JP7113172B2 - 光源装置および投写型表示装置 - Google Patents

光源装置および投写型表示装置 Download PDF

Info

Publication number
JP7113172B2
JP7113172B2 JP2018105740A JP2018105740A JP7113172B2 JP 7113172 B2 JP7113172 B2 JP 7113172B2 JP 2018105740 A JP2018105740 A JP 2018105740A JP 2018105740 A JP2018105740 A JP 2018105740A JP 7113172 B2 JP7113172 B2 JP 7113172B2
Authority
JP
Japan
Prior art keywords
light source
light
laser light
prism
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018105740A
Other languages
English (en)
Other versions
JP2019045846A (ja
Inventor
孝明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US16/058,407 priority Critical patent/US10634982B2/en
Publication of JP2019045846A publication Critical patent/JP2019045846A/ja
Application granted granted Critical
Publication of JP7113172B2 publication Critical patent/JP7113172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本開示は、照明光で照射される画像形成素子により形成される画像を、投写レンズによりスクリーン上に拡大投写する投写型表示装置に関する。
ミラー偏向型のデジタル・マイクロミラー・デバイス(DMD)や液晶パネルの画像形成素子を用いた投写型表示装置の光源として、長寿命である半導体レーザや発光ダイオードの固体光源を用いた光源装置が多数開示されている。その中で、赤色、緑色、青色の固体光源を用いた小型で広色域な光源装置が開示されている(特許文献1)。
特許文献1では、投写画像の均一性を確保するために、赤色、緑色、青色のレーザ光源からの色光をそれぞれ集光する集光レンズのFナンバーを略同等にし、アレイ状に配置した赤色、緑色、青色のレーザ光源を用いることにより、小型で高輝度な光源装置を構成している。
国際公開第2015/056381号
本開示は、各色光の半導体レーザの数と光束サイズが異なる場合であっても、投写画像の高い均一性を確保しつつ、広色域で、小型、高輝度な光源装置と、その光源装置を用いた投写型表示装置を提供する。
本開示の光源装置は、赤の色光を出射する固体光源と、緑の色光を出射する固体光源と、青の色光を出射する固体光源と、固体光源からの色光を合成するダイクロイックミラーと、ダイクロイックミラーからの合成光が入射する動的拡散板と、少なくとも1つの色光の固体光源からの光束を分割する光束分割素子を備えている。
本開示によれば、赤色、緑色、青色の固体光源と、固体光源からの光を合成するダイクロイックミラーと、回転拡散板と、固体光源からの光束を分割する光束分割素子により、各色光の固体光源数に起因する画像均一性の低下を解消しつつ、広色域で小型、高輝度な光源装置が構成できる。このため、広色域で、小型、高輝度な投写型表示装置が実現できる。
本開示の実施の形態1における光源装置の構成図 実施の形態1における第1の光束分割素子を示す図 実施の形態1における第2の光束分割素子を示す図 実施の形態1における第3の光束分割素子を示す図 本開示の実施の形態2における第1の投写型表示装置の構成図 本開示の実施の形態3における第2の投写型表示装置の構成図
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施の形態1)
以下、図1~4を用いて、実施の形態1を説明する。
図1は本実施の形態を示す光源装置60の構成図である。
赤色レーザ光源33は、赤色固体光源である赤色半導体レーザ30とコリメートレンズ31と放熱板32から構成される。緑色レーザ光源39は、緑色固体光源である緑色半導体レーザ36とコリメートレンズ37と放熱板38から構成される。青色レーザ光源45は、青色固体光源である青色半導体レーザ42とコリメートレンズ43と放熱板44から構成される。
光源装置60は、また、ヒートシンク34、40、46、赤反射のダイクロイックミラー48、コンデンサレンズ50、51、52、59、光束分割素子であるプリズムアレイ69、青反射のダイクロイックミラー49、拡散板53、円形拡散板55とモーター56で構成されたスペックルノイズを低減する動的拡散板である回転拡散板57、反射ミラー54を備える。図1には、半導体レーザ光源から出射する各光束35、41、47の様相と、赤反射のダイクロイックミラー48、青反射のダイクロイックミラー49へ入射および出射する光の偏光方向を示している。
赤色レーザ光源33は、24個(6×4)を正方配置した赤色半導体レーザ30とコリメートレンズ31を放熱板32上に一定の間隔で2次元状に配置したものである。赤色半導体レーザ30は、632nmから648nmの波長幅で赤の色光を発光し、直線偏光の光を出射する。赤色半導体レーザ30を出射した光は対応するコリメートレンズ31により、それぞれ集光され平行な光束35に変換される。光束35群は赤反射のダイクロイックミラー48に入射し反射する。ヒートシンク34は赤色レーザ光源33を冷却するためのものである。
緑色レーザ光源39は、24個(6×4)を正方配置した緑色半導体レーザ36とコリメートレンズ37を放熱板38上に一定の間隔で2次元状に配置したものである。緑色半導体レーザ36は、517nmから533nmの波長幅で緑の色光を発光し、直線偏光の光を出射する。緑色半導体レーザ36を出射した光は対応するコリメートレンズ37により、それぞれ集光され平行な光束41に変換される。光束41群は赤反射のダイクロイックミラー48に入射し透過する。緑色、赤色半導体レーザ30、36から出射する偏光は赤反射のダイクロイックミラー48の入射面に対してS偏光となるように、各色の半導体レーザを配置している。ヒートシンク40は緑色レーザ光源39を冷却するためのものである。
青色レーザ光源45は、8個(2×4)を正方配置した青色半導体レーザ42とコリメートレンズ43を放熱板44上に一定の間隔で2次元状に配置したものである。青色半導体レーザ42は、赤色、緑色の半導体レーザに対して、単一の半導体レーザの光出力や発光効率が高く、また、所望の白色光色度に必要な青色の光出力は小さいため、1/3以下の半導体レーザ個数で構成している。青色半導体レーザ42から出射する偏光は青反射のダイクロイックミラー49の入射面に対してS偏光となるように、半導体レーザを配置している。ヒートシンク46は青色レーザ光源45を冷却するためのものである。
青色半導体レーザ42は、457nmから472nmの波長幅で青の色光を発光し、直線偏光の光を出射する。青色半導体レーザ42を出射した光は、対応するコリメートレンズ43により、それぞれ集光され平行な光束47に変換される。光束47群は光束分割素子であるプリズムアレイ69に入射する。
図2に、少なくとも1つの色光の複数の固体光源からの光束を分割する第1の光束分割素子である第1のプリズムアレイの構成を示す。図2(a)は入射光を3分割するプリズムアレイ69、図2(b)は入射光を2分割するプリズムアレイ82を示している。
図2(a)のプリズムアレイ69の構成について説明する。プリズムアレイ69は、プリズム71、72、73が、図中の破線で示される面を対称面として面対称の位置に図の上下方向に同じものが配置されて構成されている。プリズム71は、入射角が45度のビームスプリッター面74を備え、プリズム72は入射角が45度のビームスプリッター面75と反射面76を備えている。
プリズム71への入射光70は、入射角が45度で透過光と反射光の光量比がそれぞれ33%と67%となるビームスプリッター面74に入射し、光束が分割される。透過光はプリズム73を透過する。反射光は、入射角が45度で透過光と反射光の光量比がそれぞれ50%と50%となるビームスプリッター面75に入射し、光束が分割される。ビームスプリッター面75の透過光は反射面76で反射する。プリズム71とプリズム73とプリズム72は耐熱性と耐光性が高いシリコーン系の接着剤を用いて接合している。このようにして、入射光70を光量比がそれぞれ33%、33.5%、33.5%の光に3分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
プリズムアレイ69により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、6×4に分割することができる。このため、青色レーザ光源45からの光束サイズを、半導体レーザが6×4で配置された赤色、緑色のレーザ光源と同等化することができ、半導体レーザの数と光束サイズに起因する投写画像の均一性低下を解消しつつ、小型な光源装置が構成できる。
図2(b)のプリズムアレイ82の構成について説明する。プリズムアレイ82は、プリズム78、79が、図中の破線で示される面を対称面として面対称の位置に図の上下方向に同じものが配置されて構成されている。プリズム78は、入射角が45度のビームスプリッター面80と反射面81を備えている。
プリズム78への入射光77は、入射角が45度で透過光と反射光の光量比がそれぞれ50%と50%となるビームスプリッター面80に入射し、光束が分割される。透過光はプリズム79を透過する。反射光は反射面81で反射する。プリズム78とプリズム79は耐熱性と耐光性が高いシリコーン系の接着剤を用いて接合している。このようにして、入射光77の光量比がそれぞれ50%の光に2分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
プリズムアレイ82により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、4×4に分割することができる。プリズムアレイ69により青色レーザ光源45からの光束を6×4に分割する場合に比べて、半導体レーザの数と光束サイズに起因する投写画像の均一性は低下するも、青色レーザ光源45からの光束サイズは赤色、緑色のレーザ光源より小さくなり、低コスト化な光源装置が構成できる。
図3に、少なくとも1つの色光の複数の固体光源からの光束を分割する第2の光束分割素子である第2のプリズムアレイの構成を示す。図3(a)は入射光を3分割するプリズムアレイ83、図3(b)は入射光を2分割するプリズムアレイ91を示している。図3(c)は入射光を3分割する他のプリズムアレイ97である。
図3(a)のプリズムアレイ83の構成について説明する。プリズムアレイ83は、プリズム85、86が、図中の破線で示される面を対称面として面対称の位置に図の上下方向に同じものが配置されて構成され、さらに対称面の位置にプリズム87が配置されて構成される。プリズム85は入射角が30度のビームスプリッター面88,89を備え、プリズム86は2つの反射面90a、90bを備えている。
プリズム85への入射光84は、入射角が30度で透過光と反射光の光量比がそれぞれ33%と67%となるビームスプリッター面88に入射し、光束が分割される。透過光はプリズム87を透過する。反射光は、入射角が30度で透過光と反射光の光量比がそれぞれ50%と50%となるビームスプリッター面89に入射し、光束が分割される。ビームスプリッター面89の透過光は、プリズム86の2つの反射面90a、90bのそれぞれで反射する。プリズム85とプリズム87、プリズム85とプリズム86は、それぞれ厚みが10μm以下の空気層を設けて接合している。接着剤を用いない構成のため、図2(a)に示すプリズムアレイ69よりもさらに耐熱性と耐光久性を高めることができる。このようにして、入射光84の光量比がそれぞれ33%、33.5%、33.5%の光に3分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
プリズムアレイ83により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、6×4に分割することができる。このため、青色レーザ光源45からの光束サイズを、半導体レーザが6×4で配置された赤色、緑色のレーザ光源と同等化することができ、半導体レーザの数と光束サイズに起因する投写画像の均一性を確保しつつ、小型で耐久性が高い光源装置が構成できる。
図3(b)のプリズムアレイ91の構成について説明する。プリズムアレイ91は、プリズム93が、図中の破線で示される面を対称面として面対称の位置に図の上下方向に同じものが配置されて構成され、さらに対称面の位置にプリズム94が配置されて構成される。プリズム93は入射角が30度のビームスプリッター面95と反射面96を備えている。
プリズム93への入射光92は、入射角が30度で透過光と反射光の光量比がそれぞれ50%と50%となるビームスプリッター面95に入射し、光束が分割される。透過光はプリズム94を透過する。反射光は反射面96で反射する。プリズム93とプリズム94は、厚みが10μm以下の空気層を設けて接合している。接着剤を用いない構成のため、図2(b)に示すプリズムアレイ82よりもさらに耐熱性と耐光久性を高めることができる。このようにして、入射光92を光量比がそれぞれ50%の光に2分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
プリズムアレイ91により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、4×4に分割することができる。プリズムアレイ83により青色レーザ光源45からの光束を6×4に分割する場合に比べて、半導体レーザの数と光束サイズに起因する投写画像の均一性は低下するも、青色レーザ光源45からの光束サイズは赤色、緑色のレーザ光源より小さくなり、低コストで耐久性の高い光源装置が構成できる。
図3(c)のプリズムアレイ97の構成について説明する。プリズムアレイ97は、プリズム99、100が、図中の破線で示される面を対称面として面対称の位置に図の上下方向に同じものが配置されて構成され、さらに対称面の位置にプリズム101が配置されて構成される。プリズム99は入射角が45度のビームスプリッター面102、103を備え、プリズム100は反射面104を備える。
図3(a)のプリズムアレイと構成と異なる点は、空気層を設けたプリズム接合面を4面から2面へ少なくした点である。プリズム99への入射光98は、入射角が45度で透過光と反射光の光量比がそれぞれ33%と67%となるビームスプリッター面102入射し、光束が分割される。透過光はプリズム101を透過する。反射光は、入射角が45度で透過光と反射光の光量比がそれぞれ50%と50%となるビームスプリッター面103に入射し、光束が分割される。ビームスプリッター面103の透過光はプリズム100に入射し、反射面104で反射する。プリズム99とプリズム100は耐熱性と耐光性が高いシリコーン系の接着剤を用いて接合している。このようにして、入射する光を光量比がそれぞれ33%、33.5%、33.5%の光に3分割することができる。空気層を設けたプリズム接合面を少なくすることで、図3(a)のプリズムアレイよりも低コスト化できる。
なお、図2に示すプリズム73、79は、それぞれ図3に示すプリズム87、94、102のように、2つのプリズムを一体的に1つのプリズムで構成されてもよい。また、図3に示すプリズム87、94、102は、それぞれ図2に示すプリズム73、79のように、面対称に配置される2つのプリズムで構成されてもよい。
図4に、少なくとも1つの色光の複数の固体光源からの光束を分割する第3の光束分割素子であるミラーアレイの構成を示す。図4(a)は入射光を3分割するミラーアレイ110、図4(b)は入射光を2分割するミラーアレイ116を示している。
図4(a)のミラーアレイ110の構成について説明する。ミラーアレイ110は、入射角が45度の平板ビームスプリッター113、114と、反射ミラー115とを備える。
入射光111、112は、入射角が45度で透過光と反射光の光量比がそれぞれ33%と67%となる平板ビームスプリッター113に入射し、光束が分割される。反射光は、入射角が45度で透過光と反射光の光量比がそれぞれ50%と50%となる平板ビームスプリッター114に入射し、光束が分割される。平板ビームスプリッター114の透過光は反射ミラー115で反射する。平板ミラーで構成するため、プリズムアレイよりもやや大型化するが、安価に構成できる。このようにして、入射光111、112を光量比がそれぞれ33%、33.5%、33.5%の光に3分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
ミラーアレイ110により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、6×4に分割することができる。このため、青色レーザ光源45からの光束サイズを、半導体レーザが6×4で配置された赤色、緑色レーザ光源と同等化することができ、半導体レーザの数と光束サイズに起因する投写画像の均一性を確保しつつ、小型な光源装置が安価に構成できる。
図4(b)のミラーアレイ116の構成について説明する。ミラーアレイ116は、入射角が45度の平板ビームスプリッター119と、反射ミラー120とを備える。
入射光117、118は、入射角が45度で透過光と反射光の光量比がそれぞれ50%と50%となる平板ビームスプリッター119に入射し、光束が分割される。平板ビームスプリッター119での反射光は反射ミラー120で反射する。このようにして、入射光117、118を光量比がそれぞれ50%の光に2分割することができる。光束を分割する間隔はレーザ光源における半導体レーザの配置間隔と同一としている。
ミラーアレイ116により、青色半導体レーザ42が2×4で配置された青色レーザ光源45からの光束を、4×4に分割することができる。ミラーアレイ110により青色レーザ光源45からの光束を6×4に分割する場合に比べて、半導体レーザの数と光束サイズに起因する投写画像の均一性は低下するも、青色レーザ光源45からの光束サイズは赤、緑のレーザ光源よりも小さくなり、小型で非常に安価な光源装置が構成できる。
図2~図4に示す光束分割素子を用いることにより、青色、赤色、緑色のレーザ光源の半導体レーザの数と光束サイズの同等化を、小型に構成することができる。
図1の構成に戻って説明する。赤反射のダイクロイックミラー48で合成された赤色レーザ光と緑色レーザ光はコンデンサレンズ52に入射する。
赤反射のダイクロイックミラー48は、入射角が45度となる配置で緑色レーザ光を96%以上で透過し、赤色レーザ光を98%以上で反射する特性である。透過率が50%となる半値波長は緑色レーザ光の主波長525nmと赤色レーザ光の主波長640nmの中間の波長である583nmとしている。
一方、光束分割素子であるプリズムアレイ69により、分割された青色レーザ光はコンデンサレンズ51に入射する。コンデンサレンズ50、51でそれぞれ集光された赤色、緑色のレーザ光と青のレーザ光は青反射のダイクロイックミラー49に入射する。
青反射のダイクロイックミラー49は、入射角が45度となる配置で、赤色レーザ光と緑色レーザ光を96%以上で透過し、青色レーザ光を98%以上で反射する特性である。透過率が50%となる半値波長は青色レーザ光の主波長465nmと緑色レーザ光の主波長525nmの中間の波長である495nmとしている。
青反射のダイクロイックミラー49を透過、反射した各レーザ光は、コンデンサレンズ52に入射する。コンデンサレンズ52は、コンデンサレンズ50、51と組み合わせて、各レーザ光が回転拡散板57の近傍で集光するように、そのレンズ形状を決めている。コンデンサレンズ52を透過したレーザ光は、拡散板53で拡散された後、反射ミラー54で反射し、回転拡散板57に入射する。拡散板53はガラス基板上に形成された微細なマイクロレンズをアレイ状に形成して拡散面を構成したものであり、入射する光を拡散する。マイクロレンズ形状とすることにより、フッ酸などの溶液を用いて、ガラス表面を微細な凹凸形状に加工する化学処理の拡散板よりも、最大拡がり角度を低減で拡散損失を低減できる。拡散光の最大強度の50%となる半値角度幅である拡散角度は略6度と小さく、偏光特性を保持する。光強度がピーク強度に対して13.5%となる直径をスポット径と定義すると、スポット径が3mm~5mmのスポット光に重畳され、回転拡散板57に入射する。拡散板53はそのスポット光の径が所望のスポット径となるよう光を拡散させている。
回転拡散板57は、ガラス基板上の表面に微細な凹凸形状もしくはレンズ形状を円周状の拡散領域を形成した円形拡散板55と中央部にモーター56を備えたものであり、回転制御が可能である。回転拡散板は10,800rpm程度まで高速に回転可能な拡散板である。
拡散領域には化学処理の拡散板を用い、拡散角は略12度で、偏光特性を維持する。化学処理の拡散板はガラス基板への両面形成も可能であり、マイクロレンズアレイの拡散板よりも、拡散角を大きくできるとともに、大型サイズの拡散板が比較的安価に構成できる。化学処理の拡散板は最大拡がり角が大きくなるが、コンデンサレンズ59で効率よく、集光できる。拡散面を回転することにより、レーザ光に起因するスクリーン上でのランダムな干渉パターンが時間的、空間的に高速変動して、スペックルノイズを解消することができる。また、拡散板53と回転拡散板57により、レーザ光源の微小な発光サイズと発光数に起因する微小な輝度むらも低減することができる。
回転拡散板57で拡散した光は、偏光以外のレーザ光の性質に起因するスペックルノイズがほぼ解消された光となる。回転拡散板57を透過した光は、コンデンサレンズ59で集光され、略平行光に変換される。
コンデンサレンズ59は、回転拡散板57近傍のスポット光を平行光となるように、形状を決めている。赤色、緑色、青色のレーザ光源からコンデンサレンズ59までの光学素子は偏光特性を維持するため、コンデンサレンズ59からの出射光はS偏光の光を出射する。
赤反射のダイクロイックミラー48を緑反射のダイクロイックミラーとして、緑色レーザ光源と赤色レーザ光源の配置を変更してもよい。
拡散板53はマイクロレンズアレイの拡散板を用いて説明したが、集光効率はやや低下するが、安価な化学処理の拡散板を用いてもよい。
回転拡散板57の円形拡散板55は、化学処理の拡散板を用いて説明したが、高価となるが、マイクロレンズアレイの拡散を用いてもよい。回転拡散板57は、回転ではなく搖動、振動する動的な拡散板であってもよい。
回転拡散板57を低速回転として、拡散板、反射ミラーにスペックルノイズ低減のための、搖動もしくは振動する機構を設けてもよい。反射ミラー54は、レーザ光の光束数を増やすために、表面反射率が30%、裏面反射率が100%の多重反射ミラーを用いて、レーザ光に起因する輝度むらを低減してもよい。
赤色レーザ光源、緑色レーザ光源、青色レーザ光源は、それぞれ24個、24個、8個の半導体レーザ素子を配置した構成を示したが、高輝度化のため、さらに多数の半導体レーザ素子を用いて構成してもよい。
以上のように、本開示の光源装置は、赤色、緑色、青色のレーザ光源と、半導体レーザの数が少ない色光のレーザ光源に配置した光束分割素子と、回転拡散板とを備えた光源装置を用いる。このため、赤色、緑色、青色の半導体レーザの数が異なることに起因する投写画像の均一性低下を解消しつつ、小型で、広色域な白色光を得ることができる。
(実施の形態2)
実施の形態2を、図5を参照しつつ説明する。図5は、本開示の実施の形態を示す第1の投写型表示装置である。
第1の投写型表示装置200は、画像形成素子として、TNモードもしくはVAモードであって、画素領域に薄膜トランジスタを形成したアクティブマトリクス方式の透過型の液晶パネルを用いている。
第1の投写型表示装置200の光源装置60は、赤色レーザ光源33、緑色レーザ光源39、青色レーザ光源45、ヒートシンク34、40、46、赤反射のダイクロイックミラー48、コンデンサレンズ50、51、52、光束分割素子であるプリズムアレイ69、青反射のダイクロイックミラー49、拡散板53、反射ミラー54、円形拡散板55とモーター56で構成される回転拡散板57、コンデンサレンズ59で構成される。以上は本開示の実施の形態1の光源装置である。
第1の投写型表示装置200は、また、第1のレンズアレイ板201、第2のレンズアレイ板202、重畳用レンズ203、青反射のダイクロイックミラー204、緑反射のダイクロイックミラー205、反射ミラー206、207、208、リレーレンズ209、210、フィールドレンズ211、212、213、入射側偏光板214、215、216、液晶パネル217、218、219、出射側偏光板220、221、222、赤反射のダイクロイックミラーと青反射のダイクロイックミラーから構成される色合成プリズム223、投写レンズ224を備える。
光源装置60からの白色光は、複数のレンズ素子から構成される第1のレンズアレイ板201に入射する。第1のレンズアレイ板201に入射した光束は多数の光束に分割される。分割された多数の光束は、複数のレンズから構成される第2のレンズアレイ板202に収束する。第1のレンズアレイ板201のレンズ素子は液晶パネル217、218、219と相似形の開口形状である。第2のレンズアレイ板202のレンズ素子は第1のレンズアレイ板201と液晶パネル217、218、219とが略共役関係となるようにその焦点距離を決めている。第2のレンズアレイ板202から出射した光は重畳用レンズ203に入射する。重畳用レンズ203は第2のレンズアレイ板202の各レンズ素子からの出射した光を液晶パネル217、218、219上に重畳照明するためのレンズである。第1および第2のレンズアレイ板201、202と、重畳用レンズ203は照明光学系を構成する。
重畳用レンズ203からの光は、色分離手段である青反射のダイクロイックミラー204、緑反射のダイクロイックミラー205により、青、緑、赤の色光に分離される。緑の色光はフィールドレンズ211、入射側偏光板214を透過して、液晶パネル217に入射する。青の色光は反射ミラー206で反射した後、フィールドレンズ212、入射側偏光板215を透過して液晶パネル218に入射する。赤の色光はリレーレンズ209、210や反射ミラー207、208を透過屈折および反射して、フィールドレンズ213、入射側偏光板216を透過して、液晶パネル219に入射する。このように光源装置60からの光は照明光学系によって集光されて被照明領域である液晶パネルを照明する。
3枚の液晶パネル217、218、219は映像信号に応じた画素への印加電圧の制御により入射する光の偏光状態を変化させ、それぞれの液晶パネル217、218、219の両側に透過軸を直交するように配置したそれぞれの入射側偏光板214、215、216および出射側偏光板220、221、222を組み合わせて光を変調し、緑、青、赤の画像を形成する。
出射側偏光板220、221、222を透過した各色光は色合成プリズム223により、赤、青の各色光がそれぞれ赤反射のダイクロイックミラー、青反射のダイクロイックミラーによって反射し、緑の色光と合成され、投写レンズ224に入射する。投写レンズ224に入射した光は、スクリーン(図示せず)上に拡大投写される。
従来、固体光源を用いた光源装置からの光が非偏光である場合、偏光変換素子を用いて投写型表示装置を構成していた。本開示では光源装置からの出射光がS偏光であるため、偏光変換素子が不要となる。このため、投写型表示装置の集光効率の向上と低コスト化が図れる。
光源装置は、赤色、緑色、青色のレーザ光源を用いて小型に構成され、3原色の色純度が高い白色光を出射するため、小型で、広色域な投写型表示装置を実現できる。また、画像形成手段には、時分割方式ではなく偏光を利用する3枚の液晶パネルを用いているため、カラーブレイキングがなく色再現が良好で、明るく高精細な投写画像を得ることができる。また、3つのDMD素子を用いた場合よりも、全反射プリズムが不要で、色合成用のプリズムが45度入射の小型プリズムになるため、投写型表示装置が小型に構成できる。
以上のように、本開示の第1の投写型表示装置は、赤色、青色、緑色のレーザ光源と、半導体レーザの数が少ない色光のレーザ光源に配置した光束分割素子と、回転拡散板とを備えた光源装置を用いる。このため、赤色、緑色、青色の半導体レーザの数が異なることに起因する投写画像の均一性低下を解消しつつ、小型で、広色域な投写型表示装置が構成できる。
画像形成素子として、透過型の液晶パネルを用いたが、反射型の液晶パネルを用いて構成してもよい。反射型の液晶パネルを用いることにより、より小型で高精細な投写型表示装置が構成できる。
(実施の形態3)
実施の形態3を、図6を参照しつつ説明する。図6は、本実施の形態を示す第2の投写型表示装置である。第2の投写型表示装置300は、画像形成素子として、3つのミラー偏向型のDMDを用いている。
第2の投写型表示装置300の光源装置63は、赤色レーザ光源33、緑色レーザ光源39、青色レーザ光源45、ヒートシンク34、40、46、赤反射のダイクロイックミラー48、コンデンサレンズ50、51、52、光束分割素子であるプリズムアレイ69、青反射のダイクロイックミラー49、拡散板53、反射ミラー54、円形拡散板55とモーター56で構成される回転拡散板57で構成される。本開示の実施の形態1の光源装置60と異なるのは、コンデンサレンズ59を配置しない点である。
光源装置63から出射した白色光は、ロッド301へ集光する。ロッド301への入射光はロッド内部で複数回反射することにより、光強度分布が均一化され出射する。ロッド301からの出射光はリレーレンズ302により集光され、反射ミラー303で反射した後、フィールドレンズ304を透過し、全反射プリズム305に入射する。
全反射プリズム305は2つのプリズムから構成され、互いのプリズムの近接面には薄い空気層306を形成している。空気層306は臨界角以上の角度で入射する光を全反射する。フィールドレンズ304からの光は全反射プリズム305の全反射面で反射されて、カラープリズム307に入射する。
カラープリズム307は3つのプリズムからなり、それぞれのプリズムの近接面には青反射のダイクロイックミラー308と赤反射のダイクロイックミラー309が形成されている。カラープリズム307の青反射のダイクロイックミラー308と赤反射のダイクロイックミラー309により、青、赤、緑の色光に分離され、それぞれDMD310、311、312に入射する。このように光源装置63からの光は、ロッド301からなる照明光学系によってDMDのマイクロミラーが設けられた領域である被照明領域を照明する。
DMD310、311、312は映像信号に応じてマイクロミラーを偏向させ画像となる光を形成し、投写レンズ313に入射する光と、投写レンズ313の有効外へ進む光とに反射させる。DMD310、311、312により反射された光は、再度、カラープリズム307を透過する。カラープリズム307を透過する過程で、分離された青、赤、緑の各色光は合成され、全反射プリズム305に入射する。全反射プリズム305に入射した光は空気層306に臨界角以下で入射するため、透過して、投写レンズ313に入射する。このようにして、DMD310、311、312により形成された画像光がスクリーン(図示せず)上に拡大投写される。
DMDを用いるため、光源装置から出射する光は直線偏光でなくてもよい。この場合、赤色レーザ光源と緑色レーザ光源と青色レーザ光源からの光もS偏光、P偏光のいずれであってもよい。また、レーザ光源から拡散板58までの光学素子は偏光特性を保持しなくもよい。
光源装置は、赤色、緑色、青色のレーザ光源を用いて小型に構成され、3原色の色純度が高い白色光を出射するため、小型で、広色域な投写型表示装置を実現できる。画像形成素子にDMDを用いているため、液晶を用いた画像形成素子と比べて、耐光性、耐熱性が高い投写型表示装置が構成できる。さらに、3つのDMDを用いているため、色再現が良好で、明るく高精細な投写画像を得ることができる。
以上のように、本開示の第2の投写型表示装置は、赤色、青色、緑色のレーザ光源と、半導体レーザの数が少ない色光のレーザ光源に配置した光束分割素子と、回転拡散板とを備えた光源装置を用いる。このため、赤色、緑色、青色の半導体レーザの数が異なることに起因する投写画像の均一性低下を解消しつつ、小型で、広色域な投写型表示装置が構成できる。
画像形成素子として、3つのDMDを用いたが、1つのDMDを用いて構成してもよい。1つのDMDを用いることにより、より小型で安価な投写型表示装置が構成できる。
本開示は、画像形成素子を用いた投写型表示装置に関するものである。
30 赤色半導体レーザ
31、37、43 コリメートレンズ
32、38、44 放熱板
33 赤色レーザ光源
34、40、46 ヒートシンク
35、41、47 光束
36 緑色半導体レーザ
39 緑色レーザ光源
42 青色半導体レーザ
45 青色レーザ光源
48、309 赤反射のダイクロイックミラー
49、204、308 青反射のダイクロイックミラー
50、51、52、59 コンデンサレンズ
53 拡散板
54、115、120、206、207、208、303 反射ミラー
55 円形拡散板
56 モーター
57 回転拡散板
60、63 光源装置
69、82、83、91、97 プリズムアレイ
70、77、84、92、98、111、112、117、118 入射光
71、72、73、78、79、85、86、87、93、94、99、101、100 プリズム
74、75、80、88、89、95、102、103 ビームスプリッター面
76、81、90a、90b、96、104 反射面
110、116 ミラーアレイ
113、114、119 平板ビームスプリッター
201 第1のレンズアレイ板
202 第2のレンズアレイ板
203 重畳用レンズ
205 緑反射のダイクロイックミラー
209、210、302 リレーレンズ
211、212、213、304 フィールドレンズ
214、215、216 入射側偏光板
217、218、219 液晶パネル
220、221、222 出射側偏光板
223 色合成プリズム
224、313 投写レンズ
301 ロッド
305 全反射プリズム
306 空気層
307 カラープリズム
310、311、312 DMD

Claims (6)

  1. 赤の色光を出射する赤色レーザー光源と、
    緑の色光を出射する緑色レーザー光源と、
    青の色光を出射する青色レーザー光源と、
    前記赤色レーザー光源、前記緑色レーザー光源及び前記青色レーザー光源からの色光を合成するダイクロイックミラーと、
    前記ダイクロイックミラーからの合成光が入射する動的拡散板と、
    少なくとも1つの前記色光を出射するレーザー光源からの光束サイズ他の前記色光を出射するレーザー光源のサイズと略同一に分割する光束分割素子と、を備え、
    前記光束分割素子は、
    入射角が30度のビームスプリッター面と反射面を備えたプリズムと、
    前記プリズムの前記ビームスプリッター面に空気層を設けて接合するプリズムと、を有するプリズムアレイである、光源装置。
  2. 前記動的拡散板はガラス基板の表面に微細な凹凸形状もしくはレンズ形状を円周状に形成した円形拡散板とモーターを備えた回転拡散板である、請求項1記載の光源装置。
  3. 前記赤色レーザー光源、前記緑色レーザー光源及び前記青色レーザー光源を出射する光が直線偏光の光である、請求項1または2に記載の光源装置。
  4. 請求項1から3のいずれかに記載の光源装置と、
    前記光源装置からの光を集光する照明光学系と、
    前記照明光学系からの光で照明され、映像信号に応じて画像を形成する画像形成素子と、
    前記画像形成素子で形成された画像を拡大投写する投写レンズと、を備える、投写型表示装置。
  5. 前記画像形成素子が液晶パネルである、請求項4に記載の投写型表示装置。
  6. 前記画像形成素子がミラー偏向型のデジタル・マイクロミラー・デバイス(DMD)である、請求項4に記載の投写型表示装置。
JP2018105740A 2017-09-01 2018-06-01 光源装置および投写型表示装置 Active JP7113172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/058,407 US10634982B2 (en) 2017-09-01 2018-08-08 Light source device and projection display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168202 2017-09-01
JP2017168202 2017-09-01

Publications (2)

Publication Number Publication Date
JP2019045846A JP2019045846A (ja) 2019-03-22
JP7113172B2 true JP7113172B2 (ja) 2022-08-05

Family

ID=65814323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105740A Active JP7113172B2 (ja) 2017-09-01 2018-06-01 光源装置および投写型表示装置

Country Status (1)

Country Link
JP (1) JP7113172B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990897B (zh) * 2019-04-17 2023-12-22 北京理工大学珠海学院 一种激光光谱仪
WO2023037729A1 (ja) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 投写型画像表示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027703A (ja) 1999-07-14 2001-01-30 Onkyo Corp 分光プリズム装置
JP2007316295A (ja) 2006-05-25 2007-12-06 Necディスプレイソリューションズ株式会社 照明装置とその照明装置を用いたプロジェクタ
CN201689259U (zh) 2010-01-15 2010-12-29 上海三鑫科技发展有限公司 微型投影模块及设备
JP3174812U (ja) 2009-03-06 2012-04-12 上海三▲しん▼科技発展有限公司 小型プロジェクター用光学エンジン
JP2014163974A (ja) 2013-02-21 2014-09-08 Seiko Epson Corp 光源装置およびプロジェクター
JP2015203857A (ja) 2014-04-16 2015-11-16 セイコーエプソン株式会社 照明装置およびプロジェクター
KR101587788B1 (ko) 2015-02-13 2016-01-22 주식회사 크레모텍 레이저다이오드 액정 프로젝터
JP2016224186A (ja) 2015-05-28 2016-12-28 デクセリアルズ株式会社 光源ユニット及び投影装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271848A (ja) * 1995-03-29 1996-10-18 Hitachi Ltd 液晶プロジェクタ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027703A (ja) 1999-07-14 2001-01-30 Onkyo Corp 分光プリズム装置
JP2007316295A (ja) 2006-05-25 2007-12-06 Necディスプレイソリューションズ株式会社 照明装置とその照明装置を用いたプロジェクタ
JP3174812U (ja) 2009-03-06 2012-04-12 上海三▲しん▼科技発展有限公司 小型プロジェクター用光学エンジン
CN201689259U (zh) 2010-01-15 2010-12-29 上海三鑫科技发展有限公司 微型投影模块及设备
JP2014163974A (ja) 2013-02-21 2014-09-08 Seiko Epson Corp 光源装置およびプロジェクター
JP2015203857A (ja) 2014-04-16 2015-11-16 セイコーエプソン株式会社 照明装置およびプロジェクター
KR101587788B1 (ko) 2015-02-13 2016-01-22 주식회사 크레모텍 레이저다이오드 액정 프로젝터
JP2016224186A (ja) 2015-05-28 2016-12-28 デクセリアルズ株式会社 光源ユニット及び投影装置

Also Published As

Publication number Publication date
JP2019045846A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP7312944B2 (ja) 光源装置および投写型表示装置
JP7108840B2 (ja) 光源装置及び投写型立体表示装置
JP7065273B2 (ja) 光源装置および投写型表示装置
US10914876B2 (en) Light source device and projection display apparatus
US10634982B2 (en) Light source device and projection display apparatus
US20210011365A1 (en) Light source device and projection display device
JP7336762B2 (ja) 光源装置及び投写型表示装置
JP7113172B2 (ja) 光源装置および投写型表示装置
JP7113225B2 (ja) 光源装置および投写型表示装置
JP2009025514A (ja) 画像投影装置
JP2019184947A (ja) 光源装置および投写型表示装置
JP2020197621A (ja) 光源装置および投写型表示装置
US20210405517A1 (en) Light source device and projection display apparatus
JP7149457B2 (ja) 光源装置、及び投写型画像表示装置
JP7329731B2 (ja) 光源装置および投写型表示装置
JP7129607B2 (ja) 光源装置および投写型表示装置
WO2022092009A1 (ja) 光源装置および投写型表示装置
JP7507339B2 (ja) 光源装置および投写型表示装置
JP7243529B2 (ja) 照明光学装置及びプロジェクター
JP2021135333A (ja) 光源装置および投写型表示装置
JP2001305485A (ja) プロジェクタ
JP2022017670A (ja) 光源装置および投写型表示装置
JP2021103201A (ja) 光源装置およびプロジェクター
JP2018013547A (ja) 照明光学装置および投写型表示装置
JPH05341255A (ja) 光源装置および投影型液晶画像表示装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7113172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151