WO2020196214A1 - ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 - Google Patents

ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 Download PDF

Info

Publication number
WO2020196214A1
WO2020196214A1 PCT/JP2020/012169 JP2020012169W WO2020196214A1 WO 2020196214 A1 WO2020196214 A1 WO 2020196214A1 JP 2020012169 W JP2020012169 W JP 2020012169W WO 2020196214 A1 WO2020196214 A1 WO 2020196214A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
less
temperature
steel
line
Prior art date
Application number
PCT/JP2020/012169
Other languages
English (en)
French (fr)
Inventor
恭野 安田
純二 嶋村
村岡 隆二
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080024929.1A priority Critical patent/CN113646455B/zh
Priority to JP2020540824A priority patent/JP6819835B1/ja
Priority to CA3134477A priority patent/CA3134477C/en
Priority to EP20779573.3A priority patent/EP3950997A4/en
Priority to KR1020217030966A priority patent/KR102648172B1/ko
Priority to US17/440,952 priority patent/US20220220574A1/en
Publication of WO2020196214A1 publication Critical patent/WO2020196214A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/146Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies to metallic pipes or tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a steel material for line pipes and a method for manufacturing the same, and a line pipe and a method for manufacturing the same.
  • the present invention relates to a steel material for line pipes and a method for manufacturing the same, and a line pipe and a method for manufacturing the same, which are suitable for use in line pipes for transporting petroleum and natural gas, particularly for submarine pipelines requiring high collapse resistance. ..
  • the compressive strength of the present invention refers to 0.23% compressive yield strength and is also referred to as compressive yield strength.
  • the UOE steel pipe has a pipe expansion process in the final process of pipe making, and after being subjected to tensile deformation in the pipe circumferential direction, it is laid on the seabed and is compressed in the pipe circumferential direction by water pressure from the outside. Therefore, a decrease in the compression yield strength due to the Bauschinger effect has become a problem.
  • Patent Document 1 discloses a method of heating a steel pipe by energization heating to expand the pipe and then maintaining the temperature for a certain period of time or longer.
  • Patent Document 2 states that the outer surface of the steel pipe is heated to a temperature higher than the inner surface to undergo tensile deformation on the outer surface side. A method of recovering the Bauschinger effect of the portion and maintaining work hardening of the compression on the inner surface side is described.
  • Patent Document 3 accelerated cooling after hot rolling is performed in the steel sheet manufacturing process of steel to which Nb and Ti are added. There have been proposed methods of heating from a temperature of 3 points or more to 300 ° C. or lower, forming a steel pipe by a UOE process, and then heating the pipe.
  • Patent Document 4 discloses a method of increasing the compressibility at the time of molding with an O press to be larger than the subsequent expanding ratio. ..
  • Patent Document 5 discloses a method of improving the collapse resistance performance by making the diameter in the vicinity of the welded portion having a low compressive strength and the position 180 ° from the welded portion the maximum diameter of the steel pipe.
  • Patent Document 6 proposes a steel sheet in which a decrease in yield stress due to the Bauschinger effect is small by reducing the hard second phase fraction of the surface layer of the steel sheet by reheating after accelerated cooling.
  • Patent Document 7 describes a method for manufacturing a steel sheet for a high-strength sour-resistant pipe having a thickness of 30 mm or more, which heats the surface layer of the steel sheet while suppressing the temperature rise in the center of the steel sheet in the reheating treatment after accelerated cooling. Proposed.
  • the steel sheet described in Patent Document 6 needs to be heated to the center of the steel sheet at the time of reheating, which may lead to deterioration of DWTT (Drop Weight Tear Test) performance, and therefore is thick for deep sea. It is difficult to apply to line pipes of meat. There is also room for improvement from the viewpoint of thickening the steel sheet.
  • the collapse resistance performance of the steel pipe correlates with the compressive flow stress close to the elastic limit in the inner surface layer of the pipe. In Patent Document 6, the collapse resistance performance is evaluated at the position where the plate thickness is 1/4. However, even if a high compressive strength is obtained at the plate thickness 1/4 position, the effect on the limit collapse pressure of the actual steel pipe is small.
  • the hard second phase fraction of the surface layer portion of the steel sheet is reduced while suppressing the deterioration of the DWTT (Drop Weight Tear Test: drop weight tear test) performance. Therefore, not only the hardness of the surface layer portion of the steel sheet is reduced to obtain a steel sheet having a small material variation, but also the Bauschinger effect is expected to be reduced by reducing the hard second phase.
  • the technique described in Patent Document 7 heats the surface of the steel sheet to 550 ° C. or higher, the compressive strength on the surface layer may decrease, and the collapse resistance may deteriorate.
  • the present invention has been made in view of the above circumstances, and is a line pipe that is thick, has compressive strength required for application to a submarine pipeline, has excellent low temperature toughness, and has DWTT performance, and has excellent collapse resistance. It is an object of the present invention to provide a steel material for use and a manufacturing method thereof, and a line pipe having required compressive strength, excellent low temperature toughness and DWTT performance, and excellent collapse resistance performance, and a manufacturing method thereof.
  • the excellent collapse resistance means that in the case of a steel material for line pipes, the 0.23% compressive strength in the vertical rolling direction from the surface of the steel material to the 1/8 position of the plate thickness is 340 MPa or more.
  • the 0.23% compression strength in the circumferential direction at the pipe major axis position is 340 MPa or more and the collapse pressure is 35 MPa or more from the inner surface of the pipe to the pipe thickness 1/8 position.
  • (C) Generally, the compressive strength is evaluated at 0.5% compressive strength, but the collapse resistance performance correlates with 0.23% compressive strength, which is close to the elastic limit on the inner surface layer of the pipe, and the inner surface of the pipe. By increasing the compression strength of 0.23% from the pipe thickness to the 1/8 position, excellent collapse resistance can be obtained.
  • the present invention has been completed by further studying the above findings.
  • the gist of the present invention is as follows. [1] In terms of mass%, C: 0.030 to 0.10%, Si: 0.01 to 0.15%, Mn: 1.0 to 2.0%, Nb: 0.005 to 0.050%. , Ti: 0.005 to 0.025%, Al: 0.08% or less, and further, in mass%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.0. % Or less, Mo: 0.5% or less, V: 0.1% or less, and the Ceq value represented by the formula (1) is 0.35 or more, represented by the formula (2).
  • the Pcm value is 0.20 or less, and the balance has a component composition consisting of Fe and unavoidable impurities.
  • the metal structure at the position of 1/8 of the plate thickness from the steel surface has a bainite surface integral of 85% or more, a polygonal ferrite surface integral of 10% or less, and an island-shaped martensite area fraction. 5% or less,
  • a line pipe in which the 0.23% compressive strength in the vertical rolling direction from the steel surface to the 1/8 position of the plate thickness is 340 MPa or more, and the temperature at which the ductile fracture surface ratio in the DWTT test is 85% or more is -10 ° C or less.
  • Ceq value C + Mn / 6 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 ...
  • Acceleration cooling is performed from a temperature above the Ar 3 transformation point to 200 to 450 ° C at a cooling rate of 10 ° C / s or higher.
  • reheating is performed so that the temperature is 350 ° C. or higher at the plate thickness 1/8 position and the temperature is 530 ° C. or lower on the surface of the steel material.
  • a line pipe in which the 0.23% compressive strength in the vertical rolling direction from the steel surface to the 1/8 position of the plate thickness is 340 MPa or more, and the temperature at which the ductile fracture surface ratio in the DWTT test is 85% or more is -10 ° C or less. Manufacturing method of steel materials.
  • the metal structure at the position of 1/8 of the pipe thickness from the inner surface of the pipe has a bainite area fraction of 85% or more, a polygonal ferrite area fraction of 10% or less, and an island-shaped martensite area fraction. Is less than 5% From the inner surface of the pipe to the pipe thickness 1/8 position, the 0.23% compressive strength in the circumferential direction at the pipe long axis position is 340 MPa or more, the plastic pressure is 35 MPa or more, and the ductile fracture surface ratio in the DWTT test is 85.
  • Ceq value C + Mn / 6 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 ...
  • the 0.23% compression strength in the circumferential direction at the pipe major axis position is 340 MPa or more
  • the collapse pressure is 35 MPa or more
  • the ductile fracture surface ratio in the DWTT test is A method for manufacturing a line pipe in which a temperature of 85% or more is ⁇ 10 ° C. or lower.
  • the 0.23% compression strength in the circumferential direction at the pipe major axis position is 340 MPa or more, the collapse pressure is 35 MPa or more, and the ductile fracture surface ratio in the DWTT test.
  • a method for manufacturing a line pipe in which the temperature at which the temperature is 85% or more is ⁇ 10 ° C. or lower. [9] The method for manufacturing a line pipe according to [7] or [8], wherein after expanding the pipe, a coating treatment including heating of the pipe surface to 200 ° C. or higher is performed.
  • a steel material for line pipes having excellent collapse resistance can be obtained.
  • the present invention is suitable for use in deep sea pipelines.
  • C Steel material for line pipes or chemical composition of line pipes C: 0.030 to 0.10% C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if it is less than 0.030%, sufficient strength cannot be secured, so the C content is set to 0.030% or more. It is preferably 0.040% or more. On the other hand, if it exceeds 0.10%, not only the toughness is deteriorated, but also the formation of MA is promoted, which causes a decrease in compressive strength. Therefore, the C content is set to 0.10% or less. It is preferably 0.098% or less.
  • Si 0.01-0.15% Si is included for deoxidation. However, if it is less than 0.01%, the deoxidizing effect is not sufficient, so the Si content is set to 0.01% or more. It is preferably 0.03% or more. On the other hand, if it exceeds 0.15%, not only the toughness is deteriorated, but also MA formation is promoted and the compressive strength is lowered. Therefore, the Si content is set to 0.15% or less. It is preferably 0.10% or less.
  • Mn 1.0-2.0%
  • Mn 1.0 to 2.0%.
  • Mn is contained for improving strength and toughness. However, if it is less than 1.0%, the effect is not sufficient, so the Mn content is set to 1.0% or more. It is preferably 1.5% or more. On the other hand, if it exceeds 2.0%, the toughness deteriorates, so the Mn content is set to 2.0% or less. It is preferably 1.95% or less.
  • Nb 0.005 to 0.050%
  • Nb improves toughness by refining the structure, further forms carbides, and contributes to an increase in strength. However, if it is less than 0.005%, the effect is not sufficient, so the Nb content is set to 0.005% or more. It is preferably 0.010% or more. On the other hand, if it exceeds 0.050%, the toughness of the weld heat affected zone deteriorates, so the Nb content is set to 0.050% or less. It is preferably 0.040% or less.
  • Ti 0.005 to 0.025% Due to the pinning effect of TiN, Ti suppresses austenite coarsening during slab heating and improves toughness. However, if it is less than 0.005%, the effect is not sufficient, so the Ti content is set to 0.005% or more. It is preferably 0.008% or more. On the other hand, if it exceeds 0.025%, the toughness deteriorates, so the Ti content is set to 0.025% or less. It is preferably 0.023% or less.
  • Al 0.08% or less Al is contained as a deoxidizer.
  • the Al content is preferably 0.01% or more.
  • the Al content is set to 0.08% or less. Preferably, it is 0.05% or less.
  • one or more kinds of Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, V: 0.1% or less are used. contains.
  • Cu 0.5% or less
  • Cu is an element effective for improving toughness and increasing strength. However, if it exceeds 0.5%, the HAZ toughness of the welded portion deteriorates. Therefore, when Cu is contained, it is set to 0.5% or less.
  • the lower limit is not particularly limited, and the content when Cu is contained is preferably 0.01% or more.
  • Ni 1.0% or less
  • Ni is an element effective for improving toughness and increasing strength. However, if it exceeds 1.0%, the HAZ toughness of the welded portion may deteriorate. Therefore, when Ni is contained, it is set to 1.0% or less.
  • the lower limit is not particularly limited, and the content when Ni is contained is preferably 0.01% or more.
  • Cr 1.0% or less Cr is an element effective in increasing the strength by enhancing the hardenability. However, if it exceeds 1.0%, the HAZ toughness of the welded portion deteriorates. Therefore, when Cr is contained, it is set to 1.0% or less. On the other hand, the lower limit is not particularly limited, and the content when Cr is contained is preferably 0.01% or more.
  • Mo 0.5% or less Mo is an element effective for improving toughness and increasing strength. However, if it exceeds 0.5%, the HAZ toughness of the welded portion may deteriorate. Therefore, when Mo is contained, it is set to 0.5% or less.
  • the lower limit is not particularly limited, and the content when Mo is contained is preferably 0.01% or more.
  • V 0.1% or less
  • V is an element that forms composite carbides like Nb and Ti and is extremely effective in increasing the strength by strengthening precipitation. However, if it exceeds 0.1%, the HAZ toughness of the welded portion may deteriorate. Therefore, when V is contained, it is set to 0.1% or less.
  • the lower limit is not particularly limited, and the content when V is contained is preferably 0.01% or more.
  • the present invention is characterized in that the Ceq value represented by the formula (1) is 0.35 or more and the Pcm value represented by the formula (2) is 0.20 or less.
  • Ceq value 0.35 or more Ceq value: 0.35 or more.
  • the Ceq value is expressed by the following equation (1).
  • the Ceq value correlates with the strength of the base metal and is used as an index of strength. If the Ceq value is less than 0.35, a high tensile strength of 570 MPa or more cannot be obtained. Therefore, the Ceq value is set to 0.35 or more. It is preferably 0.36 or more.
  • Ceq value C + Mn / 6 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 ... (1) However, the element symbol in the formula (1) indicates the mass% of the contained element, and if it is not contained, it is set to 0.
  • the Pcm value is expressed by the following equation (2).
  • the Pcm value is used as an index of weldability, and the higher the Pcm value, the worse the toughness of the welded HAZ portion. Especially for thick-walled high-strength steel, the effect is remarkable, so it is necessary to strictly limit the Pcm value. Therefore, the Pcm value is set to 0.20 or less. It is preferably 0.19 or less.
  • Pcm value C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 ... (2)
  • the element symbol in the formula (2) indicates the mass% of the contained element, and if it is not contained, it is set to 0.
  • Ca 0.0005-0.0035%
  • Ca is an effective element for controlling the morphology of sulfide-based inclusions and improving ductility. Since this effect is exhibited when the Ca content is 0.0005% or more, the content is preferably 0.0005% or more when Ca is contained. Even if Ca is contained in an amount of more than 0.0035%, the effect is saturated, and rather the cleanliness may be lowered and the toughness may be deteriorated. Therefore, when Ca is contained, the content is preferably 0.0035% or less.
  • the metal structure at the position of 1/8 of the plate thickness from the surface of the steel material or the position of 1/8 of the pipe thickness from the inner surface of the pipe is defined.
  • the compressive strength can be increased, and a steel material for line pipes or a line pipe having excellent collapse resistance can be obtained.
  • the area fraction of bainite is 85% or more.
  • the metal structure of the present invention is mainly bainite from the viewpoint of suppressing a decrease in compressive strength due to the Bauschinger effect.
  • the fact that the metal structure of the present invention is mainly bainite means that the surface integral of bainite is 85% or more with respect to the entire metal structure.
  • the area fraction of polygonal ferrite is 10% or less, and the area fraction of island martensite is 5% or less.
  • a soft polygonal ferrite phase or hard It is desirable to have a uniform structure without islet martensite and to suppress the accumulation of local dislocations that occur inside the structure during deformation. Therefore, as described above, the structure is mainly composed of bainite, and the surface integral of the polygonal ferrite is defined as 10% or less, and the surface integral of the island-shaped martensite is defined as 5% or less.
  • the surface integral of the island-shaped martensite may be 0%. Further, the surface integral of the polygonal ferrite may be 0%.
  • the metallographic structure of the present invention may contain other phases other than bainite, polygonal ferrite, and island martensite as long as it has the above-mentioned constitution.
  • Other phases include, for example, pearlite, cementite, martensite and the like. It is preferable that the number of these other phases is small, and the area fraction is preferably 5% or less at the position where the plate thickness is 1/8 from the surface of the steel material.
  • the metal structure in the portion closer to the center of the plate thickness than the 1/8 position of the steel material from the surface of the steel material or the portion closer to the center of the pipe thickness than the 1/8 position of the pipe thickness from the inner surface of the pipe is particularly defined.
  • bainite is preferably 70% or more, and more preferably 75% or more, from the viewpoint of balance such as strength and toughness.
  • As the residual structure, ferrite, pearlite, martensite, island-like martensite (MA), and the like are allowed as long as they are 30% or less in total, and more preferably 25% or less in total.
  • the compressive strength from the steel surface to the plate thickness 1/8 position and the compression from the pipe inner surface to the pipe thickness 1/8 position The strength can be increased, resulting in excellent anti-corruption performance.
  • the temperature is the average temperature of the steel material (steel plate) in the plate thickness direction.
  • the average temperature of the steel sheet in the plate thickness direction can be obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like.
  • the average temperature in the plate thickness direction of a steel sheet can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
  • the steel slab heating temperature 1000-1200 ° C If the steel slab heating temperature is less than 1000 ° C., the solid solution of NbC is insufficient, reinforcement by subsequent precipitation cannot be obtained, and the HIC resistance is deteriorated by the coarse unsolid solution carbide. On the other hand, if the temperature exceeds 1200 ° C., the DWTT characteristics deteriorate. Therefore, the steel slab heating temperature is specified at 1000 to 1200 ° C. It is preferably 1000 ° C. or higher, and preferably 1150 ° C. or lower.
  • Cumulative reduction rate in the unrecrystallized temperature range 60% or more
  • rolling in the unrecrystallized temperature range is performed following rolling in the recrystallized temperature range.
  • the rolling conditions in the recrystallization temperature range are not particularly limited. In order to obtain high base metal toughness, it is necessary to perform sufficient rolling in the unrecrystallized temperature range in the hot rolling process. However, if the cumulative reduction rate in the unrecrystallized temperature range is less than 60%, the effect of refining the crystal grains is insufficient, so that sufficient DWTT performance cannot be obtained. Therefore, the cumulative reduction rate in the unrecrystallized temperature range is set to 60% or more.
  • the cumulative reduction rate in the unrecrystallized temperature range is preferably 63% or more.
  • Rolling end temperature Ar 3 transformation point or more (Ar 3 transformation point + 60 ° C) or less
  • the metal structure should be a bainite-based structure and a soft structure such as polygonal ferrite should be formed. It needs to be suppressed. Therefore, it is necessary to carry out hot rolling in a temperature range above the Ar 3 transformation point, which is a temperature range in which polygonal ferrite is not generated. Therefore, the rolling end temperature is defined as Ar 3 transformation point or higher, and is preferably (Ar 3 transformation point + 10 ° C.) or higher.
  • the upper limit of the rolling end temperature is set to (Ar 3 transformation point + 60 ° C.).
  • the rolling end temperature is preferably (Ar 3 transformation point + 50 ° C.) or less.
  • the Ar 3 transformation point can be obtained by the following equation (3).
  • Ar 3 (° C.) 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo ...
  • Cooling start temperature at the Ar 3 transformation point or more cooling start temperature is Ar less than 3 transformation point, fraction of polygonal ferrite exceeds 10%, since the strength decrease due Bauschinger effect, not enough compressive strength .. Therefore, the cooling start temperature is specified above the Ar 3 transformation point. It is preferably (Ar 3 transformation point + 10 ° C.) or higher.
  • Cooling rate 10 ° C / s or higher Accelerated cooling with a cooling rate of 10 ° C / s or higher is an indispensable process for obtaining high-strength and high-toughness steel sheets, and by cooling at a high cooling rate, transformation is strengthened. The effect of increasing strength can be obtained. If the cooling rate is less than 10 ° C./s, not only sufficient strength cannot be obtained, but also diffusion of C occurs, so that C is concentrated in untransformed austenite, and the amount of MA produced increases. As described above, the presence of the hard second phase such as MA promotes the Bauschinger effect, which causes a decrease in compressive strength.
  • the cooling rate during accelerated cooling is specified to be 10 ° C./s or higher. Preferably, it is 20 ° C./s or higher. If the cooling rate is excessive, a hard structure such as martensite is formed, which causes a decrease in toughness and compressive strength due to the promotion of the Bauschinger effect. Therefore, the cooling rate is preferably 200 ° C./s or less.
  • Cooling stop temperature 200-450 ° C
  • the cooling stop temperature is specified as 200 to 450 ° C. It is preferably 250 ° C. or higher, and preferably 430 ° C. or lower.
  • Reheating temperature 350 ° C. or higher at the plate thickness 1/8 position and 530 ° C. or lower on the steel surface.
  • reheating is performed.
  • the cooling rate of the surface layer of the steel sheet is high, and the surface layer of the steel sheet is cooled to a lower temperature than the inside of the steel sheet. Therefore, island-shaped martensite (MA) is likely to be formed on the surface layer of the steel sheet. Since a hard phase such as MA promotes the Bauschinger effect, it is possible to suppress a decrease in compressive strength due to the Bauschinger effect by heating the surface layer of the steel sheet after accelerated cooling to decompose MA. However, if the temperature is less than 350 ° C.
  • the decomposition of MA is not sufficient, and if the temperature exceeds 530 ° C. on the surface of the steel material, the strength is lowered, so that it is difficult to obtain a predetermined strength.
  • the collapse resistance performance correlates with the compressive strength from the steel surface to the plate thickness 1/8 position, and by controlling the reheating temperature from the steel surface to the plate thickness 1/8 position, the strength is increased while decomposing MA. Can be secured. Therefore, it is specified to be 350 ° C. or higher at the plate thickness 1/8 position and 530 ° C. or lower on the steel material surface.
  • the temperature is 370 ° C. or higher at the plate thickness 1/8 position and 520 ° C. or lower on the steel surface.
  • the means of reheating after accelerated cooling is not particularly limited, but for example, atmospheric furnace heating, gas combustion, induction heating, etc. can be used. Induction heating is preferable in consideration of economy, controllability, and the like.
  • a steel pipe (line pipe) can be obtained by using the steel plate (steel material) of the present invention or the steel plate (steel material) manufactured by the above method.
  • Examples of the method for forming a steel material include a method of forming a steel pipe shape by cold forming such as a UOE process or a press bend (also referred to as a bending press).
  • UOE process the widthwise end of the steel sheet (steel material) used as the material is grooved, and then the widthwise end of the steel sheet is bent using a C-shaped press, followed by U.
  • a steel plate is formed into a cylindrical shape using a character-shaped or O-shaped press machine so that the widthwise ends of the steel sheet face each other.
  • seam welding a temporary welding process in which cylindrical steel plates are restrained and the widthwise ends of the opposing steel plates are butted against each other for temporary welding, and a seam is applied to the inner and outer surfaces of the butt portions of the steel plates by the submerged arc welding method.
  • the pipe is expanded to remove the residual welding stress and improve the roundness of the steel pipe.
  • the pipe expansion rate (the ratio of the amount of change in the outer diameter before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion) is 1.2% or less. This is because if the tube expansion rate is too large, the compression strength is significantly reduced due to the Bauschinger effect, and the tube expansion rate is preferably 1.0% or less. From the viewpoint of reducing the welding residual stress and improving the roundness of the steel pipe, the pipe expansion ratio is preferably 0.4% or more, and more preferably 0.6% or more.
  • coating treatment can be performed for the purpose of corrosion protection.
  • a steel pipe (pipe) after expansion may be heated to a temperature range of 200 ° C. or higher, and then a known resin may be applied to the outer or inner surface of the steel pipe.
  • steel pipes are sequentially formed by repeating three-point bending to manufacture steel pipes with an almost circular cross-sectional shape. After that, seam welding is performed in the same manner as the UOE process described above. In the case of press bend, pipe expansion may be performed after seam welding.
  • the steel material for line pipe of the present invention has the above-mentioned composition and metal structure, and has a 0.23% compressive strength in the vertical rolling direction from the surface of the steel material to the 1/8 position of the plate thickness of 340 MPa or more.
  • the temperature at which the ductile fracture surface ratio in the DWTT test is 85% or more is ⁇ 10 ° C. or less.
  • the steel material for line pipes of the present invention is excellent in collapse resistance performance because the 0.23% compression strength in the vertical rolling direction from the surface of the steel material to the 1/8 position of the plate thickness is 340 MPa or more.
  • the 0.23% compression strength can be measured by the method described in Examples.
  • the line pipe of the present invention has the above-mentioned composition and metal structure, and has a duct thickness of 1/8 from the inner surface of the pipe and a compressive strength of 0.23% in the circumferential direction at the long axis position of the pipe.
  • the temperature at which the collapse pressure is 35 MPa or more and the ductile fracture surface ratio in the DWTT test is 85% or more is ⁇ 10 ° C. or less.
  • the line pipe of the present invention has a 0.23% compression strength in the circumferential direction of 340 MPa or more and a collapse pressure of 35 MPa or more from the inner surface of the pipe to the pipe thickness 1/8 position and at the semimajor axis position of the pipe. Has excellent collapse resistance.
  • the line pipe of the present invention having the above-mentioned composition and metal structure and having a coating layer by coating treatment is from the inner surface of the pipe to the pipe thickness 1/8 position and in the circumferential direction at the pipe long axis position.
  • the 0.23% compression strength is 390 MPa or more
  • the collapse pressure is 40 MPa or more
  • the collapse resistance performance is excellent.
  • the semimajor axis position of the pipe is a position rotated by 90 degrees from the position of the minimum radius of the pipe when considering the position in the circumferential direction of the pipe.
  • the 0.23% compression strength can be measured by the method described in Examples.
  • Steels with chemical components (steel grades A to J) shown in Table 1 were made into slabs by a continuous casting method.
  • heating and cooling are performed using a water-cooled cooling facility, and reheating is performed using an induction heating furnace or a gas combustion furnace to obtain a thick steel plate having a thickness of 40 mm (No. 1 to 23) were manufactured.
  • the heating temperature, rolling end temperature, cooling start temperature, and cooling stop temperature were set to the average temperature of the steel sheet, and the reheating temperature was set to the temperature at the surface and the plate thickness 1/8 position.
  • the average temperature and the temperature at the plate thickness 1/8 position were obtained from the surface temperature of the slab or the steel plate by parameters such as plate thickness and thermal conductivity, and calculation.
  • a pipe with a pipe thickness of 39 mm and an outer diameter of 813 mm was manufactured by the UOE process.
  • Seam welding was performed by 4-electrode submerged arc welding with 1 pass each on the inner and outer surfaces, and the heat input during welding was in the range of 100 kJ / cm depending on the thickness of the steel sheet.
  • the pipe was expanded with a pipe expansion ratio of 0.6 to 1.5% after welding.
  • the pipe after expansion was also coated at 230 ° C.
  • Table 2 shows the steel sheet manufacturing conditions and the steel pipe manufacturing conditions (pipe expansion rate).
  • the compression characteristics of the steel sheet manufactured as described above were evaluated by collecting compression test pieces from the surface of the steel sheet to the position of 1/8 of the plate thickness. Specifically, for a small steel sheet for collecting a compression test piece whose longitudinal direction is the vertical direction of rolling of the steel sheet, cutting or grinding is performed from the surface on the opposite side of the steel sheet to reduce the small steel sheet to a thickness of 1/8. After the thickness reduction process, a rectangular test piece having a parallel portion having a thickness of 2.5 mm, a width of 2.5 mm, and a length of 4.0 mm was collected. For this test piece, a compressive strain of 2.5% was applied, followed by a tensile strain of 1.0% in order to simulate tube making.
  • a compression test was performed in which a load was applied in the compression direction using a test piece that simulated pipe formation, and the stress at a compression strain on the obtained compression stress-compression strain curve was 0.23% and the stress was 0.23%. It was evaluated as a compression strength.
  • the tensile characteristics of the pipe manufactured as described above were evaluated by the tensile strength after performing a tensile test using a full-thickness test piece in the pipe circumferential direction conforming to API 5L as a test piece.
  • the compression characteristics of the pipe were evaluated using a test piece collected from the pipe circumferential direction on the inner surface side at the semimajor axis position of the pipe. Specifically, the pipe piece for collecting the compression test piece with the pipe circumferential direction in the longitudinal direction was cut or ground from the outer surface side of the pipe to reduce the thickness of the small steel plate to 1/8. After that, a rectangular test piece having a thickness of 2.5 mm, a width of 2.5 mm, and a length of 4.0 mm was collected.
  • This test piece was subjected to a compression test in which a load was applied in the compression direction, and the stress at a strain of 0.23% on the obtained stress-strain curve was evaluated as 0.23% compression strength.
  • the collapse resistance performance was evaluated as the collapse pressure when the water pressure was gradually applied to the pipe cut to 7 m in the pressure vessel and the water pressure began to decrease.
  • the compression performance and the collapse resistance performance were measured after the tube was expanded (as it was formed) and after the coating treatment at 230 ° C. (after heating at 230 ° C.).
  • the temperature at which the ductile fracture surface ratio was 85% was determined as 85% SATT by the DWTT test piece collected from the pipe circumferential direction of the pipe.
  • the temperature at which the ductile fracture surface ratio was 50% was determined as vTrs.
  • the notch position was such that there was a melting line in the center of the notch bottom of the Charpy test piece, and the weld metal and the base metal (welding heat affected zone) were 1: 1 at the notch bottom.
  • a sample was taken from the inner surface of the pipe at a position of 1/8 of the plate thickness, and the cross section parallel to the longitudinal direction of the pipe was polished and then etched with nital and observed with an optical microscope. Then, the surface integrals of bainite and polygonal ferrite were determined by image analysis using three photographs taken at 200 times.
  • electrolytic etching two-stage etching was performed after night tar etching, and then observation was performed with a scanning electron microscope (SEM). Then, the surface integral of MA was obtained by image analysis from three photographs taken at 1000 times.
  • Table 3 shows the results of metallographic structure and mechanical properties.
  • the tensile strength is 570 MPa or more
  • the 0.23% compressive strength is 340 MPa or more as the steel plate is
  • the collapse pressure is 35 MPa or more as the pipe is made.
  • it was 40 MPa or more after heating at 230 ° C.
  • the DWTT performance was ⁇ 10 ° C. or lower for 85% SATT and ⁇ 20 ° C. or lower for HAZ toughness, and the evaluation results were all good.
  • the component composition is within the range of the present invention, but the desired metal structure is not obtained because the production method is outside the range of the present invention.
  • either the tensile strength, the 0.23% compressive strength or the DWTT characteristic is inferior.
  • a pipe having high strength and excellent low temperature toughness, API-X70 grade or higher can be obtained, and it can be applied to a deep sea line pipe that requires high collapse resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

厚肉で、海底パイプラインへ適用するために必要な圧縮強度と優れた低温靱性とDWTT性能とを有し、耐コラプス性能に優れたラインパイプ用鋼材およびその製造方法、ならびに、必要な圧縮強度と優れた低温靱性とDWTT性能とを有し、耐コラプス性能に優れたラインパイプおよびその製造方法を提供することを目的とする。 所定の成分組成を有し、鋼材表面から板厚1/8位置における金属組織が、ベイナイトの面積分率が85%以上であり、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下であり、鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ用鋼材。

Description

ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
 本発明は、ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法に関する。本発明は、石油や天然ガス輸送用のラインパイプ、特に、高い耐コラプス性能が要求される海底パイプラインへの使用に好適な、ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法に関する。なお、本発明の圧縮強度は、特に断らない限り、0.23%圧縮耐力のことを言い、圧縮降伏強度とも称する。
 近年のエネルギー需要の増大に伴って、石油や天然ガスパイプラインの開発が盛んになっており、ガス田や油田の遠隔地化や輸送ルートの多様化のため、海洋を渡るパイプラインも数多く開発されている。海底パイプラインに使用されるラインパイプには水圧によるコラプス(圧潰)を防止するため、陸上パイプラインよりも管厚が厚いものが用いられ、また高い真円度が要求される。さらに、海底ラインパイプの特性として、外部からの水圧によって管周方向に生じる圧縮応力に対抗するため高い圧縮強度が必要となる。
 UOE鋼管は造管最終工程において拡管プロセスがあり、管周方向に引張変形が与えられた後に、海底に敷設されて外部からの水圧により管周方向に圧縮を受けることになる。このため、バウシンガー効果による圧縮降伏強度の低下が問題となっている。
 UOE鋼管の耐コラプス性向上に関しては多くの検討がなされており、特許文献1には通電加熱で鋼管を加熱し拡管を行った後に一定時間以上温度を保持する方法が開示されている。
 また、同様に拡管後に加熱を行いバウシンガー効果による圧縮降伏強度低下を回復させる方法として、特許文献2には鋼管外表面を内表面より高い温度に加熱することで、外面側の引張変形を受けた部分のバウシンガー効果を回復し内面側の圧縮の加工硬化を維持する方法が、また、特許文献3にはNb、Tiを添加した鋼の鋼板製造工程で熱間圧延後の加速冷却をAr点以上の温度から300℃以下まで行い、UOEプロセスで鋼管とした後に加熱を行う方法がそれぞれ提案されている。
 一方、拡管後に加熱を行わずに鋼管の成形方法によって圧縮強度を高める方法としては、特許文献4にOプレスでの成型時の圧縮率をその後の拡管率よりも大きくする方法が開示されている。
 また、特許文献5には、圧縮強度の低い溶接部近傍と溶接部から180°の位置の直径が鋼管の最大径となるようにすることで耐コラプス性能を高める方法が開示されている。
 さらに、特許文献6には加速冷却後に再加熱を行い鋼板表層部の硬質第2相分率を低減することによりバウシンガー効果による降伏応力低下が小さい鋼板が提案されている。
 また、特許文献7には加速冷却後の再加熱処理において鋼板中心部の温度上昇を抑制しつつ鋼板表層部を加熱する、板厚が30mm以上の高強度耐サワーラインパイプ用鋼板の製造方法が提案されている。
特開平9-49025号公報 特開2003-342639号公報 特開2004-35925号公報 特開2002-102931号公報 特開2003-340519号公報 特開2008-56962号公報 特開2009-52137号公報
 特許文献1に記載の方法によれば、拡管によって導入された転位が回復し圧縮強度が上昇する。しかしながら、拡管後に5分以上通電加熱を続ける必要があり、生産性が劣る。
 特許文献2に記載の方法では、鋼管の外表面と内表面の加熱温度と加熱時間を別々に管理しなければならず、これは実際の製造上困難であり、大量生産工程において品質を管理することは極めて困難である。また、特許文献3に記載の方法は鋼板製造における加速冷却停止温度を300℃以下の低い温度にする必要がある。このため、鋼板の歪が大きくなりUOEプロセスで鋼管とした場合の真円度が低下する。さらにはAr点以上から加速冷却を行うために比較的高い温度で圧延を行う必要があり靱性が劣化するという問題がある。
 特許文献4に記載の方法によれば、実質的に管周方向の引張予歪が無いためバウシンガー効果が発現されず高い圧縮強度が得られる。しかしながら、拡管率が低いと鋼管の真円度を維持することが困難となり、鋼管の耐コラプス性能が劣化するおそれがある。
 実際のパイプラインの敷設時において耐コラプス性能が問題になるのは、海底に到達したパイプが曲げ変形を受ける部分(サグベンド部)である。パイプラインは鋼管の溶接部の位置とは無関係に円周溶接され海底に敷設される。このため、仮に、特許文献5に記載されたように、鋼管断面の最大径の部分がシーム溶接部となるように造管加工および溶接を実施して鋼管を製造しても、実際のパイプライン敷設時におけるシーム溶接部の位置が特定できないことから、特許文献5の技術は実際上何ら効果を発揮しない。
 特許文献6に記載の鋼板は、再加熱時に鋼板の中心部まで加熱を行う必要があり、DWTT(Drop Weight Tear Test:落重引裂試験)性能の低下を招くおそれがあるため、深海用の厚肉のラインパイプへの適用は困難である。また、鋼板の厚肉化の観点からも改善の余地がある。さらに、鋼管の耐コラプス性能は、パイプ内表層での弾性限に近い圧縮流動応力と相関がある。特許文献6では、板厚1/4位置で耐コラプス性能を評価している。しかしながら、板厚1/4位置で高い圧縮強度が得られても、実際の鋼管の限界コラプス圧に対する効果は小さい。
 特許文献7に記載の方法によれば、DWTT(Drop Weight Tear Test:落重引裂試験)性能の低下を抑制しつつ鋼板表層部の硬質第2相分率が低減される。このため、鋼板表層部の硬度を低減し材質バラツキの小さな鋼板が得られるだけでなく、硬質第2相低減によるバウシンガー効果の低下も期待される。しかし、特許文献7に記載の技術は鋼板表面を550℃以上に加熱するため、表層での圧縮強度が低下し、耐コラプス性能が劣化するおそれがある。
 本発明は上記事情に鑑みてなされたもので、厚肉で、海底パイプラインへ適用するために必要な圧縮強度と優れた低温靱性とDWTT性能とを有し、耐コラプス性能に優れたラインパイプ用鋼材およびその製造方法、ならびに、必要な圧縮強度と優れた低温靱性とDWTT性能とを有し、耐コラプス性能に優れたラインパイプおよびその製造方法を提供することを目的とする。
 なお、本発明において、耐コラプス性能に優れたとは、ラインパイプ用鋼材の場合、鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であることを意味し、ラインパイプの場合、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であることを意味する。
 本発明者らは、耐コラプス性能を向上させるために鋭意検討した結果、以下の知見を得た。
(a)バウシンガー効果による圧縮強度低下は、異相界面や硬質第2相での転位集積による逆応力(背応力とも言う)の発生が原因であり、その防止には、第一に転位の集積場所となる軟質相と硬質相との界面を少なくするために、均質な組織とすることが効果的である。そのため、金属組織は、軟質なポリゴナルフェライトや硬質な島状マルテンサイトの生成を抑制したベイナイトを主体とした組織とすることで、バウシンガー効果による圧縮強度低下を抑制できる。
(b)加速冷却によって製造される高強度鋼、特に海底パイプラインに使われるような厚肉の鋼板は、必要な強度を得るために合金元素を多く含有するために焼入れ性が高く、島状マルテンサイト(Martensite-Austenite constituent: 以下、単にMAと称することもある。)の生成を完全に抑制することは困難である。しかし、成分制御によるMA形成抑制、加速冷却後の再加熱などによってMAをセメンタイトに分解することで、バウシンガー効果による圧縮強度低下を抑制できる。一方、必要以上の再加熱は圧縮強度低下を招くものの、表層での再加熱温度を制御することで、必要な圧縮強度が得られる。
(c)一般的に、圧縮強度は0.5%圧縮強度で評価されているが、耐コラプス性能は、パイプ内表層での弾性限に近い0.23%圧縮強度と相関があり、パイプ内面から管厚1/8位置までの0.23%圧縮強度を高めることで、優れた耐コラプス性能が得られる。
 本発明は、上記した知見に、さらに検討を加えて完成されたものである。本発明の要旨は次のとおりである。
[1]質量%で、C:0.030~0.10%、Si:0.01~0.15%、Mn:1.0~2.0%、Nb:0.005~0.050%、Ti:0.005~0.025%、Al:0.08%以下を含有し、さらに、質量%で、Cu:0.5%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:0.5%以下、V:0.1%以下の1種以上を含有し、(1)式で表されるCeq値が0.35以上、(2)式で表されるPcm値が0.20以下であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼材表面から板厚1/8位置における金属組織が、ベイナイトの面積分率が85%以上であり、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下であり、
鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ用鋼材。
Ceq値=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
Pcm値=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10 ・・・(2)
但し、(1)~(2)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
[2]質量%で、Ca:0.0005~0.0035%をさらに含有する、[1]に記載のラインパイプ用鋼材。
[3][1]または[2]に記載の成分組成を有する鋼を1000~1200℃の温度に加熱し、
未再結晶温度域の累積圧下率が60%以上で、かつ、圧延終了温度がAr変態点以上(Ar変態点+60℃)以下で熱間圧延を行った後、
Ar変態点以上の温度から10℃/s以上の冷却速度で200~450℃まで加速冷却を行い、
次いで板厚1/8位置で350℃以上であり、かつ鋼材表面で530℃以下となるように再加熱を行う、
鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ用鋼材の製造方法。
[4]質量%で、C:0.030~0.10%、Si:0.01~0.15%、Mn:1.0~2.0%、Nb:0.005~0.050%、Ti:0.005~0.025%、Al:0.08%以下を含有し、さらに、質量%で、Cu:0.5%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:0.5%以下、V:0.1%以下の1種以上を含有し、(1)式で表されるCeq値が0.35以上、(2)式で表されるPcm値が0.20以下であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
パイプ内表面から管厚1/8位置における金属組織が、ベイナイトの面積分率が85%以上であり、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下であり、
パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ。
Ceq値=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
Pcm値=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10 ・・・(2)
但し、(1)~(2)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
[5]質量%で、Ca:0.0005~0.0035%をさらに含有する、[4]に記載のラインパイプ。
[6]さらにコーティング層を有する、[4]または[5]に記載のラインパイプ。
[7][1]または[2]に記載のラインパイプ用鋼材を、冷間成形によりパイプ形状とし、突合せ部をシーム溶接後、拡管率が1.2%以下で拡管してパイプを製造する、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプの製造方法。
[8][3]に記載の方法で製造されたラインパイプ用鋼材を、冷間成形によりパイプ形状とし、突合せ部をシーム溶接後、拡管率が1.2%以下で拡管してパイプを製造する、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプの製造方法。
[9]拡管後、パイプ表面が200℃以上となる加熱を含むコーティング処理を行う、[7]または[8]に記載のラインパイプの製造方法。
 本発明によれば、耐コラプス性能に優れたラインパイプ用鋼材を得ることができる。本発明は、深海パイプラインへの使用に好適である。
 また、本発明によれば、鋼管成形での特殊な成形条件や、造管後の熱処理を必要とせず、低温靭性に優れた、圧縮強度の高い厚肉のラインパイプを提供できる。
 以下に、本発明の実施形態を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
 1.ラインパイプ用鋼材もしくはラインパイプの化学成分について
 C:0.030~0.10%
 Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、0.030%未満では十分な強度を確保できないため、C含有量は0.030%以上とする。好ましくは0.040%以上である。一方、0.10%を超えると靭性を劣化させるだけでなく、MAの生成が促進されるため、圧縮強度の低下を招く。従って、C含有量を0.10%以下とする。好ましくは0.098%以下である。
 Si:0.01~0.15%
 Siは脱酸のため含有させる。しかし、0.01%未満では脱酸効果が十分でないので、Si含有量は0.01%以上とする。好ましくは0.03%以上である。一方、0.15%を超えると靭性を劣化させるだけでなく、MA生成が促進され、圧縮強度の低下を招くため、Si含有量を0.15%以下とする。好ましくは0.10%以下である。
 Mn:1.0~2.0%
 Mn:1.0~2.0%とする。Mnは強度および靭性向上のために含有する。しかし、1.0%未満ではその効果が十分ではないので、Mn含有量は1.0%以上とする。好ましくは1.5%以上である。一方、2.0%を超えると靭性の劣化を招くため、Mn含有量2.0%以下とする。好ましくは1.95%以下である。
 Nb:0.005~0.050%
 Nbは組織の微細化により靭性を向上させ、さらに炭化物を形成し、強度上昇に寄与する。しかし、0.005%未満ではその効果が十分ないので、Nb含有量は0.005%以上とする。好ましくは0.010%以上である。一方、0.050%を超えると溶接熱影響部靭性の劣化を招くため、Nb含有量を0.050%以下とする。好ましくは0.040%以下である。
 Ti:0.005~0.025%
 TiはTiNのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、靭性を向上させる。しかし、0.005%未満ではその効果が十分ないので、Ti含有量は0.005%以上とする。好ましくは0.008%以上である。一方、0.025%を超えると靭性の劣化を招くため、Ti含有量を0.025%以下とする。好ましくは0.023%以下である。
 Al:0.08%以下
 Alは脱酸剤として含有する。この効果を発揮するため、Al含有量は0.01%以上であることが好ましい。しかし、0.08%を超えると鋼の清浄度が低下し、靭性の劣化を招く。従って、Al含有量を0.08%以下とする。好ましくは、0.05%以下である。
 さらに、本発明では、Cu:0.5%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:0.5%以下、V:0.1%以下の1種以上を含有する。
 Cu:0.5%以下
 Cuは、靱性の改善と強度の上昇に有効な元素である。しかし、0.5%を超えると溶接部のHAZ靱性が劣化する。従って、Cuを含有する場合は0.5%以下とする。一方、下限は特に限定されず、Cuを含有する場合の含有量は0.01%以上とすることが好ましい。
 Ni:1.0%以下
 Niは、靱性の改善と強度の上昇に有効な元素である。しかし、1.0%を超えると溶接部のHAZ靱性が劣化するおそれがある。従って、Niを含有する場合は1.0%以下とする。一方、下限は特に限定されず、Niを含有する場合の含有量は0.01%以上とすることが好ましい。
 Cr:1.0%以下
 Crは、焼き入れ性を高めることで強度の上昇に有効な元素である。しかし、1.0%を超えると溶接部のHAZ靱性を劣化させる。従って、Crを含有する場合は1.0%以下とする。一方、下限は特に限定されず、Crを含有する場合の含有量は0.01%以上とすることが好ましい。
 Mo:0.5%以下
 Moは、靱性の改善と強度の上昇に有効な元素である。しかし、0.5%を超えると溶接部のHAZ靱性が劣化するおそれがある。従って、Moを含有する場合は0.5%以下とする。一方、下限は特に限定されず、Moを含有する場合の含有量は0.01%以上とすることが好ましい。
 V:0.1%以下
 Vは、NbやTiと同様に複合炭化物を生成し、析出強化による強度上昇に極めて有効な元素である。しかし、0.1%を超えると溶接部のHAZ靱性が劣化するおそれがある。従って、Vを含有する場合は0.1%以下とする。一方、下限は特に限定されず、Vを含有する場合の含有量は0.01%以上とすることが好ましい。
 さらに本発明では、(1)式で表されるCeq値が0.35以上、(2)式で表されるPcm値が0.20以下であることを特徴とする。
 Ceq値:0.35以上
 Ceq値:0.35以上とする。Ceq値は下記(1)式で表される。Ceq値は母材強度と相関があり、強度の指標として用いられる。Ceq値が0.35未満では引張強度570MPa以上の高強度が得られない。従って、Ceq値を0.35以上とする。好ましくは0.36以上である。
Ceq値=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
但し、(1)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
 Pcm値:0.20以下
 Pcm値:0.20以下とする。Pcm値は下記(2)式で表される。Pcm値は溶接性の指標として用いられ、Pcm値が高いほど溶接HAZ部の靭性が劣化する。特に厚肉高強度鋼では、その影響が顕著となるため、Pcm値を厳しく制限する必要がある。従って、Pcm値を0.20以下とする。好ましくは0.19以下である。
Pcm値=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10 ・・・(2)
但し、(2)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
 本発明では、必要に応じて以下の元素を含有してもよい。
 Ca:0.0005~0.0035%
 Caは、硫化物系介在物の形態を制御し、延性を改善するために有効な元素である。Ca含有量が0.0005%以上の場合にこの効果が発揮されるので、Caを含有させる場合には含有量を0.0005%以上とすることが好ましい。Caを0.0035%を超えて含有させても効果が飽和し、むしろ清浄度が低下して靱性を劣化させるおそれがある。よって、Caを含有させる場合には、含有量を0.0035%以下とすることが好ましい。
 上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を問題としない。
 2.ラインパイプ用鋼材もしくはラインパイプの金属組織について
 本発明において、鋼材表面から板厚1/8位置における、または、パイプ内表面から管厚1/8位置における金属組織を規定する。本発明では、鋼材表面から板厚1/8位置における金属組織を制御することにより、圧縮強度を高めることができ、優れた耐コラプス性能を有するラインパイプ用鋼材またはラインパイプが得られる。
 ベイナイトの面積分率が85%以上
 本発明の金属組織は、バウシンガー効果による圧縮強度低下を抑制する観点から、ベイナイト主体とする。なお、本発明の金属組織がベイナイト主体であるとは、金属組織全体に対して、ベイナイトの面積分率が85%以上であることをいう。バウシンガー効果による圧縮強度低下を抑制するためには、異相界面や硬質第2相での転位集積を避けるため、ベイナイト単相の金属組織であることが望ましいが、ベイナイト以外の残部組織が15%以下ならば許容される。
 ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下
 バウシンガー効果を抑制し高い圧縮強度を得るためには軟質なポリゴナルフェライト相や硬質な島状マルテンサイトのない均一な組織とし、変形時の組織内部で生じる局所的な転位の集積を抑制することが望ましい。そのため、前述したようにベイナイト主体の組織とするとともに、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下に規定する。なお、島状マルテンサイトの面積分率は0%であってもよい。また、ポリゴナルフェライトの面積分率は0%であってもよい。
 本発明の金属組織は、上記の構成を備えれば、ベイナイト、ポリゴナルフェライト、島状マルテンサイト以外のその他の相を含んでも良い。なお、その他の相として、例えば、パーライト、セメンタイト、マルテンサイト等がある。これらその他の相は少ない方が好ましく、鋼材表面から板厚1/8位置において、面積分率で5%以下とすることが好ましい。
 なお、本発明において、鋼材表面から板厚1/8位置よりも板厚中央寄りの部分、または、パイプ内表面から管厚1/8位置よりも管厚中央寄りの部分、における金属組織は特に限定されないが、強度や靱性などのバランスの観点から、ベイナイトが70%以上であることが好ましく、75%以上であることがより好ましい。残部組織としては、フェライト、パーライト、マルテンサイト、島状マルテンサイト(MA)、などが、合計で30%以下、より好ましくは合計で25%以下であれば、許容される。
 本発明において、鋼材表面から板厚1/8位置における金属組織が上記のとおりであれば、鋼材表面から板厚1/8位置までの圧縮強度およびパイプ内面から管厚1/8位置までの圧縮強度を高めることができ、その結果、優れた耐コラプス性能が得られる。
 3.ラインパイプ用鋼材の製造方法
 本発明のラインパイプ用鋼材の製造方法は、上述した化学成分を含有する鋼スラブを、加熱し熱間圧延を行った後、加速冷却を施し、引き続いて焼戻し(再加熱)を行う。以下に、製造条件の限定理由について説明する。なお、以下の説明において、特に断らない限り、温度は鋼材(鋼板)の板厚方向の平均温度とする。鋼板の板厚方向の平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚方向の平均温度が求められる。
 鋼スラブ加熱温度:1000~1200℃
 鋼スラブ加熱温度は、1000℃未満ではNbCの固溶が不十分で、その後の析出による強化が得られないとともに、粗大な未固溶炭化物によって耐HIC性能が劣化する。一方、1200℃を超えると、DWTT特性が劣化する。従って、鋼スラブ加熱温度は1000~1200℃に規定する。好ましくは、1000℃以上であり、好ましくは1150℃以下である。
 未再結晶温度域の累積圧下率:60%以上
 加熱された鋼スラブを熱間圧延する工程において、再結晶温度域での圧延に続いて、未再結晶温度域での圧延を実施する。再結晶温度域での圧延条件は特に限定されない。高い母材靱性を得るためには、熱間圧延工程において未再結晶温度域で十分な圧下を行う必要がある。しかし、未再結晶温度域の累積圧下率が60%未満では、結晶粒の微細化効果が不十分であるため、十分なDWTT性能が得られない。このため、未再結晶温度域の累積圧下率を60%以上とする。未再結晶温度域の累積圧下率は、好ましくは63%以上である。
 圧延終了温度:Ar変態点以上(Ar変態点+60℃)以下
 バウシンガー効果による強度低下を抑制するためには、金属組織をベイナイト主体の組織としポリゴナルフェライトなどの軟質な組織の生成を抑制する必要がある。そのため、熱間圧延は、ポリゴナルフェライトが生成しない温度域であるAr変態点以上の温度域で実施することが必要である。従って、圧延終了温度はAr変態点以上に規定し、好ましくは(Ar変態点+10℃)以上である。さらに、高い母材靱性を得るためにはAr変態点以上の温度域の中でも低温域で圧延を実施する必要があるため、圧延終了温度の上限を(Ar変態点+60℃)とする。圧延終了温度は好ましくは(Ar変態点+50℃)以下である。
 なお、Ar変態点は、下記(3)式により求めることができる。
Ar(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo・・・(3)
 冷却開始温度:Ar変態点以上
 冷却開始温度がAr変態点未満では、ポリゴナルフェライトの面積分率が10%を超えて、バウシンガー効果による強度低下のため、十分な圧縮強度を確保できない。従って、冷却開始温度はAr変態点以上に規定する。好ましくは、(Ar変態点+10℃)以上である。
 冷却速度:10℃/s以上
 冷却速度を10℃/s以上で行う加速冷却は、高強度で高靱性の鋼板を得るために不可欠なプロセスであり、高い冷却速度で冷却することで変態強化による強度上昇効果が得られる。冷却速度が10℃/s未満では十分な強度が得られないだけでなく、Cの拡散が生じるため未変態オーステナイトへCの濃化が起こり、MAの生成量が多くなる。前述のように、MA等の硬質第2相の存在によって、バウシンガー効果が促進されるため、圧縮強度の低下を招く。しかし、冷却速度が10℃/s以上であれば冷却中のCの拡散が少なく、MAの生成も抑制される。従って、加速冷却時の冷却速度は10℃/s以上に規定する。好ましくは、20℃/s以上である。なお、冷却速度が過大であるとマルテンサイトなど硬質な組織が生成し、靭性や、バウシンガー効果促進による圧縮強度の低下を招くため、冷却速度は200℃/s以下であることが好ましい。
 冷却停止温度:200~450℃
 圧延終了後の加速冷却で200~450℃まで急冷することにより、ベイナイト相を生成させ均一な組織が得られる。しかし、冷却停止温度が200℃未満では、島状マルテンサイト(MA)が過剰に生成し、バウシンガー効果による圧縮強度低下や、靭性の劣化を招く。一方、冷却停止温度が450℃を超えると、パーライトが生成して、十分な強度が得られないだけでなく、バウシンガー効果により圧縮強度の低下を招く。従って、冷却停止温度は200~450℃に規定する。好ましくは、250℃以上であり、好ましくは430℃以下である。
 再加熱温度:板厚1/8位置で350℃以上であり、かつ鋼材表面で530℃以下
 上記加速冷却の後、再加熱する。厚鋼板の加速冷却では鋼板表層部の冷却速度が速くまた鋼板内部に比べ鋼板表層部が低い温度まで冷却される。そのため、鋼板表層部には島状マルテンサイト(MA)が生成しやすい。MAのような硬質相はバウシンガー効果を促進するため、加速冷却後に鋼板表層部を加熱しMAを分解することでバウシンガー効果による圧縮強度の低下を抑制することが可能となる。しかし、板厚1/8位置で350℃未満ではMAの分解が十分でなく、また鋼材表面で530℃を超えると、強度の低下が生じるため、所定の強度を得ることが困難となる。さらに、耐コラプス性能は鋼材表面から板厚1/8位置までの圧縮強度と相関があり、鋼材表面から板厚1/8位置までの再加熱温度を制御することでMAを分解しつつ強度を確保することができる。従って、板厚1/8位置で350℃以上であり、かつ鋼材表面で530℃以下に規定する。好ましくは、板厚1/8位置で370℃以上かつ鋼材表面で520℃以下である。
 加速冷却後における、再加熱の手段は特に限定しないが、たとえば、雰囲気炉加熱、ガス燃焼、誘導加熱等が利用できる。なお、経済性、制御性等を考慮すると、誘導加熱が好ましい。
 4.ラインパイプの製造方法
 本発明の鋼板(鋼材)、もしくは、上述の方法によって製造された鋼板(鋼材)を用いて、鋼管(ラインパイプ)を得ることができる。鋼材の成形方法としては、UOEプロセスやプレスベンド(ベンディングプレスとも称する)等の冷間成形によって鋼管形状に成形する方法が挙げられる。UOEプロセスでは、素材となる鋼板(鋼材)の幅方向端部に開先加工を施したのち、C字状のプレス機を用いて鋼板の幅方向端部の端曲げを行い、続いて、U字状及びO字状のプレス機を用いて鋼板の幅方向端部同士が対向するように鋼板を円筒形状に成形する。次いで、鋼板の対向する幅方向端部を突き合わせて溶接する。この溶接をシーム溶接と呼ぶ。このシーム溶接においては、円筒形状の鋼板を拘束し、対向する鋼板の幅方向端部同士を突き合わせて仮付溶接する仮付溶接工程と、サブマージアーク溶接法によって鋼板の突合せ部の内外面にシーム溶接を施す本溶接工程との、二段階の工程を有する方法が好ましい。シーム溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上のため、拡管を行う。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、1.2%以下とする。これは、拡管率が大きすぎるとバウシンガー効果により圧縮強度の低下が大きくなるためであり、拡管率は1.0%以下であることが好ましい。なお、溶接残留応力を低減し、また、鋼管の真円度を向上させる観点から、拡管率は0.4%以上であることが好ましく、0.6%以上であることがより好ましい。
 拡管後、防食を目的としてコーティング処理を実施することができる。コーティング処理としては、たとえば、拡管後の鋼管(パイプ)を200℃以上の温度域に加熱した後、鋼管外面あるいは内面に、たとえば公知の樹脂を塗布すればよい。
 プレスベンドの場合には、鋼板に三点曲げを繰り返すことにより逐次成形し、ほぼ円形の断面形状を有する鋼管を製造する。その後は、上述のUOEプロセスと同様に、シーム溶接を実施する。プレスベンドの場合にも、シーム溶接の後、拡管を実施してもよい。
 5.ラインパイプ用鋼材
 本発明のラインパイプ用鋼材は、上記の成分組成および金属組織を有するとともに、鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下である。本発明のラインパイプ用鋼材は、鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であることにより、耐コラプス性能に優れている。なお、0.23%圧縮強度は、実施例に記載された方法により測定することができる。
 6.ラインパイプ
 本発明のラインパイプは、上記の成分組成および金属組織を有するとともに、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下である。本発明のラインパイプは、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であることにより、耐コラプス性能に優れている。また、上記の成分組成および金属組織を有するとともに、コーティング処理によりコーティング層を有する本発明のラインパイプは、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が390MPa以上、コラプス圧が40MPa以上であり、耐コラプス性能に優れている。ここで、パイプ長軸位置とは、パイプの周方向における位置を考える場合の、パイプの最小半径の位置から90度回転した位置のことである。なお、0.23%圧縮強度は、実施例に記載された方法により測定することができる。
 表1に示す化学成分の鋼(鋼種A~J)を連続鋳造法によりスラブとした。加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の冷却設備を用いて加熱冷却を行い、誘導加熱炉あるいはガス燃焼炉を用いて再加熱を行い、板厚40mmの厚鋼板(No.1~23)を製造した。なお、加熱温度、圧延終了温度、冷却開始温度、冷却停止温度は鋼板の平均温度とし、再加熱温度は表面および板厚1/8位置での温度とした。平均温度および板厚1/8位置での温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率などのパラメータ、計算により求めた。
 さらに、これらの鋼板を用いて、UOEプロセスにより、管厚:39mm、外径:813mmのパイプを製造した。シーム溶接は内外面各1パスの4電極サブマージアーク溶接で行い、溶接時の入熱は鋼板の板厚に応じて100kJ/cmの範囲とした。溶接後のパイプに対して、拡管率:0.6~1.5%の拡管を実施した。また、拡管後のパイプに230℃にてコーティング処理も行った。鋼板製造条件および鋼管製造条件(拡管率)を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のようにして製造した鋼板の圧縮特性については、鋼板の表面から板厚1/8の位置までの圧縮試験片を採取して評価した。具体的には、鋼板の圧延垂直方向を長手方向とした圧縮試験片採取用の鋼板小片について、鋼板の反対側の表面から切削加工あるいは研削加工を実施して鋼板小片を板厚1/8まで減厚加工した後、平行部の厚さが2.5mm、幅が2.5mm、長さが4.0mmの矩形試験片を採取した。この試験片について、造管を模擬するため、圧縮ひずみを2.5%付与し、続けて引張ひずみを1.0%付与した。造管模擬をおこなった試験片を用いて、圧縮方向に荷重を負荷する圧縮試験を行い、得られた圧縮応力-圧縮ひずみ曲線上の圧縮ひずみが0.23%での応力を0.23%圧縮強度として評価した。
 以上のようにして製造したパイプの引張特性は、API 5Lに準拠した管周方向の全厚試験片を試験片として引張試験を行い、引張強度により評価した。パイプの圧縮特性は、パイプ長軸位置において内面側の管周方向から採取した試験片を用いて評価した。具体的には、管周方向を長手方向とした圧縮試験片採取用のパイプ片について、パイプの外面側から切削加工あるいは研削加工を実施して鋼板小片を板厚1/8まで減厚加工した後、平行部の厚さが2.5mm、幅が2.5mm、長さが4.0mmの矩形試験片を採取した。この試験片について、圧縮方向に荷重を負荷する圧縮試験を行い、得られた応力-ひずみ曲線上のひずみが0.23%での応力を0.23%圧縮強度として評価した。耐コラプス性能は、7mに切断したパイプに圧力容器内で徐々に水圧を負荷し、水圧が低下し始めた圧力をコラプス圧として評価した。なお、圧縮性能と耐コラプス性能は、拡管後(造管まま)と230℃でのコーティング処理後(230℃加熱後)で測定した。
 また、パイプの管周方向より採取したDWTT試験片により延性破面率が85%となる温度を85%SATTとして求めた。
 継手のHAZ靭性は、延性破面率が50%となる温度をvTrsとして求めた。切欠き位置は、シャルピー試験片のノッチ底中央に溶融線があり、ノッチ底に溶接金属と母材(含溶接熱影響部)が1:1となる位置とした。
 金属組織は、パイプの内表面から板厚1/8の位置からサンプルを採取し、パイプ長手方向に平行な断面を研磨後ナイタールによるエッチングを行い光学顕微鏡で観察を行った。そして、200倍で撮影した写真3枚を用いて画像解析によりベイナイトおよびポリゴナルフェライトの面積分率を求めた。MAの観察は、ベイナイトおよびポリゴナルフェライトの面積分率を測定したサンプルを用いて、ナイタールエッチング後に電解エッチング(2段エッチング)を行い、その後走査電子顕微鏡(SEM)による観察を行った。そして、1000倍で撮影した写真3枚から画像解析によってMAの面積分率を求めた。
 なお、実施例ではパイプにおける金属組織を特定したが、この結果は鋼板の金属組織として扱うことができる。
 金属組織および機械的特性の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、No.1~9はいずれも、引張強度が570MPa以上、0.23%圧縮強度が鋼板ままで340MPa以上、造管ままで340MPa以上かつ230℃加熱後で390MPa以上、コラプス圧が造管ままで35MPa以上かつ230℃加熱後で40MPa以上であり、DWTT性能は85%SATTが-10℃以下、HAZ靭性が-20℃以下と、評価結果がいずれも良好であった。
 一方、No.10~19は、成分組成が本発明の範囲内であるが、製造方法が本発明の範囲外であるため、所望の金属組織が得られていない。その結果、引張強度、0.23%圧縮強度またはDWTT特性のいずれかが劣っている。No.20~23は化学成分が本発明外であるため、引張強度、圧縮強度、DWTT特性またはHAZ靭性のいずれかが劣っている。
 本発明によれば、高強度と優れた低温靱性を有し、API-X70グレード以上のパイプが得られ、高い耐コラプス性能が要求される深海用ラインパイプへ適用することができる。

Claims (9)

  1.  質量%で、C:0.030~0.10%、
    Si:0.01~0.15%、
    Mn:1.0~2.0%、
    Nb:0.005~0.050%、
    Ti:0.005~0.025%、
    Al:0.08%以下を含有し、
    さらに、質量%で、Cu:0.5%以下、
    Ni:1.0%以下、
    Cr:1.0%以下、
    Mo:0.5%以下、
    V:0.1%以下の1種以上を含有し、(1)式で表されるCeq値が0.35以上、(2)式で表されるPcm値が0.20以下であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
    鋼材表面から板厚1/8位置における金属組織が、ベイナイトの面積分率が85%以上であり、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下であり、
    鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ用鋼材。
    Ceq値=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
    Pcm値=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10 ・・・(2)
    但し、(1)~(2)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
  2.  質量%で、Ca:0.0005~0.0035%をさらに含有する、請求項1に記載のラインパイプ用鋼材。
  3.  請求項1または2に記載の成分組成を有する鋼を1000~1200℃の温度に加熱し、
    未再結晶温度域の累積圧下率が60%以上で、かつ、圧延終了温度がAr変態点以上(Ar変態点+60℃)以下で熱間圧延を行った後、
    Ar変態点以上の温度から10℃/s以上の冷却速度で200~450℃まで加速冷却を行い、
    次いで板厚1/8位置で350℃以上であり、かつ鋼材表面で530℃以下となるように再加熱を行う、
    鋼材表面から板厚1/8位置までの圧延垂直方向の0.23%圧縮強度が340MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ用鋼材の製造方法。
  4.  質量%で、C:0.030~0.10%、
    Si:0.01~0.15%、
    Mn:1.0~2.0%、
    Nb:0.005~0.050%、
    Ti:0.005~0.025%、
    Al:0.08%以下を含有し、
    さらに、質量%で、Cu:0.5%以下、
    Ni:1.0%以下、
    Cr:1.0%以下、
    Mo:0.5%以下、
    V:0.1%以下の1種以上を含有し、(1)式で表されるCeq値が0.35以上、(2)式で表されるPcm値が0.20以下であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
    パイプ内表面から管厚1/8位置における金属組織が、ベイナイトの面積分率が85%以上であり、ポリゴナルフェライトの面積分率が10%以下で、かつ、島状マルテンサイトの面積分率が5%以下であり、
    パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプ。
    Ceq値=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
    Pcm値=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10 ・・・(2)
    但し、(1)~(2)式の元素記号は含有元素の質量%を示し、含有しない場合は0とする。
  5.  質量%で、Ca:0.0005~0.0035%をさらに含有する、請求項4に記載のラインパイプ。
  6.  さらにコーティング層を有する、請求項4または5に記載のラインパイプ。
  7.  請求項1または2に記載のラインパイプ用鋼材を、冷間成形によりパイプ形状とし、突合せ部をシーム溶接後、拡管率が1.2%以下で拡管してパイプを製造する、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプの製造方法。
  8.  請求項3に記載の方法で製造されたラインパイプ用鋼材を、冷間成形によりパイプ形状とし、突合せ部をシーム溶接後、拡管率が1.2%以下で拡管してパイプを製造する、パイプ内表面から管厚1/8位置まで、かつ、パイプ長軸位置での周方向の0.23%圧縮強度が340MPa以上、コラプス圧が35MPa以上であり、DWTT試験における延性破面率が85%以上となる温度が-10℃以下であるラインパイプの製造方法。
  9.  拡管後、パイプ表面が200℃以上となる加熱を含むコーティング処理を行う、請求項7または8に記載のラインパイプの製造方法。
PCT/JP2020/012169 2019-03-28 2020-03-19 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 WO2020196214A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080024929.1A CN113646455B (zh) 2019-03-28 2020-03-19 管线管用钢材及其制造方法以及管线管及其制造方法
JP2020540824A JP6819835B1 (ja) 2019-03-28 2020-03-19 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
CA3134477A CA3134477C (en) 2019-03-28 2020-03-19 Steel material for line pipes, method for producing the same, line pipe, and method for producing the line pipe
EP20779573.3A EP3950997A4 (en) 2019-03-28 2020-03-19 STEEL MATERIAL FOR CONDUCT TUBE AND METHOD FOR MAKING THE SAME, AND CONDUCT TUBE AND METHOD FOR MAKING THE SAME
KR1020217030966A KR102648172B1 (ko) 2019-03-28 2020-03-19 라인 파이프용 강재 및 그의 제조 방법 그리고 라인 파이프 및 그의 제조 방법
US17/440,952 US20220220574A1 (en) 2019-03-28 2020-03-19 Steel material for line pipes, method for producing the same, line pipe, and method for producing the line pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062703 2019-03-28
JP2019-062703 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196214A1 true WO2020196214A1 (ja) 2020-10-01

Family

ID=72611963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012169 WO2020196214A1 (ja) 2019-03-28 2020-03-19 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法

Country Status (7)

Country Link
US (1) US20220220574A1 (ja)
EP (1) EP3950997A4 (ja)
JP (1) JP6819835B1 (ja)
KR (1) KR102648172B1 (ja)
CN (1) CN113646455B (ja)
CA (1) CA3134477C (ja)
WO (1) WO2020196214A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949025A (ja) 1995-08-07 1997-02-18 Sumitomo Metal Ind Ltd 耐コラプス性に優れたuoe鋼管の製造法
JP2002102931A (ja) 2000-09-28 2002-04-09 Kawasaki Steel Corp Uoe鋼管の製造方法
JP2003340519A (ja) 2002-05-24 2003-12-02 Nippon Steel Corp 圧潰強度に優れたuoe鋼管
JP2003342639A (ja) 2002-05-24 2003-12-03 Nippon Steel Corp 圧潰強度に優れたuoe鋼管の製造方法
JP2004035925A (ja) 2002-07-01 2004-02-05 Nippon Steel Corp 圧潰強度の高いuoe鋼管の製造方法
JP2006207028A (ja) * 2004-12-28 2006-08-10 Jfe Steel Kk 耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法
JP2008056962A (ja) 2006-08-30 2008-03-13 Jfe Steel Kk 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP2009052137A (ja) 2007-07-31 2009-03-12 Jfe Steel Kk 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
JP2011132601A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP2012167329A (ja) * 2011-02-15 2012-09-06 Jfe Steel Corp 耐コラプス性能の優れたラインパイプ用鋼管
WO2016157863A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 高強度・高靭性鋼板およびその製造方法
JP2018168411A (ja) * 2017-03-29 2018-11-01 Jfeスチール株式会社 高強度・高靭性厚鋼板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280222B2 (ja) * 2004-10-28 2009-06-17 新日本製鐵株式会社 パイプライン変形特性および低温靭性に優れた超高強度鋼板及び超高強度鋼管並びにそれらの製造方法
JP4997805B2 (ja) * 2005-03-31 2012-08-08 Jfeスチール株式会社 高強度厚鋼板およびその製造方法、ならびに高強度鋼管
JP4969915B2 (ja) * 2006-05-24 2012-07-04 新日本製鐵株式会社 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
EP2209926B1 (en) * 2007-10-10 2019-08-07 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5381234B2 (ja) * 2009-03-31 2014-01-08 Jfeスチール株式会社 圧縮強度の高いラインパイプの製造方法
WO2012108543A1 (ja) * 2011-02-08 2012-08-16 Jfeスチール株式会社 長大脆性き裂伝播停止特性に優れる板厚50mm以上の厚鋼板およびその製造方法ならびに長大脆性き裂伝播停止性能を評価する方法および試験装置
JP5751012B2 (ja) * 2011-05-24 2015-07-22 Jfeスチール株式会社 耐圧潰性および耐サワー性に優れた高強度ラインパイプの製造方法
JP5796351B2 (ja) * 2011-05-24 2015-10-21 Jfeスチール株式会社 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法
JP5950045B2 (ja) * 2013-12-12 2016-07-13 Jfeスチール株式会社 鋼板およびその製造方法
CN106133175B (zh) * 2014-03-31 2018-09-07 杰富意钢铁株式会社 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管
CA2980247C (en) * 2015-03-26 2021-06-22 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
EP3276025B1 (en) * 2015-03-26 2019-05-01 JFE Steel Corporation Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP6137435B2 (ja) * 2015-03-27 2017-05-31 Jfeスチール株式会社 高強度鋼及びその製造方法、並びに鋼管及びその製造方法
US11236405B2 (en) * 2016-01-29 2022-02-01 Jfe Steel Corporation Steel plate for high-strength and high-toughness steel pipes and method for producing steel plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949025A (ja) 1995-08-07 1997-02-18 Sumitomo Metal Ind Ltd 耐コラプス性に優れたuoe鋼管の製造法
JP2002102931A (ja) 2000-09-28 2002-04-09 Kawasaki Steel Corp Uoe鋼管の製造方法
JP2003340519A (ja) 2002-05-24 2003-12-02 Nippon Steel Corp 圧潰強度に優れたuoe鋼管
JP2003342639A (ja) 2002-05-24 2003-12-03 Nippon Steel Corp 圧潰強度に優れたuoe鋼管の製造方法
JP2004035925A (ja) 2002-07-01 2004-02-05 Nippon Steel Corp 圧潰強度の高いuoe鋼管の製造方法
JP2006207028A (ja) * 2004-12-28 2006-08-10 Jfe Steel Kk 耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法
JP2008056962A (ja) 2006-08-30 2008-03-13 Jfe Steel Kk 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP2009052137A (ja) 2007-07-31 2009-03-12 Jfe Steel Kk 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
JP2011132601A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP2012167329A (ja) * 2011-02-15 2012-09-06 Jfe Steel Corp 耐コラプス性能の優れたラインパイプ用鋼管
WO2016157863A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 高強度・高靭性鋼板およびその製造方法
JP2018168411A (ja) * 2017-03-29 2018-11-01 Jfeスチール株式会社 高強度・高靭性厚鋼板の製造方法

Also Published As

Publication number Publication date
EP3950997A1 (en) 2022-02-09
KR102648172B1 (ko) 2024-03-14
CN113646455B (zh) 2023-06-27
CA3134477A1 (en) 2020-10-01
CN113646455A (zh) 2021-11-12
KR20210130792A (ko) 2021-11-01
US20220220574A1 (en) 2022-07-14
JPWO2020196214A1 (ja) 2021-04-08
CA3134477C (en) 2023-09-05
JP6819835B1 (ja) 2021-01-27
EP3950997A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
KR101511617B1 (ko) 높은 압축 강도를 갖는 라인파이프용 용접 강관의 제조 방법
KR101511614B1 (ko) 높은 압축 강도 및 내사우어성을 갖는 라인파이프용 용접 강관의 제조 방법
KR101511615B1 (ko) 높은 압축 강도 및 인성을 갖는 라인파이프용 용접 강관의 제조 방법
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
WO2007136019A1 (ja) 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
JP5782828B2 (ja) 高圧縮強度鋼管及びその製造方法
JP5381234B2 (ja) 圧縮強度の高いラインパイプの製造方法
KR102447058B1 (ko) 라인 파이프용 강재 및 그 제조 방법 그리고 라인 파이프의 제조 방법
JP6819835B1 (ja) ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
CN111655872B (zh) 管线管用钢材及其制造方法以及管线管的制造方法
JP2012241268A (ja) 高圧縮強度鋼管及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3134477

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217030966

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779573

Country of ref document: EP

Effective date: 20211028