WO2017002434A1 - 多層セラミック基板および多層セラミック基板の製造方法 - Google Patents

多層セラミック基板および多層セラミック基板の製造方法 Download PDF

Info

Publication number
WO2017002434A1
WO2017002434A1 PCT/JP2016/062449 JP2016062449W WO2017002434A1 WO 2017002434 A1 WO2017002434 A1 WO 2017002434A1 JP 2016062449 W JP2016062449 W JP 2016062449W WO 2017002434 A1 WO2017002434 A1 WO 2017002434A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
layer
glass
laminate
ceramic layer
Prior art date
Application number
PCT/JP2016/062449
Other languages
English (en)
French (fr)
Inventor
知樹 加藤
坂本 禎章
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017526204A priority Critical patent/JP6402829B2/ja
Priority to CN201680033011.7A priority patent/CN107637185B/zh
Publication of WO2017002434A1 publication Critical patent/WO2017002434A1/ja
Priority to US15/814,676 priority patent/US10626054B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/702Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the constraining layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/017Glass ceramic coating, e.g. formed on inorganic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Definitions

  • the present invention relates to a multilayer ceramic substrate. More specifically, the glass component is sufficiently contained in the vicinity of the upper and lower main surfaces, cracks are hardly generated, the bending strength is high, and the electrode bonding strength between the substrate and the surface electrode is high. It relates to a high multilayer ceramic substrate.
  • the present invention also relates to a method for manufacturing a multilayer ceramic substrate suitable for manufacturing the multilayer ceramic substrate of the present invention described above.
  • Low temperature sintered ceramic (LTCC: Low Temperature Ceramic) material is widely used as a multilayer ceramic substrate material. If low-temperature sintered ceramics are used, low-melting metals such as silver and copper, which are relatively inexpensive and have low specific resistance, can be used for electrode materials such as internal electrodes, surface electrodes, and via electrodes, and fired simultaneously. This is because a multilayer ceramic substrate having excellent high frequency characteristics can be manufactured at low cost.
  • Patent Document 1 Japanese Patent No. 5,533,674 discloses a main component containing 48 to 75 wt% SiO 2 , 20 to 40 wt% BaO, 5 to 20 wt% Al 2 O 3 , and a main component A low-temperature-sintered ceramic material containing 2.5 to 5.5 parts by weight of MnO as a sintering aid component and other subcomponents for 100 parts by weight is disclosed.
  • the low-temperature sintered ceramic material has an advantage that it can be fired simultaneously with a low melting point metal such as silver or copper, but also has a problem that the substrate is greatly contracted in the plane direction during firing. ing.
  • Patent Document 2 Patent No. 5024064
  • a constraining layer is inserted between each layer of a ceramic layer made of a low-temperature sintered ceramic material to form a laminate, By firing, the shrinkage in the plane direction of the substrate is suppressed.
  • Al 2 O 3 alumina
  • ZrO 2 zirconia
  • the constraining layer may contain a glass component (see paragraph (0058) of Patent Document 2). The constraining layer remains in the laminated body even after the multilayer ceramic substrate is completed.
  • the method for manufacturing a multilayer ceramic substrate disclosed in Patent Document 2 shrinkage in the planar direction of the substrate can be suppressed.
  • the produced multilayer ceramic substrate has a structure in which a ceramic layer and a constraining layer made of two kinds of materials having different shrinkage behaviors are laminated over the entire thickness direction of the substrate, the amount of warping of the substrate is large. There were problems that the bending strength was low and the electrode bonding strength between the substrate and the surface electrode was low.
  • Patent Document 3 Japanese Patent Laid-Open No. 10-84056 discloses that the laminate itself constituting the multilayer ceramic substrate includes a low-temperature sintered ceramic layer. Although it is formed, a method is disclosed in which the laminate is fired by being sandwiched by a constraining layer from above and below and applying pressure. For example, it is described that MgO, Al 2 O 3 , ZrO 2 or the like is used for the constraining layer (see paragraph (0020) of Patent Document 3). The constraining layer is removed from the surface of the multilayer ceramic substrate after firing.
  • the multilayer ceramic substrate produced by the method disclosed in Patent Document 3 has a problem that the bending strength is low and the electrode bonding strength with the surface electrode is low due to another reason.
  • a constraining layer that sandwiches and pressurizes the laminated body from the top and bottom during firing sucks the glass component from the laminated body formed of the low-temperature sintered ceramic material.
  • the glass component is sucked from the upper and lower main surfaces of the laminate, the glass component is insufficient in the vicinity of the upper and lower main surfaces of the laminate, the compression stress cannot be obtained, and cracks are easily generated.
  • the bending strength was lowered and the electrode bonding strength between the substrate and the surface electrode was lowered.
  • the present invention has been made to solve the above-described conventional problems, and as a means for the multilayer ceramic substrate of the present invention, internal electrodes are arranged between predetermined layers, and a plurality of ceramic layers are laminated.
  • a main component containing 5 to 20% by weight of Al and a subcomponent containing at least 2.5 to 20 parts by weight of Mn in terms of MnO with respect to 50 parts by weight of the main component It is made of a ceramic material, and the laminated body further includes a first glass ceramic layer having at least a part of thickness within the laminated body and within 100 ⁇ m from both main surfaces. .
  • the inside of a laminated body is the meaning except the surface part of the main surface of a laminated body.
  • 100 micrometers is the distance in the completed laminated body (laminated body after baking). The thickness of the laminate is calculated from the total thickness of the ceramic layer and the glass ceramic layer, excluding the extremely small thickness of the internal electrode.
  • the number of first glass ceramic layers is preferably 6 or less. This is because if the total number of glass ceramic layers in the laminate exceeds 6, the insulation resistance of the ceramic layers may be lowered.
  • the number of layers of the first glass ceramic layer can be, for example, one layer or two layers.
  • the laminate is warped due to the lamination of the ceramic layer and the glass ceramic layer having different shrinkage behavior.
  • the bending strength does not decrease, and the electrode bonding strength between the substrate and the surface electrode does not decrease.
  • the laminated body may not include a glass ceramic layer that is separated from one main surface by more than 100 ⁇ m and that has a thickness of more than 100 ⁇ m from the other main surface.
  • the substrate since the glass ceramic layer does not exist in the central part of the laminate, the substrate is warped or the bending strength is increased due to the lamination of the ceramic layer and the glass ceramic layer having different shrinkage behavior. Does not decrease, and the electrode bonding strength between the substrate and the surface electrode does not decrease.
  • the laminate may include a second glass ceramic layer that has a thickness that is greater than 100 ⁇ m from one main surface and that is greater than 100 ⁇ m from the other main surface.
  • the total number of the first glass ceramic layer and the second glass ceramic layer is preferably 6 or less. This is because if the total number of glass ceramic layers in the laminate exceeds 6, the insulation resistance of the ceramic layers may be lowered.
  • the glass ceramic layer is composed of two layers, a first glass ceramic layer close to one main surface of the laminate and a second glass ceramic layer close to the other main surface of the laminate, and one of the laminates
  • the glass concentration of the ceramic layer laminated between the main surface and the first glass ceramic layer, and the ceramic layer laminated between the other main surface of the laminate and the second glass ceramic layer is The glass concentration of the ceramic layer laminated between the first glass ceramic layer and the second glass ceramic layer can be higher.
  • the ceramic layer near the upper and lower main surfaces of the substrate sufficiently contains a glass component, the thermal expansion coefficient near the upper and lower main surfaces of the substrate is lower than the thermal expansion coefficient inside the substrate. .
  • compressive stress acts on each of the upper and lower main surfaces of the substrate, cracks are hardly generated in the substrate, the bending strength of the substrate is increased, and the electrode bonding strength between the substrate and the surface electrode is increased.
  • the method for manufacturing a multilayer ceramic substrate of the present invention includes a laminate in which a plurality of ceramic layers having internal electrodes arranged between predetermined layers are laminated, and the ceramic layer is 48 to 75 weight in terms of SiO 2. % Of Si, BaO in terms of 20 to 40% by weight of Ba and Al 2 O 3 in terms of 5 to 20% by weight of Al, and at least 100 parts by weight of the main component, A ceramic material containing 2.5 to 20 parts by weight of a Mn-containing subcomponent in terms of MnO, and the laminate further includes an inner portion of the laminate and within 100 ⁇ m from both main surfaces.
  • a method of manufacturing a multilayer ceramic substrate in which at least a part of the thickness is present and the first glass ceramic layer is laminated the step of preparing a ceramic green sheet for forming the ceramic layer ( ), A step (b) of forming a glass ceramic layer by applying a glass ceramic slurry to a main surface of a predetermined ceramic green sheet, a ceramic green sheet in which the glass ceramic layer is not formed, and a glass ceramic layer
  • the ceramic green sheets including the processed ones are laminated in a predetermined order to produce a green laminate, and a pair of main surfaces of the green laminate obtained in the step (d)
  • the green laminate is fired in a state where pressure is applied to the green laminate, And Seisuru step (f), after step
  • the thickness is preferably 10 ⁇ m or more. It is because there exists a possibility that a crack may generate
  • the glass ceramic layer before firing preferably has a thickness of 1 ⁇ m or more and 30 ⁇ m or less. It is because there exists a possibility that the supply amount of a glass component may run short that it is less than 1 micrometer. Further, if it exceeds 30 ⁇ m, the ratio of the thickness of the glass ceramic layer 3 to the total thickness of the laminate 1 becomes too large, and the bending strength and the electrode bonding strength may be lowered.
  • the glass component is supplied from the first glass ceramic layer, and the ceramic layer near the upper and lower main surfaces of the substrate sufficiently contains the glass component.
  • the expansion coefficient is lower than the thermal expansion coefficient inside the substrate.
  • the glass component can be supplied from the first glass ceramic layer, and the glass component can be sufficiently contained in the ceramic layer near the upper and lower main surfaces of the substrate.
  • the manufactured multilayer ceramic substrate has a lower coefficient of thermal expansion near the upper and lower main surfaces of the substrate than the coefficient of thermal expansion inside the substrate.
  • the multilayer ceramic substrate manufactured by the method for manufacturing a multilayer ceramic substrate of the present invention is subject to compressive stress on each of the upper and lower main surfaces of the substrate, hardly cracks in the substrate, and has high bending strength.
  • the electrode bonding strength between the substrate and the surface electrode is high.
  • FIG. 1 is a cross-sectional view showing a ceramic multilayer substrate 100 according to a first embodiment. 1 is a cross-sectional view showing an electronic module 200 manufactured using a ceramic multilayer substrate 100.
  • FIG. FIG. 5 is a cross-sectional view showing steps performed in an example of a method for manufacturing ceramic multilayer substrate 100.
  • FIG. 4 is a continuation of FIG. 3, and is a cross-sectional view showing a process performed in an example of the method for manufacturing the ceramic multilayer substrate 100.
  • FIG. 5 is a continuation of FIG. 4 and is a cross-sectional view showing a process performed in an example of the method for manufacturing the ceramic multilayer substrate 100.
  • 6A and 6B are cross-sectional views showing steps performed in an example of the method for manufacturing the ceramic multilayer substrate 100.
  • FIG. 1 shows a multilayer ceramic substrate 100 according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the multilayer ceramic substrate 100.
  • the multilayer ceramic substrate 100 includes a laminate 1.
  • the laminated body 1 has a structure in which a plurality of ceramic layers 2, two glass ceramic layers 3a and 3b, and a plurality of internal electrodes 4 are laminated.
  • Each ceramic layer 2 includes at least 48 to 75% by weight of SiO 2 , 20 to 40% by weight of BaO, 5 to 20% by weight of Al 2 O 3 , and at least 100 parts by weight of the main component.
  • a ceramic green sheet is produced using a ceramic material containing 2.5 to 20 parts by weight of a subcomponent containing MnO, and fired.
  • An internal electrode 4 having a predetermined shape is laminated between predetermined layers of the ceramic layer 2.
  • the internal electrode 4 is not laminated between the ceramic layer 2 and the glass ceramic layers 3a, 3b, but the internal electrode 4 is laminated between the ceramic layer 2 and the glass ceramic layers 3a, 3b. You may do it.
  • via electrodes 5 are formed at predetermined positions so as to penetrate the front and back surfaces as necessary.
  • the via electrode 5 is for electrical connection between the front and back of the ceramic layer 2.
  • the glass ceramic layer 3a is laminated so that the entire thickness or a part of the thickness exists within 100 ⁇ m from the upper main surface of the laminate 1.
  • the glass ceramic layer 3b is laminated so that the entire thickness or a part of the thickness exists within 100 ⁇ m from the lower main surface of the laminate 1.
  • the distance from the main surface to the glass ceramic layers 3a and 3b is a distance after the laminate 1 is fired.
  • the glass ceramic layers 3a and 3b include, for example, 60 to 60 parts by weight of a glass component mainly composed of BaO—Al 2 O 3 —SiO 2 —B 2 O 3 —CaO with respect to 40 to 60 parts by weight of Al 2 O 3 .
  • a glass ceramic slurry is prepared using a material containing 40 parts by weight, and is applied to the ceramic green sheet described above and fired.
  • the glass ceramic layers 3a and 3b may be prepared by firing a glass ceramic green sheet using a glass ceramic slurry instead of applying the glass ceramic slurry to the ceramic green sheet.
  • the glass-ceramic layer 3a is laminated
  • the glass ceramic layer 3b is laminated in order to supply a glass component to the ceramic layer 2 laminated below the laminate 1 itself so that the glass component is sufficiently contained in the vicinity of the upper main surface of the laminate 1. Yes.
  • each of the glass ceramic layers 3a and 3b has a thickness of 100 ⁇ m from the main surface of any one of the laminates 1 or a part of the thickness. Are stacked.
  • the reason why the thickness is within 100 ⁇ m is that if the layers are separated by more than 100 ⁇ m, the glass component may not be sufficiently supplied to the vicinity of the main surface of the laminate 1.
  • the glass ceramic layer 3a is laminated near the upper main surface and the glass ceramic layer 3b is laminated near the lower main surface, but the thickness of the laminate 1 is more than about 200 ⁇ m. When it is small, the glass ceramic layer can be made into one layer.
  • via electrodes 5 are formed at predetermined positions so as to penetrate the front and back surfaces as necessary.
  • the internal electrode 4, the via electrode 5, and the surface electrode 6 are made of, for example, a fired conductive paste mainly composed of a low melting point metal such as silver or copper that can be fired simultaneously with the ceramic layer 2. Since low melting point metals such as silver and copper are relatively inexpensive and have a small specific resistance, a multilayer ceramic substrate having excellent high frequency characteristics can be manufactured at low cost by using these metals. However, the low melting point metal does not necessarily have to be used for the internal electrode 4, the via electrode 5, and the surface electrode 6, and a high melting point metal may be used.
  • the laminate 1 necessary electrical wiring is formed by internal electrodes 4 and via electrodes 5. Further, the internal electrode 4 and the via electrode 5 may form an inductor or a capacitor. In some cases, a resistor film is provided between the ceramic layers 2 in the multilayer body 1 or an electronic component element is incorporated in the multilayer body 1.
  • an electronic component module can be manufactured.
  • FIG. 2 shows an electronic component module 200 using the multilayer ceramic substrate 100 as an example. However, FIG. 2 is a cross-sectional view of the electronic component module 200.
  • the electronic component module 200 has a plurality of electronic components 7 mounted on the surface electrode 6 formed on the upper main surface of the multilayer ceramic substrate 100.
  • the surface electrode 6 formed on the lower main surface of the multilayer ceramic substrate 100 is used as an electrode when the electronic component module 200 is mounted on a substrate or the like.
  • FIG. 3 to 7 show an example of a method for manufacturing the multilayer ceramic substrate 100.
  • each powder of SiO 2 , BaCO 3 , Al 2 O 3 , Zr 2 O, MnCO 3 , and CeO 2 was prepared as a starting material.
  • SiO 2 is 57.0 wt%
  • BaO is 31.0 wt%
  • Al 2 O 3 is 12 0.04% by weight
  • SiO 2 was prepared so as to be 0.5 part by weight.
  • the obtained raw material mixed powder was calcined in the atmosphere at a temperature of 840 ° C. for 2 hours to obtain a calcined powder.
  • MnO is 4.0 parts by weight with respect to a total of 100 parts by weight of SiO 2 , BaO, and Al 2 O 3.
  • CeO 2 was prepared so as to be 3.0 parts by weight, and then wet mixed using an organic solvent in a ball mill to obtain a wet mixture.
  • a ceramic green sheet having a thickness of 20 ⁇ m was produced by the doctor blade method using the obtained ceramic slurry. Subsequently, the obtained ceramic green sheet was cut into a desired size, and a plurality of ceramic green sheets 12 were obtained. In this embodiment, 50 ceramic green sheets were obtained.
  • glass powder mainly composed of Al 2 O 3 powder and BaO—Al 2 O 3 —SiO 2 —B 2 O 3 —CaO was prepared.
  • a glass ceramic layer 13a or 13b having a thickness of 4 ⁇ m was formed on the entire surface of two main surfaces of the ceramic green sheet 12 by using a glass ceramic slurry by a doctor blade method.
  • FIG. 3 shows a ceramic green sheet 12 on which a glass ceramic layer is not formed and a ceramic green sheet 12 on which a glass ceramic layer 13a or 13b is formed, in the order of lamination in an unfired laminate 11 described later.
  • the constrained layer green sheet 18 to be described later is excluded (in the following description, the order of the stacked layers is described excluding the constrained layer green sheet 18), and the inside of the unfired laminate 11.
  • a plain ceramic green sheet 12 is laminated on the top layer, the third layer from the top to the third layer from the bottom, and the bottom layer. Then, the ceramic green sheet 12 having the glass ceramic layer 13a formed on the top surface is laminated on the second layer from the top, and the ceramic green sheet 12 having the glass ceramic layer 13b formed on the bottom surface is laminated on the second layer from the bottom. Is done.
  • the total number of ceramic green sheets 12 is 50. However, in FIG. 3, the number of ceramic green sheets 12 is omitted for the sake of clarity (the same applies to other drawings).
  • holes 15 for forming the via electrodes 5 are formed in the ceramic green sheet 12 on which the glass ceramic layer is not formed and the ceramic green sheet 12 on which the glass ceramic layers 13a and 13b are formed. It was formed using a laser processing machine, a punching machine or the like.
  • a conductive paste containing Cu powder as a main component was prepared.
  • the conductive paste may contain Ag as a main component instead of Cu.
  • a conductive paste was applied to the ceramic green sheet 12 on which the glass ceramic layer was not formed and the ceramic green sheet 12 on which the glass ceramic layers 13a and 13b were formed by a screen printing method or the like. .
  • the conductive paste film 16 that becomes the surface electrode 6 after firing is formed in a desired shape on the upper main surface of the ceramic green sheet 12 laminated in the uppermost layer in the unfired laminate 11, and the ceramic green sheet
  • the conductive paste 25 for forming the via electrode 5 was filled in the hole 15 formed in the hole 12.
  • a conductive paste film 16 that becomes the surface electrode 6 after firing is formed on the lower main surface of the ceramic green sheet 12 disposed in the lowest layer in the unfired laminate 11, and is formed on the ceramic green sheet 12.
  • the conductive paste 25 for forming the via electrode 5 was filled in the hole 15.
  • a certain constraining layer green sheet 18, 18 was laminated in a desired order and pressed to produce an unfired laminate 11. In this state, the unfired laminate 11 was pressure-bonded from above and below to form a pressure-bonded body.
  • ceramic green sheets mainly composed of ZrO 2 , Al 2 O 3 , MgO, or the like can be used as the constraining layer green sheets 18 and 18.
  • the unfired laminate 11 was further sandwiched by a pair of pressure jigs 19 and 19 from above and below.
  • the unfired laminated body 11 was fired in a state where pressure was applied to the constraining layer green sheets 18 and 18 by the pressure jigs 19 and 19.
  • the applied pressure was 10 kgf / cm 2 .
  • the firing atmosphere was reducing.
  • the firing temperature was 980 ° C.
  • the uppermost layer is formed from the glass ceramic layer 13a. Since the glass component is supplied to the ceramic green sheet 12 laminated on the glass and the glass component is supplied from the glass ceramic layer 13b to the ceramic green sheet 12 laminated on the lowermost layer, the ceramic green laminated on the uppermost layer and the lowermost layer The sheet 12 is fired in a state of sufficiently containing a glass component.
  • the ceramic green sheet 12 having a thickness of 20 ⁇ m became a ceramic layer 2 having a thickness of 10 ⁇ m.
  • the glass ceramic layers 13a and 13b having a thickness of 4 ⁇ m became glass ceramic layers 3a and 3b having a thickness of 2 ⁇ m by firing.
  • a nickel plated film as a first layer and an Au plated film as a second layer are formed on the surfaces of the surface electrodes 6 formed on both main surfaces of the laminate 1 by electrolytic plating, and a ceramic multilayer The substrate 100 was completed.
  • the glass component is supplied from the glass ceramic layers 3a and 3b (glass ceramic layers 13a and 13b). Contains. Therefore, the thermal expansion coefficient in the vicinity of the upper and lower main surfaces of the multilayer ceramic substrate 100 is lower than the thermal expansion coefficient inside the multilayer body 1. As a result, since compressive stress acts on the upper and lower main surfaces of the multilayer ceramic substrate 100, the multilayer ceramic substrate 100 is less likely to crack, has a high bending strength, and has a high electrode bonding strength with the surface electrode. .
  • two glass ceramic layers 3a and 3b are formed in the laminate 1, but the number of glass ceramic layers is arbitrary, and the thickness of the laminate 1 is smaller than about 100 ⁇ m. Is a single glass ceramic layer, and it is also possible to supply glass components to both principal surface sides of the laminate 1.
  • the material and thickness of the glass ceramic layers 3a and 3b are arbitrary, and are not limited to the above-described contents.
  • the number and thickness of the ceramic layer 2 are arbitrary and are not limited to the above-described contents.
  • second glass ceramic layer may be laminated between the glass ceramic layer 3a and the glass ceramic layer 3b, but the total number of glass ceramic layers in the laminate 1 is not limited. Is preferably within 6 layers. This is because if the number of layers exceeds 6, the insulation resistance of the ceramic layer may decrease.
  • Example 1 The multilayer ceramic substrate according to Example 1 and the multilayer ceramic substrate according to Comparative Example 1 were produced in the following manner.
  • a plurality of ceramic green sheets 12, a glass ceramic slurry, and a plurality of constraining layer green sheets 18 used in the embodiment were prepared.
  • the ceramic green sheet 12 had a length of 50 mm, a width of 50 mm, and a thickness of 20 ⁇ m.
  • the constraining layer green sheet 18 had a length of 50 mm, a width of 50 mm, and a thickness of 100 ⁇ m.
  • a glass ceramic slurry was applied to the entire surface of one main surface of the ceramic green sheet 12 by a doctor blade method to form a glass ceramic layer 13 having a thickness of 4 ⁇ m.
  • a constraining layer green sheet 18 was laminated on the bottom layer. Next, 49 plain ceramic green sheets 12 were laminated thereon. Next, the ceramic green sheet 12 with the glass ceramic layer 13 formed thereon was laminated so that the glass ceramic layer 13 was on the lower side. Finally, a constraining layer green sheet 18 was laminated thereon to produce an unfired laminate according to Example 1.
  • Example 1 the unfired laminate according to Example 1 was fired under the same conditions as in the embodiment while being pressed from above and below, to obtain a multilayer ceramic substrate according to Example 1.
  • a constraining layer green sheet 18 was laminated on the lowermost layer. Next, 50 plain ceramic green sheets 12 were laminated thereon. Finally, a constraining layer green sheet 18 was laminated thereon, and an unfired laminated body according to Comparative Example 1 was produced.
  • the unsintered laminate according to Comparative Example 1 was fired under the same conditions as those in Embodiment 1 in a state where the unsintered laminate was pressed from above and below, and a multilayer ceramic substrate according to Comparative Example 1 was obtained.
  • FIG. 8 shows multilayer ceramic substrates according to Example 1 and Comparative Example 2, respectively. However, FIG. 8 is a fragmentary cross-sectional view showing only the upper layer portion of each multilayer ceramic substrate.
  • the constraining layer (constraining layer green sheet 18) is the uppermost layer
  • the ceramic layer 2 is the second layer from the top
  • the glass ceramic layer 3 is the third layer from the top
  • the top 4 is the top.
  • a plurality of ceramic layers 2 are laminated below the first layer.
  • a constraining layer (constraining layer green sheet 18) is laminated on the uppermost layer, and a plurality of ceramic layers 2 are laminated on the second and lower layers from the top.
  • Table 1 shows the strength ratio of CaO at point X, point Y, and point Z. (The intensity of point X is 1.0, and the intensity of point Y and point Z is shown as a ratio.)
  • the CaO intensity at point Y is lower than the CaO intensity at point X. Moreover, the CaO intensity
  • the uppermost constraining layer green sheet 18 absorbs the glass component from the second ceramic green sheet 12 from the top. Therefore, it is considered that the glass component is supplied from the third glass ceramic layer 13 from the top to the second ceramic green sheet 12 from the top. Therefore, when the glass ceramic green sheet 12 sufficiently functions to supply a glass component, the glass concentration of the ceramic layer 2 laminated on the main surface side of the substrate with respect to the glass ceramic layer 3 is the glass ceramic layer 3. It becomes higher than the glass concentration of the ceramic layer 2 laminated
  • the glass component can be sufficiently contained in the ceramic layer in the vicinity of the main surface of the multilayer ceramic substrate.
  • a plurality of ceramic green sheets 12, a glass ceramic slurry, a conductive paste, and a plurality of constraining layer green sheets 18 used in the embodiment were prepared.
  • the planar dimensions of the ceramic green sheet 12 were 50 mm long and 50 mm wide.
  • the planar dimensions of the constraining layer green sheet 18 were 50 mm long and 50 mm wide.
  • the thickness of the constraining layer green sheet 18 was 100 ⁇ m.
  • a glass ceramic slurry is applied to the entire surface of one main surface of the predetermined ceramic green sheet 12 by a doctor blade method, and a glass ceramic layer 13 having a thickness of 4 ⁇ m (in the description of the manufacturing method of the embodiment, the upper glass ceramic layer is The reference numeral 13a and the lower glass ceramic layer are indicated by the reference numeral 13b, but in the following description, both are shown by the reference numeral 13 in order to avoid complicated description.
  • a conductive paste was applied in a square shape of 2 mm in length and 2 mm in width with a thickness of 20 ⁇ m to form a conductive paste film 16.
  • electrically conductive paste is 2 mm long and 2 mm wide on one main surface of the formed glass ceramic layer 13.
  • the conductive paste film 16 was formed in a square shape with a thickness of 20 ⁇ m.
  • These conductive paste films 16 are for forming the surface electrode 6 for measuring the electrode bonding strength on the main surface of the completed multilayer ceramic substrate.
  • Example 2-1 to Example 2-6 was produced.
  • the unfired laminated body 11 of Example 2-1 to Example 2-6 includes, in order from the bottom, a constrained layer green sheet 18, a conductive paste film 16, a ceramic green sheet 12, a lower glass ceramic layer 13, and a ceramic green.
  • the sheet 12, the upper glass ceramic layer 13, the ceramic green sheet 12, the conductive paste film 16, and the constraining layer green sheet 18 are laminated.
  • the unfired laminates 11 of Example 2-1 to Example 2-6 are separated from the main surface (the same applies hereinafter) excluding the constraining layer green sheet 18 by using different ceramic green sheets 12 having different thicknesses.
  • the distance to the glass ceramic layer 13 is made different.
  • Table 2 shows the distance from the main surface of each laminate 1 to the glass ceramic layer 3 after firing.
  • the distance from the main surface to the glass ceramic layer 3 means the distance from the main surface to the surface closer to the main surface of the glass ceramic layer 3.
  • the unsintered laminate 11 of Comparative Example 3 is different from the unsintered laminate 11 of Example 2-1 to Example 2-6 in the position of the glass ceramic layer 13. That is, in the unfired laminated body 11 of Comparative Example 3, the glass ceramic layer 13 in which the conductive paste film 16 was formed on the main surface was laminated on both main surfaces of the laminated body. Therefore, in the green laminate 11 of Comparative Example 3, the distance from the main surface to the glass ceramic layer 13 is 0 ⁇ m.
  • the green laminate 11 of Comparative Example 4 has the same basic laminated structure as the green laminate 11 of Examples 2-1 to 2-6, but the distance from the main surface to the glass ceramic layer 3 was increased to 150 ⁇ m (after firing).
  • the total thickness of the plurality of ceramic green sheets 12 is 1000 ⁇ m.
  • the total thickness of the glass ceramic layer 13 is 8 ⁇ m.
  • unfired laminates 11 of Comparative Example 5 and Comparative Example 6 were produced.
  • the green laminate 11 of Comparative Example 5 and the green laminate 11 of Comparative Example 6 are made of a common material.
  • the unfired laminated body 11 of Comparative Example 5 and Comparative Example 6 has a structure similar to the unfired laminated body disclosed in Patent Document 2 (Japanese Patent No. 5024064).
  • constrained layer green sheets 18 were further laminated above and below the unfired laminate 11 of Comparative Example 5, respectively.
  • the unfired laminate 11 of Comparative Example 5 was fired under the same conditions as in the first embodiment without being pressurized.
  • the electrode joint strength was measured with a tensile strength tester by soldering lead terminals to the surface electrode 6 (with Ni plating film and Au plating film) formed on the main surface of each multilayer ceramic substrate.
  • the bending strength was measured with a three-point bending tester.
  • Table 2 shows the electrode bonding strength and bending strength of each multilayer ceramic substrate.
  • Example 2 having a glass-ceramic layer in which the entire thickness is present or a part of the thickness is present within 100 ⁇ m from the main surface within the laminate.
  • the laminated ceramic substrates according to -1 to Example 2-6 had good results in both electrode bonding strength and bending strength.
  • Comparative Example 3 in which the glass ceramic layer was formed on the surface portion of the main surface of the laminate had good bending strength, but the electrode bonding strength was reduced.
  • the electrode bonding strength is lowered and the bending strength is also slightly lowered. Oops.
  • the electrode joint strength between the multilayer ceramic substrate and the surface electrode can be increased, and the bending strength of the multilayer ceramic substrate can be increased.
  • Example 3 The multilayer ceramic substrate according to Example 3-1 to Example 3-7 and the multilayer ceramic substrate according to Comparative Example 7 were produced in the following manner.
  • Example 3-1 to Example 3-7 the thickness of the constraining layer green sheet 18 laminated above and below the unfired laminate 11 was changed. That is, before firing, the thickness of the constraining layer green sheet 18 was changed to 2 ⁇ m, 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, and 300 ⁇ m.
  • Table 3 shows the thickness of each constrained layer green sheet 18 of Example 3-1 to Example 3-7.
  • the unsintered laminated body 11 of each example has a 20 ⁇ m-thickness in which the conductive paste film 16 is formed with one constraining layer green sheet 18 having a predetermined thickness and the conductive paste film 16 side down, in order from the bottom.
  • a structure in which one sheet 12 and one constrained layer green sheet 18 having a predetermined thickness are stacked. It was.
  • the unfired laminate 11 of the comparative example is formed by removing the upper and lower constraining layer green sheets 18 from the unfired laminate 11 of the example.
  • the unfired laminates 11 of Examples 3-1 to 3-7 were fired under the same conditions as in the first embodiment while being pressed from above and below with a pressure jig through the constraining layer green sheet 18. did.
  • the unfired laminate 11 of Comparative Example 7 was directly pressed from above and below with a pressure jig and fired under the same conditions as in the first embodiment.
  • Example 3-2 to Example 3-7 For the laminates of Example 3-2 to Example 3-7 in which no cracks occurred, a Ni plating film and an Au plating film were formed on the surface of the surface electrode 6 to complete each multilayer ceramic substrate.
  • Table 3 shows the electrode joint strength and bending strength of each completed multilayer ceramic substrate.
  • the constraining layer green sheets 18 are laminated on the upper and lower sides of the unfired laminate 11 and fire them in a state of being pressed from above and below. I understood that. Further, it has been found that the thickness of the constraining layer green sheet 18 is insufficient when it is 2 ⁇ m and is desirably 10 ⁇ m or more.
  • Example 4 The multilayer ceramic substrates according to Example 4-1 to Example 4-8 were produced in the following manner.
  • Table 4 shows the thickness of the glass ceramic layer 13 in each of Examples 4-1 to 4-8.
  • the conductive paste film 16 is formed with one constraining layer green sheet 18 having a thickness of 100 ⁇ m and the conductive paste film 16 side down.
  • One 20 ⁇ m ceramic green sheet 12 and 100 ⁇ m thick constrained layer green sheet 8 a single, it was a laminated structure.
  • Table 4 shows the thickness of each glass ceramic layer 13.
  • Table 4 shows the thickness of the glass ceramic layer 13 relative to the thickness of the laminated body in each of the finished laminated ceramic substrates after firing in Examples 4-1 to 4-8. The total ratio (%) is shown.
  • Example 4-7 50 ceramic green sheets 12 having a thickness of 20 ⁇ m and two glass ceramic layers 13 having a thickness of 30 ⁇ m are laminated to form 50 ceramic layers having a thickness of 10 ⁇ m, 2 Since a laminated ceramic substrate on which the glass ceramic layer 3 having a layer thickness of 15 ⁇ m is laminated is produced, the ratio is (15 ⁇ 2) / (10 ⁇ 50 + 15 ⁇ 2) ⁇ 5.66%.
  • Example 4-8 50 ceramic green sheets 12 having a thickness of 20 ⁇ m and two glass ceramic layers 13 having a thickness of 40 ⁇ m are laminated to form 50 ceramic layers having a thickness of 10 ⁇ m, 2 Since the laminated ceramic substrate on which the glass ceramic layer 3 having a thickness of 20 ⁇ m is laminated is produced, the ratio is (20 ⁇ 2) / (10 ⁇ 50 + 20 ⁇ 2) ⁇ 7.41%.
  • Table 4 shows the electrode joint strength and bending strength of each completed multilayer ceramic substrate.
  • the laminated ceramic substrates according to Examples 4-2 to 4-7 using the glass ceramic layer 13 of 1 ⁇ m to 30 ⁇ m showed good results in both electrode bonding strength and bending strength. It was.
  • the thickness of the glass ceramic layer 13 was set to 30 ⁇ m, and the ratio of the thickness of the glass ceramic layer 3 to the total thickness of the laminate 1 was relatively large at 5.66%. High electrode joint strength and bending strength could be obtained.
  • Example 4-1 in which the thickness of the glass ceramic layer 13 was 0.5 ⁇ m, both the bending strength and the electrode bonding strength were lowered. It is thought that the thickness of the glass ceramic green sheet 23 was small and the supply amount of the glass component was insufficient.
  • Example 4-8 in which the thickness of the glass ceramic layer 13 was set to 40 ⁇ m, both the bending strength and the electrode bonding strength were lowered. It is considered that the ratio of the thickness of the glass ceramic layer 3 to the total thickness of the laminate 1 is too large as 7.41%, and the bending strength and the electrode bonding strength are lowered.
  • Multilayer ceramic substrates according to Example 5-1 to Example 5-15 having the following contents were manufactured.
  • the production method of each example was based on the production method described in the embodiment unless otherwise specified.
  • the laminated body 1 is provided with a glass ceramic layer 3 selected from any of 2, 4, 6, 8, and 10 layers.
  • a glass ceramic layer 3 selected from any of 2, 4, 6, 8, and 10 layers.
  • one of these glass ceramic layers 3 was disposed within 100 ⁇ m from one main surface, and the other layer was disposed within 100 ⁇ m from the other main surface so that the entire thickness was present.
  • the total number of glass ceramic layers 3 is four or more, the remaining glass ceramic layers 3 are arranged at equal intervals between the two glass ceramic layers 3 arranged within 100 ⁇ m from the main surface just described. Arranged.
  • the laminate 1 is provided with a ceramic layer 2 selected from any one of 10 layers, 40 layers, and 80 layers.
  • each glass ceramic layer 3 was 2 ⁇ m (4 ⁇ m at the stage of the glass ceramic layer 13 before firing).
  • the thickness of the ceramic layer was 10 ⁇ m (20 ⁇ m at the stage of the ceramic green sheet 12).
  • an internal electrode 4 and an external electrode for measuring the insulation resistance were formed.
  • a conductive paste film 14 mainly composed of Cu is applied to each main surface of a green sheet 12 for two layers of ceramics 2 disposed adjacent to the vicinity of the center in the stacking direction of the laminate 1.
  • a pair of internal electrodes 4 was formed.
  • membrane which has Cu as a main component was apply
  • the pair of internal electrodes 4 is connected to either one of the pair of external electrodes.
  • Tests of 100 V load for 1000 hours were performed on each of the multilayer ceramic substrates according to Example 5-1 to Example 5-15 under the conditions of a temperature of 85 ° C. and a humidity of 85%. And the insulation resistance between the external electrodes of each Example was measured after the test.
  • Table 5 shows the insulation resistance ( ⁇ (common logarithm)) of each of Examples 5-1 to 5-15.
  • the total number of glass ceramic layers 3 in the laminate 1 affected the insulation resistance of the laminate 1 (ceramic layer 2).
  • the total number of ceramic layers 2 in the laminate 1 did not affect the insulation resistance of the laminate 1 (ceramic layer 2).
  • the insulation resistance is 12 ⁇ regardless of the total number of ceramic layers 2. Met.
  • the insulation resistance is reduced to 8 ⁇ regardless of the total number of the ceramic layers 2.
  • the insulation resistance was further reduced to 6 ⁇ regardless of the total number of ceramic layers 2.
  • the inventor is researching the detailed mechanism.
  • the binder contained in the ceramic green sheet 12 and the binder contained in the glass ceramic layer 13 are prevented from evaporating during firing, and the binder tends to remain in the layers. Become. It is thought that after firing, the binder in the layer gradually volatilizes, so that defects are likely to occur and the insulation resistance is lowered.
  • the total number of glass ceramic layers 3 in the laminated body 1 should be 6 or less.
  • the mode in which the glass ceramic layer is present in a region separated from the main surface of the laminate by more than 100 ⁇ m has been described.
  • the same tendency to reduce the insulation resistance is the same if the number of glass ceramic layers 13 is 6 or less. It is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)

Abstract

亀裂が発生しにくく、抗折強度が高く、基板と表面電極との電極接合強度が高い多層セラミック基板を提供する。 セラミック層2が積層された積層体1を備え、セラミック層は1、48~75重量%のSiO、20~40重量%のBaO、5~20重量%のAlを含有する主成分と、主成分100重量部に対して、少なくとも、2.5~20重量部のMnOを含有する副成分と、を含有するセラミック材料からなり、積層体1には、さらに、積層体1の内部、かつ、両主面からそれぞれ100μm以内に、厚みの全てが存在する、または、厚みの一部が存在する、ガラスセラミック層3a、3bが積層されるようにした。

Description

多層セラミック基板および多層セラミック基板の製造方法
 本発明は、多層セラミック基板に関し、さらに詳しくは、上下主面近傍に十分にガラス成分を含有しており、亀裂が発生しにくく、抗折強度が高く、基板と表面電極との電極接合強度が高い多層セラミック基板に関する。
 また、本発明は、上記した本発明の多層セラミック基板を製造するのに適した多層セラミック基板の製造方法に関する。
 低温焼結セラミック(LTCC:Low Temperature Cofired Ceramic)材料が、多層セラミック基板材料として広く利用されている。低温焼結セラミックを使用すれば、比較的安価で、かつ比抵抗が小さい、銀、銅などの低融点金属を内部電極、表面電極、ビア電極などの電極材料に使用し、同時焼成することができるため、高周波特性に優れた多層セラミック基板を安価に製造することができるからである。
 たとえば、特許文献1(特許第5533674号)には、48~75重量%のSiO、20~40重量%のBaO、5~20重量%のAlを含有する主成分と、主成分100重量部に対して、焼結助剤成分として2.5~5.5重量部のMnO、その他の副成分を含む低温焼結セラミック材料が開示されている。
 低温焼結セラミック材料は、上述したように、銀、銅などの低融点金属と同時焼成できるという利点を有しているが、焼成時に基板が平面方向に大きく収縮してしまうという問題も有している。
 そこで、特許文献2(特許第5024064号公報)に開示された多層セラミック基板の製造方法では、低温焼結セラミック材料からなるセラミック層の各層間に、拘束層を挿入して積層体を形成し、焼成することにより、基板の平面方向の収縮を抑制するようにしている。拘束層には、たとえば、Al(アルミナ)やZrO(ジルコニア)などが用いられると記載されている(特許文献2の(0035)段落参照)。また、拘束層に、ガラス成分が含有される場合もある旨が記載されている(特許文献2の(0058)段落参照)。なお、拘束層は、多層セラミック基板が完成した後も積層体内に残存する。
 特許文献2に開示された多層セラミック基板の製造方法によれば、基板の平面方向の収縮を抑制することができる。しかしながら、作製された多層セラミック基板は、基板の厚み方向全般にわたって、収縮挙動の異なる2種類の材質からなるセラミック層と拘束層とが積層された構造になるため、基板の反り量が大きい、抗折強度が低い、基板と表面電極との電極接合強度が低いという問題があった。
 そこで、この問題に対策を講じた多層セラミック基板の製造方法として、特許文献3(特開10-84056公報)には、多層セラミック基板を構成する積層体自体は低温焼結セラミック層を積層して形成するが、積層体の焼成を、上下方向から拘束層により挟み込み、かつ圧力を加えておこなう方法が開示されている。拘束層には、たとえば、MgO、Al、ZrOなどが用いられると記載されている(特許文献3の(0020)段落参照)。拘束層は、焼成後に多層セラミック基板の表面から除去される。
 特許文献3に開示された方法により作製された多層セラミック基板は、特許文献2に開示された方法により作製された多層セラミック基板が有する問題が解消されている。すなわち、特許文献3に開示された方法によれば、基板のセラミック部分が1種類の低温焼結セラミック材料により形成されるため、特許文献2に開示された方法による、基板が収縮挙動の異なる低温焼結セラミック層と拘束層とにより形成されることに起因する、反り量が大きい、抗折強度が低い、表面電極との電極接合強度が低いという問題が解消されている。
特許第5533674号公報 特許第5024064号公報 特開10-84056公報
 しかしながら、特許文献3に開示された方法により作製された多層セラミック基板は、別の理由に起因して、抗折強度が低い、表面電極との電極接合強度が低いという問題があった。
 すなわち、特許文献3に開示された多層セラミック基板の方法には、焼成時に、積層体を上下から挟み込んで加圧する拘束層が、低温焼結セラミック材料により形成された積層体からガラス成分を吸引してしまうという問題があった。そして、積層体の上下主面からガラス成分が吸引されると、積層体の上下主面近傍はガラス成分が不足してしまい、圧縮応力を得ることができず、亀裂が発生しやすく、基板の抗折強度が低下し、かつ、基板と表面電極との電極接合強度が低下するという問題があった。
 本発明は、上述した従来の問題を解決するためになされたものであり、その手段として、本発明の積層セラミック基板は、所定の層間に内部電極が配置され、複数のセラミック層が積層された積層体を備えた積層セラミック基板であって、セラミック層は、SiOに換算して48~75重量%のSi、BaOに換算して20~40重量%のBa、Alに換算して5~20重量%のAlを含有する主成分と、主成分50重量部に対して、少なくとも、MnOに換算して2.5~20重量部のMnを含有する副成分と、を含有するセラミック材料からなり、積層体には、さらに、積層体の内部、かつ、両主面からそれぞれ100μm以内に、厚みの少なくとも一部が存在する第1のガラスセラミック層が配置されているものとした。なお、上記において、積層体の内部とは、積層体の主面の表面部分を除く意味である。また、上記において、100μmは、完成した積層体(焼成後の積層体)における距離である。また、積層体の厚みは、極めて小さい内部電極の厚みを除外して、セラミック層とガラスセラミック層の合計の厚みから算出する。 
 第1のガラスセラミック層の層数は6層以下とすることが好ましい。積層体の中のガラスセラミック層の総層数が6層を超えると、セラミック層の絶縁抵抗が低下する場合があるからである。
 第1のガラスセラミック層の層数は、たとえば、1層または2層とすることができる。この場合には、さらに、積層体全体に対するガラスセラミック層の割合が極めて小さいため、積層体が、収縮挙動の異なるセラミック層とガラスセラミック層とが積層されたことに起因して、基板が反ったり、抗折強度が低下したり、基板と表面電極との電極接合強度が低下したりすることがない。
 積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在するガラスセラミック層を備えていないものとすることができる。この場合には、積層体の中心部分にガラスセラミック層が存在していないため、収縮挙動の異なるセラミック層とガラスセラミック層とが積層されたことに起因して、基板が反ったり、抗折強度が低下したり、基板と表面電極との電極接合強度が低下したりすることがない。
 あるいは、積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在する第2のガラスセラミック層を備えたものとしても良いが、第1のガラスセラミック層および第2のガラスセラミック層の総層数は6層以下とすることが好ましい。積層体の中のガラスセラミック層の総層数が6層を超えると、セラミック層の絶縁抵抗が低下する場合があるからである。
 また、ガラスセラミック層が、積層体の一方の主面に近い第1のガラスセラミック層と、積層体の他方の主面に近い第2のガラスセラミック層の2層からなり、積層体の一方の主面と、第1のガラスセラミック層との間に積層されたセラミック層、および、積層体の他方の主面と、第2のガラスセラミック層との間に積層されたセラミック層のガラス濃度が、第1のガラスセラミック層と第2のガラスセラミック層の間に積層されたセラミック層のガラス濃度よりも高いものとすることができる。この場合には、基板の上下主面近傍のセラミック層が十分にガラス成分を含有しているため、基板の上下主面近傍の熱膨張係数が、基板の内部の熱膨張係数に比べて低くなる。そして、その結果、基板の上下主面それぞれに圧縮応力が働くため、基板に亀裂が発生しにくくなり、基板の抗折強度が高くなり、基板と表面電極との電極接合強度が高くなる。
 また、本発明の積層セラミック基板の製造方法は、所定の層間に内部電極が配置された複数のセラミック層が積層された積層体を備え、セラミック層が、SiOに換算して48~75重量%のSi、BaOに換算して20~40重量%のBa、Alに換算して5~20重量%のAlを含有する主成分と、主成分100重量部に対して、少なくとも、MnOに換算して2.5~20重量部のMnを含有する副成分と、を含有するセラミック材料からなり、積層体には、さらに、積層体の内部、かつ、両主面からそれぞれ100μm以内に、厚みの少なくとも一部が存在する、第1のガラスセラミック層が積層された積層セラミック基板の製造方法であって、セラミック層を形成するためのセラミックグリーンシートを用意する工程(a)と、セラミックグリーンシートの所定のものの主面に、ガラスセラミックスラリーを塗布してガラスセラミック層を形成する工程(b)と、ガラスセラミック層が形成されていないセラミックグリーンシート、および、ガラスセラミック層が形成されたセラミックグリーンシートの少なくとも一方の所定のものの主面に、導電性ペーストを所定の形状に塗布して内部電極層を形成する工程(c)と、ガラスセラミック層や導電性ペーストが塗布されたものを含む、セラミックグリーンシートを所定の順番に積層し、未焼成積層体を作製する工程(d)と、工程(d)で得られた未焼成積層体の両主面を1対の拘束層で挟み、圧着する工程(e)と、工程(e)の後、未焼成積層体に圧力を加えた状態で、未焼成積層体を焼成し、積層体を作製する工程(f)と、工程(f)の後、積層体の両主面から、拘束層を除去する工程と、を備えるようにした。なお、上記において、積層体の内部とは、積層体の主面の表面部分を除く意味である。また、上記において、100μmは、完成した積層体(焼成後の積層体)における距離である。
 なお、拘束層として拘束層グリーンシートを使用する場合には、その厚みが10μm以上であることが好ましい。10μm未満であると、積層セラミック基板に割れが発生する虞があるからである。
 また、焼成前のガラスセラミック層は、その厚みが1μm以上、30μm以下であることが好ましい。1μm未満であると、ガラス成分の供給量が不足する虞があるからである。また、30μmを超えると、積層体1の全体の厚みに対するガラスセラミック層3の厚みの割合が大きくなり過ぎてしまい、抗折強度と電極接合強度が低下してしまう虞があるからである。
 本発明の積層セラミック基板は、第1のガラスセラミック層からガラス成分が供給され、基板の上下主面近傍のセラミック層が十分にガラス成分を含有しているため、基板の上下主面近傍の熱膨張係数が、基板の内部の熱膨張係数に比べて低くなっている。そして、その結果、本発明の積層セラミック基板は、基板の上下主面それぞれに圧縮応力が働き、基板に亀裂が発生しにくく、基板の抗折強度が高く、基板と表面電極との電極接合強度が高いものになっている。
 また、本発明の積層セラミック基板の製造方法によれば、第1のガラスセラミック層からガラス成分を供給し、基板の上下主面近傍のセラミック層に十分にガラス成分を含有させることができるため、製造された積層セラミック基板は、基板の上下主面近傍の熱膨張係数が、基板の内部の熱膨張係数に比べて低くなる。そして、その結果、本発明の積層セラミック基板の製造方法により製造された積層セラミック基板は、基板の上下主面それぞれに圧縮応力が働き、基板に亀裂が発生しにくく、基板の抗折強度が高く、基板と表面電極との電極接合強度が高いものになっている。
第1実施形態にかかるセラミック多層基板100を示す断面図である。 セラミック多層基板100を使用して作製した電子モジュール200を示す断面図である。 セラミック多層基板100の製造方法の一例において施される工程を示す断面図である。 図3の続きであり、セラミック多層基板100の製造方法の一例において施される工程を示す断面図である。 図4の続きであり、セラミック多層基板100の製造方法の一例において施される工程を示す断面図である。 図5の続きであり、図6(A)、図6(B)はそれぞれ、セラミック多層基板100の製造方法の一例において施される工程を示す断面図である。 図6(B)の続きであり、図7は、セラミック多層基板100の製造方法の一例において施される工程を示す断面図である。 実験例1における、実施例1にかかる積層セラミック基板と、比較例1にかかる積層セラミック基板を、それぞれ示す要部断面図である。
 以下、図面とともに、本発明を実施するための形態について説明する。なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、明細書に記載されている構成要素が、図面において省略されている場合や、個数や層数を変更して描画されている場合がある。また、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。
 [実施形態]
 図1に、本発明の実施形態にかかる多層セラミック基板100を示す。ただし、図1は、多層セラミック基板100の断面図である。
 多層セラミック基板100は、積層体1を備える。
 積層体1は、複数のセラミック層2と、2層のガラスセラミック層3a、3bと、複数の内部電極4とが積層された構造からなる。
 各セラミック層2は、48~75重量%のSiO、20~40重量%のBaO、5~20重量%のAlを含有する主成分と、主成分100重量部に対して、少なくとも、2.5~20重量部のMnOを含有する副成分と、を含有するセラミック材料を使用してセラミックグリーンシートを作製し、焼成したものからなる。
 セラミック層2の所定の層間には、所定の形状からなる内部電極4が積層されている。本実施形態においては、セラミック層2とガラスセラミック層3a、3bとの層間に内部電極4は積層されていないが、セラミック層2とガラスセラミック層3a、3bとの層間に内部電極4を積層させるようにしても良い。
 また、セラミック層2には、必要に応じて、表裏面を貫通して、所定の位置に、ビア電極5が形成されている。ビア電極5は、セラミック層2の表裏間の電気的導通をはかるためのものである。
 ガラスセラミック層3aは、積層体1の上側主面から100μm以内に、厚みの全てが存在するように、あるいは、厚みの一部が存在するように積層されている。ガラスセラミック層3bは、積層体1の下側主面から100μm以内に、厚みの全てが存在するように、あるいは、厚みの一部が存在するように積層されている。なお、主面からガラスセラミック層3a、3bまでの距離は、積層体1を焼成した後の距離である。
 ガラスセラミック層3a、3bは、たとえば、40~60重量部のAlに対して、BaO-Al-SiO-B-CaOを主成分とするガラス成分を60~40重量部含む材料を使用して、ガラスセラミックスラリーを作製し、上述したセラミックグリーンシートに塗布して焼成したものからなる。なお、ガラスセラミック層3a、3bは、ガラスセラミックスラリーをセラミックグリーンシートに塗布するのに代えて、ガラスセラミックスラリーを使用してガラスセラミックグリーンシートを作製し、焼成したものであっても良い。
 ガラスセラミック層3aは、積層体1の自身よりも上側に積層されたセラミック層2にガラス成分を供給し、積層体1の上主面近傍に十分にガラス成分を含有させるために積層されている。ガラスセラミック層3bは、積層体1の自身よりも下側に積層されたセラミック層2にガラス成分を供給し、積層体1の上主面近傍に十分にガラス成分を含有させるために積層されている。
 なお、上述したとおり、ガラスセラミック層3a、3bは、それぞれ、積層体1のいずれかの主面から100μm以内に、厚みの全てが存在するように、あるいは、厚みの一部が存在するように積層されている。100μm以内としたのは、100μmよりも大きく離れて積層されると、積層体1の主面近傍にまで十分にガラス成分を供給することができなくなる虞があるからである。なお、本実施形態においては、上側主面の近くにガラスセラミック層3a、下側主面の近くにガラスセラミック層3bの2層を積層しているが、積層体1の厚みが200μm前後よりも小さい場合は、ガラスセラミック層を1層にすることも可能である。
 ガラスセラミック層3a、3bには、必要に応じて、表裏面を貫通して、所定の位置に、ビア電極5が形成されている。
 積層体1の両主面には、必要に応じて、所定の位置に、所定の形状からなる表面電極6が形成されている。
 内部電極4、ビア電極5、表面電極6は、たとえば、セラミック層2と同時に焼成することができる、銀、銅などの低融点金属を主成分とする導電性ペーストを焼成したものからなる。銀、銅などの低融点金属は、比較的安価で、かつ比抵抗が小さいため、これらを使用すれば、高周波特性に優れた多層セラミック基板を安価に製造することができる。ただし、内部電極4、ビア電極5、表面電極6に、必ずしも低融点金属を使用しなければならないことはなく、高融点金属を使用しても良い。
 積層体1の内部には、内部電極4、ビア電極5により、必要な電気配線が形成されている。また、内部電極4、ビア電極5により、インダクタやキャパシタが形成される場合がある。また、積層体1内のセラミック層2の層間に抵抗体膜を設けたり、積層体1内に電子部品素子を内蔵させたりする場合がある。
 上述した構造からなる多層セラミック基板100に電子部品を実装すれば、電子部品モジュールを作製することができる。
 図2に、一例として、多層セラミック基板100を使用した電子部品モジュール200を示す。ただし、図2は、電子部品モジュール200の断面図である。
 電子部品モジュール200は、多層セラミック基板100の上側主面に形成された表面電極6に、複数の電子部品7が実装されている。多層セラミック基板100の下側主面に形成された表面電極6は、電子部品モジュール200を基板などに実装する際の電極として使用される。
 図3~図7に、多層セラミック基板100の製造方法の一例を示す。
 まず、セラミック層2を形成するための、複数枚のセラミックグリーンシートを作製した。
 具体的には、まず、図示しないが、出発原料として、SiO、BaCO、Al、ZrO、MnCO、CeOの各粉末を用意した。
 次に、SiO、BaCO、Al、ZrOの各粉末を、仮焼後において、SiOが57.0重量%、BaOが31.0重量%、Alが12.0重量%となり、かつ、これらのSiO、BaO、Alの合計100重量部に対して、ZrOが0.5重量部となるように調合し、続いて、ボールミルにて純水を用いて湿式混合した。そして、混合後、蒸発乾燥させ、素材混合粉末を得た。
 次に、得られた素材混合粉末を、大気中において、840℃の温度で2時間仮焼し、仮焼粉を得た。
 次に、得られた仮焼粉に、MnCOおよびCeOの各粉末を、焼成後において、SiO、BaO、Alの合計100重量部に対して、MnOが4.0重量部、CeOが3.0重量部となるように調合し、続いて、ボールミルにて有機溶剤を用いて湿式混合し、湿式混合物を得た。
 次に、得られた湿式混合物に、ブチラール系樹脂と可塑剤(DOP)とをそれぞれ所定量添加し、混合して、セラミックスラリーを得た。
 次に、得られたセラミックスラリーを使用し、ドクターブレード法によって、厚さ20μmのセラミックグリーンシートを作製した。続いて、得られたセラミックグリーンシートを所望の寸法にカットし、複数枚のセラミックグリーンシート12を得た。本実施形態においては、50枚のセラミックグリーンシートを得た。
 以上のセラミック層2を形成するためのセラミックグリーンシートの作製と並行して、ガラスセラミック層3a、3bを形成するためのガラスセラミックスラリーを作製した。
 具体的には、まず、Al粉末と、BaO-Al-SiO-B-CaOを主成分とするガラス粉末を用意した。
 次に、Al粉末50重量部に対して、ガラス粉末が50重量部となるように調合し、続いて、ブチラール系樹脂、可塑剤を添加し、混合して、ガラスセラミックスラリーを作製した。
 次に、セラミックグリーンシート12の中の2枚の主面全面に、ガラスセラミックスラリーを使用して、ドクターブレード法によって、厚さ4μmのガラスセラミック層13aまたは13bを形成した。
 図3に、ガラスセラミック層の形成されていないセラミックグリーンシート12と、ガラスセラミック層13aまたは13bが形成されたセラミックグリーンシート12を、後述する未焼成積層体11内での積層順に示す。
 図3から分かるように、後述する拘束層グリーンシート18を除き(以下において、積層された層の順番の説明は、拘束層グリーンシート18を除外しておこなっている)、未焼成積層体11内において、最上層、上から3層目~下から3層目、最下層に、それぞれ、無地のセラミックグリーンシート12が積層される。そして、上から2層目に、ガラスセラミック層13aが上面に形成されたセラミックグリーンシート12が積層され、下から2層目に、ガラスセラミック層13bが下面に形成されたセラミックグリーンシート12が積層される。なお、本実施形態においては、セラミックグリーンシート12の総数を50枚としたが、図3においては、見やすくするため、枚数を省略して示している(他の図においても同じ)。
 次に、図4に示すように、ガラスセラミック層の形成されていないセラミックグリーンシート12、ガラスセラミック層13a、13bが形成されたセラミックグリーンシート12に、ビア電極5を形成するための孔15を、レーザー加工機、パンチングマシーンなどを使用して形成した。
 また、孔15の形成と並行して、Cu粉末を主成分として含有する導電性ペーストを用意した。導電性ペーストは、Cuに代えて、Agなどを主成分として含有するものであっても良い。
 次に、図5に示すように、ガラスセラミック層の形成されていないセラミックグリーンシート12、ガラスセラミック層13a、13bが形成されたセラミックグリーンシート12に、スクリーン印刷法などにより導電性ペーストを塗布した。
 この結果、未焼成積層体11内で最上層に積層されるセラミックグリーンシート12の上側主面に、焼成後に表面電極6となる導電性ペースト膜16が所望の形状に形成され、そのセラミックグリーンシート12に形成された孔15内にビア電極5を形成するための導電性ペースト25が充填された。
 また、未焼成積層体11内で上から2層目に積層される、ガラスセラミック層13aが形成されたセラミックグリーンシート12に形成された孔15内に、ビア電極5を形成するための導電性ペースト25が充填された。
 また、未焼成積層体11内で、上から3層目~下から3層目までに積層される、ガラスセラミック層の形成されていないセラミックグリーンシート12の上側主面に、必要に応じて、焼成後に内部電極4となる導電性ペースト膜14が所望の形状に形成され、セラミックグリーンシート12に形成された孔15内にビア電極5を形成するための導電性ペースト25が充填された。
 また、未焼成積層体11内で下から2層目に積層される、ガラスセラミック層13bが形成されたセラミックグリーンシート12に形成された孔15内に、ビア電極5を形成するための導電性ペースト25が充填された。
 さらに、未焼成積層体11内で最下層に配置されるセラミックグリーンシート12の下側主面に、焼成後に表面電極6となる導電性ペースト膜16が形成され、そのセラミックグリーンシート12に形成された孔15内にビア電極5を形成するための導電性ペースト25が充填された。
 次に、図6(A)に示すように、ガラスセラミック層の形成されていないセラミックグリーンシート12と、ガラスセラミック層13a、13bが形成されたセラミックグリーンシート12と、さらに1対の拘束層である拘束層グリーンシート18、18を、所望の順番に積層し、加圧して、未焼成積層体11を作製した。この状態で、未焼成積層体11を上下から圧着して、圧着体を形成した。
 拘束層グリーンシート18、18には、たとえば、ZrO、Al、MgOなどを主成分とするセラミックグリーンシートを使用することができる。
 次に、図6(B)に示すように、未焼成積層体11を、さらに、上下から1対の加圧治具19、19で挟み込んだ。
 続いて、加圧治具19、19により、拘束層グリーンシート18、18に圧力を加えた状態で、未焼成積層体11を焼成した。加えた圧力は10kgf/cmとした。焼成雰囲気は還元性とした。焼成温度は980℃とした。
 焼成時に、拘束層グリーンシート18、18により、最上層および最下層に積層されたセラミックグリーンシート12から、それぞれ、ガラス成分が吸収されるが、本実施形態においては、ガラスセラミック層13aから最上層に積層されたセラミックグリーンシート12にガラス成分が供給され、ガラスセラミック層13bから最下層に積層されたセラミックグリーンシート12にガラス成分が供給されるため、最上層および最下層に積層されたセラミックグリーンシート12は十分にガラス成分を含有した状態で焼成される。
 次に、図7に示すように、全体を自然冷却した後、加圧治具19、19を取り外すとともに、焼成された積層体1の上下主面の拘束層(拘束層グリーンシート18、18)を除去した。
 焼成により、厚み20μmのセラミックグリーンシート12は、厚み10μmのセラミック層2となった。同様に、焼成により、厚み4μmのガラスセラミック層13a、13bは、厚み2μmのガラスセラミック層3a、3bとなった。
 最後に、図示しないが、積層体1の両主面に形成された表面電極6の表面に、電解めっきにより、第1層としてNiめっき膜、第2層としてAuめっき膜を形成し、セラミック多層基板100を完成させた。
 本実施形態にかかる積層セラミック基板100は、ガラスセラミック層3a、3b(ガラスセラミック層13a、13b)からガラス成分が供給されるため、積層体の上下主面近傍のセラミック層2が十分にガラス成分を含有している。そのため、積層セラミック基板100の上下主面近傍の熱膨張係数は、積層体1の内部の熱膨張係数に比べて低い。この結果、積層セラミック基板100の上下主面には圧縮応力が働くため、積層セラミック基板100は亀裂が発生しにくく、抗折強度が高く、表面電極との電極接合強度が高いものになっている。
 以上、本発明の実施形態について説明した。しかしながら、本発明がこれらの内容に限定されることはなく、発明の趣旨に沿って、種々の変更をなすことができる。
 たとえば、実施形態では、積層体1内に2層のガラスセラミック層3a、3bを形成しているが、ガラスセラミック層の層数は任意であり、積層体1の厚みが100μm前後よりも小さい場合は、1層のガラスセラミック層で、積層体1の両主面側にガラス成分を供給することも可能である。
 また、ガラスセラミック層3a、3bの材質や厚みも任意であり、上述した内容に限定されることはない。
 また、セラミック層2の層数や厚みも任意であり、上述した内容に限定されることはない。
 なお、ガラスセラミック層3aとガラスセラミック層3bとの間に、さらに別のガラスセラミック層(第2のガラスセラミック層)を積層しても良いが、積層体1内のガラスセラミック層の総層数は6層以内とすることが好ましい。6層を超えると、セラミック層の絶縁抵抗が低下してしまう場合があるからである。
 本発明の有効性を確認するために、以下の実験をおこなった。
 [実験例1]
 以下の要領で、実施例1にかかる積層セラミック基板と、比較例1にかかる積層セラミック基板を作製した。
 まず、実施形態で使用した、複数のセラミックグリーンシート12と、ガラスセラミックスラリーと、複数の拘束層グリーンシート18を用意した。
 セラミックグリーンシート12は、縦50mm、横50mm、厚み20μmとした。拘束層グリーンシート18は、縦50mm、横50mm、厚み100μmとした。
 次に、セラミックグリーンシート12の中の1枚の一方の主面全面に、ドクターブレード法により、ガラスセラミックスラリーを塗布し、厚み4μmのガラスセラミック層13を形成した。
 実施例1にかかる積層セラミック基板を作製するために、最下層に拘束層グリーンシート18を積層した。次に、その上に、49枚の無地のセラミックグリーンシート12を積層した。次に、その上に、ガラスセラミック層13が形成されたセラミックグリーンシート12を、ガラスセラミック層13が下側になるように積層した。最後に、その上に、拘束層グリーンシート18を積層し、実施例1にかかる未焼成積層体を作製した。
 次に、実施例1にかかる未焼成積層体を、上下から加圧した状態で、実施形態と同じ条件で焼成し、実施例1にかかる積層セラミック基板を得た。
 また、比較例1にかかる積層セラミック基板を作製するために、最下層に拘束層グリーンシート18を積層した。次に、その上に、50枚の無地のセラミックグリーンシート12を積層した。最後に、その上に、拘束層グリーンシート18を積層し、比較例1にかかる未焼成積層体を作製した。
 次に、比較例1にかかる未焼成積層体を、上下から加圧した状態で、実施形態1と同じ条件で焼成し、比較例1にかかる積層セラミック基板を得た。
 図8に、実施例1および比較例2にかかる積層セラミック基板をそれぞれ示す。ただし、図8は要部断面図であり、それぞれの積層セラミック基板の上層部分のみを示している。
 実施例1にかかる積層セラミック基板は、最上層に拘束層(拘束層グリーンシート18)が、上から2層目にセラミック層2が、上から3層目にガラスセラミック層3が、上から4層目以下に複数のセラミック層2が積層されている。
 一方、比較例1にかかる積層セラミック基板は、最上層に拘束層(拘束層グリーンシート18)が、上から2層目以下に複数のセラミック層2が積層されている。
 次に、実施例1にかかる積層セラミック基板の上から2層目のセラミック層2の点Xと、上から4層目のセラミック層2の点Yと、比較例1にかかる積層セラミック基板の上から2層目のセラミック層2の点Zについて、それぞれ、XRD分析により、CaOの強度を測定した。なお、CaOは、ガラスセラミック層13のガラス成分であるBaO-Al-SiO-B-CaOに含まれているが、セラミックグリーンシート12には含まれていない。
 表1に、点X、点Y、点Zにおける、CaOの強度比を示す。(点Xの強度を1.0として、点Y、点Zの強度を比で示した。)
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、点XのCaO強度と比較して、点YのCaO強度は低い。また、比較例1の点XのCaO強度は0.0であった。
 これは、未焼成積層体を焼成する際に、最上層の拘束層グリーンシート18が、上から2層目のセラミックグリーンシート12からガラス成分を吸収するが、実施例1においては、それを補うために、上から3層目のガラスセラミック層13から、上から2層目のセラミックグリーンシート12へ、ガラス成分が供給されることを示しているものと考えられる。したがって、ガラスセラミックグリーンシート12が十分にガラス成分を供給する機能を果たしている場合には、ガラスセラミック層3よりも基板の主面側に積層されたセラミック層2のガラス濃度は、ガラスセラミック層3よりも基板の内部側に積層されたセラミック層2のガラス濃度よりも高くなる。
 以上より、発明によれば、積層セラミック基板の主面近傍のセラミック層に、十分にガラス成分を含有させることができることが分かった。
 [実験例2]
 以下の要領で、実施例2-1~実施例2-6にかかる積層セラミック基板と、比較例3~比較例6にかかる積層セラミック基板を作製した。
 まず、実施形態で使用した、複数のセラミックグリーンシート12と、ガラスセラミックスラリーと、導電性ペーストと、複数の拘束層グリーンシート18を用意した。
 セラミックグリーンシート12の平面寸法は、縦50mm、横50mmとした。セラミックグリーンシート12には、厚みの異なる複数種類のもの、たとえば、10μmのものと20μmのものを用意した。
 拘束層グリーンシート18の平面寸法は、縦50mm、横50mmとした。拘束層グリーンシート18の厚みは、100μmとした。
 所定のセラミックグリーンシート12の一方の主面全面に、ドクターブレード法により、ガラスセラミックスラリーを塗布し、厚み4μmのガラスセラミック層13(実施形態の製造方法の説明においては、上側のガラスセラミック層を符号13a、下側のガラスセラミック層を符号13bで示したが、以下の説明においては、説明が煩雑になるのを避けるため、両者とも符合13で統一して示す)を形成した。
 また、所定のセラミックグリーンシート12の一方の主面上に、導電性ペーストを、縦2mm、横2mmの正方形状に、厚み20μmで塗布し、導電性ペースト膜16を形成した。
 また、主面にガラスセラミック層13を形成したセラミックグリーンシート12のうちの一部のものについては、形成されたガラスセラミック層13一方の主面上に、導電性ペーストを、縦2mm、横2mmの正方形状に、厚み20μmで塗布し、導電性ペースト膜16を形成した。
 これらの導電性ペースト膜16は、完成した多層セラミック基板の主面に、電極接合強度を測定するための表面電極6を形成するためのものである。
 これらの材料を使い、まず、実施例2-1~実施例2-6の未焼成積層体11を作製した。
 実施例2-1~実施例2-6の未焼成積層体11は、下から順に、拘束層グリーンシート18、導電性ペースト膜16、セラミックグリーンシート12、下側のガラスセラミック層13、セラミックグリーンシート12、上側のガラスセラミック層13、セラミックグリーンシート12、導電性ペースト膜16、拘束層グリーンシート18が積層された構造からなる。
 実施例2-1~実施例2-6の未焼成積層体11は、厚みの異なるセラミックグリーンシート12を使い分けることにより、相互に、拘束層グリーンシート18を除いた主面(以下において同じ)からガラスセラミック層13までの距離が異なるように作製されている。表2に、焼成後の、各積層体1の主面からガラスセラミック層3までの距離を示す。なお、主面からガラスセラミック層3までの距離とは、主面から、ガラスセラミック層3の主面に近い側の面までの距離を意味する。
Figure JPOXMLDOC01-appb-T000002
 次に、比較例3の未焼成積層体11を作製した。
 比較例3の未焼成積層体11は、実施例2-1~実施例2-6の未焼成積層体11と、ガラスセラミック層13の位置が異なる。すなわち、比較例3の未焼成積層体11においては、積層体の両主面に、主面に導電性ペースト膜16が形成されたガラスセラミック層13を積層した。したがって、比較例3の未焼成積層体11は、主面からガラスセラミック層13までの距離は0μmである。
 次に、比較例4の未焼成積層体11を作製した。
 比較例4の未焼成積層体11は、実施例2-1~実施例2-6の未焼成積層体11と基本的な積層構造は同一であるが、主面からガラスセラミック層3までの距離を150μm(焼成後)と大きくした。
 以上の、実施例2-1~実施例2-6、比較例3、比較例4の未焼成積層体11は、いずれも、複数のセラミックグリーンシート12の厚みの合計が1000μmになり、2層のガラスセラミック層13の厚みの合計が8μmになるように作製されている。
 次に、比較例5、比較例6の未焼成積層体11を作製した。比較例5の未焼成積層体11と、比較例6の未焼成積層体11は、共通のものからなる。また、比較例5、比較例6の未焼成積層体11は、特許文献2(特許第5024064号公報)に開示された未焼成積層体と類似した構造からなる。
 まず、主面に4μmのガラスセラミック層13が形成された厚さ20μmのセラミックグリーンシート12を48枚用意した。また、主面に4μmのガラスセラミック層13が形成された厚さ20μmのセラミックグリーンシート12であって、さらにその表面に導電性ペースト膜16が形成されたものを2枚用意した。
 次に、これらの材料を使い、下から順に、導電性ペースト膜16側を下にして主面にガラスセラミック層13と導電性ペースト膜16とが形成されたセラミックグリーンシート12を1枚、ガラスセラミック層13側を下にして主面にガラスセラミック層13が形成されたセラミックグリーンシート12を24枚、ガラスセラミック層13側を上にして主面にガラスセラミック層13が形成されたセラミックグリーンシート12を24枚、導電性ペースト膜16側を上にして主面にガラスセラミック層13と導電性ペースト膜16が形成されたセラミックグリーンシート12を1枚積層し、比較例5の未焼成積層体11を得た。比較例6の未焼成積層体11は、比較例5の未焼成積層体11の上下にそれぞれ、さらに拘束層グリーンシート18を積層した。
 次に、実施例2-1~実施例2-6、比較例3~比較例6の未焼成積層体11を焼成した。
 実施例2-1~実施例2-6、比較例3、比較例4、比較例6の未焼成積層体11は、それぞれ、上下から加圧した状態で、実施形態1と同じ条件で焼成した。
 比較例5の未焼成積層体11は、加圧しない状態で、実施形態1と同じ条件で焼成した。
 次に、得られた焼成された各積層体1の表面電極6の表面に、Niめっき膜、Auめっき膜を形成し、実施例2-1~実施例2-6、比較例3~比較例6の積層セラミック基板をそれぞれ完成させた。
 次に、実施例2-1~実施例2-6、比較例3~比較例6の積層セラミック基板それぞれにつき、電極接合強度と抗折強度を測定した。
 電極接合強度は、各積層セラミック基板の主面に形成された表面電極6(Niめっき膜およびAuめっき膜あり)にリード端子をはんだ付けし、引っ張り強度試験機により測定した。
 抗折強度は、3点曲げ試験機により測定した。
 表2に、各積層セラミック基板の電極接合強度と抗折強度を示す。
 表2からわかるように、焼成後に、積層体の内部であって、主面から100μm以内に、厚みの全てが存在する、または、厚みの一部が存在する、ガラスセラミック層を有する実施例2-1~実施例2-6にかかる積層セラミック基板は、電極接合強度、抗折強度とも、良好な結果であった。
 これに対し、積層体の主面の表面部分にガラスセラミック層が形成された比較例3は、抗折強度は良好であったが、電極接合強度が低下してしまった。
 また、焼成後に、積層体の主面から100μmより大きく離れてガラスセラミック層が形成された比較例4にかかる積層セラミック基板は、電極接合強度が低下してしまい、抗折強度もやや低下してしまった。
 また、セラミックグリーンシートの各層間に、拘束層としてガラスセラミック層を挿入し、圧力を加えず焼成した比較例5にかかる積層セラミック基板、圧力を加えて焼成した比較例6にかかる積層セラミック基板は、いずれも、電極接合強度が低下してしまい、抗折強度もやや低下してしまった。
 以上より、発明によれば、積層セラミック基板と表面電極との電極接合強度を高め、かつ、積層セラミック基板の抗折強度を高めることが出来ることが分かった。
 [実験例3]
 以下の要領で、実施例3-1~実施例3-7にかかる積層セラミック基板と、比較例7にかかる積層セラミック基板を作製した。
 実施例3-1~実施例3-7においては、未焼成積層体11の上下に積層される拘束層グリーンシート18の厚みを変化させた。すなわち、焼成前において、拘束層グリーンシート18の厚みを、2μm、10μm、25μm、50μm、100μm、200μm、300μmに変化させた。
 一方、比較例7については、上下に拘束層グリーンシート18を積層しなかった。
 表3に、実施例3-1~実施例3-7の各拘束層グリーンシート18の厚みを示す。
Figure JPOXMLDOC01-appb-T000003
 まず、各実施例および比較例の未焼成積層体11を作製した。
 各実施例の未焼成積層体11は、下から順に、所定の厚みからなる拘束層グリーンシート18を1枚、導電性ペースト膜16側を下にして導電性ペースト膜16が形成された20μmのセラミックグリーンシート12を1枚、ガラスセラミック層13側を下にして4μmのガラスセラミック層13が形成された20μmセラミックグリーンシート12を1枚、無地の20μmのセラミックグリーンシート12を46枚、ガラスセラミック層13側を上にして4μmのガラスセラミック層13が形成された20μmセラミックグリーンシート12を1枚、導電性ペースト膜16側を上にして導電性ペースト膜16が形成された20μmのセラミックグリーンシート12を1枚、所定の厚みからなる拘束層グリーンシート18を1枚、積層した構造とした。
 比較例の未焼成積層体11は、実施例の未焼成積層体11から上下の拘束層グリーンシート18を除いたものからなる。
 次に、実施例3-1~実施例3-7、比較例7の未焼成積層体11を、それぞれ焼成した。
 実施例3-1~実施例3-7の未焼成積層体11については、上下から、拘束層グリーンシート18を介して加圧治具で加圧した状態で、実施形態1と同じ条件で焼成した。
 比較例7の未焼成積層体11については、上下から加圧治具で直接加圧して、実施形態1と同じ条件で焼成した。
 この結果、拘束層グリーンシート18を積層しなかった比較例7の積層体と、2μmの拘束層グリーンシート18を積層した実施例3-1の積層体には、それぞれ割れが発生した。
 割れが発生しなかった実施例3-2~実施例3-7の積層体につき、表面電極6の表面にNiめっき膜、Auめっき膜を形成し、各積層セラミック基板を完成させた。
 表3に、完成した各積層セラミック基板の電極接合強度と抗折強度を示す。
 表3からわかるように、実施例3-2~実施例3-7の積層セラミック基板全てにおいて、良好な電極接合強度、抗折強度が得られた。
 以上より、良好な電極接合強度、抗折強度、外観形状を得るためには、未焼成積層体11の上下に拘束層グリーンシート18を積層し、上下から加圧した状態で焼成する必要があることが分かった。また、拘束層グリーンシート18の厚みは、2μmでは不足し、10μm以上にすることが望ましいことが分かった。
 [実験例4]
 以下の要領で、実施例4-1~実施例4-8にかかる積層セラミック基板を作製した。
 そして、実験例4においては、実施例4-1~実施例4-8ごとに、ガラスセラミック層13の厚みを変化させ、その影響を調べた。
 表4に、実施例4-1~実施例4-8、それぞれの、ガラスセラミック層13の厚みを示す。
 未焼成積層体11における積層の順番は全て同じとし、下から順に、厚み100μmの拘束層グリーンシート18を1枚、導電性ペースト膜16側を下にして導電性ペースト膜16が形成された20μmのセラミックグリーンシート12を1枚、ガラスセラミック層13側を下にして所定の厚みのガラスセラミック層13が形成された20μmセラミックグリーンシート12を1枚、無地の20μmのセラミックグリーンシート12を46枚、ガラスセラミック層13側を上にして所定の厚みのガラスセラミック層13が形成された20μmセラミックグリーンシート12を1枚、導電性ペースト膜16側を上にして導電性ペースト膜16が形成された20μmのセラミックグリーンシート12を1枚、厚み100μmの拘束層グリーンシート18を1枚、積層した構造とした。
 次に、これらの未焼成積層体11を、それぞれ、加圧した状態で、実施形態1と同じ条件で焼成した。
 次に、得られた焼成された各積層体1の表面電極6の表面に、Niめっき膜、Auめっき膜を形成し、実施例4-1~実施例4-7、比較例8の積層セラミック基板をそれぞれ完成させた。
 上述のとおり、表4には、それぞれのガラスセラミック層13の厚みを示している。これに加えて、表4には、実施例4-1~実施例4-8、それぞれの場合の、焼成後の完成した各積層セラミック基板における、積層体の厚みに対する、ガラスセラミック層13の厚み合計の比率(%)を示している。
 たとえば、実施例4-7では、50枚の厚さ20μmのセラミックグリーンシート12と、2層の厚さ30μmのガラスセラミック層13が積層されて、50層の厚さ10μmのセラミック層と、2層の厚さ15μmのガラスセラミック層3が積層された積層セラミック基板が作製されるため、比率は、(15×2)/(10×50+15×2)≒5.66%となる。
 また、実施例4-8では、50枚の厚さ20μmのセラミックグリーンシート12と、2層の厚さ40μmのガラスセラミック層13が積層されて、50層の厚さ10μmのセラミック層と、2層の厚さ20μmのガラスセラミック層3が積層された積層セラミック基板が作製されるため、比率は、(20×2)/(10×50+20×2)≒7.41%となる。
 表4に、完成した各積層セラミック基板の電極接合強度と抗折強度を示す。
Figure JPOXMLDOC01-appb-T000004
 表4からわかるように、1μm~30μmのガラスセラミック層13を使用した実施例4-2~実施例4-7にかかる積層セラミック基板は、電極接合強度、抗折強度とも、良好な結果であった。特に、実施例4-7は、ガラスセラミックグ層13の厚みを30μmとし、積層体1の全体の厚みに対するガラスセラミック層3の厚みの割合が、5.66%と比較的大きかったが、良好な電極接合強度と抗折強度を得ることができた。
 これに対し、ガラスセラミック層13の厚みを0.5μmとした実施例4-1は、抗折強度、電極接合強度ともに低下してしまった。ガラスセラミックグリーンシート23の厚みが小さく、ガラス成分の供給量が不足してしまったものと考えられる。
 また、ガラスセラミック層13の厚みを40μmにした実施例4-8は、抗折強度、電極接合強度ともに低下してしまった。積層体1の全体の厚みに対するガラスセラミック層3の厚みの割合が、7.41%と大きくなり過ぎてしまい、抗折強度と電極接合強度が低下してしまったものと考えられる。
 以上より、積層体1の全体の厚みに対するガラスセラミック層3の厚みの割合が、6%以下程度であれば、良好な電極接合強度と抗折強度を得ることができることが分かった。
 [実験例5]
 実験例5では、積層体1の内部におけるガラスセラミック層3の総層数が、積層体1(セラミック層2)の絶縁抵抗に与える影響を調べた。
 次の内容からなる、実施例5-1~実施例5-15にかかる積層セラミック基板を作製した。各実施例の製造方法は、特に断りがない限り、実施形態において説明した製造方法によった。
 各実施例は、積層体1に、2層、4層、6層、8層、10層のいずれかから選ばれるガラスセラミック層3を備える。各実施例において、これらのガラスセラミック層3のうち、1層は一方の主面から100μm以内に、他の1層は他方の主面から100μm以内に、厚みの全てが存在するように配置した。ガラスセラミック層3の総層数が4層以上の場合は、残りのガラスセラミック層3を、いま説明した主面から100μm以内に配置された2層のガラスセラミック層3の間に、等間隔で配置した。
 また、各実施例は、積層体1に、10層、40層、80層のいずれかから選ばれるセラミック層2を備える。
 なお、各実施例において、各ガラスセラミック層3の厚みは2μm(焼成前のガラスセラミック層13の段階で4μm)とした。また、セラミック層の厚みは10μm(セラミックグリーンシート12の段階で20μm)とした。
 また、各実施例には、絶縁抵抗を測定するための内部電極4および外部電極を形成した。具体的には、積層体1の積層方向の真ん中付近に隣接して配置される2層のセラミック2用のグリーンシート12の各主面にCuを主成分とした導電性ペースト膜14を塗布しておき、1対の内部電極4を形成した。また、焼成後の積層体1の両端に、Cuを主成分とした導電性ペースト膜を塗布し、焼付け、1対の外部電極を形成した。1対の内部電極4は、それぞれ、1対の外部電極のいずれか一方に接続されている。
 実施例5-1~実施例5-15にかかる積層セラミック基板それぞれに対し、温度85℃、湿度85%の条件で、1000時間の100V負荷の試験を実施した。そして、試験後に、各実施例の外部電極間の絶縁抵抗を測定した。
 表5に、実施例5-1~実施例5-15それぞれの絶縁抵抗(Ω(常用対数))を示す。
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、積層体1の内部におけるガラスセラミック層3の総層数は、積層体1(セラミック層2)の絶縁抵抗に影響を与えた。一方、積層体1の内部におけるセラミック層2の総層数は、積層体1(セラミック層2)の絶縁抵抗に影響を与えなかった。
 具体的には、積層体1の内部におけるガラスセラミック層3の総層数が、2層、4層、6層の場合は、セラミック層2の総層数のいかんにかかわらず、絶縁抵抗は12Ωであった。これに対し、積層体1の内部におけるガラスセラミック層3の総層数が8層の場合は、セラミック層2の総層数のいかんにかかわらず、絶縁抵抗は8Ωに低下した。さらに、積層体1の内部におけるガラスセラミック層3の総層数が10層の場合は、セラミック層2の総層数のいかんにかかわらず、絶縁抵抗は6Ωにさらに低下した。
 本件発明者において、詳しいメカニズムについては研究中である。ガラスセラミック層3の総層数が6層を超えると、焼成時に、セラミックグリーンシート12に含まれるバインダーや、ガラスセラミック層13に含まれるバインダーの蒸発が妨げられ、層中にバインダーが残存しやすくなる。焼成後に、層中のバインダーが徐々に揮発することにより、欠陥が発生しやすくなり、絶縁抵抗が低下するのではないかと考えられる。
 以上より、高い絶縁抵抗を維持するためには、積層体1の内部におけるガラスセラミック層3の総層数を、6層以下にすれば良いことが分かった。なお、本実施例では、積層体の主面から100μmより離れた領域にガラスセラミック層が存在する形態を説明した。しかし、全てのガラスセラミック層が積層体の主面から100μm以内に存在していても、ガラスセラミック層13の層数が6層以下であれば絶縁抵抗が低下しにくい傾向は同じであると考えられる。
1・・・積層体
2・・・セラミック層
3a、3b・・・ガラスセラミック層
4・・・内部電極
5・・・ビア電極
6・・・表面電極
7・・・電子部品
11・・・未焼成積層体
12・・・セラミックグリーンシート
13a、13b・・・ガラスセラミック層(焼成前)
14、16・・・導電性ペースト膜
15・・・孔(ビア電極5形成用)
18・・・拘束層(拘束層セラミックグリーンシート)
19・・・加圧治具
25・・・導電性ペースト(孔15に充填されたもの)
100・・・積層セラミック基板
200・・・電子モジュール 

Claims (13)

  1.  所定の層間に内部電極が配置され、複数のセラミック層が積層された積層体を備えた積層セラミック基板であって、
     前記セラミック層は、SiOに換算して48~75重量%のSi、BaOに換算して20~40重量%のBa、Alに換算して5~20重量%のAlを含有する主成分と、前記主成分50重量部に対して、少なくとも、MnOに換算して2.5~20重量部のMnを含有する副成分と、を含有するセラミック材料からなり、
     前記積層体には、さらに、前記積層体の内部、かつ、両主面からそれぞれ100μm以内に、厚みの少なくとも一部が存在する第1のガラスセラミック層が配置されている積層セラミック基板。
  2.  前記第1のガラスセラミック層の層数が6層以下である、請求項1に記載された積層セラミック基板。
  3.  前記第1のガラスセラミック層の層数が、1層または2層である、請求項2に記載された積層セラミック基板。
  4.  前記積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在するガラスセラミック層を備えていない、請求項1ないし3のいずれか1項に記載された積層セラミック基板。
  5.  前記積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在する第2のガラスセラミック層をさらに備え、
     前記第1のガラスセラミック層および前記第2のガラスセラミック層の総層数が6層以下である、請求項1ないし3のいずれか1項に記載された積層セラミック基板。
  6.  前記ガラスセラミック層が、前記積層体の一方の主面に近い第1のガラスセラミック層と、前記積層体の他方の主面に近い第2のガラスセラミック層の2層からなり、
     前記積層体の一方の主面と、前記第1のガラスセラミック層との間に積層された前記セラミック層、および、前記積層体の他方の主面と、前記第2のガラスセラミック層との間に積層された前記セラミック層のガラス濃度が、前記第1のガラスセラミック層と前記第2のガラスセラミック層の間に積層された前記セラミック層のガラス濃度よりも高い、請求項1~5のいずれか1項に記載された積層セラミック基板。
  7.  所定の層間に内部電極が配置された複数のセラミック層が積層された積層体を備え、
     前記セラミック層が、SiOに換算して48~75重量%のSi、BaOに換算して20~40重量%のBa、Alに換算して5~20重量%のAlを含有する主成分と、前記主成分100重量部に対して、少なくとも、MnOに換算して2.5~20重量部のMnを含有する副成分と、を含有するセラミック材料からなり、
     前記積層体には、さらに、前記積層体の内部、かつ、両主面からそれぞれ100μm以内に、厚みの少なくとも一部が存在する、第1のガラスセラミック層が積層された積層セラミック基板の製造方法であって、
     前記セラミック層を形成するためのセラミックグリーンシートを用意する工程(a)と、 前記セラミックグリーンシートの所定のものの主面に、ガラスセラミックスラリーを塗布してガラスセラミック層を形成する工程(b)と、
     前記ガラスセラミック層が形成されていない前記セラミックグリーンシート、および、前記ガラスセラミック層が形成された前記セラミックグリーンシートの少なくとも一方の所定のものの主面に、導電性ペーストを所定の形状に塗布して内部電極層を形成する工程(c)と、
     前記ガラスセラミック層や前記導電性ペーストが塗布されたものを含む、前記セラミックグリーンシートを所定の順番に積層し、未焼成積層体を作製する工程(d)と、
     前記工程(d)で得られた前記未焼成積層体の両主面を1対の拘束層で挟み、圧着する工程(e)と、
     前記工程(e)の後、前記未焼成積層体に圧力を加えた状態で、前記未焼成積層体を焼成し、前記積層体を作製する工程(f)と、
     前記工程(f)の後、前記積層体の両主面から、前記拘束層を除去する工程と、を備えた積層セラミック基板の製造方法。
  8.  前記第1のガラスセラミック層の層数が6層以下である、請求項7に記載された積層セラミック基板の製造方法。
  9.  前記第1のガラスセラミック層の層数が、1層または2層である、請求項8に記載された積層セラミック基板の製造方法。
  10.  前記積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在するガラスセラミック層を備えていない、請求項7ないし9のいずれか1項に記載された積層セラミック基板の製造方法。
  11.  前記積層体は、一方の主面から100μmより大きく離れ、かつ、他方の主面から100μmより大きく離れた領域に、厚みの全てが存在する第2のガラスセラミック層をさらに備え、
     前記第1のガラスセラミック層および前記第2のガラスセラミック層の総層数が6層以下である、請求項7ないし9のいずれか1項に記載された積層セラミック基板の製造方法。
  12.  前記拘束層が拘束層グリーンシートであり、その厚みが10μm以上である、請求項7ないし11のいずれか1項に記載された積層セラミック基板の製造方法。
  13.  焼成前の、前記ガラスセラミック層の厚みが1μm以上、30μm以下である、請求項7ないし12のいずれか1項に記載された積層セラミック基板の製造方法。 
PCT/JP2016/062449 2015-06-29 2016-04-19 多層セラミック基板および多層セラミック基板の製造方法 WO2017002434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526204A JP6402829B2 (ja) 2015-06-29 2016-04-19 多層セラミック基板および多層セラミック基板の製造方法
CN201680033011.7A CN107637185B (zh) 2015-06-29 2016-04-19 多层陶瓷基板以及多层陶瓷基板的制造方法
US15/814,676 US10626054B2 (en) 2015-06-29 2017-11-16 Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130347 2015-06-29
JP2015-130347 2015-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/814,676 Continuation US10626054B2 (en) 2015-06-29 2017-11-16 Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate

Publications (1)

Publication Number Publication Date
WO2017002434A1 true WO2017002434A1 (ja) 2017-01-05

Family

ID=57609295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062449 WO2017002434A1 (ja) 2015-06-29 2016-04-19 多層セラミック基板および多層セラミック基板の製造方法

Country Status (4)

Country Link
US (1) US10626054B2 (ja)
JP (1) JP6402829B2 (ja)
CN (1) CN107637185B (ja)
WO (1) WO2017002434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111544A1 (ja) * 2017-12-04 2019-06-13 株式会社村田製作所 集合基板の製造方法、及び、集合基板
WO2020129945A1 (ja) * 2018-12-21 2020-06-25 株式会社村田製作所 積層体及び電子部品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493560B2 (ja) * 2015-11-30 2019-04-03 株式会社村田製作所 多層セラミック基板及び電子部品
CN109156083B (zh) * 2016-05-17 2021-04-02 株式会社村田制作所 多层陶瓷基板及电子装置
DE102017118490A1 (de) * 2017-08-14 2019-02-14 Tdk Electronics Ag LED Modul
US11079296B2 (en) * 2019-06-17 2021-08-03 North University Of China Pressure-sensitive chip, pressure sensor, and pressure monitoring system
CN113004028B (zh) * 2021-03-02 2023-03-14 华中科技大学温州先进制造技术研究院 一种硅基低介微波介质陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084056A (ja) * 1996-09-06 1998-03-31 Sumitomo Kinzoku Electro Device:Kk セラミック基板の製造方法
JP2000281450A (ja) * 1999-01-27 2000-10-10 Matsushita Electric Ind Co Ltd グリーンシート及びその製造方法、多層配線基板の製造方法、両面配線基板の製造方法
JP2009231414A (ja) * 2008-03-21 2009-10-08 Kyocera Corp 多層配線基板およびその製造方法
JP5533674B2 (ja) * 2009-02-16 2014-06-25 株式会社村田製作所 低温焼結セラミック材料およびセラミック基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132913A1 (ja) * 2007-04-20 2008-11-06 Murata Manufacturing Co., Ltd. 多層セラミック基板およびその製造方法ならびに電子部品
JP5024064B2 (ja) 2008-01-15 2012-09-12 株式会社村田製作所 多層セラミック基板およびその製造方法
JP4883224B2 (ja) * 2009-01-07 2012-02-22 株式会社村田製作所 低温焼結セラミック材料およびセラミック基板
WO2010092970A1 (ja) * 2009-02-16 2010-08-19 株式会社村田製作所 低温焼結セラミック焼結体および多層セラミック基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084056A (ja) * 1996-09-06 1998-03-31 Sumitomo Kinzoku Electro Device:Kk セラミック基板の製造方法
JP2000281450A (ja) * 1999-01-27 2000-10-10 Matsushita Electric Ind Co Ltd グリーンシート及びその製造方法、多層配線基板の製造方法、両面配線基板の製造方法
JP2009231414A (ja) * 2008-03-21 2009-10-08 Kyocera Corp 多層配線基板およびその製造方法
JP5533674B2 (ja) * 2009-02-16 2014-06-25 株式会社村田製作所 低温焼結セラミック材料およびセラミック基板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111544A1 (ja) * 2017-12-04 2019-06-13 株式会社村田製作所 集合基板の製造方法、及び、集合基板
WO2020129945A1 (ja) * 2018-12-21 2020-06-25 株式会社村田製作所 積層体及び電子部品
JPWO2020129945A1 (ja) * 2018-12-21 2021-11-04 株式会社村田製作所 積層体及び電子部品
JP7180689B2 (ja) 2018-12-21 2022-11-30 株式会社村田製作所 積層体及び電子部品
US11924968B2 (en) 2018-12-21 2024-03-05 Murata Manufacturing Co., Ltd. Layered body and electronic component

Also Published As

Publication number Publication date
US10626054B2 (en) 2020-04-21
US20180072627A1 (en) 2018-03-15
CN107637185A (zh) 2018-01-26
JPWO2017002434A1 (ja) 2018-02-22
JP6402829B2 (ja) 2018-10-10
CN107637185B (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
JP6402829B2 (ja) 多層セラミック基板および多層セラミック基板の製造方法
JP4793447B2 (ja) 多層セラミック基板およびその製造方法ならびに電子部品
KR101496814B1 (ko) 적층 세라믹 커패시터, 그 제조방법 및 적층 세라믹 커패시터의 실장 기판
JPWO2007142112A1 (ja) 多層セラミック基板およびその製造方法ならびに電子部品
JP4876493B2 (ja) 多層セラミック基板および電子部品
KR101931108B1 (ko) 미드-k ltcc 조성물 및 디바이스
WO2017122381A1 (ja) 積層体及び電子部品
JP2002299146A (ja) 積層セラミックコンデンサ及びその製造方法
JP7309666B2 (ja) 多層セラミック基板及び電子装置
KR101188770B1 (ko) 저온 소결 세라믹 재료, 저온 소결 세라믹 소결체 및 다층 세라믹 기판
JP2015115518A (ja) 積層セラミック電子部品
CN108293302B (zh) 多层陶瓷基板及电子部件
JPH11354370A (ja) 積層セラミック電子部品
JP5015550B2 (ja) ガラスセラミック回路基板およびその製造方法
KR100930176B1 (ko) 세라믹 기판 및 그 제조방법
JP4175284B2 (ja) 積層セラミック電子部品の製造方法
JP4496529B2 (ja) 多層セラミック基板の製造方法及び多層セラミック基板
JP4120270B2 (ja) セラミック多層基板の製造方法
JP5354011B2 (ja) 多層セラミック基板の製造方法
JP6455633B2 (ja) 多層セラミック基板及び電子装置
JP2005268712A (ja) 積層セラミック電子部品およびその製造方法
JP2005268290A (ja) 積層セラミック電子部品およびその製造方法
JP4645962B2 (ja) 多層セラミック基板
KR20150134898A (ko) 적층 세라믹 전자부품 및 이의 제조방법
JP2007284297A (ja) グリーンシート、これを用いた多層基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817544

Country of ref document: EP

Kind code of ref document: A1