本发明实施例1的二次电池中负极集流体除作为电极起导电作用以外,还作为与电解质中阳离子反应的材料,不需要再包含负极 活性材料,显著降低电池自重和成本,提升电池能量密度;本发明实施例1的二次电池充电时,电解液中的阴离子嵌入到正极石墨层中,电解质中的阳离子运动到负极集流体表面形成合金,放电则相反,其工作电压约为4.2V,提高了电池的工作电压,提升电池能量密度。
与背景技术中的铝离子电池相比,本发明实施例1的二次电池电解液不同,从而反应机理和性能不同。本发明的二次电池充电时,电解液中的阴离子嵌入到正极石墨层中,电解质中的阳离子运动到负极集流体表面形成合金,放电则相反。其工作电压约为4.2V,提高了电池的工作电压,进而提升了电池能量密度。
与背景技术中的双石墨电池相比,本发明实施例1的二次电池中负极集流体除作为电极起导电作用以外,还作为与电解质中阳离子反应的材料,不需要再包含负极活性材料,显著降低电池自重和成本,提升电池能量密度。
实施例2‐11
实施例2‐11与实施例1的二次电池制备过程除制备电池负极时使用的材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例2‐11的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例2‐11所使用的负极材料及其电化学性能具体参见表2。
表2:本发明实施例1‐11的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000010
Figure PCTCN2016105533-appb-000011
从表2可以看出,本发明实施例中,负极集流体优选为铝箔,其比容量高,循环性能好,能量密度最高。
实施例12‐34
实施例12‐34与实施例1的二次电池制备过程除制备电池正极时使用的正极活性材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例12‐34的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例12‐34所使用的正极活性材料及其电化学性能具体参见表3。
表3:本发明实施例12‐34的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000012
Figure PCTCN2016105533-appb-000013
从表3中可以看出,本发明实施例中,正极材料优选为石墨类材料,其比容量高, 能量密度高。
实施例35‐37
实施例35‐37与实施例1的二次电池制备过程除制备电解液时使用的电解质材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例35‐37的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例35‐37所使用的电解质材料及其电化学性能具体参见表4。
表4:本发明实施例35‐37的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000014
从表4中可以看出,本发明实施例中,电解质优选为六氟磷酸锂,其比容量高,循环稳定性好,能量密度高。
实施例38‐42
实施例38‐42与实施例1的二次电池制备过程除制备电解液时使用的电解质浓度不同以外,其他所有步骤及使用的材料都相同,同时对实施例38‐42的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例38‐42所使用的电解质浓度及其电化学性能具体参见表5。
表5:本发明实施例38‐42的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000015
Figure PCTCN2016105533-appb-000016
从表5中可以看出,本发明实施例中,电解质浓度优选为4M,其比容量高,循环稳定性好,能量密度高。
实施例43‐52
实施例43‐52与实施例1的二次电池制备过程除制备电解液时使用的溶剂材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例43‐52的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例43‐52所使用的溶剂材料及其电化学性能具体参见表6。
表6:本发明实施例43‐52的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000017
Figure PCTCN2016105533-appb-000018
从表6中可以看出,本发明实施例中,溶剂优选为碳酸甲乙酯,其比容量高,能量密度高。
实施例53‐60
实施例53‐60与实施例1的二次电池制备过程除制备电解液时使用的添加剂种类不同以外,其他所有步骤及使用的材料都相同,同时对实施例53‐60的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例53‐60所使用的溶剂材料及其电化学性能具体参见表7。
表7:本发明实施例53‐60的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000019
从表7中可以看出,本发明实施例中,添加剂优选为碳酸亚乙烯酯,其循环稳定性好。
实施例61‐67
实施例61‐67与实施例1的二次电池制备过程除制备电解液时使用的添加剂浓度不同以外,其他所有步骤及使用的材料都相同,同时对实施例61‐67的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例61‐67所使用的添加剂浓度及其电化学性能具体参见表8。
表8:本发明实施例61‐67的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000020
从表8中可以看出,本发明实施例中,添加剂浓度优选为2wt%,其循环稳定性好。
实施例68‐71
实施例68‐71与实施例1的二次电池制备过程除制备隔膜时使用的隔膜材料不同以外,其他所有步骤及使用的材料都相同,同时对实施例68‐71的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例68‐71所使用的隔膜材料及其电化学性能具体参见表9。
表9:本发明实施例68‐71的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000021
从表9可以看出,选择不同的隔膜材料对二次电池的循环次数、能量密度没有明显影响。
实施例72‐78
实施例72‐78与实施例1的二次电池制备过程除制备电池正极时使用的导电剂、粘结剂种类和质量分数不同以外,其他所有步骤及使用的材料都相同,同时对实施例72‐78的二次电池进行电池的电化学性能测试,并与本发明实施例1的性能进行比较,实施例72‐78所使用的导电剂、粘结剂种类和质量分数具体参见表10。
表10:本发明实施例72‐78的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000022
从表10可以看出,选择不同的导电剂、粘结剂种类和质量分数对二次电池的循环次数、能量密度没有明显影响。
实施例79
制备电池负极:取厚度为0.5mm的铜箔,裁切成直径12mm的圆片,用乙醇清洗铜片,晾干作为负极集流体备用。
制备隔膜:将Celgard2400多孔聚合物薄膜裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g六氟磷酸锂加入到5ml碳酸甲乙酯中,搅拌至六氟磷酸锂完全溶解,然后加入质量分数为2%的碳酸亚乙烯酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将0.8g人造石墨、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面(即,正极集流体)并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例80
制备电池负极:取厚度为0.3mm的铝箔,裁切成直径12mm的圆片,用乙醇清洗铜片,晾干作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g六氟磷酸锂加入到5ml碳酸甲乙酯中,搅拌至六氟磷酸锂完全溶解,然后加入质量分数为3%的亚硫酸亚乙酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将0.7g人造石墨、0.2g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例81
制备电池负极:取厚度为0.3mm的铝箔,裁切成直径12mm的圆片,用乙醇清洗铜片,晾干作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取2g四氟硼酸锂加入到5ml碳酸甲乙酯中,搅拌至四氟硼酸锂完全溶解,然后加入质量分数为3%的碳酸亚乙烯酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将0.8g人造石墨、0.15g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例82
制备电池负极:取厚度为0.3mm的铁片,裁切成直径12mm的圆片,用乙醇清洗铜片,晾干作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g六氟磷酸锂加入到5ml碳酸甲乙酯中,搅拌至六氟磷酸锂完全溶解,然后加入质量分数为2%的硫酸亚乙酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将1g碳化钛、0.15g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例83
制备电池负极:取厚度为0.3mm的铜箔,裁切成直径12mm的圆片,用乙醇清 洗铜片,晾干作为负极集流体备用。
制备隔膜:将多孔聚丙烯薄膜裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g六氟磷酸锂加入到5ml碳酸甲乙酯中,搅拌至六氟磷酸锂完全溶解,然后加入质量分数为2%的环丁基砜作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将1g碳化钛、0.15g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例84
制备电池负极:取厚度为0.3mm的铝箔,裁切成直径12mm的圆片,用乙醇清洗铜片,晾干作为负极集流体备用。
制备隔膜:将多孔聚丙烯薄膜裁切成直径16mm的圆片,用丙酮清洗,晾干后作为隔膜备用。
配制电解液:称取3g高氯酸锂加入到5ml碳酸甲乙酯中,搅拌至高氯酸锂完全溶解,然后加入质量分数为2%的亚硫酸亚乙酯作为添加剂,充分搅拌均匀后作为电解液备用。
制备电池正极:将1g二硫化钼、0.15g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
对实施例79‐84的二次电池进行电池的电化学性能测试,结果如表11:
表11:本发明实施例79‐84的二次电池的电化学性能参数表
Figure PCTCN2016105533-appb-000023
Figure PCTCN2016105533-appb-000024
实施例80、81、84使用铝箔作为负极材料的,比使用其他材料作为负极材料的实施例79、82、83,比容量高,能量密度高。
实施例79使用质量分数为2%的碳酸亚乙烯酯作为添加剂,比使用其他添加剂的实施例80‐84,其循环稳定性好。
实施例80使用4M六氟磷酸锂作为电解质,比使用其他材料作为电解质的实施例81、84,其比容量高,能量密度高。
本发明涉及的二次电池形态不局限于扣式电池,也可根据核心成分设计成方形电池、圆柱电池、软包电池等形态。
本发明提出的二次电池主要活性成分为具有层状晶体结构的类石墨材料,环境友好且成本低。同时,本发明的二次电池体系中无需负极活性材料,因而显著降低电池自重和成本,提升电池能量密度。本发明提出的二次电池所采用的反应原理可达到约4.2V的工作电压,电池工作电压高,电池能量密度可大幅提升。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种二次电池,其特征在于,包括:电池负极、电解液、隔膜、电池正极以及用于封装的电池壳体;其中,
    电池负极包括负极集流体,不包含负极活性材料;
    电解液包含酯类、砜类、醚类、腈类或烯烃类有机添加剂;
    电池正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,其中,所述正极活性材料包括具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物或碳化物。
  2. 一种二次电池,其特征在于,包括:电池负极、电解液、隔膜、电池正极以及用于封装的电池壳体;其中,
    电池负极包括负极集流体,不包含负极活性材料;
    电解液包含酯类、砜类、醚类、腈类或烯烃类有机添加剂;
    电池正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,其中,所述正极活性材料由具有层状晶体结构的石墨类材料、硫化物、氮化物、氧化物或碳化物组成。
  3. 根据权利要求1或2所述的二次电池,其特征在于,所述负极集流体为导电材料,所述导电材料为铝、铜、铁、锡、锌、镍、钛、锰中的一种或前述的合金。
  4. 根据权利要求3所述的二次电池,其特征在于,所述负极集流体为铝。
  5. 根据权利要求1或2所述的二次电池,其特征在于,所述电解液的组分还包含溶剂、电解质;其中,所述溶剂为酯类、砜类或醚类有机溶剂;所述电解质为锂盐。
  6. 如权利要求5所述的二次电池,其特征在于,所述电解质选用六氟磷酸锂、四氟硼酸锂或高氯酸锂,且浓度范围为0.1–10mol/L。
  7. 如权利要求5所述的二次电池,其特征在于,所述溶剂选用碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、二甲基砜或二甲醚。
  8. 如权利要求7所述的二次电池,其特征在于,所述溶剂为碳酸甲乙酯。
  9. 如权利要求1或2所述的二次电池,其特征在于,所述酯类、砜类、醚类、腈类或烯烃类有机添加剂,选用碳酸亚乙烯酯、亚硫酸亚乙酯、亚硫酸丙烯酯、硫酸亚乙酯、环丁基砜、1,3‐二氧环戊烷、乙腈或长链烯烃,且添加量为0.1‐20%wt。
  10. 如权利要求9所述的二次电池,其特征在于,所述有机添加剂为碳酸亚乙烯酯,添加量为2%wt。
  11. 根据权利要求1或2所述的新型二次电池,其特征在于,在所述正极活性材料中的所述石墨类材料,选用天然石墨、人造石墨或石墨片;
    所述硫化物,选用二硫化钼、二硫化钨或二硫化钒;
    所述氮化物,选用六方氮化硼或碳掺杂六方氮化硼;
    所述氧化物,选用三氧化钼、三氧化钨或五氧化二钒;
    所述碳化物,选用碳化钛、碳化钽或碳化钼。
  12. 一种制备权利要求1至11中任一项所述的新型二次电池的方法,其特征在于,包括:
    制备电池负极;
    配制电解液;
    制备隔膜;
    制备电池正极;
    利用所述电池负极、电解液、隔膜、电池正极进行新型二次电池的组装。
PCT/CN2016/105533 2015-11-18 2016-11-12 一种二次电池及其制备方法 WO2017084538A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/773,805 US10790537B2 (en) 2015-11-18 2016-11-12 Secondary battery and preparation method therefor
EP16865715.3A EP3379619A4 (en) 2015-11-18 2016-11-12 Secondary battery and preparation method therefor
JP2018521962A JP7091242B2 (ja) 2015-11-18 2016-11-12 二次電池及びその製造方法
KR1020187012967A KR102091376B1 (ko) 2015-11-18 2016-11-12 이차전지 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510796123.5 2015-11-18
CN201510796123 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017084538A1 true WO2017084538A1 (zh) 2017-05-26

Family

ID=55559147

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/096887 WO2017084128A1 (zh) 2015-11-18 2015-12-10 一种新型二次电池及其制备方法
PCT/CN2016/105533 WO2017084538A1 (zh) 2015-11-18 2016-11-12 一种二次电池及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096887 WO2017084128A1 (zh) 2015-11-18 2015-12-10 一种新型二次电池及其制备方法

Country Status (6)

Country Link
US (1) US10790537B2 (zh)
EP (1) EP3379619A4 (zh)
JP (1) JP7091242B2 (zh)
KR (1) KR102091376B1 (zh)
CN (2) CN105449186B (zh)
WO (2) WO2017084128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991080A (zh) * 2021-10-25 2022-01-28 湖北亿纬动力有限公司 一种正极材料及其制备方法和用途

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449186B (zh) * 2015-11-18 2018-11-27 深圳先进技术研究院 一种二次电池及其制备方法
WO2017190364A1 (zh) * 2016-05-06 2017-11-09 深圳先进技术研究院 一种二次电池及其制备方法
CN108511803B (zh) * 2017-02-23 2021-02-26 深圳先进技术研究院 一种二次电池及其制备方法
CN108630993A (zh) * 2017-03-22 2018-10-09 福建新峰二维材料科技有限公司 一种用混合碳材料作正负极的锂双离子全电池
CN108630896A (zh) * 2017-03-24 2018-10-09 深圳中科瑞能实业有限公司 一种二次电池负极及其制备方法和二次电池
US11189835B2 (en) 2017-03-24 2021-11-30 Real Power Industrial Limited Company Anode for secondary battery, preparation method thereof and secondary battery
CN108631010B (zh) * 2017-03-24 2021-07-27 深圳先进技术研究院 一种一体化二次电池及其制备方法
WO2018170927A1 (zh) * 2017-03-24 2018-09-27 深圳先进技术研究院 一种一体化二次电池及其制备方法
CN106960955B (zh) * 2017-05-31 2019-07-16 中南大学 钒硫化物包覆的锂离子电池三元正极材料及其制备方法
CN107230555A (zh) * 2017-07-17 2017-10-03 深圳中科瑞能实业有限公司 锂离子混合超级电容器及其制备方法
CN107221443B (zh) * 2017-07-17 2020-02-11 深圳中科瑞能实业有限公司 钠离子混合超级电容器及其制备方法
CN107275097B (zh) * 2017-07-17 2020-03-20 深圳中科瑞能实业有限公司 钾离子混合超级电容器及其制备方法
CN107492658A (zh) * 2017-07-31 2017-12-19 安阳工学院 一种二硫化钛纳米片及其制备方法
CN107492641A (zh) * 2017-07-31 2017-12-19 安阳工学院 一种碳化钛‑四硫化三钛复合材料及其制备方法
DE102017213434A1 (de) * 2017-08-02 2019-02-07 Volkswagen Aktiengesellschaft Batteriekomponente und Verfahren zur Herstellung derselben
CN108199044A (zh) * 2017-12-25 2018-06-22 深圳先进技术研究院 一种二次电池及其制备方法
CN108183261B (zh) * 2017-12-26 2020-08-25 深圳先进技术研究院 电解液和锂离子二次电池及其制备方法
KR102568793B1 (ko) * 2018-01-05 2023-08-22 삼성전자주식회사 무음극 리튬금속전지 및 그 제조방법
KR102566406B1 (ko) 2018-01-05 2023-08-14 삼성전자주식회사 무음극 리튬금속전지 및 그 제조방법
CN108735984A (zh) * 2018-04-11 2018-11-02 燕山大学 一种二硫化钼/碳化钛复合材料的制备方法
CN108615933A (zh) * 2018-05-16 2018-10-02 东莞市振华新能源科技有限公司 一种基于新型正极材料的铝离子电池及其制备方法
CN109346670A (zh) * 2018-10-19 2019-02-15 深圳中科瑞能实业有限公司 储能器件铝负极、储能器件及其制备方法
CN111370751B (zh) * 2018-12-25 2021-12-07 深圳市比亚迪锂电池有限公司 固态电池及其制备方法和电动汽车
CN110010862B (zh) * 2019-03-15 2022-03-29 辽宁科技大学 一种镁二次电池正极材料MXene-Ti3C2/TiS2及其制备方法
CN111403658A (zh) * 2020-03-04 2020-07-10 南昌大学 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
CN111533186B (zh) * 2020-05-12 2022-10-04 哈尔滨工业大学 一种球形扩层二硫化钼的制备方法及其应用
CN114069042A (zh) * 2020-08-03 2022-02-18 中国科学院宁波材料技术与工程研究所 一种新型锂电池
KR20230048114A (ko) * 2020-09-14 2023-04-10 테라와트 테크놀로지 가부시키가이샤 리튬 이차 전지
JP7506179B2 (ja) * 2020-10-29 2024-06-25 エルジー エナジー ソリューション リミテッド 環状カーボネートを含有する電解質を含むリチウム-硫黄二次電池
CN116569355A (zh) * 2020-11-02 2023-08-08 特拉沃特科技株式会社 锂二次电池
CN113258127B (zh) * 2021-05-31 2023-09-15 浙江大学 一种集流体-负极一体化的双极型锂二次电池及其方法
CN114361493B (zh) * 2021-11-29 2024-04-30 中国科学院金属研究所 一种塑料燃料电池***
CN114203992B (zh) * 2021-12-07 2024-01-30 远景动力技术(江苏)有限公司 正极活性材料、电化学装置和电子设备
CN114497454A (zh) * 2021-12-24 2022-05-13 贵州梅岭电源有限公司 一种正极极片、电池及其制备方法
GB2624246A (en) * 2022-11-14 2024-05-15 Eqonic Group Ltd A battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505184A (zh) * 2002-10-25 2004-06-16 ����Sdi��ʽ���� 锂电池负极及包含该负极的锂电池
CN1755975A (zh) * 2004-10-01 2006-04-05 株式会社东芝 二次电池及其制造方法
KR20060098787A (ko) * 2005-03-08 2006-09-19 삼성에스디아이 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN104078704A (zh) * 2014-07-03 2014-10-01 南京中储新能源有限公司 一种二次铝电池及其非水电解质
CN105449186A (zh) * 2015-11-18 2016-03-30 中国科学院深圳先进技术研究院 一种新型二次电池及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554913A (ja) * 1991-08-22 1993-03-05 Toshiba Battery Co Ltd 非水電解液二次電池
JP3692656B2 (ja) * 1995-12-11 2005-09-07 宇部興産株式会社 非水二次電池
US6746804B2 (en) * 1998-05-13 2004-06-08 Wilson Greatbatch Technologies, Inc. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
JP2003331927A (ja) 2002-05-15 2003-11-21 Japan Storage Battery Co Ltd 非水電解質二次電池の充電方法
JP2005259378A (ja) * 2004-03-09 2005-09-22 Tatsuki Ishihara 非水電解液二次電池正極活物質用炭素材料、非水電解液二次電池正極、及び非水電解液二次電池
JP4794172B2 (ja) 2005-01-18 2011-10-19 三洋電機株式会社 非水電解液二次電池及びその充電方法
US8785055B2 (en) * 2009-09-14 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Ionic liquid batteries
CN102714297A (zh) * 2010-01-22 2012-10-03 丰田自动车株式会社 正极及其制造方法
FR2956926A1 (fr) * 2010-03-01 2011-09-02 Commissariat Energie Atomique Microbatterie et son procede de fabrication
EP2669986B1 (en) * 2011-01-25 2016-08-31 Murata Manufacturing Co., Ltd. Nonaqueous electrolyte secondary cell
CN103563133B (zh) * 2011-05-31 2016-08-17 日本瑞翁株式会社 锂二次电池正极用复合粒子、锂二次电池正极用复合粒子的制造方法、锂二次电池用正极的制造方法、锂二次电池用正极、及锂二次电池
JP5758753B2 (ja) * 2011-09-09 2015-08-05 株式会社リコー 非水電解液二次電池
JP5900113B2 (ja) * 2012-03-30 2016-04-06 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014035951A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
WO2014088070A1 (ja) * 2012-12-05 2014-06-12 日本ゼオン株式会社 リチウムイオン二次電池
US20140356734A1 (en) * 2013-05-31 2014-12-04 Ningde Amperex Technology Limited Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US9203084B2 (en) * 2013-08-08 2015-12-01 Nanotek Instrurments, Inc. Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same
US10573875B2 (en) * 2013-09-30 2020-02-25 Hitachi Chemical Company, Ltd. Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015130324A (ja) 2013-12-05 2015-07-16 株式会社リコー 非水電解液二次電池
CN103730683B (zh) * 2013-12-27 2015-08-19 惠州亿纬锂能股份有限公司 一种锂电池及其制备方法
CN203707250U (zh) * 2014-01-24 2014-07-09 湖北金泉新材料有限责任公司 锂电池
KR102341434B1 (ko) * 2014-03-24 2021-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 이차 전지
JP6705119B2 (ja) * 2015-02-20 2020-06-03 株式会社村田製作所 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10276856B2 (en) * 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
US9960451B1 (en) * 2017-05-24 2018-05-01 Nanotek Instruments, Inc. Method of producing deformable quasi-solid electrode material for alkali metal batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505184A (zh) * 2002-10-25 2004-06-16 ����Sdi��ʽ���� 锂电池负极及包含该负极的锂电池
CN1755975A (zh) * 2004-10-01 2006-04-05 株式会社东芝 二次电池及其制造方法
KR20060098787A (ko) * 2005-03-08 2006-09-19 삼성에스디아이 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN104078704A (zh) * 2014-07-03 2014-10-01 南京中储新能源有限公司 一种二次铝电池及其非水电解质
CN105449186A (zh) * 2015-11-18 2016-03-30 中国科学院深圳先进技术研究院 一种新型二次电池及其制备方法
CN106340651A (zh) * 2015-11-18 2017-01-18 中国科学院深圳先进技术研究院 一种二次电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379619A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991080A (zh) * 2021-10-25 2022-01-28 湖北亿纬动力有限公司 一种正极材料及其制备方法和用途

Also Published As

Publication number Publication date
CN106340651A (zh) 2017-01-18
CN105449186A (zh) 2016-03-30
JP2019501480A (ja) 2019-01-17
CN105449186B (zh) 2018-11-27
US20180323467A1 (en) 2018-11-08
KR102091376B1 (ko) 2020-04-24
KR20180067586A (ko) 2018-06-20
WO2017084128A1 (zh) 2017-05-26
EP3379619A1 (en) 2018-09-26
JP7091242B2 (ja) 2022-06-27
US10790537B2 (en) 2020-09-29
EP3379619A4 (en) 2018-10-03
CN106340651B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2017084538A1 (zh) 一种二次电池及其制备方法
WO2017190365A1 (zh) 一种钠离子电池及其制备方法
WO2017113234A1 (zh) 一种新型钠离子电池及其制备方法
CN108172903B (zh) 电解液、钠离子二次电池及其制备方法
WO2017190572A1 (zh) 一种二次电池及其制备方法
CN108511803B (zh) 一种二次电池及其制备方法
WO2018152755A1 (zh) 一种二次电池及其制备方法
WO2017190355A1 (zh) 一种电解液、含有所述电解液的二次电池及其制备方法
JP6320727B2 (ja) リチウム硫黄電池の正極及びその製造方法
WO2018170925A1 (zh) 一种基于钙离子的二次电池及其制备方法
WO2014134967A1 (zh) 一种锂离子电池正极膜及其制备和应用
WO2017190366A1 (zh) 一种二次电池及其制备方法
CN108630979B (zh) 一种基于钙离子的二次电池及其制备方法
WO2017206062A1 (zh) 一种二次电池及其制备方法
WO2017190363A1 (zh) 一种负极活性材料及其制备方法、含所述负极活性材料的负极及二次电池
CN108470908A (zh) 一种二次电池及其制备方法
Han et al. Graphene oxide-decorated Fe 2 (MoO 4) 3 microflowers as a promising anode for lithium and sodium storage
CN109962231B (zh) 金属箔材用作镧离子二次电池负极和镧离子二次电池及其制备方法
CN113540413A (zh) 正极材料、正极片、锂离子电池及其制备方法
CN108172896B (zh) 钙离子二次电池及其制备方法
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
WO2018152754A1 (zh) 一种二次电池及其制备方法
CN105591091B (zh) 一种钠离子二次电池负极活性物质及其制备方法和应用
TW201902008A (zh) 電極材料、電極片、電解液及鋰離子二次電池
WO2024108365A1 (zh) 兼具双离子和摇椅式机理的二次电池及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018521962

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187012967

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016865715

Country of ref document: EP