WO2016129969A1 - 레이저다이오드 액정 프로젝터 - Google Patents

레이저다이오드 액정 프로젝터 Download PDF

Info

Publication number
WO2016129969A1
WO2016129969A1 PCT/KR2016/001473 KR2016001473W WO2016129969A1 WO 2016129969 A1 WO2016129969 A1 WO 2016129969A1 KR 2016001473 W KR2016001473 W KR 2016001473W WO 2016129969 A1 WO2016129969 A1 WO 2016129969A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
lens
light
laser
liquid crystal
Prior art date
Application number
PCT/KR2016/001473
Other languages
English (en)
French (fr)
Inventor
최현락
권혁렬
권성택
Original Assignee
주식회사 크레모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 크레모텍 filed Critical 주식회사 크레모텍
Priority to US15/550,791 priority Critical patent/US10139717B2/en
Priority to CN201680008784.XA priority patent/CN107209448A/zh
Publication of WO2016129969A1 publication Critical patent/WO2016129969A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • G02B27/1053Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the present invention relates to a laser diode liquid crystal projector, and more particularly, to an optical structure that reduces the speckle appearing in an image image produced by the laser diode and the arrangement of the laser diode when the projector is provided using an optical modulator composed of liquid crystal. It relates to a laser diode liquid crystal projector optimized.
  • a small size and low power projector In order to develop a portable small projector smaller than the size of a palm or to commercialize a projector that is large enough to be embedded in a laptop, a small size and low power projector must be developed. In order to achieve a small-sized, low-power projector, it is necessary to use a light source of superior size compared to the power consumption.
  • the most suitable light source for such a low power projector is a laser light source or an electroluminescent device (LED).
  • LED light sources and laser light sources are known as efficient light sources that emit high luminance light at low power.
  • LED light source is a high etendue light source has a disadvantage of less light efficiency than laser.
  • laser light sources show higher light efficiency than LEDs, but have a disadvantage of laser-specific interference patterns called speckles. Therefore, if the speckle of the laser light can be reduced, there is no small light source suitable for the micro projector as the laser light source.
  • a projector using a conventional laser light source includes a laser light source composed of an R light source 10R, a G light source 10G, and a B light source 10B, a dichroic mirror 50 composed of 50R, 50G, and 50B, and a reflecting mirror. And 51, 53, diffuser 20, beam shaper 30, field lens 40, optical modulator 60, projection lens 70, and polarizing beam splitter 80.
  • a laser light source irradiates R / G / B light sequentially.
  • Irradiating the laser R / G / B light sources 10R, 10G, and 10B sequentially means irradiating the R light source for T / 3 time, and the total time to irradiate one frame. While irradiating the G light source, and irradiating the B light source for T / 3 hours subsequent to the G light source irradiation time.
  • a laser light source or an electroluminescent device (LED) light source is suitable because the light source for the micro projector should be a light source having a small size and high light output. At least one laser light source among the three light sources 10R, 10G and 10B should be included, and preferably all three use a laser light source or a hybrid type in which a laser and an LED light source are mixed as needed. Light emitted from the three light sources is reflected or transmitted by each of the dichroic mirrors 50R, 50G, and 50B and is incident on the diffuser 20.
  • the dichroic mirror 50G reflects the G light source (green laser light irradiated from 10G) and transmits the remaining light.
  • the dichroic mirror 50G may use a general mirror that reflects all visible light.
  • the dichroic mirror 50R reflects the R light source (red laser light irradiated from 10R) and transmits the light in the remaining wavelength range
  • the dichroic mirror 50B is the blue light irradiated from the B light source (10B).
  • Light is a mirror that functions to reflect and transmit light in the remaining wavelength range.
  • the laser light emitted from the laser light sources 10R, 10G, and 10B is reflected by the reflectors 51 and 53 and then incident on the diffuser 20.
  • the diffuser vibrates perpendicular to the optical axis, increasing the randomness of the light as it passes through the diffuser.
  • the diffuser is a device for removing speckles unique to the laser beam, thereby reducing the speckle by reducing the coherence characteristics of the laser beam. Vibrating the diffuser 20 can further reduce the speckle.
  • the light passing through the diffuser 20 is deformed by the beam shaper 30.
  • the reason for deforming the beam shape is to improve the light efficiency by shaping the beam shape incident to the shape of the incident surface of the optical modulator 60.
  • the beam shaper 30 may be a fly's eye lens.
  • the fly's eye lens is implemented by a plurality of small lens bodies.
  • the small lens body implemented in the fly's eye lens may have various shapes. For example, a rectangular convex lens shape and a hexagonal convex lens shape and a circular shape may be implemented, but it is preferable that the shape of the optical modulator (more accurately, the effective screen shape of the optical modulator) be provided in the same shape. .
  • the effective screen shape of the optical modulator has a square shape
  • the light loss can be minimized by providing the shape of the small lens body in a square shape.
  • a double-sided fly's eye lens having a small lens body on both sides as the beam shaper 30 may be used, but two single-sided fly's eye lenses may be used, respectively.
  • the plurality of small lens bodies are formed to correspond one to one with each other.
  • the field lens 40 is a lens for focusing the light formed by the beam shaper 30 to the optical modulator 60.
  • the field lens 40 is generally composed of one to three pieces and adjusts the distance between these lenses and the beam shaper 30 to adjust the focus. Can be achieved accurately.
  • the optical modulator 60 refers to an element that selectively transmits, blocks, or changes an optical path of incident light to form an image image.
  • Typical examples of the optical modulator 60 include a digital micromirror device (DMD), a liquid crystal display (LCD), and an LCOS.
  • DMD is a driving method using field sequential and is a device used in a DLP projector using a digital mirror arranged in a matrix form by the number of pixels.
  • DLP is a projector that realizes gradation and an image by reflecting light emitted from a light source to a screen by adjusting a light path by a digital mirror.
  • Liquid crystal display devices are devices that form images by selectively turning on / off liquid crystals.
  • Projectors using liquid crystal display elements include direct view type, projection type and reflective type.
  • the direct view projector is a method of directly observing an image generated while the light from the backlight behind the liquid crystal display device passes through the liquid crystal panel, and the projection type projector uses an projection lens to enlarge the image generated while passing through the liquid crystal display device. It is then projected onto the screen to observe the image reflected off the screen.
  • Reflective type is almost the same structure as the projection type, but by forming a reflective film on the lower substrate to reflect the reflected light on the screen.
  • Liquid Crystal on Sylicon is a type of reflective liquid crystal display, and is an optical device that operates a reflective substrate using a silicon substrate instead of transparent glass among two-sided substrates of a conventional liquid crystal display device.
  • the polarization beam splitter 80 serves as a reflective optical system to transfer an image generated by the optical modulator 60 to the projection lens 70.
  • Polarized beam splitter 80, PBS, Polarized Beam Splitter
  • PBS Polarized Beam Splitter
  • the polarization beam splitter 80 is an optical element that allows incident light to pass through P polarized light and reflects S polarized light in a direction opposite to the projection lens using a polarization separator.
  • the polarizing beam splitter may be configured to pass S-polarized light and half-polarize P-polarized light as necessary.
  • FIG. 1 for convenience, description will be made of a structure in which P-polarized light passes and S-polarized light is reflected. Therefore, the light emitted from the laser light source 10 should be converted to the linearly polarized state at any point on the optical path to maintain the light efficiency.
  • the P-polarized light that has passed through the polarization separator of the polarizing beam splitter 80 is converted into S-polarized light in the process of forming an image through the reflective optical modulator 60, and the image light converted to S-polarized light is once again polarized beam splitter. It enters into (80) and encounters the polarization separator. At this time, since all of the image light is S-polarized light, all of the image light is reflected by the polarization splitting film to enter the projection lens 70.
  • the projection lens 70 is formed using a plurality of lenses, and enlarges and projects an image formed by the optical modulator 60 on a screen (not shown).
  • the projector using the conventional laser light source shown in FIG. 1 has an advantage of high light efficiency and a wide color gamut, but has a disadvantage of generating speckle interference fringes in the enlarged projection image, and thus cannot be used in a high quality projector.
  • the present invention is to solve the above problems, when the optical modulator consists of a transmissive liquid crystal or a reflective liquid crystal presenting the optimum arrangement of the laser diode that can match the polarization direction of the light incident on the optical modulator and speckle It is to provide a laser diode liquid crystal projector that can minimize the.
  • the above object of the present invention is a laser diode liquid crystal projector using a laser diode as a light source and a liquid crystal element as an optical modulator, the light source comprising: a G laser diode emitting an elongated elliptic green in the first direction; B laser diode emitting an elongated ellipse shape in the direction and a power supply pin placed perpendicular to the installation direction of the power supply pin of the G laser diode or the B laser diode so that the ellipse is elongated in the direction perpendicular to the first direction.
  • an R laser diode that emits a red color, and comprises a first beam shaper and a light beam emitted from the first beam shaper.
  • a second beam shaper forming a shape of an effective surface of the optical modulator and a second beam shaper It includes a field lens, a polarizing beam splitter for reflecting the light incident from the field lens to the optical modulator, passing the light irradiated from the optical modulator, and a projection lens for magnifying and projecting the image image generated from the optical modulator,
  • the G laser diode, the B laser diode and the R laser diode are intrinsic laser diodes manufactured in a multimode, and the G laser diodes, B laser diodes, which form light having a vertical cross shape, irradiated from a light source, and Each light irradiated from the R laser diode is achievable by a laser diode liquid crystal projector comprising a laser diode liquid crystal projector characterized by having the same polarization axis.
  • the laser diode liquid crystal projector according to the present invention can effectively match the polarization directions of the R, G, and B light sources incident on the optical modulator formed by the liquid crystal by efficiently changing the pin arrangement of the laser diode without using a complicated optical element. It became possible.
  • FIG. 1 is a structural diagram of a conventional projector using a laser light source and using a laser light source implemented with a reflective optical modulator.
  • Figure 2 is a photograph showing a light source irradiated to the screen in the state where the G laser diode is installed on the barrel.
  • FIG 3 is a photograph showing a light source irradiated onto a screen in a state where the B laser diode is installed in the barrel.
  • FIG. 4 is a photograph showing the light source irradiated on the screen while the R laser diode is installed by rotating the laser beam 90 degrees with respect to other light sources, resulting in the power supply pin being rotated by 90 °.
  • FIG. 5 is a structural diagram of a projector using a laser light source as an embodiment according to the present invention and using a laser light source implemented with a reflective optical modulator.
  • FIG. 6 is a plan view of a laser diode projector with a PBS according to the present invention as viewed from the upper direction of FIG.
  • FIG. 7 is an exemplary view of a first beamshaper according to an embodiment of the present invention.
  • FIG 8 is an exemplary view of a second beamshaper according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a Gaussian distribution for explaining the operation of the diffuser, and the effect of changing when vibrating the diffuser.
  • FIG. 10 is a block diagram of a liquid crystal projector using a transmissive liquid crystal optical modulator as an embodiment of the present invention.
  • FIG. 11 is a block diagram of a liquid crystal projector using a transmissive liquid crystal optical modulator as an embodiment of the present invention.
  • 60a projection type liquid crystal optical modulator 70: projection lens
  • the present invention applies a method of sequentially irradiating the R laser light, G laser light, B laser light in a time division manner as described in the prior art. Therefore, compared to the projector that does not use the time division irradiation method, the time required for irradiation per laser light source is reduced, so a high power laser light source should be used. More precisely, in order to provide a projector with sufficient brightness, a laser diode with a peak power consumption of more than 1 watt per second (commonly referred to as a “watt class laser diode”) should be used.
  • the current technology is to use intrinsic laser diodes produced in multimode. That is, it means that a laser diode produced by a single mode or a laser diode produced by pumping cannot produce a watt class laser diode.
  • Laser resonators have a myriad of resonance frequencies. In a typical gain medium, all modes within the gain range can oscillate. In order to manufacture a laser diode having a high output power, the oscillation of several modes beyond the gain threshold must be used.
  • Intrinsic laser diodes produced in multimode exhibit properties that depend on the material properties of the color.
  • the G laser diode and the B laser diode have similar characteristics, but the R laser diode shows completely different characteristics.
  • One of the most different characteristics is that the light source output from the laser diode of each color is output in the form of a light source showing a characteristic perpendicular to only one waveform of an electromagnetic wave.
  • the laser diode produced in the single mode can be adjusted to be output in an ideal wavelength form perpendicular to both electric waves and magnetic waves due to the characteristics of TEM (Transverse to Electirc and Magnetic).
  • the laser diode is manufactured in multi-mode to increase the output to more than the watt class, it can be manufactured using only TM (Transverse to Magnetic) or TE (Transverse to Electric), respectively. It has a non-ideal characteristic. More precisely, intrinsic R laser diodes produced in multimode with watt-class outputs have TE characteristics so that they have S-polarized wave forms in polarized form, and intrinsic G laser diodes and intrinsic B produced in multimode with watt-class outputs. The laser diode has a TM characteristic and shows a P-polarized wave in polarized form.
  • the laser diode liquid crystal projector uses liquid crystal as an optical modulator.
  • the light source output from the laser diodes of all colors should be adjusted to match the polarization axis before reaching the liquid crystal optical modulator.
  • a 'liquid crystal optical modulator' the implementation of an optical modulator with a liquid crystal device
  • a projector using the liquid crystal optical modulator will be referred to as a 'liquid crystal projector'.
  • phase difference plate which is an optical material for converting the S polarization axis into a P polarization axis in front of the R laser diode.
  • the inventors of the present invention when installing the R laser diode in the barrel, unlike the G laser diode and the B laser diode, the R laser diode is rotated by 90 ° with respect to other light sources. In order to be installed, it was turned vertically.
  • Multimode intrinsic laser diodes with watt-class power or more have an elongated output light in one direction. 2, 3 and 4, when installing the laser diode in the barrel, in order to match the polarization axis, the R laser diode is installed by rotating 90 ° against the G laser and B laser diode and the remaining G laser diode and B laser diode When arranged in the same direction, the photo shows the shape of light emitted from each of the G laser diode, B laser diode, and R laser diode light source. As shown in FIGS.
  • the G laser diode and the B laser diode are irradiated with an elongated wave shape in the substantially horizontal direction, whereas the R laser diode is irradiated with an elongated wave shape in the substantially vertical direction.
  • the coordinates show the screen installation direction
  • the x-axis indicates the horizontal direction of the screen
  • the y-direction indicates the vertical direction of the screen.
  • the power supply pin is 90 °. Since the beams that are rotated and mounted and projected on the screen are displayed to cross approximately in a cross shape, a separate optical element is required to match them.
  • the projector using the laser light source according to the present invention is a watt class multimode intrinsic laser diode composed of an R light source 10R, a G light source 10G, and a B light source 10B, and a dyke composed of 50R, 50G, and 50B.
  • the heat dissipation fins 11 are installed for smooth cooling, and the power supply pins 10RJ, 10GJ, and 10BJ each have a flexible printed circuit board (FPCB). ) To receive the driving power.
  • FPCB flexible printed circuit board
  • FIG. 6 is a plan view of a laser diode projector according to the present invention as viewed from the upper direction of FIG.
  • the power supply pin 10RJ of the R laser diode 10R is provided with the power supply pin 10GJ of the G laser diode 10G and the power supply pin 10BJ of the B laser diode 10B. It can be seen that compared to the direction is installed in a 90 ° rotated direction, each laser diode can be seen that the power is applied through the FPCB (19).
  • Watt class multimode intrinsic laser diodes preferably irradiate R / G / B light sequentially.
  • Irradiating the laser diode R / G / B light sources 10R, 10G and 10B sequentially means irradiating the R light source for T / 3 time, when T is the total time to irradiate one frame, followed by T / 3 It means irradiating the G light source for a time, and irradiating the B light source for a T / 3 time subsequent to the G light source irradiation time. Substantially each light source is irradiated for a time shorter than T / 3.
  • the light source for the micro-projector should be a light source having a small size and high light output, it was implemented as a watt class multimode intrinsic laser diode. As described above, the R laser diode among the three light sources was applied to other light sources to match the S polarization wave direction. In preparation, it was rotated by 90 ° and the power supply pin was rotated by 90 °. Light emitted from the three light sources is reflected or transmitted by the respective dichroic mirrors 50R, 50G, and 50B and is incident on the first beam shaper 31. The dichroic mirror 50B reflects the B light source (blue laser light emitted from 10B) and transmits the rest of the light.
  • the dichroic mirror 50B uses a general mirror that reflects all visible light. It is okay.
  • the dichroic mirror 50G reflects the G light source (green laser light irradiated at 10G) and transmits the light in the remaining wavelength range
  • the dichroic mirror 50R is the R light source (red laser light irradiated at 10R). ) Is a mirror that transmits light and reflects light in the remaining wavelength range.
  • the laser light emitted from the laser diodes 10R, 10G, and 10B is incident by the first beam shaper 31 after being reflected by the dichroic mirror.
  • the first beam shaper 31 is a component for forming a beam shape so that light irradiated to the screen in an intersecting form as close to circular light as possible.
  • the first beam shaper 31 may include a fly's eye lens, and FIG. 7 illustrates various shapes of the small lens body constituting the fly's eye lens when the fly's eye lens is used as the first beam shaper according to the present invention. It is an illustration.
  • the most preferable small lens body 37 of the fly's eye lens constituting the first beam shaper 31 is formed in a regular octagon (honeycomb form) as shown in Fig. 7C.
  • the beam shape may be molded so as to be closest to the circular light.
  • the small lens body 37 is formed in a circular shape as shown in FIG. Will fall.
  • the projector After the projector is formed with the remaining configuration shown in FIG. 5 without using the first beamshaper 31, when the screen is irradiated with white color as a whole, it has a white color with a little magenta color in the vertical direction, and in the horizontal direction. It will have a slightly cyan white color.
  • the light formed by the first beam shaper 31 is refracted by the reflector 51 and then incident on the second beam shaper 33.
  • a representative example of the second beam shaper 33 may be a fly's eye lens. As described above, the fly's eye lens is implemented by a plurality of small lens bodies.
  • the compact lens body is provided in the same shape as the shape of the optical modulator (more accurately, the effective screen shape of the incident side of the optical modulator).
  • the effective screen shape of the optical modulator has a 16: 9 aspect ratio square shape
  • the light lens may be minimized by providing a compact lens body having a square shape having a 16: 9 aspect ratio.
  • 8 shows an example of a second beam shaper 33 according to an embodiment of the present invention. It can be seen that the second beam shaper 33 is composed of a plurality of rectangular lens bodies having a plurality of rectangular shapes having a 16: 9 aspect ratio.
  • the second beam shaper 33 is designed to vibrate in an up and down direction (substantially a long side direction based on a 16: 9 aspect ratio) with reference to FIG. 5 to eliminate speckle.
  • the forceps 57 were installed on one surface of the second beam shaper 33, and the vibrator 55 was provided on the other side of the forceps 57.
  • the vibrator 55 may be implemented with a very small motor.
  • An easy implementation example is to modify a speaker.
  • the speaker has a fixed permanent magnet, a coil moving according to the applied current frequency, and a diaphragm is attached to the moving coil.
  • the other side of the forceps 57 may be attached and fixed to the diaphragm. When power is applied to the coil, the vibrating plate vibrates and the forceps 57 and the second beam shaper 33 vibrate together.
  • An on control signal of the R laser diode 10R may be used as a signal for applying vibration to the second beam shaper 33.
  • the timing control signal transmitted from the outside includes a signal for controlling the on / off of the R laser diode 10R
  • the second beam shaper 33 may be used as a control signal.
  • other color laser diode on control signals may be used.
  • the frequency of vibrating the second beam shaper 33 ranges from 110 Hz to 240 Hz, and when 400 Hz or more, noise is generated and it is difficult to use more frequencies.
  • the field lens is a lens that focuses the light formed by the second beam shaper 33 to the polarization beam splitter 80.
  • the first field lens 41 and the second field lens 43 are two sheets.
  • the optical modulator 60 refers to an element that selectively transmits, blocks, or changes an optical path of incident light to form an image image.
  • Typical examples of the optical modulator 60 include a digital micromirror device (DMD), a liquid crystal display (LCD), and an LCOS.
  • DMD digital micromirror device
  • LCD liquid crystal display
  • LCOS liquid crystal display
  • it is limited to a liquid crystal optical modulator using a liquid crystal device such as a liquid crystal display device (LCD) and an LCOS.
  • LCDs liquid crystal display devices
  • Projectors using liquid crystal display elements include direct view type, projection type and reflective type.
  • the direct view projector is a method of directly observing an image generated while the light from the backlight behind the liquid crystal display device passes through the liquid crystal panel, and the projection type projector uses an projection lens to enlarge the image generated while passing through the liquid crystal display device. It is then projected onto the screen to observe the image reflected off the screen.
  • Reflective type is almost the same structure as the projection type, but by forming a reflective film on the lower substrate to reflect the reflected light on the screen.
  • Liquid Crystal on Sylicon is a type of reflective liquid crystal display, and is an optical device that operates a reflective substrate using a silicon substrate instead of transparent glass among two-sided substrates of a conventional liquid crystal display device.
  • the diffuser 20 is an optical element that increases the randomness of the light.
  • the diffuser is a device for removing speckles unique to the laser beam, thereby reducing the speckle by reducing the coherence characteristics of the laser beam.
  • the diffuser 20 has a side effect of ruining the optical value (for example, F #) designed with a lens group such as a light source, a beam shaper, and a field lens. That is, the optical characteristics determined by the other lens groups are disturbed.
  • the speckle reduction effect by the diffuser 20 increases as the diffuser 20 is installed closer to the polarizing beam splitter 80.
  • the diffusion sheet constituting the diffuser 20 has its own light absorption rate has a disadvantage of absorbing a considerable amount of light.
  • the diffusion sheet constituting the diffuser shows a transmittance of about 80% to 90%.
  • the diffusion sheet is made by expanding the sheet in a predetermined direction during the manufacturing process, so that the diffusion sheet has a direction in a certain direction, which partially affects the polarization direction. This has a very bad effect on the light efficiency when the liquid crystal display is used as an optical modulator.
  • the polarization beam splitter 80 is an optical element that reflects incident light to P-polarized light and S-polarized light by using a polarization separator.
  • the polarizing beam splitter may be configured to reflect P-polarized light and transmit S-polarized light as necessary.
  • the description will be made of a structure that reflects P-polarized light and S-polarized light.
  • the image light converted into the P-polarized light is incident again into the polarizing beam splitter 80 and meets the polarization splitting film.
  • the image light is transmitted through the polarization separator to be incident on the projection lens 70.
  • the projection lens 70 is formed using a plurality of lenses, and enlarges and projects an image formed by the optical modulator 60 on a screen (not shown).
  • Patent Document 1 applies a method of vibrating the diffuser and tilting the reflective surface formed on the reflector.
  • the emitted light becomes bright with concentrated light in the center portion, and has a Gaussian distribution in which the surrounding portion becomes dark.
  • FIG. 9 is a diagram illustrating a Gaussian distribution for explaining the operation of the diffuser and the effect that is changed when the diffuser is vibrated.
  • the horizontal axis x represents a distance between the light traveling direction and the vertical direction
  • the vertical axis L represents luminance.
  • FIG. 9 (a) it can be seen that the light is concentrated toward the central portion of the diffuser to increase the luminance.
  • Figure 9 (b) is an exemplary view for explaining the effect of vibrating the diffuser.
  • the inner circle shows an area showing a certain luminance or more when the diffuser is not vibrated
  • the outer circle is a view for explaining a phenomenon in which an area showing a certain luminance or more is expanded when the diffuser is vibrated. That is, when the diffuser is vibrated, the incident light is spread out to the outside, but the light is concentrated in the center. Therefore, when the diffuser is vibrated, the speckle generated by the light passing through the center portion can be considerably reduced. However, due to the Gaussian distribution, the influence on the light passing through the outer area is reduced. It can be seen that it does not affect.
  • the second beam shaper 33 when the second beam shaper 33 is vibrated, as shown in the present invention, the second beam shaper 33 has a plurality of small lens bodies 37 uniformly disposed on the second beam shaper 33 as a whole. Since it evenly affects the light passing through the area, it can be seen that there is an effect that can reduce the speckle as a whole.
  • liquid crystal optical modulator formed of a reflective liquid crystal element
  • present invention can be implemented in a liquid crystal optical modulator using a transmissive liquid crystal element.
  • an optical element called X-Cube is used instead of a beam splitter to simplify the structure of the optical element.
  • FIG. 10 is a block diagram of a liquid crystal projector using a transmissive liquid crystal optical modulator as an embodiment of the present invention.
  • Reference numerals in the drawings used the same reference numerals as shown in FIG. Since the liquid crystal projector shown in FIG. 10 does not use a beam splitter, there is an advantage of simplifying an optical element configuration.
  • the second beam shaper 33 may also be omitted for convenience of description or a structure that may vibrate.
  • the liquid crystal light modulator 60 shown in FIG. 5 uses a reflection type while the transmission type liquid crystal light modulator 60a is used in the liquid crystal projector shown in FIG. 10.
  • FIG. 11 is a block diagram of a liquid crystal projector using a transmissive liquid crystal optical modulator as an embodiment of the present invention.
  • the X-Cube 85 is disposed at the center to reflect the R, B, and G laser diode emitted light emitted from the left side, the bottom side, and the right side in the upward direction.
  • the first beam shaper 31a, 31b, 31c and the second beam shaper 33a, 33b, 33c between the laser diodes 10, R, 10B and 10G of the respective colors and the X-Cube 85.
  • diffusers 20a, 20b, and 20c respectively.
  • the liquid crystal projector shown in FIGS. 10 and 11 has an advantage that the optical device can be made compact compared to the liquid crystal projector shown in FIG. 5, but has a disadvantage in that light transmission efficiency is lower than that of the reflective liquid crystal light modulator due to the characteristics of the transmission liquid crystal light modulator.
  • the liquid crystal projector shown in FIG. 11 does not need to drive the laser diode in a time division manner, but in order to implement a small projector that provides high luminance characteristics, it is preferable to configure an intrinsic laser diode having a watt-class output characteristic and manufactured in a multi-mode. .
  • Design data of the projection lens of the present invention is shown in Table 1.
  • the F number of the projection lens is 4.0, the total focal length is 11.628 mm, the total length (TTL, Total Tract Length) is 24 mm, and the angle of view is 58 °.
  • the lens numbers are given in order from the outside air to the polarizing beam splitter (PBS). Therefore, the lens positioned closest to the outside air becomes the first lens, and the lens positioned closest to the polarization beam splitter is named as the fifth lens.
  • DOF depth of field
  • the F number is produced between 3.2 and 5.0.
  • F number 4.0 is suitable.
  • the focal length is the longest in the first glass lens L1 and the shortest in the second plastic lens. Therefore, the refractive power of the first glass lens is the lowest, and the refractive power of the second plastic lens is the highest. Refractive power is the inverse of focal length.
  • Kn / Kt is an absolute value obtained by dividing the refractive power of each lens by the refractive power of all lenses, and represents the ratio of the refractive power of each lens to the refractive power of all lenses.
  • the first glass lens is a lens directly contacting the outside air at the outermost side of the projection lens, it is also in contact with organic matter of the human hand and is made of FC5_HOYA glass because it is a glass lens that serves to block the most direct influence on the external temperature change.
  • the refractive power is not placed high green value.
  • the refractive power of the first glass lens is configured to satisfy the equation (1).
  • the projection lens consists of five lenses, three of which are plastic lenses, made of aspherical lenses, and two of which are made of glass lenses.
  • the fourth lens is made of BACD16_HOYA glass and has a high refractive power and is the main lens of the projection lens.
  • the second third fifth lens is an aspherical lens, which allows the overall size to be reduced while maintaining the performance of the projection lens.
  • the second, third, and fifth plastic lenses form both surfaces aspherically. Aspherical shapes of the lenses are expressed as conic constants and aspheric coefficients, and the conic constants and aspheric coefficients of the second, third, and fifth lenses are shown in Table 2.
  • the aspherical shape is drawn by obtaining the Z value for the change of the Y value in the following equation, and is usually processed by a computer. If you plot the Z value for the change of the Y value, an aspherical shape is drawn. Therefore, in the related industry, if only the conic constant and aspherical coefficient are defined, the curved surface of the lens can be manufactured instead of the spherical surface.
  • Optical engines can be broadly divided into lighting systems and imaging systems.
  • An illumination system refers to an engine that forms a beam of light emitted from a light source to match an active area of an optical modulator, and then illuminates an active area of an imager to create an image.
  • An imaging system is an optical modulator. It means an engine that enlarges and projects the created image to form an image on the screen.
  • the projection lens At the heart of this imaging system is the projection lens.
  • the projector plays a very important role in achieving quality.
  • the projection lens according to the present invention has a resolution of 1280 X 720 and a resolution of 6.4um suitable for pixel size (MTF, Modulation Transfer Function), has a uniformity of 80% or more, and an optical distortion of 1% or less, and 58 ⁇ . You should maintain a high F number with an angle of view.
  • a spherical lens with this function is manufactured only with spherical lenses, it will require almost 8 or more spherical lenses and will be about twice as large as 24mm.
  • an aspherical lens should be used. Thus, only two glass spherical lenses and three aspherical plastic lenses were used to achieve the above specification. It is not easy to make the projection lens small and to increase the angle of view while achieving the above resolution and uniformity.
  • the theoretical angle of view that can be obtained at maximum while having the above conditions is about 60 degrees, and was designed at 58 degrees in consideration of mass productivity.
  • the projection lens is designed for optimal focusing at a distance of 1M (approximately 33 "screen size). In fact, you can see sharp images from 20" to 80 "without focusing.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은 레이저다이오드 액정 프로젝터에 관한 것이다. 본 발명에서는 광원은 녹색을 출사하는 G 레이저다이오드와, 청색을 출사하는 B 레이저다이오드와, G 레이저다이오드 또는 B 레이저다이오드의 전원인가핀의 설치 방향과 수직되게 전원인가핀이 놓여지도록 설치되는 붉은색을 출사하는 R 레이저다이오드로 이루어지며, 이에 적합한 광학 구조가 제안된다. 본 발명에 의해서 별도의 복잡한 광학소자 를 사용하지 않고서도 레이저다이오드의 핀 배치를 효율적으로 변경함으로써 액정으로 형성되는 광모듈레이터로 입사되는 R, G, B 광원의 편광 방향을 일치시킬 수 있게 되었다.

Description

레이저다이오드 액정 프로젝터
본 발명은 레이저다이오드 액정 프로젝터에 관한 것으로서, 보다 상세하게는 액정으로 구성된 광모듈레이터를 사용하여 프로젝터를 구비할 때 레이저다이오드의 배치 및 레이저다이오드에 의해 만들어지는 영상 이미지에 나타나는 스펙클을 감소시키는 광학 구조를 최적화한 레이저다이오드 액정 프로젝터에 관한 것이다.
손바닥 크기보다 작은 휴대용 소형 프로젝터를 개발하거나 또는 노트북 등에 임베디드로 들어갈 정도 크기의 프로젝터를 상용화하기 위해서는 크기가 작고, 저 소비 전력의 프로젝터를 개발하여야 한다. 크기도 작고 저전력의 프로젝터를 달성하기 위해서는 소비 전력 대비 우수하며 작은 크기의 광원을 사용하여야 한다. 이러한 저전력프로젝터에 가장 적합한 광원으로는 레이저 광원 또는 전계발광소자(LED)를 들 수 있다.
LED 광원과 레이저 광원은 적은 전력에 높은 휘도의 광을 방출하는 효율적인 광원으로 알려져 있다. 하지만 양 소자는 각각 단점을 가지고 있다. LED 광원은 높은 에땅듀의 광원으로서 레이저보다 광효율이 못하다는 단점이 있다. 이에 비해 레이저 광원은 LED보다 높은 광효율을 보이지만 스펙클이라는 레이저 특유의 간섭 패턴이 나타나는 단점을 지니고 있다. 따라서 레이저광의 스펙클 현상을 감소시킬 수 있다면 레이저 광원만큼 마이크로 프로젝터에 적합한 소형 광원이 없다.
도 1은 레이저 광원을 사용하며 반사형 광모듈레이터로 구현된 종래 레이저 광원을 이용하는 프로젝터의 구조를 보여주고 있다. 종래 레이저 광원을 이용하는 프로젝터는 R광원 (10R), G광원(10G), 및 B광원(10B)으로 구성되는 레이저 광원과, 50R, 50G, 및 50B로 구성되는 다이크로익 미러(50), 반사경(51, 53), 디퓨저(20), 빔쉐이퍼(30), 필드렌즈(40), 광모듈레이터(60), 투사렌즈(70), 및 편광빔스프리터(80)로 구성된다.
레이저 광원은 R/G/B 광을 순차적으로 조사하는 것이 바람직하다. 레이저 R/G/B 광원(10R, 10G, 10B)을 순차적으로 조사한다는 것은 하나의 프레임을 조사할 전체 시간을 T라 할 때, T/3 시간 동안에는 R 광원을 조사하고, 연이은 T/3 시간 동안에는 G 광원을 조사하고, G 광원 조사 시간에 연이은 T/3 시간 동안에는 B 광원을 조사하는 것을 의미하는 것이다.
마이크로 프로젝터용 광원은 크기도 작으면서도 광출력이 높은 광원이어야 하기 때문에 레이저 광원이나 전계발광소자(LED) 광원이 적당하다. 세 개의 광원 (10R, 10G, 10B) 중에 적어도 하나의 레이저 광원이 포함되어야 하며, 바람직하게는 세 개 모두 레이저 광원을 사용하거나 또는 필요에 따라서 레이저와 LED 광원을 혼합한 하이브리드 타입으로 구성한다. 세 광원으로부터 발광되는 광은 각각의 다이크로익 미러 50R, 50G, 50B에 의해 반사 또는 투과되어 디퓨저(20)에 입사된다. 다이크로익 미러 50G는 G광원(10G에서 조사되는 녹색 레이저 광)은 반사시키고 나머지 광은 투과시키는 기능을 하며, 다이크로익 미러 50G는 가시광선 영역을 모두 반사하는 일반 미러를 사용하여도 무방하다. 다이크로익 미러 50R은 R광원(10R에서 조사되는 붉은 색 레이저 광)은 반사사키고, 나머지 파장 영역의 광은 투과시키는 기능을 하며, 다이크로익 미러 50B는 B광원(10B에서 조사되는 청색 레이저 광)은 반사시키고 나머지 파장영역의 광은 투과시키는 기능을 하는 미러이다.
레이저 광원(10R, 10G, 10B)으로부터 출사된 레이저 광은 반사경(51, 53)에 의해 반사된 후 디퓨저(20)에 입사된다. 디퓨저는 광축에 수직하게 진동하고 있어서 디퓨저를 통과하면서 광의 임의성(Randomness)이 증가된다. 이러한 디퓨저(Diffuser)는 레이저광 특유의 스펙클(Speckle)을 제거하기 위한 장치로서 레이저광의 코히어런스(Coherence) 특성을 감소시켜서 스펙클을 감소시킨다. 디퓨저(20)를 진동시키면 스펙클을 더욱 더 감소시킬 수 있게 된다.
디퓨저(20)를 통과한 광은 빔 쉐이퍼(Beam Shaper, 30)에 의해 빔 형상이 변형된다. 빔 형상을 변형시키는 이유는 광모듈레이터(60)의 입사면 형상에 적합하게끔 입사되는 빔 모양을 성형하여 광 효율을 좋게 하기 위함이다.
빔쉐이퍼(30)의 대표적인 예로는 플라이아이 렌즈를 들 수 있다. 플라이아이 렌즈는 다수 개의 소형 렌즈체로 구현된다. 플라이아이 렌즈에 구현되는 소형 렌즈체는 여러 가지 형상을 가질 수 있다. 예를 들어 사각볼록렌즈 형상 육각볼록렌즈 형상 및 원형 등으로 구현이 가능하나, 바람직하게는 광모듈레이터의 형상(보다 정확한 표현으로는 광모듈레이터의 유효 화면 형상)과 동일한 형상으로 구비되도록 하는 것이 바람직하다. 예를 들어 광모듈레이터의 유효 화면 형상이 사각 형상일 경우 소형 렌즈체의 형상도 사각 형상으로 구비되도록 함으로써 광 손실을 최소화할 수 있다.
도 1의 실시예 에서는 빔쉐이퍼(30)로 양 면에 소형 렌즈체가 구성되어 있는 양면형 플라이아이렌즈를 사용하였으나 단면형 플라이아이 렌즈 두 매를 사용하여도 무방하며, 이러한 양면 혹은 두 매에 각각 형성된 다수의 소렌즈체들은 서로 1대 1로 대응되도록 형성한다.
필드렌즈(40)는 빔쉐이퍼(30)에 의해 성형된 광을 광모듈레이터(60)로 집속시키는 렌즈로서, 통상 1~3매로 구성하고 이들 렌즈와 빔쉐이퍼(30)와의 거리를 조절함으로써 집속을 정확하게 달성할 수 있다.
광모듈레이터(60)는 입사된 광을 선택적으로 투과, 차단하거나 또는 광경로를 변경시켜 영상 이미지를 형성하는 소자를 의미한다. 광모듈레이터(60)의 대표적인 예로는 DMD (Digital Micromirror Device), 액정디스플레이소자(LCD), LCOS 등이 있다. DMD는 필드 시퀀셜을 이용한 구동 방법으로 화소의 수만큼 매트릭스 형태로 배열된 디지털 거울(DIGITAL MIRROR)를 이용하여 DLP프로젝터에 사용되는 소자이다. DLP는 광원으로부터 조사된 광을 디지털 거울에 의한 광 경로를 조절하여 스크린으로 반사시킴으로써 계조 및 이미지를 구현하는 프로젝터이다. 액정디스플레이소자(LCD)는 액정을 선택적으로 온/오프하여 이미지를 형성하는 소자이다. 액정 디스플레이 소자를 이용하는 프로젝터로는 직시형과 투사형 및 반사형이 있다. 직시형 프로젝터는 액정디스플레이 소자 뒤의 백라이트로 부터의 광이 액정 패널을 통과하면서 생성된 이미지를 직접적으로 관찰하는 방식이며, 투사형 프로젝터는 액정디스플레이 소자를 통과하면서 생성된 이미지를 투사렌즈를 이용하여 확대한 뒤 스크린에 투사하여 스크린에서 반사되는 이미지를 관찰하는 방식이다. 반사형은 투사형과 거의 같은 구조이지만 하부 기판상에 반사막을 형성하여서 반사되는 광을 스크린에 확대 투사하는 방식이다. LCoS(Liquid Crystal on Sylicon)는 반사형 액정 디스플레이의 일종으로 종래 액정 디스플리이 소자의 양면 기판 중에서 하부 기판을 투명한 유리 대신에 실리콘 기판을 사용하여 반사형으로 동작시키는 광학소자이다.
도 1의 실시예는 반사형 광학계로서 편광빔스플리터(80)는 광모듈레이터(60)에서 생성된 이미지를 투사렌즈(70)로 전달하는 역할을 한다. 편광빔스플리터(80, PBS, Polarized Beam Splitter)는 유리 재질의 육면체 안에 편광분리막이 대각선으로 형성되어 있는 것으로서 반사형 광학엔진에는 필수적인 광학소자이다.
편광빔스플리터(80)는 입사되는 광을 편광분리막을 이용하여 P편광은 통과시키고 S편광은 투사렌즈 반대 방향으로 반사시키는 광학 소자이다. 또는 편광빔스플리터는 필요에 따라 S편광은 통과시키고 P편광은 반시시키도록 구성될 수 있다. 도 1에서는 편의상 P편광은 통과시키고 S편광은 반사시키는 구조로 설명을 진행한다. 따라서 레이저 광원(10)에서 출사된 광은 광로상의 어느 한 지점에서 선편광 상태로 전환(Conversion) 해주어야 광효율을 유지할 수 있다.
이렇게 편광빔스플리터(80)의 편광분리막을 통과한 P편광은 반사형 광모듈레이터(60)를 통하여 이미지가 형성되는 과정에서 S편광으로 전환되고, S편광으로 전환된 이미지 광은 다시 한번 편광빔스플리터(80) 안으로 입사되고, 편광분리막과 만나게 된다. 이번에는 이미지 광이 모두 S편광이므로 편광분리막에 모두 반사되어서 투사렌즈(70)로 입사하게 된다. 투사렌즈(70)는 다수 개의 렌즈를 이용하여 형성되는 것으로서, 광모듈레이터(60)에 의해 형성된 이미지를 스크린(미도시)에 확대 투사한다. 도 1에 도시된 종래 레이저 광원을 이용하는 프로젝터는 광효율이 좋고 색 영역이 넓은 장점이 있으나 확대된 투사 영상에 스펙클이라는 간섭 무늬가 발생되는 단점을 가지고 있어서 고품질 프로젝터에는 사용할 수 없는 실상이었다.
본 발명은 상기와 같은 문제점을 해결하고자 하는 것으로서, 광모듈레이터를 투과형 액정 또는 반사형 액정으로 구성할 경우 광모듈레이터에 입사되는 광의 편광 방향을 일치시킬 수 있는 레이저다이오드의 최적의 배열을 제시하고 스펙클을 최소화할 수 있는 레이저다이오드 액정 프로젝터를 제공하는 것이다.
본 발명의 상기 목적은 레이저다이오드를 광원으로 사용하고, 액정소자를 광모듈레이터로 사용하는 레이저다이오드 액정 프로젝터에 있어서, 광원은 제1방향으로 길쭉한 타원 형상의 녹색을 출사하는 G 레이저다이오드와, 제1방향으로 길쭉한 타원 형상의 청색을 출사하는 B 레이저다이오드와, G 레이저다이오드 또는 B 레이저다이오드의 전원인가핀의 설치 방향과 수직되게 전원인가핀이 놓여지도록 배치하여 제1방향과 수직되는 방향으로 길쭉한 타원 형상의 붉은색을 출사하는 R 레이저다이오드로 이루어지며, 광원으로부터 조사되는 수직으로 교차되는 형태를 띠는 광을 전체적으로 균일한 광으로 변형하는 제1빔쉐이퍼와, 제1빔쉐이퍼로부터 출사되는 광을 상기 광모듈레이터의 유효면의 형상으로 포밍하는 제2빔쉐이퍼와, 제2빔쉐이퍼에 의해 성형된 광을 필드렌즈, 필드렌즈로부터 입사되는 광을 광모듈레이터로 반사시키고, 광모듈레이터로부터 조사되는 광을 통과시키는 편광빔스플리터, 및 광모듈레이터로부터 생성된 영상 이미지를 확대 투사하는 투사렌즈를 포함하고, G 레이저다이오드, B 레이저다이오드 및 R 레이저다이오드는 멀티모드로 제조되는 진성 레이저다이오드인 것을 특징으로 하며, 광원으로부터 조사되는 수직으로 교차되는 형태를 띠는 광을 형성하는 G 레이저다이오드, B 레이저다이오드 및 R 레이저다이오드로부터 조사되는 각각의 광은 동일한 편광축을 갖는 것을 특징으로 하는 레이저다이오드 액정 프로젝터를 포함하는 것을 특징으로 하는 레이저다이오드 액정 프로젝터에 의해서 달성 가능하다.
본 발명에 따른 레이저다이오드 액정 프로젝터는 별도의 복잡한 광학소자 를 사용하지 않고서도 레이저다이오드의 핀 배치를 효율적으로 변경함으로써 액정으로 형성되는 광모듈레이터로 입사되는 R, G, B 광원의 편광 방향을 일치시킬 수 있게 되었다.
또한, 제2빔쉐이퍼를 효율적으로 진동시킴으로써 스펙클을 감소시키기 위한 종래 기술에 비하여 보다 간단한 구조로 효율적으로 스펙클을 감소시킬 수 있게 되었으며, 투사렌즈의 구성을 최적화하여 선명한 영상을 스크린에 투사할 수 있게 되었다.
도 1은 레이저 광원을 사용하며 반사형 광모듈레이터로 구현된 레이저 광원을 이용하는 종래 프로젝터의 구조도.
도 2는 경통에 G 레이저다이오드를 설치한 상태에서 스크린에 조사되는 광원을 보여주는 사진.
도 3은 경통에 B 레이저다이오드를 설치한 상태에서 스크린에 조사되는 광원을 보여주는 사진.
도 4는 경통에 R 레이저다이오드를 다른 광원에 대해서 90도 회전시켜서 설치함에 따라, 결과적으로 전원인가핀이 90˚회전되어 설치한 상태에서 스크린에 조사되는 광원을 보여주는 사진.
도 5는 본 발명에 따른 일 실시예로서 레이저 광원을 사용하며 반사형 광모듈레이터로 구현된 레이저 광원을 이용하는 프로젝터의 구조도.
도 6은 도 5의 상부 방향에서 바라본 본 발명에 따른 PBS를 갖는 레이저다이오드 프로젝터의 평면도.
도 7은 본 발명에 따른 일 실시예인 제1빔쉐이퍼의 일 예시도.
도 8은 본 발명에 따른 일 실시예인 제2빔쉐이퍼의 일 예시도.
도 9는 디퓨저의 작용을 설명하기 위한 가우시안 분포와, 디퓨저를 진동시킬 때 변화되는 효과를 설명하는 도면.
도 10은 본 발명의 일 실시예로서 투과형 액정 광모듈레이터를 이용하여 액정 프로젝터를 구현한 구성도.
도 11은 본 발명의 일 실시예로서 투과형 액정 광모듈레이터를 이용하여 액정 프로젝터를 구현한 구성도.
[부호의 설명]
10: 레이저 광원 10R: R광원
10G: G광원 10B: B광원
11: 냉각핀 13: 경통
10RJ: R 레이저다이오드 전원인가핀
10GJ: G 레이저다이오드 전원인가핀
10BJ: B 레이저다이오드 전원인가핀
20: 디퓨저 30: 빔쉐이퍼
31: 제1빔쉐이퍼 33: 제2빔쉐이퍼
35: 공극 간격 37: 소형 렌즈체
40: 필드렌즈 41: 제1필드렌즈
43: 제2필드렌즈 50, 50R, 50G, 50B: 다이크로익 미러
51, 53: 반사경 57: 겸자
55: 진동자 60: 광모듈레이터
60a: 투사형 액정 광모듈레이터 70: 투사렌즈
80: 편광빔스필리터 85: X-Cube
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
레이저다이오드를 이용하여 프로젝터를 제조할 때 나타나는 문제점 중에서 종래 알려져 있지 않았으나 본원 발명자가 발견한 문제점에 대해 먼저 설명하기로 한다. 본 발명은 종래 기술에서 기술한 바와 같이 시분할 방식으로 R 레이저광, G 레이저광, B 레이저광을 순차적으로 조사하는 방식을 적용한다. 따라서 시분할 조사 방식을 사용하지 않는 프로젝터와 비교할 때 레이저 광원당 조사할 수 있는 시간이 줄어들기 때문에 높은 파워의 레이저광원을 사용하여야 한다. 좀더 정확하게는 충분한 휘도를 갖는 프로젝터를 제공하기 위해서는 초당 피크 전력 소비가 1 와트(watt) 이상인 레이저다이오드(통상 이러한 다이오드를 '와트 클래스 레이저다이오드'라 부름)를 사용하여야 한다. 그런데 현재 기술로는 와트 클래스 레이저다이오드는 멀티모드로 생산된 진성 레이저다이오드를 사용할 수밖에 없다. 즉, 싱글모드로 생산된 레이저다이오드 또는 펌핑으로 생산되는 레이저다이오드로는 와트 클래스의 레이저다이오드를 제조할 수 없다는 것을 의미한다.
레이저 공진기는 무수히 많은 공명 주파수를 가지고 있다. 일반적인 이득(Gain) 매질에서는 이득 폭 내에 포함되는 모든 모드가 발진할 수 있다. 높은 출력을 갖는 레이저다이오드를 제조하기 위해서는 이득문턱을 넘는 여러 모드들의 발진을 이용하여야 하므로 멀티모드로 제작되어야 한다.
멀티모드로 생산된 진성 레이저다이오드는 해당 색상을 발현하는 재료 성질에 종속되는 특성을 보여주고 있다. G 레이저다이오드와 B 레이저다이오드는 유사한 특성을 가지나, R 레이저다이오드는 전혀 다른 특성을 보여준다. 가장 많은 차이가 있는 특성 중 하나는 각 색상의 레이저다이오드에서 출력되는 광원이 전자기파(electomagnetic wave)의 어느 한쪽 파형에만 수직인 특성을 보여주는 광원 형태로 출력된다는 것이다. 싱글모드로 생산된 레이저다이오드의 경우는 TEM(Transverse to Electirc and Magnetic) 특성으로 전기파와 자기파에 모두 수직인 이상적인 파장 형태로 출력되도록 조절할 수 있다. 이에 비하여 출력을 와트 클래스 이상으로 높이기 위해 멀티모드로 레이저다이오드를 제조하면 TM(Transverse to Magnetic) 또는 TE(Transverse to Electric)만으로 제조를 할 수 있는데 각각 자기파에만 수직인 파형 또는 전기파에만 수직인 파형으로 이상적이지 않은 특성을 갖는다. 보다 정확하게는 와트 클래스 출력을 갖는 멀티모드로 생산된 진성 R 레이저다이오드는 TE 특성을 가져서 편광 형태로는 S 편광파 형태를 가지며, 와트 클래스 출력을 갖는 멀티모드로 생산된 진성 G 레이저다이오드와 진성 B 레이저다이오드는 TM 특성을 가져서 편광 형태로는 P 편광파 형태를 보여준다.
그런데 본 발명에 따른 레이저다이오드 액정 프로젝터는 광모듈레이터로 액정을 사용하는데 모든 색상의 레이저다이오드에서 출력되는 광원은 액정 광모듈레이터에 도달하기 전에 편광축이 일치되도록 조정되어야 한다. 이하에서는 설명의 편의상 액정소자로 광모듈레이터를 구현하는 것을 '액정 광모듈레이터'라고 명명하고, 액정 광모듈레이터를 사용하는 프로젝터를 '액정 프로젝터'로 칭하기로 한다. 이러한 문제를 해결하기 위해 R 레이저다이오드 전면에 S편광축을 P편광축으로 변환하는 광학 소재인 위상차판을 사용하는 것을 고려할 수 있다. 하지만 불행하게도 와트 클래스 레이저다이오드는 출력이 너무 강하여 위상차판이 소성되면서 특성을 잃어버리는게 되는 현상이 나타나서 현재 기술로는 사용할 수 있는 위상차판을 구할 수 없었다. 본원 발명자는 이러한 문제를 해결하기 위해서 경통에 R 레이저다이오드를 설치할 때 G 레이저다이오드와 B 레이저다이오드와는 달리 R레이저다이오드를 다른 광원에 대해서 90˚회전시켜서 설치함으로써, 결과적으로 전원인가핀이 다른 광원에 대비해 수직으로 돌려서 설치되도록 하였다.
이렇게 전원인가핀 배치를 변경할 경우 새로운 현상이 나타나는데 이를 도면을 이용하여 설명하기로 한다. 와트 클래스 이상 파워를 갖는 멀티모드 진성 레이저다이오드는 출력광이 한 쪽 방향으로 길쭉한 형태를 갖는다. 도 2, 도 3 및 도 4는 경통에 레이저다이오드를 설치할 때, 편광축을 일치시키기 위해 R 레이저다이오드는 G레이저와 B레이저 다이오드에 대비해서 90˚회전시켜 설치하고 나머지 G 레이저다이오드 및 B 레이저다이오드는 동일한 방향으로 배치할 경우 각각의 G 레이저다이오드, B 레이저다이오드 및 R 레이저다이오드 광원에서 조사되는 광 형태를 보여주는 사진이다. 도 2 및 도 3에 도시된 바와 같이 G 레이저다이오드와 B 레이저다이오드는 대략 수평 방향으로 길쭉한 형상의 파형으로 조사되는데 비해, R 레이저다이오드는 대략 수직 방향으로 길쭉한 형상의 파형으로 조사되는 것을 알 수 있다. 도 2 내지 도 4에서 좌표는 스크린 설치 방향을 보여주는 것으로서, x축은 스크린의 가로 방향을 표시하며, y 방향은 스크린의 세로 방향을 표시한다.
따라서 와트 클래스 이상의 출력을 내는 멀티모드 진성 레이저다이오드를 이용하여 프로젝터를 제조할 때 어느 색상에 해당하는 레이저다이오드를 다른 광원에 대비해서 90˚ 회전시켜 장착할 경우, 결과적으로는 전원인가핀이 90˚회전되어 장착되고 스크린에 투사되는 빔이 대략 십자 형상으로 교차되게 표시되므로 이를 일치시키는 별도 광학 소자가 필요하게 된다.
도 5는 본 발명에 따른 일 실시예의 레이저다이오드 액정 프로젝터의 블록도이다. 본 발명에 따른 레이저 광원을 이용하는 프로젝터는 R광원 (10R), G광원(10G), 및 B광원(10B)으로 구성되는 와트 클래스 멀티모드 진성 레이저다이오드와, 50R, 50G, 및 50B로 구성되는 다이크로익 미러, 반사경(51), 제1빔쉐이퍼(31), 제2빔쉐이퍼(33), 제1필드렌즈(41), 디퓨저(20), 제2필드렌즈(43), 광모듈레이터(60), 투사렌즈(70), 및 편광빔스프리터(80)로 구성된다. 레이저다이오드(10R, 10G, 10B)는 상당한 열을 발생시키므로 원활한 쿨링을 위해 방열핀(11)이 설치되며, 각각 전원인가핀(10RJ, 10GJ, 10BJ)은 플렉서블인쇄회로기판(FPCB, Flexible Printed Circuit Board)을 통해 구동 전원을 인가받는다.
도 6은 도 5의 상부 방향에서 바라본 본 발명에 따른 레이저다이오드 프로젝터의 평면도이다. 도 6에 도시된 바와 같이 R 레이저다이오드(10R)의 전원인가핀(10RJ)은 G 레이저다이오드(10G)의 전원인가핀(10GJ) 및 B 레이저다이오드(10B)의 전원인가핀(10BJ)의 설치 방향과 비교할 때 90˚ 회전된 방향으로 설치됨을 알 수 있으며, 각 레이저다이오드는 FPCB(19)를 통해 전원을 인가받음을 알 수 있다.
와트 클래스 멀티모드 진성 레이저다이오드는 R/G/B 광을 순차적으로 조사하는 것이 바람직하다. 레이저다이오드 R/G/B 광원(10R, 10G, 10B)을 순차적으로 조사한다는 것은 하나의 프레임을 조사할 전체 시간을 T라 할 때, T/3 시간 동안에는 R 광원을 조사하고, 연이은 T/3 시간 동안에는 G 광원을 조사하고, G 광원 조사 시간에 연이은 T/3 시간 동안에는 B 광원을 조사하는 것을 의미하는 것이다. 실질적으로 각 광원은 T/3보다 짧은 시간 동안 조사된다.
마이크로 프로젝터용 광원은 크기도 작으면서도 광출력이 높은 광원이어야 하기 때문에 와트 클래스 멀티모드 진성 레이저다이오드로 구현하였으며, 전술한 바와 같이 S 편광파 방향에 일치되도록 세 개 광원 중에서 R 레이저다이오드를 다른 광원에 대비해서  90˚회전시켜서 설치하였고 이에 따라 전원인가핀도 90˚회전되었다. 세 광원으로부터 발광되는 광은 각각의 다이크로익 미러 50R, 50G, 50B에 의해 반사 또는 투과되어 제1빔쉐이퍼(31)에 입사된다. 다이크로익 미러 50B는 B광원(10B에서 조사되는 청색 레이저 광)은 반사시키고 나머지 광은 투과시키는 기능을 하나, 설치 위치상 다이크로익 미러 50B는 가시광선 영역을 모두 반사하는 일반 미러를 사용하여도 무방하다. 다이크로익 미러 50G는 G광원(10G에서 조사되는 녹색 레이저 광)은 반사사키고, 나머지 파장 영역의 광은 투과시키는 기능을 하며, 다이크로익 미러 50R은 R광원(10R에서 조사되는 적색 레이저 광)은 투과시키고 나머지 파장영역의 광은 반사시키는 기능을 하는 미러이다.
레이저다이오드(10R, 10G, 10B)로부터 출사된 레이저 광은 다이크로익 미러에 의해 반사된 후 제1빔쉐이퍼(31)로 입사된다. 제1빔쉐이퍼(31)는 도 2 내지 도 4에 도시된 바와 같이 교차 형태로 스크린에 조사되는 광을 가능한 원형광에 가깝도록 빔 형상을 성형하는 부품이다. 제1빔쉐이퍼(31)로는 플라이아이 렌즈를 들 수 있으며, 도 7은 본 발명에 따른 제1빔쉐이퍼로 플라이아이 렌즈를 사용할 경우, 플라이아이 렌즈를 구성하는 소형 렌즈체의 여러 가지 형태를 보여주는 예시도이다. 제1빔쉐이퍼(31)를 구성하는 플라이아이 렌즈의 가장 바람직한 소형 렌즈체(37)는 도 7(c)에 도시된 바와 같이 정팔각형(벌집 형태)으로 형성하는 것이다.
소형렌즈를 원형으로 형성하는 경우가 가장 원형광에 가깝도록 빔 형상을 성형하기 좋다. 그러나 도 7(b)에 도시된 바와 같이 소형렌즈체(37)를 원형으로 형성할 경우에는 각 소형 렌즈(37) 사이에 렌즈를 형성하지 못하면서 남는 공극 간격(35)이 발생되며 빔 성형 효율이 떨어지게 된다. 소형렌즈를 정팔각형으로 형성할 경우에는 도 7(c)에 도시된 바와 같이 입사되는 모든 광을 빠짐없이 성형할 수 있는 이점이 있다. 하지만 실제 소형 렌즈 가공시 도 7(c)에 도시된 벌집 형상으로 가공하는 것이 쉽지 않기 때문에 현실적으로는 도 7(a)에 제시된 바와 같이 정사각형으로 가공하여 사용하였다.
제1빔쉐이퍼(31)를 사용하지 않고 도 5에 제시된 나머지 구성으로 프로젝터를 형성한 후, 스크린에 전체적으로 하얀색을 조사하면 세로 방향으로는 약간의 마젠타 색상을 띠는 하얀색을 띠고, 가로 방향으로는 약간의 시안 색상을 띠는 하얀색을 띠게 된다.
제1빔쉐이퍼(31)에서 성형된 광은 반사경(51)에 의해 굴절된 후 제2빔쉐이퍼(33)로 입사된다. 제2빔쉐이퍼(33)의 대표적인 예로는 플라이아이 렌즈를 들 수 있다. 전술한 바와 같이 플라이아이 렌즈는 다수 개 소형 렌즈체로 구현된다. 제2빔쉐이퍼(31)를 플라이아이 렌즈로 구현할 경우, 소형 렌즈체는 광모듈레이터의 형상(보다 정확한 표현으로는 광모듈레이터의 입사측 유효 화면 형상)과 동일한 형상으로 구비되도록 하였다. 예를 들어 광모듈레이터의 유효 화면 형상이 16:9 종횡비 사각 형상일 경우 소형 렌즈체 형상도 16:9 종횡비를 갖는 사각 형상으로 구비되도록 함으로써 광 손실을 최소화할 수 있다. 도 8은 본 발명에 따른 일 실시예인 제2빔쉐이퍼(33)의 일 례를 보여준다. 제2빔쉐이퍼(33)는 16:9 종횡비를 갖는 다수 개 직사각 형상의 소형 렌즈체로 구성하였음을 알 수 있다.
본 발명에 따른 제2빔쉐이퍼(33)는 스펙클을 없애기 위하여 도 5를 기준으로 상하 방향(실질적으로는 16:9 종횡비 기준으로 긴 변 방향)으로 진동되도록 설계하였다. 제2빔쉐이퍼(33) 일 면에 겸자(57)를 설치하고, 겸자(57)의 타 측에 진동자(55)를 구비되도록 구성하였다. 진동자(55)는 초소형 모터로 구현할 수 있는데 손쉬운 구현 예로는 스피커를 개조하는 것이다. 스피커는 고정된 영구 자석과, 인가되는 전류 주파수에 따라 움직이는 코일과, 움직이는 코일에 진동판이 부착되는 구성을 갖는데 진동판에 겸자(57)의 타 측을 부착 고정시키면 된다. 코일에 전원이 인가되면, 진동판이 진동하게 되면서 겸자(57) 및 제2빔쉐이퍼(33)가 함께 진동하게 되는 것이다.
제2빔쉐이퍼(33)에 진동을 인가하는 신호로는 R 레이저다이오드(10R)의 온 제어 신호를 이용할 수 있다. 도면에 도시되지 않았으나 외부로부터 전송되는 타이밍 제어신호에 R 레이저다이오드(10R)를 온/오프 제어하는 신호가 포함되므로 이를 이용하여 제2빔쉐이퍼(33)를 진동시키는 제어 신호로 이용할 수 있다. 물론 다른 색상의 레이저다이오드 온 제어신호를 이용하여도 무방하다.
실험에 의하면, 제2빔쉐이퍼(33)를 진동시키는 주파수로는 110Hz ~ 240Hz 범위가 적당하며, 400Hz 이상이 되면 소음이 발생되어 그 이상 주파수를 사용하기 어려움을 알 수 있었다.
필드렌즈는 제2빔쉐이퍼(33)에 의해 성형된 광을 편광빔스프리터(80)로 집속시키는 렌즈이다. 통상 1~3매로 구성하는데 도 5에서는 제1필드렌즈(41)와 제2필드렌즈(43) 2매로 구성하는 경우를 도시하였다. 이들 렌즈와 제2빔쉐이퍼(33)와의 거리를 조절함으로써 집속을 정확하게 달성할 수 있다.
광모듈레이터(60)는 입사된 광을 선택적으로 투과, 차단하거나 또는 광경로를 변경시켜 영상 이미지를 형성하는 소자를 의미한다. 광모듈레이터(60)의 대표적인 예로는 DMD (Digital Micromirror Device), 액정디스플레이소자(LCD), LCOS 등이 있다. 본 발명에서는 액정디스플레이소자(LCD) 및 LCOS와 같이 액정소자를 이용하는 액정 광모듈레이터에 국한되는 것이다. 액정디스플레이소자(LCD)는 액정을 선택적으로 온/오프하여 이미지를 형성하는 소자이다. 액정 디스플레이 소자를 이용하는 프로젝터로는 직시형과 투사형 및 반사형이 있다. 직시형 프로젝터는 액정디스플레이 소자 뒤의 백라이트로 부터의 광이 액정 패널을 통과하면서 생성된 이미지를 직접적으로 관찰하는 방식이며, 투사형 프로젝터는 액정디스플레이 소자를 통과하면서 생성된 이미지를 투사렌즈를 이용하여 확대한 뒤 스크린에 투사하여 스크린에서 반사되는 이미지를 관찰하는 방식이다. 반사형은 투사형과 거의 같은 구조이지만 하부 기판상에 반사막을 형성하여서 반사되는 광을 스크린에 확대 투사하는 방식이다. LCoS(Liquid Crystal on Sylicon)는 반사형 액정 디스플레이의 일종으로 종래 액정 디스플리이 소자의 양면 기판 중에서 하부 기판을 투명한 유리 대신에 실리콘 기판을 사용하여 반사형으로 동작시키는 광학소자이다.
디퓨저(20)는 광의 임의성(Randomness)을 증가시키는 광학 소자이다. 이러한 디퓨저(Diffuser)는 레이저광 특유의 스펙클(Speckle)을 제거하기 위한 장치로서 레이저광의 코히어런스(Coherence) 특성을 감소시켜서 스펙클을 감소시킨다. 한편으로는 디퓨저(20)는 광원, 빔쉐이퍼, 및 필드렌즈 등의 렌즈군으로 설계된 광학 수치(예를 들어, F#)를 망가지게 하는 부작용도 있다. 즉, 기타 렌즈군으로 정해진 광학 특성을 흐트러뜨리게 되는 것이다. 디퓨저(20)에 의한 스펙클 감소 효과는 디퓨저(20)가 편광빔스프리터(80)에 근접하게 설치될수록 증가하게 된다. 또한, 디퓨저(20)를 구성하는 확산시트는 자체의 광흡수율을 갖고 있어서 상당량의 광을 흡수하는 단점이 있다. 일반적으로 디퓨저를 구성하는 확산시트는 80%~90% 정도의 투과율을 보이고 있다. 게다가 확산시트는 제조 공정 시 시트를 일정 방향으로 팽창시켜서 만들기 때문에 일정 방향으로의 방향성을 지니고 있어 부분적으로 편광 방향에 영향을 미친다. 이것은 액정디스플레이를 광모듈레이터로 사용할 경우 광효율에 대단히 좋지 않은 영향을 미치게 된다.
편광빔스플리터(80)는 입사되는 광을 편광분리막을 이용하여 P편광은 반사시키고 S편광은 투과시키는 광학 소자이다. 또는 편광빔스플리터는 필요에 따라 P편광은 반사시키고 S편광은 투과시키도록 구성될 수 있다. 본원 발명에서는 편의상 P편광은 반사시키고 S편광은 투과시키는 구조로 설명을 진행한다.
이렇게 편광빔스플리터(80)에 입사되는 S편광은 광모듈레이터(60) 방향으로 반사된 후, P편광으로 전환된 이미지 광은 다시 한번 편광빔스플리터(80) 안으로 입사되고, 편광분리막과 만나게 된다. 이번에는 이미지 광이 모두 S편광이므로 편광분리막에 투과되어서 투사렌즈(70)로 입사되게 된다. 투사렌즈(70)는 다수 개 렌즈를 이용하여 형성되는 것으로서, 광모듈레이터(60)에 의해 형성된 이미지를 스크린(미도시)에 확대 투사한다.
스펙클을 없애기 위해 특허문헌 1에서는 디퓨저를 진동시키고 반사경에 형성되는 반사면을 경사지도록 하는 방식을 적용하였다. 진동하지 않은 상태에 놓여지는 디퓨저에 광을 입사시키면 출사되는 광은 중앙 부위에 광이 집중되어 밝게 되며 주위 부분이 어두워지는 가우시안 분포를 띄게 된다. 도 9는 디퓨저의 작용을 설명하기 위한 가우시안 분포와, 디퓨저를 진동시킬 때 변화되는 효과를 설명하는 도면이다. 도 9(a)에서 가로축(x)은 광 진행 방향과 수직 방향의 거리를 나타내는 것이며, 세로축(L)은 휘도를 나타낸다. 도 9(a)에 도시한 바와 같이 디퓨저의 중앙부로 갈수록 광이 집중되어 휘도가 높아짐을 알 수 있다. 도 9(b)는 디퓨저를 진동시킬 경우 효과를 설명하기 위한 예시도이다. 내측 원은 디퓨저를 진동시키지 않을 경우 일정 휘도 이상을 보이는 영역을 도시한 것이고, 외측 원은 디퓨저를 진동시킬 경우 일정 휘도 이상을 보이는 영역이 확장되는 현상을 설명하기 위한 도면이다. 즉, 디퓨저를 진동시키면 입사되는 광이 외곽으로 좀더 펼쳐지는 현상이 나타나지만 광이 중앙에 집중되는 현상을 그대로 유지됨을 알 수 있다. 따라서 디퓨저를 진동시킬 경우 중앙 부위를 통과하는 광에 의해 발생되는 스펙클은 상당히 감소시킬 수 있으나 가우시안 분포를 갖는 특성상 외곽 영역을 통과하는 광에 끼치는 영향이 작아져서 외곽 영역에서 발생되는 스펙클에는 크게 영향을 주지 못함을 알 수 있다.
하지만 본 발명에서 제시한 바와 같이 제2빔쉐이퍼(33)를 진동시키면, 제2빔쉐이퍼(33)는 다수 개 소형 렌즈체(37)가 제2빔쉐이퍼(33)에 전체적으로 균일하게 배치되므로 전체 영역을 통과하는 광에 골고루 영향을 주므로 스펙클을 전체적으로 감소시킬 수 있는 효과가 있음을 알 수 있었다.
지금까지는 반사형 액정소자로 형성되는 액정 광모듈레이터를 사용하는 실시예에 대해 설명하였으나, 본 발명은 투과형 액정소자를 이용하는 액정 광모듈레이터에서는 실시가능하다. 투과형 액정 광모듈레이터를 사용할 경우에는 빔스프리터 대신에 X-Cube라는 광학소자를 사용하면 광학소자의 구조가 간편해진다.
도 10은 본 발명의 일 실시예로서 투과형 액정 광모듈레이터를 이용하여 액정 프로젝터를 구현한 구성도이다. 도면 참조기호는 도 5와 제시된 참조기호를 동일하게 사용하였다. 도 10에 제시된 액정 프로젝터에서는 빔스프리터를 사용하지 않으므로 광학소자 구성이 간단해지는 이점이 있다. 도 10에서 제2빔쉐이퍼(33)도 진동시킬 수 있는 구조이나 설명의 편의상 생략하여 도시한 것이다. 도 5에 제시된 액정 광모듈레이터(60)는 반사형을 사용한 반면 도 10에 제시된 액정 프로젝터에서는 투과형 액정 광모듈레이터(60a)를 사용하였다.
도 11은 본 발명의 일 실시예로서 투과형 액정 광모듈레이터를 이용하여 액정 프로젝터를 구현한 구성도이다. 중앙에는 X-Cube(85)를 배치하여 좌측, 하측, 및 우측에서 조사되는 R, B, G 레이저다이오드 출사광을 상부 방향으로 반사시키는 구성을 갖는다. 도 11의 경우에는 각 색상의 레이저다이오드(10,R, 10B, 10G)와 X-Cube(85) 사이에 제1빔쉐이퍼(31a, 31b, 31c), 제2빔쉐이퍼(33a, 33b, 33c) 및 디퓨저(20a, 20b, 20c)를 각각 구비함을 알 수 있다.
도 10 및 도 11에 제시된 액정 프로젝터는 도 5에 제시된 액정 프로젝터에 비해 광학 소자를 컴팩트화시킬 수 있는 이점이 있으나 투과형 액정 광모듈레이터 특성상 반사형 액정 광모듈레이터보다 광 투과 효율이 떨어지는 단점이 있다.
특히, 도 11에 제시된 액정 프로젝터는 시분할 방식으로 레이저다이오드를 구동시키지 않아도 되나 높은 휘도 특성을 제공하는 소형 프로젝터를 구현하기 위해서는 와트 클래스 출력 특성을 가지며 멀티모드로 제조되는 진성 레이저다이오드로 구성하는 것이 좋다.
이하, 투사렌즈에 대해 설명하기로 한다. 본 발명의 투사렌즈의 설계 데이터는 표 1과 같다.
[표 1]
Figure PCTKR2016001473-appb-I000001
상기 투사렌즈의 F넘버는 4.0, 전체 초점거리는 11.628mm, 전체길이(TTL, Total Tract Length)는 24mm, 화각은 58˚이다. 렌즈번호는 외기(外氣)부터 편광빔스프리터(PBS)로 설치되는 순서로 매긴 것이다. 따라서 외기와 가장 가깝게 위치하는 렌즈가 제1렌즈가 되며, 편광빔스프리터와 가장 가깝게 위치하는 렌즈를 제5렌즈로 명명하였다.
DOF(depth of field)라는 것은 이미지에서 허여가능한 샤프(sharp)를 보여주는 장면에서 가장 가깝고 가장 먼 오브젝터 사이의 거리이다(DOF is the distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image). 큰 DOF는 통상 딥 포커스라 불리우고, 작은 DOF는 종종 샤로우 포커스라 불리어진다(A large DOF is often called deep focus, and a small DOF is often called shallow focus).
F넘버가 커질수록 DOF가 커지기 때문에 투사렌즈의 포커싱 조절이 없어도 깨끗한 화질을 유지할 수 있는 범위가 커질 수 있다. 그러나 F넘버의 증가는 그만큼의 효율 감소를 수반하여, 또한 레이저 특유의 스펙클 노이즈가 증가하는 현상도 발생하기 때문에 무한정 증가시킬 수도 없다. 본 특허에서는 F넘버를 3.2~5.0 사이로 제작한다. 바람직하게는 F넘버 4.0이 적합하다.
초점거리는 제1유리렌즈(L1)이 가장 길고, 제2 플라스틱렌즈가 가장 짧다. 따라서 제1 유리렌즈의 굴절능이 가장 낮고, 제2플라스틱렌즈의 굴절능이 가장 높다. 굴절능은 초점거리의 역수이다.
|Kn/Kt|는 각각의 렌즈의 굴절능을 전체 렌즈의 굴절능으로 나눈 값에 절대값을 취한 것으로서, 전체 렌즈의 굴절능 대비 각각의 렌즈의 굴절능의 비를 나타낸다.
제1유리렌즈는 투사렌즈의 맨 바깥쪽에서 외기에 직접 접하게 되는 렌즈이므로, 사람손의 유기물과도 접하게 되며, 외부 온도변화에 가장직접적인 영향을 차단하는 역할을 하는 유리 렌즈이기 때문에, FC5_HOYA 유리로 제작되었으며 굴절능은 그린 높은 값이 배치되지는 않는다.
제1유리렌즈의 굴절능은 수학식 1을 만족하도록 구성한다.
[수학식 1]
0.5 < |K1/Kt| < 0.9
투사렌즈는 5장의 렌즈로 구성되어 있으며, 이중 3장이 플라스틱렌즈이며 비구면 렌즈로 제작되고, 2장은 유리 렌즈로 제작되었다. 제4렌즈가 BACD16_HOYA 유리로 제작되며, 높은 굴절능을 가지고서 투사렌즈의 주렌즈이다. 제2 제3 제5렌즈는 비구면 렌즈로서 투사렌즈의 성능을 유지하면서도 전체 크기를 줄일 수 있게 해준다.
제2, 제3, 및 제5 플라스틱 렌즈는 양면을 모두 비구면으로 형성한다. 렌즈의 비구면 형상은 코닉상수와 비구면 계수로서 표현하는데, 제2, 제3, 및 제5 렌즈의 코닉상수와 비구면 계수는 표 2와 같다.
[표 2]
Figure PCTKR2016001473-appb-I000002
비구면 형상은 아래 식에서, Y값의 변화에 대한 Z값을 구해서 그려나가며, 통상 컴퓨터로 처리를 한다. Y값의 변화에 대해서 Z값을 도표로 표시하다보면 비구면 형상이 그려진다. 그래서 관련 업계에서는 코닉상수와 비구면 계수만을 정의해 주면 구면이 아닌 렌즈의 곡면을 제작할 수 있게 된다.
본 발명의 실시예에서 사용되는 비구면에 관한 사항은 수학식 2로 정의된다.
[수학식 2]
Figure PCTKR2016001473-appb-I000003
여기서, Z : 렌즈의 정점으로부터 광축방향으로의 거리,
Y : 광축에 수직인 방향으로의 거리,
C: 렌즈의 정점에서 곡률 반경 r 의 역수,
K : 코닉(Conic) 상수
A, B, C, D, E, F : 비구면 계수
광학엔진은 크게 조명계와 결상계로 나눌 수 있다.
조명계는 광원으로부터 출사되는 광빔을 광모듈레이터의 액티브영역(Active area)에 일치하도록 성형한 후, 이미지를 만들어내기 위해서 이미저의 액티브 영역을 조명해주는 역할을 하는 엔진을 의미하며, 결상계는 광모듈레이터에서 만들어진 이미지를 확대 투사해서 스크린에 결상시키는 역할을 하는 엔진을 의미한다.
이러한 결상계의 가장 핵심부는 투사렌즈이다. 결과적으로 프로젝터의 퀄리티 달성에 굉장히 중요한 역할을 한다. 본 발명에 따른 투사렌즈는 1280 X 720의 해상도와 6.4um이 픽셀크기에 적합한 분해능(MTF, Modulation Transfer Function)을 갖고 80%이상의 균일도를 가지며 1% 이하의 왜곡(optical distortion)을 가지며, 58˚의 화각을 가지면서 높은 F넘버를 유지해야 한다.
이러한 기능의 투사렌즈를 만약 구면렌즈만으로 제작을 하려면 거의 8장 이상의 구면렌즈가 소요되며, 크기도 24mm보다 두 배정도 커질 것이다. 크기 축소와 렌즈 장수를 줄이기 위해서는 비구면렌즈를 사용해야 하며, 그래서 글래스 구면렌즈는 2장만 사용하고 3장의 비구면 플라스틱렌즈를 사용해서 상기의 규격을 달성하였다. 투사렌즈를 작게 구성하고, 상기의 분해능 및 균일도를 달성하면서 화각을 키우는 것은 쉽지 않다.
본 발명에서는 상기의 조건을 구비하면서 최대로 얻을 수 있는 이론상 화각이 약 60도 부근이며, 양산성을 고려하여 58˚로 디자인하였다. 또한 이러한 투사렌즈의 F넘버가 큰 만큼 큰 DOF를 갖는다. 본 투사렌즈는 1M 거리 (화면사이즈 약 33")에서 최적 포커싱을 갖도록 디자인하였다. 실제로 20"~80" 까지는 초점 조정 없이도 샤프(Sharp)한 영상을 확인할 수 있다.
본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.

Claims (10)

  1. 레이저다이오드를 광원으로 사용하고, 액정소자를 광모듈레이터로 사용하는 레이저다이오드 액정 프로젝터에 있어서,
    상기 광원은 제1방향으로 길쭉한 타원 형상의 녹색을 출사하는 G 레이저다이오드와, 상기 제1방향으로 길쭉한 타원 형상의 청색을 출사하는 B 레이저다이오드와, 상기 G 레이저다이오드 또는 상기 B 레이저다이오드의 전원인가핀의 설치 방향과 수직되게 전원인가핀이 놓여지도록 배치하여 상기 제1방향과 수직되는 방향으로 길쭉한 타원 형상의 붉은색을 출사하는 R 레이저다이오드로 이루어지며,
    상기 광원으로부터 조사되는 수직으로 교차되는 형태를 띠는 광을 전체적으로 균일한 광으로 변형하는 제1빔쉐이퍼와,
    상기 제1빔쉐이퍼로부터 출사되는 광을 상기 광모듈레이터의 유효면의 형상으로 포밍하는 제2빔쉐이퍼와,
    상기 제2빔쉐이퍼에 의해 성형된 광을 집광시키는 필드렌즈,
    상기 필드렌즈로부터 입사되는 광은 상기 광모듈레이터로 반사시키고, 상기 광모듈레이터로부터 입사되는 영상 이미지는 통과시키는 편광빔스플리터, 및
    상기 영상 이미지를 확대 투사하는 투사렌즈를 포함하고,
    상기 G 레이저다이오드, 상기 B 레이저다이오드 및 상기 R 레이저다이오드는 멀티모드로 제조되는 진성 레이저다이오드인 것을 특징으로 하며,
    상기 광원으로부터 조사되는 수직으로 교차되는 형태를 띠는 광을 형성하는 상기 G 레이저다이오드, 상기 B 레이저다이오드 및 상기 R 레이저다이오드로부터 조사되는 각각의 광은 동일한 편광축을 갖는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  2. 제1항에 있어서,
    상기 제2빔쉐이퍼와 상기 편광빔스프리터 사이에 구비되며 입사되는 광의 임의성을 증가시키는 디퓨저를 포함하는 것을 특징으로 하는 레이저 다이오드 액정 프로젝터.
  3. 제1항에 있어서,
    상기 제1빔쉐이퍼는 다수 개 소형 렌즈체로 구성되는 플라이아이 렌즈로 형성되며, 상기 소형 렌즈체는 정사각형, 원형, 및 정팔각형 중에서 선택된 어느 하나의 형상을 갖는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  4. 제1항에 있어서,
    상기 G 레이저다이오드, B 레이저다이오드, 및 R 레이저다이오드는 초당 출력이 1 와트(watt) 이상의 광을 출력하는 와트 클래스 출력 특성을 갖는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  5. 제4항에 있어서,
    상기 제2빔쉐이퍼의 일측과 결합되는 겸자와,
    상기 겸자의 타 측과 결합되는 진동자를 포함하는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  6. 제5항에 있어서,
    상기 진동자에는 상기 R 레이저다이오드, 상기 G 레이저다이오드, 및 상기 B 레이저다이오드 중에서 선택된 하나의 레이저다이오드의 온 제어신호에 따라 진동하는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  7. 제1항에 있어서,
    상기 투사렌즈는 3장의 비구면렌즈와 2장의 구면렌즈로 구성되며, 외기와 가까이 위치하는 순서부터 제1렌즈, 제2렌즈, 제3렌즈, 제4렌즈 및 제5렌즈로 구성되는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  8. 제1항 내지 7항 중에서 선택된 어느 한 항에 있어서,
    상기 투사렌즈를 구성하는 렌즈 중 제1렌즈는 유리로 형성되며 아래 수학식 1의 조건을 만족하며, 아래 수학식 1에서 K1은 상기 제1렌즈의 굴절율이고, Kt는 상기 투사렌즈의 굴절능을 의미하는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
    수학식 1
    0.5 < |K1/KT| <0.9
  9. 제7항에 있어서,
    상기 제2렌즈, 상기 제3렌즈, 및 상기 제5렌즈는 플라스틱으로 형성되는 양면 비구면렌즈로 구성되는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
  10. 제1항에 있어서,
    상기 투사렌즈의 F넘버는 3.2에서 5.0 사이의 값을 가지는 것을 특징으로 하는 레이저다이오드 액정 프로젝터.
PCT/KR2016/001473 2015-02-13 2016-02-15 레이저다이오드 액정 프로젝터 WO2016129969A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/550,791 US10139717B2 (en) 2015-02-13 2016-02-15 Laser-diode, liquid-crystal projector
CN201680008784.XA CN107209448A (zh) 2015-02-13 2016-02-15 激光二极管液晶投影仪

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0021996 2015-02-13
KR1020150021996A KR101587788B1 (ko) 2015-02-13 2015-02-13 레이저다이오드 액정 프로젝터

Publications (1)

Publication Number Publication Date
WO2016129969A1 true WO2016129969A1 (ko) 2016-08-18

Family

ID=55309066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001473 WO2016129969A1 (ko) 2015-02-13 2016-02-15 레이저다이오드 액정 프로젝터

Country Status (4)

Country Link
US (1) US10139717B2 (ko)
KR (1) KR101587788B1 (ko)
CN (1) CN107209448A (ko)
WO (1) WO2016129969A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040177A (ja) * 2017-08-23 2019-03-14 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004534A1 (en) * 2016-06-28 2018-01-04 Siemens Industry, Inc. Optical system for a led signal and wayside led signal
JP7113172B2 (ja) * 2017-09-01 2022-08-05 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
KR102230577B1 (ko) 2018-04-27 2021-03-23 한국광기술원 프로젝터
DE112019003271T5 (de) * 2018-06-29 2021-06-02 Sumitomo Electric Industries, Ltd. Optisches modul
JP7087906B2 (ja) * 2018-10-15 2022-06-21 株式会社島津製作所 半導体レーザモジュール
JP6891870B2 (ja) * 2018-12-28 2021-06-18 セイコーエプソン株式会社 プロジェクター
EP3689677A1 (en) * 2019-01-29 2020-08-05 Gottfried Wilhelm Leibniz Universität Hannover Lighting device and method for illumination
CN110190502A (zh) * 2019-07-03 2019-08-30 北京镭创高科光电科技有限公司 一种多激光器耦合的激光光源
CN111146680B (zh) * 2019-12-12 2021-02-02 上海芬创信息科技有限公司 一种脉冲激光器的曲率光圈透镜轮转的驱动电源***
KR20210158091A (ko) 2020-06-23 2021-12-30 (주) 브라이튼코퍼레이션 레이저다이오드 광학엔진 및 이를 구비하는 액정 프로젝터
KR102620899B1 (ko) * 2021-09-03 2024-01-04 (주) 브라이튼코퍼레이션 레이저다이오드 액정 광학 엔진을 조립하는 방법, 이를 이용한 레이저 다이오드 액정 광학엔진 및 액정 프로젝터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510357A (ja) * 2008-01-22 2011-03-31 アルカテル−ルーセント ユーエスエー インコーポレーテッド イメージプロジェクタ用ディフューザ構成
KR20110088104A (ko) * 2010-01-28 2011-08-03 엘지전자 주식회사 레이저 디스플레이 시스템의 스펙클 저감장치 및 방법
WO2011161931A1 (ja) * 2010-06-22 2011-12-29 パナソニック株式会社 レーザプロジェクタ
US20120099086A1 (en) * 2010-10-22 2012-04-26 Hon Hai Precision Industry Co., Ltd. Reduced-speckle laser projector with speckle-reduction
KR20140092524A (ko) * 2013-01-15 2014-07-24 한양대학교 산학협력단 레이저 프로젝터

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244028B2 (en) * 2004-12-14 2007-07-17 Coherent, Inc. Laser illuminated projection displays
KR20080021426A (ko) * 2006-09-04 2008-03-07 삼성테크윈 주식회사 마이크로 프로젝터
CN101646976B (zh) * 2007-03-22 2012-09-26 松下电器产业株式会社 激光波长转换装置以及具备该激光波长转换装置的图像显示装置
US8320769B2 (en) * 2009-06-26 2012-11-27 Alcatel Lucent Transverse-mode multiplexing for optical communication systems
CN103081261B (zh) * 2010-03-05 2016-03-09 泰拉二极管公司 波长光束组合***与方法
US9172201B2 (en) * 2011-03-17 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion laser light source, and image display device
JP2013044800A (ja) * 2011-08-22 2013-03-04 Sony Corp 照明装置および表示装置
JP5935679B2 (ja) * 2012-04-02 2016-06-15 ソニー株式会社 照明装置および表示装置
JP5920095B2 (ja) * 2012-07-31 2016-05-18 株式会社Jvcケンウッド 画像表示装置
CA2901780C (en) * 2013-03-15 2020-03-24 Imax Europe Sa Projector optimized for modulator diffraction effects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510357A (ja) * 2008-01-22 2011-03-31 アルカテル−ルーセント ユーエスエー インコーポレーテッド イメージプロジェクタ用ディフューザ構成
KR20110088104A (ko) * 2010-01-28 2011-08-03 엘지전자 주식회사 레이저 디스플레이 시스템의 스펙클 저감장치 및 방법
WO2011161931A1 (ja) * 2010-06-22 2011-12-29 パナソニック株式会社 レーザプロジェクタ
US20120099086A1 (en) * 2010-10-22 2012-04-26 Hon Hai Precision Industry Co., Ltd. Reduced-speckle laser projector with speckle-reduction
KR20140092524A (ko) * 2013-01-15 2014-07-24 한양대학교 산학협력단 레이저 프로젝터

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040177A (ja) * 2017-08-23 2019-03-14 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP7065273B2 (ja) 2017-08-23 2022-05-12 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置

Also Published As

Publication number Publication date
US20180024428A1 (en) 2018-01-25
CN107209448A (zh) 2017-09-26
KR101587788B1 (ko) 2016-01-22
US10139717B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2016129969A1 (ko) 레이저다이오드 액정 프로젝터
US9500935B2 (en) Projection image display device
JP3174812U (ja) 小型プロジェクター用光学エンジン
CN216595871U (zh) 三色激光光源及激光投影设备
JP2010091927A (ja) 単板投写型表示装置
US20060023167A1 (en) Illumination system for projection display applications
KR101248174B1 (ko) 레이저 광원을 이용하는 프로젝터
WO2016175478A1 (ko) 스펙클 저감장치
JP2010044309A (ja) レーザ画像投影装置
JPH09101495A (ja) 着脱式液晶パネル付投影機
KR100925720B1 (ko) 듀얼 모드 기능을 갖는 투사형 디스플레이 장치
JPH11271749A (ja) 平面ディスプレイ装置
KR101167747B1 (ko) 마이크로 프로젝터를 위한 광학 엔진
KR100433211B1 (ko) 광량 및 편광 균일화 광학소자를 이용한 프로젝터의 조명 광학계
WO2011068337A2 (ko) 디엠디 입체프로젝터
WO2019024213A1 (zh) 光源***及投影装置
KR20080053792A (ko) 레이저 광원을 이용하는 프로젝터
US8960923B2 (en) Projection type display device and method including vibration of component of illumination optical system
CN220933334U (zh) 光源装置以及光学成像***
JP2004240050A (ja) 単板式プロジェクタ
US20240171713A1 (en) Illumination system and projection device
TWI765235B (zh) 光路調整機構及其製造方法
US20220373766A1 (en) Illumination system and projection device
KR100229811B1 (ko) Ama를 이용한 투사형 화상 표시장치의 광학 시스템
JP3011893B2 (ja) 液晶ライトバルブ及びこれを用いた投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749509

Country of ref document: EP

Kind code of ref document: A1