WO2016147818A1 - ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法 - Google Patents

ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法 Download PDF

Info

Publication number
WO2016147818A1
WO2016147818A1 PCT/JP2016/055333 JP2016055333W WO2016147818A1 WO 2016147818 A1 WO2016147818 A1 WO 2016147818A1 JP 2016055333 W JP2016055333 W JP 2016055333W WO 2016147818 A1 WO2016147818 A1 WO 2016147818A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
water
resin composition
drilling
entry sheet
Prior art date
Application number
PCT/JP2016/055333
Other languages
English (en)
French (fr)
Inventor
孝幸 亀井
洋介 松山
尊明 小柏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020177024823A priority Critical patent/KR102388007B1/ko
Priority to MYPI2017703390A priority patent/MY186196A/en
Priority to US15/555,849 priority patent/US10478991B2/en
Priority to CN201680016813.7A priority patent/CN107428020B/zh
Priority to JP2017506166A priority patent/JP6631943B2/ja
Priority to SG11201707185PA priority patent/SG11201707185PA/en
Publication of WO2016147818A1 publication Critical patent/WO2016147818A1/ja
Priority to PH12017501658A priority patent/PH12017501658A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/16Perforating by tool or tools of the drill type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B41/00Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B41/16Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor for boring holes with high-quality surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2250/00Compensating adverse effects during turning, boring or drilling
    • B23B2250/12Cooling and lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F2210/00Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
    • B26F2210/02Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of stacked sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0214Back-up or entry material, e.g. for mechanical drilling

Definitions

  • the present invention relates to an entry sheet for drilling and a drilling method using the same.
  • a drilling method for a laminated board or multilayer board used as a printed wiring board material generally one or a plurality of laminated boards or multilayer boards are stacked, and an aluminum foil alone or A method is employed in which a sheet is formed by forming a resin composition layer on the surface of the aluminum foil (hereinafter, this “sheet” is referred to as “drill drilling entry sheet”).
  • this “sheet” is referred to as “drill drilling entry sheet”.
  • a “copper-clad laminate” is often used as the laminate, but “a laminate without a copper foil in the outer layer” may be used.
  • the laminate refers to a “copper-clad laminate” and / or “a laminate without a copper foil in the outer layer”.
  • Patent Document 1 proposes a drilling method using a sheet made of a water-soluble resin such as polyethylene glycol in order to meet the demands for improving the hole position accuracy and reducing the hole wall roughness described above.
  • Patent Document 2 a drilling lubricant sheet in which a water-soluble resin layer is formed on a metal foil is proposed.
  • Patent Document 3 proposes an entry sheet for punching in which a water-soluble resin layer is formed on an aluminum foil on which a thermosetting resin thin film is formed.
  • Patent Document 4 proposes a lubricant sheet for drilling in which a non-halogen colorant is blended in a lubricating resin composition.
  • an entry sheet for drilling a form composed of a metal foil and a resin composition layer formed on at least one side of the metal foil has been proposed.
  • the metal foil and the resin composition layer have a low adhesive strength
  • the drilling entry sheet structure in which the metal foil and the resin composition layer are in direct contact with each other is used in the drilling process. In many cases, this layer peels off, and the drill steps on the peeled resin composition layer, leading to deterioration in hole position accuracy and deterioration in drill breakage frequency.
  • the drilling entry sheet is usually arranged on both surfaces of a plurality of laminated plates or multilayer plates and used as a set with a fixing tape for drilling.
  • the fixing tape is made of a resin composition.
  • the adhesive layer hinders the lubricating effect of the resin composition, which is an important characteristic required for an entry sheet for drilling.
  • the hole position accuracy may be deteriorated.
  • the adhesive strength between the metal foil and the resin composition layer is strong, and the hole punching entry sheet has excellent hole position accuracy. Development is anxious.
  • an object of the present invention is an entry sheet for drilling in the form of a metal foil and a resin composition layer formed without interposing an adhesive layer on the metal foil.
  • the present invention is to provide an entry sheet for drilling, which has high adhesion strength between the resin composition layer and the drilling process and has excellent hole positioning accuracy, and a drilling method using the same. .
  • the present inventors have found that the surface free energy dispersion term ⁇ SD and the polar term ⁇ SP of the surface of the resin composition layer in contact with the metal foil are in a specific range. It has been found that the entry sheet for drilling has a high adhesive strength between the metal foil and the resin composition layer, and is excellent in the hole position accuracy during drilling, and has completed the present invention.
  • the present invention is as follows.
  • a metal foil and a layer of a resin composition formed without interposing an adhesive layer on the metal foil The surface free energy dispersion term ⁇ SD of the surface of the resin composition layer contacting the metal foil is in the range of 27.0 to 37.0 mJ / m 2 , and the surface free energy polarity term ⁇ SP is 0 to 5.
  • An entry sheet for drilling in the range of 0 mJ / m 2 .
  • the dispersion term ⁇ SD of the surface free energy of the water-insoluble resin (A) is in the range of 32.0 to 38.1 mJ / m 2 and the polar term ⁇ SP of the surface free energy is 0 to 6.0 mJ / m 2.
  • the entry sheet for drilling according to [2], wherein [4]
  • the water-insoluble resin (A) is one type or two or more types selected from the group consisting of a polyurethane resin, a polyester resin, an acrylic resin, and a polyolefin resin, according to [2] or [3] Entry sheet for drilling.
  • the water-soluble resin (B) is polyethylene oxide, polypropylene oxide, cellulose derivative, polytetramethylene glycol, polyethylene glycol, polypropylene glycol, polyoxyethylene monoether compound, polyoxyethylene monostearate, polyoxyethylene sorbitan monosteare
  • the drill hole according to any one of [2] to [4], which is one or more selected from the group consisting of a rate, a polyglycerol monostearate compound, and a polyoxyethylenepropylene copolymer Entry sheet for opening.
  • the water-soluble resin (B) is a high-molecular water-soluble resin (b1) having a mass average molecular weight of 50,000 or more and 1,000,000 or less, and a low-molecular water solution having a mass average molecular weight of 1,000 or more and 30,000 or less.
  • the polymer water-soluble resin (b1) includes at least one selected from the group consisting of polyethylene oxide, polypropylene oxide, and cellulose derivatives
  • the low-molecular water-soluble resin (b2) is polytetramethylene glycol, polyethylene glycol, polypropylene glycol, polyoxyethylene monoether compound, polyoxyethylene monostearate, polyoxyethylene sorbitan monostearate, polyglycerin monostearate.
  • the resin composition comprises 20 to 80 parts by mass of the water-insoluble resin (A) and 80 to 80 parts by mass with respect to 100 parts by mass of the total amount of the water-insoluble resin (A) and the water-soluble resin (B).
  • the layer of the resin composition is formed using the water dispersion of the water-insoluble resin (A) and the water-soluble resin (B), according to [2] to [7] Entry sheet for drilling.
  • a drilling method comprising a hole forming step of forming a hole in a laminated board or a multilayer board using the drill hole entry sheet according to any one of [1] to [10].
  • an entry sheet for drilling with excellent hole position accuracy and a drilling method using the same can be provided.
  • an entry sheet for drilling without an adhesive layer is economical in terms of both the raw material and the manufacturing process of the entry sheet.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
  • the drill hole entry sheet includes a metal foil and a resin composition layer formed without interposing an adhesive layer on the metal foil, and the metal foil of the resin composition layer.
  • the surface free energy dispersion term ⁇ SD of the surface in contact with the surface is in the range of 27.0 to 37.0 mJ / m 2 and the surface free energy polar term ⁇ SP is in the range of 0 to 5.0 mJ / m 2 .
  • the entry sheet for drilling according to the present embodiment is composed of a metal foil and a resin composition layer formed on the metal foil without interposing an adhesive layer. That is, there is no adhesive layer (resin film) for bonding the metal foil and the resin composition between the metal foil and the resin composition layer, and the metal foil and the resin composition layer are in direct contact with each other. It is a form. This is because, with the above-described configuration, the adhesive strength is sufficiently practical without interposing an adhesive layer.
  • the drill hole entry sheet of the present embodiment does not need to form an adhesive layer, so raw material costs and the process of forming the adhesive layer are unnecessary, and is more economical than the conventional drill hole entry sheet. Also excellent in terms.
  • the layer of the resin composition may be formed on one side of the metal foil or may be formed on both sides. When forming the layer of the resin composition on both sides, the composition of the resin composition of the layer may be the same or different.
  • the surface free energy dispersion term ⁇ SD of the surface in contact with the metal foil is in the range of 27.0 to 37.0 mJ / m 2 and the surface free energy polarity term ⁇ SP is The range is from 0 to 5.0 mJ / m 2 .
  • the dispersion term ⁇ SD is in the range of 30.0 to 37.0 mJ / m 2 and the polar term ⁇ SP is in the range of 0 to 5.0 mJ / m 2 . Since the dispersion term ⁇ SD and the polar term ⁇ SP are within the above ranges, the bond strength between the metal foil and the resin composition layer is strong and the machinability at the time of drilling is good. Excellent hole position accuracy at the time.
  • the surface free energy of a material surface can be expressed by a dispersion term ⁇ SD and a polar term ⁇ SP.
  • the surface free energy dispersion term ⁇ SD and the polarity term ⁇ SP are calculated as follows.
  • the surface free energy dispersion term ⁇ SD and the polarity term ⁇ SP are the surface tension ⁇ L, the surface tension dispersion term ⁇ LD, and the surface tension polarity term on the surface of the resin composition layer in contact with the metal foil. It is known that when the contact angle obtained by dropping 1 to 2 ⁇ L of a known solvent of ⁇ LP is ⁇ , the relationship is represented by the following formula (1).
  • ⁇ L (1 + cos ⁇ ) 2 ( ⁇ SD ⁇ ⁇ LD) 0.5 +2 ( ⁇ SP ⁇ ⁇ LP) 0.5 (1)
  • the specific measurement method is described below.
  • the dispersion term ⁇ SD and the polar term ⁇ SP of the surface free energy on the surface of the resin composition layer in contact with the metal foil are calculated by preparing a film composed of the resin composition layer.
  • a method for producing a resin composition film it can be obtained by forming a resin composition film on a metal foil and then peeling off the resin composition layer.
  • the surface tension ⁇ L, the surface tension dispersion term ⁇ LD, and the surface tension polarity term ⁇ LP described above are already known on the surface of the resin composition film obtained by the above-described method in contact with the metal foil or release film. 1 to 2 ⁇ L of each type of solvent is dropped. The droplet is photographed from the side using a digital microscope (for example, VHX-100 manufactured by KEYENCE). Next, the contact angle ⁇ between the film and the droplet is measured using the above-described measurement software attached to the digital microscope.
  • Solvents that can be used to measure the surface free energy dispersion term ⁇ SD and the polar term ⁇ SP are not particularly limited as long as the surface tension ⁇ L, the surface tension dispersion term ⁇ LD, and the surface tension polarity term ⁇ LP are known.
  • the solvent those having greatly different dispersion terms ⁇ LD and polar terms ⁇ LP are preferable. Specifically, liquid paraffin, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane having only the dispersion term ⁇ LD and the polar term ⁇ LP is zero (0).
  • Hydrocarbon solvents such as n-tetradecane and n-hexadecane; methylene iodide having both dispersion term ⁇ LD and polar term ⁇ LP, tetrabromoethane, tetrachloroethane, hexachlorobudadiene, polydimethylsiloxane, water, glycerin, formamide, ethylene It can be selected from glycol, diethylene glycol and the like. Among these, a combination of liquid paraffin and glycerin is particularly preferable.
  • the resin component constituting the layer of the resin composition is not particularly limited, and examples thereof include a water-insoluble resin, a water-soluble resin, or a mixture thereof. Among these, it is preferable to use a water-insoluble resin (A) and a water-soluble resin (B) in combination.
  • a water-insoluble resin (A) and a water-soluble resin (B) in combination.
  • water-soluble resin (A) and the water-soluble resin (B) By using the water-insoluble resin (A) and the water-soluble resin (B) together, the adhesive strength between the metal foil and the resin composition layer is further improved, and the hole position accuracy during drilling is improved. It tends to be excellent.
  • water-soluble refers to a property that dissolves when mixed with water
  • water-insoluble refers to a property that does not dissolve when mixed with water.
  • the method for forming the resin composition layer will be described in detail later.
  • the resin composition layer is formed by using a water-insoluble resin (A) aqueous dispersion and a water-soluble resin (B). It is particularly preferred that By using the water-insoluble resin (A) as an aqueous dispersion, the compatibility between the water-insoluble resin (A) and the water-soluble resin (B) is further improved, and adhesion between the metal foil and the resin composition layer is improved. There exists a tendency for intensity
  • the water-insoluble resin (A) that can be used in the present embodiment is not particularly limited as long as it is a water-insoluble resin, but the surface free energy dispersion term ⁇ SD of the water-insoluble resin (A) is 32.0. ⁇ in the range of 38.1mJ / m 2, and preferably polar term ⁇ SP of the surface free energy is in the range of 0 ⁇ 6.0mJ / m 2, dispersion term ⁇ SD is 33.0 ⁇ 37.0mJ / in the range of m 2, it is particularly preferred and polarity term ⁇ SP of the surface free energy is in the range of 0 ⁇ 5.0mJ / m 2.
  • the metal foil and the resin composition layer are firmly bonded and do not peel off during drilling. Excellent position accuracy.
  • the surface free energy of the water-insoluble resin (A) can also be measured in the same manner as the surface free energy of the resin composition layer.
  • the content of the water-insoluble resin (A) in the resin composition is 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the water-insoluble resin (A) and the water-soluble resin (B). Preferably, the amount is 30 to 70 parts by mass, and more preferably 30 to 60 parts by mass.
  • the content of the water-insoluble resin (A) is 20 parts by mass or more, the adhesive strength between the metal foil and the resin composition layer is further improved, and the resin composition layer is peeled off during drilling. It tends to be less likely to occur.
  • the content of the water-insoluble resin (A) is 80 parts by mass or less, the hole position accuracy tends to be more excellent when drilling.
  • the water-insoluble resin (A) is not particularly limited, and examples thereof include a polyurethane resin, a polyester resin, an acrylic resin, a polyolefin resin, and a polycarbonate resin. Among these, one type or two or more types selected from the group consisting of a polyurethane resin, a polyester resin, an acrylic resin, and a polyolefin resin are preferable.
  • the dispersion term ⁇ SD of the surface free energy of the surface of the resin composition layer contacting the metal foil is in the range of 27.0 to 37.0 mJ / m 2 .
  • the polar term ⁇ SP of the surface free energy tends to be in the range of 0 to 5.0 mJ / m 2 , and the adhesive strength between the metal foil and the resin composition layer tends to be further improved.
  • These resins may be used alone or in combination of two or more.
  • polyurethane resin examples include a resin obtained by reacting a polyisocyanate compound, a polyol compound, and, if necessary, another compound.
  • synthesis reaction of the polyurethane resin include an acetone method, a prepolymer mixing method, a ketimine method, and a hot melt dispersion method.
  • the polyisocyanate compound is not particularly limited, and examples thereof include organic polyisocyanate compounds having two or more isocyanate groups in the molecule, which are used in the production of ordinary polyurethane resins. Specifically, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, methylcyclohexyl-2,4-diisocyanate, methylcyclohexyl Aliphatic diisocyanates such as -2,6-diisocyanate, xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate, lysine diisocyanate; 1,5'-naphthene diisocyanate, tolidine diisocyanate, diphenylmethylmethane diisocyanate, tetraalkyldiphenylmethane diis
  • the polyol compound is not particularly limited, and examples thereof include a polyol compound having two or more hydroxyl groups in the molecule, which is used for the production of ordinary polyurethane.
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, trimethylolpropane, glycerin; polyethylene glycol, polypropylene glycol, polytetra Polyether polyol compounds such as methylene ether glycol; adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, Dicarboxylic acids such as azelaic acid, ethylene glycol, diethylene glycol, propylene glycol, 1,
  • the polyurethane resin used as the water-insoluble resin (A) is preferably used for forming the layer of the resin composition of the present embodiment in the form of an aqueous dispersion.
  • the content of resin solids contained in the polyurethane resin aqueous dispersion is not particularly limited, but is preferably 20 to 50% by mass from the viewpoint of the stability of the aqueous dispersion.
  • the method for producing the polyurethane resin aqueous dispersion is not particularly limited, and can be produced by a known method. Especially, it is preferable that the polyurethane resin synthesize
  • hydrophilic group which mentioned above has a hydrophilic group in a molecule
  • hydrophilic group anionic groups such as a sulfonyl group and a carboxyl group are preferable, and a carboxyl group is particularly preferable.
  • the anionic group is preferably neutralized with a neutralizing agent.
  • the neutralizing agent is not particularly limited, and examples thereof include tertiary amine compounds such as triethylamine and triethanolamine; inorganic alkali compounds such as sodium hydroxide; ammonia and the like.
  • a compound serving as a chain extender may be used as necessary.
  • the chain extender is not particularly limited, and examples thereof include diamines such as ethylenediamine, 1,4-butanediamine, and 1,6-hexanediamine; tertiary amino alcohols such as triethanolamine; monomers such as methanol, ethanol, and butanol. Examples include alcohol.
  • the solvent for producing an aqueous dispersion of a polyurethane resin is usually an aqueous solvent, but an organic solvent not containing an isocyanate group can also be used in combination.
  • an organic solvent not containing an isocyanate group can also be used in combination.
  • ethyl acetate, acetone, methyl ethyl ketone, isopropyl alcohol, methanol, ethanol and the like can be used.
  • the amount of the organic solvent added is usually 1 to 100 parts by mass with respect to 100 parts by mass of water in the polyurethane resin aqueous dispersion.
  • polyurethane resin aqueous dispersion a commercially available product may be used as it is.
  • Commercially available polyurethane resin aqueous dispersions include Superflex 820 (Daiichi Kogyo Seiyaku Co., Ltd.), Superflex 860 (Daiichi Kogyo Seiyaku Co., Ltd.), and Superflex 740 (Daiichi Kogyo Seiyaku Co., Ltd.).
  • Uprene UXA307 manufactured by Sanyo Chemical Industries
  • Hydran AP201 manufactured by DIC Corporation
  • Hydran HW140SF manufactured by DIC Corporation
  • Hydran WLS201 manufactured by DIC Corporation
  • the polyester resin that can be used as the water-insoluble resin (A) is a polycondensation of a raw material composed of a polyol compound having two or more hydroxyl groups and a polyvalent carboxylic acid having two or more carboxyl groups.
  • the polyester resin obtained by doing is mentioned.
  • the polyol compound is not particularly limited as long as it has two or more hydroxyl groups.
  • ethylene glycol diethylene glycol, 1,3-propanediol, 1,2-propanediol, triethylene glycol, 2-methyl- 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, 2-methyl-1,4- Butanediol, 2-methyl-3-methyl-1,4-butanediol, 3-methyl-1,5-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6 -Hexanediol and the like.
  • ethylene oxide adduct of bisphenol A propylene oxide adduct of bisphenol A as a glycol containing a divalent aromatic structure
  • sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan penta Erythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, tri Examples include methylolethane, trimethylolpropane, 1,3,5-trihydroxymethylbenzene and the like. These compounds may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the polyvalent carboxylic acid is not particularly limited as long as it has two or more carboxyl groups.
  • terephthalic acid isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2,4-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2, 4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl) methane, 1,2,7,8-octanetetracarboxylic acid, t
  • the polyester resin used as the water-insoluble resin (A) is preferably used for forming the layer of the resin composition of the present embodiment in the form of an aqueous dispersion.
  • the resin solid content in the aqueous dispersion of the polyester resin is not particularly limited, but is preferably 20 to 50% by mass from the viewpoint of the stability of the aqueous dispersion.
  • the manufacturing method of the aqueous dispersion of the polyester resin is not particularly limited, and can be manufactured by a known method.
  • the aqueous dispersion of polyester resin as used herein means that the polyester resin has a hydrophobic portion and a hydrophilic portion in the molecule, and the hydrophilic portion is stably dispersed in water so that the hydrophobic portion surrounds the hydrophobic portion. Refers to what you are doing.
  • the polyester resin may be a resin obtained by further copolymerizing a component having a hydrophilic group such as a carboxyl group or a sulfonic acid group for the purpose of improving the water dispersibility of the polyester resin.
  • a component having a hydrophilic group for example, trimellitic acid, pyromellitic acid, trimesic acid or the like can be used, and the obtained copolymer is neutralized with an inorganic alkali compound such as an amine compound, ammonia or sodium hydroxide.
  • Polyester resin can be used.
  • aqueous dispersion of the polyester resin a commercially available product may be used as it is.
  • examples of commercially available water dispersions of polyester resin include Vylonal MD1480 (manufactured by Toyobo Co., Ltd.) and Vironal MD1985 (manufactured by Toyobo Co., Ltd.).
  • These aqueous dispersions are particularly preferable as the aqueous dispersion of the water-insoluble resin (A) that can be used when forming the layer of the resin composition of the present embodiment. This is because the adhesive strength between the metal foil and the resin composition layer can be particularly increased.
  • the acrylic resin that can be used as the water-insoluble resin (A) in the present embodiment is not particularly limited as long as it is a copolymer having an unsaturated carboxylic acid compound as a main component.
  • the unsaturated carboxylic acid is not particularly limited.
  • ethylenically unsaturated carboxylic acid amide and N-substituted compounds thereof; unsaturated alcohols such as allyl alcohol; ⁇ , ⁇ -unsaturated nitriles (also referred to as ethylenically unsaturated nitriles) such as (meth) acrylonitrile; Examples include vinyl acetate. These compounds may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the acrylic resin used as the water-insoluble resin (A) is preferably used for forming the layer of the resin composition of the present embodiment in the form of an aqueous dispersion.
  • the resin solid content in the acrylic resin aqueous dispersion is not particularly limited, but is preferably 20 to 50% by mass from the viewpoint of the stability of the aqueous dispersion.
  • the manufacturing method of the acrylic resin aqueous dispersion is not particularly limited, and can be manufactured by a known method.
  • an acrylic compound is copolymerized in an organic solvent such as methyl ethyl ketone, acetone, and ethyl acetate, and after evaporating the organic solvent, the carboxyl group is converted into an inorganic compound such as an amine compound, ammonia, or sodium hydroxide in an aqueous solvent.
  • organic solvent such as methyl ethyl ketone, acetone, and ethyl acetate
  • a method of neutralizing and dispersing with an alkali compound, an emulsifier having an acrylic compound and an anionic hydrophilic group such as a carboxyl group or a sulfonic acid group in an aqueous solvent, or a monoether compound or monoester such as polyethylene glycol or polypropylene glycol A method of mixing with a compound having a nonionic hydrophilic group, such as a compound, and emulsion polymerization, and a self-emulsification by copolymerizing a hydrophilic component such as a carboxyl group or a sulfonic acid group with an acrylic compound. The method etc. are mentioned.
  • aqueous dispersion of acrylic resin a commercially available product may be used as it is.
  • acrylic resin aqueous dispersions include Boncoat AK3090 (DIC Corporation), Boncoat AN678E (DIC Corporation), and Boncoat MAT200E (DIC Corporation). These aqueous dispersions are particularly preferable as the aqueous dispersion of the water-insoluble resin (A) that can be used when forming the layer of the resin composition of the present embodiment. This is because the adhesive strength between the metal foil and the resin composition layer can be particularly increased.
  • polyolefin-based resin examples include resins in which olefins such as ethylene and propylene are main components.
  • examples of such a resin include a copolymer of an olefin and an unsaturated carboxylic acid (hereinafter, also referred to as “olefin-unsaturated carboxylic acid copolymer”).
  • the olefin is not particularly limited, but ethylene, propylene and butylene are preferable, and ethylene is particularly preferable.
  • (meth) acrylic acid namely, acrylic acid or methacrylic acid
  • maleic acid, itaconic acid, and fumaric acid are preferable
  • (meth) acrylic acid is more preferable among these.
  • the olefin-unsaturated carboxylic acid copolymer a copolymer of ethylene and (meth) acrylic acid and a copolymer of propylene and (meth) acrylic acid are particularly preferable.
  • the polyolefin resin used as the water-insoluble resin (A) is preferably used for forming the layer of the resin composition of the present embodiment in the form of an aqueous dispersion.
  • the resin solid content in the polyolefin resin aqueous dispersion is not particularly limited, but is preferably 20 to 50% by mass from the viewpoint of the stability of the aqueous dispersion.
  • the manufacturing method of the aqueous dispersion of polyolefin resin is not particularly limited, and can be manufactured by a known method.
  • a method of stirring the above-described olefin / unsaturated carboxylic acid copolymer, an aqueous solvent, and other components such as a base and an emulsifier as necessary using a solid-liquid stirring device or the like can be mentioned.
  • bases used for the production of aqueous dispersions of polyolefin resins include amine compounds such as ammonia, diethylamine, triethylamine, monoethanolamine, dimethylethanolamine, diethylethanolamine, and sodium hydroxide.
  • aqueous dispersions of polyolefin resin include: Saixen AC (manufactured by Sumitomo Seika Co., Ltd.), Saixen NC (manufactured by Sumitomo Seika Co., Ltd.), Hitech S3148K (manufactured by Toho Chemical Industry Co., Ltd.), Hitech S9242 (Toho) Chemical Industry Co., Ltd.).
  • Saixen AC manufactured by Sumitomo Seika Co., Ltd.
  • Saixen NC manufactured by Sumitomo Seika Co., Ltd.
  • Hitech S3148K manufactured by Toho Chemical Industry Co., Ltd.
  • Hitech S9242 Toho Chemical Industry Co., Ltd.
  • the water-soluble resin (B) is not particularly limited as long as it is a water-soluble resin, but it is preferable to use the polymer water-soluble resin (b1) and the low-molecular water-soluble resin (b2) in combination.
  • the content of the water-soluble resin (B) in the resin composition is preferably 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the water-insoluble resin (A) and the water-soluble resin (B). 30 to 70 parts by mass is more preferable, and 40 to 70 parts by mass is even more preferable. It exists in the tendency which can form the layer of a more uniform resin composition because content of water-soluble resin (B) is 20 mass parts or more. On the other hand, when the content of the water-soluble resin (B) is 80 parts by mass or less, the hole position accuracy tends to be more excellent at the time of drilling.
  • the polymer water-soluble resin (b1) is not particularly limited and is preferably one or more selected from the group consisting of polyethylene oxide, polypropylene oxide, and cellulose derivatives. These compounds may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the mass average molecular weight of the polymer water-soluble resin (b1) is preferably from 50,000 to 1,000,000 from the viewpoint of improving the film forming property of the resin composition layer.
  • the low-molecular water-soluble resin (b2) is not particularly limited, and examples thereof include glycol compounds such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyethylene oleyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether , Polyoxyethylene monoether compounds such as polyoxyethylene lauryl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether; polyoxyethylene monostearate, polyoxyethylene sorbitan monostearate, polyglycerin monostearate Examples thereof include a compound and a polyoxyethylene propylene copolymer.
  • glycol compounds such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol
  • polyoxyethylene oleyl ether polyoxyethylene cetyl ether
  • polyoxyethylene stearyl ether polyoxyethylene monoether compounds
  • Polyoxyethylene monoether compounds such as polyoxyethylene lauryl
  • polytetramethylene glycol polyethylene glycol, polypropylene glycol, polyoxyethylene monoether compound, polyoxyethylene monostearate, polyoxyethylene sorbitan monostearate, polyglycerin monostearate compound, and polyoxyethylene propylene It is preferable to include at least one selected from the group consisting of copolymers. These compounds and copolymers may be used singly or in combination of two or more.
  • the mass average molecular weight of the low molecular weight water-soluble resin (b2) is preferably 1,000 or more and 30,000 or less from the viewpoint of improving lubricity during drilling.
  • the water-soluble resin (B) polyethylene oxide, polypropylene oxide, cellulose derivative, polytetramethylene glycol, polyethylene glycol, polypropylene glycol, polyoxyethylene monoether compound, polyoxyethylene monostearate, polyoxy It is preferable to use one type or two or more types selected from the group consisting of ethylene sorbitan monostearate, polyglycerin monostearate compound, and polyoxyethylene propylene copolymer.
  • the film-forming property and the hole position accuracy of the resin composition layer tend to be further improved.
  • the water-soluble resin (B) is a polymer water-soluble resin (b1) having a mass average molecular weight of 50,000 to 1,000,000 and a mass average molecular weight of 1,000 to 30,000.
  • the low molecular weight water-soluble resin (b2), the high molecular weight water-soluble resin (b1) includes at least one selected from the group consisting of polyethylene oxide, polypropylene oxide, and cellulose derivatives.
  • the water-soluble resin (b2) is polytetramethylene glycol, polyethylene glycol, polypropylene glycol, polyoxyethylene monoether compound, polyoxyethylene monostearate, polyoxyethylene sorbitan monostearate, polyglycerin monostearate compound, and Polyoxyethylene propylene co Preferably contains at least one selected from the group consisting of coalescence.
  • the content of the polymer water-soluble resin (b1) is preferably 1 to 15 parts by mass, more preferably 100 parts by mass relative to the total amount of the water-insoluble resin (A) and the water-soluble resin (B).
  • the amount is 2.5 to 10 parts by mass, and more preferably 5 to 8 parts by mass.
  • the content of the low-molecular water-soluble resin (b2) is preferably 30 to 75 parts by mass, more preferably 100 parts by mass relative to the total amount of the water-insoluble resin (A) and the water-soluble resin (B).
  • the amount is 40 to 75 parts by mass, and more preferably 45 to 72 parts by mass.
  • the layer of the resin composition may contain an additive as necessary.
  • the type of additive is not particularly limited, but for example, surface conditioner, leveling agent, antistatic agent, emulsifier, antifoaming agent, wax additive, coupling agent, rheology control agent, antiseptic, antifungal agent, oxidation Examples include inhibitors, light stabilizers, nucleating agents such as Na formate, solid lubricants such as graphite, organic fillers, inorganic fillers, heat stabilizers, and colorants.
  • the thickness of the layer of the resin composition in the present embodiment is the diameter of the drill bit used when drilling or the drilling object to be processed (for example, a printed wiring board material such as a laminated board or a multilayer board). It is appropriately selected depending on the configuration. Among these, the thickness of the resin composition layer is preferably in the range of 0.02 to 0.3 mm, more preferably in the range of 0.02 to 0.2 mm, and 0.02 to 0. More preferably, it is in the range of 1 mm. When the thickness of the resin composition layer is 0.02 mm or more, a sufficient lubrication effect is obtained, and the load on the drill bit is reduced, so that the drill bit can be further prevented from breaking. It is in. Moreover, it exists in the tendency which can suppress the winding of the resin composition to a drill bit because the thickness of a resin composition layer is 0.3 mm or less.
  • the metal foil used for the drill hole entry sheet of the present embodiment is not particularly limited, but is preferably a metal material that has high adhesion to the resin composition layer and can withstand the impact of the drill bit.
  • a metal seed species of metal foil, aluminum is mentioned from a viewpoint of availability, cost, and workability, for example.
  • the material of the aluminum foil aluminum having a purity of 95% or more is preferable. Examples of such aluminum foil include 5052, 3004, 3003, 1N30, 1N99, 1050, 1070, 1085, as defined in JIS-H4160. 8021.
  • the impact of the drill bit is reduced and the biting property with the tip of the drill bit is improved, combined with the lubricating effect of the drill bit by the resin composition.
  • the hole position accuracy of the processed hole can be further increased.
  • the thickness of the metal foil is preferably 0.05 to 0.5 mm, more preferably 0.05 to 0.3 mm, and still more preferably 0.05 to 0.2 mm.
  • the thickness of the metal foil is 0.05 mm or more, the occurrence of burrs on the drilling object (for example, a laminate) during drilling tends to be further suppressed.
  • the thickness of the metal foil is 0.5 mm or less, the discharge of chips generated during drilling tends to be easier.
  • each layer constituting the drill hole entry sheet of the present embodiment is measured as follows. First, using a cross section polisher (manufactured by JEOL Datum Co., Ltd., trade name “CROSS-SECTIONPOLISHERSM-09010”) or an ultramicrotome (Leica, product number “EMUC7”), the entry sheets are arranged in the stacking direction of each layer. Disconnect. Then, using a SEM (Scanning Electron Microscope, KEYENCE product number “VE-7800”), the section formed by observing the section from the vertical direction with respect to the section that has been cut and formed, for example, The thickness of the metal foil and the resin composition layer is measured. The thickness of five places is measured for one visual field, and the average value is taken as the thickness of each layer.
  • a cross section polisher manufactured by JEOL Datum Co., Ltd., trade name “CROSS-SECTIONPOLISHERSM-09010” or an ultramicrotome (Leica, product number “EMUC7”
  • SEM Scca
  • the manufacturing method of the entry sheet for drilling of this embodiment is not specifically limited, For example, it can manufacture as follows.
  • the entry sheet for drilling of this embodiment is manufactured by forming a layer of a resin composition on at least one side of a metal foil.
  • the method for forming the resin composition layer is not particularly limited, and a known method can be used.
  • a water dispersion of a water-insoluble resin (A) and a solution of a resin composition in which a water-soluble resin (B) is dissolved or dispersed in a solvent are coated by a method such as a coating method. Examples of the method include coating on a metal foil and further drying and / or cooling and solidifying.
  • the solvent used in the resin composition solution has a boiling point higher than water and water.
  • the use of a mixed solution composed of water and a solvent having a boiling point lower than that of water contributes to the reduction of residual bubbles in the resin composition layer.
  • the kind of solvent whose boiling point is lower than water is not specifically limited, For example, alcohol compounds, such as ethanol, methanol, and isopropyl alcohol, are mentioned, Low boiling solvents, such as methyl ethyl ketone and acetone, can also be used.
  • the drill drilling method of the present embodiment includes a hole forming step of forming a hole in the laminated plate or the multilayer plate using the drill hole entry sheet. Further, when the drilling process is a drilling process using a drill bit having a diameter (drill bit diameter) of 0.30 mm ⁇ or less, the object of the present embodiment can be more effectively and reliably achieved. In particular, in the case of a drill bit having a diameter of 0.05 mm ⁇ to 0.30 mm ⁇ and a small diameter drill bit having a diameter of 0.05 mm ⁇ to 0.20 mm ⁇ in which the hole position accuracy is important, the hole position accuracy and the drill life are greatly improved. This is preferable in terms of points.
  • the drill bit diameter of 0.05 mm ⁇ is the lower limit of the available drill bit diameter, and is not limited to the above as long as a drill bit having a smaller diameter becomes available.
  • the drill hole entry sheet of this embodiment is adopted for drilling using a drill bit having a diameter of more than 0.30 mm ⁇ .
  • the entry sheet for drilling according to the present embodiment can be suitably used for drilling a printed wiring board material, more specifically, a laminated board or a multilayer board.
  • an entry sheet for drilling is arranged on at least the uppermost surface of one or a plurality of laminated boards or multilayer boards (printed wiring board material) so that the metal foil side is in contact with the printed wiring board material Then, drilling can be performed from the upper surface (the resin composition layer side) of the entry sheet.
  • Polyethylene glycol is “PEG”
  • Polyethylene oxide is “PEO”
  • Polyurethane resin aqueous dispersion is “Polyurethane resin”
  • Polyyester resin aqueous dispersion is “Polyester resin”
  • Acrylic “Aqueous resin dispersion” may be abbreviated as “acrylic resin”
  • polyolefin resin aqueous dispersion may be abbreviated as "polyolefin resin”.
  • the resin composition solutions used in the examples and comparative examples, or the water dispersion of the water-insoluble resin (A) used in the examples and comparative examples were applied on a release film (PET 38 AL-5 manufactured by Lintec Corporation).
  • the film was dried, cooled and solidified at 120 ° C. for 3 minutes to obtain a resin composition film (resin composition layer).
  • the obtained film is peeled off from the release film, and a double-sided tape (Nitto Denko No. 5000E) is used to attach the obtained film to the plate so that the surface in contact with the release film is on the measurement sample. It was.
  • the adhesive force was measured as follows. First, three samples were prepared by cutting the drill hole entry sheets prepared in Examples and Comparative Examples into a width of 3 mm and a length of 100 mm. Next, a double-sided tape was affixed to the entire surface of the resin composition layer of the sample. Thereafter, one end of the sample to which the double-sided tape was attached was peeled off 10 mm, and a jig for attaching a spring balance was attached to the metal foil portion of the peeled sample.
  • a spring balance (manufactured by SANKO, maximum measurable value 1000 gf) was attached to the jig, pulled at a speed of 1 cm / second, and the numerical value indicated by the spring balance was read. The measurement was performed on three samples, and the average value of the three times was used as the value of the adhesive force. When the metal foil and the resin composition layer were not peeled off, “> 1000” was indicated.
  • the hole position accuracy was measured as follows. Examples and Comparative Examples on the upper surface of a copper clad laminate in which five sheets of a copper clad laminate having a thickness of 0.2 mm (trade name: HL832, copper foil thickness 12 ⁇ m, double-sided board, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were stacked The drill hole entry sheet prepared in the above is placed so that the layer side of the resin composition is the upper surface, and a 1.5 mm thick backing plate (lower surface) is placed on the back surface (lower surface) of the stacked copper-clad laminate. Paper phenol laminate PS1160-G (manufactured by Risho Co., Ltd.) was placed.
  • 0.2 mm ⁇ drill bit (trade name: C-CFU020S, manufactured by Tungaloy Co., Ltd.), rotation speed: 200,000 rpm, feed rate: 2.6 m / min, drilling frequency: conditions of 3,000 holes per drill bit Then, a total of 6,000 holes were drilled.
  • the difference between the hole position on the back surface (lower surface) of the bottom plate of the stacked copper clad laminate and the specified coordinates Measurement was performed using an analyzer (model number: HA-1AM, manufactured by Hitachi Via Mechanics Co., Ltd.). For each drill bit, an average value and a standard deviation ( ⁇ ) were calculated for the deviation, and “average value + 3 ⁇ ” was calculated. Then, the average value with respect to the value of “average value + 3 ⁇ ” for each of the two drill bits used was calculated as the hole position accuracy of the entire drilling process.
  • the formula used for the calculation of the hole position accuracy is as the following formula (2). (2)
  • n indicates the number of drills used.
  • Table 1 shows the specifications of the water-insoluble resin (A), the water-soluble resin (B), the additive, the solvent, and the metal foil used for the production of the drill hole entry sheets of Examples and Comparative Examples.
  • the resin solid content in the water-insoluble resin (A) in Table 1 represents the amount (mass%) of the resin solid content in the aqueous dispersion of the water-insoluble resin (A).
  • Example 1 4.3 parts by mass of polyethylene oxide having a mass average molecular weight of 560,000 as the polymer water-soluble resin (b1) (Alcox E-45, manufactured by Meisei Chemical Industry Co., Ltd.) and the mass average as the low-molecular water-soluble resin (b2) Polyethylene glycol having a molecular weight of 3,300 (Sanyo Chemical Industries Co., Ltd., PEG4000S) 38.6 parts by mass and polyurethane resin aqueous dispersion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 740, solid content concentration 40%) 142 .75 parts by mass (57.1 parts by mass in terms of resin solid content) was dissolved in a water / methanol mixed solvent so that the solid content concentration of the resin composition solution was 30%.
  • the polymer water-soluble resin (b1) Alcox E-45, manufactured by Meisei Chemical Industry Co., Ltd.
  • b2 Polyethylene glycol having a molecular weight of 3,
  • the mixing ratio of the water / methanol mixed solvent was 50/50.
  • the resin composition solution was dried on one side of an aluminum foil (used aluminum foil: JIS-A1100H, thickness 0.1 mm, manufactured by Mitsubishi Aluminum Co., Ltd.) using a bar coater to determine the thickness of the resin composition layer. It apply
  • the adhesion strength measurement, surface free energy dispersion term ⁇ SD, and polar term ⁇ SP were measured by the methods described above, and the results are shown in Table 2.
  • Example 1 a resin composition solution was prepared with the types and content ratios of the materials shown in Tables 2 to 5, and drilled with a resin composition layer thickness of 50 ⁇ m after drying and solidification. An entry sheet was prepared. The adhesive force between the metal foil of the obtained drill hole entry sheet and the resin composition layer, and the dispersion term ⁇ SD and polar term ⁇ SP of the surface free energy of the resin composition layer were measured. These results are shown in Tables 2-5.
  • the criteria for determining the adhesive strength shown in Tables 2 to 5 are as follows. In the drilling process, a load during processing is applied to the entry sheet. Therefore, if the adhesive force between the metal foil and the resin composition layer is weak, the resin composition layer is peeled off. As a result of diligent researches by the present inventors, it was found that if the adhesive strength is 200 gf or more, the resin composition layer does not peel off during drilling. Therefore, the criterion for determining the adhesive strength is 200 gf or more. “ ⁇ ”, and “x” if less than 200 gf.
  • Table 6 is a table showing the relationship between surface free energy, adhesive force, and hole position accuracy.
  • the criteria for determining the hole position accuracy are as follows. When the hole position accuracy calculated by the method of the above formula (2) is 20 ⁇ m or less, it is described as “ ⁇ ”, which has excellent characteristics, and when it is larger than 20 ⁇ m, it is described as “x”. If both the hole position accuracy judgment and adhesive strength judgment are “ ⁇ ”, the adhesion strength between the metal foil and the resin composition layer is strong and the hole position accuracy is excellent, and “ ⁇ ” is indicated as a comprehensive judgment. When at least one of the hole position accuracy determination and the adhesive force determination is “x”, it is described as “x” as a comprehensive determination.
  • FIG. 1 is a plot of ⁇ SD and ⁇ SP of the surface free energy of the resin composition layers in Examples and Comparative Examples. From FIG. 1, the adhesion force is good when the surface free energy dispersion term ⁇ SD is in the range of 27.0 to 37.0 mJ / m 2 and the polar term ⁇ SP is in the range of 0 to 5.0 mJ / m 2. It turns out that it becomes.
  • dispersion term ⁇ SD surface free energy exceeds 27.0mJ / m 2 or less than 37.0mJ / m 2
  • polarity term ⁇ SP exceeds 5.0mJ / m 2
  • Comparative Examples 1, 2, 8 and 9 10, 13, 14, 16, 20, 24, 25, 30, 34, 42, 44, 48 The drilling hole entry sheet metal foil and the resin composition layer have weak adhesive strength, drilling holes Peeling of the resin composition layer occurred during processing, and the hole position accuracy was poor.
  • the present invention has industrial applicability as an entry sheet for drilling used for drilling a laminated plate or multilayer board.
  • the hole position accuracy is excellent, the drill breakage due to peeling between the metal foil and the resin composition layer is small, and the adhesive layer that has been conventionally required Therefore, it is possible to provide an entry sheet for drilling with excellent economic efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Boring (AREA)

Abstract

 金属箔と、該金属箔上に接着層を介在させることなく形成された樹脂組成物の層と、を備え、前記樹脂組成物の層の金属箔に接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲である、ドリル孔あけ用エントリーシート。

Description

ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
 本発明は、ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法に関する。
 プリント配線板材料に使用される積層板や多層板のドリル孔あけ加工方法としては、一般的に積層板又は多層板を1枚又は複数枚重ねて、その最上部に当て板としてアルミニウム箔単体又はアルミニウム箔表面に樹脂組成物層を形成したシート(以下、本明細書ではこの「シート」を「ドリル孔あけ用エントリーシート」という)を配置して孔あけ加工を行う方法が採用されている。なお、積層板としては、一般に「銅張積層板」が使用されることが多いが、「外層に銅箔のない積層板」であってもよい。本発明では特に明記しない限り、積層板は、「銅張積層板」及び/又は「外層に銅箔のない積層板」のことを指す。
 近年、プリント配線板に対する信頼性向上の要求や高密度化の進展に伴い、積層板又は多層板のドリル孔あけ加工に対しても、孔位置精度の向上や孔壁粗さの低減などの高品質なドリル孔あけ加工が要求されている。
 上述した孔位置精度の向上や孔壁粗さの低減などの要求に対応すべく、例えば、特許文献1では、ポリエチレングリコールなどの水溶性樹脂からなるシートを使用した孔あけ加工法が提案されている。また、特許文献2では、金属箔に水溶性樹脂層を形成した孔あけ用滑剤シートが提案されている。更に、特許文献3では、熱硬化性樹脂薄膜を形成したアルミニウム箔に水溶性樹脂層を形成した孔あけ用エントリーシートが提案されている。更には、特許文献4では、潤滑樹脂組成物にノンハロゲンの着色剤を配合した孔あけ用滑剤シートが提案されている。
 ドリル孔あけ用エントリーシートの一つの形態として、金属箔と該金属箔の少なくとも片面に形成された樹脂組成物の層からなる形態が提案されている。しかし、金属箔と樹脂組成物の層は接着強度が弱いため、金属箔と樹脂組成物の層とが直接接触したドリル孔あけ用エントリーシートの構成では、ドリル孔あけ加工の際に樹脂組成物の層が剥離し、この剥離した樹脂組成物の層をドリルが踏んでしまい、孔位置精度の悪化、ドリルの折損頻度の悪化につながる場合が多い。また、ドリル孔あけ用エントリーシートは、通常、複数枚の積層板又は多層板の両面に配置して固定用のテープで1組にして孔あけ加工に用いるが、固定用テープが樹脂組成物の層とともに剥離し、エントリーシートの位置がずれてしまう場合もあった。このため、実用的には、金属箔と樹脂組成物の層との接着強度の向上を目的に、金属箔と樹脂組成物の層の間に、ウレタン系化合物、酢酸ビニル系化合物、塩化ビニル系化合物、ポリエステル系化合物、及びこれらの重合物、エポキシ系化合物、シアネート系化合物等からなる接着層(接着皮膜)を形成した形態として使用されている(例えば、特許文献5参照)。
特開平4-92494号公報 特開平5-169400号公報 特開2003-136485号公報 特開2004-230470号公報 特開2011-183548号公報
 しかし、一方で、金属箔と樹脂組成物の層の間に接着層を設けると、樹脂組成物の潤滑効果を接着層が妨げるため、ドリル孔あけ用エントリーシートに要求される重要な特性である、孔位置精度が悪化する場合がある。このため、金属箔と樹脂組成物の層の間に接着層を設けることなく、金属箔と樹脂組成物の層との接着強度が強く、かつ孔位置精度が優れたドリル孔あけ用エントリーシートの開発が切望されている。
 本発明の課題は、こうした現状に鑑み、金属箔と該金属箔上に接着層を介在させることなく形成された樹脂組成物の層からなる形態のドリル孔あけ用エントリーシートであって、金属箔と樹脂組成物の層との接着強度が強く、更にはドリル孔あけ加工の際の孔位置精度に優れるドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法を提供することにある。
 本発明者らは、上記の課題を解決するため種々の検討を行った結果、樹脂組成物の層の金属箔に接する面の表面自由エネルギーの分散項γSDと極性項γSPが特定の範囲であるドリル孔あけ用エントリーシートが、金属箔と樹脂組成物の層との接着強度が強く、更にはドリル孔あけ加工の際の孔位置精度に優れることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 金属箔と、該金属箔上に接着層を介在させることなく形成された樹脂組成物の層と、を備え、
 前記樹脂組成物の層の金属箔に接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲である、ドリル孔あけ用エントリーシート。
〔2〕
 前記樹脂組成物が、非水溶性樹脂(A)、及び水溶性樹脂(B)を含有する、〔1〕に記載のドリル孔あけ用エントリーシート。
〔3〕
 前記非水溶性樹脂(A)の表面自由エネルギーの分散項γSDが32.0~38.1mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~6.0mJ/mの範囲である、〔2〕に記載のドリル孔あけ用エントリーシート。
〔4〕
 前記非水溶性樹脂(A)が、ポリウレタン樹脂、ポリエステル樹脂、アクリル系樹脂、及びポリオレフィン系樹脂からなる群より選択される1種類又は2種類以上である、〔2〕又は〔3〕に記載のドリル孔あけ用エントリーシート。
〔5〕
 前記水溶性樹脂(B)が、ポリエチレンオキサイド、ポリプロピレンオキサイド、セルロース誘導体、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される1種類又は2種類以上である、〔2〕~〔4〕のいずれか一項に記載のドリル孔あけ用エントリーシート。
〔6〕
 前記水溶性樹脂(B)が、質量平均分子量50,000以上1,000,000以下である高分子水溶性樹脂(b1)と、質量平均分子量1,000以上30,000以下である低分子水溶性樹脂(b2)と、を含み、
 前記高分子水溶性樹脂(b1)が、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びセルロース誘導体からなる群より選択される少なくとも1種を含み、
 前記低分子水溶性樹脂(b2)が、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される少なくとも1種を含む、
 〔5〕に記載のドリル孔あけ用エントリーシート。
〔7〕
 前記樹脂組成物が、前記非水溶性樹脂(A)と前記水溶性樹脂(B)の合計量100質量部に対して、20~80質量部の前記非水溶性樹脂(A)と、80~20質量部の前記水溶性樹脂(B)とを含む、〔2〕~〔6〕のいずれか一項に記載のドリル孔あけ用エントリーシート。
〔8〕
 前記樹脂組成物の層が、前記非水溶性樹脂(A)の水分散体と、前記水溶性樹脂(B)とを用いて形成されたものである、〔2〕~〔7〕に記載のドリル孔あけ用エントリーシート。
〔9〕
 前記樹脂組成物の層の厚さが、0.02~0.3mmである、〔1〕~〔8〕のいずれか一項に記載のドリル孔あけ用エントリーシート。
〔10〕
 前記金属箔の厚さが、0.05~0.5mmである、〔1〕~〔9〕のいずれか一項に記載のドリル孔あけ用エントリーシート。
〔11〕
 〔1〕~〔10〕のいずれか一項に記載のドリル孔あけ用エントリーシートを用いて、積層板又は多層板に孔を形成する孔形成工程を有する、ドリル孔あけ加工方法。
 本発明によれば、金属箔と樹脂組成物の層との間に接着層が存在しなくても、金属箔と樹脂組成物の層との接着強度が強く、かつドリル孔あけ加工の際の孔位置精度に優れるドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法を提供することができる。また、接着層を有しないドリル孔あけ用エントリーシートは、その原料及びエントリーシートの製造工程の両面において経済的である。
樹脂組成物の層の金属箔と接する面の表面自由エネルギーの分散項γSD及び極性項γSPと、金属箔と樹脂組成物の層との接着力の関係を表す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[I:ドリル孔あけ用エントリーシート]
 本実施形態のドリル孔あけ用エントリーシートは、金属箔と、該金属箔上に接着層を介在させることなく形成された樹脂組成物の層と、を備え、前記樹脂組成物の層の金属箔と接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲である。
 本実施形態のドリル孔あけ用エントリーシートは、金属箔と、該金属箔上に接着層を介在させることなく形成された樹脂組成物の層とからなる。すなわち、金属箔と樹脂組成物の層との間に、金属箔と樹脂組成物を接着させるための接着層(樹脂皮膜)を有さず、金属箔と樹脂組成物の層とが直接接触している形態である。これは、上述した構成であれば、接着層を介在させなくても、接着強度が十分に実用的であることによる。本実施形態のドリル孔あけ用エントリーシートは接着層を形成しなくても良いので、原材料費、及び接着層を形成する工程が不要であり、従来のドリル孔あけ用エントリーシートよりも経済性の点でも優れる。樹脂組成物の層は、金属箔の片面に形成された形態であってよく、両面に形成された形態であってもよい。両面に樹脂組成物の層を形成する場合、層の樹脂組成物の組成は同じであっても異なっていてもよい。
[II:樹脂組成物の層]
 本実施形態における樹脂組成物の層は、その金属箔と接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲であることを特徴とする。なかでも、分散項γSDが30.0~37.0mJ/mの範囲であり、且つ極性項γSPが0~5.0mJ/mの範囲であるのが特に好ましい。分散項γSD及び極性項γSPが、上記範囲内であることにより、金属箔と樹脂組成物の層の接着強度が強く、かつドリル孔あけ加工の際の切削性が良好なため、ドリル孔あけ加工の際の孔位置精度に優れる。
 ここで、表面自由エネルギーについて説明する。一般に、樹脂内部に存在する分子は周囲の分子との相互作用によって安定化された状態で存在しているが、樹脂表面に存在する分子は表面を形成している分、周囲の分子による安定化作用が少ない。このため、表面に存在する分子は、内部に存在する分子よりも大きな自由エネルギーを持つことになる。このエネルギーを表面自由エネルギーという。
 一般に物質表面が持つ表面自由エネルギーは、分散項γSDと極性項γSPによって表すことができる。この表面自由エネルギーの分散項γSD及び極性項γSPは、次のようにして算出される。表面自由エネルギーの分散項γSD及び極性項γSPは、樹脂組成物の層の金属箔と接触する面を上にして、その面上に表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPが既知の溶媒を1~2μL滴下して得られる接触角をθとすると、次の式(1)の関係にあることが知られている。
 γL(1+cosθ)=2(γSD×γLD)0.5+2(γSP×γLP)0.5
                                 (1)
 すなわち、表面張力γL、表面張力の分散項γLD、及び表面張力の極性項γLPの3つが既知である2種類の溶媒を用いて、溶媒と樹脂組成物の層の金属箔と接触する面との接触角θを測定し、それらを上記式(1)に代入して連立方程式を解くことにより、樹脂組成物の層の金属箔と接触する面の表面自由エネルギーの分散項γSD、極性項γSPを求めることができる。
 以下に、具体的な測定方法を述べる。樹脂組成物の層の金属箔と接触する面の表面自由エネルギーの分散項γSD、極性項γSPは、樹脂組成物の層からなる皮膜を作製して、算出する。樹脂組成物の皮膜の作製方法としては、金属箔上に樹脂組成物の皮膜を形成した後に樹脂組成物の層を剥離させて得ることができるが、簡便には、市販の離型剤付剥離フィルムまたは離型紙上に樹脂組成物の皮膜を形成させた後に樹脂組成物の層のみを剥離させる方法で作製してもよい。これは、金属箔を用いて作成した場合でも離型剤付剥離フィルムまたは離型紙を用いて作成した場合でも、表面自由エネルギーの分散項γSD、極性項γSPの値は変わらないからである。
 上記した方法で得られる樹脂組成物の皮膜の金属箔または剥離フィルムと接触していた面上に、上述した表面張力γL、表面張力の分散項γLD、及び表面張力の極性項γLPが既知の2種類の溶媒を1~2μL滴下する。その液滴を、デジタルマイクロスコープ(例えば、KEYENCE製VHX-100)を用いて真横から撮影する。次いで、前記皮膜と液滴がなす接触角θを前述のデジタルマイクロスコープ付属の計測ソフトなどを用いて測定する。得られた2種類の溶媒の接触角θ、表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPを、上述した式(1)に代入して得られる連立方程式を解くことにより、樹脂組成物の層の表面自由エネルギーの分散項γSD、極性項γSPを得ることができる。
 表面自由エネルギーの分散項γSD、極性項γSPの測定に使用できる溶媒は、表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPが既知であれば特に限定されないが、使用する2種類の溶媒は、分散項γLD及び極性項γLPが大きく異なるものが好ましい。具体的には、分散項γLDのみを有し、極性項γLPが零(0)である、流動パラフィン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、n-テトラデカン、n-ヘキサデカン等の炭化水素溶媒;分散項γLD及び極性項γLPの両方を有するヨウ化メチレン、テトラブロモエタン、テトラクロロエタン、ヘキサクロロブダジエン、ポリジメチルシロキサン、水、グリセリン、ホルムアミド、エチレングリコール、ジエチレングリコール等から選択できる。中でも、流動パラフィンとグリセリンの組合せが特に好ましい。
 樹脂組成物の層を構成する樹脂成分としては、特に限定されず、例えば、非水溶性樹脂、水溶性樹脂、又はこれらの混合物が挙げられる。このなかでも、非水溶性樹脂(A)及び水溶性樹脂(B)を併用することが好ましい。非水溶性樹脂(A)及び水溶性樹脂(B)を併用することにより、金属箔と樹脂組成物の層との接着強度がより向上し、かつ、ドリル孔あけ加工の際の孔位置精度に優れる傾向にある。なお、本実施形態において、「水溶性」とは水と混合した場合に溶解する性質をいい、「非水溶性」とは水と混合した場合に溶解しない性質をいう。
 樹脂組成物の層の形成方法については後で詳しく説明するが、樹脂組成物の層は、非水溶性樹脂(A)の水分散体と水溶性樹脂(B)とを用いて形成された層であることが、特に好ましい。非水溶性樹脂(A)を水分散体として用いることにより、非水溶性樹脂(A)と水溶性樹脂(B)の相溶性がより向上し、かつ金属箔と樹脂組成物の層との接着強度がより向上する傾向にある。
[III-1:非水溶性樹脂(A)]
 本実施形態に用いることができる非水溶性樹脂(A)としては、非水溶性の樹脂であれば特に限定されないが、非水溶性樹脂(A)の表面自由エネルギーの分散項γSDが32.0~38.1mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~6.0mJ/mの範囲であることが好ましく、分散項γSDが33.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲であることが特に好ましい。非水溶性樹脂(A)の表面自由エネルギーの分散項γSD及び極性項γSPが上記範囲であることにより、金属箔と樹脂組成物の層が強固に接着し、ドリル孔あけ加工時に剥離せず孔位置精度に優れる。なお、非水溶性樹脂(A)の表面自由エネルギーも樹脂組成物の層の表面自由エネルギーと同様にして測定できる。
 樹脂組成物中の非水溶性樹脂(A)の含有量は、非水溶性樹脂(A)と水溶性樹脂(B)の合計量100質量部に対して、20~80質量部であることが好ましく、30~70質量部であることがより好ましく、30~60質量部であることがさらに好ましい。非水溶性樹脂(A)の含有量が20質量部以上であることにより、金属箔と樹脂組成物の層との接着強度がより向上し、ドリル孔あけ加工時に樹脂組成物の層の剥離がより起こりにくい傾向にある。一方、非水溶性樹脂(A)の含有量が80質量部以下であることにより、ドリル孔あけ加工の際の孔位置精度により優れる傾向にある。
 非水溶性樹脂(A)としては、特に限定されず、例えば、ポリウレタン樹脂、ポリエステル樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリカーボネート樹脂が挙げられる。このなかでも、ポリウレタン樹脂、ポリエステル樹脂、アクリル系樹脂、及びポリオレフィン系樹脂からなる群より選択される1種類又は2種類以上が好ましい。このような非水溶性樹脂(A)を用いることにより、上述した樹脂組成物の層の金属箔に接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲になりやすく、金属箔と樹脂組成物の層との接着強度がより向上する傾向にある。これらの樹脂は、1種単独で用いてもよく、または2種以上組合せて用いてもよい。
[III-2:ポリウレタン樹脂]
 本実施形態において非水溶性樹脂(A)として用いることができるポリウレタン樹脂としては、ポリイソシアネート化合物と、ポリオール化合物と、必要に応じて他の化合物とを反応させて得られた樹脂が挙げられる。ポリウレタン樹脂の合成反応としては、アセトン法、プレポリマーミキシング法、ケチミン法、ホットメルトディスパージョン法等が例示できる。
 ポリイソシアネート化合物は、特に限定されず、例えば、通常のポリウレタン樹脂の製造に使用される、分子内にイソシアネート基を2個以上有する有機ポリイソシアネート化合物が挙げられる。具体的には、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(HDI)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、メチルシクロヘキシル-2,4-ジイソシアネート、メチルシクロヘキシル-2,6-ジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート類;1,5’-ナフテンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,3-フェニレンジイソシアネート等の芳香族ジイソシアネート類;リジンエステルトリイソシアネート、トリフェニルメタントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-イソシアネート-4,4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチロールプロパンとトルイレンジイソシアネートとのアダクト体、トリメチロールプロパンと1,6-ヘキサメチレンジイソシアネートとのアダクト体等のトリイソシアネート類などが挙げられる。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。
 ポリオール化合物は、特に限定されず、例えば、通常のポリウレタンの製造に使用される、分子内に水酸基を2個以上有するポリオール化合物が挙げられる。具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン等の多価アルコール;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルポリオール化合物;アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、テレフタル酸、イソフタル酸、フマル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸等のジカルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、1,3-プロパンジオール、トリプロピレングリコール、トリメチロールプロパン、グリセリン等の多価アルコールとから得られるポリエステルポリオール化合物;ポリカプロラクトンポリオール、ポリβ-メチル-δ-バレロラクトン等のポリラクトン系ポリエステルポリオール化合物;ポリブタジエンポリオール又はその水添物、ポリカーボネートポリオール、ポリチオエーテルポリオール、ポリアクリル酸エステルポリオールなどが例示される。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。
 上述したように、非水溶性樹脂(A)として使用されるポリウレタン樹脂は、水分散体の態様で、本実施形態の樹脂組成物の層の形成に使用するのが好ましい。ポリウレタン樹脂の水分散体中に含まれる樹脂固形分の含有量は特に限定されないが、水分散体の安定性の観点から、20~50質量%が好ましい。ポリウレタン樹脂の水分散体の製造方法は特に限定されず、公知の方法で製造できる。なかでも、水中でのポリウレタン樹脂成分の分散性向上の点から、上述した化合物等から合成されるポリウレタン樹脂は、分子内に親水性基を有することが好ましい。親水性基としては、スルホニル基、カルボキシル基等のアニオン性基が好ましく、カルボキシル基が特に好ましい。
 親水性基がアニオン性基である場合、アニオン性基は中和剤によって中和されているのが好ましい。中和剤としては、特に限定されず、例えば、トリエチルアミン、トリエタノールアミン等の3級アミン化合物;水酸化ナトリウム等の無機アルカリ化合物;アンモニアなどが挙げられる。
 ポリウレタン樹脂の水分散体を製造する際、必要に応じて鎖延長剤となる化合物を使用しても良い。鎖延長剤としては、特に限定されず、例えば、エチレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミンなどのジアミン;トリエタノールアミンなどの三級アミノアルコール;メタノール、エタノール、ブタノールなどのモノアルコールなどが挙げられる。
 ポリウレタン樹脂の水分散体を製造する際の溶媒は、通常は水溶媒であるが、更に、イソシアネート基を含有しない有機溶剤を併用することもできる。例えば、酢酸エチル、アセトン、メチルエチルケトン、イソプロピルアルコール、メタノール、エタノールなどを使用できる。これらの有機溶剤の添加量は、ポリウレタン樹脂の水分散体中の水分100質量部に対して、通常1~100質量部である。
 ポリウレタン樹脂の水分散体は、市販品をそのまま用いてもよい。ポリウレタン樹脂の水分散体の市販品としては、スーパーフレックス820(第一工業製薬株式会社製)、スーパーフレックス860(第一工業製薬株式会社製)、スーパーフレックス740(第一工業製薬株式会社製)、ユープレンUXA307(三洋化成工業株式会社製)、ハイドランAP201(DIC株式会社製)、ハイドランHW140SF(DIC株式会社製)、ハイドランWLS201(DIC株式会社製)が例示できる。これらの非水溶性樹脂(A)の水分散体を用いることにより、金属箔と樹脂組成物の層の接着強度がより向上する傾向にある。
[III-3:ポリエステル樹脂]
 本実施形態において非水溶性樹脂(A)として用いることができるポリエステル樹脂としては、2つ以上のヒドロキシル基を有するポリオール化合物と2つ以上のカルボキシル基を有する多価カルボン酸からなる原料を縮重合して得られるポリエステル樹脂が挙げられる。
 ポリオール化合物は2つ以上のヒドロキシル基を有していれば、特に限定されず、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、トリエチレングリコール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、2-メチル-3-メチル-1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオールなどである。また、2価の芳香族構造を含むグリコールとしてのビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシメチルベンゼン等が挙げられる。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。
 多価カルボン酸は2つ以上のカルボキシル基を有していれば、特に限定されず、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2,4-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシルー2-メチル-2-メチレンカルボキシルプロパン、1,2,4-シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、ピロメリット酸が挙げられる。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。
 上述したように、非水溶性樹脂(A)として使用されるポリエステル樹脂は、水分散体の態様で、本実施形態の樹脂組成物の層の形成に使用するのが好ましい。ポリエステル樹脂の水分散体中に含まれる樹脂固形分の含有量は特に限定されないが、水分散体の安定性の観点から、20~50質量%が好ましい。ポリエステル樹脂の水分散体の製造方法は特に限定されず、公知の方法で製造できる。なお、ここでいうポリエステル樹脂の水分散体とは、ポリエステル樹脂が、その分子内に疎水性部分と親水性部分を有し、水中において親水性部分が疎水性部分を取り囲む形で安定的に分散しているものを指す。
 ポリエステル樹脂は、ポリエステル樹脂の水分散性を向上させる目的で、カルボキシル基やスルホン酸基などの親水性基を有する成分を更に共重合させた樹脂であってもよい。親水性基を有する成分としては、例えば、トリメリット酸、ピロメリット酸、トリメシン酸などが使用でき、得られた共重合体をアミン化合物、アンモニア、水酸化ナトリウムなどの無機アルカリ化合物などで中和したポリエステル樹脂が使用できる。
 ポリエステル樹脂の水分散体は、市販品をそのまま用いてもよい。ポリエステル樹脂の水分散体の市販品としては、バイロナールMD1480(東洋紡績株式会社製)、バイロナールMD1985(東洋紡績株式会社製)が例示できる。これらの水分散体は、本実施形態の樹脂組成物の層を形成する際に用いることができる非水溶性樹脂(A)の水分散体として、特に好ましい。これは、金属箔と樹脂組成物の層の接着強度を特に強くできるからである。
[III-4:アクリル系樹脂]
 本実施形態において非水溶性樹脂(A)として用いることができるアクリル系樹脂は、不飽和カルボン酸化合物を主な構成成分とする共重合体であれば特に限定されない。不飽和カルボン酸としては、特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n―ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、メチルシクロへキシル(メタ)アクリレート、t-ブチルシクロへキシル(メタ)アクリルレート、シクロドデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸グリシジル、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート及びポリエチレンーポリプロピレングリコールモノ(メタ)アクリレート等のα、β―不飽和カルボン酸エステル(エチレン性不飽和カルボン酸エステルともいう);イタコン酸モノエチルエステル、フマル酸モノブチルエステル等の不飽和ジカルボン酸のモノアルキルエステル;(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸等のα、β-不飽和カルボン酸(エチレン性不飽和カルボン酸ともいう)及び不飽和ジカルボン酸;アクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシブチルアクリルアミド、ダイアセトンアクリルアミド等のα、β―不飽和カルボン酸アミド(エチレン性不飽和カルボン酸アミドともいう)及びそのN-置換化合物;アリルアルコール等の不飽和アルコール;(メタ)アクリロニトリルなどのα、β―不飽和ニトリル(エチレン性不飽和ニトリルともいう)、酢酸ビニル等が挙げられる。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。
 上述したように、非水溶性樹脂(A)として使用されるアクリル系樹脂は、水分散体の態様で、本実施形態の樹脂組成物の層の形成に使用するのが好ましい。アクリル系樹脂の水分散体中に含まれる樹脂固形分の含有量は特に限定されないが、水分散体の安定性の観点から、20~50質量%が好ましい。アクリル系樹脂の水分散体の製造方法は特に限定されず、公知の方法で製造できる。具体的には、メチルエチルケトン、アセトン、酢酸エチルなどの有機溶剤中でアクリル化合物を共重合させ、上記有機溶剤を蒸発させた後に水溶媒中でカルボキシル基をアミン化合物、アンモニア、水酸化ナトリウムなどの無機アルカリ化合物で中和して分散させる方法、水溶媒中でアクリル化合物とカルボキシル基やスルホン酸基などのアニオン性の親水性基を有する乳化剤、あるいはポリエチレングリコールやポリプロピレングリコールなどのモノエーテル化合物やモノエステル化合物などの非イオン性の親水性基を有する化合物と混合して、乳化重合させる方法、さらにはカルボキシル基やスルホン酸基などの親水性を有する成分とアクリル化合物とを共重合させて自己乳化させる方法などが挙げられる。
 アクリル系樹脂の水分散体は、市販品をそのまま用いてもよい。アクリル系樹脂の水分散体の市販品としては、ボンコートAK3090(DIC株式会社製)、ボンコートAN678E(DIC株式会社製)、ボンコートMAT200E(DIC株式会社製)が例示できる。これらの水分散体は、本実施形態の樹脂組成物の層を形成する際に用いることができる非水溶性樹脂(A)の水分散体として、特に好ましい。これは、金属箔と樹脂組成物の層の接着強度を特に強くできるからである。
[III-5:ポリオレフィン系樹脂]
 本実施形態において非水溶性樹脂(A)として用いることができるポリオレフィン系樹脂としては、エチレンやプロピレンなどのオレフィンが主な構成成分である樹脂が挙げられる。そのような樹脂としては、例えば、オレフィンと不飽和カルボン酸との共重合体(以下、本明細書では、「オレフィン-不飽和カルボン酸共重合体」ともいう。)が挙げられる。オレフィンとしては、特に限定されないが、エチレン、プロピレン、ブチレンが好ましく、このなかでもエチレンが特に好ましい。不飽和カルボン酸としては、特に限定されないが、(メタ)アクリル酸(すなわち、アクリル酸又はメタクリル酸)、マレイン酸、イタコン酸、フマル酸が好ましく、このなかでも(メタ)アクリル酸がより好ましい。オレフィン-不飽和カルボン酸共重合体としては、エチレンと(メタ)アクリル酸の共重合体、プロピレンと(メタ)アクリル酸共重合体が、特に好ましい。
 上述したように、非水溶性樹脂(A)として使用されるポリオレフィン系樹脂は、水分散体の態様で、本実施形態の樹脂組成物の層の形成に使用するのが好ましい。ポリオレフィン系樹脂の水分散体中に含まれる樹脂固形分の含有量は特に限定されないが、水分散体の安定性の観点から、20~50質量%が好ましい。ポリオレフィン系樹脂の水分散体の製造方法は特に限定されず、公知の方法で製造できる。例えば、上述したオレフィン・不飽和カルボン酸共重合体、水性溶媒、及び必要に応じて塩基や乳化剤などのその他の成分を、固液撹拌装置などを用いて撹拌する方法が挙げられる。
 ポリオレフィン系樹脂の水分散体の製造に使用される塩基としては、アンモニア、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン等のアミン化合物や水酸化ナトリウムなどが挙げられる。
 ポリオレフィン系樹脂の水分散体は市販品をそのまま用いてもよい。ポリオレフィン系樹脂の水分散体の市販品としては、ザイクセンAC(住友精化株式会社製)、ザイクセンNC(住友精化株式会社製)、ハイテックS3148K(東邦化学工業株式会社製)、ハイテックS9242(東邦化学工業株式会社製)が例示できる。これらの水分散体は、本実施形態の樹脂組成物の層を形成する際に用いることができる非水溶性樹脂(A)の水分散体として、特に好ましい。これは、金属箔と樹脂組成物の層の接着強度を特に強くできるからである。
[IV:水溶性樹脂(B)]
 水溶性樹脂(B)は、水溶性の樹脂であれば特に限定されないが、高分子水溶性樹脂(b1)と低分子水溶性樹脂(b2)とを併用することが好ましい。
 樹脂組成物中の水溶性樹脂(B)の含有量は、非水溶性樹脂(A)と水溶性樹脂(B)の合計量100質量部に対して、20~80質量部であることが好ましく、30~70質量部であることがより好ましく、40~70質量部であることがさらに好ましい。水溶性樹脂(B)の含有量が20質量部以上であることにより、より均一な樹脂組成物の層を形成できる傾向にある。一方、水溶性樹脂(B)の含有量が80質量部以下であることにより、ドリル孔あけ加工の際に孔位置精度により優れる傾向にある。
 高分子水溶性樹脂(b1)としては、特に限定されず、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びセルロース誘導体からなる群より選択される1種類又は2種類以上であることが好ましい。これらの化合物は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。高分子水溶性樹脂(b1)の質量平均分子量は、50,000以上1,000,000以下であることが、樹脂組成物の層の製膜性向上の観点から好ましい。
 低分子水溶性樹脂(b2)としては、特に限定されず、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のグリコール化合物;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンのモノエーテル化合物;ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、ポリオキシエチレンプロピレン共重合体などが挙げられる。このなかでも、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される少なくとも1種を含むことが好ましい。これらの化合物や共重合体は、1種単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。低分子水溶性樹脂(b2)の質量平均分子量は、1,000以上30,000以下であることが、ドリル孔あけ加工の際の潤滑性向上の観点から好ましい。
 上記のなかでも、水溶性樹脂(B)として、ポリエチレンオキサイド、ポリプロピレンオキサイド、セルロース誘導体、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される1種類又は2種類以上を用いることが好ましい。このような水溶性樹脂(B)を用いることにより、樹脂組成物の層の製膜性及び孔位置精度がより向上する傾向にある。
 また、特に、水溶性樹脂(B)が、質量平均分子量50,000以上1,000,000以下である高分子水溶性樹脂(b1)と、質量平均分子量1,000以上30,000以下である低分子水溶性樹脂(b2)と、を含む場合においては、高分子水溶性樹脂(b1)が、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びセルロース誘導体からなる群より選択される少なくとも1種を含み、低分子水溶性樹脂(b2)が、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される少なくとも1種を含むことが好ましい。このような水溶性樹脂(B)を用いることにより、樹脂組成物の層の製膜性及び孔位置精度がより向上する傾向にある。
 高分子水溶性樹脂(b1)の含有量は、非水溶性樹脂(A)と水溶性樹脂(B)の合計量100質量部に対して、好ましくは1~15質量部であり、より好ましくは2.5~10質量部であり、さらに好ましくは5~8質量部である。高分子水溶性樹脂(b1)の含有量が上記範囲内であることにより、樹脂組成物の層の製膜性及び孔位置精度がより向上する傾向にある。
 低分子水溶性樹脂(b2)の含有量は、非水溶性樹脂(A)と水溶性樹脂(B)の合計量100質量部に対して、好ましくは30~75質量部であり、より好ましくは40~75質量部であり、さらに好ましくは45~72質量部である。低分子水溶性樹脂(b2)の含有量が上記範囲内であることにより、樹脂組成物の層の製膜性及び孔位置精度がより向上する傾向にある。
[V:その他の成分]
 樹脂組成物の層は、必要に応じて、添加剤を含有していてもよい。添加剤の種類は、特に限定されないが、例えば、表面調整剤、レベリング剤、帯電防止剤、乳化剤、消泡剤、ワックス添加剤、カップリング剤、レオロジーコントロール剤、防腐剤、防黴剤、酸化防止剤、光安定剤、ギ酸Naなどの核剤、黒鉛などの固体潤滑剤、有機フィラー、無機フィラー、熱安定化剤、および着色剤が挙げられる。
 本実施形態における樹脂組成物の層の厚さは、ドリル孔あけ加工する際に使用するドリルビット径や、加工する孔あけ対象物(例えば、積層板または多層板などのプリント配線板材料)の構成などによって適宜選択される。このなかでも、樹脂組成物の層の厚さは、0.02~0.3mmの範囲であることが好ましく、0.02~0.2mmの範囲であることがより好ましく、0.02~0.1mmの範囲であることがさらに好ましい。樹脂組成物の層の厚さが0.02mm以上であることにより、より十分な潤滑効果が得られ、ドリルビットへの負荷が軽減されるので、ドリルビットの折損をさらに抑制することができる傾向にある。また、樹脂組成物層の厚さが0.3mm以下であることにより、ドリルビットへの樹脂組成物の巻き付きを抑制することができる傾向にある。
[VI:金属箔]
 本実施形態のドリル孔あけ用エントリーシートに使用される金属箔は、特に限定されないが、上記樹脂組成物層との密着性が高く、ドリルビットによる衝撃に耐え得る金属材料であると好ましい。金属箔の金属種としては、入手性、コストおよび加工性の観点から、例えばアルミニウムが挙げられる。アルミニウム箔の材質としては、純度95%以上のアルミニウムが好ましい、そのようなアルミニウム箔としては、例えば、JIS-H4160に規定される、5052、3004、3003、1N30、1N99、1050、1070、1085、8021が挙げられる。金属箔にアルミニウム純度95%以上のアルミニウム箔を用いることによって、ドリルビットによる衝撃の緩和、およびドリルビット先端部との食いつき性が向上し、樹脂組成物によるドリルビットの潤滑効果と相俟って、加工孔の孔位置精度を一層高めることができる。
 金属箔の厚さは、好ましくは0.05~0.5mmであり、より好ましくは0.05~0.3mmであり、さらに好ましくは0.05~0.2mmである。金属箔の厚さが0.05mm以上であることにより、ドリル孔あけ加工時の孔あけ対象物(例えば、積層板)のバリの発生をより抑制することができる傾向にある。また、金属箔の厚さが0.5mm以下であることにより、ドリル孔あけ加工時に発生する切り粉の排出がより容易になる傾向にある。
 本実施形態のドリル孔あけ用エントリーシートを構成する各層の厚さは、次のようにして測定する。まず、クロスセクションポリッシャー(日本電子データム株式会社製、商品名「CROSS-SECTIONPOLISHERSM-09010」)、またはウルトラミクロトーム(Leica社製、品番「EMUC7」)を用いて、エントリーシートを、各層の積層方向に切断する。その後、SEM(走査型電子顕微鏡(ScanningElectronMicroscope)、KEYENCE社製品番「VE-7800」)を用いて、切断して現れた断面に対して垂直方向からその断面を観察し、構成する各層、例えば、金属箔及び樹脂組成物の層の厚さを測定する。1視野に対して、5箇所の厚さを測定し、その平均値を各層の厚さとする。
[VII:ドリル孔あけ用エントリーシートの製造方法]
 本実施形態のドリル孔あけ用エントリーシートの製造方法は、特に限定されず、例えば、次のようにして製造することができる。本実施形態のドリル孔あけ用エントリーシートは、金属箔の少なくとも片面上に樹脂組成物の層を形成して製造される。樹脂組成物の層を形成させる方法は特に限定されず、公知の方法が使用できる。そのような方法としては、例えば、非水溶性樹脂(A)の水分散体、及び水溶性樹脂(B)を溶媒に溶解又は分散させた樹脂組成物の溶液を、コーティング法などの方法で、金属箔上に塗工して、更に乾燥させる及び/又は冷却固化させる方法が挙げられる。
 コーティング法などによって、樹脂組成物の溶液を金属箔上に塗工して、乾燥させて樹脂組成物の層を形成する場合、樹脂組成物の溶液に用いられる溶媒は、水と水よりも沸点が低い溶媒とからなる混合溶液であることが好ましい。水と水よりも沸点が低い溶媒からなる混合溶液を用いることは、樹脂組成物の層中の残留気泡の低減に寄与する。水よりも沸点が低い溶媒の種類は、特に限定されないが、例えば、エタノール、メタノールやイソプロピルアルコールなどのアルコール化合物が挙げられ、メチルエチルケトンやアセトンなどの低沸点溶剤も用いることが可能である。その他の溶媒として、水やアルコール化合物に樹脂組成物との相溶性が高いテトラヒドロフランやアセトニトリルを一部混合させた溶媒などを用いることが可能である。
[VIII:ドリル孔あけ加工方法]
 本実施形態のドリル孔あけ加工方法は、上記ドリル孔あけ用エントリーシートを用いて、積層板又は多層板に孔を形成する孔形成工程を有する。また、そのドリル孔あけ加工は、直径(ドリルビット径)0.30mmφ以下のドリルビットによるドリル孔あけ加工であると、本実施形態の目的を更に有効かつ確実に奏することができる。特に、直径0.05mmφ以上0.30mmφ以下、さらには孔位置精度が重要になる直径0.05mmφ以上0.20mmφ以下の小径のドリルビット用途であると、孔位置精度およびドリル寿命を大きく向上させる点で好適である。なお、0.05mmφのドリルビット径は、入手可能なドリルビット径の下限であり、これよりも小径のドリルビットが入手可能になれば、上記の限りではない。また、直径0.30mmφ超のドリルビットを用いるドリル孔あけ加工に、本実施形態のドリル孔あけ用エントリーシートを採用しても問題ない。
 本実施形態のドリル孔あけ用エントリーシートは、例えば、プリント配線板材料、より具体的には、積層板又は多層板をドリル孔あけ加工する際に好適に用いることができる。具体的には、積層板又は多層板を1枚又は複数枚重ねたもの(プリント配線板材料)の少なくとも最上面に、金属箔側がプリント配線板材料に接するようにドリル孔あけ用エントリーシートを配置し、そのエントリーシートの上面(樹脂組成物の層側)から、ドリル孔あけ加工を行うことができる。
 以下に、本発明の実施例の効果を、本発明の範囲から外れる比較例と比較して説明する。なお、「ポリエチレングリコール」を「PEG」、「ポリエチレンオキサイド」を「PEO」、「ポリウレタン樹脂の水分散体」を「ポリウレタン樹脂」、「ポリエステル樹脂の水分散体」を「ポリエステル樹脂」、「アクリル系樹脂の水分散体」を「アクリル系樹脂」、「ポリオレフィン系樹脂の水分散体」を「ポリオレフィン系樹脂」と略記することがある。
 以下に、表面自由エネルギーの測定方法、接着力の測定方法、孔位置精度の測定方法について説明する。
<表面自由エネルギーの分散項γSD、極性項γSPの測定>
 表面自由エネルギーの分散項γSD、γSPの測定方法について説明する。
(前処理)
 実施例及び比較例で用いた樹脂組成物溶液、あるいは実施例及び比較例で用いた非水溶性樹脂(A)の水分散体を、剥離フィルム(リンテック社製 PET 38 AL-5)上に塗布し、120℃3分の乾燥条件で乾燥、冷却・固化させて樹脂組成物の皮膜(樹脂組成物の層)を得た。得られた皮膜を剥離フィルムから剥がし、両面テープ(日東電工製No.5000E)を用いて、得られた皮膜の、剥離フィルムと接していた面が上になるように板に貼り付けて測定試料とした。
(測定)
 測定試料の上に、表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPが既知である2種の溶媒として、流動パラフィンとグリセリンをそれぞれ2μL滴下した。ここで、流動パラフィンは、γL/γLD/γLP=38.1/38.1/0である(いずれも単位はmJ/m)。一方、グリセリンは、(γL/γLD/γLP=63.4/37.0/26.4である(いずれも単位はmJ/m)。
 測定試料上に滴下した2種の溶媒の液滴をデジタルマイクロスコープ(KEYENCE製VHX-100)で真横から観察・撮影し、測定試料と液滴がなす接触角をデジタルマイクロスコープ付属の計測ソフトで直接測定し、2種の溶媒を使用したときのそれぞれの接触角を得た。
 得られた接触角θと、流動パラフィンとグリセリンの表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPを下記の式(1)に代入して得られる連立方程式を解き、測定試料の表面自由エネルギーの分散項γSD、γSPを求めた。
γL(1+cosθ)=2(γSD×γLD)0.5+2(γSP×γLP)0.5
                                (1)
 なお、本方法で測定して得られる表面自由エネルギーの分散項γSD、極性項γSPの値は、金属箔上に樹脂組成物溶液を塗布して得られる表面自由エネルギーの分散項γSD、極性項γSPの値と同じである。
<接着力の測定方法>
 接着力は、次のようにして測定した。まず、実施例及び比較例で作製したドリル孔あけ用エントリーシートを3mm幅、100mmの長さに切った試料を3つ用意した。次に、試料の樹脂組成物の層の表面の全体に両面テープを貼り付けた。その後、両面テープを貼り付けた試料の片端を10mmはがし、はがした試料の金属箔部分にバネ秤を取り付けるための治具を取り付けた。治具にバネ秤(SANKO製、最大計測可能値1000gf)を取り付け、1cm/秒の速さで引っ張り、バネ秤の指す数値を読み取った。測定を3つの試料について行い、3回の平均値を接着力の数値とした。金属箔と樹脂組成物の層とが剥がれなかった場合は「>1000」と表記した。
<孔位置精度の測定>
 孔位置精度は、次のようにして測定した。厚さ0.2mmの銅張積層板(商品名:HL832、銅箔厚さ12μm、両面板、三菱ガス化学株式会社製)を5枚積み重ねた銅張積層板の上面に、実施例及び比較例で作製したドリル孔あけ用エントリーシートをその樹脂組成物の層側が上面になるように配置し、積み重ねた銅張積層板の最下板の裏面(下面)に厚さ1.5mmの当て板(紙フェノール積層板PS1160-G、利昌株式会社製)を配置した。0.2mmφドリルビット(商品名:C-CFU020S、タンガロイ株式会社製)、回転数:200,000rpm、送り速度:2.6m/min、孔あけ回数:ドリルビット1本につき3,000孔の条件で、計6,000孔のドリル孔あけ加工を行った。
 3000孔目(ドリルビット1本目)と6000孔目(ドリルビット2本目)の孔につき、積み重ねた銅張積層板の最下板の裏面(下面)における孔位置と指定座標とのズレを、ホールアナライザー(型番:HA-1AM、日立ビアメカニクス株式会社製)を用いて測定した。ドリルビット1本分ごとに、そのズレについて、平均値及び標準偏差(σ)を計算し、「平均値+3σ」を算出した。その後、ドリル孔あけ加工全体の孔位置精度として、使用した2本のドリルビットについてそれぞれの「平均値+3σ」の値に対する平均値を算出した。孔位置精度の算出に用いた式は、下記の式(2)のとおりである。
Figure JPOXMLDOC01-appb-M000001

                               (2)
ここで、nは使用したドリルの本数を示す。
 表1に、実施例及び比較例のドリル孔あけ用エントリーシートの製造に用いた非水溶性樹脂(A)、水溶性樹脂(B)、添加剤、溶媒、金属箔の仕様を示した。表1中の非水溶性樹脂(A)中の樹脂固形分は、非水溶性樹脂(A)の水分散体中の樹脂固形分の量(質量%)を表す。
Figure JPOXMLDOC01-appb-T000002
 以下に、実施例及び比較例のドリル孔あけ用エントリーシートの製造方法を説明する。
<実施例1>
 高分子水溶性樹脂(b1)として質量平均分子量560,000のポリエチレンオキサイド(明成化学工業株式会社製、アルコックスE-45)4.3質量部と、低分子水溶性樹脂(b2)として質量平均分子量3,300のポリエチレングリコール(三洋化成工業株式会社製、PEG4000S)38.6質量部と、ポリウレタン樹脂の水分散体(第一工業製薬株式会社製、スーパーフレックス740、固形分濃度40%)142.75質量部(樹脂固形分換算で57.1質量部)を、樹脂組成物溶液の固形分濃度が30%となるように水/メタノール混合溶媒に溶解させた。水/メタノール混合溶媒の混合割合は50/50とした。この樹脂組成物溶液をアルミニウム箔(使用アルミニウム箔:JIS-A1100H、厚さ0.1mm、三菱アルミニウム株式会社製)の片面に、バーコーターを用いて乾燥後の樹脂組成物の層の厚さが50μmとなるように塗布し、乾燥機にて120℃、3分間乾燥させ、常温まで冷却して、ドリル孔あけ用エントリーシートを作製した。上述した方法で、接着力測定、表面自由エネルギーの分散項γSD、極性項γSPの測定を行い、結果を表2に示した。
<実施例2~50、比較例1~48>
 実施例1に準じて、表2~5に示す各材料の種類及び含有割合にて樹脂組成物の溶液を調製し、乾燥・固化後の樹脂組成物の層の厚さが50μmのドリル孔あけ用エントリーシートを作製した。得られたドリル孔あけ用エントリーシートの金属箔と樹脂組成物の層との間の接着力、樹脂組成物の層の表面自由エネルギーの分散項γSD、極性項γSPを測定した。これらの結果を表2~5に示した。
 表2~5に示した接着力の判定基準は次のとおりである。ドリル孔あけ加工の際、加工時の負荷がエントリーシートにかかるため、金属箔と樹脂組成物の層との接着力が弱いと樹脂組成物の層が剥離してしまう。本発明者らが、鋭意研究した結果、接着力が200gf以上であれば、ドリル孔あけ加工時に樹脂組成物の層が剥離しないことが判明したので、接着力の判定基準は、200gf以上であれば「○」、200gf未満であれば「×」と定めた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表6は、表面自由エネルギー、接着力、及び孔位置精度の関係を示す表である。孔位置精度の判定基準は、次のとおりである。上記式(2)の方法で算出された孔位置精度が20μm以下のとき、特性が優れている『○』と表記し、20μmより大きいとき『×』と表記した。また孔位置精度判定と接着力判定の両方が『○』であれば、金属箔と樹脂組成物の層との接着強度が強く孔位置精度に優れており、総合判定として『○』と表記し、孔位置精度判定と接着力判定の少なくとも一方が『×』であるとき、総合判定として『×』と表記した。
Figure JPOXMLDOC01-appb-T000007
 
 図1は、実施例及び比較例における樹脂組成物の層の表面自由エネルギーのγSDとγSPをプロットしたものである。図1より、表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、極性項γSPが0~5.0mJ/mの範囲である場合に、接着力が良好となることがわかる。
 表6より、表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、極性項γSPが0~5.0mJ/mの範囲である実施例1、7、8、12、18、24、26、32、38、43、50のドリル孔あけ用エントリーシートの金属箔と樹脂組成物の層との接着力は強く、孔位置精度も良好であることがわかる。一方、表面自由エネルギーの分散項γSDが27.0mJ/m未満又は37.0mJ/mを超える、あるいは極性項γSPが5.0mJ/mを超える、比較例1、2、8、9、10、13、14、16、20、24、25、30、34、42、44、48のドリル孔あけ用エントリーシートの金属箔と樹脂組成物の層との接着力は弱く、ドリル孔あけ加工時に樹脂組成物の層の剥離が発生し、孔位置精度は悪かった。
 すなわち、表2~6の結果から、樹脂組成物の層の金属箔と接触する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲を外れると、又は極性項γSPが0~5.0mJ/mの範囲を外れると、金属箔と樹脂組成物の層との接着強度が弱く、ドリル孔あけ加工の際に樹脂組成物の層が剥離してしまい、孔位置精度が悪化することがわかる。
 本出願は、2015年3月19日に日本国特許庁へ出願された日本特許出願(特願2015-056156)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、積層板や多層板のドリル孔あけ加工等の際に使用されるドリル孔あけ用エントリーシートとして産業上の利用可能性を有する。特に、本発明によれば、従来のドリル孔あけ用エントリーシートに比べて、孔位置精度に優れ、金属箔と樹脂組成物の層との剥離によるドリル折損が少なく、従来必要であった接着層が不要なため経済性にも優れたドリル孔あけ用エントリーシートを提供できる。
 

Claims (11)

  1.  金属箔と、該金属箔上に接着層を介在させることなく形成された樹脂組成物の層と、を備え、
     前記樹脂組成物の層の金属箔に接する面の表面自由エネルギーの分散項γSDが27.0~37.0mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~5.0mJ/mの範囲である、ドリル孔あけ用エントリーシート。
  2.  前記樹脂組成物が、非水溶性樹脂(A)、及び水溶性樹脂(B)を含有する、請求項1に記載のドリル孔あけ用エントリーシート。
  3.  前記非水溶性樹脂(A)の表面自由エネルギーの分散項γSDが32.0~38.1mJ/mの範囲であり、且つ前記表面自由エネルギーの極性項γSPが0~6.0mJ/mの範囲である、請求項2に記載のドリル孔あけ用エントリーシート。
  4.  前記非水溶性樹脂(A)が、ポリウレタン樹脂、ポリエステル樹脂、アクリル系樹脂、及びポリオレフィン系樹脂からなる群より選択される1種類又は2種類以上である、請求項2又は3に記載のドリル孔あけ用エントリーシート。
  5.  前記水溶性樹脂(B)が、ポリエチレンオキサイド、ポリプロピレンオキサイド、セルロース誘導体、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される1種類又は2種類以上である、請求項2~4のいずれか一項に記載のドリル孔あけ用エントリーシート。
  6.  前記水溶性樹脂(B)が、質量平均分子量50,000以上1,000,000以下である高分子水溶性樹脂(b1)と、質量平均分子量1,000以上30,000以下である低分子水溶性樹脂(b2)と、を含み、
     前記高分子水溶性樹脂(b1)が、ポリエチレンオキサイド、ポリプロピレンオキサイド、及びセルロース誘導体からなる群より選択される少なくとも1種を含み、
     前記低分子水溶性樹脂(b2)が、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンのモノエーテル化合物、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリグリセリンモノステアレート化合物、及びポリオキシエチレンプロピレン共重合体からなる群より選択される少なくとも1種を含む、
     請求項5に記載のドリル孔あけ用エントリーシート。
  7.  前記樹脂組成物が、前記非水溶性樹脂(A)と前記水溶性樹脂(B)の合計量100質量部に対して、20~80質量部の前記非水溶性樹脂(A)と、80~20質量部の前記水溶性樹脂(B)とを含む、請求項2~6のいずれか一項に記載のドリル孔あけ用エントリーシート。
  8.  前記樹脂組成物の層が、前記非水溶性樹脂(A)の水分散体と、前記水溶性樹脂(B)とを用いて形成されたものである、請求項2~7に記載のドリル孔あけ用エントリーシート。
  9.  前記樹脂組成物の層の厚さが、0.02~0.3mmである、請求項1~8のいずれか一項に記載のドリル孔あけ用エントリーシート。
  10.  前記金属箔の厚さが、0.05~0.5mmである、請求項1~9のいずれか一項に記載のドリル孔あけ用エントリーシート。
  11.  請求項1~10のいずれか一項に記載のドリル孔あけ用エントリーシートを用いて、積層板又は多層板に孔を形成する孔形成工程を有する、ドリル孔あけ加工方法。
     
PCT/JP2016/055333 2015-03-19 2016-02-24 ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法 WO2016147818A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177024823A KR102388007B1 (ko) 2015-03-19 2016-02-24 드릴 천공용 엔트리 시트 및 그것을 사용한 드릴 천공 가공 방법
MYPI2017703390A MY186196A (en) 2015-03-19 2016-02-24 Entry sheet for drilling and method for drilling processing using same
US15/555,849 US10478991B2 (en) 2015-03-19 2016-02-24 Entry sheet for drilling and method for drilling processing using same
CN201680016813.7A CN107428020B (zh) 2015-03-19 2016-02-24 钻孔用盖板和使用其的钻孔加工方法
JP2017506166A JP6631943B2 (ja) 2015-03-19 2016-02-24 ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
SG11201707185PA SG11201707185PA (en) 2015-03-19 2016-02-24 Entry sheet for drilling and method for drilling processing using same
PH12017501658A PH12017501658A1 (en) 2015-03-19 2017-09-11 Entry sheet for drilling and method for drilling processing using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-056156 2015-03-19
JP2015056156 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147818A1 true WO2016147818A1 (ja) 2016-09-22

Family

ID=56918990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055333 WO2016147818A1 (ja) 2015-03-19 2016-02-24 ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法

Country Status (9)

Country Link
US (1) US10478991B2 (ja)
JP (1) JP6631943B2 (ja)
KR (1) KR102388007B1 (ja)
CN (1) CN107428020B (ja)
MY (1) MY186196A (ja)
PH (1) PH12017501658A1 (ja)
SG (1) SG11201707185PA (ja)
TW (1) TWI680865B (ja)
WO (1) WO2016147818A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186196A (en) * 2015-03-19 2021-06-30 Mitsubishi Gas Chemical Co Entry sheet for drilling and method for drilling processing using same
US10486324B2 (en) * 2015-03-19 2019-11-26 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling and method for drilling processing using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347493A (ja) * 2000-06-05 2001-12-18 Risho Kogyo Co Ltd ドリル加工用エントリーボード
JP2009172752A (ja) * 2007-12-26 2009-08-06 Mitsubishi Gas Chem Co Inc ドリル孔明け用エントリーシート
WO2010140333A1 (ja) * 2009-06-01 2010-12-09 三菱瓦斯化学株式会社 ドリル孔明け用エントリーシート

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855824B2 (ja) 1990-08-08 1999-02-10 三菱瓦斯化学株式会社 プリント配線板の孔明け加工法
JP3169026B2 (ja) 1991-12-18 2001-05-21 三菱瓦斯化学株式会社 小孔あけ用滑剤シート
US20020048430A1 (en) * 2000-10-20 2002-04-25 Minoru Hashimoto Light dispersion equalizer
JP4106518B2 (ja) 2001-10-31 2008-06-25 三菱瓦斯化学株式会社 孔明け用エントリーシート及びドリル孔明け加工法
US20050003169A1 (en) * 2003-01-28 2005-01-06 Nobuyuki Ikeguchi Lubricant sheet for drilling and method of drilling
JP4644414B2 (ja) 2003-01-28 2011-03-02 三菱瓦斯化学株式会社 着色された孔あけ用滑剤シート
JP5012100B2 (ja) * 2007-03-09 2012-08-29 三菱瓦斯化学株式会社 ドリル孔明け用エントリーシート
TWI407854B (zh) * 2007-12-26 2013-09-01 Mitsubishi Gas Chemical Co 鑽孔用蓋板之製造方法及蓋板
KR20100012162A (ko) * 2008-07-28 2010-02-08 전두표 드릴용 엔트리 시이트
US8336481B2 (en) * 2009-05-13 2012-12-25 Basf Corporation Printed indicator compositions
JP5445524B2 (ja) 2011-06-27 2014-03-19 三菱瓦斯化学株式会社 ドリル穴明け用エントリーシート
TWI423749B (zh) * 2011-09-26 2014-01-11 Uniplus Electronics Co Ltd 用於印刷電路板之鑚孔輔助板
CN104203512B (zh) * 2012-03-09 2015-11-25 三菱瓦斯化学株式会社 钻孔用盖板
WO2013141299A1 (ja) * 2012-03-21 2013-09-26 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート及びドリル孔あけ方法
JP6327443B2 (ja) * 2013-03-19 2018-05-23 Dic株式会社 導電性材料の製造方法及び導電性材料
JPWO2014157570A1 (ja) * 2013-03-27 2017-02-16 三菱瓦斯化学株式会社 繊維強化複合材又は金属の切削加工用エントリーシート及び該切削加工方法
JP2015009556A (ja) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 キャリア付銅箔、その製造方法、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
MY186196A (en) * 2015-03-19 2021-06-30 Mitsubishi Gas Chemical Co Entry sheet for drilling and method for drilling processing using same
SG11201800878TA (en) * 2015-09-02 2018-03-28 Mitsubishi Gas Chemical Co Entry sheet for drilling and method for drilling processing using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347493A (ja) * 2000-06-05 2001-12-18 Risho Kogyo Co Ltd ドリル加工用エントリーボード
JP2009172752A (ja) * 2007-12-26 2009-08-06 Mitsubishi Gas Chem Co Inc ドリル孔明け用エントリーシート
WO2010140333A1 (ja) * 2009-06-01 2010-12-09 三菱瓦斯化学株式会社 ドリル孔明け用エントリーシート

Also Published As

Publication number Publication date
CN107428020B (zh) 2019-05-17
JP6631943B2 (ja) 2020-01-15
SG11201707185PA (en) 2017-10-30
KR102388007B1 (ko) 2022-04-18
TWI680865B (zh) 2020-01-01
TW201637851A (zh) 2016-11-01
US10478991B2 (en) 2019-11-19
US20180036898A1 (en) 2018-02-08
MY186196A (en) 2021-06-30
KR20170130397A (ko) 2017-11-28
PH12017501658B1 (en) 2018-03-19
JPWO2016147818A1 (ja) 2017-12-28
CN107428020A (zh) 2017-12-01
PH12017501658A1 (en) 2018-03-19

Similar Documents

Publication Publication Date Title
JP6315226B2 (ja) ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
WO2016147818A1 (ja) ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
CN103108730A (zh) 钻孔用盖板
JPWO2017208912A1 (ja) ドリル孔あけ用エントリーシート及びそれを用いたドリル孔あけ加工方法
WO2016147817A1 (ja) ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
JP7157931B2 (ja) 微細径用ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
JP6399375B2 (ja) ドリル孔あけ用エントリーシート及びそれを用いたドリル孔あけ加工方法
JP6369796B2 (ja) ドリル孔あけ用エントリーシート、及びそれを用いたドリル孔あけ加工方法
WO2019187670A1 (ja) ドリル孔あけ用エントリーシート及びそれを用いたドリル孔あけ加工方法
TW200417303A (en) Lubricant sheet for drilling and method of drilling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506166

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024823

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555849

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201707185P

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 12017501658

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764648

Country of ref document: EP

Kind code of ref document: A1