WO2017061364A1 - 熱硬化性樹脂フィルム及び第1保護膜形成用シート - Google Patents

熱硬化性樹脂フィルム及び第1保護膜形成用シート Download PDF

Info

Publication number
WO2017061364A1
WO2017061364A1 PCT/JP2016/079255 JP2016079255W WO2017061364A1 WO 2017061364 A1 WO2017061364 A1 WO 2017061364A1 JP 2016079255 W JP2016079255 W JP 2016079255W WO 2017061364 A1 WO2017061364 A1 WO 2017061364A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
sensitive adhesive
pressure
group
Prior art date
Application number
PCT/JP2016/079255
Other languages
English (en)
French (fr)
Inventor
啓示 布施
正憲 山岸
明徳 佐藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2017544481A priority Critical patent/JP6821580B2/ja
Publication of WO2017061364A1 publication Critical patent/WO2017061364A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a thermosetting resin film and a first protective film forming sheet using the same.
  • a projecting electrode made of eutectic solder, high-temperature solder, gold or the like is formed as a semiconductor chip on its connection pad portion.
  • the flip chip mounting method has been employed in which the bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate in a so-called face-down manner, and are melted / diffusion bonded. .
  • the semiconductor chip used in this mounting method can be obtained, for example, by grinding or dicing the surface opposite to the circuit surface of a semiconductor wafer having bumps formed on the circuit surface.
  • a curable resin film is applied to the bump forming surface, and the film is cured to form a protective film on the bump forming surface.
  • thermosetting resin film those containing a thermosetting component that is cured by heating are widely used, and as the protective film-forming sheet provided with such a thermosetting resin film, the film In which a thermoplastic resin layer having a specific thermoelastic modulus is laminated, and a thermoplastic resin layer non-plasticized at 25 ° C. is laminated on the uppermost layer of the thermoplastic resin layer ( Patent Document 1).
  • this protective film forming sheet is said to be excellent in bump filling property of the protective film, wafer processability, electrical connection reliability after resin sealing, and the like.
  • thermosetting resin film for forming the protective film has a part of the thermosetting component contained in the protective film forming sheet depending on the composition.
  • the problem that it is easy to move to the adjacent layer was found.
  • the thermosetting component moves from the thermosetting resin film to a layer adjacent to the thermosetting resin film, the composition of the thermosetting resin film changes, and a curing reaction occurs when a protective film is formed.
  • the thermosetting component migrates in this way, the thermosetting resin film has reduced fluidity during heating, and the bump does not sufficiently adhere to the entire target portion of the bump. As a result, the embedding of the bump becomes insufficient and the bump embedding property is lowered.
  • An object of the present invention is to provide a thermosetting resin film in which migration of a thermosetting component to an adjacent layer is sufficiently suppressed, and a protective film forming sheet using the same.
  • the present invention is a thermosetting resin film for forming a first protective film on the surface by sticking on a surface of a semiconductor wafer having bumps and thermosetting, the thermosetting resin film, A thermosetting containing a polymer component (A) and a thermosetting component (B0), wherein the thermosetting component (B0) has a weight average molecular weight of 450 or more and a dispersity of 10 or less.
  • a functional resin film is provided.
  • the thermosetting component (B0) may be composed of an epoxy resin (B01) and a thermosetting agent (B02).
  • this invention provides the sheet
  • thermosetting component in the thermosetting resin film migrates to the layer adjacent to the thermosetting resin film.
  • the thermosetting resin film of the present invention is a thermosetting resin film for forming a first protective film on the surface by sticking to a surface of a semiconductor wafer having bumps and thermosetting the film.
  • the curable resin film contains a polymer component (A) and a thermosetting component (B0), and the thermosetting component (B0) has a weight average molecular weight (Mw) of 450 or more and a dispersity ( Mw / Mn) is 10 or less.
  • Mw weight average molecular weight
  • Mw / Mn dispersity
  • Mn means a number average molecular weight.
  • seat for protective film formation of this invention equips the one surface of a 1st support sheet with the thermosetting resin film of said this invention.
  • the “thermosetting resin film” may be referred to as a “thermosetting resin layer”.
  • the first protective film-forming sheet of the present invention is used by being attached to a surface (that is, a circuit surface) having bumps of a semiconductor wafer via its thermosetting resin layer (thermosetting resin film). Then, the thermosetting resin layer after application increases in fluidity by heating, spreads between the bumps so as to cover the bumps, adheres to the circuit surface, and also on the surface of the bump, particularly in the vicinity of the circuit surface. Cover the surface and embed bumps. The thermosetting resin layer in this state is further thermoset by heating to finally form a first protective film, and protects the bumps in close contact with the surface on the circuit surface.
  • the first support sheet is removed, and then the thermosetting resin layer is heated.
  • the embedding of the bumps and the formation of the first protective film are performed, and finally, the semiconductor device is incorporated with the first protective film.
  • thermosetting resin film (thermosetting resin layer) of the present invention has, as a thermosetting component, a thermosetting component (B0) having a large weight average molecular weight and a dispersity of a specific range or less as described above.
  • the thermosetting resin film is used for the first protective film forming sheet immediately after its production and before the thermosetting resin film is cured during use.
  • the migration of the thermosetting component (B0) to the adjacent layer, that is, the first support sheet is sufficiently suppressed.
  • the change in the composition is suppressed, the curing reaction when forming the first protective film sufficiently proceeds, and the first protective film having a high degree of curing can be formed.
  • thermosetting resin film is excellent in bump embedding because a decrease in fluidity at the time of heating is suppressed and the bump is embedded in close contact with the entire target portion of the bump.
  • the thermosetting resin film of the present invention not only forms the first protective film having a high degree of curing as described above, but also has excellent bump embedding properties and has a very high bump protecting effect.
  • the configuration of the present invention will be described in detail.
  • the first support sheet may be composed of one layer (single layer) or may be composed of two or more layers.
  • the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
  • a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers. May be different, and only some of the layers may be the same ”, and“ a plurality of layers are different from each other ”means that“ at least one of the constituent material and thickness of each layer is different from each other ” "Means.
  • first support sheet for example, a sheet in which a first pressure-sensitive adhesive layer is laminated on a first substrate, a first intermediate layer is laminated on a first substrate, and a first intermediate layer is formed on the first intermediate layer.
  • first support sheet for example, a sheet in which a first pressure-sensitive adhesive layer is laminated on a first substrate, a first intermediate layer is laminated on a first substrate, and a first intermediate layer is formed on the first intermediate layer.
  • examples include one in which one pressure-sensitive adhesive layer is laminated, one made only of a first base material, and the like.
  • first protective film forming sheet of the present invention will be described below for each type of the first support sheet with reference to the drawings.
  • drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the first protective film-forming sheet of the present invention.
  • seat 1 for protective film formation shown here uses as a 1st support sheet what laminated
  • the first support sheet 101 is a laminate of the first base material 11 and the first pressure-sensitive adhesive layer 13, and is on one surface 101 a of the first support sheet 101, that is, on one surface 13 a of the first pressure-sensitive adhesive layer 13.
  • thermosetting resin layer 12 is provided.
  • the transfer of the thermosetting component (B0) from the thermosetting resin layer 12 to the adjacent layer, ie, the 1st adhesive layer 13, is fully suppressed.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the first protective film-forming sheet of the present invention.
  • the first protective film forming sheet 2 shown here is a first support sheet in which a first intermediate layer is laminated on a first base material, and a first adhesive layer is laminated on the first intermediate layer.
  • the first protective film forming sheet 2 includes the first intermediate layer 14 on the first base material 11, the first adhesive layer 13 on the first intermediate layer 14, and the first adhesive layer 13 Are provided with a thermosetting resin layer (thermosetting resin film) 12.
  • the first support sheet 102 is a laminate in which the first base material 11, the first intermediate layer 14, and the first pressure-sensitive adhesive layer 13 are laminated in this order, and on the one surface 102a of the first support sheet 102, that is, A thermosetting resin layer 12 is provided on one surface 13 a of the first pressure-sensitive adhesive layer 13.
  • the first protective film forming sheet 2 further includes a first intermediate layer 14 between the first base material 11 and the first pressure-sensitive adhesive layer 13. It is equipped with.
  • the transfer of the thermosetting component (B0) from the thermosetting resin layer 12 to the adjacent layer, ie, the 1st adhesive layer 13, is fully suppressed.
  • FIG. 3 is a cross-sectional view schematically showing still another embodiment of the first protective film-forming sheet of the present invention.
  • a first support sheet made of only the first base material is used. That is, the first protective film forming sheet 3 includes a thermosetting resin layer (thermosetting resin film) 12 on the first base material 11 and is configured.
  • the first support sheet 103 includes only the first base material 11, and the thermosetting resin layer 12 is formed on one surface 103 a of the first support sheet 103, that is, on one surface 11 a of the first base material 11. Provided in direct contact.
  • the first protective film forming sheet 3 is obtained by removing the first pressure-sensitive adhesive layer 13 from the first protective film forming sheet 1 shown in FIG.
  • thermosetting component (B0) from the thermosetting resin layer 12 to the adjacent layer, ie, the 1st base material 11, is fully suppressed.
  • the said 1st base material is a sheet form or a film form
  • various resin is mentioned, for example.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyolefins such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as a monomer)
  • a copolymer obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (a resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Naphtha Polyesters such as polyesters, polybutylene terephthalates, polyethylene isophthalates, polyethylene-2,6-naphthalene dicarboxylates, wholly aromatic polyesters in which all the structural units have an aromatic cyclic group; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polyamide; Polycarbonate; Fluororesin
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept including both “acrylate” and “methacrylate”
  • (meth) acryloyl group Is a concept including both an “acryloyl group” and a “methacryloyl group”.
  • the resin constituting the first base material may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the first substrate may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers Is not particularly limited.
  • the thickness of the first base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the “thickness of the first base material” means the thickness of the entire first base material.
  • the thickness of the first base material composed of a plurality of layers means all of the first base material. Means the total thickness of the layers.
  • the first substrate is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct the first base material having such a high thickness precision include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymer. Examples include coalescence.
  • the first base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent materials such as the resin. You may do it.
  • the first substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the 1st adhesive layer or curable resin layer mentioned later has energy-beam sclerosis
  • the first substrate can be manufactured by a known method.
  • the 1st base material containing resin can be manufactured by shape
  • the said 1st adhesive layer is a sheet form or a film form, and contains an adhesive.
  • the pressure-sensitive adhesive include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber resin (a resin having a rubber structure). ), Silicone resins (adhesives composed of resins having a siloxane bond), epoxy resins (adhesives composed of resins having an epoxy group), polyvinyl ether, polycarbonate, and other adhesive resins. Based resins are preferred.
  • the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin.
  • the resin itself has an adhesive property
  • resins that exhibit tackiness when used in combination with other components such as additives, and resins that exhibit adhesiveness due to the presence of a trigger such as heat or water.
  • the first pressure-sensitive adhesive layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, the plurality of layers may be the same or different from each other. The combination is not particularly limited.
  • the thickness of the first pressure-sensitive adhesive layer is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the “thickness of the first pressure-sensitive adhesive layer” means the thickness of the entire first pressure-sensitive adhesive layer.
  • the thickness of the first pressure-sensitive adhesive layer composed of a plurality of layers means the first pressure-sensitive adhesive layer. Means the total thickness of all the layers that make up.
  • the first pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive.
  • the first pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, a black light, an LED lamp or the like as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • energy ray curable means the property of being cured by irradiation with energy rays
  • non-energy ray curable means the property of not being cured even when irradiated with energy rays.
  • a 1st adhesive layer can be formed using the 1st adhesive composition containing an adhesive.
  • a 1st adhesive layer can be formed in the target site
  • a more specific method for forming the first pressure-sensitive adhesive layer will be described later in detail, along with methods for forming other layers.
  • the content ratio of components that do not vaporize at room temperature is usually the same as the content ratio of the components of the first pressure-sensitive adhesive layer.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the first pressure-sensitive adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, Examples include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the first pressure-sensitive adhesive composition are not particularly limited, but when the first pressure-sensitive adhesive composition contains a solvent described later, it is preferable to dry by heating.
  • the first pressure-sensitive adhesive composition containing the solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the first pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive is, for example, non-energy First pressure-sensitive adhesive composition containing a linear curable adhesive resin (I-1a) (hereinafter sometimes abbreviated as “adhesive resin (I-1a)”) and an energy ray-curable compound (I-1): energy ray curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the non-energy ray curable adhesive resin (I-1a) (hereinafter referred to as “adhesiveness”)
  • a first pressure-sensitive adhesive composition (I-2) which may be abbreviated as “resin (I-2a)”; the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low molecular weight compound; Examples thereof include the first pressure-sensitive adhesive composition (I-3).
  • the first pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and an energy ray-curable compound.
  • the adhesive resin (I-1a) is preferably an acrylic resin.
  • the acrylic resin the acrylic polymer which has a structural unit derived from the (meth) acrylic-acid alkylester at least is mentioned, for example.
  • the acrylic resin may have only one type of structural unit, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the (meth) acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred. More specifically, as (meth) acrylic acid alkyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid isooctyl, (meth) acrylic acid n-
  • the acrylic polymer preferably has a structural unit derived from a (meth) acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms.
  • the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms.
  • the (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group is preferably an acrylic acid alkyl ester.
  • the acrylic polymer preferably has a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from an alkyl (meth) acrylate.
  • the functional group-containing monomer for example, the functional group reacts with a crosslinking agent to be described later to become a starting point of crosslinking, or the functional group reacts with an unsaturated group in the unsaturated group-containing compound, The thing which enables introduction
  • Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group. That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the functional group-containing monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, and more preferably 3 to 32% by mass with respect to the total amount of the structural unit. It is particularly preferably 5 to 30% by mass.
  • the acrylic polymer may further have a structural unit derived from another monomer.
  • the other monomer is not particularly limited as long as it is copolymerizable with (meth) acrylic acid alkyl ester or the like.
  • Examples of the other monomer include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the other monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the acrylic polymer can be used as the above-mentioned non-energy ray curable adhesive resin (I-1a).
  • the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group). It can be used as the resin (I-2a).
  • energy beam polymerizability means a property of polymerizing by irradiation with energy rays.
  • the pressure-sensitive adhesive resin (I-1a) contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the pressure-sensitive adhesive resin (I-1a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass, It is particularly preferable that the content be ⁇ 90 mass%.
  • Examples of the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
  • examples of the monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4.
  • Polybutyl (meth) acrylates such as butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( And (meth) acrylate.
  • examples of the oligomer include an oligomer formed by polymerizing the monomers exemplified above.
  • the energy ray-curable compound is preferably a urethane (meth) acrylate or a urethane (meth) acrylate oligomer in that the molecular weight is relatively large and the storage elastic modulus of the first pressure-sensitive adhesive layer is difficult to be lowered.
  • the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the energy ray-curable compound is preferably 1 to 95% by mass, more preferably 5 to 90% by mass. It is especially preferable that it is 85 mass%.
  • the first pressure-sensitive adhesive composition preferably further contains a crosslinking agent.
  • the cross-linking agent reacts with the functional group to cross-link the adhesive resins (I-1a).
  • a crosslinking agent for example, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isocyanate-based cross-linking agents such as adducts of these diisocyanates (cross-linking agents having an isocyanate group); epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Cross-linking agent having a glycidyl group); Aziridine-based cross-linking agent (cross-linking agent having an aziridinyl group) such as hexa [1- (2-methyl) -aziridinyl] triphosphatriazine; Metal chelate-based cross-linking agent such as aluminum chelate (metal) Cross-linking agent having a chelate structure); isocyanurate-based cross-linking agent (cross-linking agent (
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is 0.01 to 50 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-1a).
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the first pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal; 2-hydroxy-2 Acetophenone compounds such as methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, etc.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal
  • 2-hydroxy-2 Acetophenone compounds such as methyl-1-phenyl-
  • Acyl phosphine oxide compounds such as benzyl phenyl sulfide and tetramethyl thiuram monosulfide; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; Azo compounds such as blanking Tirol carbonitrile; titanocene compounds such as titanocene; thioxanthone compounds of thioxanthone; peroxide compound; diketone compounds such as diacetyl, dibenzyl and the like.
  • a quinone compound such as 1-chloroanthraquinone
  • a photosensitizer such as amine
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the energy ray curable compound.
  • the amount is more preferably 0.03 to 10 parts by weight, and particularly preferably 0.05 to 5 parts by weight.
  • the first pressure-sensitive adhesive composition (I-1) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • the other additives include antistatic agents, antioxidants, softeners (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, and tackifiers.
  • known additives such as reaction retarders and crosslinking accelerators (catalysts).
  • the reaction retarding agent means, for example, the purpose of the first pressure-sensitive adhesive composition (I-1) during storage due to the action of the catalyst mixed in the first pressure-sensitive adhesive composition (I-1).
  • reaction retarder examples include those that form a chelate complex by chelation against a catalyst, and more specifically, those having two or more carbonyl groups (—C ( ⁇ O) —) in one molecule. Can be mentioned.
  • the other additive contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the first pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the solvent is preferably an organic solvent.
  • organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane and n-hexane and the like.
  • ketones such as methyl ethyl ketone and
  • the solvent for example, the one used in the production of the adhesive resin (I-1a) is used as it is in the first adhesive composition (I-1) without being removed from the adhesive resin (I-1a).
  • the same or different type of solvent used in the production of the adhesive resin (I-1a) may be added separately during the production of the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the first pressure-sensitive adhesive composition (I-2) is an energy ray-curable pressure-sensitive adhesive in which an unsaturated group is introduced into the side chain of the non-energy ray-curable pressure-sensitive adhesive resin (I-1a). Containing a functional resin (I-2a).
  • the adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray polymerizable unsaturated group.
  • the unsaturated group-containing compound can be bonded to the adhesive resin (I-1a) by reacting with the functional group in the adhesive resin (I-1a) in addition to the energy ray polymerizable unsaturated group.
  • a compound having a group examples include (meth) acryloyl group, vinyl group (ethenyl group), allyl group (2-propenyl group) and the like, and (meth) acryloyl group is preferable.
  • Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include, for example, an isocyanate group and a glycidyl group that can be bonded to a hydroxyl group or an amino group, and a hydroxyl group and an amino group that can be bonded to a carboxy group or an epoxy group. Etc.
  • Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate, and the like.
  • the pressure-sensitive adhesive resin (I-2a) contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the pressure-sensitive adhesive resin (I-2a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass. It is particularly preferable that the content be ⁇ 90 mass%.
  • the first adhesive composition may further contain a crosslinking agent.
  • Examples of the crosslinking agent in the first pressure-sensitive adhesive composition (I-2) include the same cross-linking agents as those in the first pressure-sensitive adhesive composition (I-1).
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is 0.01 to 50 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-2a).
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the first pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-2) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-2) include the same photopolymerization initiator as in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-2a). Is preferable, 0.03 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition (I-2) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • Examples of the other additive in the first pressure-sensitive adhesive composition (I-2) include the same additives as those in the first pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the first pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as that of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-2) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the first pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low molecular weight compound.
  • the content of the pressure-sensitive adhesive resin (I-2a) is preferably 5 to 99% by mass, more preferably 10 to 95% by mass, It is particularly preferable that the content be ⁇ 90 mass%.
  • Examples of the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) include monomers and oligomers that have an energy ray-polymerizable unsaturated group and can be cured by irradiation with energy rays. And the same energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1).
  • the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the energy ray-curable low molecular weight compound is 0.01 to 300 with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-2a).
  • the amount is preferably part by mass, more preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with a relatively low energy beam such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators as those in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is based on 100 parts by mass of the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable low molecular weight compound.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may contain other additives that do not fall under any of the above-mentioned components within a range that does not impair the effects of the present invention.
  • the other additives include the same additives as the other additives in the first pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as that of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-3) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1). Only 1 type may be sufficient as the solvent which 1st adhesive composition (I-3) contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) has been mainly described.
  • first pressure-sensitive adhesive compositions (I-1) to (I-) It is also possible to use the same in the first pressure-sensitive adhesive composition other than 3).
  • Examples of the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy ray-curable pressure-sensitive adhesive compositions other than energy-ray-curable pressure-sensitive adhesive compositions. Also mentioned.
  • Non-energy ray curable adhesive compositions include, for example, acrylic resins (resins having (meth) acryloyl groups), urethane resins (resins having urethane bonds), rubber resins (resins having a rubber structure).
  • Silicone resins (resins having a siloxane bond), epoxy resins (resins having an epoxy group), polyvinyl ethers, or resins containing an adhesive resin such as polycarbonate, and those containing acrylic resins are preferred. .
  • the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contains one or more crosslinking agents, and the content thereof is as described above. This can be the same as in the case of the first pressure-sensitive adhesive composition (I-1) and the like.
  • the first pressure-sensitive adhesive composition such as the first pressure-sensitive adhesive compositions (I-1) to (I-3) includes the first pressure-sensitive adhesive, such as the pressure-sensitive adhesive and components other than the pressure-sensitive adhesive as necessary. It is obtained by blending each component for constituting the composition. The order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously. When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • middle layer is a sheet form or a film form
  • the constituent material should just be suitably selected according to the objective, and is not specifically limited.
  • the protective film covering the semiconductor surface is intended to suppress the deformation of the protective film by reflecting the shape of the bump existing on the semiconductor surface
  • the preferred constituent material of the first intermediate layer examples thereof include urethane (meth) acrylate and the like from the viewpoint that the adhesiveness of the first intermediate layer is further improved.
  • the first intermediate layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers. Is not particularly limited.
  • the thickness of the first intermediate layer can be adjusted as appropriate according to the height of the bump on the surface of the semiconductor to be protected.
  • the thickness of the first intermediate layer is 50 to 600 ⁇ m because the influence of the relatively high bump can be easily absorbed. It is preferably 70 to 500 ⁇ m, more preferably 80 to 400 ⁇ m.
  • the “thickness of the first intermediate layer” means the thickness of the entire first intermediate layer.
  • the thickness of the first intermediate layer composed of a plurality of layers means all of the first intermediate layer. Means the total thickness of the layers.
  • middle layer can be formed using the composition for 1st intermediate
  • the first intermediate layer-forming composition is applied to the surface of the first intermediate layer and dried as necessary, or cured by irradiation with energy rays, so that the first intermediate layer is formed on the target site. Layers can be formed. A more specific method for forming the first intermediate layer will be described in detail later along with methods for forming other layers.
  • the ratio of the content of components that do not vaporize at room temperature in the first intermediate layer forming composition is usually the same as the content ratio of the components of the first intermediate layer.
  • “normal temperature” is as described above.
  • the first intermediate layer forming composition may be applied by a known method, for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife.
  • a method using various coaters such as a coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions for the first intermediate layer forming composition are not particularly limited.
  • the composition for forming a first intermediate layer containing a solvent described later is preferably heat-dried, and in this case, for example, it is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the composition for forming the first intermediate layer has energy ray curability, it is preferably cured by irradiation with energy rays after drying.
  • Examples of the first intermediate layer forming composition include a first intermediate layer forming composition (II-1) containing urethane (meth) acrylate.
  • the first intermediate layer forming composition (II-1) contains urethane (meth) acrylate.
  • Urethane (meth) acrylate is a compound having at least a (meth) acryloyl group and a urethane bond in one molecule, and has energy ray polymerizability.
  • the urethane (meth) acrylate may be monofunctional (having only one (meth) acryloyl group in one molecule) or bifunctional or more ((meth) acryloyl group in one molecule). Having two or more), that is, a polyfunctional one. However, in the present invention, it is preferable to use at least a monofunctional urethane (meth) acrylate.
  • Examples of the urethane (meth) acrylate contained in the first intermediate layer forming composition include, for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound, a hydroxyl group and What was obtained by making the (meth) acrylic-type compound which has a (meth) acryloyl group react is mentioned.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • the urethane (meth) acrylate contained in the first intermediate layer forming composition (II-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the polyol compound is not particularly limited as long as it is a compound having two or more hydroxyl groups in one molecule.
  • the said polyol compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • polyol compound examples include alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol.
  • the polyol compound may be any of a bifunctional diol, a trifunctional triol, a tetrafunctional or higher polyol, etc., but a diol is preferable in terms of easy availability and excellent versatility and reactivity. .
  • the polyether type polyol is not particularly limited, but is preferably a polyether type diol, and examples of the polyether type diol include compounds represented by the following general formula (1). It is done.
  • n is an integer of 2 or more; R is a divalent hydrocarbon group, and a plurality of R may be the same or different from each other.
  • n represents the number of repeating units of the group represented by the general formula “—RO—”, and is not particularly limited as long as it is an integer of 2 or more. Among these, n is preferably 10 to 250, more preferably 25 to 205, and particularly preferably 40 to 185.
  • R is not particularly limited as long as it is a divalent hydrocarbon group, but is preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, an ethylene group, a propylene group, or a tetra group.
  • a methylene group is more preferable, and a propylene group or a tetramethylene group is particularly preferable.
  • the compound represented by the formula (1) is preferably polyethylene glycol, polypropylene glycol or polytetramethylene glycol, and more preferably polypropylene glycol or polytetramethylene glycol.
  • the terminal isocyanate urethane prepolymer having an ether bond represented by the following general formula (1a) is obtained.
  • the urethane (meth) acrylate has the ether bond part, that is, the structural unit derived from the polyether type diol. .
  • polyester type polyol is not specifically limited, For example, what was obtained by performing esterification reaction using a polybasic acid or its derivative (s), etc. are mentioned.
  • derivative means a compound in which one or more groups of the original compound are substituted with other groups (substituents) unless otherwise specified.
  • group includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • polybasic acid and its derivative As said polybasic acid and its derivative (s), the polybasic acid normally used as a manufacturing raw material of polyester and its derivative (s) are mentioned.
  • the polybasic acid include saturated aliphatic polybasic acids, unsaturated aliphatic polybasic acids, aromatic polybasic acids, and the like, and dimer acids corresponding to any of these may be used.
  • saturated aliphatic polybasic acid examples include saturated aliphatic dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • unsaturated aliphatic polybasic acid examples include unsaturated aliphatic dibasic acids such as maleic acid and fumaric acid.
  • aromatic polybasic acid examples include aromatic dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid; aromatic tribasic acids such as trimellitic acid; pyromellitic acid and the like And aromatic tetrabasic acids.
  • Examples of the derivative of the polybasic acid include the above-mentioned saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid and acid anhydride of aromatic polybasic acid, and hydrogenated dimer acid.
  • any of the polybasic acids or derivatives thereof may be used alone or in combination of two or more. When two or more are used in combination, the combination and ratio thereof can be arbitrarily selected. .
  • the polybasic acid is preferably an aromatic polybasic acid in that it is suitable for forming a coating film having an appropriate hardness.
  • a known catalyst may be used as necessary.
  • the catalyst include tin compounds such as dibutyltin oxide and stannous octylate; alkoxy titanium such as tetrabutyl titanate and tetrapropyl titanate.
  • the polycarbonate type polyol is not particularly limited, and examples thereof include those obtained by reacting the same glycol as the compound represented by the formula (1) with an alkylene carbonate.
  • each of glycol and alkylene carbonate may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected. .
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1000 to 10,000, more preferably 2000 to 9000, and particularly preferably 3000 to 7000.
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from the following formula.
  • the polyol compound is preferably a polyether type polyol, and more preferably a polyether type diol.
  • the polyvalent isocyanate compound to be reacted with the polyol compound is not particularly limited as long as it has two or more isocyanate groups.
  • a polyvalent isocyanate compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • polyvalent isocyanate compound examples include chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2.
  • chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate
  • isophorone diisocyanate norbornane diisocyanate
  • dicyclohexylmethane-4,4′-diisocyanate dicyclohexylmethane-2.
  • Cycloaliphatic diisocyanates such as 4,4′-diisocyanate, ⁇ , ⁇ ′-diisocyanate dimethylcyclohexane, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, And aromatic diisocyanates such as 5-diisocyanate.
  • the polyvalent isocyanate compound is preferably isophorone diisocyanate, hexamethylene diisocyanate or xylylene diisocyanate from the viewpoint of handleability.
  • the (meth) acrylic compound to be reacted with the terminal isocyanate urethane prepolymer is not particularly limited as long as it is a compound having at least a hydroxyl group and a (meth) acryloyl group in one molecule.
  • the said (meth) acrylic-type compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • Examples of the (meth) acrylic compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meth) acrylate, 2- (meth) acrylic acid 2- Hydroxyl-3-phenyloxypropyl, hydroxyl group-containing (meth) acrylate such as pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate; N-methylol (meth) acrylamid Hydroxyl group-containing (meth) acrylamide and the like; vinyl alcohol, vinyl phenol or bisphenol A diglycidyl ether (
  • the (meth) acrylic compound is preferably a hydroxyl group-containing (meth) acrylic ester, more preferably a hydroxyl group-containing (meth) acrylic acid alkyl ester, and (meth) acrylic acid 2- Particularly preferred is hydroxyethyl.
  • the reaction between the terminal isocyanate urethane prepolymer and the (meth) acrylic compound may be performed using a solvent, a catalyst, or the like, if necessary.
  • Conditions for reacting the terminal isocyanate urethane prepolymer with the (meth) acrylic compound may be appropriately adjusted.
  • the reaction temperature is preferably 60 to 100 ° C.
  • the reaction time is 1 to It is preferably 4 hours.
  • the urethane (meth) acrylate may be an oligomer, a polymer, or a mixture of an oligomer and a polymer, but is preferably an oligomer.
  • the urethane (meth) acrylate has a weight average molecular weight of preferably from 1,000 to 100,000, more preferably from 3000 to 80,000, and particularly preferably from 5,000 to 65,000. Due to the intermolecular force between the structures derived from urethane (meth) acrylate in the polymer of urethane (meth) acrylate and a polymerizable monomer described later, the weight average molecular weight is 1000 or more. Optimization of layer hardness is facilitated.
  • the weight average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the first intermediate layer forming composition (II-1) may contain a polymerizable monomer in addition to the urethane (meth) acrylate, from the viewpoint of further improving the film forming property.
  • the polymerizable monomer is a compound having energy ray polymerizability and excluding oligomers and polymers having a weight average molecular weight of 1000 or more and having at least one (meth) acryloyl group in one molecule. It is preferable.
  • Examples of the polymerizable monomer include (meth) acrylic acid alkyl esters in which the alkyl group constituting the alkyl ester is a chain having 1 to 30 carbon atoms; a hydroxyl group, an amide group, an amino group, an epoxy group, or the like (Meth) acrylic compound having a functional group of (meth) acrylic ester having an aliphatic cyclic group; (meth) acrylic ester having an aromatic hydrocarbon group; having a heterocyclic group ( (Meth) acrylic acid ester; compound having vinyl group; compound having allyl group.
  • Examples of the (meth) acrylic acid alkyl ester having a chain alkyl group having 1 to 30 carbon atoms include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, ( Isopropyl methacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, (meth) Hexyl acrylate, heptyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, (meth) acrylic acid Isononyl, decy
  • Examples of the functional group-containing (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid.
  • Hydroxyl group-containing (meth) acrylic acid esters such as 2-hydroxybutyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (Meth) acrylamides such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and the like
  • a derivative having an amino group ( A) Acrylic acid ester hereinafter sometimes referred to as “amino group-containing (meth) acrylic acid
  • amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with an amino group (—NH 2 ).
  • monosubstituted amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with a monosubstituted amino group
  • disubstituted amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with a disubstituted amino group.
  • the group other than the hydrogen atom in which the hydrogen atom is substituted in the “monosubstituted amino group” and the “disubstituted amino group” include an alkyl group.
  • Examples of the (meth) acrylic acid ester having an aliphatic cyclic group include, for example, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and (meth) acrylic acid. Examples include dicyclopentenyloxyethyl, cyclohexyl (meth) acrylate, adamantyl (meth) acrylate, and the like.
  • Examples of the (meth) acrylic acid ester having an aromatic hydrocarbon group include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like. Can be mentioned.
  • the heterocyclic group in the (meth) acrylic acid ester having a heterocyclic group may be either an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • Examples of the (meth) acrylic acid ester having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and (meth) acryloylmorpholine.
  • Examples of the compound having a vinyl group include styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinyl pyrrolidone, N-vinyl caprolactam and the like.
  • Examples of the compound having an allyl group include allyl glycidyl ether.
  • the polymerizable monomer preferably has a relatively bulky group from the viewpoint of good compatibility with the urethane (meth) acrylate.
  • examples of such a polymerizable monomer include (meth) acrylic acid ester having an aliphatic cyclic group, (meth) acrylic acid ester having an aromatic hydrocarbon group, and (meth) acrylic acid having a heterocyclic group. (Meth) acrylic acid ester having an aliphatic cyclic group is more preferable.
  • the polymerizable monomer contained in the first intermediate layer forming composition (II-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the content of the polymerizable monomer is preferably 10 to 99% by mass, more preferably 15 to 95% by mass, and 20 to 90% by mass. % Is more preferable, and 25 to 80% by mass is particularly preferable.
  • the first intermediate layer forming composition (II-1) may contain a photopolymerization initiator in addition to the urethane (meth) acrylate and the polymerizable monomer.
  • the first intermediate layer-forming composition (II-1) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal; 2-hydroxy-2 Acetophenone compounds such as methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, etc.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal
  • 2-hydroxy-2 Acetophenone compounds such as methyl-1-phenyl-
  • Acyl phosphine oxide compounds such as benzyl phenyl sulfide and tetramethyl thiuram monosulfide; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; Azo compounds such as blanking Tirol carbonitrile; titanocene compounds such as titanocene; thioxanthone compounds of thioxanthone; peroxide compound; diketone compounds such as diacetyl, dibenzyl and the like.
  • a quinone compound such as 1-chloroanthraquinone
  • a photosensitizer such as amine
  • the photopolymerization initiator contained in the first intermediate layer forming composition (II-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the photopolymerization initiator is 0.01 to 20 with respect to 100 parts by mass of the total content of the urethane (meth) acrylate and the polymerizable monomer.
  • the amount is preferably part by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first intermediate layer forming composition (II-1) may contain a resin component other than the urethane (meth) acrylate as long as the effects of the present invention are not impaired.
  • the kind of the resin component and the content in the first intermediate layer forming composition (II-1) may be appropriately selected according to the purpose, and are not particularly limited.
  • the first intermediate layer forming composition (II-1) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • the other additives include known crosslinking agents, antistatic agents, antioxidants, chain transfer agents, softeners (plasticizers), fillers, rust inhibitors, colorants (pigments, dyes), and the like.
  • An additive is mentioned.
  • the chain transfer agent includes a thiol compound having at least one thiol group (mercapto group) in one molecule.
  • thiol compound examples include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2,3-propanetrithiol, Tetraethylene glycol-bis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakisthioglucorate, dipentaerythritol hexa Kiss (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] -isocyanurate, 1,4-bis (3-mercaptobutyryloxy) butane, pen Erythritol tetrakis (3-mercapt
  • the other additive contained in the first intermediate layer forming composition (II-1) may be only one kind, two or more kinds, and in the case of two or more kinds, the combination and ratio thereof are arbitrary. You can choose.
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first intermediate layer forming composition (II-1) may contain a solvent. Since the first intermediate layer forming composition (II-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the first intermediate layer forming composition such as the first intermediate layer forming composition (II-1) can be obtained by blending the components for constituting the first intermediate layer forming composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • thermosetting resin layer (thermosetting resin film) is a layer for protecting bumps on the semiconductor surface, and forms a first protective film by curing.
  • the thermosetting resin layer contains a polymer component (A) and a thermosetting component (B0), and the thermosetting component (B0) has a weight average molecular weight of 450 or more and a dispersity of 10. It is as follows.
  • the polymer component (A) is a component that can be regarded as formed by polymerization reaction of the polymerizable compound.
  • the thermosetting component (B0) is a component that can undergo a curing (polymerization) reaction using heat as a reaction trigger.
  • the polymerization reaction includes a polycondensation reaction.
  • thermosetting resin layer can be formed using the composition for thermosetting resin layer formation containing the constituent material.
  • a thermosetting resin layer can be formed at a target site by applying a thermosetting resin layer forming composition to the surface on which the thermosetting resin layer is to be formed and drying it as necessary.
  • the ratio of the contents of components that do not vaporize at room temperature is usually the same as the ratio of the contents of the components of the thermosetting resin layer.
  • “normal temperature” is as described above.
  • thermosetting resin layer forming composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, Examples include a method using various coaters such as a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • thermosetting resin layer forming composition The drying conditions of the thermosetting resin layer forming composition are not particularly limited, but when the thermosetting resin layer forming composition contains a solvent described later, it is preferable to heat dry.
  • the composition for forming a thermosetting resin layer containing a solvent is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • thermosetting resin layer forming composition (III-1) a thermosetting resin layer forming composition (III-1) containing a polymer component (A) and a thermosetting component (B0) (in this specification) May be simply abbreviated as “resin layer forming composition (III-1)”).
  • the polymer component (A) is a polymer compound for imparting film-forming properties, flexibility and the like to the thermosetting resin layer.
  • the polymer component (A) contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Examples of the polymer component (A) include an acrylic resin (a resin having a (meth) acryloyl group), a polyester, a urethane resin (a resin having a urethane bond), an acrylic urethane resin, and a silicone resin (having a siloxane bond). Resin), rubber resin (resin having a rubber structure), phenoxy resin, thermosetting polyimide and the like, and acrylic resin is preferable.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000.
  • Mw weight average molecular weight
  • the shape stability of the thermosetting resin layer time stability during storage
  • the thermosetting resin layer easily follows the uneven surface of the adherend, and between the adherend and the thermosetting resin layer. Generation of voids and the like is further suppressed.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70 ° C., and more preferably ⁇ 30 to 50 ° C.
  • Tg of the acrylic resin is equal to or more than the lower limit value, the adhesive force between the first protective film and the first support sheet is suppressed, and the peelability of the first support sheet is improved.
  • adhesive force with the to-be-adhered body of a thermosetting resin layer and a 1st protective film improves because Tg of acrylic resin is below the said upper limit.
  • the acrylic resin is selected from, for example, a polymer of one or more (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, and the like. Examples include copolymers of two or more monomers.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • the acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
  • Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin may have a functional group that can be bonded to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound not via the cross-linking agent (F). .
  • F cross-linking agent
  • thermoplastic resin other than an acrylic resin
  • thermoplastic resin is used alone without using an acrylic resin.
  • it may be used in combination with an acrylic resin.
  • thermoplastic resin By using the thermoplastic resin, the peelability of the first protective film from the first support sheet is improved, and the thermosetting resin layer can easily follow the uneven surface of the adherend. Occurrence of voids or the like may be further suppressed between the curable resin layer.
  • the weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
  • thermoplastic resin contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one kind, two kinds or more, and when two or more kinds are combined, The ratio can be arbitrarily selected.
  • the ratio of the content of the polymer component (A) to the total content of all components other than the solvent (that is, the polymer component (A) of the thermosetting resin layer) Content) is preferably 5 to 85% by mass, more preferably 5 to 80% by mass, for example 5 to 70% by mass, regardless of the type of the polymer component (A). It may be any of ⁇ 60 mass%, 5 ⁇ 50 mass%, 5 ⁇ 40 mass%, and 5 ⁇ 30 mass%.
  • the polymer component (A) may also correspond to the thermosetting component (B0).
  • the resin layer forming composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B0)
  • the composition (III-1) is considered to contain a polymer component (A) and a thermosetting component (B0).
  • thermosetting component (B0) is a component for curing the thermosetting resin layer to form a hard first protective film.
  • the thermosetting component (B0) contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, two or more types, and when two or more types, These combinations and ratios can be arbitrarily selected.
  • thermosetting component (B0) is not particularly limited as long as the weight average molecular weight is 450 or more and the degree of dispersion is 10 or less.
  • a thermosetting component (B0) is, as described above, in the first protective film forming sheet of the present invention, immediately after its production, the thermosetting resin film (thermosetting resin layer) is used at the time of use. The transition from the thermosetting resin film to the layer adjacent to the thermosetting resin film (first support sheet) is sufficiently suppressed before curing.
  • the weight average molecular weight of the thermosetting component (B0) is preferably 20000 or less, more preferably 15000 or less, and particularly preferably 10,000 or less, for example, 8000 or less, 6000 or less, 4000 or less, And 2000 or less.
  • the weight average molecular weight of the thermosetting component (B0) is less than or equal to the above upper limit, the first protective film having a high degree of curing and more excellent characteristics can be formed, and the bump embedding property of the thermosetting resin film Will be improved.
  • the degree of dispersion of the thermosetting component (B0) is 10 or less, preferably 7 or less, and more preferably 5 or less. When the degree of dispersion of the thermosetting component (B0) is not more than the above upper limit value, a first protective film having a high degree of curing can be formed, and the bump embedding property of the thermosetting resin film is further improved.
  • the lower limit of the degree of dispersion of the thermosetting component (B0) is not particularly limited, but is preferably 1.
  • thermosetting component (B0) examples include epoxy-based thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, silicone resins, and the like, and epoxy-based thermosetting resins are preferable.
  • the epoxy thermosetting resin includes an epoxy resin (B01) and a thermosetting agent (B02). That is, both of the epoxy resin (B01) and the thermosetting agent (B02) have a weight average molecular weight of 450 or more and a dispersity of 10 or less, and preferable numerical ranges of the weight average molecular weight and dispersity are as follows. As described above.
  • the epoxy-type thermosetting resin contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, or two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Epoxy resin (B01) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B01).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the 1st sheet
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned, An acryloyl group is preferable.
  • the epoxy equivalent of the epoxy resin (B01) is preferably 100 to 1000 g / eq, more preferably 200 to 900 g / eq, for example, 300 to 800 g / eq.
  • the epoxy resin (B01) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
  • thermosetting agent (B02) functions as a curing agent for the epoxy resin (B01).
  • a thermosetting agent (B02) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B02) examples include polyfunctional phenolic resins, biphenols, novolac-type phenolic resins, dicyclopentadiene-based phenolic resins, and aralkylphenolic resins.
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as “DICY”).
  • the thermosetting agent (B02) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B02) having an unsaturated hydrocarbon group for example, a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B02) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
  • thermosetting agent (B02) When a phenolic curing agent is used as the thermosetting agent (B02), the thermosetting agent (B02) has a softening point or a glass transition temperature from the viewpoint of improving the peelability of the first protective film from the first support sheet. A high one is preferred.
  • thermosetting agent (B02) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting agent (B02) is 0.1 to 500 with respect to 100 parts by mass of the epoxy resin (B01). It is preferably part by mass, more preferably 1 to 200 parts by mass, and for example, it may be any of 10 to 150 parts by mass and 20 to 100 parts by mass.
  • the content of the thermosetting agent (B02) is equal to or more than the lower limit value, the thermosetting resin layer is more easily cured.
  • the moisture absorption rate of a thermosetting resin layer is reduced because the said content of a thermosetting agent (B02) is below the said upper limit, The package obtained using the sheet
  • the content of the thermosetting component (B0) (for example, the total content of the epoxy resin (B01) and the thermosetting agent (B02)) is
  • the content of the polymer component (A) is preferably 50 to 1000 parts by weight, more preferably 100 to 900 parts by weight, and particularly preferably 150 to 800 parts by weight with respect to 100 parts by weight of the polymer component (A). preferable.
  • the content of the thermosetting component (B0) is in such a range, the adhesive force between the first protective film and the first support sheet is suppressed, and the peelability of the first support sheet is improved.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the resin layer forming composition (III-1).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are other than hydrogen atoms)
  • the curing accelerator (C) contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • the content of the curing accelerator (C) in the resin layer forming composition (III-1) and the thermosetting resin layer is the content of the thermosetting component (B0).
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • the effect by using a hardening accelerator (C) is acquired more notably because the said content of a hardening accelerator (C) is more than the said lower limit.
  • the highly polar curing accelerator (C) is deposited in the thermosetting resin layer under high temperature and high humidity conditions. The effect of suppressing segregation by moving toward the adhesion interface with the body is enhanced, and the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a filler (D).
  • the thermosetting resin layer contains the filler (D)
  • the first protective film obtained by curing the thermosetting resin layer can easily adjust the thermal expansion coefficient.
  • seat for 1st protective film formation improves more by optimizing this thermal expansion coefficient with respect to the formation object of a 1st protective film.
  • the thermosetting resin layer contains the filler (D) the moisture absorption rate of the first protective film can be reduced or the heat dissipation can be improved.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the resin layer forming composition (III-1) and the filler (D) contained in the thermosetting resin layer may be only one type, two or more types, and combinations of two or more types.
  • the ratio can be arbitrarily selected.
  • the ratio of the content of the filler (D) to the total content of all components other than the solvent in the resin layer forming composition (III-1) that is, the thermosetting resin
  • the content of the filler (D) in the layer is preferably 5 to 80% by mass, more preferably 7 to 60% by mass. Adjustment of said thermal expansion coefficient becomes easier because content of a filler (D) is such a range.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound the adhesion and adhesion of the thermosetting resin layer to the adherend can be improved.
  • the coupling agent (E) the first protective film obtained by curing the thermosetting resin layer has improved water resistance without impairing heat resistance.
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), the thermosetting component (B0), etc., and is preferably a silane coupling agent. More preferred. Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (pheny
  • the resin layer forming composition (III-1) and the coupling agent (E) contained in the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • the content of the coupling agent (E) in the resin layer forming composition (III-1) and the thermosetting resin layer is such that the polymer component (A) and the thermosetting
  • the content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the total content of the component (B0). It is particularly preferred.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin and the adhesion of the thermosetting resin layer to the adherend are improved.
  • the effect by using a coupling agent (E) etc. is acquired more notably.
  • production of an outgas is suppressed more because the said content of a coupling agent (E) is below the said upper limit.
  • Cross-linking agent (F) As the polymer component (A), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a crosslinking agent (F).
  • the cross-linking agent (F) is a component for cross-linking the functional group in the polymer component (A) with another compound to cross-link, and by this cross-linking, initial adhesion of the thermosetting resin layer Force and cohesion can be adjusted.
  • crosslinking agent (F) examples include organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate crosslinking agents (crosslinking agents having a metal chelate structure), aziridine crosslinking agents (crosslinking agents having an aziridinyl group), and the like. Is mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound.
  • Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” is as described above.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • crosslinking agent (F) When an organic polyvalent isocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a cross-linked structure is formed on the thermosetting resin layer by a reaction between the crosslinking agent (F) and the polymer component (A). Easy to introduce.
  • composition for forming a resin layer (III-1) and the crosslinking agent (F) contained in the thermosetting resin layer may be one kind, two kinds or more, and combinations of two or more kinds.
  • the ratio can be arbitrarily selected.
  • the content of the crosslinking agent (F) is 0. 0 parts by mass relative to 100 parts by mass of the polymer component (A).
  • the amount is preferably 01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably because the said content of a crosslinking agent (F) is more than the said lower limit.
  • the excessive use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • the resin layer forming composition (III-1) may contain an energy ray curable resin (G). Since the thermosetting resin layer contains the energy ray curable resin (G), the characteristics can be changed by irradiation with energy rays.
  • the energy beam curable resin (G) is obtained by polymerizing (curing) an energy beam curable compound.
  • the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
  • the acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; polyethylene Polyalkylene glycol (meth) acrylate such as glycol di (meth) acrylate; oligoester (meth) acrylate; urethane (meth) acrylate oligomer; Modified (meth) acrylate; the polyalky
  • the weight average molecular weight of the energy ray curable compound is preferably 100 to 30000, and more preferably 300 to 10000.
  • the energy ray-curable compound used for the polymerization may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the energy ray curable resin (G) contained in the resin layer forming composition (III-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the energy ray curable resin (G) in the resin layer forming composition (III-1) is preferably 1 to 95% by mass. It is more preferably 90% by mass, and particularly preferably 10 to 85% by mass.
  • Photopolymerization initiator (H) When the resin layer forming composition (III-1) contains the energy beam curable resin (G), the photopolymerization initiator (H) is used to efficiently advance the polymerization reaction of the energy beam curable resin (G). ) May be contained.
  • photopolymerization initiator (H) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4 -Diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-Methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-chloroanthrac Emissions, and the like
  • the photopolymerization initiator (H) contained in the resin layer forming composition (III-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the photopolymerization initiator (H) is 100 parts by mass of the energy ray curable resin (G). Is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a general-purpose additive (I) as long as the effects of the present invention are not impaired.
  • the general-purpose additive (I) may be a known one, and can be arbitrarily selected according to the purpose.
  • the general-purpose additive (I) is not particularly limited, but preferred examples thereof include a plasticizer, an antistatic agent, an antioxidant, and a colorant (dye Pigments), gettering agents and the like.
  • the resin layer forming composition (III-1) and the general-purpose additive (I) contained in the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • the contents of the resin layer forming composition (III-1) and the general-purpose additive (I) in the thermosetting resin layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • thermosetting component (B9) The resin layer forming composition (III-1) and the thermosetting resin layer are within the range not impairing the effects of the present invention, and other thermosetting components (B9) other than the above-mentioned thermosetting component (B0). May be contained.
  • the other thermosetting component (B9) is not particularly limited as long as it is other than the thermosetting component (B0).
  • the thermosetting component (B0) has been exemplified as the thermosetting component (B0), and the weight average molecular weight and dispersity Or the like in which at least one of the above does not satisfy the above-mentioned conditions.
  • an epoxy-based thermosetting composition containing either or both of an epoxy resin (B91) not corresponding to the epoxy resin (B01) and a thermosetting agent (B92) not corresponding to the thermosetting agent (B02).
  • the resin is handled as another thermosetting component (B9).
  • the resin layer forming composition (III-1) and the other thermosetting component (B9) contained in the thermosetting resin layer may be one type, two or more types, or two or more types. These combinations and ratios can be arbitrarily selected.
  • thermosetting component (B9) with respect to the total content of the thermosetting component (B0) and the other thermosetting components (B9).
  • ) Content is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 15% by mass or less, and may be 0% by mass.
  • the effect by using a thermosetting component (B0) is acquired more notably because the ratio of the said content of another thermosetting component (B9) is below the said upper limit.
  • the resin layer forming composition (III-1) preferably further contains a solvent.
  • the resin layer forming composition (III-1) containing a solvent has good handleability.
  • the solvent is not particularly limited. Preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), and 1-butanol. Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent contained in the resin layer forming composition (III-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the resin layer forming composition (III-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components in the resin layer forming composition (III-1) can be mixed more uniformly.
  • thermosetting resin layer forming composition such as the resin layer forming composition (III-1) can be obtained by blending each component for constituting the composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the first protective film forming sheet can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship.
  • the method for forming each layer is as described above.
  • the first support sheet when the first pressure-sensitive adhesive layer or the first intermediate layer is laminated on the first base material, the above-mentioned first pressure-sensitive adhesive composition or A 1st adhesive layer or a 1st intermediate
  • thermosetting resin layer when a thermosetting resin layer is further laminated on the first pressure-sensitive adhesive layer that has been laminated on the first base material, a composition for forming a thermosetting resin layer on the first pressure-sensitive adhesive layer. It is possible to directly form a thermosetting resin layer by coating an object.
  • the first pressure-sensitive adhesive composition when further laminating the first pressure-sensitive adhesive layer on the first intermediate layer already laminated on the first base material, the first pressure-sensitive adhesive composition is applied on the first intermediate layer.
  • the first pressure-sensitive adhesive layer can be directly formed.
  • the composition is further applied onto the layer formed from the composition to newly form a layer. Can be formed.
  • the layer laminated after these two layers is formed in advance using the composition on another release film, and the side of the formed layer that is in contact with the release film is It is preferable to form a continuous two-layer laminated structure by bonding the opposite exposed surface to the exposed surfaces of the remaining layers already formed.
  • the composition is preferably applied to the release-treated surface of the release film.
  • the release film may be removed as necessary after forming the laminated structure.
  • a first protective film forming sheet (a first support sheet is a first support sheet) is formed by laminating a first pressure-sensitive adhesive layer on a first base material and laminating a thermosetting resin layer on the first pressure-sensitive adhesive layer.
  • the first pressure-sensitive adhesive composition is applied onto the first base material, and dried as necessary.
  • thermosetting resin layer is formed on the release film, and the exposed surface of the thermosetting resin layer is bonded to the exposed surface of the first pressure-sensitive adhesive layer laminated on the first substrate, and thermosetting is performed.
  • a first protective film-forming sheet is obtained by laminating the adhesive resin layer on the first pressure-sensitive adhesive layer.
  • the first substrate In the case of producing a first support sheet in which a first intermediate layer is laminated on a first substrate and a first pressure-sensitive adhesive layer is laminated on the first intermediate layer, the first substrate The first intermediate layer-forming composition is applied on top and dried as necessary, so that the first intermediate layer is laminated on the first substrate, and the first pressure-sensitive adhesive is separately provided on the release film.
  • a first pressure-sensitive adhesive layer is formed on the release film by applying the composition and drying as necessary, and the exposed surface of the first pressure-sensitive adhesive layer is already laminated on the first substrate.
  • the first support sheet is obtained by laminating the first pressure-sensitive adhesive layer on the first intermediate layer by laminating the exposed surface of the first intermediate layer.
  • thermosetting resin layer forming composition is applied onto the release film, and if necessary, dried to form a thermosetting resin layer on the release film.
  • thermosetting resin layer is laminated on the first pressure-sensitive adhesive layer.
  • the first pressure-sensitive adhesive composition or the first intermediate layer forming composition is applied onto the release film, and dried as necessary, whereby the first pressure-sensitive adhesive composition is applied onto the release film.
  • An adhesive layer or a first intermediate layer is formed, and the exposed surface of these layers is bonded to one surface of the first base material, whereby the first pressure-sensitive adhesive layer or the first intermediate layer is formed on the first base material. May be laminated.
  • the release film may be removed at an arbitrary timing after the target laminated structure is formed.
  • seat for 1st protective film formation is normally stored in the state in which the peeling film was bonded together on the surface of the outermost layer (for example, thermosetting resin layer) on the opposite side to the 1st support sheet.
  • a composition for forming a layer constituting the outermost layer such as a composition for forming a thermosetting resin layer, is applied on the release film (preferably the release-treated surface), and if necessary, By drying, a layer constituting the outermost layer is formed on the release film, and each of the remaining layers is placed on the exposed surface of the layer opposite to the side in contact with the release film.
  • the first protective film-forming sheet can also be obtained by laminating by the method and leaving the laminated film without removing the release film.
  • Polymer component Polymer component (A) -1 butyl acrylate (hereinafter abbreviated as “BA”) (55 parts by mass), methyl acrylate (hereinafter abbreviated as “MA”) (10 parts by mass)
  • BA butyl acrylate
  • MA methyl acrylate
  • GMA glycidyl methacrylate
  • HOA 2-hydroxyethyl acrylate
  • Polymer component (A) -2 Polyester (Toyobo "Byron 220", thermoplastic resin) Epoxy resin Epoxy resin (B01) -1: polyfunctional aromatic epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd., weight average molecular weight 1000, dispersity 1.5) Epoxy resin (B01) -2: aromatic epoxy resin (“EXA-4850-150” manufactured by DIC, weight average molecular weight 900, dispersity 1.1) Epoxy resin (B01) -3: Liquid bisphenol A type epoxy resin (“JER834” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 250 g / eq, weight average molecular weight 470, dispersity 2) Epoxy resin (B01) -4: Bisphenol A type epoxy resin (“JER1055” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 800-900 g / eq, weight average molecular weight 1600, dispersity 3.5) Epoxy resin (B91) -1: Mixture of liquid bisphenol A type epoxy resin and acrylic rubber fine particles (“BPA
  • Example 1 ⁇ Manufacture of sheet for forming first protective film> (Production of thermosetting resin layer forming composition) Polymer component (A) -1, Polymer component (A) -2, Epoxy resin (B01) -1, Epoxy resin (B01) -2, Thermosetting agent (B02) -1, Curing accelerator (C)- 1.
  • thermosetting resin layer is prepared by dissolving in methyl ethyl ketone so that the content ratio becomes the value shown in Table 2 (described as “content ratio” in Table 2) and stirring at 23 ° C.
  • a resin layer forming composition III-1) (methyl ethyl ketone solution) having a solid content concentration of 50% by mass was obtained.
  • the description of “-” in the column of the content component in Table 2 means that the thermosetting resin layer forming composition does not contain the component.
  • Photopolymerization initiator (“Irgacure 651”, benzyldimethyl ketal, manufactured by Ciba Specialty Chemicals) (3 parts by mass) with respect to the adhesive resin (I-2a) (100 parts by mass) obtained in Production Example 1 ), Acetylacetone (1 part by mass) as a reaction retarding agent was added and stirred well, and then a tolylene diisocyanate trimer adduct of trimethylolpropane (“Coronate HL” manufactured by Nippon Polyurethane Co., Ltd.) was used as an isocyanate crosslinking agent.
  • the first pressure-sensitive adhesive composition obtained above is applied to the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) obtained by releasing one side of a polyethylene terephthalate film by silicone treatment.
  • the first pressure-sensitive adhesive layer having a thickness of 10 ⁇ m was formed by heating and drying at 120 ° C. for 2 minutes.
  • an ethylene-vinyl acetate copolymer film having a thickness of 120 ⁇ m was bonded to the exposed surface of the first pressure-sensitive adhesive layer to obtain a first support sheet.
  • thermosetting resin layer obtained above on the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) obtained by releasing one side of a polyethylene terephthalate film by silicone treatment
  • SP-PET 381031 manufactured by Lintec Co., Ltd., thickness 38 ⁇ m
  • the product was applied and dried at 100 ° C. for 2 minutes to prepare a thermosetting resin film (thermosetting resin layer) having a thickness of 7 ⁇ m.
  • the release film is removed from the first pressure-sensitive adhesive layer of the first support sheet obtained above, and the exposed surface of the thermosetting resin film obtained above is bonded to the exposed surface of the first pressure-sensitive adhesive layer.
  • the 1st base material, the 1st adhesive layer, the thermosetting resin layer, and the peeling film obtained the 1st sheet
  • thermosetting resin layer is peeled off, and the exposed surface of the first pressure-sensitive adhesive layer is applied with the total reflection measurement method (ATR method) and red. Analysis was performed by external spectroscopy (IR). As the analytical instrument, “spectrum one” manufactured by PerkinElmer was used.
  • the thermosetting components transferred from the thermosetting resin layer to the first pressure-sensitive adhesive layer that is, the epoxy resin and the thermosetting agent (phenolic resin) due to the presence or absence of an increase in the intensity of the peak at 1510 cm ⁇ 1 peculiar to the aromatic ring ) was confirmed. A case where a peak of 1510 cm ⁇ 1 was not confirmed was marked with “ ⁇ ”, and a case where a peak was confirmed was marked with “x”. The results are shown in Table 2.
  • Examples 2 to 3, Comparative Example 1 A first protective film-forming sheet was produced and evaluated in the same manner as in Example 1 except that the components and content of the thermosetting resin layer-forming composition were as shown in Table 2. The results are shown in Table 2.
  • thermosetting component has a weight average molecular weight and a dispersity both in the above ranges
  • the migration of the thermosetting component from the curable resin layer to the first pressure-sensitive adhesive layer was suppressed.
  • thermosetting component in the first protective film forming sheet of Comparative Example 1 in which both the weight average molecular weight and the dispersity are outside the above range, the above thermosetting component is used. The transition was not suppressed.
  • the present invention can be used for manufacturing a semiconductor chip or the like having bumps in connection pad portions used in a flip chip mounting method.
  • thermosetting resin layer thermosetting resin Film
  • first adhesive layer 13 ... surface of the first adhesive layer
  • 14 ... first intermediate layer 101,102,103 ... first support sheet, 101a, 102a , 103a ... surface of the first support sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

この第1保護膜形成用シートは、熱硬化性樹脂フィルムを、第1支持シートの一方の表面上に備えており、前記熱硬化性樹脂フィルムは、半導体ウエハのバンプを有する表面に貼付し、熱硬化させることによって、前記表面に第1保護膜を形成するためのものであり、前記熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B0)を含有し、前記熱硬化性成分(B0)は、重量平均分子量が450以上であり、かつ分散度が10以下のものとなっている。

Description

熱硬化性樹脂フィルム及び第1保護膜形成用シート
 本発明は、熱硬化性樹脂フィルム、及びこれを用いた第1保護膜形成用シートに関する。
 本願は、2015年10月8日に、日本に出願された特願2015-200365号に基づき優先権を主張し、その内容をここに援用する。
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(バンプ)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面とは反対側の面を研削したり、ダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面を保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させて、バンプ形成面に保護膜を形成する。このような硬化性樹脂フィルムとしては、加熱によって硬化する熱硬化性成分を含有するものが広く利用されており、このような熱硬化性樹脂フィルムを備えた保護膜形成用シートとしては、前記フィルムに特定の熱弾性率を有する熱可塑性樹脂層が積層され、さらに前記熱可塑性樹脂層上の最上層に、25℃で非可塑性の熱可塑性樹脂層が積層されてなるものが開示されている(特許文献1参照)。そして、特許文献1によれば、この保護膜形成用シートは、保護膜のバンプ充填性、ウエハ加工性、樹脂封止後の電気接続信頼性等に優れるとされている。
 しかし、本発明者らは、保護膜を形成するための前記熱硬化性樹脂フィルムは、その組成によっては、その中に含有される熱硬化性成分の一部が、保護膜形成用シート中において隣接している層に移行し易いという問題点を見出した。このように、熱硬化性成分が熱硬化性樹脂フィルムからこれに隣接する層に移行してしまうと、熱硬化性樹脂フィルムはその組成が変化してしまい、保護膜を形成する際の硬化反応が十分に進行し難くなってしまう。また、このように熱硬化性成分が移行してしまうことで、熱硬化性樹脂フィルムは、加熱時の流動性が低下してしまい、バンプの目的とする部位全般に十分に密着せずにバンプの埋め込みが不十分となり、バンプ埋め込み性が低下してしまう。
特開2005-028734号公報
 本発明は、隣接する層への熱硬化性成分の移行が十分に抑制された熱硬化性樹脂フィルム、及びこれを用いた保護膜形成用シートを提供することを目的とする。
 本発明は、半導体ウエハのバンプを有する表面に貼付し、熱硬化させることによって、前記表面に第1保護膜を形成するための熱硬化性樹脂フィルムであって、前記熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B0)を含有し、前記熱硬化性成分(B0)は、重量平均分子量が450以上であり、かつ分散度が10以下のものである、熱硬化性樹脂フィルムを提供する。
 本発明の熱硬化性樹脂フィルムにおいては、前記熱硬化性成分(B0)が、エポキシ樹脂(B01)及び熱硬化剤(B02)からなるものでもよい。
 また、本発明は、前記熱硬化性樹脂フィルムを、第1支持シートの一方の表面上に備えた、第1保護膜形成用シートを提供する。
 本発明の第1保護膜形成用シートにおいて、熱硬化性樹脂フィルム中の熱硬化性成分は、熱硬化性樹脂フィルムに隣接する層への移行が十分に抑制される。
本発明の第1保護膜形成用シートの一実施形態を模式的に示す断面図である。 本発明の第1保護膜形成用シートの他の実施形態を模式的に示す断面図である。 本発明の第1保護膜形成用シートのさらに他の実施形態を模式的に示す断面図である。
 本発明の熱硬化性樹脂フィルムは、半導体ウエハのバンプを有する表面に貼付し、熱硬化させることによって、前記表面に第1保護膜を形成するための熱硬化性樹脂フィルムであって、前記熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B0)を含有し、前記熱硬化性成分(B0)は、重量平均分子量(Mw)が450以上であり、かつ分散度(Mw/Mn)が10以下のものである。なお、本明細書において「Mn」は、数平均分子量を意味する。
 また、本発明の第1保護膜形成用シートは、上記の本発明の熱硬化性樹脂フィルムを、第1支持シートの一方の表面上に備えたものである。前記第1保護膜形成用シートにおいて、前記「熱硬化性樹脂フィルム」は、「熱硬化性樹脂層」と称することもある。
 本発明の第1保護膜形成用シートは、その熱硬化性樹脂層(熱硬化性樹脂フィルム)を介して、半導体ウエハのバンプを有する表面(すなわち回路面)に貼付して使用される。そして、貼付後の熱硬化性樹脂層は、加熱によって流動性が増大し、バンプを覆うようにしてバンプ間に広がり、前記回路面と密着するとともに、バンプの表面、特に前記回路面近傍部位の表面を覆って、バンプを埋め込む。この状態の熱硬化性樹脂層は、さらに加熱によって熱硬化して最終的に第1保護膜を形成し、前記回路面においてバンプをその表面に密着した状態で保護する。第1保護膜形成用シートを貼付した後の半導体ウエハは、例えば、前記回路面とは反対側の面が研削された後、第1支持シートが取り除かれ、次いで、熱硬化性樹脂層の加熱によって、バンプの埋め込み及び第1保護膜の形成が行われ、最終的には、この第1保護膜を備えた状態で半導体装置に組み込まれる。
 本発明の熱硬化性樹脂フィルム(熱硬化性樹脂層)が、熱硬化性成分として、上記のように重量平均分子量が大きく、かつ分散度が特定の範囲以下である熱硬化性成分(B0)を含有していることで、本発明の第1保護膜形成用シートにおいては、その製造直後から、使用時に熱硬化性樹脂フィルムの硬化を行うまでの間に、熱硬化性樹脂フィルムからこれに隣接する層、すなわち第1支持シートへの、熱硬化性成分(B0)の移行が十分に抑制される。その結果、前記熱硬化性樹脂フィルムは、その組成の変化が抑制され、第1保護膜を形成する際の硬化反応が十分に進行し、硬化度が高い第1保護膜を形成できる。また、前記熱硬化性樹脂フィルムは、加熱時の流動性の低下が抑制され、バンプの目的とする部位全般に十分に密着してバンプを埋め込むので、バンプ埋め込み性に優れる。本発明の熱硬化性樹脂フィルムは、このように硬化度が高い第1保護膜を形成するだけでなく、バンプ埋め込み性にも優れ、極めて高いバンプの保護効果を有する。
 以下、本発明の構成について、詳細に説明する。
◎第1支持シート
 前記第1支持シートは、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。
 なお、本明細書においては、第1支持シートの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
 好ましい第1支持シートとしては、例えば、第1基材上に第1粘着剤層が積層されてなるもの、第1基材上に第1中間層が積層され、前記第1中間層上に第1粘着剤層が積層されてなるもの、第1基材のみからなるもの等が挙げられる。
 本発明の第1保護膜形成用シートの例を、このような第1支持シートの種類ごとに以下、図面を参照しながら説明する。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 図1は、本発明の第1保護膜形成用シートの一実施形態を模式的に示す断面図である。ここに示す第1保護膜形成用シート1は、第1支持シートとして、第1基材上に第1粘着剤層が積層されてなるものを用いている。すなわち、第1保護膜形成用シート1は、第1基材11上に第1粘着剤層13を備え、第1粘着剤層13上に熱硬化性樹脂層(熱硬化性樹脂フィルム)12を備えて、構成されている。第1支持シート101は、第1基材11及び第1粘着剤層13の積層体であり、第1支持シート101の一方の表面101a上、すなわち第1粘着剤層13の一方の表面13a上に、熱硬化性樹脂層12が設けられている。
 第1保護膜形成用シート1においては、熱硬化性樹脂層12から、その隣接する層、すなわち、第1粘着剤層13への熱硬化性成分(B0)の移行が十分に抑制される。
 図2は、本発明の第1保護膜形成用シートの他の実施形態を模式的に示す断面図である。なお、図2において、図1に示すものと同じ構成要素には、図1の場合と同じ符号を付し、その詳細な説明は省略する。これは図3以降の図においても同様である。
 ここに示す第1保護膜形成用シート2は、第1支持シートとして、第1基材上に第1中間層が積層され、前記第1中間層上に第1粘着剤層が積層されてなるものを用いている。すなわち、第1保護膜形成用シート2は、第1基材11上に第1中間層14を備え、第1中間層14上に第1粘着剤層13を備え、第1粘着剤層13上に熱硬化性樹脂層(熱硬化性樹脂フィルム)12を備えて、構成されている。第1支持シート102は、第1基材11、第1中間層14及び第1粘着剤層13がこの順に積層されてなる積層体であり、第1支持シート102の一方の表面102a上、すなわち第1粘着剤層13の一方の表面13a上に、熱硬化性樹脂層12が設けられている。
 第1保護膜形成用シート2は、換言すると、図1に示す第1保護膜形成用シート1において、第1基材11と第1粘着剤層13との間に、さらに第1中間層14を備えたものである。
 第1保護膜形成用シート2においては、熱硬化性樹脂層12から、その隣接する層、すなわち、第1粘着剤層13への熱硬化性成分(B0)の移行が十分に抑制される。
 図3は、本発明の第1保護膜形成用シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す第1保護膜形成用シート3は、第1支持シートとして、第1基材のみからなるものを用いている。すなわち、第1保護膜形成用シート3は、第1基材11上に熱硬化性樹脂層(熱硬化性樹脂フィルム)12を備えて、構成されている。第1支持シート103は、第1基材11のみから構成され、第1支持シート103の一方の表面103a上、すなわち第1基材11の一方の表面11a上に、熱硬化性樹脂層12が直接接触して設けられている。
 第1保護膜形成用シート3は、換言すると、図1に示す第1保護膜形成用シート1において、第1粘着剤層13が除かれてなるものである。
 第1保護膜形成用シート3においては、熱硬化性樹脂層12から、その隣接する層、すなわち、第1基材11への熱硬化性成分(B0)の移行が十分に抑制される。
 次に、第1支持シートの構成について、詳細に説明する。
○第1基材
 前記第1基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。
 第1基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1基材は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 第1基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 ここで、「第1基材の厚さ」とは、第1基材全体の厚さを意味し、例えば、複数層からなる第1基材の厚さとは、第1基材を構成するすべての層の合計の厚さを意味する。
 第1基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い第1基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。
 第1基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。
 第1基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 後述する第1粘着剤層又は硬化性樹脂層がエネルギー線硬化性を有する場合、第1基材はエネルギー線を透過させるものが好ましい。
 第1基材は、公知の方法で製造できる。例えば、樹脂を含有する第1基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。
○第1粘着剤層
 前記第1粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 前記粘着剤としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂からなる粘着剤)、ウレタン系樹脂(ウレタン結合を有する樹脂からなる粘着剤)、ゴム系樹脂(ゴム構造を有する樹脂からなる粘着剤)、シリコーン系樹脂(シロキサン結合を有する樹脂からなる粘着剤)、エポキシ系樹脂(エポキシ基を有する樹脂からなる粘着剤)、ポリビニルエーテル、ポリカーボネート等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。
 第1粘着剤層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 第1粘着剤層の厚さは、1~1000μmであることが好ましく、5~500μmであることがより好ましく、10~100μmであることが特に好ましい。
 ここで、「第1粘着剤層の厚さ」とは、第1粘着剤層全体の厚さを意味し、例えば、複数層からなる第1粘着剤層の厚さとは、第1粘着剤層を構成するすべての層の合計の厚さを意味する。
 第1粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものでもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものでもよい。エネルギー線硬化性の粘着剤を用いて形成された第1粘着剤層は、硬化前及び硬化後での物性を、容易に調節できる。
 本発明において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンHランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本発明において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
<<第1粘着剤組成物>>
 第1粘着剤層は、粘着剤を含有する第1粘着剤組成物を用いて形成できる。例えば、第1粘着剤層の形成対象面に第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に第1粘着剤層を形成できる。第1粘着剤層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。第1粘着剤組成物中の、常温で気化しない成分同士の含有量の比率は、通常、第1粘着剤層の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
 第1粘着剤組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 第1粘着剤組成物の乾燥条件は、特に限定されないが、第1粘着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する第1粘着剤組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
 第1粘着剤層がエネルギー線硬化性である場合、エネルギー線硬化性粘着剤を含有する第1粘着剤組成物、すなわち、エネルギー線硬化性の第1粘着剤組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する第1粘着剤組成物(I-1);非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する第1粘着剤組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する第1粘着剤組成物(I-3)等が挙げられる。
<第1粘着剤組成物(I-1)>
 前記第1粘着剤組成物(I-1)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する。
[粘着性樹脂(I-1a)]
 前記粘着性樹脂(I-1a)は、アクリル系樹脂であることが好ましい。
 前記アクリル系樹脂としては、例えば、少なくとも(メタ)アクリル酸アルキルエステル由来の構成単位を有するアクリル系重合体が挙げられる。
 前記アクリル系樹脂が有する構成単位は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、アルキルエステルを構成するアルキル基の炭素数が1~20であるのものが挙げられ、前記アルキル基は、直鎖状又は分岐鎖状であることが好ましい。
 (メタ)アクリル酸アルキルエステルとして、より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。
 第1粘着剤層の粘着力が向上する点から、前記アクリル系重合体は、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましい。そして、第1粘着剤層の粘着力がより向上する点から、前記アルキル基の炭素数は、4~12であることが好ましく、4~8であることがより好ましい。また、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルであることが好ましい。
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有することが好ましい。
 前記官能基含有モノマーとしては、例えば、前記官能基が後述する架橋剤と反応することで架橋の起点となったり、前記官能基が不飽和基含有化合物中の不飽和基と反応することで、アクリル系重合体の側鎖に不飽和基の導入を可能とするものが挙げられる。
 官能基含有モノマー中の前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 すなわち、官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。
 官能基含有モノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
 前記アクリル系重合体を構成する官能基含有モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記アクリル系重合体において、官能基含有モノマー由来の構成単位の含有量は、構成単位の全量に対して、1~35質量%であることが好ましく、3~32質量%であることがより好ましく、5~30質量%であることが特に好ましい。
 前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位、及び官能基含有モノマー由来の構成単位以外に、さらに、他のモノマー由来の構成単位を有していてもよい。
 前記他のモノマーは、(メタ)アクリル酸アルキルエステル等と共重合可能なものであれば特に限定されない。
 前記他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。
 前記アクリル系重合体を構成する前記他のモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記アクリル系重合体は、上述の非エネルギー線硬化性の粘着性樹脂(I-1a)として使用できる。
 一方、前記アクリル系重合体中の官能基に、エネルギー線重合性不飽和基(エネルギー線重合性基)を有する不飽和基含有化合物を反応させたものは、上述のエネルギー線硬化性の粘着性樹脂(I-2a)として使用できる。
 なお、本発明において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。
 第1粘着剤組成物(I-1)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-1)において、粘着性樹脂(I-1a)の含有量は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。
[エネルギー線硬化性化合物]
 第1粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー又はオリゴマーが挙げられる。
 エネルギー線硬化性化合物のうち、モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;エポキシ(メタ)アクリレート等が挙げられる。
 エネルギー線硬化性化合物のうち、オリゴマーとしては、例えば、上記で例示したモノマーが重合してなるオリゴマー等が挙げられる。
 エネルギー線硬化性化合物は、分子量が比較的大きく、第1粘着剤層の貯蔵弾性率を低下させにくいという点では、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマーが好ましい。
 第1粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記第1粘着剤組成物(I-1)において、前記エネルギー線硬化性化合物の含有量は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。
[架橋剤]
 粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、第1粘着剤組成物(I-1)は、さらに架橋剤を含有することが好ましい。
 前記架橋剤は、例えば、前記官能基と反応して、粘着性樹脂(I-1a)同士を架橋するものである。
 架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのアダクト体等のイソシアネート系架橋剤(イソシアネート基を有する架橋剤);エチレングリコールグリシジルエーテル等のエポキシ系架橋剤(グリシジル基を有する架橋剤);ヘキサ[1-(2-メチル)-アジリジニル]トリフオスファトリアジン等のアジリジン系架橋剤(アジリジニル基を有する架橋剤);アルミニウムキレート等の金属キレート系架橋剤(金属キレート構造を有する架橋剤);イソシアヌレート系架橋剤(イソシアヌル酸骨格を有する架橋剤)等が挙げられる。
 粘着剤の凝集力を向上させて第1粘着剤層の粘着力を向上させる点、及び入手が容易である等の点から、架橋剤はイソシアネート系架橋剤であることが好ましい。
 第1粘着剤組成物(I-1)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記第1粘着剤組成物(I-1)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、1~10質量部であることが特に好ましい。
[光重合開始剤]
 第1粘着剤組成物(I-1)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
 前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロルニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ジベンジル等が挙げられる。
 また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
 第1粘着剤組成物(I-1)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-1)において、光重合開始剤の含有量は、前記エネルギー線硬化性化合物の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5量部であることが特に好ましい。
[その他の添加剤]
 第1粘着剤組成物(I-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填剤(フィラー)、防錆剤、着色剤(顔料、染料)、増感剤、粘着付与剤、反応遅延剤、架橋促進剤(触媒)等の公知の添加剤が挙げられる。
 なお、反応遅延剤とは、例えば、第1粘着剤組成物(I-1)中に混入している触媒の作用によって、保存中の第1粘着剤組成物(I-1)において、目的としない架橋反応が進行するのを抑制するものである。反応遅延剤としては、例えば、触媒に対するキレートによってキレート錯体を形成するものが挙げられ、より具体的には、1分子中にカルボニル基(-C(=O)-)を2個以上有するものが挙げられる。
 第1粘着剤組成物(I-1)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-1)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。
[溶媒]
 第1粘着剤組成物(I-1)は、溶媒を含有していてもよい。第1粘着剤組成物(I-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。
 前記溶媒は有機溶媒であることが好ましく、前記有機溶媒としては、例えば、メチルエチルケトン、アセトン等のケトン;酢酸エチル等のエステル(カルボン酸エステル);テトラヒドロフラン、ジオキサン等のエーテル;シクロヘキサン、n-ヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;1-プロパノール、2-プロパノール等のアルコール等が挙げられる。
 前記溶媒としては、例えば、粘着性樹脂(I-1a)の製造時に用いたものを粘着性樹脂(I-1a)から取り除かずに、そのまま第1粘着剤組成物(I-1)において用いてもよいし、粘着性樹脂(I-1a)の製造時に用いたものと同一又は異なる種類の溶媒を、第1粘着剤組成物(I-1)の製造時に別途添加してもよい。
 第1粘着剤組成物(I-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-1)において、溶媒の含有量は特に限定されず、適宜調節すればよい。
<第1粘着剤組成物(I-2)>
 前記第1粘着剤組成物(I-2)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する。
[粘着性樹脂(I-2a)]
 前記粘着性樹脂(I-2a)は、例えば、粘着性樹脂(I-1a)中の官能基に、エネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させることで得られる。
 前記不飽和基含有化合物は、前記エネルギー線重合性不飽和基以外に、さらに粘着性樹脂(I-1a)中の官能基と反応することで、粘着性樹脂(I-1a)と結合可能な基を有する化合物である。
 前記エネルギー線重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基(エテニル基)、アリル基(2-プロペニル基)等が挙げられ、(メタ)アクリロイル基が好ましい。
 粘着性樹脂(I-1a)中の官能基と結合可能な基としては、例えば、水酸基又はアミノ基と結合可能なイソシアネート基及びグリシジル基、並びにカルボキシ基又はエポキシ基と結合可能な水酸基及びアミノ基等が挙げられる。
 前記不飽和基含有化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。
 第1粘着剤組成物(I-2)が含有する粘着性樹脂(I-2a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-2)において、粘着性樹脂(I-2a)の含有量は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、10~90質量%であることが特に好ましい。
[架橋剤]
 粘着性樹脂(I-2a)として、例えば、粘着性樹脂(I-1a)におけるものと同様な、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、第1粘着剤組成物(I-2)は、さらに架橋剤を含有していてもよい。
 第1粘着剤組成物(I-2)における前記架橋剤としては、第1粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記第1粘着剤組成物(I-2)において、架橋剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、1~10質量部であることが特に好ましい。
[光重合開始剤]
 第1粘着剤組成物(I-2)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-2)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
 第1粘着剤組成物(I-2)における前記光重合開始剤としては、第1粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-2)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。
[その他の添加剤]
 第1粘着剤組成物(I-2)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 第1粘着剤組成物(I-2)における前記その他の添加剤としては、第1粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-2)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。
[溶媒]
 第1粘着剤組成物(I-2)は、第1粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 第1粘着剤組成物(I-2)における前記溶媒としては、第1粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 第1粘着剤組成物(I-2)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-2)において、溶媒の含有量は特に限定されず、適宜調節すればよい。
<第1粘着剤組成物(I-3)>
 前記第1粘着剤組成物(I-3)は、上述の様に、前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する。
 第1粘着剤組成物(I-3)において、粘着性樹脂(I-2a)の含有量は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。
[エネルギー線硬化性低分子化合物]
 第1粘着剤組成物(I-3)が含有する前記エネルギー線硬化性低分子化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー及びオリゴマーが挙げられ、第1粘着剤組成物(I-1)が含有するエネルギー線硬化性化合物と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する前記エネルギー線硬化性低分子化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記第1粘着剤組成物(I-3)において、前記エネルギー線硬化性低分子化合物の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~300質量部であることが好ましく、0.03~200質量部であることがより好ましく、0.05~100質量部であることが特に好ましい。
[光重合開始剤]
 第1粘着剤組成物(I-3)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する第1粘着剤組成物(I-3)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
 第1粘着剤組成物(I-3)における前記光重合開始剤としては、第1粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-3)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)及び前記エネルギー線硬化性低分子化合物の総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5量部であることが特に好ましい。
[その他の添加剤]
 第1粘着剤組成物(I-3)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、第1粘着剤組成物(I-1)におけるその他の添加剤と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-3)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。
[溶媒]
 第1粘着剤組成物(I-3)は、第1粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
 第1粘着剤組成物(I-3)における前記溶媒としては、第1粘着剤組成物(I-1)における溶媒と同じものが挙げられる。
 第1粘着剤組成物(I-3)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1粘着剤組成物(I-3)において、溶媒の含有量は特に限定されず、適宜調節すればよい。
<第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物>
 ここまでは、第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)及び第1粘着剤組成物(I-3)について主に説明したが、これらの含有成分として説明したものは、これら3種の第1粘着剤組成物以外の全般的な第1粘着剤組成物(本明細書においては、「第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物」と称する)でも、同様に用いることができる。
 第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物としては、エネルギー線硬化性の粘着剤組成物以外に、非エネルギー線硬化性の粘着剤組成物も挙げられる。
 非エネルギー線硬化性の粘着剤組成物としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)、ウレタン系樹脂(ウレタン結合を有する樹脂)、ゴム系樹脂(ゴム構造を有する樹脂)、シリコーン系樹脂(シロキサン結合を有する樹脂)、エポキシ系樹脂(エポキシ基を有する樹脂)、ポリビニルエーテル、又はポリカーボネート等の粘着性樹脂を含有するものが挙げられ、アクリル系樹脂を含有するものが好ましい。
 第1粘着剤組成物(I-1)~(I-3)以外の第1粘着剤組成物は、1種又は2種以上の架橋剤を含有することが好ましく、その含有量は、上述の第1粘着剤組成物(I-1)等の場合と同様とすることができる。
<<第1粘着剤組成物の製造方法>>
 第1粘着剤組成物(I-1)~(I-3)等の前記第1粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、第1粘着剤組成物を構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
○第1中間層
 前記第1中間層は、シート状又はフィルム状であり、その構成材料は目的に応じて適宜選択すればよく、特に限定されない。
 例えば、半導体表面を覆う保護膜に、半導体表面に存在するバンプの形状が反映されることによって、保護膜が変形してしまうことの抑制を目的とする場合、前記第1中間層の好ましい構成材料としては、第1中間層の貼付性がより向上する点から、ウレタン(メタ)アクリレート等が挙げられる。
 第1中間層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 第1中間層の厚さは、保護対象となる半導体表面のバンプの高さに応じて適宜調節できるが、比較的高さが高いバンプの影響も容易に吸収できる点から、50~600μmであることが好ましく、70~500μmであることがより好ましく、80~400μmであることが特に好ましい。
 ここで、「第1中間層の厚さ」とは、第1中間層全体の厚さを意味し、例えば、複数層からなる第1中間層の厚さとは、第1中間層を構成するすべての層の合計の厚さを意味する。
<<第1中間層形成用組成物>>
 第1中間層は、その構成材料を含有する第1中間層形成用組成物を用いて形成できる。例えば、第1中間層の形成対象面に第1中間層形成用組成物を塗工し、必要に応じて乾燥させたり、エネルギー線の照射によって硬化させることで、目的とする部位に第1中間層を形成できる。第1中間層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。第1中間層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、第1中間層の前記成分同士の含有量の比率と同じとなる。ここで、「常温」とは、先に説明したとおりである。
 第1中間層形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 第1中間層形成用組成物の乾燥条件は、特に限定されない。例えば、後述する溶媒を含有している第1中間層形成用組成物は、加熱乾燥させることが好ましく、この場合、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
 第1中間層形成用組成物は、エネルギー線硬化性を有する場合、乾燥後に、さらにエネルギー線の照射により硬化させることが好ましい。
 第1中間層形成用組成物としては、例えば、ウレタン(メタ)アクリレートを含有する第1中間層形成用組成物(II-1)等が挙げられる。
<第1中間層形成用組成物(II-1)>
 第1中間層形成用組成物(II-1)は、上述の様に、ウレタン(メタ)アクリレートを含有する。
[ウレタン(メタ)アクリレート]
 ウレタン(メタ)アクリレートは、1分子中に少なくとも(メタ)アクリロイル基及びウレタン結合を有する化合物であり、エネルギー線重合性を有する。
 ウレタン(メタ)アクリレートは、単官能のもの(1分子中に(メタ)アクリロイル基を1個のみ有するもの)であってもよいし、二官能以上のもの(1分子中に(メタ)アクリロイル基を2個以上有するもの)、すなわち多官能のものであってもよい。ただし、本発明においては、ウレタン(メタ)アクリレートとして、少なくとも単官能のものを用いることが好ましい。
 第1中間層形成用成物が含有する前記ウレタン(メタ)アクリレートとしては、例えば、ポリオール化合物と、多価イソシアネート化合物と、を反応させて得られた、末端イソシアネートウレタンプレポリマーに、さらに水酸基及び(メタ)アクリロイル基を有する(メタ)アクリル系化合物を反応させて得られたものが挙げられる。ここで、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。
 第1中間層形成用組成物(II-1)が含有するウレタン(メタ)アクリレートは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(ポリオール化合物)
 前記ポリオール化合物は、1分子中に水酸基を2個以上有する化合物であれば、特に限定されない。
 前記ポリオール化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記ポリオール化合物としては、例えば、アルキレンジオール、ポリエーテル型ポリオール、ポリエステル型ポリオール、ポリカーボネート型ポリオール等が挙げられる。
 前記ポリオール化合物は、2官能のジオール、3官能のトリオール、4官能以上のポリオール等のいずれであってもよいが、入手が容易であり、汎用性及び反応性等に優れる点では、ジオールが好ましい。
・ポリエーテル型ポリオール
 前記ポリエーテル型ポリオールは、特に限定されないが、ポリエーテル型ジオールであることが好ましく、前記ポリエーテル型ジオールとしては、例えば、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式中、nは2以上の整数であり;Rは2価の炭化水素基であり、複数個のRは互いに同一であっても異なっていてもよい。)
 式中、nは、一般式「-R-O-」で表される基の繰り返し単位数を表し、2以上の整数であれば特に限定されない。なかでも、nは、10~250であることが好ましく、25~205であることがより好ましく、40~185であることが特に好ましい。
 式中、Rは、2価の炭化水素基であれば特に限定されないが、アルキレン基であることが好ましく、炭素数1~6のアルキレン基であることがより好ましく、エチレン基、プロピレン基又はテトラメチレン基であることがさらに好ましく、プロピレン基又はテトラメチレン基であることが特に好ましい。
 前記式(1)で表される化合物は、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレングリコールであることが好ましく、ポリプロピレングリコール又はポリテトラメチレングリコールであることがより好ましい。
 前記ポリエーテル型ジオールと、前記多価イソシアネート化合物と、を反応させることにより、前記末端イソシアネートウレタンプレポリマーとして、下記一般式(1a)で表されるエーテル結合部を有するものが得られる。そして、このような前記末端イソシアネートウレタンプレポリマーを用いることで、前記ウレタン(メタ)アクリレートは、前記エーテル結合部を有するもの、すなわち、前記ポリエーテル型ジオールから誘導された構成単位を有するものとなる。
Figure JPOXMLDOC01-appb-C000002
 (式中、R及びnは前記と同じである。)
・ポリエステル型ポリオール
 前記ポリエステル型ポリオールは、特に限定されないが、例えば、多塩基酸又はその誘導体を用いて、エステル化反応を行うことで得られたもの等が挙げられる。なお、本明細書において「誘導体」とは、特に断りのない限り、元の化合物の1個以上の基がそれ以外の基(置換基)で置換されてなるものを意味する。ここで、「基」とは、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。
 前記多塩基酸及びその誘導体としては、ポリエステルの製造原料として通常使用される多塩基酸及びその誘導体が挙げられる。
 前記多塩基酸としては、例えば、飽和脂肪族多塩基酸、不飽和脂肪族多塩基酸、芳香族多塩基酸等が挙げられ、これらのいずれかに該当するダイマー酸を用いてもよい。
 前記飽和脂肪族多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の飽和脂肪族二塩基酸等が挙げられる。
 前記不飽和脂肪族多塩基酸としては、例えば、マレイン酸、フマル酸等の不飽和脂肪族二塩基酸等が挙げられる。
 前記芳香族多塩基酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸等の芳香族二塩基酸;トリメリット酸等の芳香族三塩基酸;ピロメリット酸等の芳香族四塩基酸等が挙げられる。
 前記多塩基酸の誘導体としては、例えば、上述の飽和脂肪族多塩基酸、不飽和脂肪族多塩基酸及び芳香族多塩基酸の酸無水物、並びに水添ダイマー酸等が挙げられる。
 前記多塩基酸又はその誘導体は、いずれも1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記多塩基酸は、適度な硬度を有する塗膜の形成に適している点では、芳香族多塩基酸であることが好ましい。
 ポリエステル型ポリオールを得るためのエステル化反応においては、必要に応じて公知の触媒を用いてもよい。
 前記触媒としては、例えば、ジブチルスズオキサイド、オクチル酸第一スズ等のスズ化合物;テトラブチルチタネート、テトラプロピルチタネート等のアルコキシチタン等が挙げられる。
・ポリカーボネート型ポリオール
 ポリカーボネート型ポリオールは、特に限定されないが、例えば、前記式(1)で表される化合物と同様のグリコールと、アルキレンカーボネートと、を反応させて得られたもの等が挙げられる。
 ここで、グリコール及びアルキレンカーボネートは、いずれも1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記ポリオール化合物の水酸基価から算出した数平均分子量は、1000~10000であることが好ましく、2000~9000であることがより好ましく、3000~7000であることが特に好ましい。前記数平均分子量が1000以上であることで、ウレタン結合の過剰な生成が抑制されて、第1中間層の粘弾性特性の制御がより容易となる。また、前記数平均分子量が10000以下であることで、第1中間層の過度な軟化が抑制される。
 ポリオール化合物の水酸基価から算出した前記数平均分子量とは、下記式から算出された値である。
 [ポリオール化合物の数平均分子量]=[ポリオール化合物の官能基数]×56.11×1000/[ポリオール化合物の水酸基価(単位:mgKOH/g)]
 前記ポリオール化合物は、ポリエーテル型ポリオールであることが好ましく、ポリエーテル型ジオールであることがより好ましい。
(多価イソシアネート化合物)
 ポリオール化合物と反応させる前記多価イソシアネート化合物は、イソシアネート基を2個以上有するものであれば、特に限定されない。
 多価イソシアネート化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記多価イソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の鎖状脂肪族ジイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、ω,ω’-ジイソシアネートジメチルシクロヘキサン等の環状脂肪族ジイソシアネート;4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等の芳香族ジイソシアネート等が挙げられる。
 これらの中でも、多価イソシアネート化合物は、取り扱い性の点から、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート又はキシリレンジイソシアネートであることが好ましい。
((メタ)アクリル系化合物)
 前記末端イソシアネートウレタンプレポリマーと反応させる、前記(メタ)アクリル系化合物は、1分子中に少なくとも水酸基及び(メタ)アクリロイル基を有する化合物であれば、特に限定されない。
 前記(メタ)アクリル系化合物は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 前記(メタ)アクリル系化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシシクロヘキシル、(メタ)アクリル酸5-ヒドロキシシクロオクチル、(メタ)アクリル酸2-ヒドロキシ-3-フェニルオキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル;N-メチロール(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド;ビニルアルコール、ビニルフェノール又はビスフェノールAジグリシジルエーテルに(メタ)アクリル酸を反応させて得られた反応物等が挙げられる。
 これらの中でも、前記(メタ)アクリル系化合物は、水酸基含有(メタ)アクリル酸エステルであることが好ましく、水酸基含有(メタ)アクリル酸アルキルエステルであることがより好ましく、(メタ)アクリル酸2-ヒドロキシエチルであることが特に好ましい。
 前記末端イソシアネートウレタンプレポリマーと前記(メタ)アクリル系化合物との反応は、必要に応じて、溶媒、触媒等を用いて行ってもよい。
 前記末端イソシアネートウレタンプレポリマーと前記(メタ)アクリル系化合物とを反応させるときの条件は、適宜調節すればよいが、例えば、反応温度は60~100℃であることが好ましく、反応時間は1~4時間であることが好ましい。
 前記ウレタン(メタ)アクリレートは、オリゴマー、ポリマー、並びにオリゴマー及びポリマーの混合物のいずれであってもよいが、オリゴマーであることが好ましい。
 例えば、前記ウレタン(メタ)アクリレートの重量平均分子量は、1000~100000であることが好ましく、3000~80000であることがより好ましく、5000~65000であることが特に好ましい。前記重量平均分子量が1000以上であることで、ウレタン(メタ)アクリレートと後述する重合性モノマーとの重合物において、ウレタン(メタ)アクリレート由来の構造同士の分子間力に起因して、第1中間層の硬さの最適化が容易となる。
 なお、本明細書において、重量平均分子量とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
[重合性モノマー]
 第1中間層形成用組成物(II-1)は、製膜性をより向上させる点から、前記ウレタン(メタ)アクリレート以外に、重合性モノマーを含有していてもよい。
 前記重合性モノマーは、エネルギー線重合性を有し、重量平均分子量が1000以上であるオリゴマー及びポリマーを除くものであって、1分子中に少なくとも1個の(メタ)アクリロイル基を有する化合物であることが好ましい。
 前記重合性モノマーとしては、例えば、アルキルエステルを構成するアルキル基が、炭素数が1~30で鎖状のものである(メタ)アクリル酸アルキルエステル;水酸基、アミド基、アミノ基又はエポキシ基等の官能基を有する官能基含有(メタ)アクリル系化合物;脂肪族環式基を有する(メタ)アクリル酸エステル;芳香族炭化水素基を有する(メタ)アクリル酸エステル;複素環式基を有する(メタ)アクリル酸エステル;ビニル基を有する化合物;アリル基を有する化合物等が挙げられる。
 炭素数が1~30の鎖状アルキル基を有する前記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル基、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸イソオクタデシル((メタ)アクリル酸イソステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。
 前記官能基含有(メタ)アクリル酸誘導体としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド及びその誘導体;アミノ基を有する(メタ)アクリル酸エステル(以下、「アミノ基含有(メタ)アクリル酸エステル」と称することがある);アミノ基の1個の水素原子が水素原子以外の基で置換されてなる1置換アミノ基を有する(メタ)アクリル酸エステル(以下、「1置換アミノ基含有(メタ)アクリル酸エステル」と称することがある);アミノ基の2個の水素原子が水素原子以外の基で置換されてなる2置換アミノ基を有する(メタ)アクリル酸エステル(以下、「2置換アミノ基含有(メタ)アクリル酸エステル」と称することがある);(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジル等のエポキシ基を有する(メタ)アクリル酸エステル(以下、「エポキシ基含有(メタ)アクリル酸エステル」と称することがある)等が挙げられる。
 ここで、「アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子がアミノ基(-NH)で置換されてなる化合物を意味する。同様に、「1置換アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子が1置換アミノ基で置換されてなる化合物を意味し、「2置換アミノ基含有(メタ)アクリル酸エステル」とは、(メタ)アクリル酸エステルの1個又は2個以上の水素原子が2置換アミノ基で置換されてなる化合物を意味する。
 「1置換アミノ基」及び「2置換アミノ基」における、水素原子が置換される水素原子以外の基(すなわち、置換基)としては、例えば、アルキル基等が挙げられる。
 前記脂肪族環式基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸アダマンチル等が挙げられる。
 前記芳香族炭化水素基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸フェニルヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等が挙げられる。
 前記複素環式基を有する(メタ)アクリル酸エステルにおける複素環式基は、芳香族複素環式基及び脂肪族複素環式基のいずれでもよい。
 前記複素環式基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリロイルモルホリン等が挙げられる。
 前記ビニル基を有する化合物としては、例えば、スチレン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、N-ビニルホルムアミド、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。
 前記アリル基を有する化合物としては、例えば、アリルグリシジルエーテル等が挙げられる。
 前記重合性モノマーは、前記ウレタン(メタ)アクリレートとの相溶性が良好である点から、比較的嵩高い基を有するものが好ましい。このような重合性モノマーとしては、例えば、脂肪族環式基を有する(メタ)アクリル酸エステル、芳香族炭化水素基を有する(メタ)アクリル酸エステル、複素環式基を有する(メタ)アクリル酸エステルが挙げられ、脂肪族環式基を有する(メタ)アクリル酸エステルがより好ましい。
 第1中間層形成用組成物(II-1)が含有する重合性モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1中間層形成用組成物(II-1)において、重合性モノマーの含有量は、10~99質量%であることが好ましく、15~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、25~80質量%であることが特に好ましい。
[光重合開始剤]
 第1中間層形成用組成物(II-1)は、前記ウレタン(メタ)アクリレート及び重合性モノマー以外に、光重合開始剤を含有していてもよい。光重合開始剤を含有する第1中間層形成用組成物(II-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。
 前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロルニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ジベンジル等が挙げられる。
 また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。
 第1中間層形成用組成物(II-1)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1中間層形成用組成物(II-1)において、光重合開始剤の含有量は、前記ウレタン(メタ)アクリレート及び重合性モノマーの総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。
[ウレタン(メタ)アクリレート以外の樹脂成分]
 第1中間層形成用組成物(II-1)は、本発明の効果を損なわない範囲内において、前記ウレタン(メタ)アクリレート以外の樹脂成分を含有していてもよい。
 前記樹脂成分の種類と、その第1中間層形成用組成物(II-1)における含有量は、目的に応じて適宜選択すればよく、特に限定されない。
[その他の添加剤]
 第1中間層形成用組成物(II-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
 前記その他の添加剤としては、例えば、架橋剤、帯電防止剤、酸化防止剤、連鎖移動剤、軟化剤(可塑剤)、充填剤、防錆剤、着色剤(顔料、染料)等の公知の添加剤が挙げられる。
 例えば、前記連鎖移動剤としては、1分子中に少なくとも1個のチオール基(メルカプト基)を有するチオール化合物が挙げられる。
 前記チオール化合物としては、例えば、ノニルメルカプタン、1-ドデカンチオール、1,2-エタンジチオール、1,3-プロパンジチオール、トリアジンチオール、トリアジンジチオール、トリアジントリチオール、1,2,3-プロパントリチオール、テトラエチレングリコール-ビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキスチオグルコレート、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]-イソシアヌレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられる。
 第1中間層形成用組成物(II-1)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1中間層形成用組成物(II-1)において、その他の添加剤の含有量は特に限定されず、その種類に応じて適宜選択すればよい。
[溶媒]
 第1中間層形成用組成物(II-1)は、溶媒を含有していてもよい。第1中間層形成用組成物(II-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。
<<第1中間層形成用組成物の製造方法>>
 第1中間層形成用組成物(II-1)等の前記第1中間層形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◎熱硬化性樹脂層
 前記熱硬化性樹脂層(熱硬化性樹脂フィルム)は、半導体表面のバンプを保護するための層であり、硬化により第1保護膜を形成する。
 前記熱硬化性樹脂層は、重合体成分(A)及び熱硬化性成分(B0)を含有し、前記熱硬化性成分(B0)は、重量平均分子量が450以上であり、かつ分散度が10以下のものである。
 重合体成分(A)は、重合性化合物が重合反応して形成されたとみなせる成分である。また、熱硬化性成分(B0)は、熱を反応のトリガーとして、硬化(重合)反応し得る成分である。なお、本発明において重合反応には、重縮合反応も含まれる。
<<熱硬化性樹脂層形成用組成物>>
 熱硬化性樹脂層は、その構成材料を含有する熱硬化性樹脂層形成用組成物を用いて形成できる。例えば、熱硬化性樹脂層の形成対象面に熱硬化性樹脂層形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に熱硬化性樹脂層を形成できる。熱硬化性樹脂層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、熱硬化性樹脂層の前記成分同士の含有量の比率と同じとなる。ここで、「常温」とは、先に説明したとおりである。
 熱硬化性樹脂層形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 熱硬化性樹脂層形成用組成物の乾燥条件は、特に限定されないが、熱硬化性樹脂層形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する熱硬化性樹脂層形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
<樹脂層形成用組成物(III-1)>
 熱硬化性樹脂層形成用組成物としては、例えば、重合体成分(A)及び熱硬化性成分(B0)を含有する熱硬化性樹脂層形成用組成物(III-1)(本明細書においては、単に「樹脂層形成用組成物(III-1)」と略記することがある)等が挙げられる。
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂層に造膜性や可撓性等を付与するための重合体化合物である。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 重合体成分(A)としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)、ポリエステル、ウレタン系樹脂(ウレタン結合を有する樹脂)、アクリルウレタン樹脂、シリコーン系樹脂(シロキサン結合を有する樹脂)、ゴム系樹脂(ゴム構造を有する樹脂)、フェノキシ樹脂、熱硬化性ポリイミド等が挙げられ、アクリル系樹脂が好ましい。
 重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量が前記下限値以上であることで、熱硬化性樹脂層の形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へ熱硬化性樹脂層が追従し易くなり、被着体と熱硬化性樹脂層との間でボイド等の発生がより抑制される。
 アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、第1保護膜と第1支持シートとの接着力が抑制されて、第1支持シートの剥離性が向上する。また、アクリル系樹脂のTgが前記上限値以下であることで、熱硬化性樹脂層及び第1保護膜の被着体との接着力が向上する。
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体等が挙げられる。
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、「アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基」を意味する。
 アクリル系樹脂は、例えば、前記(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなるものでもよい。
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する傾向がある。
 本発明においては、重合体成分(A)として、アクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、アクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、第1保護膜の第1支持シートからの剥離性が向上したり、被着体の凹凸面へ熱硬化性樹脂層が追従し易くなり、被着体と熱化性樹脂層との間でボイド等の発生がより抑制されることがある。
 前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。
 前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂層の重合体成分(A)の含有量)は、重合体成分(A)の種類によらず、5~85質量%であることが好ましく、5~80質量%であることがより好ましく、例えば、5~70質量%、5~60質量%、5~50質量%、5~40質量%、及び5~30質量%のいずれかであってもよい。
 重合体成分(A)は、熱硬化性成分(B0)にも該当する場合がある。本発明においては、樹脂層形成用組成物(III-1)が、このような重合体成分(A)及び熱硬化性成分(B0)の両方に該当する成分を含有する場合、樹脂層形成用組成物(III-1)は、重合体成分(A)及び熱硬化性成分(B0)を含有するとみなす。
[熱硬化性成分(B0)]
 熱硬化性成分(B0)は、熱硬化性樹脂層を硬化させて、硬質の第1保護膜を形成するための成分である。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する熱硬化性成分(B0)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 熱硬化性成分(B0)は、重量平均分子量が450以上であり、かつ分散度が10以下のものであれば特に限定されない。このような熱硬化性成分(B0)は、先に説明したとおり、本発明の第1保護膜形成用シートにおいて、その製造直後から、使用時に熱硬化性樹脂フィルム(熱硬化性樹脂層)の硬化を行うまでの間に、熱硬化性樹脂フィルムからこれに隣接する層(第1支持シート)への移行が十分に抑制される。
 熱硬化性成分(B0)の重量平均分子量は、20000以下であることが好ましく、15000以下であることがより好ましく、10000以下であることが特に好ましく、例えば、8000以下、6000以下、4000以下、及び2000以下のいずれかであってもよい。熱硬化性成分(B0)の重量平均分子量が前記上限値以下であることで、硬化度が高く、より優れた特性の第1保護膜を形成でき、また、熱硬化性樹脂フィルムのバンプ埋め込み性がより向上する。
 熱硬化性成分(B0)の分散度は、10以下であり、7以下であることが好ましく、5以下であることがより好ましい。熱硬化性成分(B0)の分散度が前記上限値以下であることで、硬化度が高い第1保護膜を形成でき、また、熱硬化性樹脂フィルムのバンプ埋め込み性がより向上する。
 熱硬化性成分(B0)の分散度の下限値は特に限定されないが、1であることが好ましい。
 熱硬化性成分(B0)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、シリコーン樹脂等が挙げられ、エポキシ系熱硬化性樹脂が好ましい。
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B01)及び熱硬化剤(B02)からなる。すなわち、エポキシ樹脂(B01)及び熱硬化剤(B02)はいずれも、重量平均分子量が450以上であり、かつ分散度が10以下のものであり、重量平均分子量及び分散度の好ましい数値範囲も、上述のとおりである。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
・エポキシ樹脂(B01)
 エポキシ樹脂(B01)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
 エポキシ樹脂(B01)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する。
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
 エポキシ樹脂(B01)のエポキシ当量は、100~1000g/eqであることが好ましく、200~900g/eqであることがより好ましく、例えば、300~800g/eqであってもよい。
 エポキシ樹脂(B01)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
・熱硬化剤(B02)
 熱硬化剤(B02)は、エポキシ樹脂(B01)に対する硬化剤として機能する。
 熱硬化剤(B02)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
 熱硬化剤(B02)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(B02)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
 熱硬化剤(B02)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B02)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B02)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
 熱硬化剤(B02)としてフェノール系硬化剤を用いる場合には、第1保護膜の第1支持シートからの剥離性が向上する点から、熱硬化剤(B02)は軟化点又はガラス転移温度が高いものが好ましい。
 熱硬化剤(B02)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層において、熱硬化剤(B02)の含有量は、エポキシ樹脂(B01)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、10~150質量部、及び20~100質量部のいずれかであってもよい。熱硬化剤(B02)の前記含有量が前記下限値以上であることで、熱硬化性樹脂層の硬化がより進行し易くなる。また、熱硬化剤(B02)の前記含有量が前記上限値以下であることで、熱硬化性樹脂層の吸湿率が低減されて、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層において、熱硬化性成分(B0)の含有量(例えば、エポキシ樹脂(B01)及び熱硬化剤(B02)の総含有量)は、重合体成分(A)の含有量100質量部に対して、50~1000質量部であることが好ましく、100~900質量部であることがより好ましく、150~800質量部であることが特に好ましい。熱硬化性成分(B0)の前記含有量がこのような範囲であることで、第1保護膜と第1支持シートとの接着力が抑制されて、第1支持シートの剥離性が向上する。
[硬化促進剤(C)]
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、樹脂層形成用組成物(III-1)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 硬化促進剤(C)を用いる場合、樹脂層形成用組成物(III-1)及び熱硬化性樹脂層において、硬化促進剤(C)の含有量は、熱硬化性成分(B0)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。また、硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂層中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。
[充填材(D)]
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、充填材(D)を含有していてもよい。熱硬化性樹脂層が充填材(D)を含有することにより、熱硬化性樹脂層を硬化して得られた第1保護膜は、熱膨張係数の調整が容易となる。そして、この熱膨張係数を第1保護膜の形成対象物に対して最適化することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。また、熱硬化性樹脂層が充填材(D)を含有することにより、第1保護膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 充填材(D)を用いる場合、樹脂層形成用組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂層の充填材(D)の含有量)は、5~80質量%であることが好ましく、7~60質量%であることがより好ましい。充填材(D)の含有量がこのような範囲であることで、上記の熱膨張係数の調整がより容易となる。
[カップリング剤(E)]
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂層の被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂層を硬化して得られた第1保護膜は、耐熱性を損なうことなく、耐水性が向上する。
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B0)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 カップリング剤(E)を用いる場合、樹脂層形成用組成物(III-1)及び熱硬化性樹脂層において、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B0)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂層の被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
[架橋剤(F)]
 重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂層の初期接着力及び凝集力を調節できる。
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、先に説明したとおりである。
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂層に架橋構造を簡便に導入できる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 架橋剤(F)を用いる場合、樹脂層形成用組成物(III-1)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。
[エネルギー線硬化性樹脂(G)]
 樹脂層形成用組成物(III-1)は、エネルギー線硬化性樹脂(G)を含有していてもよい。熱硬化性樹脂層は、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
 エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
 前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。
 前記エネルギー線硬化性化合物の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。
 重合に用いる前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)が含有するエネルギー線硬化性樹脂(G)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 エネルギー線硬化性樹脂(G)を用いる場合、樹脂層形成用組成物(III-1)のエネルギー線硬化性樹脂(G)の含有量は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。
[光重合開始剤(H)]
 樹脂層形成用組成物(III-1)は、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、光重合開始剤(H)を含有していてもよい。
 光重合開始剤(H)としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルスルフィド、テトラメチルチウラムモノスルフィド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-クロロアントラキノン等が挙げられる。
 樹脂層形成用組成物(III-1)が含有する光重合開始剤(H)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 光重合開始剤(H)を用いる場合、樹脂層形成用組成物(III-1)において、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。
[汎用添加剤(I)]
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、本発明の効果を損なわない範囲内において、汎用添加剤(I)を含有していてもよい。
 汎用添加剤(I)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、ゲッタリング剤等が挙げられる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する汎用添加剤(I)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層の汎用添加剤(I)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
[他の熱硬化性成分(B9)]
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層は、本発明の効果を損なわない範囲内において、上述の熱硬化性成分(B0)以外の他の熱硬化性成分(B9)を含有していてもよい。
 他の熱硬化性成分(B9)は、熱硬化性成分(B0)以外のものであれば特に限定されず、例えば、熱硬化性成分(B0)として挙げたもので、重量平均分子量及び分散度の少なくとも一方が、上述の条件を満たしていないもの等が挙げられる。例えば、エポキシ樹脂(B01)に該当しないエポキシ樹脂(B91)と、熱硬化剤(B02)に該当しない熱硬化剤(B92)と、のいずれか一方又は両方を構成成分とするエポキシ系熱硬化性樹脂は、他の熱硬化性成分(B9)として取り扱う。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層が含有する他の熱硬化性成分(B9)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)及び熱硬化性樹脂層において、熱硬化性成分(B0)及び他の熱硬化性成分(B9)の総含有量に対する、他の熱硬化性成分(B9)の含有量の割合は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましく、0質量%であってもよい。他の熱硬化性成分(B9)の前記含有量の割合が前記上限値以下であることで、熱硬化性成分(B0)を用いたことによる効果がより顕著に得られる。
[溶媒]
 樹脂層形成用組成物(III-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する樹脂層形成用組成物(III-1)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 樹脂層形成用組成物(III-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III-1)が含有する溶媒は、樹脂層形成用組成物(III-1)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
<<熱硬化性樹脂層形成用組成物の製造方法>>
 樹脂層形成用組成物(III-1)等の熱硬化性樹脂層形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◇第1保護膜形成用シートの製造方法
 前記第1保護膜形成用シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
 例えば、第1支持シートを製造するときに、第1基材上に第1粘着剤層又は第1中間層を積層する場合には、第1基材上に上述の第1粘着剤組成物又は第1中間層形成用組成物を塗工し、必要に応じて乾燥させることで、第1粘着剤層又は第1中間層を積層できる。
 一方、例えば、第1基材上に積層済みの第1粘着剤層の上に、さらに熱硬化性樹脂層を積層する場合には、第1粘着剤層上に熱硬化性樹脂層形成用組成物を塗工して、熱硬化性樹脂層を直接形成することが可能である。同様に、第1基材上に積層済みの第1中間層の上に、さらに第1粘着剤層を積層する場合には、第1中間層上に第1粘着剤組成物を塗工して、第1粘着剤層を直接形成することが可能である。このように、いずれかの組成物を用いて、連続する2層の積層構造を形成する場合には、前記組成物から形成された層の上に、さらに組成物を塗工して新たに層を形成することが可能である。ただし、これら2層のうちの後から積層する層は、別の剥離フィルム上に前記組成物を用いてあらかじめ形成しておき、この形成済みの層の前記剥離フィルムと接触している側とは反対側の露出面を、既に形成済みの残りの層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。
 例えば、第1基材上に第1粘着剤層が積層され、前記第1粘着剤層上に熱硬化性樹脂層が積層されてなる第1保護膜形成用シート(第1支持シートが第1基材及び第1粘着剤層の積層物である第1保護膜形成用シート)を製造する場合には、第1基材上に第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、第1基材上に第1粘着剤層を積層しておき、別途、剥離フィルム上に熱硬化性樹脂層形成用組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に熱硬化性樹脂層を形成しておき、この熱硬化性樹脂層の露出面を、第1基材上に積層済みの第1粘着剤層の露出面と貼り合わせて、熱硬化性樹脂層を第1粘着剤層上に積層することで、第1保護膜形成用シートが得られる。
 また、例えば、第1基材上に第1中間層が積層され、前記第1中間層上に第1粘着剤層が積層されてなる第1支持シートを製造する場合には、第1基材上に第1中間層形成用組成物を塗工し、必要に応じて乾燥させることで、第1基材上に第1中間層を積層しておき、別途、剥離フィルム上に第1粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に第1粘着剤層を形成しておき、この第1粘着剤層の露出面を、第1基材上に積層済みの第1中間層の露出面と貼り合わせて、第1粘着剤層を第1中間層上に積層することで、第1支持シートが得られる。この場合、例えば、さらに別途、剥離フィルム上に熱硬化性樹脂層形成用組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に熱硬化性樹脂層を形成しておき、この熱硬化性樹脂層の露出面を、第1中間層上に積層済みの第1粘着剤層の露出面と貼り合わせて、熱硬化性樹脂層を第1粘着剤層上に積層することで、第1保護膜形成用シートが得られる。
 なお、第1基材上に第1粘着剤層又は第1中間層を積層する場合には、上述の様に、第1基材上に第1粘着剤組成物又は第1中間層形成用組成物を塗工する方法に代えて、剥離フィルム上に第1粘着剤組成物又は第1中間層形成用組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に第1粘着剤層又は第1中間層を形成しておき、これら層の露出面を、第1基材の一方の表面と貼り合わせることで、第1粘着剤層又は第1中間層を第1基材上に積層してもよい。
 いずれの方法においても、剥離フィルムは目的とする積層構造を形成後の任意のタイミングで取り除けばよい。
 このように、第1保護膜形成用シートを構成する第1基材以外の層はいずれも、剥離フィルム上にあらかじめ形成しておき、目的とする層の表面に貼り合わせる方法で積層できるため、必要に応じてこのような工程を採用する層を適宜選択して、第1保護膜形成用シートを製造すればよい。
 なお、第1保護膜形成用シートは、通常、その第1支持シートとは反対側の最表層(例えば、熱硬化性樹脂層)の表面に剥離フィルムが貼り合わされた状態で保管される。したがって、この剥離フィルム(好ましくはその剥離処理面)上に、熱硬化性樹脂層形成用組成物等の、最表層を構成する層を形成するための組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に最表層を構成する層を形成しておき、この層の剥離フィルムと接触している側とは反対側の露出面上に残りの各層を上述のいずれかの方法で積層し、剥離フィルムを取り除かずに貼り合わせた状態のままとすることでも、第1保護膜形成用シートが得られる。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
 熱硬化性樹脂層形成用組成物の製造に用いた成分を以下に示す。
・重合体成分
 重合体成分(A)-1:アクリル酸ブチル(以下、「BA」と略記する)(55質量部)、アクリル酸メチル(以下、「MA」と略記する)(10質量部)、メタクリル酸グリシジル(以下、「GMA」と略記する)(20質量部)、アクリル酸-2-ヒドロキシエチル(以下、「HEA」と略記する)(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量800000、ガラス転移温度-28℃)。
 重合体成分(A)-2:ポリエステル(東洋紡社製「バイロン220」、熱可塑性樹脂)
・エポキシ樹脂
 エポキシ樹脂(B01)-1:多官能芳香族型エポキシ樹脂(日本化薬社製「EPPN-502H」、重量平均分子量1000、分散度1.5)
 エポキシ樹脂(B01)-2:芳香族型エポキシ樹脂(DIC社製「EXA-4850-150」、重量平均分子量900、分散度1.1)
 エポキシ樹脂(B01)-3:液状ビスフェノールA型エポキシ樹脂(三菱化学社製「JER834」、エポキシ当量250g/eq、重量平均分子量470、分散度2)
 エポキシ樹脂(B01)-4:ビスフェノールA型エポキシ樹脂(三菱化学社製「JER1055」、エポキシ当量800~900g/eq、重量平均分子量1600、分散度3.5)
 エポキシ樹脂(B91)-1:液状ビスフェノールA型エポキシ樹脂及びアクリルゴム微粒子の混合物(日本化薬社製「BPA328」、エポキシ樹脂の重量平均分子量400、エポキシ樹脂の分散度1.4)
・熱硬化剤
 熱硬化剤(B02)-1:ビフェニル型フェノール樹脂(明和化成社製「MEHC-7851-4H」、重量平均分子量10000、分散度3.8)
 熱硬化剤(B02)-2:ビフェニル型フェノール樹脂(明和化成社製「MEHC-7851-SS」、重量平均分子量900、分散度1.6)
 熱硬化剤(B02)-3:ビフェニル型フェノール樹脂(明和化成社製「MEHC-7851-H」、重量平均分子量1600、分散度2.5)
 熱硬化剤(B02)-4:ノボラック型フェノール樹脂(昭和電工社製「BRG-556」、重量平均分子量950、分散度1.9)
・硬化促進剤
 硬化促進剤(C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
・充填材
 充填材(D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「SC2050-MA」)
・カップリング剤
 カップリング剤(E)-1:3-グリシジルオキシプロピルトリメトキシシラン(信越シリコーン社製「KBM403」)
 カップリング剤(E)-2:3-グリシジルオキシプロピルトリエトキシシラン(信越シリコーン社製「KBE403」)
 カップリング剤(E)-3:エポキシ基を有するオリゴマー型シランカップリング剤(信越シリコーン社製「X-41-1056」)
・光重合開始剤
 光重合開始剤(H)-1:1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製「IRGACURE 184」)
・エネルギー線硬化性化合物
 エネルギー線硬化性化合物(J)-1:アクリル酸ジシクロペンタニル(日本化薬社製「KAYARAD R-684」、紫外線硬化性化合物)
[製造例1]
(粘着性樹脂(I-2a)の製造)
 アクリル酸ラウリル(以下、「LA」と略記する)(80質量部)、HEA(20質量部)を共重合体の原料として、重合反応を行うことで、アクリル系重合体を得た。各成分の配合比を表1に示す。
 このアクリル系重合体に、2-メタクリロイルオキシエチルイソシアネート(以下、「MOI」と略記する)(22質量部、HEAに対して約80モル%)、触媒としてジブチルスズラウリレート(以下、「DBTL」と略記する)(0.13質量部)を加え、空気気流中において23℃で12時間付加反応を行うことで、目的とする粘着性樹脂(I-2a)を得た。各成分の配合比を表1に示す。
[実施例1]
<第1保護膜形成用シートの製造>
(熱硬化性樹脂層形成用組成物の製造)
 重合体成分(A)-1、重合体成分(A)-2、エポキシ樹脂(B01)-1、エポキシ樹脂(B01)-2、熱硬化剤(B02)-1、硬化促進剤(C)-1、充填材(D)-1、カップリング剤(E)-1、カップリング剤(E)-2、及びカップリング剤(E)-3を、溶媒以外の全ての成分の総含有量に対する含有量の割合が表2に示す値(表2中において「含有量の割合」と記載している)となるようにメチルエチルケトンに溶解させて、23℃で撹拌することで、熱硬化性樹脂層形成用組成物として、固形分濃度が50質量%である樹脂層形成用組成物(III-1)(メチルエチルケトン溶液)を得た。なお、表2中の含有成分の欄の「-」との記載は、熱硬化性樹脂層形成用組成物がその成分を含有していないことを意味する。
(第1粘着剤組成物の製造)
 製造例1で得られた粘着性樹脂(I-2a)(100質量部)に対して、光重合開始剤(チバ・スペシャルティー・ケミカルズ社製「イルガキュア651」、ベンジルジメチルケタール)(3質量部)、反応遅延剤としてアセチルアセトン(1質量部)を加えてよく撹拌し、さらにここへイソシアネート系架橋剤として、トリメチロールプロパンのトリレンジイソシアネート三量体付加物(日本ポリウレタン社製「コロネートHL」)(7.5質量部、粘着性樹脂(I-2a)中の残存水酸基1モルに対して、有しているイソシアネート基が1モルとなる量)を加えて23℃で撹拌することで、第1粘着剤組成物として、固形分濃度が25質量%である第1粘着剤組成物(I-2)を得た。なお、この「第1粘着剤組成物の製造」における配合部数は、すべて固形分換算値である。各成分の配合比を表1に示す。
(第1保護膜形成用シートの製造)
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の前記剥離処理面に、上記で得られた第1粘着剤組成物を塗工し、120℃で2分間加熱乾燥させることにより、厚さ10μmの第1粘着剤層を形成した。
 次いで、この第1粘着剤層の露出面に、厚さ120μmのエチレン-酢酸ビニル共重合体フィルムを貼り合せることにより、第1支持シートを得た。
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の前記剥離処理面に、上記で得られた熱硬化性樹脂層形成用組成物を塗工し、100℃で2分間乾燥させることにより、厚さ7μmの熱硬化性樹脂フィルム(熱硬化性樹脂層)を作製した。
 次いで、上記で得られた第1支持シートの第1粘着剤層から剥離フィルムを取り除き、この第1粘着剤層の露出面に、上記で得られた熱硬化性樹脂フィルムの露出面を貼り合わせて、第1基材、第1粘着剤層、熱硬化性樹脂層及び剥離フィルムが、これらの厚さ方向においてこの順に積層されてなる第1保護膜形成用シートを得た。
<第1保護膜形成用シートの評価>
(熱硬化性成分の移行)
 第1保護膜形成用シートを23℃で1週間保存した後、熱硬化性樹脂層を剥離させ、露出した第1粘着剤層の表面について、全反射測定法(ATR法)を適用して赤外分光法(IR)により分析を行った。分析機器としては、パーキンエルマー社製「spectrum one」を用いた。そして、芳香環に特有な1510cm-1のピークの強度の増加の有無から、熱硬化性樹脂層から第1粘着剤層に移行した熱硬化性成分、すなわち、エポキシ樹脂及び熱硬化剤(フェノール樹脂)の有無を確認した。そして、1510cm-1のピークが確認されなかった場合を○、確認された場合を×とした。結果を表2に示す。
<第1保護膜形成用シートの製造及び評価>
[実施例2~3、比較例1]
 熱硬化性樹脂層形成用組成物の含有成分及び含有量を表2に示すとおりとした点以外は、実施例1と同様に、第1保護膜形成用シートを製造及び評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記結果から明らかなように、熱硬化性成分として、重量平均分子量及び分散度がいずれも上述の範囲内にあるものを用いた実施例1~3の第1保護膜形成用シートにおいては、熱硬化性樹脂層から第1粘着剤層への熱硬化性成分の移行が抑制されていた。
 これに対して、熱硬化性成分として、重量平均分子量及び分散度がいずれも上述の範囲外にあるものを用いた比較例1の第1保護膜形成用シートにおいては、上記の熱硬化性成分の移行が抑制されていなかった。
 本発明は、フリップチップ実装方法で使用される、接続パッド部にバンプを有する半導体チップ等の製造に利用可能である。
 1,2,3・・・第1保護膜形成用シート、11・・・第1基材、11a・・・第1基材の表面、12・・・熱硬化性樹脂層(熱硬化性樹脂フィルム)、13・・・第1粘着剤層、13a・・・第1粘着剤層の表面、14・・・第1中間層、101,102,103・・・第1支持シート、101a,102a,103a・・・第1支持シートの表面

Claims (3)

  1.  半導体ウエハのバンプを有する表面に貼付し、熱硬化させることによって、前記表面に第1保護膜を形成するための熱硬化性樹脂フィルムであって、
     前記熱硬化性樹脂フィルムは、重合体成分(A)及び熱硬化性成分(B0)を含有し、
     前記熱硬化性成分(B0)は、重量平均分子量が450以上であり、かつ分散度が10以下のものである、熱硬化性樹脂フィルム。
  2.  前記熱硬化性成分(B0)が、エポキシ樹脂(B01)及び熱硬化剤(B02)からなる、請求項1に記載の熱硬化性樹脂フィルム。
  3.  請求項1又は2に記載の熱硬化性樹脂フィルムを、第1支持シートの一方の表面上に備えた、第1保護膜形成用シート。
PCT/JP2016/079255 2015-10-08 2016-10-03 熱硬化性樹脂フィルム及び第1保護膜形成用シート WO2017061364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017544481A JP6821580B2 (ja) 2015-10-08 2016-10-03 熱硬化性樹脂フィルム及び第1保護膜形成用シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015200365 2015-10-08
JP2015-200365 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017061364A1 true WO2017061364A1 (ja) 2017-04-13

Family

ID=58487580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079255 WO2017061364A1 (ja) 2015-10-08 2016-10-03 熱硬化性樹脂フィルム及び第1保護膜形成用シート

Country Status (3)

Country Link
JP (1) JP6821580B2 (ja)
TW (1) TWI711537B (ja)
WO (1) WO2017061364A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195761A1 (ja) * 2019-03-27 2020-10-01 リンテック株式会社 熱硬化性樹脂フィルム、第1保護膜形成用シート、キット、及び第1保護膜付きワーク加工物の製造方法
JP2021195451A (ja) * 2020-06-15 2021-12-27 信越化学工業株式会社 エポキシ樹脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371262A (ja) * 2001-06-14 2002-12-26 Nitto Denko Corp ウエハ加工用粘着シート用粘着剤およびウエハ加工用粘着シート
JP2013075989A (ja) * 2011-09-30 2013-04-25 Shin-Etsu Chemical Co Ltd 仮接着材組成物及びこれを用いた薄型ウエハの製造方法
JP2014070191A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 半導体装置製造用仮接着剤、並びに、それを用いた接着性支持体、及び、半導体装置の製造方法。
JP2015164197A (ja) * 2015-03-31 2015-09-10 積水化学工業株式会社 バックグラインド−アンダーフィル一体型テープ、及び、半導体チップの実装方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371262A (ja) * 2001-06-14 2002-12-26 Nitto Denko Corp ウエハ加工用粘着シート用粘着剤およびウエハ加工用粘着シート
JP2013075989A (ja) * 2011-09-30 2013-04-25 Shin-Etsu Chemical Co Ltd 仮接着材組成物及びこれを用いた薄型ウエハの製造方法
JP2014070191A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 半導体装置製造用仮接着剤、並びに、それを用いた接着性支持体、及び、半導体装置の製造方法。
JP2015164197A (ja) * 2015-03-31 2015-09-10 積水化学工業株式会社 バックグラインド−アンダーフィル一体型テープ、及び、半導体チップの実装方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195761A1 (ja) * 2019-03-27 2020-10-01 リンテック株式会社 熱硬化性樹脂フィルム、第1保護膜形成用シート、キット、及び第1保護膜付きワーク加工物の製造方法
JP7451495B2 (ja) 2019-03-27 2024-03-18 リンテック株式会社 熱硬化性樹脂フィルム、第1保護膜形成用シート、キット、及び第1保護膜付きワーク加工物の製造方法
JP2021195451A (ja) * 2020-06-15 2021-12-27 信越化学工業株式会社 エポキシ樹脂組成物
JP7337462B2 (ja) 2020-06-15 2023-09-04 信越化学工業株式会社 エポキシ樹脂組成物

Also Published As

Publication number Publication date
JPWO2017061364A1 (ja) 2018-07-26
JP6821580B2 (ja) 2021-01-27
TWI711537B (zh) 2020-12-01
TW201720650A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
JP6213757B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
CN108138012B (zh) 第1保护膜形成用片、第1保护膜形成方法及半导体芯片的制造方法
JP6230761B2 (ja) 第1保護膜形成用シート
JP6659308B2 (ja) 第1保護膜形成用シート
JP6209803B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6273542B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
CN108140622B (zh) 热固性树脂膜和第2保护膜形成膜的套件、及其形成方法
JP2017092461A (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
WO2017061364A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
JP6381828B2 (ja) 熱硬化性樹脂フィルム、第1保護膜形成用シート及び第1保護膜の形成方法
JP6229222B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
CN108352365B (zh) 保护膜形成用片
JP6206828B1 (ja) 硬化性樹脂フィルム、第1保護膜形成用シート及びバンプ形成面保護方法
TWI750140B (zh) 晶圓保護方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853518

Country of ref document: EP

Kind code of ref document: A1