WO2016143733A1 - シェルター - Google Patents

シェルター Download PDF

Info

Publication number
WO2016143733A1
WO2016143733A1 PCT/JP2016/056955 JP2016056955W WO2016143733A1 WO 2016143733 A1 WO2016143733 A1 WO 2016143733A1 JP 2016056955 W JP2016056955 W JP 2016056955W WO 2016143733 A1 WO2016143733 A1 WO 2016143733A1
Authority
WO
WIPO (PCT)
Prior art keywords
shelter
door
evacuation
internal space
floor
Prior art date
Application number
PCT/JP2016/056955
Other languages
English (en)
French (fr)
Inventor
倉本俊司
西澤紘一
Original Assignee
株式会社クラミ―技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラミ―技術研究所 filed Critical 株式会社クラミ―技術研究所
Publication of WO2016143733A1 publication Critical patent/WO2016143733A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Definitions

  • the present invention relates to a shelter that protects evacuees from tsunamis or floods.
  • Conventional shelters for emergency situations such as tsunamis and floods include, for example, a shelter body having an interior as an evacuation room, an evacuation port with a sealable door that can guide refugees into the evacuation room, and an evacuation port and evacuation
  • a shelter for emergency situations such as tsunamis and floods that have evacuation routes that communicate with the room, even if the lower evacuation exits are closed by dividing the evacuation exits in multiple directions. It is configured to be evacuated through the high side evacuation exit. The evacuees can evacuate to an evacuation room installed in the basement through the evacuation route (see Patent Document 1).
  • the tsunami is not so large, the water level in the interior space will not be so higher than the upper end of the evacuation port.
  • the atmospheric pressure in the residual space is 1.3 atmospheric pressure or more, for example, there is a problem that health damage may occur to the evacuees.
  • an object of the present invention is to provide a shelter that can ensure the safety of life even in a huge tsunami by utilizing residual air.
  • the second object is to provide a shelter that can automatically close an evacuation port or a door of an evacuation room so that the pressure of the residual air does not increase.
  • a shelter 1 is a shelter 1 for evacuating from a tsunami or a flood as shown in FIG.
  • An evacuation floor 12 is provided at the position.
  • the airtightness means that gas and liquid cannot pass through
  • the pressure resistance is, for example, a tsunami with a height of 50 m, which is destroyed when subjected to water pressure of 6 atm absolute pressure (5 atm gauge pressure). It means not damaged.
  • Examples of the material having airtightness and pressure resistance include reinforced concrete, FRP (fiber reinforced plastic), and the like.
  • the residual air refers to the air remaining in the space above the water surface when water flows into the internal space and the space above the water surface in the internal space is separated from the atmosphere.
  • the evacuation floor is a floor on which refugees get on so as not to be immersed in water. Further, the evacuation floor is not necessarily fixed to the shelter body, and may be a floor floating on water as in the sixth embodiment.
  • the floor is not limited to wood, but may be made of plastic, for example.
  • the pressure N of the residual air is determined according to the height H of the tsunami and the height of the internal space 10 of the shelter.
  • the unit of pressure is based on normal pressure (atmospheric pressure). That is, 1 atm is 1 atm (0.1013 hPa).
  • pressure refers to absolute pressure.
  • the height from the average tide level surface may be used as the tsunami height H, but the height from the water surface in the internal space to the tsunami wave surface may be used.
  • the accuracy is increased by using (see FIG. 4).
  • the difference is negligible in a large tsunami that is considerably higher than the height of the shelter exit from the ground.
  • the reason why the pressure is set to 1.1 atm or higher is to clarify that the present application has a novel feature in utilizing the residual air in the internal space. Therefore, for example, the pressure may be 1.05 atm or more and 1.2 atm or more.
  • the evacuation floor 12 is provided at a position higher than the height of the water surface 31 (see FIG. 4) assumed in the internal space 10 against a tsunami, so that human lives can be saved. Further, since the evacuation port 9 is not closed, the refugee can run to the evacuation port 9 and evacuate until the moment when the tsunami gets over the shelter. Also, if a shelter is built near the address and work place, life can be saved by running into the shelter without running up to the hill.
  • the shelters 1C1 to 1C3 are shelters 1C1 to 1C3 for evacuating from a tsunami or flood, for example, as shown in FIG.
  • Spaces surrounded by airtight and pressure-resistant materials are defined as internal spaces 10 and 10A; in order to maintain the internal space at 1.3 atm or less, the doors 20A, 20B and 20D of the escape port 9 or the interior
  • a door 20C at the entrance to the evacuation chamber 34B surrounded by an airtight and pressure-resistant material provided in the space 10 uses the difference between the water pressure outside the door 20C and the air pressure inside the door 20C.
  • the doors 20A to 20C are provided which can be automatically closed using the rise of the water surface.
  • “automatic” means that no human operation is required.
  • hydraulic power is used as a power so that automatic closing is possible even when electricity is cut off.
  • electric power it is also possible to electrically close the door by detecting water at the evacuation port with a sensor.
  • the shelter 1B2 according to the third aspect of the present invention is provided with a normal pressure chamber 34 in the internal space 10 as shown in FIG. 7, for example. If comprised in this way, by providing a normal pressure chamber, a sick person, an elderly person, and a child who are weak health persons can enter a normal pressure chamber, and it can release from a high atmospheric pressure state, and can suppress a health hazard.
  • the air pressure in the internal space or the evacuation room can be maintained at a value close to normal pressure by automatically closing the door, and thus health problems such as tinnitus occurring under high pressure (including health abnormalities) Can prevent health hazards to the sick, elderly and children. Further, since it is not necessary to manually close the door, it is possible to prevent troubles caused by panic such as forgetting to close the door or delaying escape of the evacuees due to premature closing.
  • the shelter 1E which concerns on the 4th aspect of this invention is the 1st thru
  • WHEREIN The internal space 10 is provided adjacent to the embankment 60 or the inside of the embankment 60. As shown in FIG. If comprised in this way, the stable shelter which does not shift or incline by a tsunami can be comprised using the solid structure of a dike.
  • the shelter which concerns on the 5th aspect of this invention WHEREIN:
  • the internal space is provided adjacent to the school building of a school in the 1st thru
  • the shelter which concerns on the 6th aspect of this invention is provided with the warehouse, the bicycle parking lot, the tea room, the gymnasium, the conference room, or the guest room in any one of the 1st thru
  • the shelter 1 according to the seventh aspect of the present invention is the ground shelter 2 according to any one of the first to sixth aspects, for example, as shown in FIG.
  • a portion that is integrally formed with the portion 4 and that extends upward from the floor portion 3 and that extends downward into the ground is formed integrally with the sea side wall portion 5 that serves as an anchor, and the pair of end wall portions 4.
  • the land side wall part 6 that extends upward from the floor surface part 3 and extends downward into the ground serves as an anchor, the pair of end wall parts 4, the sea side wall part 5, and the upper ends of the land side wall part 6 And a ceiling portion 8 that connects the two together, and an evacuation port 9 is provided at a substantially ground level of the land-side side wall portion 5, 0 is a space surrounded by the floor surface portion 3, the pair of end wall portions 4, the sea side wall portion 5, the land side wall portion 6 and the ceiling portion 8. And elevating means 18 and 19 for the evacuees to move from the plaza 11 to the evacuation floor 12 are provided.
  • integral is ideally formed continuously without being cut by the same material at the connecting portion, but here it is only necessary to maintain airtightness.
  • airtightness may be maintained by bonding the same material with a strong adhesive.
  • the staircase 18, the ladder, or the slope 19 can be used as the raising means, a gondola or the like that raises the evacuee electrically may be used as long as it has a power source.
  • a sturdy and airtight shelter 1 can be configured.
  • a warning is issued that calls for evacuation to a safe place due to the occurrence of a large tsunami due to the occurrence of a huge earthquake
  • refugees and wheelchair users enter the plaza 11 from the evacuation exit 9 Further, evacuate from the square 11 to the evacuation floor 12 through the stairs 18, the ladder or the slope 19. Since the evacuation exit 9 is not closed, the refugee can run to the evacuation exit 9 and evacuate until the moment when the tsunami gets over the shelter 1.
  • the shelter 1G according to the eighth aspect of the present invention is a shelter 1G for preventing water from flowing into the garage 70, for example, as shown in FIG.
  • Shelter doors 73 and 73A are provided that prevent the water from entering the garage 70 by inflating downward from the ceiling and pressing against the side walls and the floor, or by inflating upward from the floor and pressing against the side walls. If comprised in this way, it can prevent that water flows in into the garage 70 at the time of flood or heavy rain.
  • the present invention firstly, by using residual air, it is possible to provide a shelter that can ensure the safety of life even in a huge tsunami. Second, it is possible to provide a shelter that can automatically close the evacuation port and the door of the evacuation room so that the residual air pressure does not increase.
  • FIG. 1 It is the top view and perspective view of a shelter in Example 1. It is a principal part longitudinal cross-sectional view of the shelter in Example 1.
  • FIG. 3 is a horizontal sectional view of an essential part taken along line III-III in FIG. It is a figure for demonstrating the sea level in a shelter. It is a principal part longitudinal cross-sectional view of the shelter with a high evacuation floor in Example 1.
  • FIG. It is a figure for demonstrating the sea level in the shelter of the aspect with which the cross-sectional area of a height direction is wide at the lower side and is narrow at the higher side in the internal space of a shelter. It is a figure which shows typically the structure which provides a normal pressure chamber in the shelter in Example 2.
  • FIG. It is a figure which shows typically the structure of the door in Example 3.
  • FIG. It is a figure which shows typically the structure of the door in Example 4.
  • FIG. It is a figure which shows typically the structure of the exit in Example 5.
  • FIG. It is a figure which shows typically the structure of the refuge floor which floats on the water surface in Example 6.
  • FIG. It is a figure which shows typically the structure of the escape exit in Example 7.
  • FIG. It is a figure which shows typically the cross section of the shelter using the embankment in Example 8.
  • FIG. It is a figure which shows typically the cross section of the shelter in the building in Example 10.
  • FIG. It is a figure which shows typically the structure of the shelter using the garage in Example 12.
  • Example 1 an evacuation port is always open, but an example of a shelter that can evacuate safely even if the water level rises in the internal space will be described.
  • FIG. 1 to 3 show a shelter with an internal space of one floor.
  • FIG. 1 is a plan view and a perspective view of a shelter 1 in this embodiment.
  • FIG. 1A is a plan view
  • FIG. 1B is a perspective view of a part of the building.
  • Three shelters 1 are installed along the coastline. As shown in Fig. 1, when the long direction of the shelter 1 is constructed at right angles to the direction in which the tsunami comes, the role as a tsunami breakwater that reduces the progress of the tsunami inland when the tsunami comes Will bear.
  • the tsunami that travels beyond the shelter 1 and then travels back to the sea passes between the shelter and the shelter 1. For this reason, since seawater does not stay on the land side from the shelter 1 indefinitely, seawater that has filled the open space tens of minutes after the tsunami has rushed flows out from the evacuation port 9 to the outside. Accordingly, evacuees who have evacuated into the shelter 1 and wheelchair users can escape from the evacuation port 9. Also, since the tsunami that passes between the shelters 1 and returns to the sea is fast, if you open the width that floats such as driftwood and ships can pass through, the floats will collide strongly with the shelters 1 and the shelters 1 will It can be prevented from being destroyed. In addition, it is possible to prevent the floating material from accumulating and blocking the evacuation exit 9 and the escape exit 15.
  • the shelter since it is constructed on the coastline, it is constructed in an area where there is no hill that can evacuate from a large tsunami in a short time near the coastline, and can be accused within the tsunami evacuation time. Useful.
  • the size of the shelter should be determined according to the number of inhabitants.
  • FIG. 2 is a cross-sectional view when the shelter 1 is cut along a plane perpendicular to the longitudinal direction
  • FIG. 3 is a cross-sectional view when the shelter 1 is cut along a horizontal plane.
  • the shelter 1 has an internal space 10 that is a space surrounded by a building material having airtightness and pressure resistance, and includes an escape port 9 that communicates with the internal space 10. Even if a tsunami is approached, the evacuation port 9 can be evacuated through the evacuation port 9 until the evacuation port 9 is opened and immediately before the tsunami is hit.
  • the shelter 1 includes an underground pile 2, a floor surface portion 3 integral with the underground pile 2, and a pair of end wall portions 4 (4A, 4B) that rise integrally with the floor surface portion 3 at both longitudinal ends of the floor surface portion 3.
  • a plurality of intermediate wall portions 7 which are located between the pair of end wall portions 4A and 4B and rise up integrally with the floor portion 3, and the lower end extends to a deep position in the ground to become an anchor and approaches the land side as it goes upward.
  • the shelter 1 is sufficiently airtight except for the escape port 9 by the pair of end wall portions 4 (4A, 4B), the land side wall portion 6, the sea side wall portion 5, and the ceiling portion 8.
  • the internal space 10 is provided.
  • the shelter 1 includes a floor surface portion 3, a pair of end wall portions 4, a plurality of intermediate wall portions 7, a sea side wall portion 5, a land side wall portion 6, and a ceiling portion 8 that are integrally connected.
  • the internal space 10 has airtightness except for the escape port 9 by an airtight holding material that is formed and forms an airtight shield layer on the outer surface or inner surface of the shelter 1 or is kneaded in reinforced concrete.
  • the shelter 1 is constructed with care so as not to cause a crack that causes loss of the airtightness of the internal space 10 even when a large external force is applied due to a large earthquake and a large tsunami.
  • gypsum paste or the like can be used as the material of the shield layer or the airtight holding material.
  • Reinforced concrete itself has airtightness, but airtightness is improved by crushing with a shielding material such as gypsum paste.
  • the tsunami is drawn in several tens of minutes, as the airtightness, for example, there may be a leak that reduces the residual air by 10% in one hour.
  • the underground pile 2 is made of, for example, reinforced concrete, and is piled in the ground or is formed by placing holes by placing holes in the ground. Moreover, the structure which drives a pile (concrete pile) to the bedrock as underground resistance 2 can stabilize the structure of a shelter, and can prevent that a shelter is displaced or inclined when a tsunami is pulled.
  • the floor surface portion 3 is made of reinforced concrete, and may be configured such that a precast reinforced concrete plate is laid on a hard, leveled ground, and the concrete is placed by further arranging the reinforcing bars protruding on the reinforced concrete plate.
  • the pair of end wall portions 4 and the plurality of intermediate wall portions 7 are configured as earthquake-resistant walls.
  • the end wall portion 4 and the intermediate wall portion 7 may be made of reinforced concrete, but a configuration in which concrete is placed by placing a steel frame and arranging a formwork is preferable.
  • the sea side wall part 5 and the land side wall part 6 are respectively configured integrally with the floor surface part 3, the pair of end wall parts 4 and the plurality of intermediate wall parts 7.
  • the sea side wall part 5 and the land side wall part 6 may be made of reinforced concrete, but a precast reinforced concrete plate is erected in an inclined state and further arranged on the reinforcing steel bar protruding on the outer surface of the reinforced concrete plate. A structure in which concrete is cast after waterproofing is preferable.
  • the shelter 1 includes a plurality of underground piles 2 that extend deeply in the ground, a floor surface portion 3 provided integrally with the underground pile 2, and a sea side wall portion that is constructed to serve as an anchor while the lower end bites deeply into the ground. 5 and the land side wall portion 6 have a necessary and sufficient strength to prevent collapse without pulling out even if the pressure of a huge tsunami is applied to the sea side wall portion 5. In addition, it is designed so that it will not collapse even if the earth and sand are rubbed by a pulling wave.
  • the intermediate wall portion 7 is effective for ensuring a large strength of the shelter 1.
  • a passage 7 a is provided in the intermediate wall portion 7 so that a person can move through the internal space 10 from one end to the other end. In this way, communication within the shelter 1 can be taken, and the anxiety of the evacuees can be reduced.
  • the strength can be calculated based on the amount of reinforcing bars used, the amount of cement, and the thickness of the wall, so that necessary and sufficient collapse resistance can be obtained.
  • the evacuation port 9 is opened in the lower part of the land side wall part 6 where the floor surface part 3 and the height of the ground approximately coincide.
  • the evacuation port 9 has a size that allows a wheelchair user to pass through, for example.
  • the evacuation port 9 includes a simple entrance door 20 for restricting the entry and exit of outsiders and animals in normal times.
  • the entrance door 20 does not have to fulfill the role of closing the evacuation exit 9 in an airtight manner.
  • the entrance door 20 is provided with a locking means (not shown) that is not provided with a lock and can be easily and securely locked so that anyone can easily open the door in an emergency and keep the door open during evacuation. It is good to have.
  • a plaza 11 that faces the evacuation port 9 and occupies a required area of the floor surface portion 3, and a floor surface having a required dimension higher than the upper end of the evacuation port 9 in an area excluding the square of the inner space 10.
  • the evacuation floor 12 provided in this way, a stairway 18 as a rising means for moving a person from the square 11 to the evacuation floor 12, and a slope 19 for moving a wheelchair are provided.
  • the plaza 11 is very effective if there is a space for receiving 10 evacuees when there are situations where evacuees enter the evacuees 9 one after another. Due to the presence of the plaza 11, not only can the stairs 18, the ladder and / or the slope 19 connecting the plaza 11 and the evacuation floor 12 be provided, but people who are going to evacuate from the evacuation exit 9 to the plaza 11 one after another. Then, people who are going to evacuate can be guided to the evacuation floor 12 through the stairs 18 or the slope 19.
  • FIG. 4 is a diagram for explaining the sea level in the shelter 1 during the tsunami.
  • the water level gradually rises outside Schulter 1.
  • the periphery of the shelter 1 is covered with an airtight material except for the escape port 9.
  • the water surface rises at the same height inside and outside the shelter 1.
  • the air in the shelter 1 is separated from the outside air and becomes residual air 30.
  • the water surface 31 inside the shelter 1 becomes lower than the water surface 22 outside.
  • the atmospheric pressure on the inner water surface 31 is equal to the outer water pressure at the same height as the inner water surface 31.
  • the outside water pressure is determined by the water depth. For every 10m increase in water depth, the water pressure increases by 1 atmosphere.
  • the water pressure is 1.5 atm, 2 atm, 3 atm, and 4 atm, respectively.
  • the volume of the residual air 30 in the shelter 1 will be 2V / 3, V / 2, V / 3, and V / 4, respectively.
  • the height from the upper end of the escape port 9 to the ceiling of the shelter 1 is h 0 (m)
  • the height from the upper end of the escape port 9 to the water surface in the shelter 1 is h (m)
  • the cross-sectional area of the shelter 1 is high when it is assumed constant in the direction, volume of 2V / 3 of the residual air 30 in the shelter 1, when the V / 2, V / 3, V / 4 , respectively, the height of the residual air 30 is 2h 0/3 , h 0/2, h 0 /3, h 0/4 becomes, h becomes h 0/3, h 0 / 2,2h 0 / 3h 0, 3h 0/4.
  • the evacuation floor 12 is provided to have a higher level than the boundary surface 31 between the water and the residual air in the internal space 10.
  • a storage warehouse 14 is provided below the evacuation floor 12, and the partition wall between the storage warehouse 14 and the evacuation floor 12 is waterproofed so that seawater that has entered the plaza 11 cannot enter the storage warehouse 14.
  • the stockpiling warehouse 14 includes a staircase 18C (or a ladder) through which evacuees on the evacuation floor 12 can enter and exit.
  • the stockpiling warehouse 14 stores food, water, medical / emergency supplies, lighting, and the like.
  • the evacuation floor 12 may have a multi-storey structure that can move through the stairs 18 and / or the slope 19. Note that a ladder may be provided instead of the stairs 18.
  • electric power can be used, for example, a box in which two to three people can ride may be moved by electric power and carried to an evacuation floor.
  • the shelter 1 is provided with an exit 15 through which the person evacuated to the internal space 10 can pass through any of the end wall part 4, the sea side wall part 5 and the land side wall part 6 (see Example 5).
  • the escape port 15 is preferably provided with an airtight door 16 that can be opened manually from inside.
  • the door 16 may be a single door or a double door 16 (16A, 16B). With this configuration, since the evacuation port 9 is blocked by a large amount of debris and the like, and the evacuation person cannot escape from the evacuation port 9, the evacuee can escape from the escape port 15, Evacuees can be given peace of mind.
  • the shelter 1 includes a ladder 21 that opens the door 16 and enters the exit 15, and a ladder 22 that descends from the exit 15 to the outside.
  • the double door 16 (16A, 16B) for example, the double door 33 (33A, 33B) in FIG. 10B, the double door 36 (16A, 16B) in FIG.
  • the shelter 1 is preferably provided with a driftwood defense fence 13 having an interval through which the wheelchair can pass in front of the escape port 9.
  • the shelter 1 is not shown, but as a lighting facility for illuminating the interior space, a power source such as a battery or a handle rotating operation generator that automatically charges to a fully charged state, illumination (not shown), and lighting on / off It is preferable that a switch (not shown) for performing the above is provided. With this configuration, the evacuation environment is not dark, but fear can be removed, and the refugees can be reassured mentally. In addition, a bench, TV, radio, etc. should be provided.
  • the shelter 1 includes supply means (not shown) for supplying oxygen or air.
  • a supply means for example, a container containing hydrogen peroxide and manganese dioxide is prepared, and when hydrogen peroxide is poured into manganese dioxide, hydrogen peroxide is decomposed into water and oxygen by the catalytic reaction of manganese dioxide. Oxygen is supplied.
  • an oxygen cylinder or an air cylinder can be used. If it does in this way, since oxygen or air can be supplied in the shelter 1, even if an evacuation time becomes long, the life of an evacuee can be maintained.
  • the shelter 1 is preferably provided with a staircase (not shown) that can be laid and planted on at least one of the sea side wall portion 5 and the land side wall portion 6 and that can be climbed on the ceiling portion 8. .
  • the shelter 1 is not a slaughtered building, but can be managed while planting vegetation, and it is also useful for the beauty of the region as an observation deck on the coast.
  • FIG. 5 shows an example of a shelter 1A having a high evacuation floor as a modification of the first embodiment. That is, the internal space is a two-floor type.
  • the shelter 1A includes a first floor, a second floor evacuation floors 12A, 12B, and a staircase 18A, 18B and a slope 19A that move from the plaza 12 to the first floor and from the first floor to the second floor, respectively, in the interior space 10 that is formed high. , 19B.
  • Escape exits 15A and 15B doors 16A and 16B
  • the escape port will be described in Example 5. Because the evacuation floor is at a high position, it can cope with high tsunami.
  • Other configurations are the same as those of the one-floor type, and thus description thereof is omitted.
  • the shelter according to the present embodiment can provide a shelter that can ensure safety even in a huge tsunami.
  • the tsunami breakwater can be used to reduce the progression of the large tsunami to the inland, and the evacuation port can be opened and evacuated through the evacuation port until just before the large tsunami is hit. Until it returns to the sea, it has the effect of protecting evacuees from large tsunamis. It is also useful as a facility that can be evacuated within the evacuation time of a large tsunami by building it in an area where there is no hill that can evacuate from a large tsunami in a short time near the coastline.
  • Example 2 shows an example of a configuration in which a normal pressure chamber is provided in a shelter. If the residual air pressure increases, the health status of the evacuees will be affected. It is said that health abnormalities such as tinnitus can be seen at 1.3 atmospheres or higher. Therefore, the device which does not raise atmospheric pressure too much is calculated
  • a normal pressure chamber is provided in a region having a high internal space. Note that it may be provided in a low region.
  • the cross-sectional area in the height direction of the shelter is wider at the lower side and narrower at the higher side, except for the atmospheric pressure chamber.
  • description is abbreviate
  • FIG. 6 is a view for explaining the water surface 31 in the shelter 1B1 in a mode in which the internal space of the shelter 1B1 is wide at the lower cross-sectional area in the height direction and narrower at the higher side.
  • the pressure of the residual air (same as the water pressure outside the shelter at the same height as the water surface 31 serving as the boundary between the residual air and the inflowing water) is N atmospheric pressure
  • the volume of the residual air becomes the original 1 / N.
  • the cross-sectional area in the height direction of the shelter is wide at the lower side and narrower at the higher side, the water surface is smaller than when the cross-sectional area is uniform (indicated by a broken line in FIG. 6). Lower.
  • FIG. 6 As shown in FIG.
  • the cross-sectional area in the height direction of the internal space 10 is 1.5 times the height at the low place, and the height of the low place (above the upper end of the escape port 9) and the height of the high place are set.
  • FIG. 7 schematically shows a configuration in which a normal pressure chamber is provided in the shelter 1B2 in the second embodiment.
  • the normal pressure chamber becomes an evacuation chamber that is a space surrounded by a material having airtightness and pressure resistance.
  • the normal pressure chamber 34 is constructed on the evacuation floor 12C. Since the normal pressure chamber is surrounded by a material having airtightness and pressure resistance and is spatially separated from the internal space 10, it is not included in the internal space 10. Therefore, the height of the water surface 31 in the inner space 10 of the shelter 1B2 is lower than that in the case where the cross-sectional area is uniform, as in the case of the shelter 1B1 of FIG.
  • the door of the entrance 35 to the normal pressure chamber 34 may be a single door as described above, it is more preferable to use a double door 36.
  • a first door (door on the internal space 10 side) 36A and the second door (door on the atmospheric pressure chamber 34 side) 36B for example, a rotary single door shown in FIG. 10A is used.
  • the first door 36A opens to the internal space 10 side, and the second door 36B opens to the space 39 side between the double doors 36.
  • the peripheral portion of the first door 36A is convex toward the space 39 between the double doors 36, and the inlet 35 is formed with a concave peripheral portion.
  • the peripheral portion of the second door 36A is convex toward the normal pressure chamber 34, and the peripheral portion of the inlet is concave.
  • the peripheral portions of the first door 36 ⁇ / b> A and the second door 36 ⁇ / b> B are pressed against the peripheral portions of the respective inlets 35, and the normal pressure chamber 34 is airtightly held by the double door 36.
  • the space 39 between the double doors 36 is connected to, for example, the internal space 10 and a pipe (not shown), and the atmospheric pressure is adjusted by an on-off valve or a pump (not shown) (not necessary if the atmospheric pressure difference is small).
  • the space 39 between the double doors 35 is set to the same pressure as the residual air 30 so that it can enter and exit the internal space 10 side, and the normal pressure is set so that it can enter and exit the normal pressure chamber 34 side.
  • the first door 35A and the second door 35B are opened to keep the normal pressure chamber 34 at normal pressure (1 atm). Thereafter, the first door 36A and the second door 36B are closed.
  • the inside of the internal space 10 is easily put in at normal pressure.
  • the first door is opened by opening the open / close valve of the pipe connecting the internal space 10 and the double door 36 to make the space between the double doors 36 the same pressure as the residual air 30.
  • the internal space 10 becomes normal pressure after the tsunami is pulled, when the opening / closing valve is opened and the space 39 between the double doors 36 is set to normal pressure, the first door 36A and the second door 36B are connected to the normal pressure chamber. It can be easily opened from the 34th side, and the evacuees go out to the evacuation floor 12C of the internal space 10.
  • the configuration other than the cross-sectional area in the height direction of the shelter and the door 36 of the inlet 35 to the atmospheric pressure chamber 34 is the same as that of the first embodiment.
  • a shelter can be provided. Further, by providing the normal pressure chamber 34, it is possible to prevent health damage from occurring for the evacuees.
  • Example 3 describes a shelter that can automatically close an evacuation exit or an entrance door of an evacuation chamber so that the residual air pressure does not increase in a shunt that uses residual air.
  • FIG. 8 schematically shows the structure of the door of the evacuation exit in this embodiment.
  • FIG. 8A shows an example of a rotary door 20A using a float
  • FIG. 8B shows an example of a sliding door 20B using a float.
  • FIG.8 (c) is a figure for demonstrating the sliding to the up-down direction of the sliding door type door 20B.
  • FIG. 8D shows another example of the rotary door 20D using a float.
  • an example will be described in which the door is automatically closed before the atmospheric pressure in the internal space becomes 1.3 atmospheric pressure.
  • the front portion 21 of the door 20A is a portion that is in close contact with the land side wall portion 6 and holds the internal space 10 in an airtight manner, and is made of an elastic body such as rubber.
  • the rear portion 22 is made of a rigid body such as plastic concrete and is strongly bonded to the front portion 21 so as not to peel off in water.
  • the rear portion 22 rotates around a rotation shaft 24 fixed to the shelter 1C1 or the like in the vicinity of the lower end of the entrance of the door 20A.
  • a float 23 is attached to an end portion of the rear portion 22 opposite to the rotating shaft 24.
  • the door 20A is installed horizontally when opened (indicated by a solid line).
  • the float 23 rises while being positioned on the water surface, and the door 20A is closed as the water level rises. Until the water surface reaches the position of the float when closed (indicated by a two-dot broken line), that is, up to the upper end of the inlet 9, water enters the internal space 10, but does not enter thereafter. Immediately before closing, the water flow becomes faster at the upper end of the inlet 9. Therefore, the magnets 29 may be inserted into the lower part of the float 23 in the rear portion 22 and the corresponding portions of the inlet 9 to close the door 20A.
  • the front part 21, the rear part 22, and the float 23 of the door 20B are the same as the door 20A.
  • an extension portion 26 formed integrally with the rear portion 22 extends in the horizontal direction, and the extension portion 26 is formed on the side surface of the shelter 1C2 inlet 9.
  • the groove 25 can be slid in the vertical direction.
  • the door 20 ⁇ / b> B is firmly pressed against the land-side side wall portion 6 and airtightness is maintained. Since the water surface does not exceed the upper end of the inlet 9, if the internal space 10 remains 3/4 or more at the upper end portion of the inlet 9, the atmospheric pressure in the internal space 10 becomes 1.3 atmospheric pressure or less. If the outside of the shelter 1C2 becomes atmospheric pressure after the tsunami is pulled, the door 20B can be easily opened.
  • the door 20B opens the inlet 9 when the water surface reaches the lower end of the inlet. It comes to cover. Thereafter, when the water level rises outside the shelter, a difference occurs between the water pressure outside the door 20B and the air pressure inside the door 20B, and the door 20B is pressed against the land side wall 6. If play is provided in the groove 25, the door 20 ⁇ / b> B is firmly pressed against the land-side side wall portion 6 and airtightness is maintained. Since the water surface does not exceed the lower end of the inlet 9, the internal space 10 is maintained at normal pressure.
  • the front part 21 and the rear part 22 of the door 20D are the same as the door 20A. However, no float is provided on the door 20D.
  • the door 20D rotates around a rotating shaft 24A fixed to the shelter near the upper end of the escape port 9.
  • the support body 38 that supports the door 20D in the opened state (shown by a solid line) rotates around the rotation shaft 24B parallel to the entrance at substantially the same height as the lower end of the escape exit 9.
  • the support 38 is, for example, an egg shape, and has a float 23A and a weight 23B. When the water surface rises to the height of the float 23A, the support 38 rotates around the rotation shaft 24B in the direction of the arrow.
  • the door 20D loses its support, the door 20D rotates around the rotation shaft 24A in the direction of the arrow, and the door 20D is closed. Thereafter, the door 20D is held in a closed state (indicated by a broken line) due to the difference between the water pressure outside the door 20D and the air pressure inside. Since the water surface does not substantially exceed the lower end of the inlet 9, if the internal space 10 remains 3/4 or more above the upper end portion of the inlet 9, the atmospheric pressure of the internal space 10 becomes 1.3 atmospheric pressure or less. If the outside of the shelter becomes atmospheric pressure after the tsunami is pulled, the door 20D can be easily opened.
  • the atmospheric pressure in the internal space or the evacuation room can be maintained at a value close to normal pressure, so that health abnormalities such as tinnitus occurring under high pressure can be prevented, It can also prevent health problems such as sick people, elderly people and children. Further, since it is not necessary to manually close the door, it is possible to prevent troubles caused by panic such as forgetting to close the door or delaying escape of the evacuees due to premature closing.
  • FIG. 9 schematically shows the configuration of the door 20C in this embodiment.
  • FIG. 9A is a view for explaining the configuration of the float door 20C
  • FIG. 9B is a view for explaining the vertical movement of the float door 20C.
  • the internal space of the shelter 1C3 is separated by an evacuation floor 12D into an upper space 10A and a lower space 10B that serve as evacuation rooms.
  • An inlet 27 is provided between the upper space 10A and the lower space 10B.
  • the periphery of the evacuation room 10A and the door 20C of the entrance 27 are made of a material having airtightness and pressure resistance.
  • the door 20C of the entrance 27 is made of lightweight and high strength plastic so as to float on the water surface.
  • the protrusions 26C extend in the horizontal direction so that the protrusions 26C can slide vertically in the grooves 25C provided in the vertical direction from the floor surface 3 to the evacuation floor 12D. It has become.
  • channel 25C shows the state cut
  • the door 20C When the door 20C is opened, the door 20C is placed on the mounting table 28 at a position 1 to 2 m directly below the entrance 27, and the evacuees are placed on the staircase 18D from the plaza 11 to the mounting table 28 and the staircase mounted on the door 20C. Go up 18E and go up to evacuation floor 12D.
  • the float-type door 20C rises while being positioned on the water surface, and when the water level rises and reaches the evacuation floor 12D, the entrance 27 is closed by the door 20C.
  • the close contact portion 28A around the upper surface of the float type door 20C is made of an elastic body such as rubber in order to closely contact the lower surface of the escape floor 12D and hold the upper space 10A airtight.
  • a portion 28B that contacts the close contact portion 28A on the lower surface of the evacuation floor 12D is also made of an elastic body similar to the close contact portion 28A, and holds the upper space 10A in an airtight manner together with the close contact portion 28A.
  • the volume of the upper space 10 is 3/4 or more of the volume of the upper end portion of the inlet 9 of the internal space 10, the pressure of the upper space 10A is 1.3 atmospheres or less.
  • a tsunami pulls the water level drops and the door 20C is automatically opened.
  • the pressure in the internal space or the evacuation chamber can be maintained at a value close to normal pressure, so that the same effect as in the third embodiment is obtained.
  • FIG. 10 schematically shows a configuration example of the outlet 15 in the first embodiment.
  • FIG. 10A shows an example of a single door
  • FIG. 10B shows an example of a double door.
  • the escape port 15 of this embodiment can also be applied to the shelters of Embodiments 2 to 4.
  • the door 36 is a rotary (rolling) single door, and can be rotated around the right side (viewed from the inner space side) of the exit 15.
  • the rotary single door 36 is manufactured airtight.
  • the door 36 is convex, and the peripheral portion 36D is inclined so that the central portion 36C protrudes to the indoor side.
  • the entrance 39 is concave, and the peripheral portion 39D is inclined according to the door 36A.
  • the surfaces of the peripheral portion 36D of the door 36 and the peripheral portion 39D of the inlet 39 are covered with an elastic member such as rubber.
  • an elastic member such as rubber.
  • the peripheral portion 36D of the door 36 and the peripheral portion 39D of the inlet 39 are in close contact with each other, the internal space 10 is kept airtight.
  • the reason why the outside of the door 36 is a cylindrical circumferential surface is that it has a strong structure (spherical shape is the strongest) when subjected to uniform water pressure from all directions.
  • the door 36 of the exit 15 is closed, but when the shelters 1, 1 ⁇ / b> A to 1 ⁇ / b> D are in the atmosphere, they can be easily opened by manually pushing from the internal space 10.
  • the water level gradually rises outside Schulter 1.
  • the outside of the escape port 15 is submerged, and the inside is in an air state.
  • the opening angle of the door 36 is smaller than 90 degrees. 60 degrees or less is more preferable.
  • the door 36 is closed by the difference between the water outside the door 36 and the pressure inside the pressure side because the opening angle is smaller than 90 degrees.
  • the shelter 1 is again in the atmosphere, and the door 36 can be easily opened by pushing it from the internal space 10 by hand. In this state, the evacuees can escape from the shelter 1 through the exit 15.
  • the door of the present embodiment may be applied to the entrance door of the normal pressure chamber in the second embodiment. Further, when the door of the present embodiment is applied when the entrance is provided at the bottom of the evacuation chamber in the fourth embodiment, the door is automatically closed when the water surface reaches the bottom of the evacuation chamber.
  • the door of the exit 15 has been described, but a similar door can be provided in the escape port 9 instead of the door 20.
  • Fig. 10 (b) shows an example of the double door 33.
  • a normal pressure region 32 is provided between the first door (outer side) 33A of the double door 33 and the second door (inner space side) 33B.
  • a rotary single door 36 shown in FIG. 10 is used as the first door 33A and the second door 33B.
  • the first door 33A opens to the outside of the shelter 1, and the second door 33B opens to the internal space 10 side.
  • the peripheral portion 33D is formed to be inclined so that the central portion 33C of the first door 33A and the second door 33B protrudes convexly toward the normal pressure region 32, and the peripheral portion 32D of the inlet of the normal pressure region 32 is
  • the first door 33 ⁇ / b> A and the second door 33 ⁇ / b> B are formed so as to be inclined according to the peripheral portion 33 ⁇ / b> D.
  • the peripheral portions 33D of the first door 33A and the second door 33B are pressed against the peripheral portions 32D of the respective inlets, and the normal pressure region 32 is kept airtight.
  • the first door 33A and the second door 33B are closed, and the normal pressure region 32 is set to normal pressure.
  • the water pressure on the outside of the first door 33A and the internal space side of the second door 33B becomes larger than the atmospheric pressure (1 atm) in the normal pressure region 32.
  • the atmospheric pressure region 32 is kept airtight.
  • the first door 33A and the second door 33B are not opened, and the inflow of water from the escape port 15 can be prevented, and a decrease in the volume of residual air due to the inflow of water can be prevented.
  • the tsunami is pulled, the outside of the first door 33A and the inner space side of the second door 33B become normal pressure together with the normal pressure region 32, and the first door 33A and the second door 33B can be easily opened.
  • a pipe and an on-off valve may be provided between the normal pressure region 32 and the internal space 10 so that the normal pressure region 32 and the internal space 10 have the same atmospheric pressure so that the second door 33B can be opened reliably. .
  • the shelter 1 since the shelter 1 has the exit 15, the shelter 1 can go out of the shelter 1 even when the escape port 9 is blocked by driftwood or the like. Further, the door 36 of the exit 15 is kept closed while there is a pressure difference.
  • FIG. 11 schematically shows the configuration of the evacuation floor 12E floating on the water surface 31 in the sixth embodiment.
  • FIG. 11A shows a configuration of the evacuation floor 12E
  • FIG. 11B shows a configuration that stops the evacuation floor 12E from rising.
  • the evacuation floor 12E is formed of a floating body that floats on the water surface 31 of the water that has flowed into the internal space 10C.
  • a light and strong material such as FRP is used.
  • SCF (super carbon fiber) concrete may be used.
  • the box shape is provided with a fence 50 around the evacuees and luggage so that they do not fall into the water.
  • the height of the fence 50 is about 1 m, for example.
  • a sealed air chamber 51 is provided under the evacuation floor 12E. Evacuees is assumed to board one to two people to 1m 2. For example, if a sealed air box 51 having a depth of 10 cm and 1 m is provided at 1 m 2 , a buoyancy of 100 kg and 1 ton can be obtained, respectively. Therefore, the depth of the sealed air box 51 is preferably adjusted to 10 cm to 1 m.
  • a weight (for example, sand bag) 52 for balancing is hung under the sealed air box 51. Weight 52 is, for example, 1 m 2 per 25 kg, 4m 2 per 100kg like.
  • a flat plate material such as a wooden plate or an aluminum plate for the evacuation floor 12E.
  • a sealed air chamber 51 capable of obtaining a large buoyancy such as 1 ton
  • an angle, a lightweight concrete plate or the like is used for the evacuation floor 12E.
  • a material that is difficult to bend is also possible.
  • the floating body refers to an object that floats on the water.
  • ship, wood, plastic and the like are included.
  • rubber boats that contain air inside.
  • the evacuation floor 12E is always above the water surface 31, so the safety of the refugee is ensured.
  • the pillars 53 are provided in the shelter 1D at intervals of 20 m in length and breadth, and further provided with a pillar in the middle of the two pillars, the pillars 53 are disposed at positions surrounding the 20 m ⁇ 20 m box-type evacuation floor 12E.
  • a groove 54 is provided at a position corresponding to the column 53 portion of the box-type evacuation floor 12E.
  • a slope 55 is provided along the fence of the box-type evacuation floor 12E so that the refugee can move between the plurality of box-type evacuation floors 12E, and a flat portion 56 of about 1 m 2 is provided at the corner. If corners of the two box-type evacuation floors 12E are gathered, a flexible flat plate (not shown) is placed so as to surround the pillars 53 and cover the flat portions of the four corners. It can move between the mold evacuation floors 12E.
  • the evacuees install the box-type evacuation floor 12E near the evacuation exit 9 so that they can move from the vicinity of the evacuation exit 9 to the box-type evacuation floor 12E.
  • the box-type evacuation floor 12E floats on the water surface 31 and rises along the pillar 53 together with the water surface.
  • the box-type evacuation floor 12E is always on the water surface 31, and does not sink into water or capsize.
  • the water surface stops at the height at which the water pressure and the atmospheric pressure of the residual air are equal, and the box-type evacuation floor 12E is on the water surface.
  • Evacuees are safe if they are on the box-type evacuation floor 12E, and if there is lighting, perform daily operations (sleep, get up, sit, walk, eat, drink, read a cell phone, watch TV) Can do.
  • the box-type evacuation floor 12E descends along with the descent of the water surface 31, and returns to the original position. Thereby, the evacuees can go outside from the box-type evacuation floor 12E.
  • FIG. 11B shows an example of a configuration for stopping the ascent of the box-type evacuation floor 12E. This is to prevent an evacuee on the box-type evacuation floor 12E from being sandwiched between the ceiling portion 8 and the box-type evacuation floor 12E and being crushed. Useful not to exceed 3 atm.
  • the floor rising stop 59 (the lower contact portion 59A and the upper contact portion 59B) is routed around the fence 50 of the box-type evacuation floor 12E and the upper portion thereof.
  • the lower contact portion 59A which is one of the floor rising stop portions 59, is formed on the upper surface side of the portion extending to the outside of the fence 50 of the box-type evacuation floor 12E.
  • An upper contact portion 59B is provided at a portion that contacts the lower contact portion 59A on the side wall side of the shelter 1D.
  • an evacuation chamber having an internal space 10C surrounded by a material having airtightness and pressure resistance is formed on the box-type evacuation floor 12A and the floor ascending stop portion 59.
  • the lower contact portion 59A and the upper contact portion 59B are made of an elastic body such as rubber in order to keep the internal space 10C airtight.
  • the box-type evacuation floor 12E rises together with the water surface 31. However, further raising of the box-type evacuation floor 12E is stopped by the floor rising stopper 59.
  • the lower contact portion 59A and the upper contact portion 59B are in close contact with each other, and the internal space 10C as an evacuation chamber is kept airtight.
  • an elastic bag containing water may be used for the lower contact portion 59A. Even if the lower contact portion 59A or the upper contact portion 59B has a certain amount of distortion or unevenness, the water bag adheres well to the contact portion 59B and airtightness is maintained. Since the water surface 31 does not exceed the floor rising stopper 59, the volume of the internal space 10C is equal to or higher than the floor rising stopper 59 and is 3/4 or more of the entire internal space 10 above the escape port 9, so The atmospheric pressure is 1.3 atmospheric pressure or less. When the tsunami is pulled, the water level is lowered and the box-type evacuation floor 12E is automatically lowered. Further, since the area of the floor rising stopper 59 increases, a part of the floor rising stopper 59 may be replaced with a flexible vinyl sheet 59C having airtightness and pressure resistance.
  • the box-type evacuation floor 12E is not extended to the land-side side wall portion 6, and a margin is provided.
  • winding wind-up part (not shown) installed in the floor surface part 3 is attached to the end of the sealed air chamber 51. Then, when the water surface rises, the net 57 is stretched from the net winding portion of the floor surface portion 3 to the end of the sealed air chamber 51. If a refugee who has escaped gets involved in the water stream and enters the internal space 10, the net 57 floats upward without entering the box-type evacuation floor 12E due to the net 57, and the lifted place becomes the box-type evacuation floor 12 E. There is a chance that it can be raised and rescued.
  • the shelter floor 12E itself rises and descends, so that the rising means such as stairs and slopes can be omitted.
  • the present embodiment has the same configuration as that of the first embodiment except for the evacuation floor 12E and the ascending means, and similarly to the first embodiment, it is possible to provide a shelter that can ensure safety even in a huge tsunami.
  • the evacuation chamber is configured by providing the floor rising stop portion 59, the pressure in the evacuation chamber can be maintained at a value close to normal pressure, and thus the same effect as in the third embodiment is obtained.
  • FIG. 12 schematically shows the configuration of the escape port 9A in the present embodiment.
  • a door 58 is provided on the outer side of the land side wall 6 on the outer side of the escape port 9A.
  • the example applied to the shelter 1 of Example 1 is demonstrated.
  • the stopper 58A and the float 58B are rotated around the rotation shaft 58D).
  • the drop door 58 is pulled up by winding up a rope or chain 58C connected to the drop door 58. Further, it is preferable to drop the door 58 before the water level of the tsunami reaches the upper end of the entrance 39B. Moreover, it is preferable that the drop door 58 is pulled up from the inside so that the drop door 58 can be pulled up with a rope or chain 58C (for example, the rope or chain 58C can be hung on the lower inner side of the door).
  • a drain pipe is connected to the drain pool from a plurality of heights (including the floor portion 3) of the internal space, and a plurality of on-off valves are provided in each pipe.
  • the reason for using a plurality of on-off valves is to lower the water pressure applied to the on-off valves by draining from the higher side.
  • the configuration other than the dropping door and the water dropping means is the same as that of the first embodiment, and similarly to the first embodiment, it is possible to provide a shelter that can ensure safety even in a huge tsunami. Moreover, since the drop door is provided and the atmospheric pressure in the internal space can be maintained at a value close to normal pressure, the same effect as in the third embodiment can be obtained.
  • FIG. 13 schematically shows a longitudinal sectional view of the shelter 1E in the eighth embodiment.
  • Example 8 demonstrates the example which builds shelter 1E along a bank.
  • the sea side wall portion 5A By connecting the shelter 1E sea side wall portion 5A to the land side of the dike, it is structurally strengthened and is not easily broken.
  • the sea side wall portion 5 ⁇ / b> A is constructed along the slope of the dike 60.
  • the land side wall portion 6 is constructed to be inclined to the sea side with the same gradient as the embankment 60.
  • a relatively heavy object such as a power source or a cylinder can be placed by providing the storage warehouse 14 on the side of the internal space 10 close to the embankment 60.
  • the exit 15A can be taken out through a small path 61 provided between the embankment 60 and the shelter 1E, it can be easily transferred to the road above the embankment 60 through stairs and slopes (not shown) provided along the embankment 60. can go.
  • the sea side wall 5 above the lower end of the escape port 15A is constructed to be inclined vertically or on the land side.
  • the driftwood prevention fence 62 is installed on the ceiling portion 8, it is possible to prevent the escape port 15A and the path 61 from being blocked by driftwood.
  • the configuration other than the above is the same as that of the first embodiment, and similarly to the first embodiment, it is possible to provide a shelter that can ensure safety even in a huge tsunami. Moreover, since it is constructed along the embankment, it has the effects of being structurally strengthened, being able to use high places, and effectively utilizing the disaster prevention space on the embankment.
  • Example 9 describes an example of building a shelter along a school building. Some schools are close to the sea and are likely to be damaged by tsunamis, and some are along the river and are likely to be damaged by floods. Since the school building is not necessarily constructed along the coast, the seaside side wall portion of the above embodiment is replaced with the first side wall portion, and the land side wall portion is replaced with the second side wall portion. Apply. Side walls (first side wall part or second side wall part) parallel to the longitudinal direction of the shelter are provided along the school building. For example, it is easy to evacuate from the school building to the shelter by building the side wall of the school building and the side wall of the shelter by connecting them integrally with reinforced concrete, or by connecting the side wall of the school building and the side wall of the shelter with a communication passage.
  • the shelter can be quickly entered without leaving the building. Moreover, if the exit is connected to the third or fourth floor corridor of the school building, it can be easily escaped into the school building. Even in school buildings that are not directly connected to the shelter, there is a high probability of being rescued because the shelter is at a short distance. Therefore, building a shelter along the school building has the advantage that many children can be evacuated from tsunamis and floods. Moreover, if the shelter is installed on the roof of the school building, it can quickly escape to the shelter without going out of the school building, and the residual air pressure is lowered because the shelter is at a high place. Moreover, since the site is not increased, the site can be used effectively.
  • Tsukiyama is usually a small mountain that is used as a playground for children, but is used as a shelter in emergencies.
  • the construction and shelter is constructed by hollowing out the interior of the mountain and making it a shelter, or by laying a pile on the shelter.
  • the embodiment described above can be applied to an embodiment in which an escape exit is provided somewhere or no escape exit is provided.
  • the shelter size and usage changes depending on the size of the mountain and the environment, so an appropriate design is required for each project.
  • the shelter installation position is different from that of the first to ninth embodiments, but the configuration is the same or similar, and thus the shelter that can ensure safety even in the case of a huge tsunami is provided as in the above embodiments. it can. Furthermore, because it is built near the school building, many students can be quickly evacuated from tsunamis and floods.
  • FIG. 14 shows a longitudinal sectional view of a main part of the shelter 1F in the tenth embodiment.
  • the shelter 1F is constructed at the center of the 8th to 10th floors of the 10-story building 63.
  • a continuous internal space 10F is formed on the 8th to 10th floors, and its periphery is surrounded by airtight reinforced concrete except for the escape port 9F and the escape port 15F.
  • the lower end of the escape port 9F is provided at the same height as the floor of the eighth floor, and the lower end of the exit 15F is provided at the same height as the floor of the tenth floor.
  • the drain hole 64 is provided on the floor surface of the shelter 1F in order to drain water from the internal space when a tsunami is drawn.
  • the evacuation floor 12F is desired to be higher than the highest position on the water surface of the internal space 10F.
  • the pressure of the residual air increases.
  • the entrance door 20F before reaching the evacuation floor 12F from the evacuation exit 9F or the evacuation exit 9F may be automatically closed (for example, the embodiment). 4, the door of Example 3 is also applicable).
  • a normal pressure chamber may be provided.
  • shelters may be provided at a plurality of locations in the building.
  • the shelter installation position is different from that of the first to ninth embodiments, but the configuration can be similar, and thus, as in the above embodiments, a shelter that can ensure safety even in a huge tsunami is provided. it can.
  • the shelter has a dome shape, and a shelter corresponding to the first to ninth embodiments is used. Some of them may be used as warehouses, bicycle parking lots, coffee rooms, gymnasiums, conference rooms, lodging rooms, etc. In this way, the shelter may be used within a range that does not interfere with evacuation.
  • the whole is provided with an airtight structure at least in the upper part where the evacuation floor or evacuation room is provided.
  • illumination and communication are necessary, for example, a power line and a communication line terminal are embedded in a certain part of the wall of the shelter so that there is no air leakage.
  • an emergency power source for example, a small power source equipped with a storage battery used for solar power generation, construction sites, electric vehicles, or the like is used.
  • a fan or the like creates an air flow for a certain period of time to prevent mold and condensation.
  • the drinking water uses a plastic bottle
  • the toilet uses a simple toilet, etc.
  • the air holes, drain holes, etc. are not provided.
  • disaster information and safety information can be exchanged by connecting a TV or personal computer to an antenna or communication line outside the shelter via a communication terminal.
  • a shelter capable of ensuring safety even in a huge tsunami can be provided as in the above embodiments.
  • FIG. 15 schematically shows the configuration of a shelter 1G that uses the garage in the twelfth embodiment.
  • 15A is a diagram for explaining the configuration of the shelter door 73
  • FIG. 15B is a diagram for explaining the vertical movement of the shelter door 73
  • FIG. 15C is the present embodiment. It is a figure which shows the door for low shelters by a deformation
  • a car 71 is stored in the garage 70. Concrete is used for the wall surface, floor, and ceiling of the garage 70 except for the entrance and the entrance. An existing shutter 72 is provided at the entrance of the garage 70.
  • a shelter door 73 is provided at the entrance.
  • the shelter door 73 is made of an elastic air bag for containing air.
  • the door 73 is folded and stored in the storage box 74 when opened.
  • air is pumped in by the pump 75 and expands downward from the ceiling.
  • the door 73 also descends along the groove 76 on the side of the entrance, and the bottom of the air bag enters the groove 77 on the floor of the garage 70.
  • An elastic body 78 such as rubber is affixed to the concrete at the entrance side surface and the bottom of the floor grooves 76 and 77.
  • the door 73 is pressed against the elastic body 78 at the entrance side surface and the bottom of the floor grooves 76 and 77 so as to prevent water from passing therethrough.
  • FIG. 15C shows an example of a low shelter door 73A as a modification of the present embodiment.
  • the door 73A is folded into the groove 77 when opened.
  • air is fed by the pump 75 to swell upward from the floor, and rises along the groove 76 on the inlet side surface.
  • the door 73A is pressed against the elastic body 78 at the bottom of the groove 76 on the inlet side surface so as to prevent water from passing therethrough.
  • the door 73 ⁇ / b> A is formed integrally with the elastic body 78 at the bottom of the floor groove 77. Further, since the door 73A is stored in the floor groove 77 when the door 73A is opened, no storage box is required. Other configurations are the same as those in the embodiment of FIG.
  • Example 1 Although the sea side side wall part 5 and the land side side wall part 6 demonstrated the example which inclines inside the shelter, you may build straightly.
  • anchors and underground piles are preferably deepened so that they are not displaced or tilted by the tsunami, but when connected to a solid basement or underground passage, anchors and underground piles can be used.
  • Example 2 Although the example which makes the longitudinal direction of a shelter parallel to a coast was demonstrated in the above Example, since the resistance of a tsunami can be reduced if a longitudinal direction is made perpendicular to a coast, it may be sufficient.
  • the shelter of the present invention can be used for relief of evacuees during tsunamis and floods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

 巨大津波でも安全を確保できるシェルターを提供する。津波又は洪水から避難するためのシェルター1であって、避難口9を除いて気密性と耐圧性を有する材料で囲まれた空間である内部空間10を備え、避難口9から水が内部空間10に流入し得る構成で、津波の高さをH(m)、残留空気の圧力をN=1+H/10=>1.1(気圧)、内部空間10内の避難口9の上端以上の容積をVとして、内部空間10内の最高位置から容積がV/Nとなる高さより高い位置に避難床12が設けられている。

Description

シェルター
 本発明は、避難者を津波又は洪水から護るシェルターに関する。
 巨大地震が発生し巨大津波が発生すると、津波が内陸深く進行して家屋が破壊され、持ち去られるとともに、高台に避難できない人は津波の犠牲となるということは、東日本大震災が示している。
 従来、津波・洪水など非常事態時の避難用シェルターは、例えば、内部を避難室として有するシェルター本体と、この避難室に避難者を誘導可能な密閉可能型扉付き避難口、および避難口と避難室との間を連絡する避難経路を有する津波・洪水など非常事態時の避難用シェルターであって、避難口を高さ方向に分けて複数配して低い側の避難口が閉じてもそれより高い側の避難口を通じて避難可能に構成されている。避難者は、避難経路を通り地下に設置された避難室に避難できるようになっている(特許文献1参照)。
 しかしながら、特許文献1を含む従来のシェルターでは避難口を閉じて密封しなければならない。このため、巨大津波が押し寄せて来る場合には、その前までに、避難口を閉じて密封しないと海水が地下の避難室に流入してしまう恐れがある。他方、避難口を早く閉じようとする心理が働き、早めに閉じてしまうと、シェルターの中に入れず取り残されてしまう避難者が生じる恐れがある。
 そこで発明者の1人は、気密構造の内部空間に残る残留空気を利用し、避難口の上端より高い位置に避難床を設けるシェルターを提案した(特許文献2参照)。これにより、避難口を閉じなくても良くなり、津波が到来する直前まで、避難者がシェルター内に逃げ込めるようになった。
特開2013-234556号公報 実用新案登録第3188958号公報
 しかしながら、津波がさほど大きくなければ、内部空間の水面は避難口の上端よりさほど高くならないが、例えば高さ5m以上(30m以上になることもある)の巨大津波では、シェルター内部の水面が避難口の上端より相当高くなってしまうという問題があった。
 また、残留空間の気圧が、例えば1.3気圧以上になると、避難者に健康被害が生じ得るという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、第一に、残留空気を利用することにより、巨大津波でも生命の安全を確保できるシェルターを提供することを目的とする。第二に、残留空気の気圧が高くならないように、避難口や避難室の扉を自動的に閉鎖できるシェルターを提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様に係るシェルター1は、例えば図2に示すように、津波又は洪水から避難するためのシェルター1であって、避難口9を除いて気密性と耐圧性を有する材料で囲まれた空間である内部空間10を備え、避難口9から水が内部空間10に流入し得る構成で、津波の高さをH(m)、残留空気の圧力をN=1+H/10=>1.1(気圧)、内部空間10内の避難口9の上端以上の容積をVとして、内部空間10内の最高位置から容積がV/Nとなる高さより高い位置に避難床12が設けられている。
 ここにおいて、気密性とは気体及び液体を通さないことをいい、耐圧性とは例えば高さ50mの津波で、絶対圧で6気圧の水圧(ゲージ圧で5気圧)を受けたときに破壊・損傷されないことをいう。また、気密性と耐圧性を有する材料としては、例えば鉄筋コンクリート、FRP(繊維強化プラスチック)等が挙げられる。また、残留空気とは、内部空間に水が流入して、内部空間のうち水面より上の空間が大気と切り離されたときに、水面より上の空間に残った空気をいう。また、避難床とは避難者が水に浸らないように上に乗る床をいう。また、避難床は必ずしもシェルター本体に固定されていなくても良く、実施例6のように水に浮かぶ床でも良い。また、床は木製に限らず、例えばプラスチック製でも良い。また、残留空気の圧力Nは津波の高さHとシェルターの内部空間10の高さに応じて定まる。ここでは、絶対圧でN=>1.1気圧としたが、大津波が予測される場合には、N=>2,3,4等として避難床の高さを設計することも可能である。また、本明細書では圧力の単位は常圧(大気圧)を基準とする。すなわち、1気圧は1atm(0.1013hPa)である。以下、特に断らない限り、圧力は絶対圧をいうこととする。また、上記の式(式(1))において津波の高さHとして、近似的には平均潮位面からの高さを使用しても良いが、内部空間の水面から津波の波面までの高さを使用すると精度が高くなる(図4参照)。ただし、シェルター避難口の地面からの高さに比してかなり高い大津波ではその差は無視できる。また、1.1気圧以上とするのは、本願は内部空間の残留空気を利用することに斬新な特徴があることを明確にするものだからである。したがって例えば1.05気圧以上、1.2気圧以上としても良い。
 本態様のように構成すると、津波に対して、内部空間10において想定される水面31(図4参照)の高さより高い位置に避難床12が設けられているので、人命を救済できる。また、避難口9は閉じないので、避難者は、津波がシェルターを乗り越える瞬間まで避難口9へ駆け込み避難することができる。また住所や勤務先の近くにシェルターを建設すれば、高台まで逃げなくてもシェルターに逃げ込むことで人命が救済される。
 また、本発明の第2の態様に係るシェルター1C1~1C3は、例えば図8又は図9に示すように、津波又は洪水から避難するためのシェルター1C1~1C3であって;避難口9を除いて気密性と耐圧性を有する材料で囲まれた空間を内部空間10,10Aとして;前記内部空間の気圧を1.3気圧以下に維持するために、避難口9の扉20A、20B、20D又は内部空間10内に設けられた気密性と耐圧性を有する材料で囲まれた避難室34Bへの入口の扉20Cであって、扉20Cの外側の水圧と扉20Cの内側の気圧との差異を利用して又は水面の上昇を利用して自動的に閉鎖可能な扉20A~20Cを備える。
 ここにおいて、自動的とは人手によらない、人の操作を要しないことを意味する。本態様では、電気が遮断されても自動閉鎖が可能なように水力を動力としている。勿論、電力を使用できる場合には避難口においてセンサーにより水を検出し、電気的に扉を閉じることも可能である。また、水力と電力を併用しても良い。なお、扉の内外の圧力差を扉の自動閉鎖に用いる場合には、圧力差がある状態では扉は閉じた状態に保たれ、津波が引いた後は、圧力差がなくなるので、自動的に扉は容易に開けられる状態に戻る。また、水面の上昇を用いる場合には、津波が引いた後は、水面が下降するので、自動的に扉は開いた状態又は容易に開けられる状態に戻る。また、実施例6の避難床12Eが水に浮く例で、床上昇止め部59を用いる場合は、避難床12Eが扉になっているといえる。
 また、本発明の第3の態様に係るシェルター1B2は、第1又は第2の態様において、例えば図7に示すように、内部空間10に常圧室34が設けられている。
 このように構成すると、常圧室を設けることにより、健康弱者である病人、老人、子供を常圧室に入室させ、高い気圧状態から解放し、健康被害を抑制できる。
 本態様のように構成すると、扉を自動的に閉めることにより、内部空間又は避難室の気圧を常圧に近い値に保持できるので、高気圧下で生じる耳鳴り等の健康障害(健康異常を含む)を防止でき、病人・老人・小児等への健康被害を防止できる。また、人手で扉を閉める必要がないので、閉め忘れ、早すぎる閉鎖による避難者の逃げ遅れ等のパニックによるトラブルの発生を防止できる。
 また、本発明の第4の態様に係るシェルター1Eは、第1ないし第3のいずれかの態様において、堤防60に隣接して又は堤防60の内部に内部空間10が設けられている。
 このように構成すると、堤防の堅固な構造を利用して、津波により位置ずれや傾斜しない安定なシェルターを構成できる。
 また、本発明の第5の態様に係るシェルターは、第1ないし第3のいずれかの態様において、学校の校舎に隣接して又は学校内の築山内部に内部空間が設けられている。
 このように構成すると、学校の内部にシェルターを設けるので、学童・学生が早く避難でき、学童・学生の命を救済できる。
 また、本発明の第6の態様に係るシェルターは、第1ないし第3のいずれかの態様において、シェルター内に倉庫、駐輪場、喫茶室、体育館、会議室又は宿直室が設けられている。
 このように構成すると、シェルターを避難に差し支えない範囲で利用できる。
 また、本発明の第7の態様に係るシェルター1は、第1ないし第6のいずれかの態様において、例えば図2に示すように、シェルター1を地中に固定する地中抗2と、地中抗2と一体的に形成された床面部3と、床面部3の長手方向の両端において床面部3と一体的に形成されて上方向に延びる一対の端壁部4と、一対の端壁部4と一体的に形成され、床面部3から上方向に延び、かつ下方向で地中に延びる部分がアンカーとなる海側側壁部5と、一対の端壁部4と一体的に形成され、床面部3から上方向に延び、かつ下方向で地中に延びる部分がアンカーとなる陸側側壁部6と、一対の端壁部4、海側側壁部5と陸側側壁部6の上端同士を一体に連結する天井部8とを備え、陸側側壁部5の略地面の高さに避難口9が設けられ、内部空間10は、床面部3、一対の端壁部4、海側側壁部5、陸側側壁部6及び天井部8で囲まれた空間をいい、床面部3の避難口9に臨む場所に広場11が設けられ、避難者が広場11から避難床12へ移動するための上昇手段18,19を備える。
 ここにおいて、一体的とは連結部分で同じ材料で切断されることなく連続して形成されることが理想的であるが、ここでは気密性が保持できれば良い。例えば同じ材料が強力な接着剤で接着されることにより気密性が保持されても良い。また、上昇手段として、階段18、梯子又はスロープ19等を使用できるが、電源を備えていれば避難者を電動で上昇させるゴンドラ等を使用しても良い。
 本態様のように構成すると、頑丈で気密なシェルター1を構成できる。また、この構成により、巨大地震の発生に伴い大津波の発生が予想され安全な所へ避難を呼びかける警報が発令された場合、避難者及び車椅子の利用者は、避難口9から広場11へ入り込み、さらに広場11から階段18、梯子又はスロープ19を通り、避難床12上に避難する。避難口9は閉じないので、避難者は、津波がシェルター1を乗り越える瞬間まで避難口9へ駆け込み避難することができる。
 また、本発明の第8の態様に係るシェルター1Gは、例えば図15に示すように、水が車庫70内に流入するのを防止するシェルター1Gであって、車庫70の入口に、空気袋を天井から下方向に膨らませて側壁及び床面に押し付け、又は床から上方向に膨らませて側壁に押し付け、水が車庫70内に入るのを防止するシェルター用扉73,73Aを備える。
 このように構成すると、洪水又は大雨時に、水が車庫70内に流入するのを防止できる。
 本発明によれば、第一に、残留空気を利用することにより、巨大津波でも生命の安全を確保できるシェルターを提供できる。第二に、残留空気の気圧が高くならないように、避難口や避難室の扉を自動的に閉鎖できるシェルターを提供できる。
実施例1におけるシェルターの平面図及び斜視図である。 実施例1におけるシェルターの要部縦断面図である。 図2におけるIII-III線の要部水平断面図である。 シェルター内の海水面について説明するための図である。 実施例1における避難床が高いシェルターの要部縦断面図である。 シェルターの内部空間において、高さ方向の断面積が低い方で広く、高い方で狭くなっている態様のシェルター内の海水面について説明するための図である。 実施例2におけるシェルター内に常圧室を設ける構成を模式的に示す図である。 実施例3における扉の構成を模式的に示す図である。 実施例4における扉の構成を摸式的に示す図である。 実施例5における脱出口の構成を摸式的に示す図である。 実施例6における水面に浮遊する避難床の構成を摸式的に示す図である。 実施例7における避難口の構成を摸式的に示す図である。 実施例8における堤防を利用するシェルターの断面を摸式的に示す図である。 実施例10におけるビル内のシェルターの断面を摸式的に示す図である。 実施例12における車庫を利用するシェルターの構成を摸式的に示す図である。
 この出願は、日本国で2015年3月6日に出願された特願2015‐044612号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明及び特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 以下、本発明の実施の形態について、図面を参照して説明する。各実施例において同一又は相当する部分には同一の符号を付して、重複する説明を省略する。
 実施例1では、避難口が常時開放されているが、内部空間において水面が上昇しても安全に避難できるシェルターの例を説明する。
 図1ないし図3は、内部空間がワンフロアのタイプのシェルターを示す。図1は本実施例におけるシェルター1の平面図及び斜視図である。図1(a)は平面図、図1(b)はその1棟の一部の斜視図である。シェルター1は海岸線に沿って3棟設置されている。図1のように、シェルター1の長尺方向が津波が押し寄せて来る方向に対して直角に構築されていると、津波が来た時に津波の内陸への進行を低減する津波防波堤としての役目も担うことになる。
 また、シェルター1を越えて奥側へ進行した後、海方向へ返す津波は、シェルターとシェルター1の間を通り抜けて行く。このため、シェルター1よりも陸側に海水がいつまでも留まってしまうことがないので、津波が押し寄せてから数十分後には広場に充満していた海水は、避難口9から外部へ流出する。したがって、シェルター1内に避難していた避難者及び車椅子の利用者は避難口9から脱出することができる。また、シェルター1の間を通り海方向へ返す津波の流れは早いので、流木や船等の浮遊物が通れる幅を開けておけば、これら浮遊物がシェルター1に強く衝突して、シェルター1が破壊されることを防止できる。また、浮遊物が堆積して避難口9や脱出口15をふさぐことも防止できる。
 本実施例に係るシェルターによれば、海岸線に構築されるので、海岸線の近くに短時間で大津波から避難できる高台が存在しない地域に構築して、大津波の退避時間内に非難できる設備として有用である。シェルターの規模は、避難する住民の人数に応じて決めるのがよい。
 図2はシェルター1を長尺方向に垂直な面で切断した時の断面図、図3はシェルター1を水平な面で切断した時の断面図である。シェルター1は気密性と耐圧性を有する建築用材料で囲まれた空間である内部空間10を有し、内部空間10に連通する避難口9を備える。津波が押し寄せても避難口9を開放状態にして津波を被ってしまう直前まで避難口9を通して避難することができる。
 シェルター1は、地中杭2と、地中杭2と一体の床面部3と、床面部3の長手方向の両端において床面部3と一体となり立ち上がる一対の端壁部4(4A,4B)と、一対の端壁部4A,4B間に位置して床面部3と一体となり立ち上がる複数の中間壁部7と、下端が地中の深い位置に延びてアンカーとなり上方にいくにつれて陸側に寄って傾斜して立ち上がる(傾斜せず上方向に立ち上がっても良い)海側側壁部5と、下端が地中の深い位置に延びてアンカーとなり上方にいくにつれて海側に寄って傾斜して立ち上がる(傾斜せず上方向に立ち上がっても良い)陸側側壁部6と、海側側壁部5と陸側側壁部6の上端同士を一体に連結する天井部8と、陸側側壁部6の低い位置において床面部3と床面レベルが略一致する所要の大きさの避難口9とを備えている。
 シェルター1は、一対の端壁部4(4A,4B)と、陸側側壁部6と、海側側壁部5と、天井部8とにより、避難口9を除いて気密性が十分に確保された内部空間10を備えている。シェルター1は、床面部3と、一対の端壁部4と、複数の中間壁部7と、海側側壁部5と、陸側側壁部6と、天井部8とが一体的に連結して形成されており、シェルター1外面部若しくは内面部に気密性を有するシールド層を形成し、又は鉄筋コンクリート中に混練される気密保持材料により、内部空間10が避難口9を除いて気密性を有する。シェルター1は、大地震及び大津波により大きな外力が加わっても、内部空間10に備わる気密性を喪失する原因となるき裂を生じることがないように注意を払って構築される。
 ここにおいて、シールド層の材料又は気密保持材料として、例えば石膏ペースト等を使用できる。鉄筋コンクリート自体、気密性を有するが、石膏ペースト等のシールド材で目つぶしをすると気密性が向上する。なお、津波は数十分で引くので、気密性としては、例えば1時間で残留空気が1割減少する程度の漏れがあっても良い。しかし、施工時にはコンクリートにひび割れができないように注意して行うことが肝要である。
 地中杭2は、例えば鉄筋コンクリート製であり、地中に杭打ちされるか、又は地中に穴をあけて配筋しコンクリートを打設してなる。また、地中抗2としてパイル(コンクリート杭)を岩盤まで打ち込む構成により、シェルターの構造は安定し、津波が引くときにシェルターに位置ずれや傾斜が生じることを防止できる。
 床面部3は、鉄筋コンクリート製であり、硬く地均しした地面にプレキャスト製の鉄筋コンクリート板を敷いて、鉄筋コンクリート板上に突出する鉄筋にさらに配筋してコンクリートを打設した構成でもよい。
 一対の端壁部4及び複数の中間壁部7は、耐震壁として構成される。端壁部4と中間壁部7は、鉄筋コンクリート製でよいが、鉄骨を組み配筋し型枠を組んでコンクリートを打設した構成がよい。
 海側側壁部5と陸側側壁部6は、それぞれ、床面部3並びに一対の端壁部4及び複数の中間壁部7と一体に構成される。海側側壁部5と陸側側壁部6は、鉄筋コンクリート製でよいが、プレキャスト製の鉄筋コンクリート板を傾斜状態に立設して、鉄筋コンクリート板の外面上に突出する鉄筋にさらに配筋し、十分な防水処理を行ってからコンクリートを打設した構成が好ましい。
 シェルター1は、地中深く伸びる複数の地中杭2と、地中杭2に一体に設けられた床面部3と、下端部が地中深く食い込んでアンカーを兼ねて構築される海側側壁部5及び陸側側壁部6とにより、巨大津波の圧力が海側側壁部5に加わっても引き抜けないで倒壊を防げる必要十分な強度を有している。また引き波により土砂がさらわれても倒壊しないように設計される。
 中間壁部7は、シェルター1の強度を大きく確保するために有効である。中間壁部7には通路7aが設けられ、人が内部空間10を一方の端から他方の端まで移動できるようになっている。こうすると、シェルター1内でのコミュニケーションがとれ、避難者の不安を小さくできる。
 シェルター1は、鉄筋コンクリートの構築物であると、鉄筋の使用量やセメントの量、壁の厚みにより強度を計算できるので、必要十分な耐倒壊強度を得られる。
 避難口9は、床面部3と地面の高さがおよそ一致する陸側側壁部6の下部に開口されている。避難口9は、例えば車椅子の利用者が通れる大きさとする。避難口9は、平常時に部外者や動物の出入りを規制するための簡易な入口扉20を備えている。
 入口扉20は、避難口9を気密に閉じる役目を果たさなくてよい。入口扉20は、非常時に誰でもが容易に開けられるようにするため、また、避難時には開扉状態を保持するため、錠前を備えておらず、簡単確実にロックできるロック手段(図示しない)を有しているのがよい。
 シェルター1の内部空間10には、避難口9に臨み床面部3の所要面積部分を占める広場11と、内部空間10の広場を除く領域に避難口9の上端よりも所要寸法高い床面となるように設けられた避難床12と、広場11から避難床12へ人が移動するための上昇手段としての階段18及び車椅子が移動するためのスロープ19とが設けられている。
 広場11は、避難口9から次々に避難者が入り込む状況があるときに、例えば10人の避難者の受け入れスペースがあれば、非常に有効である。広場11が有ることにより、広場11と避難床12とを連絡している階段18、梯子及び/又はスロープ19を設けることができるだけでなく、避難しようとする人々を避難口9から広場11に次々に受け入れて、さらに避難しようとする人々を階段18又はスロープ19を通して避難床12へ誘導できる。
 図4は津波のときのシェルター1内の海水面について説明するための図である。津波が来ると、シュルター1の外側は次第に水位が上昇する。シェルター1の周囲は避難口9を除いて気密性の材料で覆われている。水面が避難口9の上端に達するまではシェルター1の内側と外側で水面は同じ高さで上昇する。水面が避難口9の上端に達すると、シェルター1内の空気が外気から切り離されて、残留空気30となる。さらに水面が上昇すると、シェルター1内側の水面31は外側の水面22より低くなる。そして、内側の水面31における気圧と、内側の水面31と同じ高さの外側の水圧が等しくなる。外側の水圧は水深で決まる。水深が10m増す毎に、水圧は1気圧上昇する。
 例えば津波の高さH(m)が水面から5m、10m、20m、30mでは、それぞれ、水圧は1.5気圧、2気圧、3気圧、4気圧となる。内部空間10内の避難口9の上端以上の容積をVとすると、シェルター1内の残留空気30の体積はそれぞれ、2V/3、V/2,V/3,V/4になる。避難口9の上端からシェルター1の天井までの高さをh(m)、避難口9の上端からシェルター1内の水面までの高さをh(m)とし、シェルター1の断面積は高さ方向に一定と仮定すると、シェルター1内の残留空気30の体積が2V/3,V/2,V/3,V/4となる時には、それぞれ、残留空気30の高さは2h/3,h/2,h/3,h/4となり、hはh/3,h/2,2h/3h,3h/4となる。この状態で、津波時のシェルター1内の水面31の水圧と残留空気30の気圧が釣り合い(等しくなり)、水面31の高さが決まることになる。一般にN気圧で釣り合うとすると、
N=1+H/10・・・(式1)及び、
(h-h)/h=1/N・・・(式2)より、
  h=h/(1+10/H)・・・(式3)となる。
 H(m)が水面から5m、10m、20m、30mでは、h/h=1/3,1/2,2/3,3/4となる。よって、津波の高さ最大5m、10m、20m、30mが予測される場合には、避難床12を、避難口9の上端から高さh=h/3,h/2,2h/3,3h/4(m)+設計余裕値Δh(例えば0.5m)に設ければ良い。
 ここで図2、図3に戻る。避難床12は、津波の予測高さを考慮し、内部空間10の水と残留空気の境界面31よりゆとりを持って高いレベルとなるように設けられる。例えば避難床12の下側には、備蓄倉庫14を備え、備蓄倉庫14と避難床12との隔壁には、広場11に浸入した海水が備蓄倉庫14へ浸入できない防水処理が施されていることが好ましい。備蓄倉庫14には、避難床12上の避難者が出入りできる階段18C(又は梯子)を備えている。備蓄倉庫14には、食糧、水、医療・救急用品、照明灯等が蓄えられる。
 避難床12は、階段18及び/又はスロープ19を通して移動できる複数階構造としてもよい。なお、階段18に替り、梯子を備えていてもよい。また、電力を使用できる場合には、例えば2~3人が乗れるボックスを電力で動かし、避難床に運んでも良い。
 シェルター1は、端壁部4、海側側壁部5又は陸側側壁部6のいずれかに、内部空間10に避難した人が通れる脱出口15を備えている(実施例5参照)。脱出口15には、内部から人為操作で開くことができる気密性を有する扉16を備えているのが好ましい。扉16は一重扉でも良く、二重扉16(16A,16B)でも良い。この構成により、避難口9が大量の瓦礫等でふさがれてしまい、避難口9からの脱出ができない場合に、避難者が脱出口15からの脱出ができるフェイルセーフの構成となっているので、避難者に精神的に安心を与えることができる。シェルター1には、脱出口15に対応して、扉16を開けて脱出口15に入るための梯子21と、脱出口15から外部へ降りる梯子22が備えられている。なお、二重扉16(16A,16B)として、例えば図10(b)の二重扉33(33A,33B)、図7の二重扉36(16A,16B)等を適用できる。
 シェルター1は、避難口9の前方外部に車椅子が通れる間隔を有する流木防御柵13を備えているのが好ましい。この構成により、津波が海へ持ち去ろうとする流木等が避難口9を塞いでしまうことを回避でき、津波が静まった後に、人が避難口9から出ることができる。
 シェルター1は、図示しないが、内部空間を照らす照明設備として、自動的に満充電状態に充電するバッテリ又はハンドル回転操作式発電機等の電源と、照明(図示しない)と、照明の点灯及び消灯を行うスイッチ(図示しない)とを備えているのが好ましい。この構成により、避難環境を暗黒でなく恐怖を取り除き、避難者に精神的に安心を与えることができる。その他、ベンチやTV、ラジオ等を備えておくのがよい。
 また、シェルター1は、酸素又は空気を供給する供給手段(図示しない)を備える。供給手段として、例えば、それぞれ過酸化水素と二酸化マンガンを入れた容器を準備し、二酸化マンガンに過酸化水素を注ぐと、二酸化マンガンの触媒反応により、過酸化水素が水と酸素に分解されて、酸素が供給される。また、例えば酸素ボンベ又は空気ボンベを使用できる。このようにすると、シェルター1内に酸素又は空気を供給できるので、避難時間が長くなっても避難者の生命を維持できる。
 このように、食品・水・医薬品・日常の生活用品等の備蓄、電源、酸素又は空気供給手段を備えることにより、避難者は津波が来てから引くまでの長くても数時間の間、日常生活ライクの生活を過ごすことができる。
 シェルター1は、海側側壁部5及び陸側側壁部6の少なくともいずれかに、土盛りして植生を植えることができ、かつ天井部8上に登れる階段(図示しない)を備えているのが好ましい。この構成により、シェルター1は、殺伐とした建造物とならず、普段から植生を植えながら管理でき、海岸での展望台等として地域の美観にも役立つ。
 図5は、実施例1の変形として、避難床が高い位置にあるシェルター1Aの例を示す。すなわち、内部空間がツーフロアのタイプになっている。シェルター1Aは、高く形成された内部空間10に、1階、2階の避難床12A、12Bを備え、広場12から1階へ及び1階から2階へそれぞれ移動する階段18A、18B及びスロープ19A、19Bを備えている。1階及び2階からそれぞれ外部に脱出できる脱出口15A、15B(扉は16A,16B)を備えている。脱出口については、実施例5で説明する。避難床が高い位置にあるので、高い津波に対処できる。その他の構成は、ワンフロアタイプと同一であるので、説明を省略する。
 以上説明したように、本実施例に係るシェルターは、巨大津波でも安全を確保できるシェルターを提供できる。大津波が来た時に津波防波堤として大津波の内陸への進行を低減するとともに、避難口を開放状態にして大津波を被ってしまう直前まで避難口を通して避難することができ、大津波が収まり海水が海へ戻るまでの間、避難者を大きな津波から護るという効果を有する。また、海岸線の近くに短時間で大津波から避難できる高台が存在しない地域に構築して、大津波の退避時間内に非難できる設備として有用である。
 実施例2は、シェルターに常圧室を設ける構成の例を示す。残留空気の気圧が上がると、避難者の健康状態が影響を受ける。1.3気圧以上で耳鳴り等の健康異常が見られるようになると言われている。したがって、気圧をあまり上げないようにする工夫が求められる。本実施例では、内部空間の高い領域に常圧室を設ける例を説明する。なお、低い領域に設けても良い。シェルターの高さ方向の断面積は、常圧室を除けば、低い方で広く高い方で狭くなっている。なお、前述の実施例と重複する部分については説明を省略し、異なる部分を主に説明する(以降の実施例についても同様とする)。
 図6は、シェルター1B1の内部空間が、高さ方向の断面積が低い方で広く、高い方で狭くなっている態様のシェルター1B1内の水面31について説明するための図である。残留空気の圧力(残留空気と流入した水との境界となる水面31と同じ高さのシェルター外の水圧と同じ)がN気圧の時に残留空気の体積は元の1/Nとなる。このため、シェルターの高さ方向の断面積が低い方で広く、高い方で狭くなっている場合には、断面積が一様な場合(図6中に破線で示す)に比して水面が低くなる。例えば図6のように、内部空間10の高さ方向の断面積が低所で高所の1.5倍とし、低所の高さ(避難口9上端より上)と高所の高さをそれぞれhとすると、N=2気圧のとき、内部空間10(避難口9上端より上)において体積が半分になる高さh(1/2)は5h/6となり、低所の断面積と高所の断面積が等しい場合に体積が半分になる高さであるhに比してh/6低くなる。内部空間10の高さ方向の断面積が低所で高所の2倍とした場合は、h/4低くなる。このように低所で高所の1.5倍以上広く形成されると水面31が低くなる効果が明確になる。1.5倍以上としたのは水面低下が明確になるからである。2倍以上、3倍以上とすれば、一層水面低下が明確になる。したがって、水面を低く抑えたい時には、本態様の構成が有効である。
 図7に実施例2におけるシェルター1B2内に常圧室を設ける構成を模式的に示す。ここでは、内部空間10の高い方に常圧室34を設ける例を示す。常圧室が気密性と耐圧性を有する材料で囲まれた空間である避難室となる。常圧室34は避難床12C上に構築される。常圧室は気密性と耐圧性を有する材料で囲まれており、内部空間10と空間的に隔てられるので、内部空間10には含めないこととする。したがって、シェルター1B2の内部空間10における水面31の高さは、図6のシェルター1B1の場合と同様に、断面積が一様な場合に比して水面31が低くなる。津波の高さHが高いと水面31での水圧、残留空気30の気圧が高くなる。津波の高さ30mでは4気圧になる。ダイビングは通常10~20m、スポーツダイビングは40mまでおこなわれているので、水深30mの場合でもスポーツマンにはあまり問題ないようにも思われる。しかし、1.3気圧で耳鳴り等身体への異常が感じられ得るといわれている。したがって、病人、老人、子供には大津波に備えて、常圧室34を設けて使用してもらうのが望ましい。また、常圧室34は残留空気領域の気圧にかかわりなく、常圧(1気圧)に保たれる。津波が到達する前の、内部空間10が常圧である時に、病人、老人、子供及び付き添いの人を入れて、入口35の扉36(36A,36B)を密閉する。そして、津波が引いた後、内部空間10が常圧に戻った時に扉36を開けて、病人、老人、子供及び付き添いの人が出られるようにする。
 常圧室34への入口35の扉を、上記のように一つの扉にしても良いが、二重扉36にするのがより好ましい。第1の扉(内部空間10側の扉)36A及び第2の扉(常圧室34側の扉)36Bとして例えば図10(a)の回転式片開き扉を使用する。第1の扉36Aは内部空間10側に開き、第2の扉36Bは二重扉36の間の空間39側に開く。第1の扉36Aの周辺部は二重扉36の間の空間39側に凸状に、その入口35は周辺部が凹状に形成される。第2の扉36Aの周辺部は常圧室34側に凸状に、その入口は周辺部が凹状に形成される。第1の扉36A及び第2の扉36Bの周辺部がそれぞれの入口35の周辺部に押し付けられて、常圧室34を二重扉36で気密に保持する。この場合、二重扉36の間の空間39は、例えば内部空間10と管(図示しない)でつなぎ、開閉弁又はポンプ(図示しない)で気圧を調整する(気圧差が小さければ不要)。二重扉35の間の空間39を残留空気30と同じ圧力にして内部空間10側に出入りできるようにし、常圧にして常圧室34側に出入りできるようにする。そうすると、津波が到来して、残留空気30の気圧が上昇した後でも、病人、老人、子供及び付き添いの人を常圧室34に入れることができる。ポンプの吸気、排気は残留空気30側に出し入れし、常圧室34側には影響しないようにする。
 内部空間10が常圧のときに第1の扉35A及び第2の扉35Bを開けて、常圧室34を常圧(1気圧)にしておく。その後は第1の扉36A及び第2の扉36Bを閉じておく。内部空間10内の残留空気30のある避難床12Cから避難者が常圧室34に入るには、内部空間10内が常圧時には容易に入れる。残留空気の圧力が上昇したのちには、例えば内部空間10と二重扉36の間を繋ぐ管の開閉弁を開けて二重扉36の間を残留空気30と同じ圧力にして第1の扉36Aを開けて避難者が二重扉36の間に入り、次に開閉弁を閉じて二重扉36の間をポンプで残留空気側に排気して常圧にする。そして第2の扉36Bを開けて避難者が常圧室34に入る。次に開閉弁を開けて二重扉35の間の空間39を残留空気と常圧の中間の圧力にすると、第1の扉36Aが二重扉36の間の空間39側に押し付けられ、第2の扉が常圧室34に押し付けられて、常圧室34が気密に保たれる。津波が引いた後は内部空間10が常圧になるので、開閉弁を開けて二重扉36の間の空間39を常圧にすると第1の扉36A及び第2の扉36Bを常圧室34側から容易に開けられ、避難者が内部空間10の避難床12Cに出られる。
 本実施例によれば、シェルターの高さ方向の断面積と常圧室34への入口35の扉36以外の構成は実施例1と同様であり、実施例1と同様に、巨大津波でも安全を確保できるシェルターを提供できる。また、常圧室34を設けたことにより、避難者に健康被害が生じることを防止できる。
 実施例3では、残留空気を利用するシュルターにおいて、残留空気の気圧が高くならないように、避難口又は避難室の入口の扉を自動的に閉鎖できるシェルターについて説明する。
 図8に本実施例における避難口の扉の構成を概略的に示す。図8(a)にフロートを用いた回転式扉20A、図8(b)にフロートを用いた引戸式扉20Bの例を示す。図8(c)は引戸式扉20Bの上下方向へのスライドを説明するための図である。図8(d)にフロートを用いた回転式扉20Dの別の例を示す。本実施例では、内部空間の気圧が1.3気圧になる前に扉が自動的に閉じられる例について説明する。
 図8(a)において、扉20Aの前部21は陸側側壁部6に密着して内部空間10を気密に保持する部分で、ゴム等の弾性体で作製される。後部22はプラスチック製コンクリート等の剛性体で作製され、水中で剥がれないように前部21に強く接着される。後部22は扉20Aの入口下端近傍でシェルター1C1等に固定された回転軸24の周りに回転する。後部22の回転軸24と反対の端部にフロート23が取り付けられている。扉20Aは開放時(実線で示す)には水平に設置される。津波で水位が増してくると、フロート23は水面に位置して上昇し、水位の上昇と共に扉20Aが閉鎖される。水面が閉鎖時(二点破線で示す)のフロートの位置にくるまで、すなわち入口9の上端までは、水が内部空間10に入るが、その後は入らない。閉鎖の直前では入口9の上端では水流が早くなるので、後部22のフロート23の下側と入口9の対応する部分に磁石29を入れて確実に扉20Aを閉鎖するようにしても良い。その後もシェルター1C1外側で水面が上昇すると扉20Aの内外に水圧差が生じて、扉20Aは陸側側壁部6に押し付けられる。回転軸24を通す扉20Aの穴に遊びを設けておくと、扉20Aが陸側側壁部6にしっかり押し付けられて気密性が保たれる。水面は入口9上端以上にはならないので、内部空間10が入口9上端部分以上で3/4以上残れば、内部空間10の気圧は1.3気圧以下となる。津波が引いた後にシェルター1C1外側が大気圧になれば扉20Aは容易に開けられる。
 図8(b)において、扉20Bの前部21、後部22、フロート23は扉20Aと同様である。図8(c)を参照して、扉20Bの左右の端部では、後部22に一体的に形成された延長部26が水平方向に延びて、延長部26がシェルター1C2入口9の側面に形成された溝25内を垂直方向にスライドできるようになっている。扉20Bは開放時(実線で示す)には入口に平行にかつ入口の下側に設置される。津波で水位が増してくると、フロート23は水面に位置して上昇し、水位の上昇と共に扉20Bが閉鎖される。水面が閉鎖時(二点破線で示す)のフロートの位置にくるまで、すなわち入口9の上端までは、水が内部空間10に入るが、その後は入らない。閉鎖の直前では入口9の上端では水流が早くなるので、後部22のフロート23の下側と入口9の対応する部分に磁石29を入れて確実に扉20Bを閉鎖するようにしても良い。その後もシェルター1C2外側で水面が上昇すると扉20Bの内外に水圧差が生じて、扉20Bは陸側側壁部6に押し付けられる。溝25に遊びを設けておくと、扉20Bが陸側側壁部6にしっかり押し付けられて気密性が保たれる。水面は入口9上端以上にはならないので、内部空間10が入口9上端部分で3/4以上残れば、内部空間10の気圧は1.3気圧以下となる。津波が引いた後にシェルター1C2外側が大気圧になれば扉20Bは容易に開けられる。
 次に、本実施例の変形として、扉20Bの上端に位置するこのフロートの位置を、扉20Bの下端に設置すると(図示しない)、水面が入口の下端に達した時には扉20Bが入口9を覆うようになる。その後もシェルター外側で水面が上昇すると扉20Bの外側の水圧と内側の気圧に差が生じて、扉20Bは陸側側壁部6に押し付けられる。溝25に遊びを設けておくと、扉20Bが陸側側壁部6にしっかり押し付けられて気密性が保たれる。水面は入口9下端以上にはならないので、内部空間10は常圧に保たれる。
 図8(d)において、扉20Dの前部21、後部22は扉20Aと同様である。ただし、扉20Dにフロートは設けられない。扉20Dは避難口9の上端近傍でシェルターに固定された回転軸24Aの回りに回転する。扉20Dを開放状態(実線で示す)に支える支持体38は、避難口9の下端とほぼ同じ高さで入口に平行な回転軸24Bの回りに回転する。支持体38は例えば卵型で、フロート23Aと錘23Bを有し、水面がフロート23Aの高さに上昇すると、回転軸24Bの回りに矢印の方向に回転する。扉20Dは支えを失い扉20Dは回転軸24Aの回りに矢印の方向に回転し、扉20Dは閉鎖される。その後は扉20Dの外側の水圧と内側の気圧との差異により扉20Dは閉鎖状態(破線で示す)に保持される。水面はほぼ入口9下端以上にはならないので、内部空間10が入口9上端部分以上で3/4以上残れば、内部空間10の気圧は1.3気圧以下となる。津波が引いた後にシェルター外側が大気圧になれば扉20Dは容易に開けられる。
 以上により、本実施例によれば、扉を自動的に閉めることにより、内部空間又は避難室の気圧を常圧に近い値に保持できるので、高気圧下で生じる耳鳴り等の健康異常を防止でき、病人・老人・小児等健への健康障害も防止できる。また、人手で扉を閉める必要がないので、閉め忘れ、早すぎる閉鎖による避難者の逃げ遅れ等のパニックによるトラブルの発生を防止できる。
 図9に本実施例における扉20Cの構成を摸式的に示す。図9(a)はフロート式扉20Cの構成を説明するための図、図9(b)はフロート式扉20Cの垂直方向の移動を説明するための図である。本実施例では水面に浮く扉20Cを用いて自動的に扉の開閉を行う例を説明する。シェルター1C3の内部空間は避難床12Dにより避難室となる上部空間10Aと下部空間10Bに隔てられる。上部空間10Aと下部空間10Bの間に入口27が設けられる。避難室10Aの周囲及び入口27の扉20Cは気密性と耐圧性を有する材料で作製される。入口27の扉20Cは水面上に浮上するよう、軽量かつ高強度のプラスチックで製作される。フロート式扉20Cの4隅では水平方向に突状部26Cが伸びており、突状部26Cは床面部3から避難床12Dまで垂直方向に設けられた溝25C内を垂直方向にスライドできるようになっている。なお、図9(b)において、溝25Cはフロート式扉20Cの上面の高さで切断した状態を示す。
 扉20Cが開放時には、扉20Cは入口27の直下1~2mの位置の載置台28に載置され、避難者は広場11から載置台28までの階段18Dと扉20C上に載置された階段18Eを上って避難床12Dに昇る。津波で水位が増してくると、フロート式扉20Cは水面に位置して上昇し、水位が上昇して避難床12Dに到ると扉20Cにより入口27が閉鎖される。フロート式扉20Cの上面の周囲の密着部28Aは避難床12Dの下面に密着して上部空間10Aを気密に保持するため、ゴム等の弾性体で作製される。避難床12Dの下面の密着部28Aに当接する部分28Bも密着部28Aと同様な弾性体で作製され、密着部28Aと共に上部空間10Aを気密に保持する。上部空間10の体積が内部空間10の入口9上端部分以上の体積の3/4以上であれば、上部空間10Aの気圧は1.3気圧以下となる。津波が引くと水位が下がり、扉20Cは自動的に開放される。
 本実施例によれば、実施例3と同様に扉を自動的に閉めることにより、内部空間又は避難室の気圧を常圧に近い値に保持できるので、実施例3と同様の効果を奏する。
 図10に実施例1における脱出口15の構成例を摸式的に示す。図10(a)は1枚扉の例、図10(b)は二重扉の例である。本実施例の脱出口15は、実施例2~4のシェルターにも適用できる。図10(a)を参照し、例えば、扉36は回転式(ローリング式)片開き扉とし、脱出口15の右辺(内部空間側から見て)の周りに回動可能になっている。この回転式片開き扉36は気密に製作される。扉36が凸状で、中央部36Cが室内側に突き出るように周辺部36Dが傾斜している。入口39が凹状で、周辺部39Dが扉36Aに合わせて傾斜している。これら扉36の周辺部36D及び入口39の周辺部39Dの表面はゴム等の弾性部材で覆われ、扉36の周辺部36Dと入口39の周辺部39Dが密着すると内部空間10が気密に保持される。扉36の外側を円筒の円周面としたのはあらゆる方向から一様な水圧を受けた時に強い構造(球形が最も強い)となるからである。通常、脱出口15の扉36は閉じられているが、シェルター1,1A~1Dが大気中にある場合には、内部空間10から手で押すことにより容易に開放できる。
 津波が来ると、シュルター1の外側は次第に水位が上昇する。そして、脱出口15の外側は浸水し、内側は空気の状態が生じる。なお、扉36の開き角は90度より小さくする。60度以下がより好ましい。この状態でもし扉36が開いていた場合には、扉36は開き角が90度より小さいので、扉36の外側の水と圧内側の気圧との差により閉じられる。さらに水位が上昇しても脱出口15より下であれば水圧と気圧の差により開かない。
 津波が引くと、シェルター1は再び大気中にある状態になり、扉36は内部空間10から手で押すことにより容易に開放できる。この状態で避難者は脱出口15からシェルター1外に脱出できる。
 また、実施例2における常圧室の入口の扉に本実施例の扉を適用しても良い。また、実施例4における避難室の底に入口を設けた場合に、本実施例の扉を適用すると、水面が避難室の底に到達した時点で扉が自動的に閉じられる。
 なお、本実施例では脱出口15の扉について説明したが、避難口9にも扉20に代えて同様の扉を設けることができる。
 しかしながら、脱出口15の扉36が水没した場合には、扉36の外側と内側で同じ水圧になるので、脱出口15の扉36が容易に開かれる。扉36の外から水が流入すると、内部空間10の残留空気が残る部分が脱出口15の上端から上になるので、内部空間10の水面がさらに上昇し、残留空気の体積が減少する(脱出口の上端以上の体積の1/Nとなる)。
 図10(b)に二重扉33の例を示す。この例は上記問題を解決するものである。二重扉33の第1の扉(外側)33Aと第2の扉(内部空間側)33Bの間に常圧域32が設けられる。第1の扉33A及び第2の扉33Bとして例えば図10の回転式片開き扉36を使用する。第1の扉33Aはシェルター1の外側に開き、第2の扉33Bは内部空間10側に開く。第1の扉33A及び第2の扉33Bの中央部33Cが常圧域32側に凸状に突き出るように、周辺部33Dは傾斜して形成され、常圧域32の入口の周辺部32Dは第1の扉33A及び第2の扉33Bの周辺部33Dに合わせて傾斜して形成される。第1の扉33A及び第2の扉33Bの周辺部33Dがそれぞれの入口の周辺部32Dに押し付けられて、常圧域32を気密に保持する。内部空間10が常圧の時に、第1の扉33Aと第2の扉33Bを閉じ、常圧域32を常圧にする。内部空間10の水位が上がり、脱出口15が水没した場合、第1の扉33Aの外側と第2の扉33Bの内部空間側の水圧が常圧域32の気圧(1気圧)よりおおきくなるので、常圧域32を気密に保持する。この結果、第1の扉33A及び第2の扉33Bは開かず、脱出口15からの水の流入を防止でき、水の流入による残留空気の体積の減少を防止できる。津波が引くと第1の扉33Aの外側と第2の扉33Bの内部空間側は、常圧域32と共に常圧となり、第1の扉33A及び第2の扉33Bを容易に開けることができる。なお、常圧域32と内部空間10の間に管と開閉弁を設けて、常圧域32と内部空間10を同じ気圧にして、確実に第2の扉33Bを開けられるようにしても良い。
 本実施例によれば、シェルター1は脱出口15を有するので、避難口9が流木等で塞がれた場合でも、脱出口15からシェルター1外に出ることができる。また、気圧差がある間は脱出口15の扉36は閉じた状態に保たれる。
 図11に実施例6における水面31に浮遊する避難床12Eの構成を摸式的に示す。図11(a)に避難床12Eの構成を、図11(b)に避難床12Eの上昇を停止させる構成を示す。避難床12Eが内部空間10Cに流入した水の水面31に浮遊する浮遊体で形成される例を説明する。避難床12Eを水面31に浮かせるために、FRP等の軽量で強い材料を使用する。SCF(スーパーカーボンファイバー)コンクリートを使用しても良い。避難者や荷物が水中に落下しないように周囲に柵50を設けた箱型にする。柵50の高さは例えば1m位とする。また、底面の面積は例えば20m×20mとする。避難床12Eの下には密閉空気室51を設ける。避難者は1mに1~2人搭乗すると仮定する。1mに例えば10cm,1m深さの密閉空気箱51を設けると、それぞれ100kg,1tonの浮力を得られるので、密閉空気箱51の深さは10cm~1mで調整すれば好適である。また、密閉空気箱51の下にはバランスを取るための錘(例えば砂袋)52を吊るす。錘52は例えば1m当たり25kg、4m当たり100kg等とする。また、避難床12Eに木板、アルミ板等の平板の材料を用いることも可能であり、例えば1ton等の大きな浮力を得られる密閉空気室51を用いると、避難床12Eにアングル、軽量コンクリート板等の撓みにくい材料を用いることも可能である。
 ここにおいて、浮遊体とは水上に浮かぶ物をいう。例えば、船、木材、プラスチック等が含まれる。内部に空気を含むゴムボート等も含まれる。本実施例では、内部空間10Cの水面31が上昇しても、避難床12Eは常に水面31より上にあるので、避難者の安全が確保される。
例えば、シェルター1D内部に縦横20m間隔に柱53を設け、さらに2つの柱の中間に柱を設けると、20m×20mの箱型避難床12Eを囲む位置に柱53が配置される。箱型避難床12Eの柱53の部分に対応する位置に溝54を設け、柱53と溝54が緩く係合して、箱型避難床12Eが上下動するときは、柱53に沿って上下動するようにする。また、複数の箱型避難床12E間を避難者が移動できるように、箱型避難床12Eの柵に沿ってスロープ55を設け、角部に1m程度の平坦部56を設けておく、4つの箱型避難床12Eの角部が集まるところに、柱53を囲み4つの角部の平坦部分を覆うように可撓性の平板(図示しない)を乗せておくと、避難者が容易に箱型避難床12E間を移動できる。
 避難者は避難口9付近から箱型避難床12Eに移れるように、箱型避難床12Eを避難口9の近くに設置する。津波が到来してシェルター1D内の水面が上昇すると、箱型避難床12Eが水面31上に浮きあがり、水面と共に柱53に沿って上昇してゆく。箱型避難床12Eは常に水面31上にあって、水中に沈むことも、転覆することもない。水圧と残留空気の気圧が等しくなった高さで水面が止まり、箱型避難床12Eはその水面上になる。避難者は箱型避難床12E上にいれば安全であり、照明があれば日常の動作(寝る、起きる、座る、歩く、飲食する、読書する、携帯電話をする、TVを見る)を行うことができる。津波が引くと水面31の降下と共に箱型避難床12Eも降下し、元の位置に戻る。これにより、避難者は箱型避難床12Eから外に出ることができる。
 図11(b)に箱型避難床12Eの上昇を停止させる構成の例を示す。これは、箱型避難床12E上の避難者が天井部8と箱型避難床12Eとの間に挟まれて押しつぶされることを防止するため、又、箱型避難床12Eより上の空間を1.3気圧以上にしないために有益である。床上昇止部59(下側密着部59Aと上側密着部59B)を箱型避難床12Eの柵50周囲及びその上部にめぐらしておく。例えば、箱型避難床12Eの柵50の外側への延長部分の上面側に床上昇止部59の一方である下側密着部59Aを形成する。シェルター1Dの側壁側の下側密着部59Aに当接する部分に上側密着部59Bを設ける。下側密着部59Aと上側密着部59Bが当接すると、箱型避難床12A及び床上昇止部59上に気密性と耐圧性を有する材料で囲まれた内部空間10Cを有する避難室が形成される。下側密着部59Aと上側密着部59Bは内部空間10Cを気密に保持するために、ゴム等の弾性体で作製される。津波で水位が増してくると、箱型避難床12Eは水面31と共に上昇する。しかし、床上昇止部59により箱型避難床12Eのさらなる上昇が停止される。下側密着部59Aと上側密着部59Bとは密着して、避難室としての内部空間10Cを気密に保持する。
 例えば、下側密着部59Aには、中に水を入れた弾性体の袋を使用しても良い。下側密着部59A又は上側密着部59Bにある程度のゆがみや凹凸があっても、水袋が密着部59Bと良く密着し、気密が保持される。水面31は床上昇止部59以上にはならないので、内部空間10Cの体積が床上昇止部59以上で避難口9より上の内部空間10全体の3/4以上であれば、内部空間10Cの気圧は1.3気圧以下となる。また、津波が引くと水位が下がり、箱型避難床12Eは自動的に降下する。また、床上昇止部59の面積が多くなるので、床上昇止部59の一部を気密性と耐圧性を有する柔軟なビニールシート59C等で置換しても良い。
 また、例えば箱型避難床12Eの避難口9側では、箱型避難床12Eを陸側側壁部6まで延ばさず、余裕を設けておく。そして、床面部3に設置した網巻き取り部(図示しない)から巻き取った網57を密閉空気室51の端に取り付けておく。そうすると、水面が上昇した時に、床面部3の網巻き取り部から密閉空気室51の端まで網57が張られる。もし、逃げ遅れた避難者が水流に巻き込まれて内部空間10に入った場合に網57のために箱型避難床12Eの下に入らず上方に浮き上がり、浮き上がったところを箱型避難床12Eに引き上げて救済できるチャンスが生じる。
 本実施例では、シェルター1Dの避難床12E以外の構成については、避難床12E自体が上昇・下降するので、階段、スロープ等の上昇手段を省略可能である。また、本実施例は、避難床12E及び上昇手段以外の構成は実施例1と同様であり、実施例1と同様に、巨大津波でも安全を確保できるシェルターを提供できる。また、床上昇止部59を設けて避難室を構成すると、避難室の気圧を常圧に近い値に保持できるので、実施例3と同様の効果を奏する。
 本実施例では、内部空間10に避難口9から水が流入した後で避難口を閉じる例を説明する。
 図12に本実施例における避難口9Aの構成を摸式的に示す。陸側側壁部6の避難口9Aの外側上方に落し扉58を設けておく。実施例1のシェルター1に適用する例を説明する。内部空間10に避難口9Aから水が流入した後でも、落し扉58を落とすと、水流により落し扉58が入口39Bに押し付けられ、更に落し扉58の外側と内側の水圧差により落し扉58が入口39Bに自動的に押し付けられ、外側と内側が気密に分断される。これにより内部空間10の水位の上昇が止められ、内部空間10の残留空気の気圧が上がらなくなる。さらに、流入した水を地下の排水プール(図示しない)に落とす落水手段(図示しない)を備え、排水プールの容量を内部空間10の容量と略同じにすれば、内部空間10の気圧を大気圧に戻すことができる。この状態でも津波の水位が避難口9Aを覆う間は外側と内側の水圧差により落し扉58を開くことができない。津波が引くと落し扉58の外側が大気圧になるので、落し扉58を動かして、開けることができる。例えば落し扉58の落下は落し扉58を避難口9A上に止めている止め具58Aを水位上昇によるフロート58Bの上昇(図12では止め具58Aとフロート58Bを回転軸58Dの回りに回転させる)で外し、落し扉58の引き上げは落し扉58に接続されたロープ又は鎖58Cを巻き上げて行う。また、津波の水位が入口39B上端に達しないうちに落し扉58を落とすのが好ましい。また、落し扉58の引き上げは、内側からも落し扉58をロープ又は鎖58Cで引き上げられる(例えば、扉の内側下部にロープ又は鎖58Cをかけられるようにする)ようにするのが好ましい。また、落水手段として、例えば、内部空間の複数の高さ(床面部3を含む)から排水管を排水プールに接続し、各管に複数の開閉弁を設けておく。開閉弁を複数とするのは、高い方から排水することにより、開閉弁に掛かる水圧を低くするためである。
 本実施例によれば、落し扉と落水手段以外の構成は実施例1と同様であり、実施例1と同様に、巨大津波でも安全を確保できるシェルターを提供できる。また、落し扉を設けて内部空間の気圧を常圧に近い値に保持できるので、実施例3と同様の効果を奏する。
 図13に実施例8におけるシェルター1Eの縦断面図を模式的に示す。実施例8は、シェルター1Eを堤防に沿って構築する例について説明する。
 シェルター1E海側側壁部5Aを堤防の陸側に連結することにより、構造的に強化され、壊れ難くなる。例えば堤防60の斜面に沿って海側側壁部5Aを構築する。陸側側壁部6は例えば堤防60と同じ勾配で海側に傾斜して構築する。内部空間10の堤防60に近い側に備蓄倉庫14を設ける、電源、ボンベ類などの比較的重い物を置けるという利点もある。さらに、堤防60の内部をくりぬいて備蓄倉庫14を設け、備蓄倉庫14に多量の備蓄品を入れられるという利点もある(図13には後者の例を示す)。また、避難床12から、備蓄倉庫14に直接出入りできるようにすると備蓄品を避難床12に運び入れるのに便利である。また、堤防60に沿って内部空間10を堤防60の高さまで高くすることもでき、避難床を高い場所に設ける程救命される確率が高くなる。また、例えば、堤防60内部の広い空間を避難場所、連絡通路としても利用できれば、堤防の有効利用となる。
 また、脱出口15Aを堤防60とシェルター1Eの間に設けた小路61に出られるようにすると、堤防60沿いに設けた階段やスロープ(図示しない)を伝って堤防60の上の道路に容易に行くことができる。この場合、脱出口15Aの下端から上の海側側壁部5は垂直又は陸側に傾斜して構築される。さらに、天井部8に流木防止用フェンス62を設置すると脱出口15A及び小路61が流木で塞がれることを防止できる。
 本実施例によれば、上記以外の構成は実施例1と同様であり、実施例1と同様に、巨大津波でも安全を確保できるシェルターを提供できる。また、堤防に沿って構築されるので、構造的に強化される、高い場所を利用できる、堤防の防災用空間を有効利用できる等の効果を奏する。
 実施例9は、シェルターを学校の校舎に沿って構築する例について説明する。海に近く津波の被害を受けそうな学校もあり、川沿いにあり洪水の被害を受けそうな学校もある。校舎は必ずしも海岸に沿って建設されているわけではないので、以上の実施例の海側側壁部を第1の側壁部、陸側側壁部を第2の側壁部と読み替えて、本実施例に適用する。シェルターの長手方向に平行な側壁(第1の側壁部又は第2の側壁部)を校舎に沿って設ける。例えば校舎の側壁とシェルターの側壁を鉄筋コンクリートで一体的に連結して構築する、又は校舎の側壁とシェルターの側壁を連絡通路で結んで構築することにより、校舎からシェルターに避難し易くなる。これらの場合、避難口を校舎の1階廊下と連結すれば建物から外に出ることなくシェルターに迅速に入ることができる。また、脱出口を校舎の3階又は4階廊下等に連結すれば容易に校舎内に脱出できる。シェルターと直接連結されていない校舎においても、シェルターが近距離にあるので救済される確率が高い。したがって、シェルターを学校の校舎に沿って構築すれば、多くの子供を津波や洪水から避難させられるという利点がある。
 また、シェルターを校舎の屋上に設置すれば校舎から外に出ることなく迅速にシェルターに逃げ込めると共に、シェルターが高い所にあるので、残留空気の気圧が低くなる。また、敷地を増やさないので、有効な敷地利用となる。
 本実施例では、さらに、シェルターを学校の築山に設ける例を説明する。築山を普段は小高い山で子供たちの遊び場とするが、非常時にはシェルターとして利用するものである。つまり、築山の内部をくりぬいてシェルターにするか、シェルターに土盛りして築山を作るかにより、築山兼シェルターが構成される。脱出口をどこかに設けるか、又は脱出口のない態様としても、以上の実施例を適用可能である。ただし、築山の大きさと環境により、シェルターの大きさや使用の仕方が変わるので、案件毎に適切な設計が求められる。
 本実施例によれば、実施例1ないし実施例9とはシェルターを設置する位置が異なるが、構成は同様又は類似なので、以上の実施例と同様に、巨大津波でも安全を確保できるシェルターを提供できる。さらに、学校の校舎の近くに構築されるので、多くの生徒・学生を津波や洪水から迅速に避難させられる。
 図14に実施例10におけるシェルター1Fの要部縦断面図を示す。実施例10は、シェルター1Fをビル63内に構築する例について説明する。例えば10階建てビル63の8~10階の中央部にシェルター1Fを構築するものとする。8~10階で連続する一続きの内部空間10Fを形成し、その周囲は、避難口9Fと脱出口15Fを除いて気密性の鉄筋コンクリートで囲まれている。避難口9Fの下端は8階の床面と同じ高さに、脱出口15Fの下端は10階の床面と同じ高さに設けられる。また、排水孔64は津波が引くときに内部空間の水を抜くために、シェルター1Fの床面に設けられる。避難床12Fは、内部空間10Fの水面の最高位置より高いことが望まれる。しかし、内部空間10Fの水面が上昇すると、残留空気の圧力が高くなる。残留空気の圧力を1.3気圧以下に維持するためには、避難口9F又は避難口9Fから避難床12Fに到る前の入口扉20Fを自動的に閉めるようにすれば良い(例えば実施例4参照、実施例3の扉も適用可能)。また、常圧室を設けても良い。また、シェルターはビル内の複数個所に設けられても良い。
 本実施例によれば、実施例1ないし実施例9とはシェルターを設置する位置が異なるが、構成は類似にできるので、以上の実施例と同様に、巨大津波でも安全を確保できるシェルターを提供できる。
 本実施例は、事業所内にシェルターを設ける例をについて説明する。例えばシェルターの形状をドーム型とし、実施例1ないし実施例9に相当するシェルターを利用する。一部を倉庫、駐輪場、喫茶室、体育館、会議室、宿直室等として利用しても良い。このように、シェルターを避難に差し支えない範囲で利用しても良い。全体を、少なくとも避難床又は避難室を設ける上部を気密構造とする。シェルター以外の使用をする場合には、照明及び通信が必要なので、例えばシェルターの壁の或る箇所に電力線及び通信線用のターミナルを埋め込み、空気漏れのない構造とする。非常用電源としては、例えば太陽光発電や工事場や電気自動車等に使用される蓄電池を備えた小型電源を利用する。換気は、例えば使用しないときに扇風機などで一定時間空気の流れを作り、カビの発生と結露を防止する。また、例えば、飲料水はペットボトルを使用する、トイレは簡易トイレを使用する等で、通気孔、排水孔等は設けない構造とする。また、通信用ターミナルを介してシェルター外のアンテナや通信線にTV、パソコンを繋いで災害情報や安否情報をやりとりできるようにする。本実施例によれば、以上の実施例と同様に、巨大津波でも安全を確保できるシェルターを提供できる。
 図15に実施例12における車庫を利用するシェルター1Gの構成を摸式的に示す。図15(a)はシェルター用扉73の構成を説明するための図、図15(b)はシェルター用扉73の垂直方向の移動を説明するための図、図15(c)は本実施例の変形による低いシェルター用扉を示す図である。本実施例は、洪水や豪雨時に、車庫70をシェルター1Gとして使用する例をについて説明するものである。少なくともシャッター口から水が流入するのを防止する。車庫70に自動車71が収納されている。車庫70の壁面、床、天井は、入口及び通用口を除きコンクリートが使用されている。車庫70の入口に既存のシャッター72が設けられている。さらに入口にシェルター用扉73が設けられる。シェルター用扉73は空気を入れる弾性体の空気袋で作製されている。扉73は開放時には収納箱74にたたまれて収納されている。扉73は閉鎖時にはポンプ75で空気を送り込まれて天井から下方向に膨らみ、また、入口側面の溝76に沿って下がり、空気袋の底は車庫70の床の溝77に入る。入口側面及び床の溝76,77の底ではコンクリートにゴム等の弾性体78が貼られている。扉73は入口側面及び床の溝76,77の底で弾性体78に押し付けられて密着し、水を通さないようにする。空気袋73が溝76に沿って上下するよう、かつ入口に垂直な方向に大きく膨らまないように、空気袋の車庫70入口側に適当な間隔で水平方向に筋金入りプラスチック棒79が貼られることが好ましい。また、ポンプ75で空気袋73の空気を抜くと扉73が開放され、扉73は収納箱74に収まる。
 本実施例によれば、シェルター用扉73と弾性体78が密着して水を通さないので、車庫70をシェルターとして使用できるようになる。
 図15(c)に本実施例の変形として、低いシェルター用扉73Aの例を示す。例えば1mの高さでも、洪水や豪雨でも、水位が上がらない場所では、車庫内への水の侵入を防止できる。扉73Aは開放時にはたたまれて溝77に入っている。扉73Aは閉鎖時にはポンプ75で空気を送り込まれて床から上方向に膨らみ、また、入口側面の溝76に沿って上がる。扉73Aは入口側面の溝76の底で弾性体78に押し付けられて密着し、水を通さないようにする。扉73Aを床の溝77の底の弾性体78と一体的に作成する。さらに、扉73Aの開放時には床の溝77内に扉73Aを収納するので、収納箱は不要である。その他の構成は図15(a)の実施例と同様である。
 本発明は、上記の実施の形態に限定されるものでなく、発明の要旨を逸脱しない範囲内で種々の変更が可能である。
 例えば、実施例1では、海側側壁部5及び陸側側壁部6がシェルターの内側に傾斜している例を説明したが、真っ直ぐに建てられても良い。また、アンカーと地中杭は、津波により位置ずれや傾きが生じないように深くするのが好ましいが、堅固な地下室や地下道に連接される場合は地下室や地下道のアンカーや地中杭を利用できる。また、以上の実施例では、シェルターの長手方向を海岸に平行にする例を説明したが、長手方向を海岸に直角にすると津波の抵抗を低減できるので、それでも良い。また、自動扉の外側を水圧に強い構造とするため、円筒形状にする例を説明したが、十分な圧縮強度を得られれば平板状でも良い。また、避難口や避難室入口の扉は自動的に閉められるのが望ましいが、補助として又は次善策として、手動や電動で閉められるようにしても良い。手動や電動の場合、例えば図10(a)のような扉を横開きにして用いても良い。また、外との連絡、災害情報や安否情報がとれるなど通信設備を充実することが好ましい。その他、シェルター及び避難口、脱出口、避難床等の各部の材料、寸法、形状等は設置場所の情況に応じって自由に設定可能である。
 本発明のシェルターは津波時や洪水時の避難者の救済に利用できる。
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
1,1A,1B1,1B2,1C1~1C3,1D~1G シェルター
2 地中杭
3 床面部
4(4A,4B) 端壁部
5,5A 海側側壁部
6 陸側側壁部
7 中間壁部
7a 通路
8 天井部
9,9A,9F 避難口
10,10C,10F 内部空間
10A 上部空間
10B 下部空間
11 広場
12,12A~12F 避難床
13 流木防御柵
14 備蓄倉庫
15 脱出口
16 扉
16A,16B 二重扉の第1、第2の扉
18,18A~18E 上昇手段(階段)
19,19A,19B 上昇手段(スロープ)
20,20A~20D,20F 入口扉
21 扉の前部
22 扉の後部
23,23A フロート
23B 錘
24 回転軸
25,25C 溝
26,26C 突状部
27 入口
28 載置台
28A,28B 密着部
29 磁石
30 残留空気
31 シェルター内の水面
32 常圧域
33 二重扉
33A,33B 二重扉の第1、第2の扉
33C 中央部
32D,33D 周辺部
34 常圧室(避難室)
35 避難室の入口
36 二重扉
36A,36B 二重扉の第1、第2の扉
36C 扉の中央部
36D 扉の周辺部
38 支持体
39,39A 入口
39D 入口の周辺部
50 側壁
51 密閉空気室
52 錘
53 柱
54 溝
55 スロープ
56 平坦部
57 網
58 落し扉
58A 止め具
58B フロート
58C 鎖
58D 回転軸
59 床上昇止部
59A 下側密着部
59B 上側密着部
60 堤防
61 小路
62 流木防止用フェンス
63 ビル
64 排水孔
70 車庫
71 自動車
72 シャッター
73,73A シェルター用扉(空気袋)
74 収納箱
75 ポンプ
76 入口側面の溝
77 床の溝
78 弾性体
79 筋金入りプラスチック棒
H 津波の高さ
h 避難口の上端からシェルター内の水面までの高さ
 避難口の上端からシェルターの天井までの高さ
 内部空間における低所の高さ(避難口上端より上)及び高所の高さ
(1/2) 内部空間(避難口上端より上)において体積が半分になる高さ
N 残留空気の圧力
 

Claims (8)

  1.  津波又は洪水から避難するためのシェルターであって;
     避難口を除いて気密性と耐圧性を有する材料で囲まれた空間である内部空間を備え;
     前記避難口から水が前記内部空間に流入し得る構成で、
     津波の高さをH(m)、残留空気の圧力をN=1+H/10=>1.1(気圧)、前記内部空間内の前記避難口の上端以上の容積をVとして、前記内部空間内の最高位置から容積がV/Nとなる高さより高い位置に避難床が設けられた;
     シェルター。
  2.  津波又は洪水から避難するためのシェルターであって;
     避難口を除いて気密性と耐圧性を有する材料で囲まれた空間を内部空間として;
     前記内部空間の気圧を1.3気圧以下に維持するために、
     前記避難口の扉又は前記内部空間内に設けられた気密性と耐圧性を有する材料で囲まれた避難室への入口の扉であって、前記扉の外側の水圧と前記扉の内側の気圧との差異を利用して又は水面の上昇を利用して自動的に閉鎖可能な扉を備える;
     シェルター。
  3.  前記内部空間に常圧室が設けられた;
     請求項1又は請求項2に記載のシェルター。
  4.  堤防60に隣接して又は堤防の内部に前記内部空間が設けられた:
     請求項1ないし請求項3のいずれか1項に記載のシェルター。
  5.  学校の校舎に隣接して又は学校内の築山内部に前記内部空間が設けられた;
     請求項1ないし請求項3のいずれか1項に記載のシェルター。
  6.  シェルター内に倉庫、駐輪場、喫茶室、体育館、会議室又は宿直室が設けられた;
     請求項1ないし請求項3のいずれか1項に記載のシェルター。
  7.  前記シェルターを地中に固定する地中抗と、
     前記地中抗と一体的に形成された床面部と、
     前記床面部の長手方向の両端において前記床面部と一体的に形成されて上方向に延びる一対の端壁部と、
     前記一対の端壁部と一体的に形成され、前記床面部から上方向に延び、かつ下方向で地中に延びる部分がアンカーとなる海側側壁部と、
     前記一対の端壁部と一体的に形成され、前記床面部から上方向に延び、かつ下方向で地中に延びる部分がアンカーとなる陸側側壁部と、
     前記一対の端壁部、前記海側側壁部と前記陸側側壁部の上端同士を一体に連結する天井部とを備え、
     前記陸側側壁部の略地面の高さに避難口が設けられ、
     前記内部空間は、前記床面部、前記一対の端壁部、前記海側側壁部、前記陸側側壁部及び前記天井部で囲まれた空間をいい、
     前記床面部の前記避難口に臨む場所に広場が設けられ、
     避難者が前記広場から前記避難床へ移動するための上昇手段を備える;
     請求項1ないし請求項6のいずれか1項に記載のシェルター。
  8.  水が車庫内に流入するのを防止するシェルターであって;
     車庫の入口に、空気袋を天井から下方向に膨らませて側壁及び床に押し付け、又は床から上方向に膨らませて側壁に押し付け、水が車庫内に入るのを防止するシェルター用扉を備える;
     シェルター。
     
PCT/JP2016/056955 2015-03-06 2016-03-07 シェルター WO2016143733A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044612 2015-03-06
JP2015044612A JP6514917B2 (ja) 2015-03-06 2015-03-06 シェルター

Publications (1)

Publication Number Publication Date
WO2016143733A1 true WO2016143733A1 (ja) 2016-09-15

Family

ID=56876505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056955 WO2016143733A1 (ja) 2015-03-06 2016-03-07 シェルター

Country Status (2)

Country Link
JP (1) JP6514917B2 (ja)
WO (1) WO2016143733A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569034B1 (ja) * 2019-02-25 2019-08-28 冨田 盟子 津波等の避難シェルター
JP7482365B2 (ja) 2022-09-13 2024-05-14 株式会社クラミー技術研究所 シェルター

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188958U (ja) * 2013-12-05 2014-02-13 株式会社クラミー技術研究所 シェルター
JP3193067U (ja) * 2014-07-03 2014-09-11 株式会社日東 津波シェルター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188958U (ja) * 2013-12-05 2014-02-13 株式会社クラミー技術研究所 シェルター
JP3193067U (ja) * 2014-07-03 2014-09-11 株式会社日東 津波シェルター

Also Published As

Publication number Publication date
JP6514917B2 (ja) 2019-05-15
JP2016164344A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP3541197B1 (ja) 津波又は洪水に対する防災用として地上設置される浮遊型シェルタ
JP2013036180A (ja) 防災用シェルター
JP4862355B2 (ja) 災害対策装置
JP6762464B1 (ja) 津波等の避難シェルター
JP2006322311A (ja) 高潮浮上建築物の浮体施工方法
JP2012255293A (ja) 構造物
WO2016143733A1 (ja) シェルター
JP2006322301A (ja) 浸水対応建築物とその建造方法
JP5518822B2 (ja) 津波対策用避難小屋
JP5624234B1 (ja) 津波避難用浮遊体及び空気保持形成体
JP4979040B1 (ja) 津波、高潮、洪水対策用退避部屋
JP5713863B2 (ja) 避難シェルタ
JP6126795B2 (ja) 大型鋼管を用いた緊急避難施設
JP5624237B1 (ja) 津波用天井避難部屋
JP2013249725A (ja) 水害避難室
JP5624235B1 (ja) 津波避難用浮遊体及び空気保持形成体
JP6547094B2 (ja) 津波、洪水、高潮対策用の避難部屋付き建築建造物
JP6402296B1 (ja) 津波、洪水、高潮対策用の避難部屋付き建築建造物
JP5462309B2 (ja) 津波退避部屋及びそれに用いる空気保持独立体
JP6368892B1 (ja) 津波、洪水、高潮対策用の避難部屋付き建築建造物
JP3188958U (ja) シェルター
JP6473474B2 (ja) 避難用構造物
JP5600135B2 (ja) 津波、高潮、洪水対策用退避部屋
JP7482365B2 (ja) シェルター
JP6569034B1 (ja) 津波等の避難シェルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.12.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16761701

Country of ref document: EP

Kind code of ref document: A1