WO2017067149A1 - 一种led球泡灯及其制备方法 - Google Patents

一种led球泡灯及其制备方法 Download PDF

Info

Publication number
WO2017067149A1
WO2017067149A1 PCT/CN2016/081509 CN2016081509W WO2017067149A1 WO 2017067149 A1 WO2017067149 A1 WO 2017067149A1 CN 2016081509 W CN2016081509 W CN 2016081509W WO 2017067149 A1 WO2017067149 A1 WO 2017067149A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation base
wafer
preparation
led bulb
Prior art date
Application number
PCT/CN2016/081509
Other languages
English (en)
French (fr)
Inventor
陈兵
李星
Original Assignee
亚浦耳照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亚浦耳照明股份有限公司 filed Critical 亚浦耳照明股份有限公司
Publication of WO2017067149A1 publication Critical patent/WO2017067149A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/508Cooling arrangements characterised by the adaptation for cooling of specific components of electrical circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances

Definitions

  • the invention belongs to the field of lighting fixtures, and in particular to an LED bulb lamp and a preparation method thereof.
  • LED lamps have been widely used in daily life, such as LED bulbs, because of their long life, low energy consumption, and energy saving.
  • LED lighting fixtures are mainly composed of structural components, power supplies and light sources.
  • the light source is mainly formed by lamp bead soldering on a circuit board or a COB (Chip On Board) integrated package.
  • the light source of the luminaire is coated with a thermal grease on the heat sink to form a heat balance structure.
  • the existing LED bulb structure has different heat conduction differences due to assembly process and component tolerance, thereby affecting the uniformity of light attenuation of the LED lamp; and the thermal resistance of the circuit board or COB combined with the heat sink is large, resulting in a decline in product performance;
  • the increase in the number of LEDs in the LED bulb, as well as the increase in power and brightness also causes the heat generated by the LED lamp to rise sharply.
  • the existing LED bulb itself has a heat dissipating device, the assembly between the light source and the structural member is complicated, the heat dissipation effect is poor, and the production cost is high and the efficiency is low.
  • the present invention provides an LED bulb and a preparation method thereof.
  • an LED bulb includes: a heat sink base, a plurality of wafers, a hemispherical structure, a power source, a lamp cap, and lampshade;
  • the heat dissipation base includes a line structure
  • the wafer is connected to the heat dissipation base
  • the hemispherical structure is used to coat the wafer
  • the power source is placed inside the heat dissipation base
  • the lamp cap is located at the bottom of the heat dissipation base, and the lamp cap and the heat dissipation base are electrically connected by wires;
  • the lamp cover is disposed on a top of the heat dissipation base.
  • the hemispherical structure is composed of a rubber material mixed with a phosphor.
  • the wafer is attached to the heat sink base by eutectic soldering or bonding.
  • the heat dissipation base is made of ceramic or metal material.
  • a method of preparing an LED bulb comprising the steps of:
  • the heat dissipation base is formed by the following steps:
  • the material of the heat dissipation base comprises a ceramic material or a metal heat dissipation material.
  • step b) further comprises:
  • the conductive paste comprises: silver, copper, tin, and/or nickel.
  • step b) further comprises:
  • step b) further comprises:
  • the temperature of the high temperature heating is from 1065 ° C to 1085 ° C.
  • the step c) is further Mounting the wafer on the wiring layer of the heat dissipation base by using a die bonder, and forming a solder paste on the bottom of the wafer, and eutectic soldering the wafer on the circuit layer of the heat dissipation base through a high temperature furnace .
  • the step c) is further: directly solidifying on the circuit layer for high-temperature sintering, and eutectic soldering the wafer on the circuit layer of the heat dissipation base.
  • the hemispherical structure is formed of a silica gel or a silicone material or a gel material mixed with a phosphor.
  • the LED bulb provided by the invention integrates the light source and the structural member, and changes the structure of the previous LED lighting fixture. Since the light source is directly packaged on the structural member, rapid thermal balance is achieved, the consistency is improved, and the materials and assembly processes such as the circuit board, the bracket, the thermal grease, the patch, etc. are reduced, thereby improving the product characteristics and reducing the production cost. Increased production efficiency.
  • the invention reduces the beam splitting link in the lamp bead production process, reduces the SMT (Surface Mount Technology) sticking lamp bead link, and simplifies the circuit board and the mounting circuit board to the heat dissipation substrate link; It has reduced the transportation and transportation links of each package, integrated the light source production supply chain, saved social resources, and truly achieved energy conservation and environmental protection.
  • SMT Surface Mount Technology
  • FIG. 1 is a schematic structural view of a specific embodiment of an LED bulb according to the present invention.
  • FIG. 2 is a schematic flow chart showing a specific embodiment of a method for preparing an LED bulb according to the present invention.
  • an LED bulb provided by the present invention includes a heat sink base 50, a plurality of wafers 20, a fluorescent gel structure 30, a power source 10, a lamp cap 40, and a lamp cover 70.
  • the heat dissipation base may be prepared by using a ceramic material such as Al 2 O 3 or AlN or a metal material such as aluminum or copper.
  • the heat dissipation base 50 includes a line structure.
  • the wafer 20 is attached to the heat sink base 50.
  • the wafer 20 is connected to the heat dissipation base 50 by eutectic soldering or bonding.
  • the wafer 20 is connected to the heat dissipation base 50 by eutectic soldering.
  • the fluorescent colloid structure 30 is a hemispherical structure for coating the wafer 20.
  • the fluorescent colloid structure is composed of a rubber material mixed with a phosphor.
  • the power source 10 is placed inside the heat dissipation base 50.
  • the power supply 10 is composed of an integrated circuit (IC), a plurality of resistors, capacitors, inductors, bridges and the like.
  • the base 40 is located at the bottom of the heat dissipation base 50, and the base 40 and the heat dissipation base 50 are electrically connected by wires.
  • the lamp cover 70 is disposed on the top of the heat dissipation base 50, and is preferably bonded to the heat dissipation base 50 by an adhesive.
  • FIG. 2 shows an LED bulb according to the present invention.
  • a heat dissipation base 50 is provided.
  • the material of the heat dissipation base 50 includes a ceramic material or a metal heat dissipation material.
  • the ceramic may be Al 2 O 3 , AlN or the like; the metal may be aluminum, copper or the like.
  • the heat dissipation base 50 is formed by first forming a cavity structure required by the heat dissipation base by a steel mold; then extruding by an extruder; and finally placing it in a high temperature tunnel furnace for high temperature sintering. Cooling base 50.
  • the heat sink base 50 thus prepared can achieve a good heat balance.
  • a wiring layer 60 is formed on the heat dissipation base 50.
  • the formation of the wiring layer 60 can be performed in a variety of ways, and the most suitable manner can be selected as needed. The formation of the wiring layer 60 will be described in detail below.
  • the heat dissipation base 50 is polished and polished to ensure the flatness of the surface of the circuit layer 60; and the cleaning and drying process is performed;
  • the high-temperature furnace sintering line is used to fully integrate the conductive paste with the heat dissipation base 50.
  • the conductive paste material may be a conductive material such as silver, copper, tin or nickel.
  • the heat dissipation base 50 is polished and polished to ensure the flatness of the surface of the circuit layer 60; and the cleaning and drying process is performed;
  • a copper metal composite layer is sputtered on the heat dissipation base 50.
  • the copper metal composite layer is sputtered on the heat dissipation base 50 by a thin film professional manufacturing technique-vacuum coating method.
  • the copper metal composite layer is: CuAlO 2 and CuAl 2 O 4 .
  • the photoresist is exposed, developed, etched, and stripped with a yellow light lithography
  • the thickness of the line is increased by electroplating and/or electroless plating
  • the high temperature heating temperature is from 1065 ° C to 1085 ° C, for example, 1065 ° C, 1075 ° C or 1085 ° C. More preferably, the high temperature heating temperature is from 1070 ° C to 1080 ° C, for example, 1070 ° C, 1075 ° C or 1080 ° C.
  • the temperature at which the high temperature is heated is critical to the formation of a composite metal substrate, and the optimum composite metal substrate can be formed only at a suitable temperature.
  • the circuit is prepared by etching.
  • step S103 the wafer 20 is eutectic soldered or bonded to the wiring layer 60 of the heat dissipation base 50.
  • the wafer is a planar structure or a flip-chip structure.
  • the wafer 20 is mounted on the wiring layer 60 of the heat dissipation base 50 by using a die bonder.
  • a solder paste is formed on the bottom of the wafer 20, and the wafer 20 is eutectic soldered to the wiring layer 60 of the heat dissipation base 50 by a high temperature furnace.
  • the high-temperature sintering is directly performed on the circuit layer 60, and the wafer 20 is eutectic soldered to the circuit layer of the heat dissipation base 50. 60 on.
  • a hemispherical structure is formed above the wafer 20, and the hemispherical structure is a fluorescent colloid structure 30.
  • the hemispherical structure is composed of a rubber material mixed with a phosphor. More preferably, the glue is a silicone or silicone material.
  • step S105 the power source 10 is mounted inside the heat dissipation base 50.
  • step S106 the lamp cap 40 is mounted on the bottom of the heat dissipation base 50.
  • step S107 the lamp cover 70 is mounted outside the hemispherical structure 30.
  • the invention directly forms the circuit layer 60 and the wafer on the heat dissipation base, thereby avoiding
  • the complicated operation of soldering the lamp bead (wafer) to the circuit board and then attaching the circuit board to the heat sink (heat dissipation substrate) improves the production efficiency and reduces the production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED球泡灯,所述LED球泡灯包括:散热基座(50)、多个晶片(20)、半球体结构(30)、电源(10)、灯头(40)和灯罩(70);散热基座(50)上包含有线路结构;晶片(20)连接在散热基座(50)上;半球体结构(30),用于包覆晶片(20);电源(10)置于散热基座(50)内部;灯头(40)位于散热基座(50)底部,灯头(40)与散热基座(50)通过导线进行电性连接;灯罩(70)设置于散热基座(50)顶部。还提供了一种LED球泡灯的制备方法。本发明使光源与结构件一体化,能够实现快速的热平衡,简化了组装过程,降低了生产成本,提高了生产效率。

Description

一种LED球泡灯及其制备方法 技术领域
本发明属于照明灯具领域,具体地说涉及一种LED球泡灯及其制备方法。
背景技术
由于LED灯具有使用寿命长、能耗低、节约能源等优势,因此LED灯作为光源已广泛地应用于日常生活中,如LED球泡灯。
LED照明灯具主要由结构件,电源,光源组成。其中光源主要是由灯珠焊在线路板上或COB(Chip On Board,板上芯片)集成封装形成。灯具的光源用导热硅脂贴在散热器上形成热平衡结构。现有LED球泡灯结构因组装工艺及零部件公差造成热传导差异,从而影响LED灯具光衰减的一致性;且线路板或COB与散热器结合热阻大,导致产品性能下降;此外,随着LED球泡灯中LED数量的增加、以及功率和亮度的提高,也使得LED灯工作时所产生的热量大幅攀升。
虽然现有的LED球泡灯本身具有散热装置,但是光源与结构件间组装复杂,散热效果差,其生产成本高,效率低。
发明内容
为了解决现有技术中LED球泡灯组装复杂、生产成本高、效率低、光源性能差的问题,本发明提供了一种LED球泡灯及其制备方法。
根据本发明的一个方面,提供一种LED球泡灯,所述LED球泡灯包括:散热基座、多个晶片、半球体结构、电源、灯头和 灯罩;
所述散热基座上包含有线路结构;
所述晶片连接在所述散热基座上;
所述半球体结构用于包覆所述晶片;
所述电源置于所述散热基座内部;
所述灯头位于所述散热基座底部,所述灯头与所述散热基座通过导线进行电性连接;
所述灯罩设置于所述散热基座顶部。
根据本发明的一个具体实施方式,所述半球体结构采用混有荧光粉的胶材构成。
根据本发明的另一个具体实施方式,所述晶片通过共晶焊接或者绑定方式连接在所述散热基座上。
根据本发明的又一个具体实施方式,所述散热基座采用陶瓷或金属材料制备而成。
根据本发明的另一个方面,提供一种LED球泡灯的制备方法,所述制备方法包括步骤:
a)提供一散热基座;
b)在所述散热基座上形成线路层;
c)将所述晶片共晶焊接或绑定于散热基座的线路层上;
d)在所述晶片上方形成半球体结构;
e)在所述散热基座内部安装电源;
f)在所述散热基座的底部安装灯头;
g)在所述半球体结构外部安装灯罩。
根据本发明的一个具体实施方式,所述散热基座通过如下步骤形成:
通过钢模形成所述散热基座需求的腔体结构;
利用挤出机挤压成形;
放置于高温隧道炉中进行高温烧结形成散热基座。
根据本发明的另一个具体实施方式,所述散热基座的材质包括陶瓷材质或金属散热材质。
根据本发明的又一个具体实施方式,所述步骤b)进一步包括:
b11)对所述散热基座进行抛光打磨,并进行清洗和烘干处理;
b12)通过印刷线路技术印刷导电浆料形成线路层;
b13)利用高温炉烧结线路。
根据本发明的又一个具体实施方式,所述导电浆料包括:银,铜,锡和/或镍。
根据本发明的又一个具体实施方式,所述步骤b)进一步包括:
b21)对所述散热基座进行抛光打磨,并进行清洗和烘干处理;
b22)在所述散热基座上溅镀铜金属复合层;
b23)以黄光微影之光阻被覆曝光、显影、蚀刻、去膜;
b24)以电镀和/或化学镀沉积方式增加线路的厚度;
b25)移除所述光阻。
根据本发明的又一个具体实施方式,所述步骤b)进一步包括:
b31)在所述散热基座表面覆上铜金属,并进行高温加热形成复合金属基板;
b32)采用蚀刻方式备制线路。
根据本发明的又一个具体实施方式,所述步骤b31)中,高温加热的温度为1065℃~1085℃。
根据本发明的又一个具体实施方式,所述步骤c)进一步为, 采用固晶机将所述晶片安装在所述散热基座的线路层上,同时在所述晶片底部形成锡膏,通过高温炉将所述晶片共晶焊接于所述散热基座的线路层上。
根据本发明的又一个具体实施方式,所述步骤c)进一步为,直接固晶于所述线路层上进行高温烧结,将所述晶片共晶焊接于所述散热基座的线路层上。
根据本发明的又一个具体实施方式,所述半球体结构采用硅胶或者硅树脂材料形成或者采用混有荧光粉的胶材构成。
本发明提供的LED球泡灯将光源与结构件一体化设计,改变了以前LED照明灯具的结构。由于在结构件上直接封装光源,实现了快速的热平衡,提升一致性,减少了线路板,支架,导热硅脂,贴片……等材料及组装工序,从而提升产品特性,降低了生产成本、提升了生产效率。
本发明减小了灯珠生产工艺中的分光编带环节,减小了SMT(Surface Mount Technology,表面贴装技术)贴灯珠环节;简化了电路板及安装电路板到散热基片环节;同时减小了各个包装运输环节,整合了光源生产供应链;节约了社会资源;真正做到了节能环保。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1所示为根据本发明提供的一种LED球泡灯的一个具体实施方式的结构示意图;
图2所示为根据本发明提供的一种LED球泡灯的制备方法的一个具体实施方式的流程示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。
参见图1,本发明提供的LED球泡灯包括:散热基座50、多个晶片20、荧光胶体结构30、电源10、灯头40和灯罩70。所述散热基座可采用Al2O3、AlN等陶瓷材料或铝、铜等金属材料制备而成。所述散热基座50上包含有线路结构。所述晶片20连接在所述散热基座50上。其中,所述晶片20通过共晶焊接或者绑定方式连接在所述散热基座50上。优选的,所述晶片20通过共晶焊接的方式连接在所述散热基座50上。
所述荧光胶体结构30为半球体结构,用于包覆所述晶片20。其中,优选的,所述荧光胶体结构采用混有荧光粉的胶材构成。
所述电源10置于所述散热基座50内部。所述电源10由集成电路(integrated circuit,IC)、复数个电阻、电容、电感、桥堆等元器件组成。
所述灯头40位于所述散热基座50底部,所述灯头40与所述散热基座50通过导线进行电性连接。所述灯罩70设置于所述散热基座50的顶部,优选的,通过粘合剂与散热基座50进行结合。
参见图2,图2所示为根据本发明提供的一种LED球泡灯的 制备方法的一个具体实施方式的流程示意图。
步骤S101,提供一散热基座50。所述散热基座50的材质包括陶瓷材质或金属散热材质。优选的,所述陶瓷可以为Al2O3、AlN等;所述金属可以为铝、铜等。进一步的,所述散热基座50通过如下步骤形成:首先通过钢模形成所述散热基座需求的腔体结构;然后利用挤出机挤压成形;最后放置于高温隧道炉中进行高温烧结形成散热基座50。如此制备的散热基座50可以达到很好的热平衡。
步骤S102,在所述散热基座50上形成线路层60。线路层60的形成可以由多种方式,可以根据需要选择最适合的方式。以下对线路层60的形成进行详细描述。
方法一:
首先,对所述散热基座50进行抛光打磨,以保证线路层60表面的平整度;并进行清洗和烘干处理;
其次,通过印刷线路技术印刷导电浆料形成线路层60;
最后,利用高温炉烧结线路,使导电浆与散热基座50充分结合。优选的,上述导电浆材质可是银、铜、锡、镍等导电材质。
方法二:
首先,对所述散热基座50进行抛光打磨,以保证线路层60表面的平整度;并进行清洗和烘干处理;
其次,在所述散热基座50上溅镀铜金属复合层。优选的,利用薄膜专业制造技术-真空镀膜方式于散热基座50上溅镀铜金属复合层。优选的,所述铜金属复合层为:CuAlO2和CuAl2O4
再次,以黄光微影之光阻被覆曝光、显影、蚀刻、去膜;
之后,以电镀和/或化学镀沉积方式增加线路的厚度;
最后,移除所述光阻。
方法三:
首先,在所述散热基座50表面覆上铜金属,并进行高温加热形成复合金属基板。优选的,所述高温加热的温度为1065℃~1085℃,例如:1065℃、1075℃或者1085℃。更为优选的,所述高温加热的温度为1070℃~1080℃,例如:1070℃、1075℃或者1080℃。高温加热的温度对于形成复合金属基板至关重要,只有在合适的温度才能形成最佳的复合金属基板。
之后,采用蚀刻方式备制线路。
进一步的,执行步骤S103,将所述晶片20共晶焊接或绑定于散热基座50的线路层60上。
优选的,晶片为平面型结构或倒装结构,在散热基座50的线路层60高温烧结后,采用固晶机将所述晶片20安装在所述散热基座50的线路层60上,同时在所述晶片20底部形成锡膏,通过高温炉将所述晶片20共晶焊接于所述散热基座50的线路层60上。
优选的,还可以在散热基座50的线路层60高温烧结前,直接固晶于所述线路层60上进行高温烧结,将所述晶片20共晶焊接于所述散热基座50的线路层60上。
步骤S104,在所述晶片20上方形成半球体结构,所述半球体结构即为荧光胶体结构30。优选的,所述半球体结构采用混有荧光粉的胶材构成。更为优选的,所述胶材为硅胶或者硅树脂材料。
步骤S105,在所述散热基座50内部安装电源10。
步骤S106,在所述散热基座50的底部安装灯头40。
步骤S107,在所述半球体结构30外部安装灯罩70。
本发明将线路层60和晶片均直接形成于散热基座上,避免了 如现有技术般将灯珠(晶片)焊接于电路板,再将电路板贴在散热器(散热基片)上的复杂操作,提高了生产效率,降低了生产成本。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。

Claims (15)

  1. 一种LED球泡灯,其特征在于,所述LED球泡灯包括:散热基座、多个晶片、半球体结构、电源、灯头和灯罩;
    所述散热基座上包含有线路结构;
    所述晶片连接在所述散热基座上;
    所述半球体结构用于包覆所述晶片;
    所述电源置于所述散热基座内部;
    所述灯头位于所述散热基座底部,所述灯头与所述散热基座通过导线进行电性连接;
    所述灯罩设置于所述散热基座顶部。
  2. 根据权利要求1所述的LED球泡灯,其特征在于,所述半球体结构采用混有荧光粉的胶材构成。
  3. 根据权利要求1所述的LED球泡灯,其特征在于,所述晶片通过共晶焊接或者绑定方式连接在所述散热基座上。
  4. 根据权利要求1所述的LED球泡灯,其特征在于,所述散热基座采用陶瓷或金属材料制备而成。
  5. 一种LED球泡灯的制备方法,其特征在于,所述制备方法包括步骤:
    a)提供一散热基座;
    b)在所述散热基座上形成线路层;
    c)将所述晶片共晶焊接或绑定于散热基座的线路层上;
    d)在所述晶片上方形成半球体结构;
    e)在所述散热基座内部安装电源;
    f)在所述散热基座的底部安装灯头;
    g)在所述半球体结构外部安装灯罩。
  6. 根据权利要求5所述的制备方法,其特征在于,所述散热基座通过如下步骤形成:
    通过钢模形成所述散热基座需求的腔体结构;
    利用挤出机挤压成形;
    放置于高温隧道炉中进行高温烧结形成散热基座。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述散热基座的材质包括陶瓷材质或金属散热材质。
  8. 根据权利要求5所述的制备方法,其特征在于,所述步骤b)进一步包括:
    b11)对所述散热基座进行抛光打磨,并进行清洗和烘干处理;
    b12)通过印刷线路技术印刷导电浆料形成线路层;
    b13)利用高温炉烧结线路。
  9. 根据权利要求8所述的制备方法,其特征在于,所述导电浆料包括:银,铜,锡和/或镍。
  10. 根据权利要求5所述的制备方法,其特征在于,所述步骤b)进一步包括:
    b21)对所述散热基座进行抛光打磨,并进行清洗和烘干处理;
    b22)在所述散热基座上溅镀铜金属复合层;
    b23)以黄光微影之光阻被覆曝光、显影、蚀刻、去膜;
    b24)以电镀和/或化学镀沉积方式增加线路的厚度;
    b25)移除所述光阻。
  11. 根据权利要求5所述的制备方法,其特征在于,所述步骤b)进一步包括:
    b31)在所述散热基座表面覆上铜金属,并进行高温加热形成复合金属基板;
    b32)采用蚀刻方式备制线路。
  12. 根据权利要求11所述的制备方法,其特征在于,所述步骤b31)中,高温加热的温度为1065℃~1085℃。
  13. 根据权利要求5所述的制备方法,其特征在于,所述步骤c)进一步为,采用固晶机将所述晶片安装在所述散热基座的线路层上,同时在所述晶片底部形成锡膏,通过高温炉将所述晶片共晶焊接于所述散热基座的线路层上。
  14. 根据权利要求5所述的制备方法,其特征在于,所述步骤c)进一步为,直接固晶于所述线路层上进行高温烧结,将所述晶片共晶焊接于所述散热基座的线路层上。
  15. 根据权利要求5所述的制备方法,其特征在于,所述半球体结构采用硅胶或者硅树脂材料形成或者采用混有荧光粉的胶材构成。
PCT/CN2016/081509 2015-10-22 2016-05-10 一种led球泡灯及其制备方法 WO2017067149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510690637.2A CN105202393A (zh) 2015-10-22 2015-10-22 一种led球泡灯及其制备方法
CN201510690637.2 2015-10-22

Publications (1)

Publication Number Publication Date
WO2017067149A1 true WO2017067149A1 (zh) 2017-04-27

Family

ID=54950225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081509 WO2017067149A1 (zh) 2015-10-22 2016-05-10 一种led球泡灯及其制备方法

Country Status (2)

Country Link
CN (2) CN105202393A (zh)
WO (1) WO2017067149A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202393A (zh) * 2015-10-22 2015-12-30 上海亚浦耳照明电器有限公司 一种led球泡灯及其制备方法
CN106764561A (zh) * 2016-12-27 2017-05-31 江苏稳润光电科技有限公司 一种基于倒装led芯片真空封装的一体式灯具及制作方法
CN112020227A (zh) * 2020-09-16 2020-12-01 浙江常山德讯达电子科技有限公司 一种线路散热一体化led灯的生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014515A (ja) * 2009-07-02 2011-01-20 Aidou:Kk 照度並びに配光性に優れる照明具
CN102287788A (zh) * 2011-06-03 2011-12-21 厦门汇耕电子工业有限公司 完全一体化并带电路功能的散热结构体的制作方法
CN102767725A (zh) * 2012-07-30 2012-11-07 轻工业部南京电光源材料科学研究所 一种基于远程荧光光源模组球泡灯
CN204647931U (zh) * 2015-05-26 2015-09-16 中山市鼎立德光电科技有限公司 一种led连体灯丝灯
CN105202393A (zh) * 2015-10-22 2015-12-30 上海亚浦耳照明电器有限公司 一种led球泡灯及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777776A (zh) * 2011-05-12 2012-11-14 深圳市华思科技股份有限公司 氧化铝陶瓷led球泡灯及其制造方法
CN103322437B (zh) * 2012-03-22 2016-12-14 赵依军 具有强散热能力的发光二极管球泡灯及其制造方法
CN203757406U (zh) * 2013-12-31 2014-08-06 福建省万邦光电科技有限公司 一种便于装配的led球泡灯
CN104896320A (zh) * 2014-03-06 2015-09-09 苏州同拓光电科技有限公司 Led灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014515A (ja) * 2009-07-02 2011-01-20 Aidou:Kk 照度並びに配光性に優れる照明具
CN102287788A (zh) * 2011-06-03 2011-12-21 厦门汇耕电子工业有限公司 完全一体化并带电路功能的散热结构体的制作方法
CN102767725A (zh) * 2012-07-30 2012-11-07 轻工业部南京电光源材料科学研究所 一种基于远程荧光光源模组球泡灯
CN204647931U (zh) * 2015-05-26 2015-09-16 中山市鼎立德光电科技有限公司 一种led连体灯丝灯
CN105202393A (zh) * 2015-10-22 2015-12-30 上海亚浦耳照明电器有限公司 一种led球泡灯及其制备方法

Also Published As

Publication number Publication date
CN105202393A (zh) 2015-12-30
CN106122804A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106129240B (zh) 基于石墨烯材质的大功率led芯片及其cob封装方法
CN205491427U (zh) 带有陶瓷散热器的高频印刷电路板及led光源模组
TWM498387U (zh) 熱電分離的發光二極體封裝模組及電連接模組
CN106678563A (zh) 一种光热一体化led照明灯具及其制备方法
WO2017067149A1 (zh) 一种led球泡灯及其制备方法
TWI329181B (en) Illumination device
US8476650B2 (en) Film-covered LED device
CN203503708U (zh) 蓝宝石基led封装结构
WO2015109675A1 (zh) 新型led照明装置
WO2019148934A1 (zh) 灯具、直插式led灯珠及制造方法
TWI546916B (zh) 半導體封裝結構與其製造方法
CN103236491A (zh) 一种led陶瓷cob光源日光灯及其制备方法
CN207517729U (zh) 一种发光均匀的平面led光源
TW201349603A (zh) Led發光裝置和其製造方法以及led照明裝置
CN105609496A (zh) 高功率密度cob封装白光led模块及其封装方法
TW201429009A (zh) 發光二極體裝置及散熱基板的製造方法
CN104103741A (zh) 一种以碳化硅陶瓷为散热器一体封装的led光源器件及其制备方法
CN109920904B (zh) 大功率GaN基LED的散热结构及加工工艺
CN105870113A (zh) 一种led光源结构及其制备方法
TWM285801U (en) Light-emitting diode package structure
CN206582553U (zh) 一种光热一体化led照明灯具
US20150103521A1 (en) Lighting module and method of manufacturing a lighting module
TWI476958B (zh) 發光二極體封裝結構及其封裝方法
CN107940389A (zh) Led光源组件及其led汽车灯
CN210743984U (zh) 一种2串2并共阴极cob光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856595

Country of ref document: EP

Kind code of ref document: A1