WO2016139967A1 - Nickel particles and method for producing same, and electrically conductive paste - Google Patents

Nickel particles and method for producing same, and electrically conductive paste Download PDF

Info

Publication number
WO2016139967A1
WO2016139967A1 PCT/JP2016/050433 JP2016050433W WO2016139967A1 WO 2016139967 A1 WO2016139967 A1 WO 2016139967A1 JP 2016050433 W JP2016050433 W JP 2016050433W WO 2016139967 A1 WO2016139967 A1 WO 2016139967A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
particles
nickel particles
copper
conductive paste
Prior art date
Application number
PCT/JP2016/050433
Other languages
French (fr)
Japanese (ja)
Inventor
山田 勝弘
井上 修治
慎一郎 櫻井
恭子 足立
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2017503363A priority Critical patent/JP6644053B2/en
Publication of WO2016139967A1 publication Critical patent/WO2016139967A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Definitions

  • the present invention relates to nickel particles that can be suitably used for applications such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC), a method for producing the same, and a conductive paste.
  • MLCC multilayer ceramic capacitor
  • the metal fine particles have physical and chemical characteristics different from those of bulk metals, various materials such as electrode materials such as conductive pastes and transparent conductive films, high-density recording materials, catalyst materials, and ink-jet ink materials are used. It is used for industrial materials. In recent years, with the downsizing and thinning of electronic devices, fine metal particles have been made finer to about several tens to several hundreds of nanometers.
  • the material for the electrode layer is preferably nanoparticles having an average particle size as small as less than 150 nm, a uniform particle size, small variation, and excellent dispersibility as much as possible. It has been.
  • Patent Document 1 As a method for producing metal fine particles having a uniform particle shape and particle diameter and less secondary agglomeration, for example, in Patent Document 1, by adding a reducing agent to a solution of a metal salt, there has been proposed a multistage production method including a step of generating fine particles (nuclei) and a step of reducing and precipitating a metal from a solution of a metal salt in the presence of a reducing agent.
  • Patent Document 2 As a multistage production method of metal fine particles including a core and a shell of different metals, for example, in Patent Document 2, a step of heating a mixture containing nickel particles, a cobalt salt and a primary amine to obtain a complexing reaction solution; There has been proposed a method for producing nickel-cobalt nanoparticles comprising heating the complexing reaction solution to obtain a nickel-cobalt nanoparticle slurry.
  • Patent Document 1 since the size of the ultrafine metal particles serving as a nucleus exceeds 100 nm and the average particle diameter of the finally produced metal fine particles is about 1 ⁇ m, aggregation is unlikely to occur. The allowable range for variation in particle size is also wide. Therefore, the technique of Patent Document 1 is not applicable to the production of small metal fine particles having an average particle diameter of, for example, 150 nm or less, which is required for current industrial materials.
  • metal fine particles having an average particle diameter of 150 nm or less for example, when a magnetic material such as nickel is used as a main component, aggregation is likely to occur due to magnetism, and there is a concern that dispersibility may be reduced.
  • no particle design has been made so far in consideration of the influence of magnetism on dispersibility in metal fine particles containing a magnetic material as a main component.
  • An object of the present invention is to provide metal fine particles having an average particle size of 150 nm or less, a uniform particle size, small variations, and excellent dispersibility.
  • the nickel particles of the present invention contain nickel element as the main component and copper element.
  • the nickel particles of the present invention have the following constitutions a to c; a) The average particle diameter by observation with a scanning electron microscope is in the range of 40 nm to 150 nm, b) The content ratio of the copper element in the nickel particles is in the range of 0.01 wt% to 2 wt%, c) 10% or more of the detection count of copper element when a line analysis is performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX) under the condition that the spot diameter of the electron beam is 1 nm or less. % Or less is present in the range of ⁇ 5 nm in the radial direction from the center of the nickel particles, It has.
  • STEM-EDX energy dispersive X-ray analyzer
  • the nickel particles of the present invention may have a particle size variation coefficient (standard deviation / average particle size) of 0.2 or less.
  • the nickel particles of the present invention may further have the following configuration d.
  • Configuration d When a line analysis is performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX) under a condition that the spot diameter of the electron beam is 1 nm or less, the nickel particle is radially directed from the center. The peak top of the detection count of the copper element exists in the range of ⁇ 5 nm.
  • the conductive paste of the present invention contains any of the above nickel particles and an organic vehicle.
  • the method for producing nickel particles of the present invention includes the following steps I to IV: I) a step of preparing seed particles having an average particle diameter of 10 nm or more and 30 nm or less by observation with a scanning electron microscope and a copper element content of 3 wt% or more and 30 wt% or less; II) preparing a nickel complex solution in which a nickel salt is dissolved in an organic amine; III) A step of mixing the seed particles and the nickel complex solution to obtain a mixed solution, IV) a step of heating and reducing nickel ions in the mixed solution to grow into nickel particles using the seed particles as nuclei and diffusing the copper element in the nickel particles to obtain any of the above nickel particles; Is included.
  • the heat reduction in the step IV may be performed by microwave irradiation.
  • the method for producing nickel particles of the present invention is obtained by heating and reducing a nickel complex solution in which nickel formate and copper formate are dissolved in an organic amine in the step I by microwave irradiation. There may be.
  • the nickel salt may be nickel carboxylate, and the organic amine may be an aliphatic primary amine.
  • the nickel particles of the present invention have an excellent dispersibility because the average particle diameter by observation with a scanning electron microscope is 150 nm or less and a small amount of copper is diffused in the nickel.
  • the nickel particles can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
  • MLCC multilayer ceramic capacitor
  • Example 4 is a SEM photograph of nickel particles (seed particles) produced in Example 3.
  • 4 is a SEM photograph of nickel particles produced in Example 3.
  • 4 is a SEM photograph of nickel particles (seed particles) produced in Example 4.
  • 4 is a SEM photograph of nickel particles produced in Example 4.
  • 6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 4.
  • FIG. 6 is a SEM photograph of nickel particles (seed particles) produced in Example 5.
  • 6 is a SEM photograph of nickel particles produced in Example 5.
  • 6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 5.
  • FIG. 6 is a SEM photograph of nickel particles (seed particles) produced in Example 6.
  • 4 is a SEM photograph of nickel particles produced in Example 6.
  • FIG. 4 is a SEM photograph of nickel particles produced in Example 7.
  • 6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 7.
  • FIG. 4 is a SEM photograph of nickel particles produced in Example 8.
  • 6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 8.
  • FIG. 4 is a SEM photograph of nickel particles produced in Comparative Example 1.
  • 4 is a SEM photograph of nickel particles (seed particles) produced in Comparative Example 2.
  • 4 is a SEM photograph of nickel particles produced in Comparative Example 2.
  • 6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Comparative Example 2.
  • FIG. 4 is a SEM photograph of nickel particles (seed particles) produced in Comparative Example 3.
  • 4 is a SEM photograph of nickel particles produced in Comparative Example 3.
  • the nickel particles according to the present embodiment contain nickel element as a main component and copper element.
  • “mainly composed of nickel element” means that nickel element is contained in the nickel particles in a range of 80 wt% or more, preferably 90 wt% or more and 99 wt% or less.
  • the nickel particles according to the present embodiment may contain a metal other than nickel and copper. Examples of such metals include titanium, cobalt, chromium, manganese, iron, aluminum, sodium, potassium, magnesium, zirconium, tin, tungsten, molybdenum, vanadium, barium, calcium, strontium, silicon, aluminum, and phosphorus.
  • Examples include base metals, noble metals such as gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, neodymium, niobium, holonium, dysprodium, yttrium, and rare earth metals. These may be contained alone or in combination of two or more, may contain elements other than metal elements such as hydrogen, carbon, nitrogen, sulfur and boron, and may be alloys thereof. .
  • the nickel particles of the present embodiment have the following configurations a to c.
  • the nickel particles according to the present embodiment have an average particle diameter in the range of 40 nm or more and 150 nm or less by observation with a scanning electron microscope.
  • the average particle diameter of the nickel particles is less than 40 nm, the content of the copper element is relatively increased and it becomes difficult to absorb the microwave, so that the efficiency of particle growth by heat reduction is deteriorated.
  • the average particle size is reduced to less than 40 nm, the particles are easily aggregated.
  • a conductive paste for an internal electrode material of MLCC not only the production of the conductive paste becomes difficult, but also the dielectric When firing after laminating the body layers, the difference in shrinkage from the dielectric increases and problems such as cracks are likely to occur.
  • the average particle diameter of the nickel particles exceeds 150 nm, for example, when used as a conductive paste for MLCC internal electrode material, unevenness occurs on the surface of the electrode layer, and the electrode layer is thinned and multilayered. It becomes difficult to cope with miniaturization, for example, it becomes difficult and causes electrical characteristics to deteriorate.
  • the nickel particles according to the present embodiment are various, for example, spherical, pseudo-spherical, oblong, cubic, truncated tetrahedral, dihedral pyramid, octahedral, icosahedral, icosahedral, etc. Although it may be in a shape, for example, from the viewpoint of improving the packing density when nickel particles are used for an electrode of an electronic component, spherical or pseudospherical is preferable, and spherical is more preferable.
  • the shape of the nickel particles can be confirmed by observing with a scanning electron microscope (SEM), for example.
  • the average particle diameter of nickel particles is obtained by taking a photograph of the sample with a SEM (scanning electron microscope), randomly extracting 200 particles from it, obtaining the area of each particle, and converting it to a true sphere.
  • the particle size can be determined on the basis of the number of particles.
  • the copper element content is in the range of 0.01 wt% to 2 wt%, preferably in the range of 0.01 wt% to 1.2 wt%. It is.
  • the copper element contained in the nickel particles of the present embodiment weakens the magnetic properties of the nickel particles that cause aggregation and contributes to the improvement of dispersibility. Accordingly, when the content ratio of the copper element to the nickel element is less than 0.01% by weight, the effect of improving the dispersibility cannot be obtained. On the other hand, when the content ratio of the copper element with respect to the nickel element exceeds 2% by weight, it becomes difficult to absorb the microwave, so that the efficiency of particle growth by heat reduction is deteriorated.
  • the oxidation stability of the particles is reduced due to the presence of elemental copper. Furthermore, when used as a conductive paste material for the internal electrode of MLCC, copper oxidation occurs rapidly in the debinding step, Problems such as cracks and delamination are likely to occur.
  • the nickel particles according to the present embodiment are obtained when the elemental element is analyzed when the electron beam spot diameter is 1 nm or less using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX). 10% or more and 60% or less of the detection count in the range from ⁇ 5 nm in the radial direction from the center of the nickel particles.
  • nickel particles 10 having a particle diameter D schematically show a range of ⁇ 5 nm from the center O in the particle diameter direction.
  • That 10% or more and 60% or less of the detection count of the copper element exists within a range of ⁇ 5 nm in the radial direction from the center O of the nickel particle 10, in other words, 40 to 90% of the copper element is It shows that the nickel particles 10 are dispersed outside the range of ⁇ 5 nm in the radial direction from the center O of the nickel grains 10 and exist in an alloyed state with the nickel element. By such a dispersed state of the copper element, the magnetic properties of the nickel particles can be weakened, aggregation can be suppressed, and the dispersibility can be improved.
  • the nickel particles according to the present embodiment may further have a particle diameter variation coefficient (standard deviation / average particle diameter; CV value) of 0.2 or less as an optional configuration. Preferably, it is 0.15 or less.
  • CV value standard deviation / average particle diameter
  • the nickel particles according to the present embodiment have an average particle diameter in the range of 40 nm or more and 150 nm or less by observation with a scanning electron microscope, the particle diameter is uniform, the variation thereof is small, and the dispersibility is excellent. It is preferable.
  • the nickel particles according to the present embodiment are further subjected to a line analysis using STEM-EDX as an optional component d under the condition that the electron beam spot diameter is 1 nm or less.
  • the peak top of the detection count of the copper element may exist within a range of ⁇ 5 nm in the radial direction from the center O of the nickel particle 10 (see FIG. 1).
  • the peak top of the copper element is derived from seed particles used for producing nickel particles, as will be described later.
  • the nickel particles of the present embodiment may contain a carbon element as an optional component in addition to the steps a to c.
  • the content of the carbon element in the nickel particles is preferably in the range of 0.1 to 3.0% by weight, more preferably in the range of 0.5 to 2.0% by weight.
  • the amount of carbon element can be confirmed by STEM-EDX.
  • the carbon element is derived from an organic compound present on the surface of the nickel particle, but it is preferable that a part of the carbon element does not exist inside the nickel particle.
  • the carbon element present on the surface of the nickel particles suppresses aggregation of the nickel particles, contributes to improvement in dispersibility, and promotes reduction of the oxygen element contained in the nickel particles. Therefore, if the carbon element is less than 0.1% by weight, aggregation of nickel particles tends to occur, and if it exceeds 3.0% by weight, carbonization occurs during sintering to form residual carbon, which is gasified to expand the particles.
  • causes a carbon element as an optional component in addition to the steps a
  • the nickel particles according to the present embodiment have an excellent dispersibility because the average particle diameter by scanning electron microscope observation is 150 nm or less and a small amount of copper is diffused in nickel. It is.
  • the nickel particles can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
  • MLCC multilayer ceramic capacitor
  • the conductive paste according to the present embodiment contains the above-described configurations a to c, and further, if necessary, nickel particles having the above-described optional configuration, and an organic vehicle.
  • Organic vehicle used in the present embodiment can include, for example, an organic solvent, an organic binder, a non-aqueous polymer dispersant, and the like.
  • Organic solvent for example, as an organic solvent immiscible with water, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, aliphatic hydrocarbons such as hexane, heptane, decane, octane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane, acetic acid Esters such as ethyl, butyl acetate, dihydroterpinyl acetate, isobornyl acetate, isobornyl proquinate, isobornyl butyrate and isobornyl isobutyrate, long chain alcohols such as ⁇ -terpineol and butyl carbitol, long Examples include esters of chain alcohols and carboxylic acids.
  • organic solvents partially miscible with water, for example, ketones such as acetone,
  • organic binder examples include cellulose resins such as methyl cellulose, ethyl cellulose, nitrocellulose, cellulose acetate, and cellulose propionate, and acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate. Alkyd resin, polyvinyl alcohol and the like can be used. Further, the organic binder may be used in a state where an organic solvent such as ethanol or butanol is added, or may be used after being dissolved in the above-mentioned organic solvent immiscible with water. In addition, the compounding quantity of an organic vehicle can be suitably adjusted according to the leveling property and sagging viscosity characteristic of the target electrically conductive paste.
  • the non-aqueous polymer dispersant is a polymer compound having a high affinity with a low-polar solvent in the main skeleton, a low-polar group, and an amino group as a functional group.
  • a polymer compound include those having a molecular skeleton such as polyamide-based, polyallylamine-based, polyester-based, polyurethane-based, and polyoxyalkylene-based, and among these, polyurethane-based and polyoxyethylene-based are particularly preferable. Those having a molecular skeleton are preferred.
  • the molecular structure is linear, linear or comb, or a comb having a trident branch point in which a linear side chain is bonded to a linear main chain, or a block copolymer or graft copolymer. Although it may be a coalescence, it has one or more secondary or tertiary amino groups in the molecule.
  • the secondary or tertiary amino group of the non-aqueous polymer dispersant used in the present embodiment can be substituted with an aliphatic primary monoamine immobilized on the surface of the nickel particle, It is believed that at least a portion of the aliphatic primary monoamine can be easily substituted on the surface to coat the nickel particles. Since this non-aqueous polymer dispersant has a strong aggregation inhibitory action on nickel particles, an excellent dispersion effect can be expected even in a small amount.
  • the tertiary amino group contained in the non-aqueous polymer dispersant may be present as a quaternary ammonium ion with an alkyl group bonded to a part thereof. These amino groups are preferably included in the linear main chain in a comb shape or at the end of the linear main chain, and the individual amino groups present in these amino groups are scattered on the surface of the nickel particles. Is considered to be fixed.
  • the amine value (or base value) of the non-aqueous polymer dispersant is preferably in the range of 10 to 100 mg KOH / g from the viewpoint of improving dispersibility.
  • the amine value (or base value) means the number of mg of KOH equivalent to the amount of HCl required to neutralize 1 g of the solid content (or active ingredient excluding the solvent) of the non-aqueous polymer dispersant. And it is measured by the method of JIS K7237.
  • the acid value of the non-aqueous polymer dispersant is preferably 15 mgKOH / g or less, more preferably 10 mgKOH / g or less, from the viewpoint of improving dispersibility.
  • the acid value means the number of mg of KOH required to neutralize 1 g of solid content (or active ingredient excluding the solvent), and is measured by the method of JIS K0070.
  • the weight average molecular weight of the non-aqueous polymer dispersant is preferably in the range of 1,000 to 200,000, more preferably in the range of 5,000 to 100,000.
  • weight average molecular weight is less than the above lower limit, dispersion stability may not be sufficient with respect to a low-polarity solvent, and when it exceeds the above upper limit, the viscosity may be too high and handling may be difficult.
  • Non-aqueous polymer dispersants can be used alone or in combination of two or more. Moreover, it can also be used in combination with the dispersing agent which consists of another compound in the range which does not impair the effect of invention.
  • examples of commercially available non-aqueous polymer dispersants that can be suitably used include Solsperse 11200 (trade name), Solsperse 13940 (trade name), Solsperse 13240 (trade name), and Big Chemie Japan, manufactured by Japan Lubrizol Corporation.
  • DISPERBYK-161 (trade name), DISPERBYK-163 (trade name), DISPERBYK-2164 (trade name), DISPERBYK-2155 (trade name), and the like are available.
  • the amount of the non-aqueous polymer dispersant added to the conductive paste is in the range of 0.01 to 20 parts by mass, preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the nickel particles.
  • the addition amount is less than the above lower limit, the dispersibility tends to decrease, and when it exceeds the upper limit, aggregation tends to occur.
  • the conductive paste of the present embodiment contains nickel particles having the above-described configurations a to c and, if necessary, the above-described arbitrary configuration, so that the nickel particles in the conductive paste are in a highly dispersed state. Can be maintained.
  • the surface roughness when the electrode film is formed by applying the conductive paste can be reduced, and the electrical reliability can be improved.
  • the arithmetic average roughness Ra can be suppressed to 0.005 ⁇ m or less, preferably 0.002 ⁇ m or less.
  • the method for preparing a conductive paste containing nickel particles and an organic vehicle is not particularly limited.
  • the conductive paste can be prepared by mixing each component and then performing a treatment such as stirring and kneading after the production of the known conductive paste.
  • a treatment such as stirring and kneading after the production of the known conductive paste.
  • it will be as follows if the preferable example of the order which mixes each component is given.
  • a non-aqueous polymer dispersant is applied to a slurry of nickel particles and organic solvent having the configurations a to c.
  • the application method of the non-aqueous polymer dispersant to the slurry is not particularly limited.
  • a method of adding a predetermined amount of the non-aqueous polymer dispersant to the slurry ii) a high-pressure homogenizer, an ultrasonic homogenizer, a bead mill
  • a disperser such as a disperser
  • nickel particles coated with an aliphatic primary monoamine are mechanically pulverized in a slurry state, and a predetermined amount of a non-aqueous polymer dispersant before or after the pulverization.
  • a method of adding and dispersing are various methods such as a method of adding and dispersing.
  • a conductive paste can be produced by adding a predetermined amount of an organic binder (may be dissolved in an organic solvent) to the slurry and mixing, kneading, and the like.
  • the conductive paste can be obtained as described above, a plasticizer, a lubricant, a dispersant, an antistatic agent, an antigelling agent, etc. may be added within a range not impairing the effects of the present invention.
  • the nickel particle manufacturing method according to the present embodiment can include, for example, the following steps I to IV.
  • This step is a step of preparing seed particles having an average particle diameter of 10 nm or more and 30 nm or less by observation with a scanning electron microscope and a content ratio of copper element to nickel element in a range of 3 wt% or more and 30 wt% or less. It is.
  • the seed particles function as nuclei for nickel particle growth in Step IV.
  • the seed particles are preferably produced from a raw material containing, for example, a nickel salt and a copper salt by wet reduction by heating in the presence of an organic amine.
  • a nickel salt and a copper salt by wet reduction by heating in the presence of an organic amine.
  • copper carboxylate As the copper salt, for example, copper carboxylate is preferably used. Moreover, as copper carboxylate, it is preferable to use copper formate, copper acetate, etc. whose dissociation temperature (decomposition temperature) in a reduction process is comparatively low, for example.
  • the copper carboxylate may be an anhydride or a hydrate.
  • nickel carboxylate is preferably used as the nickel salt.
  • nickel carboxylate it is preferable to use nickel formate, nickel acetate, etc. whose dissociation temperature (decomposition temperature) in a reduction process is comparatively low, for example.
  • the nickel carboxylate may be an anhydride or a hydrate.
  • inorganic salts such as nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel hydroxide instead of nickel carboxylate, but in the case of inorganic salts, dissociation (decomposition) is high temperature. In the reduction process, heating at a high temperature is necessary, which is not preferable.
  • nickel salts composed of organic ligands such as Ni (acac) 2 ( ⁇ -diketonato complex) and stearate ions, but using these nickel salts increases the cost of raw materials. It is not preferable.
  • the seed particles may contain a metal other than nickel and copper.
  • one or more metal salts selected from silver, gold, platinum and palladium may be used.
  • these metal salts for example, carboxylates such as palladium acetate, nitrates such as silver nitrate, and chlorides such as chloroauric acid and chloroplatinic acid are preferably used.
  • the metal salt may be an anhydride or a hydrate.
  • the content of the copper element in the seed particles is preferably in the range of 3% by weight to 30% by weight, for example.
  • the content of the elemental copper in the seed particles is less than 3% by weight, the effect of copper as a core material is reduced, making it difficult to form seed particles having a fine spherical shape and a uniform particle size distribution, and grown nickel particles The effect of suppressing the magnetism is not sufficiently obtained, and aggregation tends to occur.
  • the content of the copper element in the seed particles exceeds 30% by weight, the effect as a copper core material is saturated, and it is difficult to obtain the effect for producing fine seed particles, and the surface is oxidized at the seed particle stage. It becomes easy to do.
  • the inclusion of metal elements other than copper is preferably in the range of 0.01 wt% to 2 wt%.
  • the organic amine is not particularly limited as long as it can form a complex with nickel ions, and can be solid or liquid at room temperature.
  • room temperature means 20 ° C. ⁇ 15 ° C.
  • the organic amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex.
  • it is a solid organic amine at normal temperature, if it is a liquid by heating or melt
  • an aliphatic primary monoamine As the organic amine, it is preferable to use an aliphatic primary monoamine as the organic amine.
  • secondary amines have great steric hindrance and may hinder good formation of nickel complexes, and tertiary amines cannot be used because they do not have the ability to reduce nickel ions.
  • diamines are not preferred because of the high stability of complexes formed with nickel ions, among metal ions, and the reduction temperature is high, so that the reactivity is very low and the resulting nickel particles are easily distorted.
  • the aliphatic primary monoamine can control the particle size of the seed particles produced by adjusting the length of its carbon chain, for example.
  • the aliphatic primary monoamine is preferably selected from those having about 6 to 20 carbon atoms. The larger the carbon number, the smaller the particle size of the seed particles obtained.
  • examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine.
  • the aliphatic primary monoamine functions as a surface modifier during the production of seed particles, secondary aggregation can be suppressed even after the removal of the aliphatic primary monoamine.
  • the aliphatic primary monoamine is also preferable from the viewpoint of ease of processing operation in the washing step of separating the solid component of the seed particles generated after the reduction reaction from the solvent or the unreacted aliphatic primary monoamine.
  • the aliphatic primary monoamine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain seed particles. That is, the aliphatic primary monoamine has a boiling point of preferably 180 ° C. or higher, more preferably 200 ° C. or higher.
  • the aliphatic primary monoamine preferably has 9 or more carbon atoms.
  • the boiling point of C 9 H 21 N (nonylamine), which is an aliphatic primary monoamine having 9 carbon atoms is 201 ° C.
  • the aliphatic primary monoamine is liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the seed particles produced after the reduction reaction and the solvent or the unreacted aliphatic primary monoamine. Is preferred. Furthermore, the aliphatic primary monoamine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of easy control of reaction when reducing the copper complex to obtain seed particles.
  • the amount of the aliphatic primary monoamine is preferably 5 mol or more, more preferably 8 mol or more, based on 1 mol of metal ions (total of nickel ions and copper ions).
  • the amount of the aliphatic primary monoamine is less than 5 mol, it is difficult to control the particle diameter of the obtained nickel particles, and the particle diameter tends to vary.
  • the upper limit of the amount of the aliphatic primary monoamine is not particularly limited. However, for example, from the viewpoint of productivity, the amount is preferably 20 mol or less, more preferably 15 mol or less with respect to 1 mol of the metal ion. That is, the amount of the aliphatic primary monoamine is preferably in the range of 5 to 20 mol, more preferably in the range of 8 to 15 mol, with respect to 1 mol of the metal ion.
  • Organic solvent Although the aliphatic primary monoamine can proceed as an organic solvent, in order to proceed the reaction in a homogeneous solution more efficiently, in the preparation of seed particles in Step I, what is an aliphatic primary monoamine? Another organic solvent may be newly added.
  • the organic solvent that can be used is not particularly limited as long as it does not inhibit complex formation between an aliphatic primary monoamine and metal ions such as nickel ions and copper ions.
  • metal ions such as nickel ions and copper ions.
  • ether having 4 to 30 carbon atoms.
  • An organic organic solvent, a saturated or unsaturated hydrocarbon organic solvent having 7 to 30 carbon atoms, an alcohol organic solvent having 8 to 18 carbon atoms, and the like can be used.
  • an organic solvent having a boiling point of 170 ° C. or higher more preferably in the range of 200 to 300 ° C. It is better to choose one.
  • Specific examples of such an organic solvent include tetraethylene glycol, n-octyl ether, polyalphaolefin having a carbon number in the range of 20 to 40, and the like.
  • the heat reduction method for forming seed particles is not particularly limited, and for example, heating by a heat medium such as an oil bath or heating by microwave irradiation may be used. Heating by microwave irradiation capable of rapid heating is preferable.
  • the use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
  • the heating temperature for forming the seed particles is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the seed particles.
  • the upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment.
  • a slurry containing seed particles can be obtained.
  • the slurry containing the seed particles may be separated by standing, for example, after removing the supernatant, washed with an appropriate solvent, and dried to separate the seed particles. .
  • the average particle diameter of the seed particles obtained in step I by scanning electron microscope observation is in the range of 10 nm to 30 nm.
  • the average particle size of the seed particles is less than 10 nm, the handling property is lowered and the particles are easily aggregated.
  • the average particle size of the seed particles exceeds 30 nm, the variation in the particle size at the seed particle stage becomes large, and when used as a core material, nickel particles having a sharp particle size distribution are stable. Difficult to manufacture.
  • the average particle size of the seed particles is obtained by taking a photograph of the sample with an SEM (scanning electron microscope), randomly extracting 200 particles from it, obtaining the area of each particle, and converting it to a true sphere.
  • the particle size can be determined on the basis of the number of particles.
  • the seed particles obtained in Step I have a particle diameter variation coefficient (CV value) of preferably 0.2 or less, and more preferably 0.15 or less.
  • CV value particle diameter variation coefficient
  • the CV value exceeds 0.2, the variation in the particle diameter of the nickel particles obtained in the later step IV may increase.
  • This step is a step of preparing a nickel complex solution in which a nickel salt is dissolved in an organic amine.
  • nickel salt In step II, the type of nickel salt is not particularly limited. For example, nickel hydroxide, nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel carboxylate, Ni (acac) 2 ( ⁇ -diketonato complex), nickel stearate Etc. Among these, nickel chloride or nickel carboxylate is preferable, and it is advantageous to use nickel carboxylate having a relatively low dissociation temperature (decomposition temperature) in the reduction process. The nickel carboxylate may be used alone or in combination with other nickel salts. As the nickel salt in Step II, the same salt as in Step I can be used.
  • Organic amine As the organic amine in Step II, the same organic amine as in Step I can be used.
  • the concentration of the nickel complex in the nickel complex solution is preferably in the range of 2 to 11% by weight, for example, and more preferably in the range of 4 to 8% by weight.
  • a uniform particle diameter is obtained by a multi-step reaction that distinguishes Step I for forming seed particles and Step IV for growing nickel particles from the seed particles, compared to a one-step synthesis method.
  • Nickel particles can be produced.
  • the one-step synthesis method when the nickel complex concentration exceeds 11% by weight, the reactivity is lowered and the particle size is difficult to control.
  • Divalent nickel ions are known as ligand-substituted active species, and the ligand of the complex to be formed may change complex formation easily by ligand exchange depending on temperature and concentration.
  • the carboxylate ion is bidentate or monodentate.
  • the carboxylate ion is bidentate or monodentate.
  • the amine concentration is excessively large, there is a possibility that a carboxylate ion is present in the outer sphere.
  • the aliphatic primary monoamine In order to obtain a uniform solution at the intended reaction temperature (reduction temperature), at least one of the ligands must be coordinated with an aliphatic primary monoamine. In order to take this state, it is necessary that the aliphatic primary monoamine is excessively present in the reaction solution, and it is preferable that at least 2 mol per 1 mol of nickel ions is present, and 2.2 mol or more exist. More preferably.
  • the upper limit of the amount of the aliphatic primary monoamine is not particularly limited. For example, from the viewpoint of productivity, the amount is preferably 20 mol or less, more preferably 4 mol or less with respect to 1 mol of nickel ions.
  • the amount of the aliphatic primary monoamine is preferably in the range of 2 to 20 mol, more preferably in the range of 2 to 4 mol, and most preferably in the range of 2.2 to 4 mol with respect to 1 mol of nickel ions.
  • the complex formation reaction can proceed even at room temperature, it is preferable to perform heating at a temperature of 100 ° C. or higher in order to carry out the reaction reliably and more efficiently.
  • This heating is particularly advantageous when a nickel carboxylate hydrate such as nickel acetate tetrahydrate is used as the nickel carboxylate.
  • the heating temperature is preferably a temperature exceeding 100 ° C., more preferably a temperature of 105 ° C. or more, so that the ligand substitution reaction between the coordinated water coordinated with nickel carboxylate and the aliphatic primary monoamine is performed. It is done efficiently. Further, water molecules as the complex ligand can be dissociated, and further, the water can be discharged out of the system, so that the complex can be formed efficiently.
  • nickel acetate tetrahydrate has a complex structure in which two coordinated water, two acetate ions that are bidentate ligands, and two water molecules exist in the outer sphere at room temperature.
  • the water molecule as the complex ligand can be dissociated by heating at a temperature higher than 100 ° C. preferable.
  • the heating temperature is preferably 175 ° C. or lower from the viewpoint of reliably separating from the subsequent reduction process and completing the complex formation reaction.
  • the heating temperature in Step II is preferably in the range of 105 ° C. to 175 ° C., more preferably in the range of 125 to 160 ° C.
  • the heating time can be appropriately determined according to the heating temperature and the content of each raw material, but is preferably 15 minutes or more from the viewpoint of reliably completing the complex formation reaction. Although there is no upper limit on the heating time, heating for a long time is useless from the viewpoint of saving energy consumption and process time.
  • the heating method is not particularly limited, and for example, heating by a heat medium such as an oil bath or heating by microwave irradiation may be used, but heating by microwave irradiation is preferable. Heating by microwave irradiation enables uniform heating in the mixed solution, and energy can be directly applied to nickel ions, so that rapid heating can be performed.
  • the use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
  • the complex formation reaction between nickel carboxylate and aliphatic primary monoamine can be confirmed by a change in the color of the solution when a solution obtained by mixing nickel carboxylate and aliphatic primary monoamine is heated.
  • this complex formation reaction is carried out by measuring the absorption maximum wavelength of the absorption spectrum observed in the wavelength region of 300 nm to 750 nm using, for example, an ultraviolet / visible absorption spectrum measuring apparatus, and measuring the maximum absorption wavelength of the raw material (for example, nickel acetate). It can be confirmed by observing the shift of the complexing reaction solution with respect to tetrahydrate.
  • This step is a step in which the seed particles obtained in Step I and the nickel complex solution obtained in Step II are mixed to obtain a mixed solution.
  • Step III seed particles or a slurry containing seed particles may be added to the nickel complex solution, or a nickel complex solution may be added to the slurry containing seed particles.
  • the nickel complex mixed in step III is not used for the formation of new nuclei, but is used for the growth from seed particles to nickel particles in the next step IV. That is, as long as the concentration of the nickel complex in the mixed solution does not exceed the critical concentration for nucleation, the nickel complex is used only for particle growth. Therefore, the amount of the nickel complex for obtaining nickel particles having the target particle size in Step IV can be calculated based on the particle size of the seed particles.
  • the nickel concentration in the mixed solution is set to, for example, 3 to It is preferably within the range of 12% by weight, and more preferably within the range of 5 to 10% by weight.
  • This step is a step of heating and reducing the nickel ions in the liquid mixture obtained in step III to grow into nickel particles using the seed particles as nuclei and diffusing copper atoms in the nickel particles to obtain nickel particles. is there.
  • the heating method in step IV is not particularly limited, and may be heating with a heat medium such as an oil bath, but heating by microwave irradiation is preferable. Heating of the nickel complex by microwave irradiation enables uniform heating of the nickel complex and energy can be directly applied to the nickel complex, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and reduction and growth of the nickel complex (or nickel ions) can occur simultaneously in the entire solution. As a result, monodisperse particles having a narrow particle size distribution can be shortened. It can be manufactured easily in time.
  • the use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
  • the temperature of the heat reduction in the step IV is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the obtained nickel particles.
  • the heating temperature in step IV is too low, the reduction reaction rate from the nickel complex to nickel (zero valence) tends to be slow, and the growth of metallic nickel covering the seed particles tends to be slow.
  • the upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. Moreover, when it exceeds 270 degreeC, since carbonization reaction will advance and it will become easy to produce
  • step IV the copper element in the nickel particles is diffused by heat treatment during heat reduction.
  • step IV the reduction of nickel ions is performed by heat reduction, whereby copper element can be diffused simultaneously with heat reduction.
  • step IV the obtained slurry of nickel particles can be subjected to, for example, static separation, removal of the supernatant, washing with an appropriate solvent, and drying. In this way, nickel particles having the above-described configurations a to c are obtained.
  • step III and step IV It is possible to repeat part of the above step III and step IV a plurality of times. That is, after performing Step IV, a nickel complex solution may be further added, and Step IV may be performed again. Also in this case, the nickel complex added later is not used for the formation of new nuclei, but is used for the growth from seed particles to nickel particles. In other words, even when part of Step III and Step IV are repeated, the concentration of the nickel complex will not exceed the critical concentration for nucleation unless the rate of addition of the nickel complex into the mixture exceeds the rate consumed for particle growth. The added nickel complex is only used for particle growth because it does not exceed. Therefore, the amount of the nickel complex for obtaining the target particle size can be calculated based on the particle size of the seed particles.
  • the nickel particles obtained in the step IV have the above-mentioned configurations a to c. If the average particle size of the seed particles obtained in Step I is D1 and the average particle size of the nickel particles obtained in Step IV is D2, the relationship between D1 and D2 is to efficiently produce nickel particles having a predetermined particle size. For example, 2 ⁇ D2 / D1 is preferable. On the other hand, when 2> D2 / D1, the diffusion of the copper element may be insufficient.
  • nickel particles having an average particle size of 150 nm or less, a sharp particle size distribution, a small CV value, and excellent dispersibility can be stably produced. be able to. More specifically, by carrying out steps I to IV, nickel particles containing nickel element as a main component and copper element and having the above-mentioned configurations a to c can be produced.
  • the nickel particles having configurations a to c are presumed to have improved dispersibility by relaxing the magnetism of nickel and suppressing aggregation due to magnetism because the copper element diffuses inside the particles.
  • the nickel particles of the present embodiment can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
  • STEM-EDX line analysis of elements present in nickel particles was performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX; manufactured by JEOL Ltd., trade name: JEM-ARM200F). .
  • Example 1 Dissolve copper formate and nickel formate in oleylamine by adding 2.70 g copper formate tetrahydrate and 21.46 g nickel formate dihydrate to 330 g oleylamine and heating at 120 ° C. for 20 minutes under nitrogen flow did.
  • the obtained solution was irradiated with microwaves and heated to 190 ° C. to prepare 335 g of nickel particle slurry (1-A). 10 g of the obtained nickel particle slurry (1-A) was collected, the supernatant was removed, and then washed twice with toluene and methanol, respectively. Thereafter, nickel particles (1-B) having a copper element content of 10% by weight were prepared as seed particles by drying with a vacuum dryer maintained at 60 ° C. for 6 hours.
  • FIG. 2 An SEM photograph of nickel particles (1-B) is shown in FIG. Referring to FIG. 2, the nickel particles (1-B) had an average particle diameter of 17 nm and a CV value of 0.10.
  • a nickel complex solution was prepared by adding 3338 g of nickel acetate tetrahydrate to 8128 g of oleylamine and heating at 140 ° C. for 4 hours under a nitrogen flow.
  • FIG. 3 An SEM photograph of nickel particles (1-D) is shown in FIG. Referring to FIG. 3, the average particle diameter of nickel particles (1-D) was 80 nm, and the CV value was 0.11.
  • the results of STEM-EDX line analysis of nickel particles (1-D) are shown in FIG.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 20%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
  • a cellulose-based binder (Nisshin Kasei Co., Ltd., trade name: E3625) was added to the resulting slurry (1-E), and a rotating / revolving mixer (Shinky Co., trade name: Nertaro AR-100).
  • a conductive paste (1-F) As a result of measuring the surface roughness of the obtained conductive paste (1-F), the arithmetic average roughness Ra was 0.0019 ⁇ m.
  • Example 2 Preparation of seed particles> In the same manner as in Example 1, 335 g of nickel particle slurry (2-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (2-B).
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 6967 g of oleylamine and 2861 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (2-B) were added to the nickel complex solution to obtain a nickel particle slurry (2-C) to prepare nickel particles (2-D). As a result of elemental analysis of the nickel particles (2-D), the Cu content was 0.08% by weight.
  • FIG. 5 An SEM photograph of nickel particles (2-D) is shown in FIG. Referring to FIG. 5, the nickel particles (2-D) had an average particle size of 74 nm and a CV value of 0.12.
  • the results of STEM-EDX line analysis of nickel particles (2-D) are shown in FIG.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 28%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
  • Example 3 ⁇ Preparation of seed particles>
  • 943 g of oleylamine, 7.70 g of copper formate tetrahydrate and 61.30 g of nickel formate dihydrate were used, 960 g of the nickel particle slurry (3-A) was prepared. This was prepared, washed with toluene and methanol, and dried to prepare nickel particles (3-B).
  • FIG. 7 An SEM photograph of nickel particles (3-B) is shown in FIG. Referring to FIG. 7, the nickel particles (3-B) had an average particle diameter of 17 nm and a CV value of 0.10.
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 4645 g of oleylamine and 1907 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (3-B) were added to the nickel complex solution to obtain a nickel particle slurry (3-C) to prepare nickel particles (3-D). As a result of elemental analysis of the nickel particles (3-D), the Cu content was 0.43% by weight.
  • FIG. 8 An SEM photograph of nickel particles (3-D) is shown in FIG. Referring to FIG. 8, the average particle diameter of nickel particles (3-D) was 48 nm, and the CV value was 0.12.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 58%.
  • the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 6%.
  • Example 4 Preparation of seed particles> In the same manner as in Example 1 except that 770 g of oleylamine, 4.10 g of copper formate tetrahydrate and 10.73 g of nickel formate dihydrate were used, 778 g of nickel particle slurry (4-A) was prepared. Obtained, washed with toluene and methanol, and dried to prepare nickel particles (4-B).
  • FIG. 9 An SEM photograph of nickel particles (4-B) is shown in FIG. Referring to FIG. 9, the nickel particles (4-B) had an average particle diameter of 12 nm and a CV value of 0.11.
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 6968 g of oleylamine and 2860 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (4-B) were added to the nickel complex solution to obtain a nickel particle slurry (4-C) to prepare nickel particles (4-D). As a result of elemental analysis of the nickel particles (4-D), the Cu content was 0.16% by weight.
  • FIG. 10 An SEM photograph of nickel particles (4-D) is shown in FIG. Referring to FIG. 10, the average particle diameter of nickel particles (4-D) was 57 nm, and the CV value was 0.11.
  • the results of STEM-EDX line analysis of nickel particles (4-D) are shown in FIG.
  • the detection count of copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 43%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
  • Example 5 ⁇ Preparation of seed particles> 340 g of nickel particle slurry (5-A) was prepared in the same manner as in Example 1 except that 330 g of oleylamine, 1.10 g of copper formate tetrahydrate and 22.56 g of nickel formate dihydrate were used. Obtained, washed with toluene and methanol, and dried to prepare nickel particles (5-B).
  • FIG. 12 An SEM photograph of nickel particles (5-B) is shown in FIG. Referring to FIG. 12, the average particle diameter of nickel particles (5-B) was 25 nm, and the CV value was 0.12.
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 9290 g of oleylamine and 3814 g of nickel acetate tetrahydrate were used, and then nickel particles (5-B) were added to the nickel complex solution to obtain nickel particles.
  • a slurry (5-C) was obtained, and nickel particles (5-D) were prepared.
  • the Cu content was 0.03% by weight.
  • FIG. 13 An SEM photograph of nickel particles (5-D) is shown in FIG. Referring to FIG. 13, the average particle diameter of nickel particles (5-D) was 122 nm, and the CV value was 0.09.
  • FIG. 14 shows the results of STEM-EDX line analysis of the nickel particles (5-D).
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 14%.
  • the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 2%.
  • Example 6 ⁇ Preparation of seed particles> 338 g of nickel particle slurry (6-A) was obtained in the same manner as in Example 1 except that the solution was heated by a mantle heater instead of heating by microwave irradiation. After washing with toluene and methanol, The nickel particles (6-B) were prepared by drying.
  • FIG. 15 An SEM photograph of nickel particles (6-B) is shown in FIG. Referring to FIG. 15, the average particle diameter of nickel particles (6-B) was 19 nm, and the CV value was 0.10.
  • FIG. 16 An SEM photograph of nickel particles (6-D) is shown in FIG. Referring to FIG. 16, the average particle diameter of nickel particles (6-D) was 81 nm, and the CV value was 0.11.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 21%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 7%.
  • Example 7 ⁇ Preparation of seed particles> In the same manner as in Example 1, 333 g of nickel particle slurry (7-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (7-B).
  • Example 2 ⁇ Preparation of nickel particles>
  • a nickel complex solution was prepared. Nickel particles were added to this nickel complex solution, and after stirring, a nickel particle slurry (7-C) was obtained in the same manner as in Example 1 except that heating with a mantle heater was performed instead of heating with microwave irradiation. Nickel particles (7-D) were prepared. As a result of elemental analysis of the nickel particles (7-D), the Cu content was 0.07% by weight.
  • FIG. 17 An SEM photograph of nickel particles (7-D) is shown in FIG. Referring to FIG. 17, the nickel particles (7-D) had an average particle diameter of 72 nm and a CV value of 0.17.
  • the result of STEM-EDX line analysis of nickel particles (7-D) is shown in FIG.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 33%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 7%.
  • Example 8 ⁇ Preparation of seed particles>
  • 335 g of nickel particle slurry (8-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (8-B).
  • a nickel complex solution was prepared by adding 1669 g of nickel acetate tetrahydrate to 4064 g of octylamine and heating at 140 ° C. for 4 hours under a nitrogen flow.
  • nickel particle slurry (8-A) 325 g was added, stirred, heated to 170 ° C. by irradiation with microwaves, and held at that temperature for 20 minutes to maintain the nickel particle slurry (8 -C) was prepared.
  • the obtained nickel particle slurry (8-C) was washed with toluene and methanol and then dried to prepare nickel particles (8-D).
  • the Cu content was 0.14% by weight.
  • FIG. 19 An SEM photograph of nickel particles (8-D) is shown in FIG. Referring to FIG. 19, the average particle diameter of nickel particles (8-D) was 64 nm, and the CV value was 0.12.
  • results of STEM-EDX line analysis of nickel particles (8-D) are shown in FIG.
  • the detection count of copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 43%.
  • the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 6%.
  • the obtained solution was irradiated with microwaves and heated to 250 ° C., and the temperature was maintained for 5 minutes to prepare a nickel particle slurry.
  • the resulting nickel particle slurry was allowed to stand and separated, the supernatant was removed, and each was washed twice with toluene and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. to obtain nickel particles.
  • a vacuum dryer maintained at 60 ° C.
  • FIG. 21 An SEM photograph of the obtained nickel particles is shown in FIG. Referring to FIG. 21, the average particle diameter of the nickel particles was 80 nm, and the CV value was 0.14.
  • Example 2 (Comparative Example 2) ⁇ Preparation of seed particles> 340 g of nickel particle slurry was obtained in the same manner as in Example 1, except that 330 g of oleylamine, 0.40 g of copper formate tetrahydrate and 16.89 g of nickel formate dihydrate were used. Toluene and methanol After washing, the nickel particles were prepared by drying.
  • FIG. 22 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 22, the average particle diameter of the nickel particles was 35 nm, and the CV value was 0.12.
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 9290 g of oleylamine and 3814 g of nickel acetate tetrahydrate were used, and then nickel particles were added to the nickel complex solution to obtain a nickel particle slurry. Particles were prepared. As a result of elemental analysis of the nickel particles, the Cu content was 0.01% by weight.
  • FIG. 23 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 23, the average particle diameter of the nickel particles was 180 nm, and the CV value was 0.23.
  • results of STEM-EDX line analysis of nickel particles are shown in FIG.
  • the detection count of the copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 8%.
  • the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 2%.
  • FIG. 25 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 25, the average particle diameter of the nickel particles was 8 nm, and the CV value was 0.11.
  • a nickel complex solution was prepared in the same manner as in Example 1 except that 2713 g of oleylamine and 1113 g of nickel acetate tetrahydrate were used, and then nickel particles were added to the nickel complex solution to obtain a nickel particle slurry. Particles were prepared. As a result of elemental analysis of the nickel particles, the Cu content was 1.23% by weight.
  • FIG. 26 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 26, the average particle diameter of nickel particles was 27 nm, and the CV value was 0.13.
  • the detection count of copper element existing within a range of ⁇ 5 nm in the radial direction from the center of the nickel particles was 75%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 3%.

Abstract

Nickel particles contain element nickel as the main component and also contain element copper, and have the following characteristic properties: (a) the average particle diameter of the nickel particles falls within the range from 40 to 150 nm inclusive as observed with a scanning electron microscope; (b) the content of element copper in the nickel particles falls within the range from 0.01 to 2% by weight inclusive; and (c) 20 to 60% inclusive of the counts of detected copper element exist within a radius of 5 nm from the center of each of the nickel particles as determined by a radiation analysis with a scanning electron microscope coupled to an energy dispersive X-ray spectrometer (STEM-EDX) under the condition where the electron beam spot diameter is 1 nm or less.

Description

ニッケル粒子、その製造方法及び導電性ペーストNickel particles, method for producing the same, and conductive paste
 本発明は、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用の導電性ペーストなどの用途に好適に利用できるニッケル粒子、その製造方法及び導電性ペーストに関する。 The present invention relates to nickel particles that can be suitably used for applications such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC), a method for producing the same, and a conductive paste.
 金属微粒子は、バルク金属とは異なる物理的・化学的特性を有することから、例えば、導電性ペーストや透明導電膜などの電極材料、高密度記録材料、触媒材料、インクジェット用インク材料等の様々な工業材料に利用されている。近年では、電子機器の小型化や薄型化に伴い、金属微粒子も、数十~数百nm程度まで微粒子化が進んでいる。 Since the metal fine particles have physical and chemical characteristics different from those of bulk metals, various materials such as electrode materials such as conductive pastes and transparent conductive films, high-density recording materials, catalyst materials, and ink-jet ink materials are used. It is used for industrial materials. In recent years, with the downsizing and thinning of electronic devices, fine metal particles have been made finer to about several tens to several hundreds of nanometers.
 例えば、電子機器の小型化に伴い、積層セラミックコンデンサ(MLCC)の電極は薄膜多層化が進んでいる。このことに伴い、電極層の材料には、例えば平均粒子径が150nmを下回る程度に小さく、粒子径が均一で、そのばらつきが小さく、かつ、出来るだけ分散性に優れたナノ粒子が好ましいと考えられている。 For example, with the miniaturization of electronic devices, multilayer ceramic capacitor (MLCC) electrodes are becoming increasingly thin. As a result, it is considered that the material for the electrode layer is preferably nanoparticles having an average particle size as small as less than 150 nm, a uniform particle size, small variation, and excellent dispersibility as much as possible. It has been.
 粒子形状、粒子径が揃っており、二次凝集が少ない金属微粒子を製造する方法として、例えば特許文献1では、金属塩の溶液に還元剤を添加することにより、独立単分散状態にある金属超微粒子(核)を生成させる工程と、この核に、還元剤の存在下、金属塩の溶液から金属を還元析出させる工程を含む多段階の製造方法が提案されている。 As a method for producing metal fine particles having a uniform particle shape and particle diameter and less secondary agglomeration, for example, in Patent Document 1, by adding a reducing agent to a solution of a metal salt, There has been proposed a multistage production method including a step of generating fine particles (nuclei) and a step of reducing and precipitating a metal from a solution of a metal salt in the presence of a reducing agent.
 また、異種金属のコアとシェルを含む金属微粒子の多段階製造方法として、例えば特許文献2では、ニッケル粒子、コバルト塩および1級アミンを含む混合物を加熱して錯化反応液を得る工程と、この錯化反応液を加熱してニッケル-コバルトナノ粒子スラリーを得る工程と、を含むニッケル-コバルトナノ粒子の製造方法が提案されている。 Moreover, as a multistage production method of metal fine particles including a core and a shell of different metals, for example, in Patent Document 2, a step of heating a mixture containing nickel particles, a cobalt salt and a primary amine to obtain a complexing reaction solution; There has been proposed a method for producing nickel-cobalt nanoparticles comprising heating the complexing reaction solution to obtain a nickel-cobalt nanoparticle slurry.
日本国特開平10-317022公報Japanese Patent Laid-Open No. 10-317022 国際公開WO2011/115214号International Publication WO2011 / 115214
 特許文献1の実施例では、核となる金属超微粒子の大きさが100nmを超えており、最終的に製造される金属微粒子の平均粒子径も1μm程度であることから、凝集が発生しにくく、粒子径のばらつきに対する許容範囲も広い。そのため、特許文献1の技術は、現在の工業材料に求められる、例えば平均粒子径が150nm以下の小さな金属微粒子の製造に適用できるものではない。 In the example of Patent Document 1, since the size of the ultrafine metal particles serving as a nucleus exceeds 100 nm and the average particle diameter of the finally produced metal fine particles is about 1 μm, aggregation is unlikely to occur. The allowable range for variation in particle size is also wide. Therefore, the technique of Patent Document 1 is not applicable to the production of small metal fine particles having an average particle diameter of, for example, 150 nm or less, which is required for current industrial materials.
 また、平均粒子径が150nm以下の金属微粒子では、例えばニッケルなどの磁性材料を主成分とする場合、磁性によって凝集が生じやすくなり、分散性が低下することが懸念される。しかしながら、磁性材料を主要な成分とする金属微粒子において、磁性による分散性への影響を考慮した粒子設計はこれまでなされていない。 Further, in the case of metal fine particles having an average particle diameter of 150 nm or less, for example, when a magnetic material such as nickel is used as a main component, aggregation is likely to occur due to magnetism, and there is a concern that dispersibility may be reduced. However, no particle design has been made so far in consideration of the influence of magnetism on dispersibility in metal fine particles containing a magnetic material as a main component.
 本発明の目的は、平均粒子径が150nm以下であり、粒子径が均一でそのばらつきが小さく、かつ分散性に優れた金属微粒子を提供することである。 An object of the present invention is to provide metal fine particles having an average particle size of 150 nm or less, a uniform particle size, small variations, and excellent dispersibility.
 本発明のニッケル粒子は、ニッケル元素を主成分とし、銅元素を含有する。そして、本発明のニッケル粒子は、下記の構成a~c;
 a)走査型電子顕微鏡観察による平均粒子径が40nm以上150nm以下の範囲内、
 b)前記ニッケル粒子中の銅元素の含有割合が0.01重量%以上2重量%以下の範囲内、
 c)エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX)を用いて電子線のスポット径が1nm以下の条件で線分析したときに、銅元素の検出カウントの10%以上60%以下が、前記ニッケル粒子の中心から径方向に±5nmの範囲内に存在している、
を備えている。
The nickel particles of the present invention contain nickel element as the main component and copper element. The nickel particles of the present invention have the following constitutions a to c;
a) The average particle diameter by observation with a scanning electron microscope is in the range of 40 nm to 150 nm,
b) The content ratio of the copper element in the nickel particles is in the range of 0.01 wt% to 2 wt%,
c) 10% or more of the detection count of copper element when a line analysis is performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX) under the condition that the spot diameter of the electron beam is 1 nm or less. % Or less is present in the range of ± 5 nm in the radial direction from the center of the nickel particles,
It has.
 本発明のニッケル粒子は、粒子径の変動係数(標準偏差/平均粒子径)が0.2以下であってもよい。 The nickel particles of the present invention may have a particle size variation coefficient (standard deviation / average particle size) of 0.2 or less.
 本発明のニッケル粒子は、さらに、次の構成dを備えていてもよい。
 構成d)エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX)を用いて電子線のスポット径が1nm以下の条件で線分析したときに、前記ニッケル粒子の中心から径方向に±5nmの範囲内に銅元素の検出カウントのピークトップが存在する。
The nickel particles of the present invention may further have the following configuration d.
Configuration d) When a line analysis is performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX) under a condition that the spot diameter of the electron beam is 1 nm or less, the nickel particle is radially directed from the center. The peak top of the detection count of the copper element exists in the range of ± 5 nm.
 本発明の導電性ペーストは、上記いずれかのニッケル粒子及び有機ビヒクルを含有する。 The conductive paste of the present invention contains any of the above nickel particles and an organic vehicle.
 本発明のニッケル粒子の製造方法は、下記工程I~IV;
 I)走査型電子顕微鏡観察による平均粒子径が10nm以上30nm以下の範囲内、銅元素の含有量が3重量%以上30重量%以下の範囲内である種粒子を準備する工程、
 II)ニッケル塩を有機アミンに溶解させたニッケル錯体溶液を準備する工程、
 III)前記種粒子と前記ニッケル錯体溶液とを混合して混合液を得る工程、
 IV)前記混合液中のニッケルイオンを加熱還元し、前記種粒子を核としてニッケル粒子に成長させるとともに、該ニッケル粒子中の銅元素を拡散させて上記いずれかのニッケル粒子を得る工程、
を含んでいる。
The method for producing nickel particles of the present invention includes the following steps I to IV:
I) a step of preparing seed particles having an average particle diameter of 10 nm or more and 30 nm or less by observation with a scanning electron microscope and a copper element content of 3 wt% or more and 30 wt% or less;
II) preparing a nickel complex solution in which a nickel salt is dissolved in an organic amine;
III) A step of mixing the seed particles and the nickel complex solution to obtain a mixed solution,
IV) a step of heating and reducing nickel ions in the mixed solution to grow into nickel particles using the seed particles as nuclei and diffusing the copper element in the nickel particles to obtain any of the above nickel particles;
Is included.
 本発明のニッケル粒子の製造方法は、前記工程IVにおける加熱還元が、マイクロ波照射によるものであってもよい。 In the method for producing nickel particles of the present invention, the heat reduction in the step IV may be performed by microwave irradiation.
 本発明のニッケル粒子の製造方法は、前記工程Iにおいて、前記種粒子が、ギ酸ニッケル及びギ酸銅を有機アミンに溶解させたニッケル錯体溶液をマイクロ波照射して加熱還元することによって得られるものであってもよい。 The method for producing nickel particles of the present invention is obtained by heating and reducing a nickel complex solution in which nickel formate and copper formate are dissolved in an organic amine in the step I by microwave irradiation. There may be.
 本発明のニッケル粒子の製造方法は、前記工程IIにおいて、前記ニッケル塩がカルボン酸ニッケルであり、前記有機アミンが脂肪族1級アミンであってもよい。 In the method for producing nickel particles of the present invention, in the step II, the nickel salt may be nickel carboxylate, and the organic amine may be an aliphatic primary amine.
 本発明のニッケル粒子は、走査型電子顕微鏡観察による平均粒子径が150nm以下であり、かつニッケル中に微量の銅が拡散した状態にあるため、優れた分散性を有するものである。このニッケル粒子は、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用導電性ペーストなどの電子材料として好適に利用できる。 The nickel particles of the present invention have an excellent dispersibility because the average particle diameter by observation with a scanning electron microscope is 150 nm or less and a small amount of copper is diffused in the nickel. The nickel particles can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
エネルギー分散型X線分析装置付走査透過型電子顕微鏡(EDX-STEM)を用いて電子線のスポット径が1nm以下の条件で線分析したときの中心から径方向に±5nmの範囲を示す説明図である。Explanatory drawing showing a range of ± 5 nm in the radial direction from the center when a line analysis is performed with a scanning transmission electron microscope with an energy dispersive X-ray analyzer (EDX-STEM) under the condition that the spot diameter of the electron beam is 1 nm or less. It is. 実施例1で作製したニッケル粒子(種粒子)の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of nickel particles (seed particles) produced in Example 1. FIG. 実施例1で作製したニッケル粒子のSEM写真である。2 is an SEM photograph of nickel particles produced in Example 1. 実施例1で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。2 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 1. FIG. 実施例2で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 2. 実施例2で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。2 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 2. FIG. 実施例3で作製したニッケル粒子(種粒子)のSEM写真である。4 is a SEM photograph of nickel particles (seed particles) produced in Example 3. 実施例3で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 3. 実施例4で作製したニッケル粒子(種粒子)のSEM写真である。4 is a SEM photograph of nickel particles (seed particles) produced in Example 4. 実施例4で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 4. 実施例4で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 4. FIG. 実施例5で作製したニッケル粒子(種粒子)のSEM写真である。6 is a SEM photograph of nickel particles (seed particles) produced in Example 5. 実施例5で作製したニッケル粒子のSEM写真である。6 is a SEM photograph of nickel particles produced in Example 5. 実施例5で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 5. FIG. 実施例6で作製したニッケル粒子(種粒子)のSEM写真である。6 is a SEM photograph of nickel particles (seed particles) produced in Example 6. 実施例6で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 6. 実施例7で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 7. 実施例7で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 7. FIG. 実施例8で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Example 8. 実施例8で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Example 8. FIG. 比較例1で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Comparative Example 1. 比較例2で作製したニッケル粒子(種粒子)のSEM写真である。4 is a SEM photograph of nickel particles (seed particles) produced in Comparative Example 2. 比較例2で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Comparative Example 2. 比較例2で作製したニッケル粒子のSTEM-EDXの線分析の結果を示す図面である。6 is a drawing showing the results of STEM-EDX line analysis of nickel particles produced in Comparative Example 2. FIG. 比較例3で作製したニッケル粒子(種粒子)のSEM写真である。4 is a SEM photograph of nickel particles (seed particles) produced in Comparative Example 3. 比較例3で作製したニッケル粒子のSEM写真である。4 is a SEM photograph of nickel particles produced in Comparative Example 3.
[ニッケル粒子]
 本実施の形態に係るニッケル粒子は、ニッケル元素を主成分とし、銅元素を含有する。ここで、「ニッケル元素を主成分とする」とは、ニッケル粒子中にニッケル元素を80重量%以上、好ましくは90重量%以上99重量%以下の範囲内で含有することを意味する。本実施の形態に係るニッケル粒子は、ニッケル及び銅以外の金属を含有していてもよい。そのような金属としては、例えば、チタン、コバルト、クロム、マンガン、鉄、アルミニウム、ナトリウム、カリウム、マグネシウム、ジルコニウム、スズ、タングステン、モリブデン、バナジウム、バリウム、カルシウム、ストロンチウム、シリコン、アルミニウム、リン等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム、ネオジウム、ニオブ、ホロニウム、ディスプロヂウム、イットリウム等の貴金属、希土類金属を挙げることができる。これは、単独で又は2種以上含有していてもよく、また水素、炭素、窒素、硫黄、ボロン等の金属元素以外の元素を含有していてもよいし、これらの合金であってもよい。
[Nickel particles]
The nickel particles according to the present embodiment contain nickel element as a main component and copper element. Here, “mainly composed of nickel element” means that nickel element is contained in the nickel particles in a range of 80 wt% or more, preferably 90 wt% or more and 99 wt% or less. The nickel particles according to the present embodiment may contain a metal other than nickel and copper. Examples of such metals include titanium, cobalt, chromium, manganese, iron, aluminum, sodium, potassium, magnesium, zirconium, tin, tungsten, molybdenum, vanadium, barium, calcium, strontium, silicon, aluminum, and phosphorus. Examples include base metals, noble metals such as gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, neodymium, niobium, holonium, dysprodium, yttrium, and rare earth metals. These may be contained alone or in combination of two or more, may contain elements other than metal elements such as hydrogen, carbon, nitrogen, sulfur and boron, and may be alloys thereof. .
 本実施の形態のニッケル粒子は、下記の構成a~cを備えている。 The nickel particles of the present embodiment have the following configurations a to c.
<構成a>
 本実施の形態に係るニッケル粒子は、走査型電子顕微鏡観察による平均粒子径が40nm以上150nm以下の範囲内である。ニッケル粒子の平均粒子径が40nm未満であると、相対的に銅元素の含有量が多くなり、マイクロ波を吸収し難くなるため、加熱還元による粒子成長の効率が悪くなる。また、平均粒子径が40nm未満に微粒子化することにより、凝集しやすくなり、例えばMLCCの内部電極材料用の導電性ペーストとして用いる場合に、導電性ペーストの作製が困難になるばかりでなく、誘電体層の積層後の焼成時に誘電体との収縮率差が大きくなりクラック等の問題が生じやすい。一方、ニッケル粒子の平均粒子径が150nmを超えると、例えばMLCCの内部電極材料用の導電性ペーストとして用いる場合に、電極層の表面に凹凸が発生し、電極層の薄層化及び多層化が困難になったり、電気的特性を低下させたりする原因となるなど、微細化への対応が困難になる。
<Configuration a>
The nickel particles according to the present embodiment have an average particle diameter in the range of 40 nm or more and 150 nm or less by observation with a scanning electron microscope. When the average particle diameter of the nickel particles is less than 40 nm, the content of the copper element is relatively increased and it becomes difficult to absorb the microwave, so that the efficiency of particle growth by heat reduction is deteriorated. In addition, when the average particle size is reduced to less than 40 nm, the particles are easily aggregated. For example, when used as a conductive paste for an internal electrode material of MLCC, not only the production of the conductive paste becomes difficult, but also the dielectric When firing after laminating the body layers, the difference in shrinkage from the dielectric increases and problems such as cracks are likely to occur. On the other hand, when the average particle diameter of the nickel particles exceeds 150 nm, for example, when used as a conductive paste for MLCC internal electrode material, unevenness occurs on the surface of the electrode layer, and the electrode layer is thinned and multilayered. It becomes difficult to cope with miniaturization, for example, it becomes difficult and causes electrical characteristics to deteriorate.
 本実施の形態に係るニッケル粒子は、例えば球状、擬球状、長球状、立方体様、切頭四面体様、双角錐状、正八面体様、正十面体様、正二十面体様等の種々の形状であってよいが、例えばニッケル粒子を電子部品の電極に使用した場合の充填密度の向上という観点から、球状又は擬球状が好ましく、球状がより好ましい。ここで、ニッケル粒子の形状は、例えば、走査電子顕微鏡(SEM)で観察することにより確認できる。また、ニッケル粒子の平均粒子径は、SEM(走査型電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの粒子について面積を求め、真球に換算したときの粒子径から、個数基準にて求めることができる。 The nickel particles according to the present embodiment are various, for example, spherical, pseudo-spherical, oblong, cubic, truncated tetrahedral, dihedral pyramid, octahedral, icosahedral, icosahedral, etc. Although it may be in a shape, for example, from the viewpoint of improving the packing density when nickel particles are used for an electrode of an electronic component, spherical or pseudospherical is preferable, and spherical is more preferable. Here, the shape of the nickel particles can be confirmed by observing with a scanning electron microscope (SEM), for example. In addition, the average particle diameter of nickel particles is obtained by taking a photograph of the sample with a SEM (scanning electron microscope), randomly extracting 200 particles from it, obtaining the area of each particle, and converting it to a true sphere. The particle size can be determined on the basis of the number of particles.
<構成b>
 本実施の形態に係るニッケル粒子は、銅元素の含有割合が、0.01重量%以上2重量%以下の範囲内であり、好ましくは0.01重量%以上1.2重量%以下の範囲内である。本実施の形態のニッケル粒子中に含有される銅元素は、凝集の原因となるニッケル粒子の磁性を弱め、分散性の向上に寄与する。従って、ニッケル元素に対する銅元素の含有割合が0.01重量%未満であると、分散性の改善効果が得られない。一方、ニッケル元素に対する銅元素の含有割合が2重量%を超えると、マイクロ波を吸収し難くなるため、加熱還元による粒子成長の効率が悪くなる。それに加えて、銅元素の存在による粒子の酸化安定性の低下が生じ、さらには、MLCCの内部電極用の導電性ペースト材料として用いる場合に、脱バインダー工程において、銅の酸化が急速に起こり、クラックや層間剥離などの不具合が発生しやすくなる。
<Configuration b>
In the nickel particles according to the present embodiment, the copper element content is in the range of 0.01 wt% to 2 wt%, preferably in the range of 0.01 wt% to 1.2 wt%. It is. The copper element contained in the nickel particles of the present embodiment weakens the magnetic properties of the nickel particles that cause aggregation and contributes to the improvement of dispersibility. Accordingly, when the content ratio of the copper element to the nickel element is less than 0.01% by weight, the effect of improving the dispersibility cannot be obtained. On the other hand, when the content ratio of the copper element with respect to the nickel element exceeds 2% by weight, it becomes difficult to absorb the microwave, so that the efficiency of particle growth by heat reduction is deteriorated. In addition, the oxidation stability of the particles is reduced due to the presence of elemental copper. Furthermore, when used as a conductive paste material for the internal electrode of MLCC, copper oxidation occurs rapidly in the debinding step, Problems such as cracks and delamination are likely to occur.
<構成c>
 本実施の形態に係るニッケル粒子は、エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX)を用いて電子線のスポット径が1nm以下の条件で線分析したときに、銅元素の検出カウントの10%以上60%以下が、前記ニッケル粒子の中心から径方向に±5nmの範囲内に存在している。図1では、粒子径Dのニッケル粒子10において、その中心Oより粒子径方向に±5nmの範囲内を模式的に示している。銅元素の検出カウントの10%以上60%以下が、ニッケル粒子10の中心Oから径方向に±5nmの範囲内に存在していることは、換言すれば、銅元素の40~90%が、ニッケル粒10の中心Oから径方向に±5nmの範囲より外側に分散し、ニッケル元素と合金化した状態で存在していることを示している。このような銅元素の分散状態によって、ニッケル粒子の磁性を弱め、凝集を抑制して分散性を改善することができる。
<Configuration c>
The nickel particles according to the present embodiment are obtained when the elemental element is analyzed when the electron beam spot diameter is 1 nm or less using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX). 10% or more and 60% or less of the detection count in the range from ± 5 nm in the radial direction from the center of the nickel particles. In FIG. 1, nickel particles 10 having a particle diameter D schematically show a range of ± 5 nm from the center O in the particle diameter direction. That 10% or more and 60% or less of the detection count of the copper element exists within a range of ± 5 nm in the radial direction from the center O of the nickel particle 10, in other words, 40 to 90% of the copper element is It shows that the nickel particles 10 are dispersed outside the range of ± 5 nm in the radial direction from the center O of the nickel grains 10 and exist in an alloyed state with the nickel element. By such a dispersed state of the copper element, the magnetic properties of the nickel particles can be weakened, aggregation can be suppressed, and the dispersibility can be improved.
 本実施の形態に係るニッケル粒子は、上記工程a~cに加え、さらに任意の構成として、粒子径の変動係数(標準偏差/平均粒子径;CV値)が、0.2以下であることが好ましく、0.15以下であることがより好ましい。CV値が0.2を超えると、例えばMLCCの内部電極用の導電性ペースト材料として用いる場合に、電極層の表面に凹凸が発生し、電極層の薄層化及び多層化が困難になったり、電気的特性を低下させたりする原因となることがある。このように、本実施の形態に係るニッケル粒子は、走査型電子顕微鏡観察による平均粒子径が40nm以上150nm以下の範囲内であり、粒子径が均一でそのばらつきが小さく、かつ分散性に優れたものであることが好ましい。 In addition to the steps a to c described above, the nickel particles according to the present embodiment may further have a particle diameter variation coefficient (standard deviation / average particle diameter; CV value) of 0.2 or less as an optional configuration. Preferably, it is 0.15 or less. When the CV value exceeds 0.2, for example, when used as a conductive paste material for an internal electrode of MLCC, irregularities occur on the surface of the electrode layer, making it difficult to make the electrode layer thinner and multilayered. In some cases, the electrical characteristics may be deteriorated. Thus, the nickel particles according to the present embodiment have an average particle diameter in the range of 40 nm or more and 150 nm or less by observation with a scanning electron microscope, the particle diameter is uniform, the variation thereof is small, and the dispersibility is excellent. It is preferable.
<構成d>
 さらに、本実施の形態に係るニッケル粒子は、上記工程a~cに加え、さらに任意の構成dとして、STEM-EDXを用いて電子線のスポット径が1nm以下の条件で線分析したときに、ニッケル粒子10の中心Oから径方向に±5nmの範囲内(図1参照)に銅元素の検出カウントのピークトップが存在してもよい。この銅元素のピークトップは、後述するように、ニッケル粒子の製造に使用する種粒子に由来するものである。
<Configuration d>
Furthermore, in addition to the above steps a to c, the nickel particles according to the present embodiment are further subjected to a line analysis using STEM-EDX as an optional component d under the condition that the electron beam spot diameter is 1 nm or less. The peak top of the detection count of the copper element may exist within a range of ± 5 nm in the radial direction from the center O of the nickel particle 10 (see FIG. 1). The peak top of the copper element is derived from seed particles used for producing nickel particles, as will be described later.
 本実施の形態のニッケル粒子は、上記工程a~cに加え、さらに任意の構成として、炭素元素を含有していてもよい。ニッケル粒子中の炭素元素の含有量は、好ましくは0.1~3.0重量%の範囲内であり、より好ましくは0.5~2.0重量%の範囲内である。炭素元素の量は、STEM-EDXにより確認することができる。炭素元素は、ニッケル粒子の表面に存在する有機化合物に由来するものであるが、炭素元素の一部がニッケル粒子の内部に存在しないほうが好ましい。ニッケル粒子の表面に存在する炭素元素は、ニッケル粒子の凝集を抑制し、分散性向上に寄与し、ニッケル粒子に含有する酸素元素の還元を促進させる。従って、炭素元素が0.1重量%未満では、ニッケル粒子の凝集が生じやすくなり、3.0重量%を超えると、焼結時に炭化して残炭となり、これがガス化することによって粒子の膨れの原因となる。 The nickel particles of the present embodiment may contain a carbon element as an optional component in addition to the steps a to c. The content of the carbon element in the nickel particles is preferably in the range of 0.1 to 3.0% by weight, more preferably in the range of 0.5 to 2.0% by weight. The amount of carbon element can be confirmed by STEM-EDX. The carbon element is derived from an organic compound present on the surface of the nickel particle, but it is preferable that a part of the carbon element does not exist inside the nickel particle. The carbon element present on the surface of the nickel particles suppresses aggregation of the nickel particles, contributes to improvement in dispersibility, and promotes reduction of the oxygen element contained in the nickel particles. Therefore, if the carbon element is less than 0.1% by weight, aggregation of nickel particles tends to occur, and if it exceeds 3.0% by weight, carbonization occurs during sintering to form residual carbon, which is gasified to expand the particles. Cause.
 上記のとおり、本実施の形態のニッケル粒子は、走査型電子顕微鏡観察による平均粒子径が150nm以下であり、かつニッケル中に微量の銅が拡散した状態にあるため、優れた分散性を有するものである。このニッケル粒子は、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用導電性ペーストなどの電子材料として好適に利用できる。 As described above, the nickel particles according to the present embodiment have an excellent dispersibility because the average particle diameter by scanning electron microscope observation is 150 nm or less and a small amount of copper is diffused in nickel. It is. The nickel particles can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
[導電性ペースト]
 本実施の形態に係る導電性ペーストは、上記構成a~c、さらに必要に応じて、上記任意の構成を備えたニッケル粒子、及び有機ビヒクルを含有する。
[Conductive paste]
The conductive paste according to the present embodiment contains the above-described configurations a to c, and further, if necessary, nickel particles having the above-described optional configuration, and an organic vehicle.
<有機ビヒクル>
 本実施の形態で用いる有機ビヒクルとしては、例えば有機溶媒、有機バインダー、非水系高分子分散剤などを含むことができる。
<Organic vehicle>
The organic vehicle used in the present embodiment can include, for example, an organic solvent, an organic binder, a non-aqueous polymer dispersant, and the like.
(有機溶媒)
 例えば水と混和しない有機溶媒として、トルエン、キシレン、エチルベンゼン等の芳香族系炭化水素系、ヘキサン、ヘプタン、デカン、オクタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族系炭化水素系、酢酸エチル、酢酸ブチル、ジヒドロターピニルアセテート、イソボニルアセテート、イソボニルプロキネート、イソボニルブチレート、イソボニルイソブチレート等のエステル系、α-テルピネオール、ブチルカルビトール等の長鎖アルコール系、長鎖アルコールとカルボン酸とのエステル等が挙げられる。また、上記の有機溶媒の他に、一部が水と混和する有機溶媒、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系も使用可能である。
(Organic solvent)
For example, as an organic solvent immiscible with water, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, aliphatic hydrocarbons such as hexane, heptane, decane, octane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane, acetic acid Esters such as ethyl, butyl acetate, dihydroterpinyl acetate, isobornyl acetate, isobornyl proquinate, isobornyl butyrate and isobornyl isobutyrate, long chain alcohols such as α-terpineol and butyl carbitol, long Examples include esters of chain alcohols and carboxylic acids. In addition to the above organic solvents, organic solvents partially miscible with water, for example, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can also be used.
(有機バインダー)
 有機バインダーとしては、例えばメチルセルロース、エチルセルロース、ニトロセルロース、酢酸セルロース、プロピオン酸セルロース等のセルロース系樹脂、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル等のアクリル酸エステル類、アルキッド樹脂、及びポリビニルアルコール等が使用できる。また、有機バインダーは、エタノール、ブタノール等の有機溶媒を添加した状態で使用してもよく、あるいは、上述の水と混和しない有機溶媒に溶解して使用してもよい。なお、有機ビヒクルの配合量は、目的とする導電性ペーストのレベリング性や垂れ性の粘度特性に応じて適宜調節することができる。
(Organic binder)
Examples of the organic binder include cellulose resins such as methyl cellulose, ethyl cellulose, nitrocellulose, cellulose acetate, and cellulose propionate, and acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate. Alkyd resin, polyvinyl alcohol and the like can be used. Further, the organic binder may be used in a state where an organic solvent such as ethanol or butanol is added, or may be used after being dissolved in the above-mentioned organic solvent immiscible with water. In addition, the compounding quantity of an organic vehicle can be suitably adjusted according to the leveling property and sagging viscosity characteristic of the target electrically conductive paste.
(非水系高分子分散剤)
 非水系高分子分散剤は、主骨格に低極性溶媒との親和性が高く、低極性基を有する高分子化合物であり、更に官能基としてアミノ基を有するものである。このような高分子化合物は、例えばポリアミド系、ポリアリルアミン系、ポリエステル系、ポリウレタン系、ポリオキシアルキレン系などの分子骨格を有するものが挙げられ、この中でも特に好ましくはポリウレタン系、ポリオキシエチレン系の分子骨格を有するものがよい。また、その分子構造は、線状の直鎖型若しくは櫛型、又は線状の主鎖に線状の側鎖が結合した三叉分岐点を有する櫛型、あるいはブロック共重合体、又はグラフト共重合体でもよいが、その分子内に2級又は3級のアミノ基を1以上有するものである。
(Non-aqueous polymer dispersant)
The non-aqueous polymer dispersant is a polymer compound having a high affinity with a low-polar solvent in the main skeleton, a low-polar group, and an amino group as a functional group. Examples of such a polymer compound include those having a molecular skeleton such as polyamide-based, polyallylamine-based, polyester-based, polyurethane-based, and polyoxyalkylene-based, and among these, polyurethane-based and polyoxyethylene-based are particularly preferable. Those having a molecular skeleton are preferred. The molecular structure is linear, linear or comb, or a comb having a trident branch point in which a linear side chain is bonded to a linear main chain, or a block copolymer or graft copolymer. Although it may be a coalescence, it has one or more secondary or tertiary amino groups in the molecule.
 本実施の形態で用いる非水系高分子分散剤の2級又は3級のアミノ基は、ニッケル粒子の表面に固定化された脂肪族1級モノアミンとの置換反応が可能であるため、ニッケル粒子の表面において脂肪族1級モノアミンの少なくとも一部分と容易に置換し、ニッケル粒子を被覆できると考えられる。この非水系高分子分散剤は、ニッケル粒子に対し、強い凝集抑制作用を有することから、少量でも優れた分散効果が期待できる。一方、ニッケル粒子の表面に脂肪族1級モノアミンが存在しない場合には、非水系高分子分散剤を添加しても脂肪族1級モノアミンとの置換による被覆が生じにくく、強い凝集抑制作用や優れた分散効果が得られない。なお、非水系高分子分散剤に含まれる3級アミノ基は、その一部にアルキル基が結合して4級アンモニウムイオンとして存在していてもよい。また、これらのアミノ基は、線状の主鎖に櫛状に有するか、又は線状の主鎖の末端に有するものが好ましく、これらに存在する個々のアミノ基がニッケル粒子の表面に点在的に固定化されるものと考えられる。 Since the secondary or tertiary amino group of the non-aqueous polymer dispersant used in the present embodiment can be substituted with an aliphatic primary monoamine immobilized on the surface of the nickel particle, It is believed that at least a portion of the aliphatic primary monoamine can be easily substituted on the surface to coat the nickel particles. Since this non-aqueous polymer dispersant has a strong aggregation inhibitory action on nickel particles, an excellent dispersion effect can be expected even in a small amount. On the other hand, when no aliphatic primary monoamine is present on the surface of the nickel particles, even when a non-aqueous polymer dispersant is added, coating by substitution with the aliphatic primary monoamine is unlikely to occur, and strong aggregation suppressing action and excellent Dispersion effect is not obtained. In addition, the tertiary amino group contained in the non-aqueous polymer dispersant may be present as a quaternary ammonium ion with an alkyl group bonded to a part thereof. These amino groups are preferably included in the linear main chain in a comb shape or at the end of the linear main chain, and the individual amino groups present in these amino groups are scattered on the surface of the nickel particles. Is considered to be fixed.
 非水系高分子分散剤のアミン価(又は塩基価)は、分散性を向上させるという観点から、好ましくは10~100mgKOH/gの範囲内がよい。アミン価(又は塩基価)は、非水系高分子分散剤の固形分(又は溶媒を除いた有効成分)1gを中和するのに必要なHCl量に対して当量となるKOHのmg数を意味し、JIS K7237の方法により測定される。また、非水系高分子分散剤の酸価は、分散性を向上させるという観点から、好ましくは15mgKOH/g以下、より好ましくは10mgKOH/g以下とすることがよい。酸価は、固形分(又は溶媒を除いた有効成分)1gを中和するのに必要なKOHのmg数を意味し、JIS K0070の方法により測定される。 The amine value (or base value) of the non-aqueous polymer dispersant is preferably in the range of 10 to 100 mg KOH / g from the viewpoint of improving dispersibility. The amine value (or base value) means the number of mg of KOH equivalent to the amount of HCl required to neutralize 1 g of the solid content (or active ingredient excluding the solvent) of the non-aqueous polymer dispersant. And it is measured by the method of JIS K7237. The acid value of the non-aqueous polymer dispersant is preferably 15 mgKOH / g or less, more preferably 10 mgKOH / g or less, from the viewpoint of improving dispersibility. The acid value means the number of mg of KOH required to neutralize 1 g of solid content (or active ingredient excluding the solvent), and is measured by the method of JIS K0070.
 非水系高分子分散剤の重量平均分子量は、好ましくは1,000~200,000の範囲内、より好ましくは5,000~100,000の範囲内がよい。重量平均分子量が、上記下限未満であると、低極性溶媒に対し分散安定性が十分ではない場合があり、上記上限を超えると、粘度が高くなりすぎて取り扱いが困難になる場合がある。 The weight average molecular weight of the non-aqueous polymer dispersant is preferably in the range of 1,000 to 200,000, more preferably in the range of 5,000 to 100,000. When the weight average molecular weight is less than the above lower limit, dispersion stability may not be sufficient with respect to a low-polarity solvent, and when it exceeds the above upper limit, the viscosity may be too high and handling may be difficult.
 非水系高分子分散剤は、単独又は2種以上を組み合わせて使用することもできる。また、発明の効果を損なわない範囲で、他の化合物からなる分散剤と組み合わせて使用することもできる。好適に使用することができる市販の非水系高分子分散剤としては、例えば、日本ルーブリゾール社製のSolsperse11200(商品名)、同Solsperse13940(商品名)、同Solsperse13240(商品名)、ビッグケミー・ジャパン社製のDISPERBYK-161(商品名)、同DISPERBYK-163(商品名)、DISPERBYK-2164(商品名)、DISPERBYK-2155(商品名)等が挙げられる。 Non-aqueous polymer dispersants can be used alone or in combination of two or more. Moreover, it can also be used in combination with the dispersing agent which consists of another compound in the range which does not impair the effect of invention. Examples of commercially available non-aqueous polymer dispersants that can be suitably used include Solsperse 11200 (trade name), Solsperse 13940 (trade name), Solsperse 13240 (trade name), and Big Chemie Japan, manufactured by Japan Lubrizol Corporation. DISPERBYK-161 (trade name), DISPERBYK-163 (trade name), DISPERBYK-2164 (trade name), DISPERBYK-2155 (trade name), and the like are available.
 導電性ペーストにおける非水系高分子分散剤の添加量は、ニッケル粒子100質量部に対して0.01~20質量部の範囲内、好ましくは0.1~10質量部の範囲内がよい。添加量が上記下限未満では分散性が低下する傾向があり、上記上限を超えると、凝集が生じ易くなる傾向がある。 The amount of the non-aqueous polymer dispersant added to the conductive paste is in the range of 0.01 to 20 parts by mass, preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the nickel particles. When the addition amount is less than the above lower limit, the dispersibility tends to decrease, and when it exceeds the upper limit, aggregation tends to occur.
 本実施の形態の導電性ペーストは、上記構成a~c、さらに必要に応じて、上記の任意の構成を備えたニッケル粒子を含有することによって、導電性ペースト中のニッケル粒子を高い分散状態に維持できる。その結果、導電性ペーストを塗布して電極膜を形成した場合の表面粗さを小さくすることができ、電気信頼性も向上させることができる。例えば、後記実施例に示す方法で測定される導電性ペーストの表面粗さの評価において、算術平均粗さRaを0.005μm以下、好ましくは、0.002μm以下に抑制できる。 The conductive paste of the present embodiment contains nickel particles having the above-described configurations a to c and, if necessary, the above-described arbitrary configuration, so that the nickel particles in the conductive paste are in a highly dispersed state. Can be maintained. As a result, the surface roughness when the electrode film is formed by applying the conductive paste can be reduced, and the electrical reliability can be improved. For example, in the evaluation of the surface roughness of the conductive paste measured by the method described in Examples below, the arithmetic average roughness Ra can be suppressed to 0.005 μm or less, preferably 0.002 μm or less.
<導電性ペーストの調製>
 ニッケル粒子及び有機ビヒクルを含有する導電性ペーストを調製する方法は、特に制限はない。例えば、公知の導電性ペーストの製造と同様に、各成分を混合した後、撹拌、混練などの処理を行うことにより導電性ペーストを調製できる。ここで、各成分を混合する順序の好ましい例を挙げれば、以下のとおりとなる。まず、上記構成a~cを備えたニッケル粒子と有機溶媒のスラリーに、非水系高分子分散剤を適用する。スラリーへの非水系高分子分散剤の適用方法は、特に制限はなく、例えば、i)スラリー中に所定量の非水系高分子分散剤を添加する方法、ii)高圧ホモジナイザー、超音波ホモジナイザー、ビーズミル分散機などの分散機を用い、スラリーの状態で、脂肪族1級モノアミンで被覆されたニッケル粒子を機械的に解砕し、その解砕の前又は後に、所定量の非水系高分子分散剤を添加し分散させる方法など、様々な方法が挙げられる。このようにスラリーの状態で、非水系高分子分散剤を適用することにより、非水系高分子分散剤の2級又は3級のアミノ基を、ニッケル粒子の表面に固定化された脂肪族1級モノアミンの少なくとも一部分と置換し、非水系高分子分散剤によってニッケル粒子を被覆できる。次に、スラリーに所定量の有機バインダー(有機溶媒に溶解させた状態でもよい)を添加し、混合、混練等を行うことによって、導電性ペーストを製造することができる。
<Preparation of conductive paste>
The method for preparing a conductive paste containing nickel particles and an organic vehicle is not particularly limited. For example, the conductive paste can be prepared by mixing each component and then performing a treatment such as stirring and kneading after the production of the known conductive paste. Here, it will be as follows if the preferable example of the order which mixes each component is given. First, a non-aqueous polymer dispersant is applied to a slurry of nickel particles and organic solvent having the configurations a to c. The application method of the non-aqueous polymer dispersant to the slurry is not particularly limited. For example, i) a method of adding a predetermined amount of the non-aqueous polymer dispersant to the slurry, ii) a high-pressure homogenizer, an ultrasonic homogenizer, a bead mill Using a disperser such as a disperser, nickel particles coated with an aliphatic primary monoamine are mechanically pulverized in a slurry state, and a predetermined amount of a non-aqueous polymer dispersant before or after the pulverization. There are various methods such as a method of adding and dispersing. In this way, by applying the non-aqueous polymer dispersant in the slurry state, the secondary or tertiary amino group of the non-aqueous polymer dispersant is immobilized on the surface of the nickel particles. The nickel particles can be coated with a non-aqueous polymer dispersant, replacing at least a portion of the monoamine. Next, a conductive paste can be produced by adding a predetermined amount of an organic binder (may be dissolved in an organic solvent) to the slurry and mixing, kneading, and the like.
 上記のようにして導電性ペーストを得ることができるが、本発明の効果を損なわない範囲で、可塑剤、潤滑剤、分散剤、帯電防止剤、ゲル化防止剤等を添加してもよい。 Although the conductive paste can be obtained as described above, a plasticizer, a lubricant, a dispersant, an antistatic agent, an antigelling agent, etc. may be added within a range not impairing the effects of the present invention.
[ニッケル粒子の製造方法]
 本実施の形態に係るニッケル粒子の製造方法は、例えば、下記の工程I~IVを含むことができる。
[Production method of nickel particles]
The nickel particle manufacturing method according to the present embodiment can include, for example, the following steps I to IV.
<工程I>
 本工程は、走査型電子顕微鏡観察による平均粒子径が10nm以上30nm以下の範囲内、ニッケル元素に対する銅元素の含有割合が3重量%以上30重量%以下の範囲内である種粒子を準備する工程である。
<Process I>
This step is a step of preparing seed particles having an average particle diameter of 10 nm or more and 30 nm or less by observation with a scanning electron microscope and a content ratio of copper element to nickel element in a range of 3 wt% or more and 30 wt% or less. It is.
 種粒子は、工程IVにおいて、ニッケル粒子の成長の核として機能するものである。種粒子は、例えば、ニッケル塩及び銅塩を含む原料から、有機アミンの存在下で加熱による湿式還元によって製造することが好ましい。この場合、銅とニッケルとの標準電極電位の相違から、まず、核となる銅粒子が形成され、次に、銅粒子の表面にニッケル被膜が形成されることによって、種粒子が得られる。 The seed particles function as nuclei for nickel particle growth in Step IV. The seed particles are preferably produced from a raw material containing, for example, a nickel salt and a copper salt by wet reduction by heating in the presence of an organic amine. In this case, due to the difference in the standard electrode potential between copper and nickel, first, copper particles serving as nuclei are formed, and then a nickel coating is formed on the surface of the copper particles, whereby seed particles are obtained.
(銅塩)
 銅塩としては、例えばカルボン酸銅を用いることが好ましい。また、カルボン酸銅としては、例えば、還元過程での解離温度(分解温度)が比較的低いギ酸銅、酢酸銅などを用いることが好ましい。また、カルボン酸銅は、無水物であってもよく、水和物であってもよい。銅塩を配合することによって、種粒子の形成を促進できるとともに、種粒子の粒子径の制御が容易になる。また、工程IVで得られるニッケル粒子の分散性を改善することができる。
(Copper salt)
As the copper salt, for example, copper carboxylate is preferably used. Moreover, as copper carboxylate, it is preferable to use copper formate, copper acetate, etc. whose dissociation temperature (decomposition temperature) in a reduction process is comparatively low, for example. The copper carboxylate may be an anhydride or a hydrate. By blending the copper salt, the formation of seed particles can be promoted, and the particle diameter of the seed particles can be easily controlled. Moreover, the dispersibility of the nickel particles obtained in step IV can be improved.
(ニッケル塩)
 ニッケル塩としては、例えばカルボン酸ニッケルを用いることが好ましい。また、カルボン酸ニッケルとしては、例えば、還元過程での解離温度(分解温度)が比較的低いギ酸ニッケル、酢酸ニッケルなどを用いることが好ましい。カルボン酸ニッケルは、無水物であってもよく、また水和物であってもよい。なお、カルボン酸ニッケルに代えて、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、水酸化ニッケル等の無機塩を用いることも考えられるが、無機塩の場合、解離(分解)が高温であるため、還元過程で高温での加熱が必要であり好ましくない。また、Ni(acac)(β-ジケトナト錯体)、ステアリン酸イオン等の有機配位子により構成されるニッケル塩を用いることも考えられるが、これらのニッケル塩を用いると、原料コストが高くなり好ましくない。
(Nickel salt)
For example, nickel carboxylate is preferably used as the nickel salt. Moreover, as nickel carboxylate, it is preferable to use nickel formate, nickel acetate, etc. whose dissociation temperature (decomposition temperature) in a reduction process is comparatively low, for example. The nickel carboxylate may be an anhydride or a hydrate. In addition, it is possible to use inorganic salts such as nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel hydroxide instead of nickel carboxylate, but in the case of inorganic salts, dissociation (decomposition) is high temperature. In the reduction process, heating at a high temperature is necessary, which is not preferable. It is also possible to use nickel salts composed of organic ligands such as Ni (acac) 2 (β-diketonato complex) and stearate ions, but using these nickel salts increases the cost of raw materials. It is not preferable.
 なお、種粒子は、ニッケル及び銅以外の金属を含有していてもよい。その場合、種粒子の調製に際して、例えば、銀、金、白金及びパラジウムから選ばれる1種以上の金属の塩を使用してもよい。これらの金属の塩としては、例えば酢酸パラジウムなどのカルボン酸塩、硝酸銀などの硝酸塩、塩化金酸、塩化白金酸などの塩化物などを用いることが好ましい。金属塩は、無水物であってもよく、また水和物であってもよい。 Note that the seed particles may contain a metal other than nickel and copper. In that case, when preparing seed particles, for example, one or more metal salts selected from silver, gold, platinum and palladium may be used. As these metal salts, for example, carboxylates such as palladium acetate, nitrates such as silver nitrate, and chlorides such as chloroauric acid and chloroplatinic acid are preferably used. The metal salt may be an anhydride or a hydrate.
 種粒子における銅元素の含有量は、例えば3重量%以上30重量%以下の範囲内とすることが好ましい。種粒子における銅元素の含有量が3重量%未満であると、銅の核材としての効果が低下し、微細な球状で粒度分布が均一な種粒子を作りにくくなり、また、成長したニッケル粒子の磁性を抑制する効果が十分に得られず、凝集が生じやすくなる傾向がある。一方、種粒子における銅元素の含有量が30重量%を超えると、銅の核材としての効果が飽和し、微細な種粒子を作る為の効果は得にくく、種粒子の段階で表面が酸化しやすくなる。また、金属として、銅以外のものを用いる場合、例えば、銀などのニッケル以外の異種金属によるマイグレーションによるショートや静電容量の低下などの製品不良を防止する観点から、銅以外の金属元素の含有量を0.01重量%以上2重量%以下の範囲内とすることが好ましい。 The content of the copper element in the seed particles is preferably in the range of 3% by weight to 30% by weight, for example. When the content of the elemental copper in the seed particles is less than 3% by weight, the effect of copper as a core material is reduced, making it difficult to form seed particles having a fine spherical shape and a uniform particle size distribution, and grown nickel particles The effect of suppressing the magnetism is not sufficiently obtained, and aggregation tends to occur. On the other hand, if the content of the copper element in the seed particles exceeds 30% by weight, the effect as a copper core material is saturated, and it is difficult to obtain the effect for producing fine seed particles, and the surface is oxidized at the seed particle stage. It becomes easy to do. In addition, when a metal other than copper is used as the metal, for example, from the viewpoint of preventing product defects such as short-circuiting due to migration by a dissimilar metal other than nickel such as silver and a decrease in capacitance, the inclusion of metal elements other than copper The amount is preferably in the range of 0.01 wt% to 2 wt%.
(有機アミン)
 有機アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定されず、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。常温で液体の有機アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の有機アミンであっても、加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。
(Organic amine)
The organic amine is not particularly limited as long as it can form a complex with nickel ions, and can be solid or liquid at room temperature. Here, room temperature means 20 ° C. ± 15 ° C. The organic amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex. In addition, even if it is a solid organic amine at normal temperature, if it is a liquid by heating or melt | dissolves using an organic solvent, there will be no problem in particular.
 有機アミンとしては、脂肪族1級モノアミンを用いることが好ましい。一方、2級アミンは立体障害が大きいため、ニッケル錯体の良好な形成を阻害するおそれがあり、3級アミンはニッケルイオンの還元能を有しないため、いずれも使用できない。また、ジアミンは、金属イオンの中でも特にニッケルイオンと形成した錯体の安定性が高く、その還元温度は高くなるため反応性が非常に低く、生成するニッケル粒子に歪が生じやすくなるため好ましくない。 It is preferable to use an aliphatic primary monoamine as the organic amine. On the other hand, secondary amines have great steric hindrance and may hinder good formation of nickel complexes, and tertiary amines cannot be used because they do not have the ability to reduce nickel ions. Also, diamines are not preferred because of the high stability of complexes formed with nickel ions, among metal ions, and the reduction temperature is high, so that the reactivity is very low and the resulting nickel particles are easily distorted.
 脂肪族1級モノアミンは、例えばその炭素鎖の長さを調整することによって生成する種粒子の粒径を制御することができる。種粒子の粒径を制御する観点から、脂肪族1級モノアミンは、その炭素数が6~20程度のものから選択して用いることが好適である。炭素数が多いほど得られる種粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。 The aliphatic primary monoamine can control the particle size of the seed particles produced by adjusting the length of its carbon chain, for example. From the viewpoint of controlling the particle size of the seed particles, the aliphatic primary monoamine is preferably selected from those having about 6 to 20 carbon atoms. The larger the carbon number, the smaller the particle size of the seed particles obtained. Examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine.
 脂肪族1級モノアミンは、種粒子の生成時に表面修飾剤として機能するため、脂肪族1級モノアミンの除去後においても二次凝集を抑制できる。また、脂肪族1級モノアミンは、還元反応後の生成した種粒子の固体成分と溶剤又は未反応の脂肪族1級モノアミン等を分離する洗浄工程における処理操作の容易性の観点からも好ましい。更に、脂肪族1級モノアミンは、ニッケル錯体を還元して種粒子を得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。すなわち、脂肪族1級モノアミンは、沸点が180℃以上のものが好ましく、200℃以上のものがより好ましい。また、脂肪族1級モノアミンは、炭素数が9以上であることが好ましい。ここで、例えば炭素数が9である脂肪族1級モノアミンのC21N(ノニルアミン)の沸点は201℃である。 Since the aliphatic primary monoamine functions as a surface modifier during the production of seed particles, secondary aggregation can be suppressed even after the removal of the aliphatic primary monoamine. In addition, the aliphatic primary monoamine is also preferable from the viewpoint of ease of processing operation in the washing step of separating the solid component of the seed particles generated after the reduction reaction from the solvent or the unreacted aliphatic primary monoamine. Furthermore, the aliphatic primary monoamine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain seed particles. That is, the aliphatic primary monoamine has a boiling point of preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The aliphatic primary monoamine preferably has 9 or more carbon atoms. Here, for example, the boiling point of C 9 H 21 N (nonylamine), which is an aliphatic primary monoamine having 9 carbon atoms, is 201 ° C.
 脂肪族1級モノアミンは、還元反応後の生成した種粒子の固体成分と溶剤または未反応の脂肪族1級モノアミン等を分離する洗浄工程における処理操作の容易性の観点から、室温で液体のものが好ましい。更に、脂肪族1級モノアミンは、銅錯体を還元して種粒子を得るときの反応制御の容易性の観点から、還元温度より沸点が高いものが好ましい。脂肪族1級モノアミンの量は、金属イオン(ニッケルイオン及び銅イオンの合計)1molに対して5mol以上用いることが好ましく、8mol以上用いることがより好ましい。脂肪族1級モノアミンの量が5mol未満では、得られるニッケル粒子の粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、脂肪族1級モノアミンの量の上限は特にはないが、例えば生産性の観点からは、金属イオン1molに対して20mol以下とすることが好ましく、15mol以下とすることがより好ましい。つまり、脂肪族1級モノアミンの量は、金属イオン1molに対して5~20molの範囲内が好ましく、8~15molの範囲内がより好ましい。 The aliphatic primary monoamine is liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the seed particles produced after the reduction reaction and the solvent or the unreacted aliphatic primary monoamine. Is preferred. Furthermore, the aliphatic primary monoamine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of easy control of reaction when reducing the copper complex to obtain seed particles. The amount of the aliphatic primary monoamine is preferably 5 mol or more, more preferably 8 mol or more, based on 1 mol of metal ions (total of nickel ions and copper ions). When the amount of the aliphatic primary monoamine is less than 5 mol, it is difficult to control the particle diameter of the obtained nickel particles, and the particle diameter tends to vary. The upper limit of the amount of the aliphatic primary monoamine is not particularly limited. However, for example, from the viewpoint of productivity, the amount is preferably 20 mol or less, more preferably 15 mol or less with respect to 1 mol of the metal ion. That is, the amount of the aliphatic primary monoamine is preferably in the range of 5 to 20 mol, more preferably in the range of 8 to 15 mol, with respect to 1 mol of the metal ion.
(有機溶媒)
 脂肪族1級モノアミンは、有機溶媒として反応を進行させることができるが、均一溶液での反応をより効率的に進行させるために、工程Iの種粒子の調製において、脂肪族1級モノアミンとは別の有機溶媒を新たに添加してもよい。使用できる有機溶媒としては、脂肪族1級モノアミンと、ニッケルイオン、銅イオンなどの金属イオンとの錯形成を阻害しないものであれば、特に限定するものではなく、例えば炭素数4~30のエーテル系有機溶媒、炭素数7~30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8~18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200~300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n-オクチルエーテル、炭素数が20~40の範囲内にあるポリアルファオレフィン等が挙げられる。
(Organic solvent)
Although the aliphatic primary monoamine can proceed as an organic solvent, in order to proceed the reaction in a homogeneous solution more efficiently, in the preparation of seed particles in Step I, what is an aliphatic primary monoamine? Another organic solvent may be newly added. The organic solvent that can be used is not particularly limited as long as it does not inhibit complex formation between an aliphatic primary monoamine and metal ions such as nickel ions and copper ions. For example, ether having 4 to 30 carbon atoms. An organic organic solvent, a saturated or unsaturated hydrocarbon organic solvent having 7 to 30 carbon atoms, an alcohol organic solvent having 8 to 18 carbon atoms, and the like can be used. Further, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol, n-octyl ether, polyalphaolefin having a carbon number in the range of 20 to 40, and the like.
(加熱還元)
 工程Iにおいて、種粒子を形成するための加熱還元方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよいが、均一、かつ急速な加熱が可能なマイクロ波照射による加熱が好ましい。マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。
(Heat reduction)
In Step I, the heat reduction method for forming seed particles is not particularly limited, and for example, heating by a heat medium such as an oil bath or heating by microwave irradiation may be used. Heating by microwave irradiation capable of rapid heating is preferable. The use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
 種粒子を形成するための加熱温度は、種粒子の形状のばらつきを抑制するという観点から、好ましくは170℃以上、より好ましくは180℃以上とすることがよい。加熱温度の上限は特にないが、処理を能率的に行う観点から、例えば270℃以下とすることが好適である。 The heating temperature for forming the seed particles is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the seed particles. The upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment.
 以上のようにして、種粒子を含有するスラリーを得ることが出来る。なお、工程Iでは、種粒子を含有するスラリーを、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで種粒子を分取してもよい。 As described above, a slurry containing seed particles can be obtained. In Step I, the slurry containing the seed particles may be separated by standing, for example, after removing the supernatant, washed with an appropriate solvent, and dried to separate the seed particles. .
(種粒子)
 工程Iで得られる種粒子の走査型電子顕微鏡観察による平均粒子径は、10nm以上30nm以下の範囲内である。種粒子の平均粒子径が10nm未満では、ハンドリング性が低下するとともに、凝集しやすくなって、核材として用いた場合に、粒子径分布がシャープなニッケル粒子を安定的に製造することが難しくなる。一方、種粒子の平均粒子径が30nmを超えると、種粒子の段階での粒子径のばらつきが大きくなって、やはり、核材として用いた場合に、粒子径分布がシャープなニッケル粒子を安定的に製造することが困難になる。また、種粒子の平均粒子径は、SEM(走査型電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの粒子について面積を求め、真球に換算したときの粒子径から、個数基準にて求めることができる。
(Seed particles)
The average particle diameter of the seed particles obtained in step I by scanning electron microscope observation is in the range of 10 nm to 30 nm. When the average particle size of the seed particles is less than 10 nm, the handling property is lowered and the particles are easily aggregated. When used as a core material, it is difficult to stably produce nickel particles having a sharp particle size distribution. . On the other hand, when the average particle size of the seed particles exceeds 30 nm, the variation in the particle size at the seed particle stage becomes large, and when used as a core material, nickel particles having a sharp particle size distribution are stable. Difficult to manufacture. The average particle size of the seed particles is obtained by taking a photograph of the sample with an SEM (scanning electron microscope), randomly extracting 200 particles from it, obtaining the area of each particle, and converting it to a true sphere. The particle size can be determined on the basis of the number of particles.
 また、工程Iで得られる種粒子は、粒子径の変動係数(CV値)が、0.2以下であることが好ましく、0.15以下であることがより好ましい。CV値が0.2を超えると、後の工程IVで得られるニッケル粒子の粒子径のばらつきが大きくなることがある。 In addition, the seed particles obtained in Step I have a particle diameter variation coefficient (CV value) of preferably 0.2 or less, and more preferably 0.15 or less. When the CV value exceeds 0.2, the variation in the particle diameter of the nickel particles obtained in the later step IV may increase.
<工程II>
 本工程は、ニッケル塩を有機アミンに溶解させたニッケル錯体溶液を準備する工程である。
<Process II>
This step is a step of preparing a nickel complex solution in which a nickel salt is dissolved in an organic amine.
(ニッケル塩)
 工程IIにおいて、ニッケル塩の種類は特に限定されず、例えば水酸化ニッケル、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、カルボン酸ニッケル、Ni(acac)2(β-ジケトナト錯体)、ステアリン酸ニッケル等が挙げられる。これらの中でも、塩化ニッケル又はカルボン酸ニッケルが好ましく、還元過程での解離温度(分解温度)が比較的低いカルボン酸ニッケルを用いることが有利である。カルボン酸ニッケルは単独で用いてもよいし、他のニッケル塩と併用することもできる。工程IIにおけるニッケル塩としては、工程Iと同様のものを用いることができる。
(Nickel salt)
In step II, the type of nickel salt is not particularly limited. For example, nickel hydroxide, nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel carboxylate, Ni (acac) 2 (β-diketonato complex), nickel stearate Etc. Among these, nickel chloride or nickel carboxylate is preferable, and it is advantageous to use nickel carboxylate having a relatively low dissociation temperature (decomposition temperature) in the reduction process. The nickel carboxylate may be used alone or in combination with other nickel salts. As the nickel salt in Step II, the same salt as in Step I can be used.
(有機アミン)
 工程IIにおける有機アミンとしては、工程Iと同様のものを用いることができる。
(Organic amine)
As the organic amine in Step II, the same organic amine as in Step I can be used.
(ニッケル錯体溶液)
 ニッケル錯体溶液中のニッケル錯体濃度は、例えば2~11重量%の範囲内とすることが好ましく、4~8重量%の範囲内とすることがより好ましい。本実施の形態の製造方法では、種粒子を形成する工程Iと、種粒子からニッケル粒子を成長させる工程IVを区別する多段階の反応によって、一段階の合成法に比べ、均一な粒子径を有するニッケル粒子を製造できる。一段階の合成法では、ニッケル錯体濃度が11重量%を超えると、反応性が低下するとともに、粒子径の制御が難しくなる。
(Nickel complex solution)
The concentration of the nickel complex in the nickel complex solution is preferably in the range of 2 to 11% by weight, for example, and more preferably in the range of 4 to 8% by weight. In the production method of the present embodiment, a uniform particle diameter is obtained by a multi-step reaction that distinguishes Step I for forming seed particles and Step IV for growing nickel particles from the seed particles, compared to a one-step synthesis method. Nickel particles can be produced. In the one-step synthesis method, when the nickel complex concentration exceeds 11% by weight, the reactivity is lowered and the particle size is difficult to control.
 2価のニッケルイオンは配位子置換活性種として知られており、形成する錯体の配位子は温度、濃度によって容易に配位子交換により錯形成が変化する可能性がある。例えばカルボン酸ニッケルおよび脂肪族1級モノアミンの混合物を加熱して反応液を得る工程において、用いるアミンの炭素鎖長等の立体障害を考慮すると、例えば、カルボン酸イオンが二座配位または単座配位のいずれかで配位する可能性があり、さらにアミンの濃度が大過剰の場合は外圏にカルボン酸イオンが存在する構造をとる可能性がある。目的とする反応温度(還元温度)において均一溶液とするには、配位子のうち少なくとも一箇所は脂肪族1級モノアミンが配位している必要がある。その状態をとるには、脂肪族1級モノアミンが過剰に反応溶液内に存在している必要があり、少なくともニッケルイオン1molに対し2mol以上存在していることが好ましく、2.2mol以上存在していることがより好ましい。また、脂肪族1級モノアミンの量の上限は特にはないが、例えば生産性の観点からは、ニッケルイオン1molに対して20mol以下とすることが好ましく、4mol以下とすることがより好ましい。つまり、脂肪族1級モノアミンの量は、ニッケルイオン1molに対して2~20molの範囲内が好ましく、2~4molの範囲内がより好ましく、2.2~4molの範囲内が最も好ましい。 Divalent nickel ions are known as ligand-substituted active species, and the ligand of the complex to be formed may change complex formation easily by ligand exchange depending on temperature and concentration. For example, in the step of obtaining a reaction liquid by heating a mixture of nickel carboxylate and aliphatic primary monoamine, considering steric hindrance such as the carbon chain length of the amine used, for example, the carboxylate ion is bidentate or monodentate. There is a possibility of coordination at any of the positions. Furthermore, when the amine concentration is excessively large, there is a possibility that a carboxylate ion is present in the outer sphere. In order to obtain a uniform solution at the intended reaction temperature (reduction temperature), at least one of the ligands must be coordinated with an aliphatic primary monoamine. In order to take this state, it is necessary that the aliphatic primary monoamine is excessively present in the reaction solution, and it is preferable that at least 2 mol per 1 mol of nickel ions is present, and 2.2 mol or more exist. More preferably. The upper limit of the amount of the aliphatic primary monoamine is not particularly limited. For example, from the viewpoint of productivity, the amount is preferably 20 mol or less, more preferably 4 mol or less with respect to 1 mol of nickel ions. That is, the amount of the aliphatic primary monoamine is preferably in the range of 2 to 20 mol, more preferably in the range of 2 to 4 mol, and most preferably in the range of 2.2 to 4 mol with respect to 1 mol of nickel ions.
 錯形成反応は室温においても進行させることができるが、反応を確実かつより効率的に行うために、100℃以上の温度で加熱を行うことが好ましい。この加熱は、カルボン酸ニッケルとして、例えば酢酸ニッケル4水和物のようなカルボン酸ニッケルの水和物を用いた場合に特に有利である。加熱温度は、好ましくは100℃を超える温度とし、より好ましくは105℃以上の温度とすることで、カルボン酸ニッケルに配位した配位水と脂肪族1級モノアミンとの配位子置換反応が効率よく行われる。また、この錯体配位子としての水分子を解離させることができ、更にその水を系外に出すことができるので効率よく錯体を形成させることができる。例えば、酢酸ニッケル4水和物は、室温では2個の配位水と2座配位子である2個の酢酸イオン、外圏に2つの水分子が存在した錯体構造をとっているため、この2つの配位水と脂肪族1級モノアミンの配位子置換により効率よく錯形成させるには、100℃より高い温度で加熱することでこの錯体配位子としての水分子を解離させることが好ましい。また、加熱温度は、後に続く還元の過程と確実に分離し、錯形成反応を完結させるという観点から、175℃以下が好ましい。工程IIでの加熱温度が高すぎると、ニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し、新たにニッケルの核が発生してしまうことで、粒子径の分布が狭いニッケル粒子の生成が困難となるおそれがある。従って、工程IIにおける加熱温度は105℃~175℃の範囲内が好ましく、より好ましくは、125~160℃の範囲内である。 Although the complex formation reaction can proceed even at room temperature, it is preferable to perform heating at a temperature of 100 ° C. or higher in order to carry out the reaction reliably and more efficiently. This heating is particularly advantageous when a nickel carboxylate hydrate such as nickel acetate tetrahydrate is used as the nickel carboxylate. The heating temperature is preferably a temperature exceeding 100 ° C., more preferably a temperature of 105 ° C. or more, so that the ligand substitution reaction between the coordinated water coordinated with nickel carboxylate and the aliphatic primary monoamine is performed. It is done efficiently. Further, water molecules as the complex ligand can be dissociated, and further, the water can be discharged out of the system, so that the complex can be formed efficiently. For example, nickel acetate tetrahydrate has a complex structure in which two coordinated water, two acetate ions that are bidentate ligands, and two water molecules exist in the outer sphere at room temperature. In order to efficiently form a complex by ligand substitution of these two coordinated water and aliphatic primary monoamine, the water molecule as the complex ligand can be dissociated by heating at a temperature higher than 100 ° C. preferable. The heating temperature is preferably 175 ° C. or lower from the viewpoint of reliably separating from the subsequent reduction process and completing the complex formation reaction. If the heating temperature in step II is too high, the formation of nickel complex and the reduction reaction to nickel (zero-valent) proceed simultaneously, and nickel nuclei are newly generated, resulting in nickel with a narrow particle size distribution. There is a possibility that generation of particles may be difficult. Accordingly, the heating temperature in Step II is preferably in the range of 105 ° C. to 175 ° C., more preferably in the range of 125 to 160 ° C.
 加熱時間は、加熱温度や、各原料の含有量に応じて適宜決定することができるが、錯形成反応を確実に完結させるという観点から、15分以上とすることが好ましい。加熱時間の上限は特にないが、長時間加熱することは、エネルギー消費及び工程時間を節約する観点から無駄である。加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよいが、マイクロ波照射による加熱が好ましい。マイクロ波照射による加熱は、混合液内の均一加熱を可能とし、かつエネルギーをニッケルイオンに直接与えることができるため、急速加熱を行なうことができる。マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。 The heating time can be appropriately determined according to the heating temperature and the content of each raw material, but is preferably 15 minutes or more from the viewpoint of reliably completing the complex formation reaction. Although there is no upper limit on the heating time, heating for a long time is useless from the viewpoint of saving energy consumption and process time. The heating method is not particularly limited, and for example, heating by a heat medium such as an oil bath or heating by microwave irradiation may be used, but heating by microwave irradiation is preferable. Heating by microwave irradiation enables uniform heating in the mixed solution, and energy can be directly applied to nickel ions, so that rapid heating can be performed. The use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
 カルボン酸ニッケルと脂肪族1級モノアミンとの錯形成反応は、カルボン酸ニッケルと脂肪族1級モノアミンを混合して得られる溶液を加熱したときに、溶液の色の変化によって確認することができる。また、この錯形成反応は、例えば紫外・可視吸収スペクトル測定装置を用いて、300nm~750nmの波長領域において観測される吸収スペクトルの吸収極大の波長を測定し、原料の極大吸収波長(例えば酢酸ニッケル四水和物ではその極大吸収波長は710nmである。)に対する錯化反応液のシフトを観測することによって確認することができる。 The complex formation reaction between nickel carboxylate and aliphatic primary monoamine can be confirmed by a change in the color of the solution when a solution obtained by mixing nickel carboxylate and aliphatic primary monoamine is heated. In addition, this complex formation reaction is carried out by measuring the absorption maximum wavelength of the absorption spectrum observed in the wavelength region of 300 nm to 750 nm using, for example, an ultraviolet / visible absorption spectrum measuring apparatus, and measuring the maximum absorption wavelength of the raw material (for example, nickel acetate). It can be confirmed by observing the shift of the complexing reaction solution with respect to tetrahydrate.
<工程III>
 本工程は、工程Iで得た種粒子と、工程IIで得たニッケル錯体溶液とを混合して混合液を得る工程である。
<Process III>
This step is a step in which the seed particles obtained in Step I and the nickel complex solution obtained in Step II are mixed to obtain a mixed solution.
 工程IIIでは、種粒子又は種粒子を含むスラリーを、ニッケル錯体溶液に添加してもよいし、種粒子を含むスラリーに、ニッケル錯体溶液を添加してもよい。工程IIIで混合されたニッケル錯体は、新たな核の形成には利用されず、次の工程IVで種粒子からニッケル粒子への成長に利用される。つまり、混合液中のニッケル錯体の濃度が、核形成の臨界濃度を超えない限り、ニッケル錯体は粒子成長にのみ利用される。従って、工程IVで目的とする粒子径のニッケル粒子を得るためのニッケル錯体の量は、種粒子の粒子径に基づき、計算上、算出することができる。例えば、種粒子として平均粒子径が10~30nmの範囲内のものを用いて、平均粒子径が40~150nmの範囲内のニッケル粒子を得る場合は、混合液中のニッケル濃度を、例えば3~12重量%の範囲内となるようにすることが好ましく、5~10重量%の範囲内とすることがより好ましい。 In Step III, seed particles or a slurry containing seed particles may be added to the nickel complex solution, or a nickel complex solution may be added to the slurry containing seed particles. The nickel complex mixed in step III is not used for the formation of new nuclei, but is used for the growth from seed particles to nickel particles in the next step IV. That is, as long as the concentration of the nickel complex in the mixed solution does not exceed the critical concentration for nucleation, the nickel complex is used only for particle growth. Therefore, the amount of the nickel complex for obtaining nickel particles having the target particle size in Step IV can be calculated based on the particle size of the seed particles. For example, when nickel particles having an average particle diameter in the range of 40 to 150 nm are obtained using seed particles having an average particle diameter in the range of 10 to 30 nm, the nickel concentration in the mixed solution is set to, for example, 3 to It is preferably within the range of 12% by weight, and more preferably within the range of 5 to 10% by weight.
<工程IV>
 本工程は、工程IIIで得た混合液中のニッケルイオンを加熱還元し、前記種粒子を核としてニッケル粒子に成長させるとともに、該ニッケル粒子中の銅原子を拡散させてニッケル粒子を得る工程である。
<Process IV>
This step is a step of heating and reducing the nickel ions in the liquid mixture obtained in step III to grow into nickel particles using the seed particles as nuclei and diffusing copper atoms in the nickel particles to obtain nickel particles. is there.
(加熱還元)
 工程IVにおける加熱方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であってもよいが、マイクロ波照射による加熱が好ましい。マイクロ波照射によるニッケル錯体の加熱は、ニッケル錯体の均一加熱を可能とし、かつエネルギーをニッケル錯体に直接与えることができるため、急速加熱を行なうことができる。これにより、反応液全体を所望の温度に均一にすることができ、ニッケル錯体(又はニッケルイオン)の還元と成長を溶液全体において同時に生じさせ、結果として粒子径分布の狭い単分散な粒子を短時間で容易に製造することができる。マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。
(Heat reduction)
The heating method in step IV is not particularly limited, and may be heating with a heat medium such as an oil bath, but heating by microwave irradiation is preferable. Heating of the nickel complex by microwave irradiation enables uniform heating of the nickel complex and energy can be directly applied to the nickel complex, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and reduction and growth of the nickel complex (or nickel ions) can occur simultaneously in the entire solution. As a result, monodisperse particles having a narrow particle size distribution can be shortened. It can be manufactured easily in time. The use wavelength of the microwave is not particularly limited and is, for example, 2.45 GHz.
 工程IVにおける加熱還元の温度は、得られるニッケル粒子の形状のばらつきを抑制するという観点から、好ましくは170℃以上、より好ましくは180℃以上とすることがよい。また、工程IVにおける加熱温度が低すぎると、ニッケル錯体からニッケル(0価)への還元反応速度が遅くなり、種粒子を覆う金属ニッケルの成長が遅くなる傾向がある。加熱温度の上限は特にないが、処理を能率的に行う観点からは例えば270℃以下とすることが好適である。また、270℃を超えると炭化反応が進行して炭化ニッケルが生成しやすくなるので、好ましくない。 The temperature of the heat reduction in the step IV is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the obtained nickel particles. On the other hand, if the heating temperature in step IV is too low, the reduction reaction rate from the nickel complex to nickel (zero valence) tends to be slow, and the growth of metallic nickel covering the seed particles tends to be slow. The upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. Moreover, when it exceeds 270 degreeC, since carbonization reaction will advance and it will become easy to produce | generate nickel carbide, it is not preferable.
 工程IVでは、加熱還元時の熱処理によって、ニッケル粒子中の銅元素を拡散させる。工程IVにおいて、ニッケルイオンの還元処理を加熱還元によって行うことによって、加熱還元と同時に銅元素を拡散させることができる。 In step IV, the copper element in the nickel particles is diffused by heat treatment during heat reduction. In step IV, the reduction of nickel ions is performed by heat reduction, whereby copper element can be diffused simultaneously with heat reduction.
 工程IVでは、得られたニッケル粒子のスラリーを、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥する処理を含むことができる。このようにして、上記の構成a~cを備えたニッケル粒子が得られる。 In step IV, the obtained slurry of nickel particles can be subjected to, for example, static separation, removal of the supernatant, washing with an appropriate solvent, and drying. In this way, nickel particles having the above-described configurations a to c are obtained.
 上記の工程IIIの一部分と工程IVは、複数回繰り返し行うことも可能である。すなわち、工程IVを行った後で、さらにニッケル錯体溶液を添加し、再度工程IVを行ってもよい。この場合も、後から追加されたニッケル錯体は、新たな核の形成には利用されず、種粒子からニッケル粒子への成長に利用される。つまり、工程IIIの一部分と工程IVを繰り返し行う場合でも、混合液中へのニッケル錯体の追加速度が、粒子成長に消費される速度を超えない限り、ニッケル錯体の濃度が核形成の臨界濃度を超えることはないため、追加されたニッケル錯体は粒子成長にのみ利用される。従って、目的とする粒子径を得るためのニッケル錯体の量は、種粒子の粒子径に基づき、計算上、算出することができる。 It is possible to repeat part of the above step III and step IV a plurality of times. That is, after performing Step IV, a nickel complex solution may be further added, and Step IV may be performed again. Also in this case, the nickel complex added later is not used for the formation of new nuclei, but is used for the growth from seed particles to nickel particles. In other words, even when part of Step III and Step IV are repeated, the concentration of the nickel complex will not exceed the critical concentration for nucleation unless the rate of addition of the nickel complex into the mixture exceeds the rate consumed for particle growth. The added nickel complex is only used for particle growth because it does not exceed. Therefore, the amount of the nickel complex for obtaining the target particle size can be calculated based on the particle size of the seed particles.
(ニッケル粒子)
 工程IVで得られるニッケル粒子は、上記の構成a~cを備えたものである。なお、工程Iで得られる種粒子の平均粒子径をD1、工程IVで得られるニッケル粒子の平均粒子径をD2とすると、D1とD2の関係は、所定の粒子径のニッケル粒子を効率よく製造するという観点から、例えば2≦D2/D1であることが好ましい。それに対し、2>D2/D1である場合は、銅元素の拡散が不十分となるおそれがある。
(Nickel particles)
The nickel particles obtained in the step IV have the above-mentioned configurations a to c. If the average particle size of the seed particles obtained in Step I is D1 and the average particle size of the nickel particles obtained in Step IV is D2, the relationship between D1 and D2 is to efficiently produce nickel particles having a predetermined particle size. For example, 2 ≦ D2 / D1 is preferable. On the other hand, when 2> D2 / D1, the diffusion of the copper element may be insufficient.
 以上のように、工程I~工程IVを実施することによって、平均粒子径が150nm以下であり、粒子径分布がシャープでCV値が小さく、かつ分散性に優れたニッケル粒子を安定的に製造することができる。より具体的には、工程I~工程IVを実施することによって、ニッケル元素を主成分とし、銅元素を含有するとともに、上記の構成a~cを備えたニッケル粒子を製造することができる。構成a~cを備えたニッケル粒子は、粒子内部に銅元素が拡散していることから、ニッケルの磁性を緩和し、磁性による凝集を抑制して分散性が向上するものと推察される。 As described above, by carrying out Steps I to IV, nickel particles having an average particle size of 150 nm or less, a sharp particle size distribution, a small CV value, and excellent dispersibility can be stably produced. be able to. More specifically, by carrying out steps I to IV, nickel particles containing nickel element as a main component and copper element and having the above-mentioned configurations a to c can be produced. The nickel particles having configurations a to c are presumed to have improved dispersibility by relaxing the magnetism of nickel and suppressing aggregation due to magnetism because the copper element diffuses inside the particles.
 このようなニッケル粒子を用いて製造される導電性ペーストは、例えばMLCC等の内部電極の形成に使用する場合、電極層の表面(誘電体層との境界面)の凹凸の発生を防ぎ、平坦化できることから、電極層の薄層化及び多層化が容易であり、電気的な信頼性も向上させることができる。従って、本実施の形態のニッケル粒子は、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用導電性ペーストなどの電子材料として好適に利用できる。 When such conductive paste manufactured using nickel particles is used for forming an internal electrode such as MLCC, for example, the surface of the electrode layer (interface with the dielectric layer) is prevented from being uneven and flat. Therefore, the electrode layer can be easily thinned and multilayered, and the electrical reliability can be improved. Therefore, the nickel particles of the present embodiment can be suitably used as an electronic material such as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor (MLCC).
 次に、実施例および比較例を挙げて、本発明をさらに説明するが、本発明は、以下に説明する実施例に限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Next, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to the examples described below. In the following examples, various measurements and evaluations are as follows unless otherwise specified.
[平均粒子径の測定]
 SEM(走査型電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの粒子について面積を求め、真球に換算したときの粒子径を個数基準として一次粒子の平均粒子径とした。また、CV値(変動係数)は、(標準偏差)÷(平均粒子径)によって算出した。なお、CV値が小さいほど、粒子径がより均一であることを示す。
[Measurement of average particle size]
Take a picture of the sample with a scanning electron microscope (SEM), extract 200 randomly from the sample, determine the area of each particle, and use the particle size when converted to a true sphere as the primary number based on the number of particles. The average particle size of the particles was used. The CV value (coefficient of variation) was calculated by (standard deviation) / (average particle diameter). In addition, it shows that a particle diameter is so uniform that a CV value is small.
[ニッケル粒子における銅元素の拡散状態の測定]
 エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX;日本電子社製、商品名;JEM-ARM200F)を用いて、ニッケル粒子に存在する元素のSTEM-EDXの線分析を行った。
[Measurement of diffusion state of copper element in nickel particles]
STEM-EDX line analysis of elements present in nickel particles was performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX; manufactured by JEOL Ltd., trade name: JEM-ARM200F). .
[導電性ペーストの表面粗さの評価]
松浪硝子工業(株)製スライドガラスS1112(76mm×26mm×t1.1mm)2枚をアセトンで湿らせた脱脂綿にて汚れを拭き取り乾燥させた。1枚のスライドガラス中央に導電性ペーストを0.05g秤量し、他の1枚のスライドガラスにて挟んだ後、側面からはみ出ない程度に加圧しながら刷り延ばし、スライドガラスを並行方向にスライドさせることによって平滑な塗膜面を得た。この塗膜を60℃にて3時間乾燥させた後、微細形状測定装置[(株)小坂研究所ET-200]にて、算術平均粗さRaを測定した。
[Evaluation of surface roughness of conductive paste]
Two pieces of slide glass S1112 (76 mm × 26 mm × t1.1 mm) manufactured by Matsunami Glass Industry Co., Ltd. were wiped off with absorbent cotton moistened with acetone and dried. 0.05 g of conductive paste is weighed in the center of one slide glass, sandwiched between the other slide glass, and then printed while being pressed to the extent that it does not protrude from the side, and the slide glass is slid in the parallel direction. As a result, a smooth coating surface was obtained. After the coating film was dried at 60 ° C. for 3 hours, the arithmetic average roughness Ra was measured with a fine shape measuring apparatus [Kosaka Laboratory ET-200].
(実施例1)
<種粒子の調製>
 330gのオレイルアミンに2.70gのギ酸銅四水和物と21.46gのギ酸ニッケル二水和物を加え、窒素フロー下で120℃、20分加熱することでギ酸銅とギ酸ニッケルをオレイルアミンに溶解した。
(Example 1)
<Preparation of seed particles>
Dissolve copper formate and nickel formate in oleylamine by adding 2.70 g copper formate tetrahydrate and 21.46 g nickel formate dihydrate to 330 g oleylamine and heating at 120 ° C. for 20 minutes under nitrogen flow did.
 得られた溶解液にマイクロ波を照射して190℃まで加熱して、335gのニッケル粒子スラリー(1-A)を調製した。得られたニッケル粒子スラリー(1-A)の10gを分取して、上澄み液を取り除いた後、トルエンとメタノールを用いてそれぞれ2回洗浄した。その後、60℃に維持される真空乾燥機で6時間乾燥することによって、種粒子として、銅元素の含有量が10重量%のニッケル粒子(1-B)を調製した。 The obtained solution was irradiated with microwaves and heated to 190 ° C. to prepare 335 g of nickel particle slurry (1-A). 10 g of the obtained nickel particle slurry (1-A) was collected, the supernatant was removed, and then washed twice with toluene and methanol, respectively. Thereafter, nickel particles (1-B) having a copper element content of 10% by weight were prepared as seed particles by drying with a vacuum dryer maintained at 60 ° C. for 6 hours.
 ニッケル粒子(1-B)のSEM写真を図2に示す。図2を参照すると、ニッケル粒子(1-B)の平均粒子径は17nm、CV値は0.10であった。 An SEM photograph of nickel particles (1-B) is shown in FIG. Referring to FIG. 2, the nickel particles (1-B) had an average particle diameter of 17 nm and a CV value of 0.10.
<ニッケル粒子の調製>
 8128gのオレイルアミンに3338gの酢酸ニッケル四水和物を加え、窒素フロー下で140℃、4時間加熱することでニッケル錯体溶液を調製した。
<Preparation of nickel particles>
A nickel complex solution was prepared by adding 3338 g of nickel acetate tetrahydrate to 8128 g of oleylamine and heating at 140 ° C. for 4 hours under a nitrogen flow.
 得られたニッケル錯体溶液に、325gのニッケル粒子スラリー(1-A)を加え、撹拌後、マイクロ波を照射して225℃まで加熱し、その温度を15分間保持することによってニッケル粒子スラリー(1-C)を調製した。得られたニッケル粒子スラリー(1-C)を静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いてそれぞれ2回洗浄した。その後、60℃に維持される真空乾燥機で6時間乾燥してニッケル粒子(1-D)を調製した。ニッケル粒子(1-D)の元素分析の結果、Cuの含有量は0.07重量%であった。 To the obtained nickel complex solution, 325 g of the nickel particle slurry (1-A) is added, stirred, heated to 225 ° C. by irradiation with microwaves, and maintained at that temperature for 15 minutes. -C) was prepared. The obtained nickel particle slurry (1-C) was allowed to stand and separated, and the supernatant was removed, followed by washing twice with toluene and methanol. Thereafter, the particles were dried for 6 hours in a vacuum drier maintained at 60 ° C. to prepare nickel particles (1-D). As a result of elemental analysis of the nickel particles (1-D), the Cu content was 0.07% by weight.
 ニッケル粒子(1-D)のSEM写真を図3に示す。図3を参照すると、ニッケル粒子(1-D)の平均粒子径は80nm、CV値は0.11であった。 An SEM photograph of nickel particles (1-D) is shown in FIG. Referring to FIG. 3, the average particle diameter of nickel particles (1-D) was 80 nm, and the CV value was 0.11.
 ニッケル粒子(1-D)のSTEM-EDXの線分析の結果を図4に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは20%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは8%であった。 The results of STEM-EDX line analysis of nickel particles (1-D) are shown in FIG. The detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 20%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
<導電性ペーストの調製>
 ニッケル粒子スラリー(1-C)の10gを静置分離して上澄みを取り除いた後、ポリエステル系高分子分散剤(日本ルーブリゾール社製、商品名;Solsperse13240、2級アミノ基及び3級アミノ基を含有するポリエステル系グラフト共重合体の混合物、極性;低、水に不溶、アミン価;37mgKOH/g、酸価;7mgKOH/g)を0.094g加えて1時間振盪し、トルエンを用いて4回洗浄した。その後、トルエンをターピネオール(TP)で2回置換し、磁石で濃縮して、ニッケル粒子スラリー(1-E)を調製した。
<Preparation of conductive paste>
After 10 g of the nickel particle slurry (1-C) was allowed to stand and be separated, the supernatant was removed, and then a polyester-based polymer dispersant (trade name; Solsperse 13240, secondary amino group and tertiary amino group manufactured by Nippon Lubrizol Co., Ltd.) Mixture of polyester-based graft copolymer contained, polar: low, insoluble in water, amine value: 37 mg KOH / g, acid value: 7 mg KOH / g) was added and shaken for 1 hour, and 4 times with toluene Washed. Thereafter, toluene was replaced twice with terpineol (TP) and concentrated with a magnet to prepare a nickel particle slurry (1-E).
 得られたスラリー(1-E)にセルロース系バインダー(日新化成社製、商品名;E3625)の0.15gを加えて、自転・公転ミキサー(シンキー社製、商品名;練太郎 AR-100)を用いて混練して導電性ペースト(1-F)を調製した。得られた導電性ペースト(1-F)の表面粗さを測定した結果、算術平均粗さRaは0.0019μmであった。 0.15 g of a cellulose-based binder (Nisshin Kasei Co., Ltd., trade name: E3625) was added to the resulting slurry (1-E), and a rotating / revolving mixer (Shinky Co., trade name: Nertaro AR-100). ) To prepare a conductive paste (1-F). As a result of measuring the surface roughness of the obtained conductive paste (1-F), the arithmetic average roughness Ra was 0.0019 μm.
(実施例2)
<種粒子の調製>
 実施例1と同様にして、335gのニッケル粒子スラリー(2-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(2-B)を調製した。
(Example 2)
<Preparation of seed particles>
In the same manner as in Example 1, 335 g of nickel particle slurry (2-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (2-B).
<ニッケル粒子の調製>
 6967gのオレイルアミン及び2861gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製した。その後、このニッケル錯体溶液にニッケル粒子(2-B)を加え、ニッケル粒子スラリー(2-C)を得、ニッケル粒子(2-D)を調製した。ニッケル粒子(2-D)の元素分析の結果、Cuの含有量は0.08重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 6967 g of oleylamine and 2861 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (2-B) were added to the nickel complex solution to obtain a nickel particle slurry (2-C) to prepare nickel particles (2-D). As a result of elemental analysis of the nickel particles (2-D), the Cu content was 0.08% by weight.
 ニッケル粒子(2-D)のSEM写真を図5に示す。図5を参照すると、ニッケル粒子(2-D)の平均粒子径は74nm、CV値は0.12であった。 An SEM photograph of nickel particles (2-D) is shown in FIG. Referring to FIG. 5, the nickel particles (2-D) had an average particle size of 74 nm and a CV value of 0.12.
 ニッケル粒子(2-D)のSTEM-EDXの線分析の結果を図6に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは28%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは8%であった。 The results of STEM-EDX line analysis of nickel particles (2-D) are shown in FIG. The detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 28%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(2-E)を調製後、導電性ペースト(2-F)を調製した。得られた導電性ペースト(2-F)の表面粗さを測定した結果、算術平均粗さRaは0.0013μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing the nickel particle slurry (2-E), a conductive paste (2-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (2-F), the arithmetic average roughness Ra was 0.0013 μm.
(実施例3)
<種粒子の調製>
 943gのオレイルアミン、7.70gのギ酸銅四水和物及び61.30gのギ酸ニッケル二水和物を使用したこと以外、実施例1と同様にして、960gのニッケル粒子スラリー(3-A)を調製し、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(3-B)を調製した。
(Example 3)
<Preparation of seed particles>
In the same manner as in Example 1, except that 943 g of oleylamine, 7.70 g of copper formate tetrahydrate and 61.30 g of nickel formate dihydrate were used, 960 g of the nickel particle slurry (3-A) was prepared. This was prepared, washed with toluene and methanol, and dried to prepare nickel particles (3-B).
 ニッケル粒子(3-B)のSEM写真を図7に示す。図7を参照すると、ニッケル粒子(3-B)の平均粒子径は17nm、CV値は0.10であった。 An SEM photograph of nickel particles (3-B) is shown in FIG. Referring to FIG. 7, the nickel particles (3-B) had an average particle diameter of 17 nm and a CV value of 0.10.
<ニッケル粒子の調製>
 4645gのオレイルアミン及び1907gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製した。その後、このニッケル錯体溶液にニッケル粒子(3-B)を加え、ニッケル粒子スラリー(3-C)を得、ニッケル粒子(3-D)を調製した。ニッケル粒子(3-D)の元素分析の結果、Cuの含有量は0.43重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 4645 g of oleylamine and 1907 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (3-B) were added to the nickel complex solution to obtain a nickel particle slurry (3-C) to prepare nickel particles (3-D). As a result of elemental analysis of the nickel particles (3-D), the Cu content was 0.43% by weight.
 ニッケル粒子(3-D)のSEM写真を図8に示す。図8を参照すると、ニッケル粒子(3-D)の平均粒子径は48nm、CV値は0.12であった。 An SEM photograph of nickel particles (3-D) is shown in FIG. Referring to FIG. 8, the average particle diameter of nickel particles (3-D) was 48 nm, and the CV value was 0.12.
 ニッケル粒子(3-D)のSTEM-EDXの写真と線分析の結果、ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは58%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは6%であった。 As a result of STEM-EDX photography and line analysis of the nickel particles (3-D), the detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 58%. Moreover, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 6%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(3-E)を調製後、導電性ペースト(3-F)を調製した。得られた導電性ペースト(3-F)の表面粗さを測定した結果、算術平均粗さRaは0.0016μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing the nickel particle slurry (3-E), a conductive paste (3-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (3-F), the arithmetic average roughness Ra was 0.0016 μm.
(実施例4)
<種粒子の調製>
 770gのオレイルアミン、4.10gのギ酸銅四水和物及び10.73gのギ酸ニッケル二水和物を使用したこと以外、実施例1と同様にして、778gのニッケル粒子スラリー(4-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(4-B)を調製した。
Example 4
<Preparation of seed particles>
In the same manner as in Example 1 except that 770 g of oleylamine, 4.10 g of copper formate tetrahydrate and 10.73 g of nickel formate dihydrate were used, 778 g of nickel particle slurry (4-A) was prepared. Obtained, washed with toluene and methanol, and dried to prepare nickel particles (4-B).
 ニッケル粒子(4-B)のSEM写真を図9に示す。図9を参照すると、ニッケル粒子(4-B)の平均粒子径は12nm、CV値は0.11であった。 An SEM photograph of nickel particles (4-B) is shown in FIG. Referring to FIG. 9, the nickel particles (4-B) had an average particle diameter of 12 nm and a CV value of 0.11.
<ニッケル粒子の調製>
 6968gのオレイルアミン及び2860gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製した。その後、このニッケル錯体溶液にニッケル粒子(4-B)を加え、ニッケル粒子スラリー(4-C)を得、ニッケル粒子(4-D)を調製した。ニッケル粒子(4-D)の元素分析の結果、Cuの含有量は0.16重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 6968 g of oleylamine and 2860 g of nickel acetate tetrahydrate were used. Thereafter, nickel particles (4-B) were added to the nickel complex solution to obtain a nickel particle slurry (4-C) to prepare nickel particles (4-D). As a result of elemental analysis of the nickel particles (4-D), the Cu content was 0.16% by weight.
 ニッケル粒子(4-D)のSEM写真を図10に示す。図10を参照すると、ニッケル粒子(4-D)の平均粒子径は57nm、CV値は0.11であった。 An SEM photograph of nickel particles (4-D) is shown in FIG. Referring to FIG. 10, the average particle diameter of nickel particles (4-D) was 57 nm, and the CV value was 0.11.
 ニッケル粒子(4-D)のSTEM-EDXの線分析の結果を図11に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは43%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは8%であった。 The results of STEM-EDX line analysis of nickel particles (4-D) are shown in FIG. The detection count of copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 43%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 8%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(4-E)を調製後、導電性ペースト(4-F)を調製した。得られた導電性ペースト(4-F)の表面粗さを測定した結果、算術平均粗さRaは0.0014μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing the nickel particle slurry (4-E), a conductive paste (4-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (4-F), the arithmetic average roughness Ra was 0.0014 μm.
(実施例5)
<種粒子の調製>
 330gのオレイルアミン、1.10gのギ酸銅四水和物及び22.56gのギ酸ニッケル二水和物を使用したこと以外、実施例1と同様にして、340gのニッケル粒子スラリー(5-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(5-B)を調製した。
(Example 5)
<Preparation of seed particles>
340 g of nickel particle slurry (5-A) was prepared in the same manner as in Example 1 except that 330 g of oleylamine, 1.10 g of copper formate tetrahydrate and 22.56 g of nickel formate dihydrate were used. Obtained, washed with toluene and methanol, and dried to prepare nickel particles (5-B).
 ニッケル粒子(5-B)のSEM写真を図12に示す。図12を参照すると、ニッケル粒子(5-B)の平均粒子径は25nm、CV値は0.12であった。 An SEM photograph of nickel particles (5-B) is shown in FIG. Referring to FIG. 12, the average particle diameter of nickel particles (5-B) was 25 nm, and the CV value was 0.12.
<ニッケル粒子の調製>
 9290gのオレイルアミン及び3814gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製後、このニッケル錯体溶液にニッケル粒子(5-B)を加え、ニッケル粒子スラリー(5-C)を得、ニッケル粒子(5-D)を調製した。ニッケル粒子(5-D)の元素分析の結果、Cuの含有量は0.03重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 9290 g of oleylamine and 3814 g of nickel acetate tetrahydrate were used, and then nickel particles (5-B) were added to the nickel complex solution to obtain nickel particles. A slurry (5-C) was obtained, and nickel particles (5-D) were prepared. As a result of elemental analysis of the nickel particles (5-D), the Cu content was 0.03% by weight.
 ニッケル粒子(5-D)のSEM写真を図13に示す。図13を参照すると、ニッケル粒子(5-D)の平均粒子径は122nm、CV値は0.09であった。 An SEM photograph of nickel particles (5-D) is shown in FIG. Referring to FIG. 13, the average particle diameter of nickel particles (5-D) was 122 nm, and the CV value was 0.09.
 ニッケル粒子(5-D)のSTEM-EDXの線分析の結果を図14に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは14%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは2%であった。 FIG. 14 shows the results of STEM-EDX line analysis of the nickel particles (5-D). The detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 14%. Moreover, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 2%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(5-E)を調製後、導電性ペースト(5-F)を調製した。得られた導電性ペースト(5-F)の表面粗さを測定した結果、算術平均粗さRaは0.0018μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing the nickel particle slurry (5-E), a conductive paste (5-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (5-F), the arithmetic average roughness Ra was 0.0018 μm.
(実施例6)
<種粒子の調製>
 溶解液のマイクロ波照射による加熱の代わりに、マントルヒーターによる加熱を行ったこと以外、実施例1と同様にして、338gのニッケル粒子スラリー(6-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(6-B)を調製した。
(Example 6)
<Preparation of seed particles>
338 g of nickel particle slurry (6-A) was obtained in the same manner as in Example 1 except that the solution was heated by a mantle heater instead of heating by microwave irradiation. After washing with toluene and methanol, The nickel particles (6-B) were prepared by drying.
 ニッケル粒子(6-B)のSEM写真を図15に示す。図15を参照すると、ニッケル粒子(6-B)の平均粒子径は19nm、CV値は0.10であった。 An SEM photograph of nickel particles (6-B) is shown in FIG. Referring to FIG. 15, the average particle diameter of nickel particles (6-B) was 19 nm, and the CV value was 0.10.
<ニッケル粒子の調製>
 実施例1と同様にして、ニッケル錯体溶液を調製後、このニッケル錯体溶液にニッケル粒子(6-B)を加え、ニッケル粒子スラリー(6-C)を得、ニッケル粒子(6-D)を調製した。ニッケル粒子(6-D)の元素分析の結果、Cuの含有量は0.07重量%であった。
<Preparation of nickel particles>
In the same manner as in Example 1, after preparing a nickel complex solution, nickel particles (6-B) were added to the nickel complex solution to obtain a nickel particle slurry (6-C) to prepare nickel particles (6-D). did. As a result of elemental analysis of the nickel particles (6-D), the Cu content was 0.07% by weight.
 ニッケル粒子(6-D)のSEM写真を図16に示す。図16を参照すると、ニッケル粒子(6-D)の平均粒子径は81nm、CV値は0.11であった。 An SEM photograph of nickel particles (6-D) is shown in FIG. Referring to FIG. 16, the average particle diameter of nickel particles (6-D) was 81 nm, and the CV value was 0.11.
 ニッケル粒子(6-D)のSTEM-EDXの線分析の結果、ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは21%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは7%であった。 As a result of STEM-EDX line analysis of the nickel particles (6-D), the detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 21%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 7%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(6-E)を調製後、導電性ペースト(6-F)を調製した。得られた導電性ペースト(6-F)の表面粗さを測定した結果、算術平均粗さRaは0.0012μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing a nickel particle slurry (6-E), a conductive paste (6-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (6-F), the arithmetic average roughness Ra was 0.0012 μm.
(実施例7)
<種粒子の調製>
 実施例1と同様にして、333gのニッケル粒子スラリー(7-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(7-B)を調製した。
(Example 7)
<Preparation of seed particles>
In the same manner as in Example 1, 333 g of nickel particle slurry (7-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (7-B).
<ニッケル粒子の調製>
 実施例1と同様にして、ニッケル錯体溶液を調製した。このニッケル錯体溶液にニッケル粒子を加え、撹拌後、マイクロ波照射による加熱の代わりに、マントルヒーターによる加熱を行ったこと以外、実施例1と同様にして、ニッケル粒子スラリー(7-C)を得、ニッケル粒子(7-D)を調製した。ニッケル粒子(7-D)の元素分析の結果、Cuの含有量は0.07重量%であった。
<Preparation of nickel particles>
In the same manner as in Example 1, a nickel complex solution was prepared. Nickel particles were added to this nickel complex solution, and after stirring, a nickel particle slurry (7-C) was obtained in the same manner as in Example 1 except that heating with a mantle heater was performed instead of heating with microwave irradiation. Nickel particles (7-D) were prepared. As a result of elemental analysis of the nickel particles (7-D), the Cu content was 0.07% by weight.
 ニッケル粒子(7-D)のSEM写真を図17に示す。図17を参照すると、ニッケル粒子(7-D)の平均粒子径は72nm、CV値は0.17であった。 An SEM photograph of nickel particles (7-D) is shown in FIG. Referring to FIG. 17, the nickel particles (7-D) had an average particle diameter of 72 nm and a CV value of 0.17.
 ニッケル粒子(7-D)のSTEM-EDXの線分析の結果を図18に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは33%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは7%であった。 The result of STEM-EDX line analysis of nickel particles (7-D) is shown in FIG. The detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 33%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 7%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(7-E)を調製後、導電性ペースト(7-F)を調製した。得られた導電性ペースト(7-F)の表面粗さを測定した結果、算術平均粗さRaは0.0015μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing the nickel particle slurry (7-E), a conductive paste (7-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (7-F), the arithmetic average roughness Ra was 0.0015 μm.
(実施例8)
<種粒子の調製>
 実施例1と同様にして、335gのニッケル粒子スラリー(8-A)を得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子(8-B)を調製した。
(Example 8)
<Preparation of seed particles>
In the same manner as in Example 1, 335 g of nickel particle slurry (8-A) was obtained, washed with toluene and methanol, and dried to prepare nickel particles (8-B).
<ニッケル粒子の調製>
 4064gのオクチルアミンに1669gの酢酸ニッケル四水和物を加え、窒素フロー下で140℃、4時間加熱することでニッケル錯体溶液を調製した。
<Preparation of nickel particles>
A nickel complex solution was prepared by adding 1669 g of nickel acetate tetrahydrate to 4064 g of octylamine and heating at 140 ° C. for 4 hours under a nitrogen flow.
 得られたニッケル錯体溶液に、325gのニッケル粒子スラリー(8-A)を加え、撹拌後、マイクロ波を照射して170℃まで加熱し、その温度を20分間保持することによってニッケル粒子スラリー(8-C)を調製した。実施例1と同様にして、得られたニッケル粒子スラリー(8-C)をトルエンとメタノールを用いて洗浄後、乾燥してニッケル粒子(8-D)を調製した。ニッケル粒子(8-D)の元素分析の結果、Cuの含有量は0.14重量%であった。 To the obtained nickel complex solution, 325 g of nickel particle slurry (8-A) was added, stirred, heated to 170 ° C. by irradiation with microwaves, and held at that temperature for 20 minutes to maintain the nickel particle slurry (8 -C) was prepared. In the same manner as in Example 1, the obtained nickel particle slurry (8-C) was washed with toluene and methanol and then dried to prepare nickel particles (8-D). As a result of elemental analysis of the nickel particles (8-D), the Cu content was 0.14% by weight.
 ニッケル粒子(8-D)のSEM写真を図19に示す。図19を参照すると、ニッケル粒子(8-D)の平均粒子径は64nm、CV値は0.12であった。 An SEM photograph of nickel particles (8-D) is shown in FIG. Referring to FIG. 19, the average particle diameter of nickel particles (8-D) was 64 nm, and the CV value was 0.12.
 ニッケル粒子(8-D)のSTEM-EDXの線分析の結果を図20に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは43%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは6%であった。 Results of STEM-EDX line analysis of nickel particles (8-D) are shown in FIG. The detection count of copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 43%. Moreover, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 6%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリー(10-E)を調製後、導電性ペースト(10-F)を調製した。得られた導電性ペースト(10-F)の表面粗さを測定した結果、算術平均粗さRaは0.0018μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing a nickel particle slurry (10-E), a conductive paste (10-F) was prepared. As a result of measuring the surface roughness of the obtained conductive paste (10-F), the arithmetic average roughness Ra was 0.0018 μm.
 実施例1~8の結果をまとめて表1に示す。 The results of Examples 1 to 8 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8の結果から、銅元素を含有する種粒子を調製した後、ニッケル錯体溶液との混合液を加熱還元することによって、銅元素がニッケル粒子の成長とともに拡散していることが確認された。また、ニッケル粒子の内部に微量の銅元素が存在することによって、ニッケル粒子の分散性が向上し、その結果、導電性ペーストの表面平滑性を向上させることが確認できた。 From the results of Examples 1 to 8, after preparing seed particles containing copper element, it was confirmed that copper element was diffused with the growth of nickel particles by heating and reducing the mixed solution with the nickel complex solution It was done. Further, it was confirmed that the presence of a trace amount of copper element inside the nickel particles improved the dispersibility of the nickel particles, and as a result, improved the surface smoothness of the conductive paste.
(比較例1)
<ニッケル粒子の調製>
 690gのオレイルアミンに60.0gの酢酸ニッケル四水和物を加え、窒素フロー下で140℃、20分加熱することによって酢酸ニッケルをオレイルアミンに溶解した。
(Comparative Example 1)
<Preparation of nickel particles>
To 690 g of oleylamine, 60.0 g of nickel acetate tetrahydrate was added, and nickel acetate was dissolved in oleylamine by heating at 140 ° C. for 20 minutes under a nitrogen flow.
 得られた溶解液に、マイクロ波を照射して250℃まで加熱し、その温度を5分間保持することによって、ニッケル粒子スラリーを調製した。得られたニッケル粒子スラリーを静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いてそれぞれ2回洗浄した後、60℃に維持される真空乾燥機で6時間乾燥してニッケル粒子を調製した。 The obtained solution was irradiated with microwaves and heated to 250 ° C., and the temperature was maintained for 5 minutes to prepare a nickel particle slurry. The resulting nickel particle slurry was allowed to stand and separated, the supernatant was removed, and each was washed twice with toluene and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. to obtain nickel particles. Prepared.
 得られたニッケル粒子のSEM写真を図21に示す。図21を参照すると、ニッケル粒子の平均粒子径は80nm、CV値は0.14であった。 An SEM photograph of the obtained nickel particles is shown in FIG. Referring to FIG. 21, the average particle diameter of the nickel particles was 80 nm, and the CV value was 0.14.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリーを調製後、導電性ペーストを調製した。得られた導電性ペーストの表面粗さを測定した結果、算術平均粗さRaは0.0735μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing a nickel particle slurry, a conductive paste was prepared. As a result of measuring the surface roughness of the obtained conductive paste, the arithmetic average roughness Ra was 0.0735 μm.
(比較例2)
<種粒子の調製>
 330gのオレイルアミン、0.40gのギ酸銅四水和物及び16.89gのギ酸ニッケル二水和物を使用したこと以外、実施例1と同様にして、340gのニッケル粒子スラリーを得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子を調製した。
(Comparative Example 2)
<Preparation of seed particles>
340 g of nickel particle slurry was obtained in the same manner as in Example 1, except that 330 g of oleylamine, 0.40 g of copper formate tetrahydrate and 16.89 g of nickel formate dihydrate were used. Toluene and methanol After washing, the nickel particles were prepared by drying.
 ニッケル粒子のSEM写真を図22に示す。図22を参照すると、ニッケル粒子の平均粒子径は35nm、CV値は0.12であった。 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 22, the average particle diameter of the nickel particles was 35 nm, and the CV value was 0.12.
<ニッケル粒子の調製>
 9290gのオレイルアミン及び3814gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製後、このニッケル錯体溶液にニッケル粒子を加え、ニッケル粒子スラリーを得、ニッケル粒子を調製した。ニッケル粒子の元素分析の結果、Cuの含有量は0.01重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 9290 g of oleylamine and 3814 g of nickel acetate tetrahydrate were used, and then nickel particles were added to the nickel complex solution to obtain a nickel particle slurry. Particles were prepared. As a result of elemental analysis of the nickel particles, the Cu content was 0.01% by weight.
 ニッケル粒子のSEM写真を図23に示す。図23を参照すると、ニッケル粒子の平均粒子径は180nm、CV値は0.23であった。 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 23, the average particle diameter of the nickel particles was 180 nm, and the CV value was 0.23.
 ニッケル粒子のSTEM-EDXの線分析の結果を図24に示す。ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは8%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは2%であった。 Results of STEM-EDX line analysis of nickel particles are shown in FIG. The detection count of the copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 8%. Moreover, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 2%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリーを調製後、導電性ペーストを調製した。得られた導電性ペーストの表面粗さを測定した結果、算術平均粗さRaは0.0823μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing a nickel particle slurry, a conductive paste was prepared. As a result of measuring the surface roughness of the obtained conductive paste, the arithmetic average roughness Ra was 0.0823 μm.
(比較例3)
<種粒子の調製>
 660gのオレイルアミン、12.15gのギ酸銅四水和物及び10.73gのギ酸ニッケル二水和物を使用したこと以外、実施例1と同様にして、670gのニッケル粒子スラリーを得、トルエンとメタノールによって洗浄後、乾燥してニッケル粒子を調製した。
(Comparative Example 3)
<Preparation of seed particles>
Except for using 660 g oleylamine, 12.15 g copper formate tetrahydrate and 10.73 g nickel formate dihydrate, 670 g nickel particle slurry was obtained in the same manner as in Example 1, except that toluene and methanol were used. After washing, the nickel particles were prepared by drying.
 ニッケル粒子のSEM写真を図25に示す。図25を参照すると、ニッケル粒子の平均粒子径は8nm、CV値は0.11であった。 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 25, the average particle diameter of the nickel particles was 8 nm, and the CV value was 0.11.
<ニッケル粒子の調製>
 2713gのオレイルアミン及び1113gの酢酸ニッケル四水和物を使用したこと以外、実施例1と同様にして、ニッケル錯体溶液を調製後、このニッケル錯体溶液にニッケル粒子を加え、ニッケル粒子スラリーを得、ニッケル粒子を調製した。ニッケル粒子の元素分析の結果、Cuの含有量は1.23重量%であった。
<Preparation of nickel particles>
A nickel complex solution was prepared in the same manner as in Example 1 except that 2713 g of oleylamine and 1113 g of nickel acetate tetrahydrate were used, and then nickel particles were added to the nickel complex solution to obtain a nickel particle slurry. Particles were prepared. As a result of elemental analysis of the nickel particles, the Cu content was 1.23% by weight.
 ニッケル粒子のSEM写真を図26に示す。図26を参照すると、ニッケル粒子の平均粒子径は27nm、CV値は0.13であった。 An SEM photograph of nickel particles is shown in FIG. Referring to FIG. 26, the average particle diameter of nickel particles was 27 nm, and the CV value was 0.13.
 ニッケル粒子のSTEM-EDXの写真と線分析の結果、ニッケル粒子の中心から径方向に±5nmの範囲内に存在する銅元素の検出カウントは75%であった。また、粒子表面から深さ方向に5nm以内に存在する銅元素の検出カウントは3%であった。 As a result of STEM-EDX photography and line analysis of the nickel particles, the detection count of copper element existing within a range of ± 5 nm in the radial direction from the center of the nickel particles was 75%. Further, the detection count of the copper element existing within 5 nm in the depth direction from the particle surface was 3%.
<導電性ペーストの調製>
 実施例1と同様にして、ニッケル粒子スラリーを調製後、導電性ペーストを調製した。得られた導電性ペーストの表面粗さを測定した結果、算術平均粗さRaは0.0767μmであった。
<Preparation of conductive paste>
In the same manner as in Example 1, after preparing a nickel particle slurry, a conductive paste was prepared. As a result of measuring the surface roughness of the obtained conductive paste, the arithmetic average roughness Ra was 0.0767 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。 As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment.
 本国際出願は、2015年3月4日に出願された日本国特許出願2015-042020号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2015-042020 filed on Mar. 4, 2015, the entire contents of which are incorporated herein by reference.
 10…ニッケル粒子、D…粒子径
 
 
10 ... nickel particles, D ... particle diameter

Claims (8)

  1.  ニッケル元素を主成分とし、銅元素を含有するニッケル粒子であって、
     下記の構成a~c;
     a)走査型電子顕微鏡観察による平均粒子径が40nm以上150nm以下の範囲内、
     b)前記ニッケル粒子中の銅元素の含有割合が0.01重量%以上2重量%以下の範囲内、
     c)エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX)を用いて電子線のスポット径が1nm以下の条件で線分析したときに、銅元素の検出カウントの10%以上60%以下が、前記ニッケル粒子の中心から径方向に±5nmの範囲内に存在している、
    を備えていることを特徴とするニッケル粒子。
    Nickel particles mainly composed of nickel element and containing copper element,
    The following configurations a to c;
    a) The average particle diameter by observation with a scanning electron microscope is in the range of 40 nm to 150 nm,
    b) The content ratio of the copper element in the nickel particles is in the range of 0.01 wt% to 2 wt%,
    c) 10% or more of the detection count of copper element when a line analysis is performed using a scanning transmission electron microscope with an energy dispersive X-ray analyzer (STEM-EDX) under the condition that the spot diameter of the electron beam is 1 nm or less. % Or less is present in the range of ± 5 nm in the radial direction from the center of the nickel particles,
    Nickel particles characterized by comprising:
  2.  粒子径の変動係数(標準偏差/平均粒子径)が0.2以下である請求項1に記載のニッケル粒子。 Nickel particles according to claim 1, wherein the coefficient of variation of particle diameter (standard deviation / average particle diameter) is 0.2 or less.
  3.  さらに、構成d)エネルギー分散型X線分析装置付走査透過型電子顕微鏡(STEM-EDX)を用いて電子線のスポット径が1nm以下の条件で線分析したときに、前記ニッケル粒子の中心から径方向に±5nmの範囲内に銅元素の検出カウントのピークトップが存在する、を備えている請求項1に記載のニッケル粒子。 Further, when the line d is analyzed under the condition that the spot diameter of the electron beam is 1 nm or less using a scanning transmission electron microscope (STEM-EDX) with an energy dispersive X-ray analyzer, the configuration d) the diameter from the center of the nickel particle 2. The nickel particle according to claim 1, wherein a peak top of a detection count of a copper element exists in a range of ± 5 nm in the direction.
  4.  請求項1から3のいずれか1項に記載のニッケル粒子及び有機ビヒクルを含有する導電性ペースト。 A conductive paste containing the nickel particles according to any one of claims 1 to 3 and an organic vehicle.
  5.  ニッケル粒子を製造するニッケル粒子の製造方法であって、
     下記工程I~IV;
     I)走査型電子顕微鏡観察による平均粒子径が10nm以上30nm以下の範囲内、銅元素の含有量が3重量%以上30重量%以下の範囲内である種粒子を準備する工程、
     II)ニッケル塩を有機アミンに溶解させたニッケル錯体溶液を準備する工程、
     III)前記種粒子と前記ニッケル錯体溶液とを混合して混合液を得る工程、
     IV)前記混合液中のニッケルイオンを加熱還元し、前記種粒子を核としてニッケル粒子に成長させるとともに、該ニッケル粒子中の銅元素を拡散させて請求項1から3のいずれか1項に記載のニッケル粒子を得る工程、
    を含むことを特徴とするニッケル粒子の製造方法。
    A method for producing nickel particles for producing nickel particles,
    The following steps I to IV;
    I) a step of preparing seed particles having an average particle diameter of 10 nm or more and 30 nm or less by observation with a scanning electron microscope and a copper element content of 3 wt% or more and 30 wt% or less;
    II) preparing a nickel complex solution in which a nickel salt is dissolved in an organic amine;
    III) A step of mixing the seed particles and the nickel complex solution to obtain a mixed solution,
    IV) The nickel ions in the mixed solution are heated and reduced to grow into nickel particles using the seed particles as nuclei, and the copper element in the nickel particles is diffused to form any one of claims 1 to 3. Obtaining nickel particles of
    The manufacturing method of the nickel particle characterized by including.
  6.  前記工程IVにおける加熱還元が、マイクロ波照射によるものであることを特徴とする請求項5に記載のニッケル粒子の製造方法。 The method for producing nickel particles according to claim 5, wherein the heat reduction in the step IV is performed by microwave irradiation.
  7.  前記工程Iにおいて、前記種粒子が、ギ酸ニッケル及びギ酸銅を有機アミンに溶解させたニッケル錯体溶液をマイクロ波照射して加熱還元することによって得られるものである請求項5に記載のニッケル粒子の製造方法。 The nickel particles according to claim 5, wherein in the step I, the seed particles are obtained by heating and reducing a nickel complex solution in which nickel formate and copper formate are dissolved in an organic amine by microwave irradiation. Production method.
  8.  前記工程IIにおいて、前記ニッケル塩がカルボン酸ニッケルであり、前記有機アミンが脂肪族1級アミンである請求項5に記載のニッケル粒子の製造方法。 The method for producing nickel particles according to claim 5, wherein, in the step II, the nickel salt is nickel carboxylate and the organic amine is an aliphatic primary amine.
PCT/JP2016/050433 2015-03-04 2016-01-08 Nickel particles and method for producing same, and electrically conductive paste WO2016139967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503363A JP6644053B2 (en) 2015-03-04 2016-01-08 Nickel particles, production method thereof and conductive paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-042020 2015-03-04
JP2015042020 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016139967A1 true WO2016139967A1 (en) 2016-09-09

Family

ID=56849300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050433 WO2016139967A1 (en) 2015-03-04 2016-01-08 Nickel particles and method for producing same, and electrically conductive paste

Country Status (2)

Country Link
JP (1) JP6644053B2 (en)
WO (1) WO2016139967A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195799A (en) * 2017-05-16 2018-12-06 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214142A (en) * 2010-03-17 2011-10-27 Nippon Steel Chem Co Ltd Method for production of nickel nanoparticle
JP2013040358A (en) * 2011-08-11 2013-02-28 Nippon Steel & Sumikin Chemical Co Ltd Method for manufacturing metal porous body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214142A (en) * 2010-03-17 2011-10-27 Nippon Steel Chem Co Ltd Method for production of nickel nanoparticle
JP2013040358A (en) * 2011-08-11 2013-02-28 Nippon Steel & Sumikin Chemical Co Ltd Method for manufacturing metal porous body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195799A (en) * 2017-05-16 2018-12-06 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same
JP7169069B2 (en) 2017-05-16 2022-11-10 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP6644053B2 (en) 2020-02-12
JPWO2016139967A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
KR101951452B1 (en) Coated metal microparticle and manufacturing method thereof
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
TWI661012B (en) Method for manufacturing core-shell type metal fine particle, core-shell type metal fine particle, conductive ink, and method for manufacturing substrate
JP6799936B2 (en) Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors
WO2018190246A1 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
KR101671049B1 (en) Nickel-cobalt nanoparticle and manufacturing method therefor
JP2022136081A (en) Copper oxide particle composition, conductive paste, and conductive ink
JPWO2006062186A1 (en) Nickel powder, method for producing the same, and conductive paste
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP7361464B2 (en) AgPd core-shell particles and their use
KR102260398B1 (en) Method for producing metal nanoparticles
WO2016139967A1 (en) Nickel particles and method for producing same, and electrically conductive paste
JP2014029845A (en) Method for producing conductive paste
JP2015049973A (en) Conductive paste and method for manufacturing composite nickel fine particle used therefor
JP6539520B2 (en) Nickel fine particle containing composition and method for producing the same
JP6494338B2 (en) Method for producing nickel particles
JP2020100893A (en) Copper cluster, mixed particles, conductive paste, and conductive ink
JP2013108140A (en) Metal particulate composition and method for producing the same
JP2015151558A (en) Nickel fine particle slurry, metal fine particle and method for producing the same
JP6608378B2 (en) Method for producing nickel particles
JP6118193B2 (en) Method for producing dispersible nickel fine particle slurry
JP2013108141A (en) Metal particulate composition and method for producing the same
JP2017119906A (en) Nickel fine particle-containing composition and method for producing the same, internal electrode, and multi-layered ceramic capacitor
JP6558750B2 (en) Nickel fine particle-containing composition and method for producing the same
JP2019172501A (en) Particle composition, conductive paste and method of forming conductive layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758663

Country of ref document: EP

Kind code of ref document: A1