WO2016170586A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016170586A1
WO2016170586A1 PCT/JP2015/062019 JP2015062019W WO2016170586A1 WO 2016170586 A1 WO2016170586 A1 WO 2016170586A1 JP 2015062019 W JP2015062019 W JP 2015062019W WO 2016170586 A1 WO2016170586 A1 WO 2016170586A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
module
inverter
power
capacitor
Prior art date
Application number
PCT/JP2015/062019
Other languages
English (en)
French (fr)
Inventor
宏和 高林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580078938.8A priority Critical patent/CN107534391B/zh
Priority to JP2016558830A priority patent/JP6174824B2/ja
Priority to PCT/JP2015/062019 priority patent/WO2016170586A1/ja
Priority to US15/553,641 priority patent/US10148190B2/en
Priority to EP15889826.2A priority patent/EP3288164B1/en
Publication of WO2016170586A1 publication Critical patent/WO2016170586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/4505Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • the present invention relates to a power conversion device including a converter and an inverter, and including a capacitor between the converter and the inverter.
  • Patent Document 1 As a terminal connection structure for connecting a capacitor terminal to a power transistor module terminal, a method is known in which a conductor is drawn from a capacitor and directly connected to a power transistor module terminal (for example, Patent Document 1 below).
  • the above prior art is an application example for an inverter that converts DC power into AC power, and after the AC power is changed to DC power once, the power converter that converts the AC power into AC power again, that is, power conversion is performed twice. It is not an application example to a power converter.
  • a power conversion device that performs power conversion twice is configured by connecting a converter that converts AC power into DC power and an inverter that converts DC power converted by the converter into AC power.
  • This configuration is sometimes referred to as a CI configuration by taking the initial “C” in the English notation of the converter and the initial “I” in the English notation of the inverter, and is hereinafter referred to as the “CI configuration”. .
  • the present invention has been made in view of the above, and in a power converter having a CI configuration, includes a capacitor unit having a terminal connection structure that reduces a loss in a DC section and does not require a separate wiring.
  • An object of the present invention is to provide a power converter.
  • the present invention includes a converter module, a converter that converts AC power into DC power, and an inverter module, and the DC power converted by the converter is converted into AC.
  • An inverter that converts power into an inverter is connected in series to form a converter inverter unit, and a capacitor cell that stores DC power converted by the converter is provided between the converter and the inverter.
  • a capacitor unit is provided, and a first conductor electrically connected to one electrode of the capacitor cell and a second conductor electrically connected to the other electrode of the capacitor cell include the capacitor unit.
  • the first conductor is a positive side capacitor of the converter module.
  • the connection terminal and the positive-side capacitor connection terminal of the inverter module are directly connected, and the second conductor is directly connected to the negative-side capacitor connection terminal of the converter module and the negative-side capacitor connection terminal of the inverter module. It is characterized by.
  • a power converter having a CI configuration it is possible to provide a power converter provided with a capacitor unit having a terminal connection structure that reduces loss in a DC section and does not require a separate wiring. There is an effect.
  • FIG. 1 shows the structure division of the power converter device which concerns on Embodiment 1 on the circuit diagram of FIG.
  • the top view which shows the example of arrangement
  • FIG. 2 which shows the example of arrangement
  • FIG. FIG. 1 is a circuit diagram for explaining the power conversion device according to the first embodiment.
  • the power conversion apparatus according to Embodiment 1 includes a converter 10 that converts AC power supplied from an AC power source 1 into DC power, and a capacitor cell 11 a, and the DC that is supplied from the converter 10.
  • a capacitor unit 11 that stores power and an inverter 12 that converts the DC power stored in the capacitor unit 11 into AC power and supplies the AC power 2 to the AC load 2 are configured.
  • the converter 10 includes an upper arm (U phase: 10a, V phase: 10b) composed of switching elements 10a, 10b and a lower arm (U phase: 10c, V phase: 10d) composed of switching elements 10c, 10d.
  • U phase: 10a, V phase: 10b an upper arm
  • U phase: 10c, V phase: 10d a lower arm
  • converter 10 constitutes a single-phase bridge circuit having two sets of legs composed of a U phase and a V phase.
  • the converter 10 performs a modulation control (Pulse Width Modulation: hereinafter referred to as “PWM control”) to change a pulse width when switching the switching elements 10a, 10b, 10c, and 10d. Convert to DC voltage and output.
  • PWM control Pulse Width Modulation
  • a capacitor unit 11 serving as a DC power source is connected in parallel to the output terminal of the converter 10, and an inverter 12 that receives the DC voltage of the capacitor unit 11 and converts it into an AC voltage having an arbitrary voltage and an arbitrary frequency is connected. Is done.
  • the inverter 12 includes an upper arm (U phase: 12a, V phase: 12b, W phase: 12c) constituted by switching elements 12a, 12b, and 12c, and a lower arm (U) constituted by switching elements 12d, 12e, and 12f.
  • the inverter 12 converts the DC voltage input by PWM control of the switching elements 12a, 12b, 12c, 12d, 12e, and 12f into a desired AC voltage and outputs it.
  • FIG. 2 is a diagram showing the configuration division of the power conversion device according to the first embodiment on the circuit diagram of FIG.
  • the power conversion device according to the first embodiment includes a converter 10 that converts AC power into DC power and an inverter 12 that converts DC power converted by the converter 10 into AC power.
  • the converter inverter unit (hereinafter abbreviated as “CI unit”) 14 is configured.
  • CI unit 14 is an AC terminal in converter 10, forms an electrical connection terminal with AC power supply 1, and first input / output terminals U ⁇ b> 1 and V ⁇ b> 1 that exchange AC power with AC power supply 1, converter 10.
  • Positive-side capacitor connection terminals PCT1 and PCT2 that are electrically connected to the positive electrode side of the capacitor unit 11 and negative-electrode side capacitor connection terminals NCT1 and NCT2 that are electrically connected to the negative electrode side of the capacitor unit 11 in the converter 10
  • the second input / output terminals U2, V2, and W2 that are AC terminals in the inverter 12, form an electrical connection terminal with the AC load 2, and exchange AC power with the AC load 2.
  • Positive electrode side capacitor connection terminals PIT1, PIT2, P which form an electric connection end with the positive electrode side of the capacitor unit 11 T3 and, NIT1 making electrical connection ends of the negative electrode side of the capacitor unit 11 in the inverter 12, NIT2, comprises a nit3.
  • the positive side capacitor connection terminals PCT1 and PCT2 are terminals on the high potential side, the positive side capacitor connection terminal PCT1 is drawn from the switching element 10a on the upper arm side, and the positive side capacitor connection terminal PCT2 is a switching element on the upper arm side. 10b.
  • the negative side capacitor connection terminals NCT1 and NCT2 are terminals on the low potential side, the negative side capacitor connection terminal NCT1 is drawn from the switching element 10c on the lower arm side, and the negative side capacitor connection terminal NCT2 is on the lower arm side. It is pulled out from the switching element 10d.
  • the inverter 12 side is configured similarly. That is, the positive side capacitor connection terminals PIT1, PIT2, and PIT3 are terminals on the high potential side, the positive side capacitor connection terminal PIT1 is drawn from the switching element 12a located on the upper arm side, and the positive side capacitor connection terminal PIT2 is the upper arm side. The positive side capacitor connection terminal PIT3 is drawn from the switching element 12c located on the upper arm side.
  • the negative side capacitor connection terminals NIT1, NIT2, and NIT3 are terminals on the low potential side, the negative side capacitor connection terminal NIT1 is drawn from the switching element 12d located on the lower arm side, and the negative side capacitor connection terminal NIT2 is the lower arm.
  • the negative side capacitor connection terminal NIT3 is drawn from the switching element 12f located on the lower arm side.
  • connection conductors PC1 and PC2 for electrically connecting the positive electrode end of the capacitor cell 11a and the positive electrode side capacitor connection terminals PCT1 and PCT2 of the converter 10 are drawn out.
  • the connection conductor PC1 is a conductor for connecting to the positive electrode side capacitor connection terminal PCT1
  • the connection conductor PC2 is a conductor for connecting to the positive electrode side capacitor connection terminal PCT2.
  • connection conductors NC1 and NC2 for electrically connecting the negative electrode end of the capacitor cell 11a and the negative electrode side capacitor connection terminals NCT1 and NCT2 of the converter 10 are drawn out.
  • the connection conductor NC1 is a conductor for connecting to the negative electrode side capacitor connection terminal NCT1
  • the connection conductor NC2 is a conductor for connecting to the negative electrode side capacitor connection terminal NCT2.
  • connection conductors PI1, PI2, and PI3 for electrically connecting the positive end of the capacitor cell 11a and the positive side capacitor connection terminals PIT1, PIT2, and PIT3 of the inverter 12 are drawn out.
  • the connection conductor PI1 is a conductor for connecting to the positive electrode side capacitor connection terminal PIT1
  • the connection conductor PI2 is a conductor for connecting to the positive electrode side capacitor connection terminal PIT2
  • the connection conductor PI3 is connected to the positive electrode side capacitor connection terminal PIT3. It is a conductor to do.
  • connection conductors NI1, NI2, and NI3 for electrically connecting the negative electrode end of the capacitor cell 11a and the negative electrode side capacitor connection terminals NIT1, NIT2, and NIT3 of the inverter 12 are drawn out. It is.
  • the connection conductor NI1 is a conductor for connecting to the negative electrode side capacitor connection terminal NIT1
  • the connection conductor NI2 is a conductor for connecting to the negative electrode side capacitor connection terminal NIT2
  • connection conductor NI3 is connected to the negative electrode side capacitor connection terminal NIT3. It is a conductor to do.
  • FIG. 3 is a plan view showing an arrangement example of the converter module and the inverter module according to the first embodiment.
  • inverter modules 12U, 12V, and 12W are arranged in the order of 12U, 12V, and 12W on a semiconductor element mounting surface 15c of a cooler base portion 15b described later.
  • the converter modules 10A, 10B, 10C, and 10D are arranged in the order of 10A, 10C, 10D, and 10B.
  • the inverter modules 12U, 12V, and 12W are modules including two elements (hereinafter referred to as “2 in 1 module”) in which two switching elements and two diodes are mounted in one module.
  • the switching element 12a of the U-phase upper arm and the switching element 12d of the U-phase lower arm are sealed in one module in the inverter module 12U.
  • the switching element 12b of the V-phase upper arm and the switching element 12e of the V-phase lower arm are sealed in one module
  • the switching element 12c of the W-phase upper arm in the inverter module 12W, the switching element 12c of the W-phase upper arm.
  • the switching element 12f of the W-phase lower arm are sealed in the module.
  • converter modules 10A, 10B, 10C, and 10D are modules each including one switching element and one diode (hereinafter referred to as “1 in 1 module”) in one module.
  • the converter module 10A is sealed with the switching element 10a of the U-phase upper arm
  • the converter module 10B is sealed with the switching element 10b of the V-phase upper arm.
  • the switching element 10c of the U-phase lower arm is sealed
  • the switching element 10d of the V-phase upper arm is sealed.
  • the converter module 10A is provided with a positive-side capacitor connection terminal PCT1 and a connection terminal U1a which are also shown in the circuit diagram of FIG.
  • the converter module 10B is provided with a positive electrode side capacitor connection terminal PCT2 and a connection terminal V1b
  • the converter module 10C is provided with a negative electrode side capacitor connection terminal NCT1 and a connection terminal U1c
  • the converter module 10D is provided with a negative electrode side capacitor.
  • a connection terminal NCT2 and a connection terminal V1d are provided.
  • the inverter module 12U is provided with a positive side capacitor connection terminal PIT1, a negative side capacitor connection terminal NIT1 and a connection terminal U2a which are also shown in the circuit diagram of FIG.
  • the inverter module 12V is provided with a positive capacitor connection terminal PIT2, a negative capacitor connection terminal NIT2, and a connection terminal V2a.
  • the inverter module 12W is provided with a positive capacitor connection terminal PIT3 and a negative capacitor connection terminal NIT3. And a connection terminal W2a is provided.
  • connection conductors PC1, PC2 drawn from capacitor unit 11 are directly connected to positive side capacitor connection terminals PIT1, PIT2, PIT3, Connection conductors NC1 and NC2 drawn from the capacitor unit 11 are directly connected to the negative side capacitor connection terminals NIT1, NIT2 and NIT3.
  • connection terminals U1a, V1b, U1c, V1d in the converter modules 10A, 10B, 10C, 10D are the first input / output terminals U1, V1 also shown on the circuit diagram of FIG. 2 provided on the semiconductor element mounting surface 15c. Is electrically wired. That is, the connection terminals U1a, V1b, U1c, and V1d are not directly connected to the AC power supply 1, but are connected to the AC power supply 1 through the first input / output terminals U1 and V1.
  • connection terminals U2a, V2a, and W2a in the inverter modules 12U, 12V, and 12W are also shown on the circuit diagram of FIG. 2 provided on the semiconductor element mounting surface 15c. Are connected to the AC load 2 via the second input / output terminals U2, V2 and W2.
  • the inverter modules 12U, 12V, and 12W are configured as 2 in 1 modules, and the converter modules 10A, 10B, 10C, and 10D are configured as 1 in 1 modules.
  • the configuration is not limited to these configurations. Absent.
  • each of the switching elements 10a and 10c and the switching elements 10b and 10d may be sealed in one module and configured as a 2-in-1 module.
  • the switching elements 12a, 12b, Each of 12c, 12d, 12e, and 12f may be configured as a 1 in 1 module.
  • all of the switching elements 10a, 10b, 10c, and 10d may be sealed in one module and configured as a 4-in-1 module, or the switching elements 12a, 12b, and 12c. , 12d, 12e, and 12f may be sealed in one module to constitute a 6-in-1 module.
  • the converter modules 10A, 10B, 10C, and 10D and the inverter modules 12U, 12V, and 12W are mounted on the semiconductor element mounting surface 15c of the cooler base portion 15b that is the same substrate.
  • the first conductor 16a drawn from the unit 11 is connected to the positive-side capacitor connection terminal of the converter module and the inverter module, and the second conductor 16b drawn from the capacitor unit is the negative-side capacitor of the converter module and the inverter module.
  • substrate As long as it is the structure connected to a connection terminal, you may mount on a different board
  • FIG. 4 is a cross-sectional view showing an example of the structure of the capacitor unit according to the first embodiment.
  • FIG. 4 shows a cross-sectional shape including the converter module 10A and the inverter module 12U in the arrangement example of the converter module and the inverter module shown in FIG.
  • FIG. 4 also shows a configuration of a cooler 15 for mounting the converter module 10A and the inverter module 12U for connecting the capacitor unit 11 and cooling the converter module 10A and the inverter module 12U.
  • capacitor unit 11 In the capacitor unit 11 according to the first structural example, five capacitor cells 11a are arranged in alignment as shown in the figure, and the positive terminals 11b forming one electrode of the capacitor cell 11a are located inside the capacitor unit 11.
  • the negative electrodes 11c that are electrically connected by the first conductor 16a that is a plate-like conductor and that form the other electrode of the capacitor cell 11a are also the plate-like conductors inside the capacitor unit 11.
  • the two conductors 16b are electrically connected.
  • the cooler 15 includes a cooler base portion 15b and a cooler heat radiation portion 15a provided on the cooler base portion 15b.
  • the switching elements 10a and 12a included in the CI unit 14 are attached to the semiconductor element attachment surface 15c of the cooler base portion 15b.
  • the switching elements 10a and 12a attached to the semiconductor element attachment surface 15c are cooled by cooling air passing through the cooler heat radiating portion 15a.
  • the first conductor 16a is drawn out of the capacitor unit 11 on the converter module 10A side to constitute the connection conductor PC1 described above, and is drawn out of the capacitor unit 11 on the inverter module 12U side and described above.
  • a connection conductor PI1 is configured.
  • the second conductor 16b is drawn to the outside of the capacitor unit 11 on the converter module 10A side to constitute the connection conductor NC1 described above, and is drawn to the outside of the capacitor unit 11 on the inverter module 12U side.
  • the connection conductor NI1 described above is configured.
  • the first conductor 16a and the second conductor 16b are arranged so as to have a laminated structure, but in such a configuration, the first conductor 16a and the second conductor 16b It goes without saying that an insulating sheet is inserted between the two to provide electrical insulation.
  • connection conductor PC1 is directly connected to the positive electrode side capacitor connection terminal PCT1 of the converter module 10A, and the connection conductor PI1 is directly connected to the positive electrode side capacitor connection terminal PIT1 of the inverter module 12U. Further, the connection conductor NI1 is electrically connected to the negative-side capacitor connection terminal NIT1 of the inverter module 12U with a known terminal connection structure. As described above, the connection conductor NC1 is not electrically connected to the terminal of the converter module 10A but is electrically connected to the negative-side capacitor connection terminal NCT1 of the converter module 10C.
  • FIG. 5 is a cross-sectional view showing a structural example different from FIG. 4 of the capacitor unit according to the first embodiment.
  • the negative electrode terminal 11c is arranged on the upper part of the capacitor cell 11a, and the positive electrode terminal 11b is arranged on the lower part, but the second structural example shown in FIG.
  • the negative electrode terminal 11c and the second conductor 16b are electrically connected by the conductor 11d penetrating the inside of the capacitor cell 11a.
  • the first conductor 16 a and the second conductor 16 b are arranged in parallel both inside and outside the capacitor unit 11.
  • the capacitor unit 11 according to the second structure example has a smaller wiring inductance than the capacitor unit 11 according to the first structure example.
  • the capacitor unit 11 is supported by the first conductor 16a and the second conductor 16b.
  • the capacitor unit 11 is heavy, or the first conductor When reducing the thickness by reducing the thickness of the 16a and the second conductor 16b or the like, and the capacitor unit 11 cannot be supported only by the first conductor 16a and the second conductor 16b, the capacitor unit 11 It is only necessary to adopt a configuration in which the structure is fixed by a structure that houses the structure and fixed by a support frame provided on the side of the capacitor unit 11.
  • the first conductor 16a drawn from the capacitor unit 11 is directly connected to the converter module, and is connected to the capacitor unit. Since the drawn second conductor 16b is directly connected to the inverter module, the wiring distance can be shortened compared to the conventional case, and wiring with low inductance can be performed.
  • the CI power converter can be configured with a single capacitor unit with one capacitor unit, and it is not necessary to provide a capacitor unit or a capacitor for each of the converter and the inverter. Therefore, it is possible to suppress the occurrence of a resonance phenomenon between the first capacitor provided on the converter side and the second capacitor provided on the inverter side.
  • the current that can travel between the first capacitor and the second capacitor, that is, in the DC section of the power converter can be reduced, loss in the DC section can be reduced.
  • the number of capacitors can be reduced as compared with the conventional case, and the wiring between the first capacitor and the second capacitor is not necessary, so that the manufacturing cost can be reduced.
  • SiC element silicon carbide
  • SiC silicon carbide
  • SiC element has excellent characteristics such as a large heat transfer coefficient, operation at a high temperature, and high-speed switching as compared with a semiconductor element made of silicon (Si).
  • SiC element is capable of high-speed switching, the time change rate of the switching current flowing through the wiring inside the power conversion device is large, so the surge voltage generated in the wiring is large, and the components inside the power conversion device The surge voltage applied to becomes larger.
  • the terminal connection structure according to the first embodiment can realize low inductance, and the surge voltage applied to the components inside the power converter can be reduced. Therefore, it is particularly useful for a power conversion device to which a SiC element is applied.
  • the cooler 15 can be made small. Here, if the size of the cooler 15 can be reduced, the distance between the converter module mounted on the semiconductor element mounting surface 15c of the cooler 15 and the inverter module is reduced. Act on.
  • SiC is an example of a semiconductor referred to as a wide bandgap semiconductor by capturing the characteristic that the bandgap is larger than that of Si (in contrast, Si is referred to as a narrow bandgap semiconductor).
  • a semiconductor formed using a gallium nitride-based material or diamond belongs to a wide band gap semiconductor, and their characteristics are also similar to silicon carbide. Accordingly, a configuration using a wide band gap semiconductor element other than SiC also forms the gist of the present invention.
  • FIG. 6 is a plan view showing an arrangement example of the converter module and the inverter module according to the second embodiment.
  • the converter modules 10A, 10B, 10C, 10D and the inverter module 12U are arranged so that the connection terminals U1a, U1c, V1b, V1d in the converter module and the connection terminals U2a, V2a, W2a in the inverter module face each other on the mounting surface.
  • 12V and 12W are arranged in FIG.
  • connection terminals U1a, U1c, V1b, and V1d in the converter module and the connection terminals U2a, V2a, and W2a in the inverter module face the outside of the board.
  • T3 and the negative capacitor connection NIT1, NIT2, NIT3, the converter module 10A so as to face in the mounting surface, 10B, are arranged 10C, 10D and inverter modules 12U, 12V, and 12W.
  • the distance between the first input / output terminals U1, V1 and the connection terminals U1a, V1b, U1c, V1d in the converter modules 10A, 10B, 10C, 10D is shorter than that of FIG. As a result, the length of the wiring member can be shortened.
  • the inverter modules 12U, 12V, and 12W are identical to the inverter modules 12U, 12V, and 12W, because the distance between the second input / output terminals U2, V2, and W2 and the inverter modules 12U, 12V, and 12W is shorter than that in FIG.
  • the length of the wiring member can be shortened.
  • the converter modules 10A, 10B, 10C, and 10D and the inverter are arranged such that the connection terminals U1a, U1c, V1b, and V1d in the converter module and the connection terminals U2a, V2a, and W2a in the inverter module face each other on the mounting surface.
  • Modules 12U, 12V, and 12W are disposed, and in FIG.
  • converter modules 10A, 10B, and 10C are arranged such that positive-side capacitor connection terminals PCT1 and PCT2 and negative-side capacitor connection terminals NCT1 and NCT2 in the converter module and connection terminals U2a, V2a, and W2a in the inverter module face each other on the mounting surface.
  • connection terminals U1a, U1c, V1b, V1d in the converter module and the positive side capacitor connection terminal PIT1 in the inverter module , PIT2 and PIT3 and the negative side capacitor connection terminals NIT1, NIT2 and NIT3 face each other on the mounting surface in the converter modules 10A, 10B, 10C and 10D.
  • Fine inverter module 12U, 12V may be arranged 12W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

交流電力を直流電力に変換するコンバータ10と、コンバータ10が変換した直流電力を交流電力に変換するインバータ12とがシリーズに接続されてコンバータインバータユニット14を構成する電力変換装置であって、コンバータ10とインバータ12との間には、コンバータ10が変換した直流電力を蓄積するコンデンサセル11aを具備するコンデンサユニット11が設けられ、コンデンサセル11aの一方の電極に電気的に接続された第1の導体とコンデンサセル11aの他方の電極に電気的に接続された第2の導体とがコンデンサユニット11から引き出され、第1の導体はコンバータ10の正極側コンデンサ接続端子PCT1,PCT2およびインバータ12の正極側コンデンサ接続端子PIT1,PIT2,PIT3に直に接続され、第2の導体はコンバータ10の負極側コンデンサ接続端子NCT1,NCT2およびインバータ12の負極側コンデンサ接続端子NIT1,NIT2,NIT3に直に接続される。

Description

電力変換装置
 本発明は、コンバータおよびインバータを具備し、コンバータとインバータとの間にコンデンサを備える電力変換装置に関する。
 コンデンサ端子をパワートランジスタモジュール端子に接続する端子接続構造として、コンデンサから導体を引き出し、パワートランジスタモジュール端子に直接接続する手法が知られている(例えば、下記特許文献1)。
特許第5335868号公報
 しかしながら、上記従来技術は、直流電力を交流電力に変換するインバータに対する適用例であり、交流電力を一旦直流電力に変化した後に、再度交流電力に変換する電力変換装置、すなわち電力変換を2回行う電力変換装置への適用例ではない。
 電力変換を2回行う電力変換装置は、交流電力を直流電力に変換するコンバータと、コンバータが変換した直流電力を交流電力に変換するインバータとがシリーズに接続されて構成される。この構成は、コンバータの英語表記における頭文字の“C”と、インバータの英語表記における頭文字の“I”とをとって、CI構成と称されることがあり、以下「CI構成」と称する。
 CI構成の電力変換装置の場合、コンバータおよびインバータのそれぞれに対し、上記特許文献1の端子接続構成を適用すると、必然的にコンバータを構成するスイッチング素子の端子に直接接続される第1のコンデンサと、インバータを構成するスイッチング素子の端子に直接接続される第2のコンデンサとが、配線によって電気的に接続される構成とならざるを得ない。この構成の場合、当該配線の配線インダクタンスと第1のコンデンサおよび第2のコンデンサの各容量にて共振現象が発生し、第1のコンデンサと第2のコンデンサとの間、すなわち直流電流が通流する直流区間で電流が行き来する現象が発生する可能性があり、直流区間での損失が増加するという問題があった。また、直流区間に別途の配線を設ける場合、配線インダクタンス成分Lと、直流電流Iの時間変化成分dI/dtにより、スイッチング素子にL(dI/dt)による過電圧が発生し、配線インダクタンス成分Lが大きい場合には素子破壊に至る場合があるといった問題点もあった。
 本発明は、上記に鑑みてなされたものであって、CI構成の電力変換装置において、直流区間での損失を低減し、別途の配線を設ける必要のない端子接続構造を具備するコンデンサユニットを備えた電力変換装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、コンバータモジュールを具備し、交流電力を直流電力に変換するコンバータと、インバータモジュールを具備し、前記コンバータが変換した直流電力を交流電力に変換するインバータとがシリーズに接続されてコンバータインバータユニットを構成する電力変換装置であって、前記コンバータと前記インバータとの間には、前記コンバータが変換した直流電力を蓄積するコンデンサセルを具備するコンデンサユニットが設けられ、前記コンデンサセルの一方の電極に電気的に接続された第1の導体と前記コンデンサセルの他方の電極に電気的に接続された第2の導体とが、前記コンデンサユニットから引き出され、前記第1の導体は前記コンバータモジュールの正極側コンデンサ接続端子および前記インバータモジュールの正極側コンデンサ接続端子に直に接続され、前記第2の導体は前記コンバータモジュールの負極側コンデンサ接続端子および前記インバータモジュールの負極側コンデンサ接続端子に直に接続されることを特徴とする。
 本発明によれば、CI構成の電力変換装置において、直流区間での損失を低減し、別途の配線を設ける必要のない端子接続構造を具備するコンデンサユニットを備えた電力変換装置を提供できる、という効果を奏する。
実施の形態1に係る電力変換装置を説明するための回路図 実施の形態1に係る電力変換装置の構成区分を図1の回路図上に示した図 実施の形態1に係るコンバータモジュールおよびインバータモジュールの配置例を示す平面図 実施の形態1に係るコンデンサユニットの構造例を示す断面図 実施の形態1に係るコンデンサユニットの図4とは異なる他の構造例を示す断面図 実施の形態2に係るコンバータモジュールおよびインバータモジュールの配置例を示す平面図
 以下に添付図面を参照し、本発明の実施の形態に係る電力変換装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置を説明するための回路図である。実施の形態1に係る電力変換装置は、図1に示すように、交流電源1から供給される交流電力を直流電力に変換するコンバータ10、コンデンサセル11aを具備し、コンバータ10から供給される直流電力を蓄積するコンデンサユニット11および、コンデンサユニット11が蓄積した直流電力を交流電力に変換して交流負荷2に供給するインバータ12を有して構成される。
 コンバータ10は、スイッチング素子10a,10bで構成される上アーム(U相:10a、V相:10b)と、スイッチング素子10c,10dで構成される下アーム(U相:10c、V相:10d)とがそれぞれ直列に接続された回路部(以下「レグ」という)を有している。すなわち、コンバータ10は、U相およびV相からなる2組のレグを有する単相ブリッジ回路を構成している。
 コンバータ10は、スイッチング素子10a,10b,10c,10dをスイッチング制御する際にパルス幅を可変する変調制御(Pulse Width Moduration:以下「PWM制御」という)を行うことで入力された交流電圧を所望の直流電圧に変換して出力する。
 コンバータ10の出力端には、直流電源となるコンデンサユニット11が並列に接続されるとともに、コンデンサユニット11の直流電圧を入力とし、任意電圧および任意周波数の交流電圧に変換し出力するインバータ12が接続される。
 インバータ12は、スイッチング素子12a,12b,12cで構成される上アーム(U相:12a、V相:12b,W相:12c)と、スイッチング素子12d,12e,12fで構成される下アーム(U相:12d、V相:12e,W相:12f)がそれぞれ直列に接続されたレグを有している。すなわち、インバータ12は、U相、V相およびW相からなる3組のレグを有する3相ブリッジ回路を構成している。
 インバータ12は、スイッチング素子12a,12b,12c,12d,12e,12fをPWM制御することで入力された直流電圧を所望の交流電圧に変換して出力する。
 つぎに、実施の形態1に係る電力変換装置の要部の構成について、図2から図4の各図面を参照して説明する。
 図2は、実施の形態1に係る電力変換装置の構成区分を図1の回路図上に示した図である。実施の形態1に係る電力変換装置は、図2に示すように、交流電力を直流電力に変換するコンバータ10と、コンバータ10が変換した直流電力を交流電力に変換するインバータ12とがシリーズに接続されたコンバータインバータユニット(以下「CIユニット」と略記する)14を構成する。CIユニット14は、コンバータ10における交流端であり、交流電源1との電気的接続端を成し、交流電源1との間で交流電力を授受する第1の入出力端子U1,V1、コンバータ10におけるコンデンサユニット11の正極側との電気的接続端を成す正極側コンデンサ接続端子PCT1,PCT2および、コンバータ10におけるコンデンサユニット11の負極側との電気的接続端を成す負極側コンデンサ接続端子NCT1,NCT2、ならびに、インバータ12における交流端であり、交流負荷2との電気的接続端を成し、交流負荷2との間で交流電力を授受する第2の入出力端子U2,V2,W2、インバータ12におけるコンデンサユニット11の正極側との電気的接続端を成す正極側コンデンサ接続端子PIT1,PIT2,PIT3および、インバータ12におけるコンデンサユニット11の負極側との電気的接続端を成すNIT1,NIT2,NIT3を具備する。
 正極側コンデンサ接続端子PCT1,PCT2は高電位側の端子であり、正極側コンデンサ接続端子PCT1は上アーム側にあるスイッチング素子10aから引き出され、正極側コンデンサ接続端子PCT2は上アーム側にあるスイッチング素子10bから引き出されている。また、負極側コンデンサ接続端子NCT1,NCT2は低電位側の端子であり、負極側コンデンサ接続端子NCT1は下アーム側にあるスイッチング素子10cから引き出され、負極側コンデンサ接続端子NCT2は下アーム側にあるスイッチング素子10dから引き出されている。
 インバータ12側においても同様に構成される。すなわち、正極側コンデンサ接続端子PIT1,PIT2,PIT3は高電位側の端子であり、正極側コンデンサ接続端子PIT1は上アーム側に位置するスイッチング素子12aから引き出され、正極側コンデンサ接続端子PIT2は上アーム側に位置するスイッチング素子12bから引き出され、正極側コンデンサ接続端子PIT3は上アーム側に位置するスイッチング素子12cから引き出されている。また、負極側コンデンサ接続端子NIT1,NIT2,NIT3は低電位側の端子であり、負極側コンデンサ接続端子NIT1は下アーム側に位置するスイッチング素子12dから引き出され、負極側コンデンサ接続端子NIT2は下アーム側に位置するスイッチング素子12eから引き出され、負極側コンデンサ接続端子NIT3は下アーム側に位置するスイッチング素子12fから引き出されている。
 コンデンサユニット11では、コンデンサセル11aの正極端とコンバータ10の正極側コンデンサ接続端子PCT1,PCT2とを電気的に接続するための接続導体PC1,PC2が引き出されている。接続導体PC1は正極側コンデンサ接続端子PCT1に接続するための導体であり、接続導体PC2は正極側コンデンサ接続端子PCT2に接続するための導体である。コンデンサセル11aの負極側においても同様であり、コンデンサセル11aの負極端とコンバータ10の負極側コンデンサ接続端子NCT1,NCT2とを電気的に接続するための接続導体NC1,NC2が引き出されている。接続導体NC1は負極側コンデンサ接続端子NCT1に接続するための導体であり、接続導体NC2は負極側コンデンサ接続端子NCT2に接続するための導体である。
 また、コンデンサユニット11では、コンデンサセル11aの正極端とインバータ12の正極側コンデンサ接続端子PIT1,PIT2,PIT3とを電気的に接続するための接続導体PI1,PI2,PI3が引き出されている。接続導体PI1は正極側コンデンサ接続端子PIT1に接続するための導体であり、接続導体PI2は正極側コンデンサ接続端子PIT2に接続するための導体であり、接続導体PI3は正極側コンデンサ接続端子PIT3に接続するための導体である。コンデンサセル11aの負極側においても同様であり、コンデンサセル11aの負極端とインバータ12の負極側コンデンサ接続端子NIT1,NIT2,NIT3とを電気的に接続するための接続導体NI1,NI2,NI3が引き出されている。接続導体NI1は負極側コンデンサ接続端子NIT1に接続するための導体であり、接続導体NI2は負極側コンデンサ接続端子NIT2に接続するための導体であり、接続導体NI3は負極側コンデンサ接続端子NIT3に接続するための導体である。
 図3は、実施の形態1に係るコンバータモジュールおよびインバータモジュールの配置例を示す平面図である。実施の形態1では、図3に示すように、後述する冷却器ベース部15bの半導体素子取付面15c上に、インバータモジュール12U,12V,12Wが、12U,12V,12Wの順序で整列して配置され、また、コンバータモジュール10A,10B,10C,10Dが、10A,10C,10D,10Bの順序で整列して配置されている。
 ここで、インバータモジュール12U,12V,12Wは、1モジュール内に2つのスイッチング素子と2つのダイオードを搭載した2素子入りのモジュール(以下「2in1モジュール」という)である。図2の構成に照らして具体的に説明すると、インバータモジュール12Uでは、U相上アームのスイッチング素子12aとU相下アームのスイッチング素子12dとが1つのモジュール内に封止されている。以下同様に、インバータモジュール12Vでは、V相上アームのスイッチング素子12bとV相下アームのスイッチング素子12eとが1つのモジュール内に封止され、インバータモジュール12Wでは、W相上アームのスイッチング素子12cとW相下アームのスイッチング素子12fとがモジュール内に封止されている。
 一方、コンバータモジュール10A,10B,10C,10Dは、1モジュール内に1つのスイッチング素子と1つのダイオードを搭載した1素子入りのモジュール(以下「1in1モジュール」という)である。図2の構成に照らして説明すると、コンバータモジュール10Aには、U相上アームのスイッチング素子10aが封止され、コンバータモジュール10Bには、V相上アームのスイッチング素子10bが封止され、コンバータモジュール10Cには、U相下アームのスイッチング素子10cが封止され、コンバータモジュール10Dでは、V相上アームのスイッチング素子10dが封止されている。
 コンバータモジュール10Aには、図2の回路図にも示している正極側コンデンサ接続端子PCT1および接続端子U1aが設けられている。以下同様に、コンバータモジュール10Bには正極側コンデンサ接続端子PCT2および接続端子V1bが設けられ、コンバータモジュール10Cには負極側コンデンサ接続端子NCT1および接続端子U1cが設けられ、コンバータモジュール10Dには負極側コンデンサ接続端子NCT2および接続端子V1dが設けられている。
 また、インバータモジュール12Uには、図2の回路図にも示している正極側コンデンサ接続端子PIT1、負極側コンデンサ接続端子NIT1および接続端子U2aが設けられている。以下同様に、インバータモジュール12Vには、正極側コンデンサ接続端子PIT2、負極側コンデンサ接続端子NIT2および接続端子V2aが設けられ、インバータモジュール12Wには、正極側コンデンサ接続端子PIT3、負極側コンデンサ接続端子NIT3および接続端子W2aが設けられている。
 コンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wにおいて、正極側コンデンサ接続端子PIT1,PIT2,PIT3には、コンデンサユニット11から引き出された接続導体PC1,PC2が直に接続され、負極側コンデンサ接続端子NIT1,NIT2,NIT3には、コンデンサユニット11から引き出された接続導体NC1,NC2が直に接続される。
 一方、コンバータモジュール10A,10B,10C,10Dにおける接続端子U1a,V1b,U1c,V1dは、半導体素子取付面15c上に設けた図2の回路図上にも示す第1の入出力端子U1,V1に電気配線される。すなわち、接続端子U1a,V1b,U1c,V1dは、交流電源1に直に接続される端子ではなく、交流電源1との接続は、第1の入出力端子U1,V1を介して行われる。
 インバータモジュール12U,12V,12Wにおいても同様であり、インバータモジュール12U,12V,12Wにおける接続端子U2a,V2a,W2aは、半導体素子取付面15c上に設けた図2の回路図上にも示す第2の入出力端子U2,V2,W2に電気配線され、交流負荷2との接続は、第2の入出力端子U2,V2,W2を介して行われる。
 なお、図3の構成では、インバータモジュール12U,12V,12Wを2in1モジュールとして構成し、コンバータモジュール10A,10B,10C,10Dを1in1モジュールとして構成しているが、これらの構成に限定されるものではない。例えば、コンバータ10において、スイッチング素子10a,10c同士およびスイッチング素子10b,10d同士のそれぞれを1つのモジュール内に封止して2in1モジュールとして構成してもよいし、逆に、スイッチング素子12a,12b,12c,12d,12e,12fのそれぞれを1in1モジュールとして構成してもよい。また、小容量の電力変換装置であれば、スイッチング素子10a,10b,10c,10dの全てを1つのモジュール内に封止して4in1モジュールとして構成してもよいし、スイッチング素子12a,12b,12c,12d,12e,12fの全てを1つのモジュール内に封止して6in1モジュールとして構成してもよい。
 また、図3では、コンバータモジュール10A,10B,10C,10Dと、インバータモジュール12U,12V,12Wと、を同一基板である冷却器ベース部15bの半導体素子取付面15cに搭載しているが、コンデンサユニット11から引き出した第1の導体16aが、コンバータモジュールおよびインバータモジュールの正極側コンデンサ接続端子に接続され、且つ、コンデンサユニットから引き出した第2の導体16bが、コンバータモジュールおよびインバータモジュールの負極側コンデンサ接続端子に接続される構成である限りにおいて、異なる基板に搭載されていてもよい。
 図4は、実施の形態1に係るコンデンサユニットの構造例を示す断面図である。なお、図4では、図3に示すコンバータモジュールおよびインバータモジュールの配置例において、コンバータモジュール10Aおよびインバータモジュール12Uを含む断面形状を示している。また、図4では、コンデンサユニット11を接続するコンバータモジュール10Aおよびインバータモジュール12Uを搭載し、コンバータモジュール10Aおよびインバータモジュール12Uを冷却するための冷却器15の構成を併せて示している。
 第1の構造例に係るコンデンサユニット11では、図示のように5つのコンデンサセル11aが整列して配置され、コンデンサセル11aの一方の電極を成す正極端子11b同士が、コンデンサユニット11の内部にて、板状導体である第1の導体16aによって電気的に接続されると共に、コンデンサセル11aの他方の電極を成す負極端子11c同士が、同じくコンデンサユニット11の内部にて、板状導体である第2の導体16bによって電気的に接続されている。
 冷却器15は、冷却器ベース部15bおよび冷却器ベース部15bに設けられる冷却器放熱部15aを備える。CIユニット14に具備されるスイッチング素子10a,12aは、冷却器ベース部15bの半導体素子取付面15cに取り付けられている。半導体素子取付面15cに取り付けられたスイッチング素子10a,12aは、冷却器放熱部15aを通過する冷却風によって冷却される。
 第1の導体16aは、コンバータモジュール10A側において、コンデンサユニット11の外部に引き出されて上述した接続導体PC1を構成し、また、インバータモジュール12U側において、コンデンサユニット11の外部に引き出されて上述した接続導体PI1を構成する。
 同様に、第2の導体16bは、コンバータモジュール10A側において、コンデンサユニット11の外部に引き出されて上述した接続導体NC1を構成し、また、インバータモジュール12U側において、コンデンサユニット11の外部に引き出されて上述した接続導体NI1を構成する。なお、図4では、第1の導体16aと第2の導体16bとが積層構造となるように配置しているが、このような構成の場合、第1の導体16aと第2の導体16bとの間に絶縁シートが挿入されて電気的な絶縁が施されることは言うまでもない。
 上述したように、接続導体PC1は、コンバータモジュール10Aの正極側コンデンサ接続端子PCT1に直に接続され、接続導体PI1は、インバータモジュール12Uの正極側コンデンサ接続端子PIT1に直に接続される。また、接続導体NI1は、インバータモジュール12Uの負極側コンデンサ接続端子NIT1に、公知の端子接続構造にて電気的に接続される。なお、接続導体NC1は、コンバータモジュール10Aの端子には電気的に接続されず、コンバータモジュール10Cの負極側コンデンサ接続端子NCT1に電気的に接続されることは上述の通りである。
 図5は、実施の形態1に係るコンデンサユニットの図4とは異なる構造例を示す断面図である。図4に示す第1の構造例に係るコンデンサユニット11では、コンデンサセル11aの上部に負極端子11cを配し、下部に正極端子11bを配していたが、図5に示す第2の構造例に係るコンデンサユニット11では、コンデンサセル11aの内部を貫通する導体11dによって負極端子11cと第2の導体16bとを電気的に接続している。この構成により、第1の導体16aと第2の導体16bとがコンデンサユニット11の内部および外部の双方において並行して配設される。ここで、スイッチング素子がスイッチング動作するときに第1の導体16aに流れる電流と、第2の導体16bに流れる電流とは大きさが同じで通流方向が逆となるため、並行して配設される部分が長くなる程、インダクタンス低減の効果が大きくなる。このため、第2の構造例に係るコンデンサユニット11は、第1の構造例に係るコンデンサユニット11よりも配線インダクタンスが小さくなる。
 なお、図4および図5の構成では、第1の導体16aと第2の導体16bとによって、コンデンサユニット11を支える構成であるが、コンデンサユニット11の重量がある場合、または、第1の導体16aおよび第2の導体16bの厚みを薄くするなどして軽量化を図る場合において、第1の導体16aおよび第2の導体16bのみでは、コンデンサユニット11を支えられない場合には、コンデンサユニット11を収納する構造物によって固定し、また、コンデンサユニット11の側部に設けた支えフレームによって、固定する構成を採用すればよい。
 つぎに、実施の形態1に係る電力変換装置が固有に有する効果について説明する。
 まず、実施の形態1に係る電力変換装置における端子接続構造では、CI構成の電力変換装置において、コンデンサユニット11から引き出した第1の導体16aをコンバータモジュールに直に接続し、且つ、コンデンサユニットから引き出した第2の導体16bをインバータモジュールに直に接続する構成としているので、従来よりも配線距離を短くでき、低インダクタンスの配線を行うことが可能となる。
 また、実施の形態1に係る端子接続構造では、1つのコンデンサユニットで、CI構成の電力変換装置を単一のコンデンサユニットで構成でき、コンバータおよびインバータのそれぞれでコンデンサユニットもしくはコンデンサを設ける必要がなくなるので、コンバータ側に設けた第1のコンデンサと、インバータ側に設けた第2のコンデンサとの間の共振現象の発生を抑止することが可能となる。また、第1のコンデンサと第2のコンデンサとの間、すなわち電力変換装置の直流区間で行き来する可能性のある電流を小さくできるので、直流区間での損失を低減することが可能となる。また、従来よりも、コンデンサの数量を減らすことができ、第1のコンデンサと第2のコンデンサとの間の配線も不要になるので、製造コストの低減が可能となる。
 また、最近の電力変換装置では、用途に応じて、炭化珪素(SiC)を素材とする半導体素子(SiC素子)の使用が検討されている。SiC素子は、珪素(Si)を素材とする半導体素子と比較して、熱伝達率が大きい、高温での動作が可能、高速スイッチングが可能といった優れた特性を有している。その一方で、SiC素子は、高速スイッチングが可能ゆえに電力変換装置の内部の配線に通流するスイッチング電流の時間変化率が大きいため、配線に発生するサージ電圧が大きく、電力変換装置の内部の部品に加わるサージ電圧が大きくなる。よって、SiC素子を用いる場合には、低インダクタンスが求められるが、実施の形態1に係る端子接続構造は低インダクタンスを実現でき、電力変換装置の内部の部品に加わるサージ電圧を小さくすることができるので、SiC素子を適用した電力変換装置に特に有用である。
 また、SiC素子は、高温での動作が可能であるため、冷却器15を小さくすることができる。ここで、冷却器15のサイズを小さくできれば、冷却器15の半導体素子取付面15cに搭載されるコンバータモジュールとインバータモジュールとの間の距離が小さくなるので、接続配線の低インダクタンス化には好ましい方向に作用する。
 なお、SiCは、Siよりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である(これに対し、Siは、ナローバンドギャップ半導体と称される)。このSiC以外にも、例えば窒化ガリウム系材料または、ダイヤモンドを用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性も炭化珪素に類似した点が多い。したがって、SiC以外の他のワイドバンドギャップ半導体素子を用いる構成も、本発明の要旨を成すものである。
実施の形態2.
 実施の形態2では、コンバータモジュールおよびインバータモジュールに係る配置のバリエーションについて説明する。図6は、実施の形態2に係るコンバータモジュールおよびインバータモジュールの配置例を示す平面図である。図3では、コンバータモジュールにおける接続端子U1a,U1c,V1b,V1dと、インバータモジュールにおける接続端子U2a,V2a,W2aと、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置していたが、図6では、コンバータモジュールにおける接続端子U1a,U1c,V1b,V1dと、インバータモジュールにおける接続端子U2a,V2a,W2aと、が基板の外方を向くように、別言すれば、コンバータモジュールにおける正極側コンデンサ接続端子PCT1,PCT2および負極側コンデンサ接続端子NCT1,NCT2と、インバータモジュールにおける正極側コンデンサ接続端子PIT1,PIT2,PIT3および負極側コンデンサ接続端子NIT1,NIT2,NIT3と、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置している。
 図6の構成の場合、第1の入出力端子U1,V1と、コンバータモジュール10A,10B,10C,10Dにおける接続端子U1a,V1b,U1c,V1dとの間の距離が図3に比して短くなるので、配線部材の長さの短縮化が可能となる。
 また、インバータモジュール12U,12V,12Wにおいても同様であり、第2の入出力端子U2,V2,W2と、インバータモジュール12U,12V,12Wとの間の距離が図3に比して短くなるので、配線部材の長さの短縮化が可能となる。
 また、図6の構成の場合、コンバータモジュール10A,10B,10C,10Dにおける正極側コンデンサ接続端子PCT1,PCT2および負極側コンデンサ接続端子NCT1,NCT2と、インバータモジュール12U,12V,12Wにおける正極側コンデンサ接続端子PIT1,PIT2,PIT3および負極側コンデンサ接続端子NIT1,NIT2,NIT3との間の距離が短くなるので、コンデンサセル11aの容量が小さく、コンデンサユニット11のサイズが小さい場合には、コンデンサユニット11から引き出す第1の導体16aおよび第2の導体16bの長さを短くできるので、配線の低インダクタンス化には有効に作用する。逆に、コンデンサセル11aの容量が大きく、コンデンサユニット11のサイズが大きい場合には、図3の構成の方が有利になる場合がある。
 なお、図3では、コンバータモジュールにおける接続端子U1a,U1c,V1b,V1dと、インバータモジュールにおける接続端子U2a,V2a,W2aと、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置し、図6では、コンバータモジュールにおける正極側コンデンサ接続端子PCT1,PCT2および負極側コンデンサ接続端子NCT1,NCT2と、インバータモジュールにおける正極側コンデンサ接続端子PIT1,PIT3,PIT3および負極側コンデンサ接続端子NIT1,NIT2,NIT3と、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置しているが、図3および図6の何れの配置においても何れか一方を反転させて配置してもよい。
 すなわち、コンバータモジュールにおける正極側コンデンサ接続端子PCT1,PCT2および負極側コンデンサ接続端子NCT1,NCT2と、インバータモジュールにおける接続端子U2a,V2a,W2aと、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置してもよいし、また、この配置とは逆に、コンバータモジュールにおける接続端子U1a,U1c,V1b,V1dと、インバータモジュールにおける正極側コンデンサ接続端子PIT1,PIT2,PIT3および負極側コンデンサ接続端子NIT1,NIT2,NIT3と、が搭載面において向かい合うようにコンバータモジュール10A,10B,10C,10Dおよびインバータモジュール12U,12V,12Wを配置してもよい。
 以上、実施の形態1,2に係る電力変換装置および、その端子接続構造について説明してきたが、上述した内容は一例を示すものであり、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 1 交流電源、2 交流負荷、10 コンバータ、10A,10B,10C,10D コンバータモジュール、10a,10b,10c,10d,12a,12b,12c,12d,12e,12f スイッチング素子、11 コンデンサユニット、11a コンデンサセル、11b 正極端子、11c 負極端子、11d 導体、12 インバータ、12U,12V,12W インバータモジュール、14 CIユニット、15 冷却器、15a 冷却器放熱部、15b 冷却器ベース部、15c 半導体素子取付面、16a 第1の導体、16b 第2の導体、PC1,PC2,NC1,NC2,PI1,PI2,PI3,NI1,NI2,NI3 接続導体、PCT1,PCT2,PIT1,PIT2,PIT3 正極側コンデンサ接続端子、NCT1,NCT2,NIT1,NIT2,NIT3 負極側コンデンサ接続端子、U1,V1 第1の入出力端子、U2,V2,W2 第2の入出力端子、U1a,V1b,U1c,V1d,U2a,V2a,W2a 接続端子。

Claims (8)

  1.  コンバータモジュールを具備し、交流電力を直流電力に変換するコンバータと、インバータモジュールを具備し、前記コンバータが変換した直流電力を交流電力に変換するインバータとがシリーズに接続されてコンバータインバータユニットを構成する電力変換装置であって、
     前記コンバータと前記インバータとの間には、前記コンバータが変換した直流電力を蓄積するコンデンサセルを具備するコンデンサユニットが設けられ、
     前記コンデンサセルの一方の電極に電気的に接続された第1の導体と前記コンデンサセルの他方の電極に電気的に接続された第2の導体とが、前記コンデンサユニットから引き出され、
     前記第1の導体は前記コンバータモジュールの正極側コンデンサ接続端子および前記インバータモジュールの正極側コンデンサ接続端子に直に接続され、前記第2の導体は前記コンバータモジュールの負極側コンデンサ接続端子および前記インバータモジュールの負極側コンデンサ接続端子に直に接続される
     ことを特徴とする電力変換装置。
  2.  前記コンバータモジュールと前記インバータモジュールとが同一の基板上に搭載されていることを特徴とする請求項1に記載の電力変換装置。
  3.  前記コンバータインバータユニットでは、前記コンバータモジュールにおける前記第1の入出力端子に電気的に接続される接続端子と前記コンバータモジュールにおける前記第1の入出力端子に電気的に接続される接続端子とが、搭載面において向かい合うように前記コンバータモジュールおよび前記インバータモジュールが配置されていることを特徴とする請求項2に記載の電力変換装置。
  4.  前記コンバータインバータユニットでは、前記コンバータモジュールにおける前記正極側コンデンサ接続端子および前記負極側コンデンサ接続端子と前記インバータモジュールにおける前記正極側コンデンサ接続端子および前記負極側コンデンサ接続端子とが、搭載面において向かい合うように前記コンバータモジュールおよび前記インバータモジュールが配置されていることを特徴とする請求項2に記載の電力変換装置。
  5.  前記コンバータと前記インバータとで同一の冷却器を共有することを特徴とする請求項1から4の何れか1項に記載の電力変換装置。
  6.  前記コンバータインバータユニットは、交流電源との間で交流電力を授受する第1の入出力端子と、交流負荷との間で交流電力を授受する第2の入出力端子と、を備えていることを特徴とする請求項1から4の何れか1項に記載の電力変換装置。
  7.  前記コンバータモジュールおよび前記インバータモジュールに封止されるスイッチング素子は、ワイドバンドギャップ半導体素子であることを特徴とする請求項1から6の何れか1項に記載の電力変換装置。
  8.  前記ワイドバンドギャップ半導体素子は、炭化ケイ素、窒化ガリウム系材料または、ダイヤモンドを用いた半導体素子であることを特徴とする請求項7に記載の電力変換装置。
PCT/JP2015/062019 2015-04-20 2015-04-20 電力変換装置 WO2016170586A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580078938.8A CN107534391B (zh) 2015-04-20 2015-04-20 功率转换装置
JP2016558830A JP6174824B2 (ja) 2015-04-20 2015-04-20 電力変換装置
PCT/JP2015/062019 WO2016170586A1 (ja) 2015-04-20 2015-04-20 電力変換装置
US15/553,641 US10148190B2 (en) 2015-04-20 2015-04-20 Power conversion device
EP15889826.2A EP3288164B1 (en) 2015-04-20 2015-04-20 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062019 WO2016170586A1 (ja) 2015-04-20 2015-04-20 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016170586A1 true WO2016170586A1 (ja) 2016-10-27

Family

ID=57142973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062019 WO2016170586A1 (ja) 2015-04-20 2015-04-20 電力変換装置

Country Status (5)

Country Link
US (1) US10148190B2 (ja)
EP (1) EP3288164B1 (ja)
JP (1) JP6174824B2 (ja)
CN (1) CN107534391B (ja)
WO (1) WO2016170586A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026293A1 (ja) * 2017-08-04 2019-02-07 三菱電機株式会社 電力変換装置、モータ駆動装置及び空気調和機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342209A (zh) 2019-09-13 2022-04-12 米沃奇电动工具公司 具有宽带隙半导体的功率转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133175A (ja) * 1982-02-02 1983-08-08 Mitsubishi Electric Corp インバ−タ装置
JPH09219970A (ja) * 1996-02-13 1997-08-19 Fuji Electric Co Ltd 半導体電力変換装置
JP2007006565A (ja) * 2005-06-22 2007-01-11 Hitachi Ltd 電力変換装置
JP2010074994A (ja) * 2008-09-19 2010-04-02 Toshiba Mitsubishi-Electric Industrial System Corp 半導体電力変換装置
JP2015073376A (ja) * 2013-10-03 2015-04-16 三菱電機株式会社 電力変換装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289773A (ja) * 1991-02-18 1992-10-14 Mitsubishi Electric Corp 平滑用コンデンサユニット
JP2767188B2 (ja) 1993-07-29 1998-06-18 富士電気化学株式会社 セラミックス積層体のビア形成方法
JPH11103577A (ja) 1997-09-29 1999-04-13 Meidensha Corp インバータ
JP3447543B2 (ja) * 1998-02-02 2003-09-16 東芝トランスポートエンジニアリング株式会社 電力変換装置
JP2001086732A (ja) 1999-09-13 2001-03-30 Toshiba Transport Eng Inc 電力変換装置
JP2001352767A (ja) * 2000-06-07 2001-12-21 Toshiba Corp 電力変換器用パワーユニット
JP3906440B2 (ja) 2000-09-06 2007-04-18 株式会社日立製作所 半導体電力変換装置
JP2003250278A (ja) 2002-02-21 2003-09-05 Hitachi Unisia Automotive Ltd 半導体装置
JP2003319665A (ja) 2002-04-19 2003-11-07 Toyota Motor Corp 電力変換装置
JP2004135444A (ja) 2002-10-11 2004-04-30 Fuji Electric Fa Components & Systems Co Ltd 電力変換装置のスタック構造
JP2006262665A (ja) 2005-03-18 2006-09-28 Toyota Motor Corp 車両用インバータユニット
JP2007053839A (ja) 2005-08-17 2007-03-01 Toshiba Corp スナバ回路及びこれを用いた電力変換装置
JP2007068294A (ja) 2005-08-30 2007-03-15 Nissan Motor Co Ltd 電力変換装置
JP2008271696A (ja) * 2007-04-19 2008-11-06 Toshiba Elevator Co Ltd 電力変換装置
JP4597202B2 (ja) * 2008-03-07 2010-12-15 株式会社日立製作所 電力変換装置
JP4929299B2 (ja) 2009-02-17 2012-05-09 株式会社日立製作所 電力変換装置
JP5440335B2 (ja) * 2010-04-06 2014-03-12 富士電機株式会社 パワー半導体モジュール及びそれを用いた電力変換装置
JP2012249501A (ja) * 2011-05-31 2012-12-13 Denso Corp 電力変換装置
JP5335868B2 (ja) 2011-08-30 2013-11-06 日立オートモティブシステムズ株式会社 電力変換装置
JP5814852B2 (ja) * 2012-04-09 2015-11-17 三菱電機株式会社 電力変換装置
JP6236904B2 (ja) * 2013-06-19 2017-11-29 株式会社デンソー 電力変換装置
WO2015145679A1 (ja) * 2014-03-27 2015-10-01 株式会社日立製作所 電力変換ユニット、電力変換装置、及び電力変換装置の製造方法
WO2015170377A1 (ja) * 2014-05-07 2015-11-12 株式会社日立製作所 電力変換装置および電力変換装置の電力変換方法
JP5778840B1 (ja) * 2014-09-25 2015-09-16 株式会社日立製作所 電力変換ユニットおよび電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133175A (ja) * 1982-02-02 1983-08-08 Mitsubishi Electric Corp インバ−タ装置
JPH09219970A (ja) * 1996-02-13 1997-08-19 Fuji Electric Co Ltd 半導体電力変換装置
JP2007006565A (ja) * 2005-06-22 2007-01-11 Hitachi Ltd 電力変換装置
JP2010074994A (ja) * 2008-09-19 2010-04-02 Toshiba Mitsubishi-Electric Industrial System Corp 半導体電力変換装置
JP2015073376A (ja) * 2013-10-03 2015-04-16 三菱電機株式会社 電力変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026293A1 (ja) * 2017-08-04 2019-02-07 三菱電機株式会社 電力変換装置、モータ駆動装置及び空気調和機
JPWO2019026293A1 (ja) * 2017-08-04 2019-11-07 三菱電機株式会社 電力変換装置、モータ駆動装置及び空気調和機
US11189439B2 (en) 2017-08-04 2021-11-30 Mitsubishi Electric Corporation Power converting apparatus, motor drive apparatus, and air conditioner

Also Published As

Publication number Publication date
EP3288164A4 (en) 2018-02-28
EP3288164A1 (en) 2018-02-28
CN107534391B (zh) 2019-12-03
JP6174824B2 (ja) 2017-08-02
CN107534391A (zh) 2018-01-02
US20180048243A1 (en) 2018-02-15
EP3288164B1 (en) 2020-07-08
US10148190B2 (en) 2018-12-04
JPWO2016170586A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US10153708B2 (en) Three-level power converter
US9270199B2 (en) Power conversion apparatus with a laminated bus bar comprising an exposed heat radiating portion
US8400775B2 (en) Capacitor with direct DC connection to substrate
US10411589B2 (en) Power conversion apparatus and power semiconductor module
CN110520982A (zh) 半导体布置
US11437922B2 (en) Printed circuit board power cell
US8675379B2 (en) Power converting apparatus having improved electro-thermal characteristics
EP2034602A1 (en) Power converter
JP2019220648A (ja) パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
JP6174824B2 (ja) 電力変換装置
WO2019146179A1 (ja) 電力変換装置および電力変換装置を搭載する電気鉄道車両
CN104518681A (zh) 电力变换装置
JP6884645B2 (ja) 電力変換装置
JPWO2018109884A1 (ja) 電力変換装置
US10855196B2 (en) Semiconductor device
JP2002125381A (ja) 電力変換装置
JP2017169344A (ja) 電力変換装置
KR102063726B1 (ko) 모터 일체형 인버터 패키지 및 이에 적용되는 일체형 인버터
JP2013240151A (ja) 電力変換装置
CN210137281U (zh) 直流-直流变换器的功率模组
US20210068310A1 (en) Control apparatus for operating an electric drive for a vehicle and method of manufacturing such a control apparatus
JP2019161124A (ja) 半導体装置
JP2012239356A (ja) 車両用電力変換装置
JP2018148657A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016558830

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15553641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE