WO2016104686A1 - 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法 - Google Patents

積層鉄心用の打抜き加工方法及び積層鉄心の製造方法 Download PDF

Info

Publication number
WO2016104686A1
WO2016104686A1 PCT/JP2015/086190 JP2015086190W WO2016104686A1 WO 2016104686 A1 WO2016104686 A1 WO 2016104686A1 JP 2015086190 W JP2015086190 W JP 2015086190W WO 2016104686 A1 WO2016104686 A1 WO 2016104686A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
punching
steel plates
core
closed curve
Prior art date
Application number
PCT/JP2015/086190
Other languages
English (en)
French (fr)
Inventor
千田 邦浩
正憲 上坂
尾田 善彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/538,530 priority Critical patent/US10898939B2/en
Priority to CN201580070267.0A priority patent/CN107107154B/zh
Priority to MX2017008359A priority patent/MX2017008359A/es
Priority to KR1020177016743A priority patent/KR101951823B1/ko
Priority to CA2971381A priority patent/CA2971381C/en
Priority to EP15873254.5A priority patent/EP3238847B1/en
Priority to RU2017126492A priority patent/RU2678115C1/ru
Publication of WO2016104686A1 publication Critical patent/WO2016104686A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/14Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/10Incompletely punching in such a manner that the parts are still coherent with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/03Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/03Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
    • B21D39/031Joining superposed plates by locally deforming without slitting or piercing
    • B21D39/032Joining superposed plates by locally deforming without slitting or piercing by fitting a projecting part integral with one plate in a hole of the other plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated

Definitions

  • the present invention relates to a punching method for a laminated core and a method for manufacturing the laminated core.
  • the iron cores for motors and generators are manufactured by punching a magnetic steel sheet with a thin plate thickness to suppress iron loss.
  • a mold for processing is installed in a press machine, and each part of the iron core is punched out while feeding a steel sheet slit to a predetermined width by a coil feeder, and then integrated by stamping in the mold or after punching After the core piece is taken out of the mold, it is integrated by welding or bolting to produce an iron core.
  • an iron core manufactured by laminating and integrating thin electromagnetic steel sheets will be referred to as a “laminated iron core”.
  • the steel core is formed from the steel sheet by forming the shape of the iron core while sequentially feeding the steel sheet to the next pressing process in the mold and punching the outer periphery of the iron core in the final pressing process.
  • a method of detaching is generally adopted.
  • the method of integrating the laminated cores by fitting the caulking projections using the lowering action of the punch is also an industrial production of iron cores using caulking. It is adopted in.
  • Patent Document 1 and Patent Document 2 before the punching process at the initial stage of the press process in the mold is performed.
  • a technique for fixing steel plates to each other using caulking or the like has been proposed.
  • Patent Document 3 a united locking portion is formed to fix the steel plates to each other, and the convex portion is flattened using a pushback so that the convex shape of the combined locking portion does not become an obstacle in the lamination process.
  • Techniques for chemical processing have been proposed. All of these conventional techniques are measures against the problem of deterioration of dimensional accuracy when a plurality of steel sheets are simultaneously punched.
  • Patent Documents 4 and 5 a single press is used to punch a plurality of steel sheets while preventing an increase in sagging and burrs by using a die having a plurality of portions corresponding to punches and dies inside. Technologies that can be implemented simultaneously in the process have been proposed.
  • JP-A-55-156623 JP 2003-153503 A Japanese Patent Laying-Open No. 2005-261038 JP 2012-115893 A JP 2012-115894 A JP 2005-348456 A
  • Patent Document 6 when a plurality of steel plates are overlapped and punched, the longitudinal end surfaces of the steel plates are welded, or 80% or more of the steel plate plane is 3 ⁇ m or more in thickness using a semi-cured resin.
  • a technique has been proposed in which punching and caulking are simultaneously performed after bonding with an adhesive layer.
  • this technique has a problem in terms of productivity and manufacturing cost because it is necessary to process a wide area such as 80% or more of the longitudinal end face or flat surface of the steel sheet.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a punching method for a laminated core capable of manufacturing a laminated core with high productivity while minimizing deterioration of magnetic properties of the laminated core, and It is providing the manufacturing method of a laminated iron core.
  • the inventors of the present invention have a closed curve corresponding to the outermost punching portion of the iron core in the outermost punching process of the iron core, which has the longest circumference and is likely to cause deterioration of magnetic properties. It was thought that the steel plates were fixed to each other by punching in a state where the steel plates were superposed after both sides of the steel plate were previously fixed, and the deterioration of the magnetic properties of the iron core due to the punching processing could be suppressed. The inventors of the present invention have arrived at the present invention by examining in detail the conditions required for the fixing portion from the viewpoint of suppressing the deterioration of the magnetic properties of the iron core due to punching.
  • the punching method for a laminated iron core is a method of punching a plurality of steel sheets in a state where a plurality of steel sheets are continuously fed into a mold and overlapped in a plurality of steps provided in the mold.
  • the first fixed part located outside the closed curve corresponding to the outermost periphery of the laminated core and the second fixed part finally located in the part that becomes the laminated core
  • the method includes a step of punching the outermost periphery of the laminated iron core after fixing a plurality of stacked steel plates to each other.
  • the length of the line segment connecting the first fixing portion and the second fixing portion is 400 times the average plate thickness of the plurality of steel plates.
  • the number of sets of the first fixing portion and the second fixing portion, which are the following, is set to 0.5 or more on average per 100 mm of the length of the closed curve.
  • the length of the line segment connecting the first fixing portion and the second fixing portion is 400 times the average plate thickness of the plurality of steel plates.
  • the average value of the distance between the fixed portion and the closed curve is 250 times or less the average plate thickness of a plurality of steel plates.
  • the punching method for a laminated core according to the present invention is the above-described invention, wherein the fixing method of the plurality of steel plates in the second fixing part is a fixing method using caulking protrusions for forming the laminated core. It is characterized by being.
  • the method for producing a laminated core according to the present invention includes a step of producing a laminated core by laminating and integrating the steel plates that have been punched by the punching method for a laminated core according to the present invention. To do.
  • the punching method for a laminated core and the method for producing a laminated core according to the present invention it is possible to produce a laminated core with high productivity while minimizing the deterioration of the magnetic properties of the laminated core.
  • FIG. 1 is a schematic diagram showing a configuration of a punching apparatus.
  • FIG. 2 is a schematic diagram showing the configuration of the stator core and the fixing portion.
  • FIG. 3 is a schematic diagram showing the configuration of the stator core and the fixing portion.
  • FIG. 4A is a schematic diagram illustrating a configuration of a stator core and a fixing portion.
  • FIG. 4B is a schematic diagram illustrating the configuration of the stator core and the fixing portion.
  • FIG. 5 is a diagram showing the relationship between the length of the line segment AB and the number of sets of fixed portions F A and F B per unit length of the closed curve L and the motor efficiency.
  • FIG. 6 is a schematic diagram showing the configuration of the stator core and the fixing portion.
  • FIG. 7 is a diagram illustrating the relationship between the distance between the closed curve L and the fixed portions F A and F B and the motor efficiency.
  • Figure 8 is a diagram showing a relationship between the fixed portion F A, the ratio a motor efficiency of a portion having no F B in the closed curve L.
  • FIG. 9 is a schematic diagram for explaining a process of fixing the steel plates to each other using caulking protrusions.
  • the present invention can be applied to a punching apparatus 1 as shown in FIG.
  • the punching apparatus 1 shown in FIG. 1 slits a predetermined width and then discharges a plurality of steel plates 2a to 2c wound in a coil shape by the discharging apparatuses 3a to 3c, and then uses the pinch roll 4 to A plurality of steel plates 2a to 2c are continuously inserted into the press machine 5 in an overlapped state, and the punching of the steel plates 2a to 2c is continuously performed in the press machine 5 using a mold 6 having a plurality of press processes.
  • It is a device that performs automatically.
  • reference numerals 7, 8, 9, and 10 denote a punch, a plate presser, a die, and a die hole, respectively.
  • a symbol a indicates a gap (clearance) between the side surface of the punch 7 and the side surface of the die hole 10.
  • punching of iron cores when punching out a portion with a large outer diameter, the amount of deformation near the punching end increases, and the magnetic properties tend to deteriorate.
  • punching of the outermost periphery of the iron core has a long peripheral length to be processed at one time, and in the case of a stator core, the inner peripheral side (inside the tip of the teeth) is punched and the restraining force (rigidity) inside the steel sheet itself ) Is reduced, the outermost punching process is performed, so that the punching end is likely to be distorted. For this reason, when punching is performed in a state where a plurality of steel plates are overlapped, the magnetic properties of the iron core are likely to deteriorate during the outermost punching.
  • the fixed portion F A placed outside across the closed curve L corresponding to the outermost periphery of the core, the part at the same time as the inner core of the closed curve L disposing the fixing portion F B.
  • the fixing unit F A and the fixing portion F B is may be provided at the same time in the mold process, it may be provided in a separate step. Further, one may be formed first to the fixed portion F A and the fixing portion F B. However, in order to increase the rigidity of the entire steel sheet, because of a high effect towards the fixed portion F A, located outside the outermost may be formed ahead towards the fixed portion F A.
  • the present invention when performing a punching process by stacking a plurality of steel sheets, by providing a portion for fixing the steel sheets to each other across a line (line segment or closed curve) cut by the punching process, The deformation of the edge of the steel plate is minimized and the deterioration of the magnetic properties of the iron core is suppressed.
  • closed curve L corresponds to the outermost periphery of the stator core, placing the fixing portion F A to the portion to be discarded as the remainder of the stamped iron core disposing the fixing portion F B in the portion to be a.
  • the fixed portion F A and the fixed portion F B are sufficiently close to each other. Furthermore, for the reasons mentioned above, the intersection of all the closed curve L line segment AB and punching is carried out connecting the fixed portion F A and the fixing portion F B is preferably set to 1 point.
  • the deformation amount of the steel plate in the punching process depends on the plate thickness of the steel plate, and the rigidity decreases as the plate thickness decreases. Therefore, the deformation amount at the punching end (here, the case of punching with one steel plate) Degree of deterioration) increases.
  • the magnetic properties of the iron core are suppressed by setting the length of the line segment AB connecting the fixed portion F A and the fixed portion F B to a certain value or less according to the average thickness of the steel plates to be superimposed. be able to. Specifically, as shown in FIG. 5, deterioration of motor efficiency is suppressed by setting the length of the line segment AB to 400 times or less (preferably 250 times or less) of the average thickness of the steel plates to be superimposed.
  • the arrangement of the fixing portions F A and F B may be such that the line segment AB and the closed curve L do not necessarily intersect at a right angle as shown in FIG. 4-2 (e).
  • a set of fixed portions F A and F B satisfying the above condition at a certain ratio or more (the average thickness of the steel plates on which the lengths of the line segments AB are superimposed) A set of fixed portions F A and F B ) that is 400 times or less.
  • the set of the fixed portions F A and F B whose length of the line segment AB is 400 times or less of the average thickness of the steel plates to be superimposed is 0.5 per 100 mm of the length of the closed curve L. This is suggested as a preferred range, which limits the scope of the present invention.
  • one fixed portion F A forms a set of two or more fixed portions F A and F B. To do. Even in such a case, as a set of two or more fixed portions F A and F B at the same time contributes to prevention of deformation during punching, it can be considered as a set of fixed portions F A and F B in the closed curve L. . Further, when the set of fixed portions F A and F B satisfying the condition regarding the line segment AB is distributed in an unbalanced manner with respect to the closed curve L, it is difficult to obtain a desired effect. As shown in FIG.
  • the distance between the fixed portions F A and F B which are both ends of the line segment AB and the closed curve L is the length of the perpendicular line (closest distance between the fixed portion and the closed curve) drawn from the respective fixed portions to the closed curve L. To do. If the distance between the fixed portions F A and F B and the closed curve L varies, the distance between the fixed portion F A and F B closer to the closed curve L and the closed curve L is measured. These average values may be adopted.
  • a method such as spot welding or partial application of an adhesive can be applied as a method of fixing the steel plates to each other.
  • methods such as spot welding and partial application of adhesives it is expected that the effect of suppressing the deterioration of magnetic properties will be obtained by performing it over a wide range of steel sheets. However, if these areas become large, productivity will decrease. Invite. For this reason, it is desirable that the above-described method has as few points as possible, and the conditions specified in the present invention are suitable.
  • the union locking part provided in the portion used as the iron core in the technique described in Patent Document 3 has a certain amount of area and is crushed by pushback, it is subjected to strong processing including its surroundings. Even in the locking part, the magnetic properties of the iron core are significantly deteriorated. On the other hand, the magnetic properties of the iron core do not deteriorate with the method of partial application of the adhesive, and the portion where the magnetic properties are deteriorated with the spot welding method is a very limited region. The adverse effect on the characteristics is small.
  • a fixing method by caulking is suitable from the viewpoint of productivity as a method of fixing the iron cores to each other.
  • the fixing method by caulking it is possible to fix the steel plates before punching by forming protrusions for caulking in the final pressing step in a state where a plurality of steel plates are overlapped.
  • the core pieces can be integrated to manufacture a highly efficient iron core.
  • FIG. 9 shows a schematic diagram of such a process.
  • the steel plates 2a and 2b conveyed immediately above the holes 10a and 10b formed in the lower mold 21 are punched by the punches 7a and 7b lowered from the upper mold 23, thereby forming the holes 10a and 10b.
  • the punch 7c lowered from the upper die 23 is used to punch the outermost periphery of the iron core, and then the upper surface of the steel plate conveyed first.
  • the caulking projections 25 are stacked so as to overlap each other, and the caulking projections 25 are pushed into the caulking projections 25 of the lower steel plate by the caulking fastening punches 7d, and the steel plates are fixed to each other by fitting.
  • the united locking portion is formed by being crushed by pushback, so it does not have a caulking function, and caulking for joining the steel plates needs to be provided separately. For this reason, the magnetic properties of the iron core are remarkably deteriorated by processing both the united locking portion and the crimping.
  • the present invention uses the projections finally used as caulking as a means for bonding and fixing the steel plates even during the punching process, the deterioration of the magnetic properties of the iron core and the normal caulking core It is suppressed to the same extent.
  • the steel plates are bonded together by a method with little deterioration of magnetic properties such as spot welding or partial application of adhesive on both sides sandwiching a portion (closed curve L) subjected to shearing before punching.
  • the method of fixing the steel plates to each other is formed by forming protrusions that eventually become crimps for iron core manufacture, and using this.
  • Fixing method by adhesive, fixing method by spot welding, and fixing method by forming caulking projections can be used in combination.
  • fixing part outside the iron core is fixing method by spot welding, and fixing inside iron core is by forming caulking projections It is good also as a fixing method.
  • the present invention can be used as a method for manufacturing an integrated laminated core by fixing the core pieces punched by the above method to each other inside the mold.
  • a manufacturing method of an integral laminated iron core a method using an adhesive, a method of welding the side surfaces of laminated steel plates, or a case where a protrusion for caulking fastening is provided in the middle of a mold, a final pressing step A method of bonding steel plates to each other by caulking protrusions can be implemented.
  • the mold in the present invention is a mold that realizes the above-described method.
  • spot welding, fast-drying adhesive application, or a plurality of steel plates are stacked on both sides of the closed curve L that is the outermost periphery of the iron core.
  • the closed curve L that is the outermost periphery of the iron core.
  • the outermost outer periphery of the core piece is cut from the steel plate by shearing (shearing).
  • Example 1 The apparatus shown in FIG. 1 is used to simultaneously punch two magnetic steel sheets having a thickness of 0.20 mm and a width of 210 mm, and caulking is performed in the mold, and the brushless DC shown in FIGS. 2 (a) and 2 (b).
  • a motor stator core (outer diameter 200 mm, 12 slots, teeth width 14 mm, back yoke width 10 mm) was produced.
  • the die for punching has a structure in which press working is sequentially performed in all five steps of progressive feeding.
  • the first step of the mold has a function of applying an adhesive to a predetermined position of the steel plate, and the fixed portions F A and F B shown in FIGS. 2A and 2B with respect to the final shape of the stator core.
  • FIG. 2 (a) disposed at a position outside from the outermost periphery of the fixing portion F A is the core (b), the fixing unit F B is disposed at a position inside the core, segment AB
  • the length of was as shown in FIGS. 2 (a) and 2 (b). It was also performed processed without the fixing portion F A or the fixed part F B for comparison.
  • a rare earth magnet embedded motor was manufactured using the stator core manufactured above, and the motor efficiency at the rated output was measured. The results are shown in Table 1 below. Furthermore, also described details about the fixing portion F A, F B provided in the outer and the stator core of the outermost periphery of the stator core in Table 1. As shown in Table 1, with respect to the set of fixed portions F A and F B existing on both sides of the closed curve L, the set of the closed curve L defined by the present invention is a set in which the line segment AB is 400 times or less the average plate thickness of the steel plate. It was confirmed that particularly high motor efficiency can be obtained when the length is 0.5 or more per 100 mm.
  • a brushless DC motor shown in FIGS. 3 (a) to 3 (c) is obtained by simultaneously punching three electromagnetic steel plates having a thickness of 0.15 mm and a plate width of 210 mm using the apparatus shown in FIG.
  • Stator cores outer diameter 200 mm, 12 slots, teeth width 12 mm, back yoke width 8 mm
  • round caulking (diameter is provided at the positions of fixing portions F A and F B shown in FIGS.
  • the inner periphery of the core, the slot portion, and the outer periphery of the core were punched.
  • round caulking protrusions were fitted in the mold to produce an integral stator iron core.
  • stator iron core Using the obtained stator iron core, a rare earth magnet embedded motor was manufactured, and the motor efficiency was measured under rated output conditions. As a result, the stator core shown in FIG. 3A (example) is 92.8%, the stator core shown in FIG. 3B (comparative example) is 91.8%, and shown in FIG. The stator core (comparative example) was 91.5%, and particularly excellent motor characteristics were obtained with the stator core shown in FIG.
  • Example 3 For the brushless DC motor shown in FIGS. 4-1 and 4-2, two electromagnetic steel plates having a thickness of 0.20 mm and a width of 260 mm are simultaneously punched using the apparatus shown in FIG. the stator core (outer diameter 250 mm, 12 slots, teeth width 15 mm, a back yoke width 11 mm) to prepare a fixing portion F a shown in FIG.
  • the stator core outer diameter 250 mm, 12 slots, teeth width 15 mm, a back yoke width 11 mm
  • stator iron core Using this stator iron core, a rare earth magnet embedded motor was fabricated, and the motor efficiency was measured under rated output conditions.
  • FIG. 5 shows the relationship between the motor efficiency and the number of sets of fixed portions F A and F B that satisfy the conditions of the present invention per 100 mm circumference of the closed curve L and the ratio of the line segment AB to the average plate thickness of the steel sheet.
  • the ratio of the line segment AB to the average plate thickness of the steel sheet and the number of sets of fixed portions F A and F B per 100 mm length of the closed curve L are controlled within the range defined in the present invention. Thus, it was confirmed that high motor efficiency can be obtained.
  • Example 4 Using the apparatus shown in FIG. 1, three electromagnetic steel sheets each having a plate thickness of 0.10, 0.15, 0.20 mm and a plate width of 260 mm are simultaneously punched and caulked in a mold.
  • a stator core for a brushless DC motor shown in FIGS. 1 and 4-2 (outer diameter 200 mm, 12 slots, teeth width 14 mm, back yoke width 10 mm) is manufactured, and a fixed portion F shown in FIGS.
  • a rare earth magnet embedded motor was fabricated, and the motor efficiency was measured under rated output conditions.
  • the fixing portion F A, of the distance between the distance and the fixed part F B and the closed curve L between the distance (fixed portion F A and the closed curve L between the F B and closed curves L In particular, a high motor efficiency was obtained by setting the shorter one to 250 times or less the average thickness of the steel plate. Further, as shown in FIG. 5, high motor efficiency was obtained by controlling the number of sets of the fixed portions F A and F B per 100 mm in length of the closed curve L within the range defined in the present invention. Further, as shown in FIG.
  • the present invention it is possible to provide a punching method for a laminated core and a method for producing a laminated core capable of producing a laminated core with high productivity while minimizing the deterioration of the magnetic properties of the laminated core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Punching Or Piercing (AREA)

Abstract

 本発明に係る積層鉄心用の打抜き加工方法は、複数枚の鋼板を連続的に金型内に送り込み、金型内に設けた複数の工程において重ね合わせた状態で複数枚の鋼板の打抜き加工を行う積層鉄心用の打抜き加工方法であって、積層鉄心の最外周に相当する閉曲線Lの外側に位置する固定部Fと最終的に積層鉄心となる部分に位置する固定部Fにおいて重ね合わされた複数枚の鋼板を互いに固定させた後に積層鉄心の最外周の打抜き加工を行うステップを含むことを特徴とする。

Description

積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
 本発明は、積層鉄心用の打抜き加工方法及び積層鉄心の製造方法に関する。
 近年、電気自動車やハイブリッド電気自動車を中心として、モータや発電機の軽量化を目的とした鉄心の小型化が志向されており、またモータや発電機の出力確保のために高回転化(高周波化)が進んでいる。このため、鉄心の鉄損抑制の観点から、鉄心を構成する電磁鋼板として、板厚0.30mm以下といった以前よりも板厚の薄い電磁鋼板に対する要請が高まっている。
 モータや発電機用の鉄心は、鉄損抑制のために板厚を薄くした電磁鋼板を母材とし、これを打抜き加工することによって製造されている。打抜き加工では、加工用の金型をプレス機に設置し、コイル送り装置によって所定幅にスリットした鋼板を送り出しながら鉄心各部を打ち抜き、金型の中でカシメを施して一体化させる又は打抜き加工後の鉄心用素片を金型から取り出した後、溶接やボルト固定にて一体化させることにより、鉄心を製造する。以下、薄い電磁鋼板を積層・一体化することによって製造される鉄心を「積層鉄心」と呼ぶこととする。
 積層鉄心の工業的な製造では、鋼板を金型内で順次、次のプレス工程に送りつつ鉄心の形状を形成し、最終プレス工程において鉄心外周を打抜くことによって、鉄心用素片を鋼板から離脱させる方法が一般的に採用されている。また、最終プレス工程にて鋼板から鉄心用素片が離脱した後、パンチの下降動作を利用してカシメ突起同士を嵌合させて積層鉄心を一体化させる方法もカシメを用いた鉄心の工業生産で採用されている。
 上記のようなプレス加工が一般的に用いられる理由は生産性に優れているためである。しかしながら、通常の打抜き加工では、鉄心用素片を1枚ずつ打ち抜く必要があるために、鋼板の板厚が薄くなると同じ積層厚に対して必要となる枚数が多くなり、効率が急激に低下する。このような問題を解決するために、複数枚の鋼板を重ね合わせた状態で鋼板を打ち抜く技術が提案され、さらにそれに付随する問題点に対する解決策が提案されている。
 例えば複数枚の鋼板を同時に重ね合わせて金型内に送る場合の鋼板間のずれの問題に対しては、特許文献1及び特許文献2に金型内のプレス工程初期の打抜き加工が行われる以前の工程でカシメ等を用いて鋼板同士を互いに固定する技術が提案されている。また、特許文献3には、鋼板同士を互いに固定するために合体係止部を形成し、さらに積層工程で合体係止部の凸形状が障害とならないようにプッシュバックを用いて凸部を平坦化加工する技術が提案されている。これらの従来技術はいずれも複数枚の鋼板を同時に打抜く際の寸法精度の劣化の問題への対策である。さらに、特許文献4,5には、内部にパンチとダイに相当する部分を複数有する金型を利用することによって、ダレやカエリの増加を防止しつつ複数枚の鋼板の打抜き加工を1つのプレス工程で同時に実施可能な技術が提案されている。
特開昭55-156623号公報 特開2003-153503号公報 特開2005-261038号公報 特開2012-115893号公報 特開2012-115894号公報 特開2005-348456号公報
 複数枚の鋼板を重ね合わせて同時に打ち抜く際の問題点として、鉄心の磁気特性の劣化の問題がある。一般に、打抜き加工では、打抜き加工端部が強い塑性変形を受けるため、打抜き加工端部付近に塑性歪が残留し、磁気特性が劣化する。また、磁気特性の劣化量を定量的に評価すると塑性歪のみでは説明できないことから、塑性変形に付随して残留する弾性歪も磁気特性の劣化に影響を及ぼしていると考えられている。このように打抜き加工は生産性に優れる反面、鉄心の磁気特性を劣化させるという問題点を有している。特に複数枚重ね合わせた鋼板に対して打抜き加工を行った場合、鋼板間の拘束力が弱いため、塑性変形部が大きく広がり、打抜き加工を1枚毎に行った場合に比べて鉄心の磁気特性が劣化する。
 しかしながら、従来技術は打抜き加工による鉄心の寸法精度の劣化やダレ・カエリ量の増加に着目しているのみであり、鉄心の磁気特性の劣化に対する改善策は提案されていない。詳しくは、特許文献3記載の技術では、積層状態での打抜き加工に伴う鉄心の磁気特性の劣化の問題が考慮されていないだけでなく、プッシュバックという余分な加工を必要とするために、金型機構が複雑になり、コストやメンテナンスの点で不利となる。また、鉄心同士を互いに固定するには合体係止部以外にカシメを施す必要があるために、合体係止部とカシメとの両方の加工の影響で鉄心の磁気特性の劣化が避けられない。また、特許文献4,5記載の技術では、複数枚の鋼板を直接重ね合わせた状態で打抜き加工を行っているわけではないので、磁気特性の劣化に関しては有利であるものの、金型構造が複雑になるために金型コストが大幅に増加する。また、複数のパンチとダイとを用いて打抜いた複数の鉄心用素片を効率的に集積、結合させるための技術は提案されていない。
 なお、特許文献6には、複数枚の鋼板を重ね合わせて打抜き加工を行うにあたり、鋼板の長手方向端面を溶接するか、半硬化樹脂を用いて鋼板平面の80%以上を3μm以上の厚さの接着層により貼り合わせてから打抜き加工とカシメとを同時に行う技術が提案されている。しかしながら、この技術では、鋼板の長手方向端面や平面の80%以上といった広い領域を処理する必要があるために、生産性や製造コストの点で問題がある。
 本発明は、上記に鑑みてなされたものであって、その目的は、積層鉄心の磁気特性の劣化を最小限に抑えつつ、生産性高く積層鉄心を製造可能な積層鉄心用の打抜き加工方法及び積層鉄心の製造方法を提供することにある。
 本発明の発明者らは、鋭意研究を重ねてきた結果、周長が最も長く磁気特性の劣化を起こしやすい鉄心の最外周の打抜き加工工程において、鉄心の最外周の打抜き加工部分に対応する閉曲線の両側を予め固定してから鋼板同士を重ね合わせた状態で打抜き加工を行うことによって、鋼板が互いに固定された状態となり、打抜き加工による鉄心の磁気特性の劣化を抑制できると考えた。そして、本発明の発明者らは、打抜き加工による鉄心の磁気特性の劣化を抑制する観点から固定部が必要とする条件を詳細に検討することによって本発明を想到するに至った。
 本発明に係る積層鉄心用の打抜き加工方法は、複数枚の鋼板を連続的に金型内に送り込み、該金型内に設けた複数の工程において重ね合わせた状態で複数枚の鋼板の打抜き加工を行う積層鉄心用の打抜き加工方法であって、積層鉄心の最外周に相当する閉曲線の外側に位置する第1の固定部と最終的に積層鉄心となる部分に位置する第2の固定部において重ね合わされた複数枚の鋼板を互いに固定させた後に積層鉄心の最外周の打抜き加工を行うステップを含むことを特徴とする。
 本発明に係る積層鉄心用の打抜き加工方法は、上記発明において、前記第1の固定部と前記第2の固定部とを結ぶ線分の長さが複数枚の鋼板の平均板厚の400倍以下である第1の固定部と第2の固定部との組の数を、前記閉曲線の長さ100mm当たりの平均で0.5個以上とすることを特徴とする。
 本発明に係る積層鉄心用の打抜き加工方法は、上記発明において、前記第1の固定部と前記第2の固定部とを結ぶ線分の長さが複数枚の鋼板の平均板厚の400倍以下である第1の固定部と第2の固定部との組について、前記第1の固定部と前記閉曲線との間の距離及び前記第2の固定部と前記閉曲線との間の距離のうちの短い方を固定部と前記閉曲線との間の距離としたとき、前記固定部と前記閉曲線との間の距離の平均値を複数枚の鋼板の平均板厚の250倍以下とすることを特徴とする。
 本発明に係る積層鉄心用の打抜き加工方法は、上記発明において、前記第2の固定部における複数枚の鋼板の固定方法が、積層鉄心を形成するためのカシメ用の突起を用いた固定方法であることを特徴とする。
 本発明に係る積層鉄心の製造方法は、本発明に係る積層鉄心用の打抜き加工方法によって打抜き加工が施された鋼板を積層、一体化することによって積層鉄心を製造するステップを含むことを特徴とする。
 本発明に係る積層鉄心用の打抜き加工方法及び積層鉄心の製造方法によれば、積層鉄心の磁気特性の劣化を最小限に抑えつつ、生産性高く積層鉄心を製造することができる。
図1は、打抜き加工装置の構成を示す模式図である。 図2は、固定子鉄心と固定部の構成を示す模式図である。 図3は、固定子鉄心と固定部の構成を示す模式図である。 図4-1は、固定子鉄心と固定部の構成を示す模式図である。 図4-2は、固定子鉄心と固定部の構成を示す模式図である。 図5は、線分ABの長さ及び閉曲線Lの単位長さ当りの固定部F,Fの組の数とモータ効率との関係を示す図である。 図6は、固定子鉄心と固定部の構成を示す模式図である。 図7は、閉曲線Lと固定部F,Fとの間の距離とモータ効率との関係を示す図である。 図8は、閉曲線Lにおいて固定部F,Fの無い部分の比率とモータ効率との関係を示す図である。 図9は、カシメ突起を利用して鋼板を互いに固定する工程を説明するための模式図である。
 以下、図面を参照して、本発明に係る積層鉄心用の打抜き加工方法及び積層鉄心の製造方法について説明する。
〔適用範囲〕
 始めに、図1を参照して、本発明の適用範囲について説明する。
 本発明は、図1に示すような打抜き加工装置1に適用することができる。詳しくは、図1に示す打抜き加工装置1は、所定の幅にスリット加工後、コイル状に巻き取られた複数枚の鋼板2a~2cを払い出し装置3a~3cで払い出した後、ピンチロール4によって複数枚の鋼板2a~2cを重ね合わせた状態でプレス機5内に連続的に挿入し、プレス機5内において複数のプレス工程を有する金型6を用いて鋼板2a~2cの打抜き加工を連続的に行う装置である。なお、図1において、符号7,8,9,10はそれぞれ、パンチ、板押さえ、ダイ、及びダイホールを示している。また、符号aは、パンチ7の側面とダイホール10の側面との間の空隙(クリアランス)を示している。
 本発明を図1に示す打抜き加工装置1に適用することによって、磁気特性に優れた鉄心を高効率で生産することができる。また、本発明を通常の打抜き加工では生産効率の低下が著しい板厚0.30mm以下の電磁鋼板の打抜き加工工程に適用することによって生産性の向上を図ることができる。さらに、本発明を打抜き加工後に積層して生産される各種の積層鉄心製品、中でも打抜き加工端部に蓄積した歪みの低下によって鉄心の磁気特性の改善が達成されるモータや発電機用の鉄心の製造に適用することによって高い効果を発揮できる。
〔打抜き加工前の鋼板の固定部〕
 次に、本発明における打抜き加工前の鋼板の固定部について説明する。
 鉄心の打抜き加工においては、外径の大きい部分を打ち抜く場合、打抜き加工端部付近の変形量が大きくなり、磁気特性の劣化が起こりやすい。特に鉄心の最外周の打抜き加工は、一度に加工する周長が長く、さらに固定子鉄心の場合、内周側(ティース先端部の内側)が打抜かれて鋼板自身の内部での拘束力(剛性)が低下した状態で最外周の打抜き加工が行われるので、打抜き加工端部に歪みが入りやすい。このため、複数枚の鋼板を重ね合わせた状態で打抜き加工を行う場合、最外周の打抜き加工の際に鉄心の磁気特性の劣化が起こりやすい。
 そこで、本発明では、例えば図2(a)に示すように、鉄心の最外周に相当する閉曲線Lを挟んで外側に固定部Fを配置し、同時に閉曲線Lの内側の鉄心となる部分に固定部Fを配置する。これにより、重ね合わされた鋼板を打抜く際に鋼板同士の結合力が高まり、鋼板同士の境界付近の部分がクリアランス内に引き込まれつつ変形する度合いが低下するので、磁気特性の劣化を抑制できる。
 このような効果を得るためには、最外周の打抜き加工が行われる以前に固定部Fと固定部Fとで鋼板同士が確実に固定されている必要があり、最外周の打抜き加工が行われる工程よりも前の金型内工程で固定部Fと固定部Fとでの固定が行われている必要がある。また、固定部Fは鉄心の最外周よりも外側に配置されるため、金型内で重ね合わせた鋼板を送る際に鋼板全体の剛性を高める作用も有し、板厚の薄い電磁鋼板を重ね合わせて送る際のトラブル防止にも寄与する。
 上記理由により、鋼板の最外周に相当する閉曲線Lの外側に固定部Fを配置し、鉄心となる部分に固定部Fを配置し、金型内の次工程以降で最外周の打抜き加工を行うとよい。なお、固定部F及び固定部Fは金型内工程の中で同時に設けてもよいし、別工程で設けてもよい。また、固定部F及び固定部Fの一方を先に形成してもよい。但し、鋼板全体の剛性を高めるためには、最外周よりも外側に位置する固定部Fの方が効果が高いため、固定部Fの方を先に形成するとよい。
〔鋼板同士を固定する位置:固定部Fと固定部Fとの間の距離〕
 次に、固定部Fと固定部Fとの間の距離について説明する。
 本発明では、複数枚の鋼板を重ね合わせて打抜き加工を行うにあたり、打抜き加工によって切り取られる線(線分又は閉曲線)を挟んで両側に鋼板同士を互いに固定する部分を設けることによって、打抜き加工の際の鋼板端部の変形を最小限に留め、鉄心の磁気特性の劣化を抑制する。例えば図3(a)に示す固定子鉄心の打抜き加工においては、閉曲線Lは固定子鉄心の最外周に相当し、打抜き加工の残余部分として廃棄される部分に固定部Fを配置し、鉄心となる部分の中に固定部Fを配置する。
 積層された鋼板が拘束を受けることなく(又は拘束条件が弱い条件で)打抜き加工された場合、クリアランス内に鋼板が引き込まれるときの変形量が大きくなり、磁気特性が劣化する。これに対して、閉曲線Lを挟んで両側の位置で重ね合わせた鋼板を固定してから打抜き加工を行うことによって、打抜き加工端部近傍の鉄心端部の変形が抑制され、鉄心の磁気特性の劣化が抑制される。
 このような効果を得るためには、固定部Fと固定部Fとが十分に近接している必要がある。また、上記に述べた理由から、固定部Fと固定部Fとを結ぶ線分ABと打抜き加工が行われる全ての閉曲線Lとの交点は1点とすることが望ましい。線分ABの間に複数の剪断加工部が存在する場合、打抜き加工中に鋼板同士を拘束する効果が分断され、本発明の効果が得られない。さらに、打抜き加工における鋼板の変形量は鋼板の板厚に依存し、板厚が薄くなるに従って剛性が低下するために打抜き加工端部での変形量(ここでは鋼板1枚で打抜いた場合に対する劣化の度合い)が大きくなる。
 これらの理由から、固定部Fと固定部Fとを結ぶ線分ABの長さを重ね合わされる鋼板の平均板厚に応じた一定値以下とすることによって、鉄心の磁気特性を抑制することができる。具体的には、図5に示すように、線分ABの長さを重ね合わされる鋼板の平均板厚の400倍以下(望ましくは250倍以下)とすることによって、モータ効率の劣化が抑制される。なお、固定部F,Fの配置としては、図4-2(e)に示したような必ずしも線分ABと閉曲線Lとが直角に交わらないような場合も可能である。
 さらに、上記で述べた効果を得るためには閉曲線Lにおいて、一定以上の割合で上記条件を満たす固定部F,Fの組(線分ABの長さが重ね合わされる鋼板の平均板厚の400倍以下である固定部F,Fの組)が存在する必要がある。図5に示した結果では、線分ABの長さが重ね合わされる鋼板の平均板厚の400倍以下となる固定部F,Fの組が閉曲線Lの長さ100mm当たり0.5個以上必要であることが好適範囲として示唆されており、これにより本発明の範囲が限定される。
 なお、固定部F,Fの配置が図4-2(e)に示すような配置である場合、1つの固定部Fが2つ以上の固定部F,Fの組を形成する。このような場合も同時に2つ以上の固定部F,Fの組として打抜き加工時の変形防止に寄与するため、閉曲線L中での固定部F,Fの組と考えることができる。また、線分ABに関する条件を満たす固定部F,Fの組が閉曲線Lに対して不均衡に分布している場合には所望の効果が得られにくい。図8に示すように、閉曲線Lにおいて固定部F,Fが存在しない部分(円弧長順位1位及び2位の円弧長の和)の長さが閉曲線L全体に占める割合が50%を上回るとモータ効率の低下が生じているので、このような部分の割合を50%未満にすることが望ましい。
〔鋼板同士を固定する位置:固定部F,Fと閉曲線Lとの間の距離〕
 次に、固定部F,Fと閉曲線Lとの間の距離について説明する。
 線分ABの長さを重ね合わされる鋼板の平均板厚に応じて制限(平均板厚の400倍以下)すると共に、このような固定部F,Fを閉曲線Lに近い位置に設けることにより、より高い効果を発揮できる。図7に示すように、固定部F,Fと閉曲線Lとの間の距離を重ね合わされる鋼板の平均板厚の250倍以下とすることにより、モータ効率の劣化が抑制される。この理由は、積層した鋼板を互いに固定する部位を剪断加工が施される部分に近接させることによって、金型のクリアランス部分での鋼板の変形が抑制され、打抜き加工端部の磁気特性の劣化が抑制されるためと考えられる。ここで、線分ABの両端となる固定部F,Fと閉曲線Lとの距離は、それぞれの固定部から閉曲線Lに下ろした垂線の長さ(固定部と閉曲線の最近接距離)とする。なお、固定部F,Fと閉曲線Lとの間の距離にバラツキがある場合には、固定部F,Fのうち閉曲線Lに近い方と閉曲線Lとの間の距離を計測し、これらの平均値を採用するとよい。
〔鋼板同士の固定方法〕
 次に、鋼板同士の固定方法について説明する。
 本発明では、鋼板同士を互いに固定する方法として、スポット溶接や接着剤の部分的な塗布等の方法を適用できる。スポット溶接や接着剤の部分的な塗布等の方法では、鋼板の広い範囲で行うことによって磁気特性の劣化抑制の効果が得られると予想されるものの、これらの面積が広くなると生産性の低下を招く。このため、上述の方法はできるだけ少ない点数とすることが望ましく、本発明で規定した条件とすることが適している。
 なお、特許文献3記載の技術において鉄心として使用される部分に設けられる合体係止部は、ある程度の面積を有すると共にプッシュバックにて潰されるためにその周囲を含めて強い加工を受けるので、合体係止部でも鉄心の磁気特性の劣化が著しい。これに対して、接着剤の部分的な塗布による方法では鉄心の磁気特性は劣化せず、またスポット溶接による方法でも磁気特性の劣化が生じる部分はごく限られた領域となるため、鉄心の磁気特性への悪影響は小さい。
 さらに、鉄心の生産性の点からは、鉄心同士を互いに固定する方法として、カシメによる固定方法が生産性の点から適している。カシメによる固定方法によれば、複数枚の鋼板を重ね合わせた状態で最終プレス工程においてカシメを行うための突起形成により打抜き加工以前の鋼板同士を固定することができる。また、最終プレス工程でこのカシメ突起を利用して金型内部でカシメ突起同士を嵌合させることで鉄心用素片を一体化させ、高効率の鉄心を製造できる。図9にこのような工程の模式図を示す。
 詳しくは、図9に示す最終プレス工程では、下型21に形成された孔10a,10bの真上に搬送された鋼板2a,2bが上型23から下降したパンチ7a,7bによって孔10a,10bに押し込まれることにより、下方に凸形状のカシメ用突起25が形成され、このカシメ用突起25によって鋼板2a,2b同士が互いに固定される。次に、カシメ用突起25がパンチ7cの真下に位置するように搬送され、上型23から下降したパンチ7cによって、鉄心の最外周の打抜き加工を行った後、先に搬送された鋼板の上にカシメ用突起25が重なるように積み重ねられ、カシメ用突起25がカシメ締結用パンチ7dによって下の鋼板のカシメ用突起25に押し込まれ、嵌合することにより、鋼板同士が互いに固定される。
 特許文献3記載の技術での合体係止部は、プッシュバックで潰されることによって形成されるためカシメの機能を有さず、鋼板同士を結合するためのカシメは別途設ける必要がある。このため、鉄心は合体係止部とカシメとの両方の加工により磁気特性が著しく劣化する。これに対して、本発明は最終的にカシメとして利用する突起を打抜き加工の途中でも鋼板同士を結合・固定するための手段として利用するため、鉄心の磁気特性の劣化が通常のカシメ付鉄心と同程度に抑制される。
 以上の理由により、本発明では、打抜き加工以前に剪断加工が施される部分(閉曲線L)を挟む両側においてスポット溶接や接着剤の部分的な塗布等の磁気特性の劣化が少ない方法で鋼板同士を固定する、又は最終的に鉄心製造のためのカシメとなる突起を形成し、これを利用することで鋼板同士を互いに固定する方法を採用する。接着剤による固定方法、スポット溶接による固定方法、及びカシメ突起の形成による固定方法は組み合わせて使用でき、例えば鉄心外部の固定部はスポット溶接による固定方法とし、鉄心内部の固定はカシメ突起の形成による固定方法としてもよい。
〔積層鉄心の製造方法〕
 本発明は、上記方法で打抜いた鉄心用素片を金型内部で互いに固定することによって一体の積層鉄心を製造する方法として利用可能である。一体の積層鉄心の製造方法としては、接着剤を用いる方法や積層された鋼板の側面を溶接する方法、又は、金型内の途中工程でカシメ締結のための突起を設ける場合、最終プレス工程で鋼板同士をカシメ突起により互いに結合させる方法が実施可能である。
〔金型〕
 本発明における金型は上記の方法を実現する金型であり、最終的に鉄心の最外周となる閉曲線Lを挟む両側にスポット溶接や速乾性の接着剤の塗布、又は鋼板を複数枚重ね合わせた状態でカシメ突起を設けて互いに固定する機能を有し、この後に金型内工程の最終工程で鉄心用素片の最外周を剪断加工によって鋼板から分断することによる打抜き(剪断)加工を施すことによって、複数枚の鋼板を重ね合わせた状態で打抜き加工を行うことによる鉄心の磁気特性の劣化を最小限とすることが可能である。
〔実施例1〕
 図1に示す装置を用いて板厚0.20mm、板幅210mmの電磁鋼板2枚を同時に打抜き加工すると共に、金型内でカシメを施して図2(a),(b)に示すブラシレスDCモータ用固定子鉄心(外径200mm,12スロット,ティース幅14mm,バックヨーク幅10mm)を作製した。打抜き加工を行う金型は順送りの全5工程によって順次プレス加工を行う構造とした。金型の1工程目は鋼板の所定位置に接着剤を塗布する機能を有し、最終的な固定子鉄心の形状に対して図2(a),(b)の固定部F,Fの位置の直径5mmの範囲に速乾性の接着剤を塗布して鋼板2枚を互いに接着した後、金型の最終5工程目で最外周(閉曲線L)の打抜き加工を行った。ここで、図2(a),(b)に示すように固定部Fは鉄心の最外周よりも外側の位置に配置し、固定部Fは鉄心内部の位置に配置し、線分ABの長さは図2(a),(b)に示す通りとした。また、比較のため固定部F又は固定部Fを設けない加工も実施した。
 上記にて作製した固定子鉄心を用いて希土類磁石埋込み型モータを作製し、定格出力でのモータ効率を測定した。この結果を以下の表1に示す。また、表1には固定子鉄心の最外周の外側及び固定子鉄心内に設けた固定部F,Fに関する詳細も記載した。表1に示すように、閉曲線Lを挟んで両側に存在する固定部F,Fの組に関し、線分ABが鋼板の平均板厚の400倍以下の組が本発明で規定した閉曲線Lの長さ100mm当たり0.5以上ある場合に特に高いモータ効率が得られることが確認された。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 図1に示す装置を用いて板厚0.15mm、板幅210mmの電磁鋼板3枚を同時に打抜き加工すると共に金型内でカシメを施して図3(a)~(c)に示すブラシレスDCモータ用固定子鉄心(外径200mm,12スロット,ティース幅12mm,バックヨーク幅8mm)を作製し、図3(a)~(c)に示す固定部F,Fの位置に丸カシメ(直径1.2mm,深さ0.10mm)を設けて3枚の鋼板同士を互いに固定した後、鉄心内周及びスロット部分、鉄心外周の打抜き加工を行った。鉄心外周の打抜きと同時に金型内で丸カシメ突起同士を嵌合させて一体の固定子鉄心を作製した。
 得られた固定子鉄心を用いて希土類磁石埋込み型モータを作製し、定格出力条件でのモータ効率を測定した。この結果、図3(a)に示す固定子鉄心(実施例)では92.8%、図3(b)に示す固定子鉄心(比較例)では91.8%、図3(c)に示す固定子鉄心(比較例)では91.5%と、本発明の条件に適合する条件である図3(a)に示す固定子鉄心で特に優れたモータ特性が得られた。
〔実施例3〕
 図1に示す装置を用いて板厚0.20mm、板幅260mmの電磁鋼板2枚を同時に打抜き加工すると共に金型内でカシメを施して図4-1,4-2に示すブラシレスDCモータ用固定子鉄心(外径250mm,12スロット,ティース幅15mm,バックヨーク幅11mm)を作製し、図4-1,4-2に示す固定部F,Fの位置に関し、順送りの金型内の工程の1工程目で固定部Fをスポット溶接して2枚の鋼板同士を互いに固定した後、鉄心内周及びスロット部分の打抜き加工を行い、金型内4工程目で最終的に鉄心となる部分の内部にVカシメ(幅:1mm,長さ:2mm,深さ:0.3mm)を設けて2枚の鋼板同士を互いに固定した。そして、最終の5工程目で鉄心外周の打抜き加工を行い、この最外周の打抜き加工でのパンチ下降動作を利用してVカシメ突起同士を嵌合させて積層鋼板に対して仮の一体化を行った後、これを金型から取り出してプレス装置にて押圧することでカシメ突起同士を完全に嵌合させて一体の固定子鉄心を作製した。この固定子鉄心を用いて希土類磁石埋込み型モータを作製し、定格出力条件でのモータ効率を測定した。
 図5に閉曲線Lの周長100mm当たりの本発明の条件を満たす固定部F,Fの組の数及び線分ABの鋼板の平均板厚に対する割合とモータ効率との関係を示す。図5に示すように、線分ABの鋼板の平均板厚に対する比及び閉曲線Lの長さ100mm当たりの固定部F,Fの組の数を本発明で規定した範囲内に制御することにより、高いモータ効率が得られることが確認された。
〔実施例4〕
 図1に示す装置を用いて板厚がそれぞれ0.10,0.15,0.20mm、板幅が260mm幅の電磁鋼板3枚を同時に打抜き加工すると共に金型内でカシメを施して図4-1,4-2に示すブラシレスDCモータ用固定子鉄心(外径200mm,12スロット,ティース幅14mm,バックヨーク幅10mm)を作製し、図6(a)~(c)に示す固定部F,F,FAN,FBN(N=1~6)の位置について固定部F及び鉄心内部の固定をいずれもVカシメ(幅:1mm,長さ:2mm,深さ:0.15mm)を設けて2枚の鋼板同士を互いに固定した後、鉄心内周及びスロット部分、鉄心外周の打抜き加工を行った。そして、この最外周の打抜き加工でのパンチ下降動作を利用してVカシメ突起同士を嵌合させて固定子鉄心を作製した。また、以上において、図6(a)に示す基本位置に対して図6(b)に示す形態で固定部F,Fと最外周の閉曲線Lとの間の距離(固定部F,Fと最外周の閉曲線Lとの間の距離の最小値)を変化させた。また、図6(c)に例を示す形態で固定部F,Fの組の分布状態を変化させた。図6(c)に示す形態において、閉曲線Lと固定部FAN,FBN(N=1~6)との交点Pを求め、隣接する交点P間の円弧長が最も長いもの(円弧長順位1位)と円弧長が次に長い部分(円弧長順位2位)との和を算出し、閉曲線L全長に対する和の比率を求めた。この固定子鉄心を用いて希土類磁石埋込み型モータを作製し、定格出力条件でのモータ効率を測定した。
 図7に示すように、固定部F,Fと閉曲線Lとの間の距離(固定部Fと閉曲線Lとの間の距離及び固定部Fと閉曲線Lとの間の距離のうち、短い方)を鋼板の平均板厚の250倍以下とすることにより、特に高いモータ効率が得られた。また、図5に示すように、閉曲線Lの長さ100mm当たりの固定部F,Fの組の数を本発明で規定した範囲内に制御することにより、高いモータ効率が得られた。また、図8に示すように、上記定義において、固定部F,Fの組が存在しない部分(円弧長順位1位+2位の和)を閉曲線L全長の50%未満とすることにより、モータ鉄損の改善効果が確保されることが確認された。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
 本発明によれば、積層鉄心の磁気特性の劣化を最小限に抑えつつ、生産性高く積層鉄心を製造可能な積層鉄心用の打抜き加工方法及び積層鉄心の製造方法を提供することができる。
 1 打抜き加工装置
 2a,2b,2c 鋼板
 3a,3b,3c 払い出し装置
 4 ピンチロール
 5 プレス機
 6 金型
 7,7a,7b,7c パンチ
 7d カシメ締結用パンチ
 8 板押さえ
 9 ダイ
 10 ダイホール
 10a,10b 孔
 21 下型
 23 上型
 25 カシメ用突起

Claims (5)

  1.  複数枚の鋼板を連続的に金型内に送り込み、該金型内に設けた複数の工程において重ね合わせた状態で複数枚の鋼板の打抜き加工を行う積層鉄心用の打抜き加工方法であって、
     積層鉄心の最外周に相当する閉曲線の外側に位置する第1の固定部と最終的に積層鉄心となる部分に位置する第2の固定部において重ね合わされた複数枚の鋼板を互いに固定させた後に積層鉄心の最外周の打抜き加工を行うステップを含むことを特徴とする積層鉄心用の打抜き加工方法。
  2.  前記第1の固定部と前記第2の固定部とを結ぶ線分の長さが複数枚の鋼板の平均板厚の400倍以下である第1の固定部と第2の固定部との組の数を、前記閉曲線の長さ100mm当たりの平均で0.5個以上とすることを特徴とする請求項1に記載の積層鉄心用の打抜き加工方法。
  3.  前記第1の固定部と前記第2の固定部とを結ぶ線分の長さが複数枚の鋼板の平均板厚の400倍以下である第1の固定部と第2の固定部との組について、前記第1の固定部と前記閉曲線との間の距離及び前記第2の固定部と前記閉曲線との間の距離のうちの短い方を固定部と前記閉曲線との間の距離としたとき、前記固定部と前記閉曲線との間の距離の平均値を複数枚の鋼板の平均板厚の250倍以下とすることを特徴とする請求項1又は2に記載の積層鉄心用の打抜き加工方法。
  4.  前記第2の固定部における複数枚の鋼板の固定方法が、積層鉄心を形成するためのカシメ用の突起を用いた固定方法であることを特徴とする請求項1~3のうち、いずれか1項に記載の積層鉄心用の打抜き加工方法。
  5.  請求項1~4のうち、いずれか1項に記載の積層鉄心用の打抜き加工方法によって打抜き加工が施された鋼板を積層、一体化することによって積層鉄心を製造するステップを含むことを特徴とする積層鉄心の製造方法。
PCT/JP2015/086190 2014-12-26 2015-12-25 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法 WO2016104686A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/538,530 US10898939B2 (en) 2014-12-26 2015-12-25 Punch processing method for laminated iron core and method for manufacturing laminated iron core
CN201580070267.0A CN107107154B (zh) 2014-12-26 2015-12-25 层叠铁芯用的冲裁加工方法及层叠铁芯的制造方法
MX2017008359A MX2017008359A (es) 2014-12-26 2015-12-25 Metodo para procesamiento de perforaciones para un nucleo de hierro laminado y metodo para fabricar el nucleo de hierro laminado.
KR1020177016743A KR101951823B1 (ko) 2014-12-26 2015-12-25 적층 철심용의 펀칭 가공 방법 및 적층 철심의 제조 방법
CA2971381A CA2971381C (en) 2014-12-26 2015-12-25 Punch processing method for laminated iron core and method for manufacturing laminated iron core
EP15873254.5A EP3238847B1 (en) 2014-12-26 2015-12-25 Punch processing method for laminated iron core and method for manufacturing laminated iron core
RU2017126492A RU2678115C1 (ru) 2014-12-26 2015-12-25 Способ обработки вырубкой многослойного железного сердечника и способ изготовления многослойного железного сердечника

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263758A JP6210058B2 (ja) 2014-12-26 2014-12-26 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
JP2014-263758 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104686A1 true WO2016104686A1 (ja) 2016-06-30

Family

ID=56150698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086190 WO2016104686A1 (ja) 2014-12-26 2015-12-25 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法

Country Status (10)

Country Link
US (1) US10898939B2 (ja)
EP (1) EP3238847B1 (ja)
JP (1) JP6210058B2 (ja)
KR (1) KR101951823B1 (ja)
CN (1) CN107107154B (ja)
CA (1) CA2971381C (ja)
MX (1) MX2017008359A (ja)
RU (1) RU2678115C1 (ja)
TW (1) TWI639474B (ja)
WO (1) WO2016104686A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588520A4 (en) * 2017-02-24 2020-01-01 Panasonic Corporation LAMINATED ELEMENT, METHOD FOR THE PRODUCTION THEREOF, LAMINATED BODY AND ENGINE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129935A1 (ja) * 2018-12-17 2021-11-18 日本製鉄株式会社 積層コアおよび回転電機
US11872619B2 (en) * 2018-12-18 2024-01-16 Threebond Co., Ltd. Method for manufacturing laminated steel sheet, apparatus for manufacturing laminated steel sheet, and curable composition used for the same
NL1043111B1 (en) * 2018-12-24 2020-07-21 Bosch Gmbh Robert Multi-layer fine blanking process for manufacturing metal parts and fine blanking device for carrying out such process
NL1043110B1 (en) * 2018-12-24 2020-07-21 Bosch Gmbh Robert Process for manufacturing a laminate of stacked metal parts including a multi-layer blanking process step
KR20200145919A (ko) 2019-06-20 2020-12-31 삼성전자주식회사 반도체 장치
WO2021256537A1 (ja) * 2020-06-17 2021-12-23 日本製鉄株式会社 積層コアの製造方法
DE102020128367A1 (de) * 2020-10-28 2022-04-28 Te Connectivity Germany Gmbh Anordnung mit einem aus mindestens drei aufeinanderliegenden Blechlagen zusammengefügten Blechstapel
CN113814318B (zh) * 2021-09-25 2023-07-04 浙江实日机电科技有限公司 电机铁芯的生产工艺
WO2024052519A1 (en) * 2022-09-08 2024-03-14 Magna powertrain gmbh & co kg Method of producing multilayer material prior to stamping press for electric motor laminated components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156657A (en) * 1981-06-22 1982-09-28 Mitsui Haitetsuku:Kk Manufacture of laminated iron core
JPS6423745A (en) * 1987-07-16 1989-01-26 Kokusan Denki Co Method and apparatus for manufacture of laminated core
JP2003274582A (ja) * 2002-03-13 2003-09-26 Mitsui High Tec Inc 積層鉄心及びこれを用いた固定子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353473A (en) * 1970-11-07 1974-05-15 Lucas Industries Ltd Apparatus for and method of manufacturing laminated cores for ignition coils
JPS55156623A (en) 1979-05-23 1980-12-05 Shinko Electric Co Ltd Blanking method for overlapped double sheets for iron core of electrical machinery and apparatus
US5809638A (en) * 1992-10-26 1998-09-22 L.H. Carbide Corporation Method for manufacturing laminated parts with center interlock
IT1286450B1 (it) * 1996-12-06 1998-07-08 Corrada Spa Articolo laminare comprendente elementi di accoppiamento del tipo a maschio-femmina
JP2003153503A (ja) 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd 電動機鉄心の製造方法
JP3687749B2 (ja) 2003-04-23 2005-08-24 株式会社三井ハイテック スキュー形状可変型積層鉄心及びその製造方法
KR101033580B1 (ko) 2004-03-03 2011-05-11 엘지전자 주식회사 스파이럴 코어의 구조 및 이의 제조방법
JP4472386B2 (ja) 2004-03-10 2010-06-02 株式会社三井ハイテック 積層鉄心の製造方法
JP4798965B2 (ja) 2004-05-31 2011-10-19 株式会社東芝 回転機鉄心の製造方法
JP5494448B2 (ja) 2010-12-03 2014-05-14 新日鐵住金株式会社 金属板の打ち抜き加工方法及び装置と回転電機鉄心の製造方法
JP5494449B2 (ja) 2010-12-03 2014-05-14 新日鐵住金株式会社 金属板打ち抜き加工方法及び装置と回転電機鉄心の製造方法
JP5734153B2 (ja) * 2011-10-05 2015-06-10 株式会社ユタカ技研 積層鉄心の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156657A (en) * 1981-06-22 1982-09-28 Mitsui Haitetsuku:Kk Manufacture of laminated iron core
JPS6423745A (en) * 1987-07-16 1989-01-26 Kokusan Denki Co Method and apparatus for manufacture of laminated core
JP2003274582A (ja) * 2002-03-13 2003-09-26 Mitsui High Tec Inc 積層鉄心及びこれを用いた固定子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3238847A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588520A4 (en) * 2017-02-24 2020-01-01 Panasonic Corporation LAMINATED ELEMENT, METHOD FOR THE PRODUCTION THEREOF, LAMINATED BODY AND ENGINE
US11225049B2 (en) 2017-02-24 2022-01-18 Panasonic Corporation Laminated member, laminated body, and motor

Also Published As

Publication number Publication date
JP6210058B2 (ja) 2017-10-11
US20170368590A1 (en) 2017-12-28
EP3238847A4 (en) 2018-08-29
CA2971381C (en) 2019-08-06
TW201641180A (zh) 2016-12-01
CA2971381A1 (en) 2016-06-30
KR20170087915A (ko) 2017-07-31
EP3238847B1 (en) 2021-07-28
CN107107154A (zh) 2017-08-29
TWI639474B (zh) 2018-11-01
US10898939B2 (en) 2021-01-26
EP3238847A1 (en) 2017-11-01
JP2016123976A (ja) 2016-07-11
RU2678115C1 (ru) 2019-01-23
KR101951823B1 (ko) 2019-02-25
MX2017008359A (es) 2017-10-24
CN107107154B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
JP6210058B2 (ja) 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
CN105703565B (zh) 层压体及其制造方法以及叠片铁芯的制造方法
JP6400833B2 (ja) 積層鉄心の製造方法および積層鉄心の製造装置
WO2015111096A1 (ja) 積層鉄心製造装置および積層鉄心の製造方法
CN109792193B (zh) 电磁钢板的冲裁加工方法和叠片铁心的制造方法
JPH09215279A (ja) アモルファス合金の箔板条材を用いた積層鉄心の製造 方法
CN112217354B (zh) 旋转电机的层叠铁芯制造方法以及层叠铁芯制造装置
CN106849535B (zh) 层叠铁芯及其制造方法
JP5144238B2 (ja) 積層鉄心の製造方法および帯状鉄心片
JP5150952B2 (ja) 積層鉄心の製造方法
JP5248972B2 (ja) 積層鉄心の製造方法及び金型装置
JP3842146B2 (ja) 積層鉄心の製造方法
WO2011129000A1 (ja) モータコアの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2971381

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177016743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008359

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873254

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017126492

Country of ref document: RU

Kind code of ref document: A