WO2016085313A2 - 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법 - Google Patents

액체 내 오염물질의 화학적 원소 분석장치 및 분석방법 Download PDF

Info

Publication number
WO2016085313A2
WO2016085313A2 PCT/KR2015/012911 KR2015012911W WO2016085313A2 WO 2016085313 A2 WO2016085313 A2 WO 2016085313A2 KR 2015012911 W KR2015012911 W KR 2015012911W WO 2016085313 A2 WO2016085313 A2 WO 2016085313A2
Authority
WO
WIPO (PCT)
Prior art keywords
sample
transport plate
laser beam
liquid
irradiated
Prior art date
Application number
PCT/KR2015/012911
Other languages
English (en)
French (fr)
Other versions
WO2016085313A3 (ko
Inventor
박기홍
김기백
김경웅
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150167638A external-priority patent/KR101723535B1/ko
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to CA2966149A priority Critical patent/CA2966149C/en
Priority to US15/531,069 priority patent/US10175173B2/en
Priority to CN201580059415.9A priority patent/CN107075944A/zh
Publication of WO2016085313A2 publication Critical patent/WO2016085313A2/ko
Publication of WO2016085313A3 publication Critical patent/WO2016085313A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to an apparatus and method for analyzing chemical elements of contaminants in liquids. More specifically, the present invention relates to a chemical element analysis device and a method for analyzing a chemical element of a contaminant in a portable liquid that can be directly analyzed on-site the chemical element component of the contaminant in a liquid sample.
  • the liquid analyzer is used to analyze the composition of the components of various industrial processes for the purpose of quality control, pollution treatment, and the like.
  • analyzing and treating the components of liquid waste is referred to as an important issue.
  • a conventional liquid analyzer / analysis method collects a predetermined amount of a desired solution, transfers it to a desired place where an analyzer is installed, and then pre-processes the transferred sample solution under suitable conditions for analysis.
  • the analyzer can be used for quantitative analysis.
  • the conventional liquid analysis device / analysis method as described above, there is a problem that it takes a long time to go through a complicated pretreatment process, an operation of measuring equipment, and the like.
  • the disposal of a large amount of chemical reagents that are essentially used may be a problem.
  • Hydraulic fracturing technology is a technique in which a hydraulic fracturing fluid composed of water, sand, and chemical additives is injected into the shale layer at high pressure to cause cracking, and shale gas is collected through the crack.
  • the wastewater is treated.
  • the chemicals and oils added to the hydraulic fracturing fluid are included in the recovered water, so the pollutants (pollutants) are analyzed.
  • the procedure to deal with is necessarily involved.
  • the chemical elemental analysis of such contaminants may be performed using an inductively coupled plasma (ICP) analysis method or an analysis method using atomic absorption spectroscopy (AAS).
  • ICP inductively coupled plasma
  • AAS atomic absorption spectroscopy
  • the present invention has been made to solve the above-mentioned problems of the prior art, has a light weight and portability, and can directly analyze the chemical element component of the collected liquid sample in the field without having to go through the pretreatment process. It is an object of the present invention to provide an apparatus and method for analyzing chemical elements of contaminants in liquids.
  • an object of the present invention is to provide a chemical element analysis device and an analysis method for contaminants in a liquid that can analyze the solid remaining after the liquid evaporation by heating and drying the liquid sample through a concentration process.
  • An object of the present invention is a chemical element analysis apparatus for contaminants in a liquid, comprising: a sample storage unit for storing a sample of a sampled liquid phase; A laser unit oscillating a laser beam to irradiate the laser beam to the sample injected from the sample storage unit; And a spectrometer for collecting the plasma light generated by irradiating the laser beam onto the sample and measuring a spectrum of the plasma light.
  • the sample storage unit may supply a sample to at least one of the first supply unit and the second supply unit.
  • the sample storage unit may include a droplet injection unit for atomizing and spraying the sample into the first supply unit.
  • the sample storage unit may further include a main gas injection unit for injecting an inert gas.
  • the apparatus may further include a first gas injection unit for injecting an inert gas into the sample before being sprayed at the end of the first supply unit.
  • the first supply unit may further include a pump for transporting the sample.
  • the membrane filter further comprises a membrane filter for filtering the sample before the sample is stored in the sample reservoir, wherein the membrane filter is formed in a membrane shape, the filter hole for filtering the sample through the surface, the particulate form in the sample.
  • the second supply unit may spray the sample to be positioned above the transport plate.
  • the transport plate may be formed in a rotatable plate shape, and the sample injected by the second supply unit may be adsorbed on the upper surface, and the position may be moved so that the sample is irradiated to the laser beam as the transport plate rotates. .
  • the transport plate is formed in a plate shape having a predetermined length, and the sample injected by the second supply unit is adsorbed and disposed on an upper surface, and the sample moves to the laser beam as the transport plate moves along the length direction.
  • the location can be moved to be irradiated.
  • a plurality of placement holes recessed to adsorb the sample may be formed on the upper surface of the transport plate.
  • the heating plate may further include a heating unit disposed inside the transport plate or disposed under the transport plate to heat and dry the sample by applying heat to the transport plate.
  • the apparatus may further include a second gas injection unit for injecting an inert gas to the sample to which the laser beam is irradiated.
  • a chemical element analysis method of contaminants in a liquid comprising the steps of: (a) storing a sample of the sampled liquid phase; (b) spraying a stored sample and irradiating a laser beam with the sprayed sample; (c) measuring the spectrum of the plasma light by collecting the plasma light generated by the laser beam irradiated to the sample is achieved by a liquid analysis method.
  • the sample may be atomized by spraying droplets, and a laser beam may be irradiated onto the sprayed sample.
  • Inert gas may be injected into the stored sample.
  • Inert gas may be injected into the sample before the sample is sprayed.
  • the particulate matter and the ionic material in the sample may be separated by using a membrane filter formed in a membrane shape and penetrating a filter hole for filtering the sample on the surface.
  • the sample may be sprayed to be adsorbed on the upper surface of the transport plate, and the position may be shifted so that the sample is irradiated to the laser beam as the transport plate is moved.
  • a plurality of placement holes recessed to adsorb the sample may be formed on the upper surface of the transport plate.
  • the heating unit may be disposed inside the transport plate or under the transport plate to heat-dry the sample by applying heat to the transport plate.
  • Inert gas may be injected onto the sample to which the laser beam is irradiated.
  • the present invention configured as described above, it is lightweight and has portability, and there is an effect that the chemical element component of the collected liquid sample can be directly analyzed in the field without having to go through the pretreatment process.
  • FIGS. 1 and 2 are schematic diagrams of an apparatus for analyzing chemical elements of contaminants in a liquid according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the membrane filter shown in FIG. 1.
  • FIG. 4 is a partial schematic view of an apparatus for analyzing chemical elements of contaminants in a liquid according to another embodiment of the present invention.
  • FIG. 5 is a front view of the transport plate shown in FIG. 4.
  • FIG. 6 is a perspective view of the transport plate shown in FIG. 4.
  • 7 and 8 are graphs showing measurement results according to an embodiment of the present invention.
  • 9 to 12 are tables showing detection wavelengths of target elements for various liquid samples.
  • FIG. 13 is a table illustrating elemental analysis results of Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and Laser Induced Breakdown Spectroscopy (LIBS) through a first process according to an embodiment of the present invention.
  • ICP-OES Inductively Coupled Plasma Optical Emission Spectrometer
  • LIBS Laser Induced Breakdown Spectroscopy
  • FIG. 1 and 2 are schematic diagrams of an apparatus for analyzing chemical elements of contaminants in a liquid according to one embodiment of the present invention.
  • the liquid analyzer will be described.
  • a liquid analyzing apparatus includes a sample storage unit 10 in which a sample 1 of a sampled liquid is stored; A laser unit 20 and a laser for oscillating the laser beams 21: 21a, 21b, 21c and irradiating the laser beam 21 to the samples 1: 1a, 1b, 1c ejected from the sample storage unit 10.
  • the beam 21 includes a spectrometer 30 that collects the plasma light 31 (31a, 31b, 31c) generated by irradiating the sample 1 and measures the spectrum of the plasma light 31.
  • the analysis of the sample 1 can utilize the spectroscopic analysis method which uses a plasma as an excitation source.
  • the laser unit 20 is a device that oscillates the laser beam 21 and irradiates the sample 1.
  • the laser unit 20 includes a laser generator 25 and a condenser lens 26.
  • the laser beam 21 may be, for example, a high power laser beam 21 such as an Nd: YAG laser or the like.
  • the laser beam 21 is not necessarily limited to the Nd: YAG laser.
  • the output of the laser beam 21 may be controlled by the controller 40.
  • the laser beam 21 may be focused through the condenser lens 26 and irradiated onto the sample 1.
  • the sample 1 When the laser beam 21 is irradiated to the sample 1, the sample 1 may be vaporized and separated into electrons and cations to generate a plasma.
  • Plasma emits energy in the form of light as atoms and ions in the excitation state return to the ground state (ground state), which spectroscopically analyzes the plasma light, Can be analyzed quantitatively.
  • the laser beam 21 is irradiated onto the sample 1 through the liquid analyzer laser unit 20 according to the present invention, and the plasma light 31 generated at this time is spectroscopically analyzed. Spectroscopic analysis of the plasma light 31 may be performed through the spectrometer 30.
  • the laser beam 21 may use a laser having a wavelength of 1064 nm.
  • it may be set to reduce the focal length of the objective lens.
  • the laser beam spot size may be configured as 4 ⁇ f / ⁇ D (D: incident diameter, f: focal length), and the laser beam spot size can be reduced by reducing the focal length f of the objective lens.
  • the laser portion 20 can generate a low intensity laser
  • the laser beam 21 can be irradiated with a high intensity substantially through integration. Therefore, it is possible to minimize the heat generation according to the minimized laser intensity, thereby simplifying the configuration of the laser unit 20, there is an effect that can reduce the weight of the product. As a result, it can design as a portable analysis device which ensures mobility.
  • Spectrometer 30 is a spectrometer that measures the spectrum of plasma light 31. When an element returns from the excited state to the ground state, it emits its own wavelength according to its type and the excited state. Therefore, analyzing the spectrum of the wavelength allows qualitative and quantitative analysis of the components of the substance. According to this principle, by collecting the plasma light 31 using the spectrometer 30 and measuring the spectrum thereof, it is possible to qualitatively and quantitatively analyze the substance (pollutant) in the sample 1. On the other hand, the analysis result of the spectrum can be displayed by the computer 41.
  • the sample 1 is sampled from flowback water, general wastewater, mine wastewater (mine drainage), nuclear power wastewater, etc. generated during the drilling of a shale gas field. It may be a liquid sample (1), and any kind of liquid other than the above-mentioned wastewater may be employed as the sample (1).
  • the recovery water generated during the drilling process of shale gas field will be described below.
  • Drilling of shale gas fields uses hydraulic fracturing.
  • the hydraulic fracturing technology is a technique of causing cracking and collecting shale gas by spraying the hydraulic fracturing fluid at high pressure on the shale layer which is accumulated by sand and mud.
  • the fluid, ie, recovered water which is returned to the ground after the hydraulic fracturing is in progress or completed, includes clay, dissolved metal ions, dissolved solids, suspended solids, and chemical additives added to the hydraulic fracturing fluid. Therefore, it is essential to treat the recovered water containing contaminants such as heavy metals during the drilling of shale gas fields. Therefore, the liquid analyzing apparatus of the present invention was invented for the purpose of facilitating water treatment by analyzing contaminants such as recovered water, general wastewater, mine wastewater, and nuclear power wastewater in real time on site.
  • the sample 1 may be injected through the inlet 5 of the liquid analyzer and stored in the sample storage unit 10.
  • the sample storage unit 10 may supply the sample 1 to at least one of the first supply unit 11 or the second supply unit 15 to a space in which the liquid sample 1 is stored.
  • the sample 1 may be filtered by the membrane filter 50 before being stored in the sample reservoir 10.
  • Membrane filter 50 acts as a filter with a thin membrane that filters the material in sample 1. As shown in FIG. 3, the membrane filter 50 is formed in a membrane shape, and a filter hole 51 for filtering the sample 1 is formed therethrough to form a particulate material in the sample 1. 1 ') and the ionic material 1 "are separated.
  • the membrane filter 50 may be used to separately analyze the material in the sample 1. Specifically, by filtering the particulate matter 1 ′ in the sample 1 using the membrane filter 50, only the ionic material 1 ′′ may be analyzed separately. In addition, the membrane filter 50 may be used. The sample 1 including the particulate matter 1 ′ and the ionic matter 1 ′′ can be analyzed. As described above, by separating and analyzing the particulate matter 1 'and the ionic material 1 "separately, there is an advantage in that the difference between the particulate matter 1' and the ionic material 1" can be confirmed.
  • the membrane filter 50 may be a microfiltration membrane or an ultrafiltration membrane.
  • the type of the membrane filter 50 is determined in consideration of the diameter of the material in the sample 1, the capacity of the sample 1, flow rate, cost and the like. In view of these factors, microfiltration membranes are preferred, but are not necessarily limited thereto.
  • the membrane filter 50 is illustrated as being formed in the inlet 5, but is not necessarily limited thereto, and may be formed in the first and second supply parts 11 and 15.
  • the main gas injection unit 60 may be further included to inject the inert gas into the sample storage unit 10.
  • the main gas injection unit 60 may discharge the air contained in the sample 1 by injecting an inert gas such as argon gas or helium gas into the sample 1 of the sample storage unit 10.
  • Air contains gases such as oxygen, nitrogen, hydrogen, etc., which can affect the spectrum when a plasma is generated.
  • the main gas injection unit 60 may primarily inject an inert gas having little reactivity to the sample 1 of the sample storage unit 10 to remove air that may affect the spectrum.
  • the liquid analyzing apparatus greatly improves the detection sensitivity, and can increase the repeatability of the analysis result.
  • the first supply part 11 is a pipe formed in a hollow tube shape.
  • the sample 1a atomized into droplets in the first supply unit 11 may be moved (P1: first process) and sprayed through a nozzle at the end of the first supply unit 11.
  • the sample 1a atomized into droplets may have a size of about 100 nm to several ⁇ m.
  • the sample storage unit 10 may include a droplet injection unit (not shown) for atomizing the sample 1 into droplets and spraying the first supply unit 11.
  • the droplet injection unit may include a nebulizer or an atomizer.
  • the nebulizer has a relatively larger size of the droplet 1a than in the case of the atomizer, and is capable of simultaneous detection of ionic and particulate matter.
  • the atomizer has a feature that the size of the droplet (1a) is small, can minimize the effect of water when drying. Since the sample 1a sprayed by the droplet injection unit does not undergo a separate drying process, it is preferable to use a nebulizer.
  • the droplet injection unit is not necessarily limited to the nebulizer, and an atomizer may be used depending on the substance in the sample 1.
  • the first gas injection unit 70 may be further included such that an inert gas is injected into the sample 1a.
  • the first gas injection part 70 sprays an inert gas such as argon gas, helium gas, or the like into the sample 1a before being sprayed through the nozzle at the end of the first supply part 11. It can release air secondary. Therefore, the liquid analysis device according to the present invention can further improve the detection sensitivity, and further increase the repeatability of the analysis results.
  • a pump (not shown) may be further included in the first supply part 11.
  • the pump may be disposed anywhere in the first supply portion 11 within a range that provides a suction force for transporting the sample 1a, but is preferably disposed at the end of the first supply portion 11.
  • the laser beam 21a is irradiated to the sample 1a injected from the end of the first supply part 11, and the plasma may be generated as the sample 1a is vaporized and separated into electrons and cations.
  • the plasma emits plasma light 31a by returning from the excited state to the ground state, and collects the plasma light 31a from the spectrometer 30 to measure spectra to qualitatively and politically analyze the elements. Since the plasma light 31a may be generated at a wavelength of about 200 to 900 nm, the input lens (not shown) of the spectrometer 30 may have chromatic aberration in order to prevent a phenomenon in which the detection efficiency due to chromatic aberration is degraded. The lens may be prevented or the chromatic aberration may be corrected in the spectrometer 30.
  • the controller 40 may control the output of the laser beam 21a, analyze the measurement result of the spectrometer 30, and display it on the computer 41 (see FIG. 2).
  • the second supply part 15 is a pipe formed in a hollow tube shape similarly to the first supply part 11. However, in the second supply unit 15, the sample 1a atomized into the droplets does not move, but the sample 1b itself in the liquid state may move.
  • the sample 1b moving to the second supply part 15 is not atomized by the nebulizer or atomizer, but a nebulizer or an atomizer may be used within the range where conversion to a droplet having a predetermined diameter or less is required. .
  • the movement (P2: second process) of the sample 1b to the second supply unit 15 may be performed when the limit of detection of the pollutant in the sample 1 is low or during real time monitoring in the first process P1. If the degree of detection greatly exceeds the reference value, it can be used by switching to the second process P2 for more accurate measurement.
  • concentration of the sample 1 is equal to or less than a predetermined concentration value and the measurement by the spectrometer 30 is impossible by the movement P1 of the sample 1a to the first supply unit 11, the second supply unit 15
  • the sample 1b injected from the above can be dried by heating.
  • the sample 1 which contains a lot of water relative to the contaminants, has a low detection sensitivity, and thus, even if the plasma light 31a of the sample 1a is analyzed through the first supply unit 11, a desired analysis value cannot be obtained. Therefore, the sample 1 is heated and dried to evaporate water, thereby increasing the concentration of the sample 1 above a predetermined concentration value and proceeding the analysis.
  • the sample 1b moved through the second supply part 15 may be sprayed to be positioned above the transport plate 90.
  • a nozzle or a syringe may be installed at the end of the second supply part 15 to inject the sample 1b into an appropriate droplet size.
  • the transport plate 90 is formed in a rotatable plate shape, and the sample 1b may be adsorbed on one surface (upper surface).
  • One surface (upper surface) of the transport plate 90 may be added with a hydrophilic treatment.
  • the hydrophilic treatment may be performed through a method of coupling a hydrophilic membrane coating or a hydrophilic filter to the transport plate 90.
  • Liquid analysis using a conventional Al filter such as due to the salt and contaminants in the sample, there was a problem that the crystallization proceeds.
  • the analysis accuracy of the sample was low and a uniform result was not obtained.
  • the hydrophilic treatment is added to the transport plate 90, the sample 1b may be easily adsorbed and disposed, and the sample 1b may be evenly spread on the transport plate 90.
  • the time for drying (1b) can be shortened, and there is an advantage of preventing the crystallization from proceeding after the sample 1b is dried.
  • the analysis accuracy is high and a uniform result can be obtained.
  • a plurality of placement holes may be formed in the upper surface of the transport plate 90 so that the sample 1b can be more stably adsorbed.
  • the arrangement hole is a minute hole formed so that the sample 1b is stably adsorbed onto the transport plate 90. Therefore, even when the transport plate 90 is moved, the sample 1b disposed on the transport plate 90 is less susceptible to vibration or impact.
  • the transport plate 90 may be rotated by a rotating member 91 such as a motor connected to the lower portion.
  • the transport plate 90 When the transport plate 90 rotates, the sample 1b adsorbed and disposed on the transport plate 90 may also move to move to the position where the laser beam 21b can be irradiated.
  • the transport plate 90 may be formed of a material that does not affect the plasma light 31b depending on the material in the sample 1b.
  • the material in the sample 1b is a heavy metal, it may be formed of nylon, and in the case of a carbon compound, it may be formed of a metal component.
  • the transport plate 90 is not necessarily limited to these materials.
  • the heating unit 95 may be disposed inside the transport plate 90, but the heating unit may be disposed below the transport plate 90.
  • the heating unit 95 is a heating device that heats the transport plate 90, and heats the sample 1b disposed on one surface of the transport plate 90 to evaporate water.
  • the heating temperature of the heating unit 95 may be controlled by a controller (not shown).
  • the second gas injection unit 80 may be further included so that the inert gas is directly injected onto the sample 1b to which the laser beam 21b is irradiated.
  • the second gas injection unit 80 corresponds to the first gas injection unit 70 described above.
  • the sample 1a before the laser beam 21a is irradiated is different from the first gas injection unit 70 for injecting the inert gas.
  • the sample 1b is in contact with the air in the process of moving through the transport plate 90, so that the inert gas is injected when the laser beam 21b is irradiated to more effectively remove the air in the sample 1b. to be. Since the air contained in the sample 1b can be discharged secondarily, the liquid analyzing apparatus according to the present invention can further improve the detection sensitivity and further increase the repeatability of the analysis results.
  • the laser beam 21b is irradiated to the sample 1b moved by the transport plate 90, and the plasma may be generated as the sample 1b is vaporized and separated into electrons and cations.
  • the plasma emits plasma light 31b by returning from the excited state to the ground state, and collects the plasma light 31b from the spectrometer 30 to measure spectra to qualitatively and politically analyze the elements.
  • the controller 40 may control the output of the laser beam 21b, analyze the measurement result of the spectrometer 30, and display it on the computer 41 (see FIG. 2).
  • FIG. 4 is a partial schematic view of a liquid analyzing apparatus according to another embodiment of the present invention
  • FIG. 5 is a front view of the transport plate shown in FIG. 4
  • FIG. 6 is a perspective view of the transport plate shown in FIG. 4. 4 to 6 is different from the embodiment of FIG. 1 only in the configuration of the transport plate 100, and the rest of the components are the same, the description thereof will be omitted.
  • the sample 1c moved P2 through the second supply unit 15 may be sprayed to be positioned above the transport plate 100.
  • the transport plate 100 is formed in a plate shape having a predetermined length, and the sample 1c may be adsorbed and disposed on one surface (upper surface).
  • One surface (upper surface) of the transport plate 100 may be added with a hydrophilic treatment to facilitate the adsorption arrangement.
  • One surface (upper surface) of the transport plate 100 may be added with a hydrophilic treatment.
  • the hydrophilic treatment may be performed through a method such as bonding a hydrophilic membrane coating or a hydrophilic filter to the transport plate 100.
  • the hydrophilic treatment is added to the transport plate 100, the sample 1c can be easily adsorbed and disposed, the sample 1c can be spread evenly on the transport plate 100, and the sample 1c is dried. The time to be shortened, and there is an advantage of preventing the crystallization from proceeding after the sample 1c is dried. Thus, the analysis accuracy is high and a uniform result can be obtained.
  • a plurality of placement holes 102 may be formed in the upper surface of the transport plate 100 so that the sample 1c may be more stably adsorbed.
  • the arrangement hole 102 is a fine hole formed so that the sample 1c can be stably adsorbed to the transport plate 100. Therefore, even when the transport plate 100 is moved, the sample 1c disposed on the transport plate 100 is less affected by vibration or impact.
  • the transport plate 100 may be formed of a material that does not affect the plasma light 31c depending on the material in the sample 1c.
  • the material in the sample 1c is a heavy metal, it may be formed of nylon, and in the case of a carbon compound, it may be formed of a metal component.
  • the transport plate 100 is not necessarily limited to these materials.
  • the heating unit 105 may be disposed below the transport plate 100, but the heating unit may be disposed inside the transport plate 100.
  • the heating unit 105 is a heating device that heats the transport plate 100, and heats the sample 1c disposed on one surface of the transport plate 100 to evaporate water.
  • the heating temperature of the heating unit 105 may be controlled by a controller (not shown).
  • the laser beam 21c is irradiated to the sample 1c moved by the transport plate 100, and the sample 1c may be vaporized to generate plasma as electrons and cations are separated.
  • the plasma emits plasma light 31c while returning from the excited state to the ground state, and collects the plasma light 31c from the spectrometer 30 to measure spectra to qualitatively and politically analyze the elements.
  • the controller 40 may control the output of the laser beam 21c, analyze the measurement result of the spectrometer 30, and display it on the computer 41 (see FIG. 2).
  • the liquid analyzing apparatus of the present invention has an effect of directly injecting the sampled liquid sample 1 and analyzing the sampled liquid.
  • a device that does not need to undergo a complicated pretreatment process and does not use chemical reagents or the like, it has portability, and thus, the component of the collected liquid sample 1 can be directly analyzed on site.
  • the laser beam 21 is irradiated after atomizing and spraying the sample 1 or heating and drying, there is an effect of minimizing the laser intensity to be used. [60mJ / pulse, a laser beam 21 having an energy of 200 mJ / pulse is used. Since the laser intensity is minimized, heat generation can be minimized, thereby reducing the weight of the product. Therefore, it can design as a portable analysis device which ensures mobility.
  • the atomized sample 1a spread by the nebulizer or the atomizer is transferred to the first supply unit 11. Since it can be sprayed through the nozzle at the end, there is an effect that can accumulate droplets.
  • an inert gas into the sample 1a to release the air contained in the sample 1a, it is possible to increase the integration efficiency and to block the influence from the ambient air, thereby further improving the detection sensitivity. It can be effective.
  • the liquid sample 1 is heated and dried to be concentrated. The remaining solids can be analyzed. Thus, there is an effect of increasing the concentration of the sample 1 and increasing the detection sensitivity.
  • the sample 1b and 1c are sprayed and sprayed through the first and second supply units 11 and 15 in the sample storage unit 10, and the transport units 90 and 100 and the heating units 95 and 105. System automation is possible through analysis through the process of transferring).
  • FIG. 7 and 8 are graphs showing measurement results according to an embodiment of the present invention.
  • FIG. 7 irradiates the laser beam 21a to the sample 1a atomized into droplets through the 1st supply part 11, and the plasma light 31a 8 is analyzed by the laser beams 21b and 21c after heating and drying the sample 1b injected through the second supply unit 15 on the transport plates 95 and 105.
  • the plasma lights 31b and 31c are analyzed.
  • FIG. 7 200 mJ / pulse laser energy was applied, and in FIG. 8, a hydrophilic filter [Filter paper 53 (HYUNDAI MICRO), diameter 110 mm, pore size 1-2 ⁇ m] was applied to the transport plates 95 and 105. Cover, heat-dry at 70 degreeC for 10 minutes, and added the laser energy of 60 mJ / pulse.
  • graphs of increasing laser induced breakdown spectroscopy (LIBS) peak area were shown as the ppm of Mg was increased, and linearity (R 2 ) was 0.9719 and 0.9948, which was close to 1.
  • FIG. 8 was heated and dried to increase the concentration of contaminants. Therefore, the linearity was higher, and analysis was possible even using relatively low laser energy.
  • LIBS laser induced breakdown spectroscopy
  • the liquid analyzer of the present invention measures the spectrum of the target element included in the liquid sample 1 sampled from shale gas recovery water, general wastewater, mine wastewater (mine drainage), nuclear power wastewater, etc. with reference to FIGS.
  • shale gas recovery water general wastewater
  • mine wastewater mine drainage
  • nuclear power wastewater etc.
  • FIG. 13 is a table illustrating elemental component analysis results of Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and Laser Induced Breakdown Spectroscopy (LIBS) through a first process P1 according to an embodiment of the present invention.
  • ICP-OES Inductively Coupled Plasma Optical Emission Spectrometer
  • LIBS Laser Induced Breakdown Spectroscopy
  • the X axis of FIG. 13 shows the concentration of the target component in the sample through ICP-OES, and the Y axis shows the sample sprayed from the first supply unit 11 as a measured value of the target component in the sample through the liquid analyzer (LIBS) of the present invention.
  • LIBS liquid analyzer
  • the sample 1 sampled from the shale gas recovered water was analyzed, and a laser beam 21a of 200 mJ / pulse was irradiated with a delay time of 1 ms, and the spectrometer 30 used LIBS2000 +.
  • the linearity (R 2 ) of the data of ICP-OES and LIBS was 0.8261, 0.8068, 0.8338, and 0.8233, respectively, for Mg, Ca, Na, and K, respectively, in the sample.
  • FIG. 14 is a table showing the results of elemental analysis of ICP-OES and LIBS through the second process (P2) according to an embodiment of the present invention.
  • the X axis of FIG. 14 represents the concentration of the target component in the sample through ICP-OES, and the Y axis of the sample is injected from the second supply unit 15 as a measurement value of the target component in the sample through the liquid analyzer (LIBS) of the present invention.
  • LIBS liquid analyzer
  • the sample 1 sampled from the shale gas recovered water was analyzed, and a 60 mJ / pulse laser beam 21b was irradiated with a delay time of 1 ms, and the spectrometer 30 used LIBS2000 +.
  • the second process P2 since the heat drying process of the sample is added, there is an advantage in that the laser beam 21b having a relatively low energy can be used.
  • the hydrophilic filters were combined on the transport plates 90 and 100 to adsorb and place the samples 1b and 1c, and heat drying was performed at 70 ° C. for 10 minutes.
  • the linearity (R 2 ) of the data of ICP-OES and LIBS was 0.8841, 0.9402, 0.8796, and 0.8810 for Mg, Ca, Na, and K, respectively. Since the analysis was concentrated, the numerical value was closer to 1 than the result of the first process (P1). Through this, it was confirmed that the analysis results of ICP-OES which is a standard analysis method for the components in the sample and the analysis results of LIBS of the present invention are substantially the same level.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법에 관한 것이다. 본 발명에 따른 액체 내 오염물질의 화학적 원소 분석장치는, 샘플링된 액상의 시료(1)가 저장되는 시료 저장부(10), 레이저빔(21: 21a, 21b, 21c)을 발진하여, 시료 저장부(10)로부터 분사되는 시료(1: 1a, 1b, 1c)에 레이저빔(21)을 조사하는 레이저부(20), 및 레이저빔(21)이 시료(1)에 조사되어 발생한 플라즈마 빛(31: 31a, 31b, 31c)을 수집하여 플라즈마 빛(31)의 스펙트럼을 계측하는 스펙트로미터(30)를 포함하는 것을 특징으로 한다.

Description

액체 내 오염물질의 화학적 원소 분석장치 및 분석방법
본 발명은 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법에 관한 것이다. 보다 상세하게는, 채취한 액체 시료 내 오염물질의 화학적 원소성분을 현장에서 바로 분석할 수 있는 휴대용의 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법에 관한 것이다.
일반적으로 액체 분석장치는 각종 산업공정의 용액들을 품질관리, 오염처리 등의 목적으로 성분조성 분석을 할 때 사용된다. 특히, 환경보호의 필요성이 점차 중요해지고 있으므로, 액체 폐기물의 성분을 분석하여 이를 처리하는 것이 중요한 문제로 언급된다.
일반적으로, 종래의 액체 분석장치/분석방법은 목적하는 용액의 일정량을 채취(sampling)하여 분석기기가 설치되어 있는 원하는 장소까지 이송한 다음, 이송되어온 시료용액을 분석에 적합한 조건으로 전처리한 후 적절한 분석기기를 사용하여 정량분석 할 수 있다. 하지만 위와 같은 종래의 액체 분석장치/분석방법을 이용하는 경우에는 복잡한 전처리 과정을 거치고, 분석에 장시간이 소요되며, 측정장비의 운용 등에 많은 비용이 드는 문제점이 있다. 또한, 필수적으로 사용되는 다량의 화학시약의 폐기도 문제가 될 수 있다.
한편, 전통적인 에너지자원의 부족과 유가의 상승으로 인해, 최근에는 비전통가스 자원이며, 상당한 양이 전세계에 골고루 분포되어 있는 셰일가스에 대한 관심이 증폭되고 있다. 과거에는 시추기술의 문제로 인해 셰일가스 채굴의 경제적인 생산이 어려웠지만, 수압파쇄 기술이 개발되면서 셰일가스전(shale gas field)의 개발이 가속화되었다. 수압파쇄 기술은 물, 모래, 화학첨가제로 구성된 수압파쇄유체를 셰일층에 고압으로 분사하여 균열을 일으키고, 그 균열을 통해 셰일가스를 채취하는 기술이다.
수압파쇄가 진행되거나 완료되면 회수수(flowback water, 回收水)를 처리하는 과정을 거치는데, 수압파쇄유체에 첨가된 화학물질과 유류 등이 회수수에 포함되므로, 오염원 (오염물질)을 분석하고 처리하는 절차가 반드시 수반된다. 이러한 오염물질의 화학적 원소성분 분석은 유도결합 플라즈마(ICP, inductively coupled plasma) 분석방법 또는 원광흡광분광학(AAS, atomic absorption spectroscopy)을 이용한 분석방법을 활용할 수도 있다. 다만, ICP 또는 AAS와 같은 종래 분석방법을 이용하는 경우에도 액체 분석장치/분석방법과 동일한 문제점이 발생한다.
따라서, 종래기술에 따른 액체 분석장치/분석방법에 발생하는 문제를 해결하기 위한 방안이 절실히 요구되고 있는 상황이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 경량화되어 휴대성을 가지며, 전처리 과정을 거칠 필요 없이 채취한 액체 시료의 화학적 원소성분을 현장에서 바로 분석할 수 있는 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 액체 시료를 가열 건조하여 농축과정을 거침으로써, 액체 증발 후 남아 있는 고체를 분석 할 수 있는 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법을 제공하는 것을 그 목적으로 한다.
본 발명의 상기의 목적은, 액체 내 오염물질의 화학적 원소 분석장치로서, 샘플링된 액상의 시료가 저장되는 시료 저장부; 레이저빔을 발진하여, 상기 시료 저장부로부터 분사되는 상기 시료에 상기 레이저빔을 조사하는 레이저부; 및 상기 레이저빔이 상기 시료에 조사되어 발생한 플라즈마 빛을 수집하여 상기 플라즈마 빛의 스펙트럼을 계측하는 스펙트로미터를 포함하는 것을 특징으로 하는 분석장치에 의해 달성된다.
상기 시료 저장부는 제1 공급부 또는 제2 공급부 중 적어도 하나에 시료를 공급할 수 있다.
상기 시료 저장부는 상기 제1 공급부에 상기 시료를 액적으로 미립화하여 분무하는 액적분사부를 포함할 수 있다.
상기 시료 저장부에 비활성 가스를 분사하는 메인 가스분사부를 더 포함할 수 있다.
상기 제1 공급부의 말단에서 분무되기 전의 상기 시료에 비활성 가스를 분사하는 제1 가스분사부를 더 포함할 수 있다.
상기 제1 공급부에는, 상기 시료를 수송하는 펌프를 더 포함할 수 있다.
상기 시료가 상기 시료 저장부에 저장되기 전에 상기 시료를 필터링하는 멤브레인 필터를 더 포함하며, 상기 멤브레인 필터는, 막 형상으로 형성되고, 표면에 상기 시료를 필터링하는 필터공이 관통되어, 상기 시료 내의 입자상 물질과 이온성 물질을 분리할 수 있다.
상기 제2 공급부는 상기 시료가 수송판 상부에 위치하도록 분사할 수 있다.
상기 수송판은 회전 가능한 판 형상으로 형성되어, 상부면에 상기 제2 공급부에 의해 분사된 상기 시료가 흡착 배치되고, 상기 수송판이 회전함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동할 수 있다.
상기 수송판은 소정의 길이를 갖는 판 형상으로 형성되어, 상부면에 상기 제2 공급부에 의해 분사된 상기 시료가 흡착 배치되고, 상기 수송판이 길이 방향을 따라 이동함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동할 수 있다.
상기 수송판의 상부면에 상기 시료가 흡착되도록 함몰된 복수의 배치홀이 형성될 수 있다.
상기 수송판 내부에 배치되거나 상기 수송판의 하부에 배치되어, 상기 수송판에 열을 가하여 상기 시료를 가열 건조하는 히팅부를 더 포함할 수 있다.
상기 레이저빔이 조사되는 상기 시료에 비활성 가스를 분사하는 제2 가스분사부를 더 포함할 수 있다.
그리고, 본 발명의 상기의 목적은, 액체 내 오염물질의 화학적 원소 분석방법으로서, (a) 샘플링된 액상의 시료를 저장하는 단계; (b) 저장된 시료를 분무하고, 레이저빔을 분무되는 상기 시료에 조사하는 단계; (c) 상기 레이저빔이 상기 시료에 조사되어 발생한 플라즈마 빛을 수집하여 상기 플라즈마 빛의 스펙트럼을 계측하는 단계를 포함하는 것을 특징으로 하는 액체 분석방법에 의해 달성된다.
상기 시료를 액적으로 미립화하여 분무하고, 분무된 상기 시료에 레이저빔을 조사할 수 있다.
상기 저장된 시료에 비활성 가스를 분사할 수 있다.
상기 시료가 분무되기 전에 상기 시료에 비활성 가스를 분사할 수 있다.
상기 시료를 저장하기 전에, 막 형상으로 형성되고, 표면에 상기 시료를 필터링하는 필터공이 관통된 멤브레인 필터를 사용하여, 상기 시료 내의 입자상 물질과 이온성 물질을 분리할 수 있다.
상기 시료를 수송판 상부면에 흡착 배치되도록 분사하고, 상기 수송판을 이동함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동할 수 있다.
상기 수송판의 상부면에 상기 시료가 흡착되도록 함몰된 복수 개의 배치홀이 형성될 수 있다.
히팅부를 상기 수송판 내부에 배치하거나 상기 수송판의 하부에 배치하여, 상기 수송판에 열을 가함에 따라 상기 시료를 가열 건조할 수 있다.
상기 레이저빔이 조사되는 상기 시료에 비활성 가스를 분사할 수 있다.
상기와 같이 구성된 본 발명에 따르면, 경량화되어 휴대성을 가지며, 전처리 과정을 거칠 필요 없이 채취한 액체 시료의 화학적 원소성분을 현장에서 바로 분석할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 액체 시료를 가열 건조하여 농축과정을 거침으로써, 액체 증발 후 남아 있는 고체를 분석 할 수 있는 효과가 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 액체 내 오염물질의 화학적 원소 분석장치의 개략도이다.
도 3은 도 1에 도시된 멤브레인 필터의 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 액체 내 오염물질의 화학적 원소 분석장치의 부분 개략도이다.
도 5는 도 4에 도시된 수송판의 정면도이다.
도 6은 도 4에 도시된 수송판의 사시도이다.
도 7 및 도 8은 본 발명의 일 실시예에 따른 측정 결과를 나타내는 그래프이다.
도 9 내지 도 12는 각종 액체 시료에 대한 타겟 원소의 검출 파장을 나타내는 표이다.
도 13은 본 발명의 일 실시예에 따른 제1 과정을 통한 ICP-OES(Inductively Coupled Plasma Optical Emission Spectrometer)와 LIBS(Laser Induced Breakdown Spectroscopy)의 원소성분 분석결과를 나타내는 표이다.
도 14는 본 발명의 일 실시예에 따른 제2 과정을 통한 ICP-OES와 LIBS의 원소성분 분석결과를 나타내는 표이다.
<부호의 설명>
1, 1a, 1b, 1c: 시료
5: 주입구
10: 시료 저장부
11: 제1 공급부
15: 제2 공급부
20: 레이저부
21, 21a, 21b, 21c: 레이저빔
30: 스펙트로미터
31, 31a, 31b, 31c: 플라즈마 빛
40: 컨트롤러
50: 멤브레인 필터
60: 메인 가스분사부
70: 제1 가스분사부
80: 제2 가스분사부
90, 100: 수송판
95, 105: 히팅부
102: 배치홀
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 액체 내 오염물질의 화학적 원소 분석장치의 개략도이다. 이하에서는 액체 분석장치로 명명하여 설명한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 액체 분석장치는 샘플링된 액상의 시료(1)가 저장되는 시료 저장부(10); 레이저빔(21: 21a, 21b, 21c)을 발진하여, 시료 저장부(10)로부터 분사되는 시료(1: 1a, 1b, 1c)에 레이저빔(21)을 조사하는 레이저부(20) 및 레이저빔(21)이 시료(1)에 조사되어 발생한 플라즈마 빛(31: 31a, 31b, 31c)을 수집하여 플라즈마 빛(31)의 스펙트럼을 계측하는 스펙트로미터(30)를 포함한다.
도 2를 참조하여, 액체 분석장치의 기본 원리를 설명하면 아래와 같다. 시료(1)의 분석은 플라즈마를 여기원으로 하는 분광 분석법을 활용할 수 있다. 레이저부(20)는 레이저빔(21)을 발진하여, 시료(1)에 조사하는 장치이다. 레이저부(20)는 레이저 발생부(25)와 집광렌즈(26)를 포함한다. 레이저빔(21)은 예를 들어 Nd:YAG 레이저 등과 같은 고출력의 레이저빔(21)일 수 있다. 다만, 레이저빔(21)이 반드시 Nd:YAG 레이저에 한정되는 것은 아니다. 이때, 레이저빔(21)의 출력은 컨트롤러(40)에 의해 제어될 수 있다. 레이저빔(21)은 집광렌즈(26)를 통과해 집속되어 시료(1)에 조사될 수 있다.
레이저빔(21)이 시료(1)에 조사되면, 시료(1)가 증기화되고 전자와 양이온으로 분리되어 플라즈마가 생성될 수 있다. 플라즈마는 여기 상태(excitation state, 들뜬 상태)인 원자 및 이온이 기저 상태(ground state, 바닥 상태)로 돌아가면서, 빛의 형태로 에너지를 방출하는데, 이러한 플라즈마 빛을 분광 분석하여, 원소를 정성/정량적으로 분석할 수 있다.
이러한 방식으로, 본 발명에 따른 액체 분석장치 레이저부(20)를 통해 시료(1)에 레이저빔(21)을 조사하고, 이때 발생하는 플라즈마 빛(31)을 분광분석한다. 플라즈마 빛(31)의 분광분석은 스펙트로미터(30)를 통해 이루어질 수 있다. 레이저빔(21)은 1064nm 파장을 가지는 레이저를 사용할 수 있다. 또한, 레이저빔(21)이 집속되는 스팟(Spot) 사이즈를 줄이기 위해, 대물렌즈의 초점거리를 줄이도록 설정할 수 있다. 레이저빔 스팟 사이즈는 4λf/πD (D:입사경, f: 초점거리)로 구성될 수 있는데, 대물렌즈의 초점거리 f를 줄임으로써 레이저빔 스팟 사이즈를 줄일 수 있다. 그리하여, 레이저부(20)에서 낮은 강도의 레이저를 발생하더라도, 실질적으로 레이저빔(21)은 집적을 통해 높은 강도를 가지며 조사될 수 있다. 따라서, 최소화한 레이저 강도에 따라 발열을 최소화 할 수 있고, 이를 통해 레이저부(20)의 구성을 간소화 시킬 수 있으며, 제품을 경량화 할 수 있는 효과가 있다. 결과적으로, 이동성을 확보한 휴대용 분석 장치로서 설계할 수 있다.
스펙트로미터(30)는 플라즈마 빛(31)의 스펙트럼을 계측하는 분광기(spectrometer)이다. 원소가 여기 상태에서 기저 상태로 돌아갈 때, 그 종류 및 여기 상태에 따라 고유의 파장을 방출하므로, 그 파장의 스펙트럼을 해석하면 물질의 구성 성분을 정성, 정량 분석할 수 있다. 이러한 원리에 따라, 스펙트로미터(30)를 이용하여 플라즈마 빛(31)을 수집하고 그 스펙트럼을 계측함으로써, 시료(1) 내의 물질(오염물질)을 정성, 정량적으로 분석할 수 있다. 한편, 스펙트럼의 해석 결과는 컴퓨터(41)에 의해 표시될 수 있다.
다시 도 1을 참조하면, 시료(1)는 셰일가스전(shale gas field)의 시추과정에서 발생한 회수수(flowback water, 回收水), 일반 폐수, 광산 폐수(광산 배수), 원전 폐수 등으로부터 샘플링된 액상의 시료(1)일 수 있으며, 상기 언급한 폐수 이외에 어떠한 종류의 액체든 시료(1)로 채용할 수 있다. 특히, 셰일가스전의 시추과정에서 발생한 회수수에 대해서 더 설명하면 아래와 같다.
셰일가스전의 시추(drilling)는 수압파쇄 기술을 이용한다. 이러한 수압파쇄 기술은 모래와 진흙이 쌓여 굳어진 셰일층에 수압파쇄유체를 고압으로 분사하여 균열을 일으키고 셰일가스를 채취하는 기술이다. 한편, 수압파쇄가 진행 중이거나 완료된 후에 다시 지상으로 되돌아오는 유체 즉, 회수수에는 점토, 용해된 금속 이온, 용존 고형물, 부유물과 수압파쇄유체에 첨가된 화학첨가제 등이 포함된다. 따라서, 셰일가스전의 시추과정에서 중금속 등과 같은 오염물질을 포함하는 회수수의 처리가 필수적이다. 따라서, 본 발명의 액체 분석장치는 이러한 회수수와 일반 폐수, 광산 폐수, 원전 폐수 등의 오염물질을 현장에서 실시간으로 분석함으로써, 수처리를 용이하게 하고자 하는 목적으로 발명된 것이다.
시료(1)는 액체 분석장치의 주입구(5)를 통해 주입되어 시료 저장부(10)에 저장될 수 있다. 시료 저장부(10)는 액상의 시료(1)가 저장되는 공간으로 제1 공급부(11) 또는 제2 공급부(15) 중 적어도 하나에 시료(1)를 공급할 수 있다.
시료(1)는 시료 저장부(10)에 저장되기 전에 멤브레인 필터(50)에 의해 필터링 될 수 있다. 멤브레인 필터(50)는 시료(1) 내의 물질을 여과하는 얇은 막으로 필터역할을 한다. 도 3에 도시된 바와 같이, 멤브레인 필터(50)는 막 형상으로 형성되되, 표면에 시료(1)를 필터링(filtering)하는 필터공(51)이 관통 형성되어, 시료(1) 내의 입자상 물질(1')과 이온성 물질(1")을 분리한다.
멤브레인 필터(50)를 이용하여 시료(1) 내의 물질을 별도로 분석할 수 있다. 구체적으로, 멤브레인 필터(50)를 이용하여 시료(1) 내에서 입자상 물질(1')을 필터링 함에 따라 이온성 물질(1")만을 따로 분석할 수 있다. 또한, 멤브레인 필터(50)를 이용하지 않고 입자상 물질(1') 및 이온성 물질(1")을 포함하는 시료(1)를 분석할 수 있다. 위와 같이, 입자상 물질(1')과 이온성 물질(1")을 분리하여 각각 별도로 분석함으로써, 입자상 물질(1')과 이온성 물질(1")의 차이를 확인할 수 있는 이점이 있다.
필터공(51)의 직경에 따라, 여과는 정밀여과(MF, Microfiltration)와 초미세여과(UF, Ultrafiltration)로 프로세스가 나뉜다. 한편, 멤브레인 필터(50)는 정밀여과 멤브레인(microfiltration membrane)이거나 초미세여과 멤브레인(ultrafiltration membrane)일 수 있다. 이때, 멤브레인 필터(50)의 종류는 시료(1) 내의 물질의 직경, 시료(1)의 용량, 유동속도, 비용 등을 고려하여 결정된다. 이러한 요소를 고려해볼 때에, 정밀여과 멤브레인이 바람직하지만, 반드시 여기에 한정되는 것은 아니다. 또한, 멤브레인 필터(50)는 주입구(5)에 형성된 것으로 도시되어 있으나, 반드시 여기에 한정되는 것은 아니며 제1, 2 공급부(11, 15)에 형성될 수도 있다.
한편, 시료 저장부(10)에 비활성 가스를 분사할 수 있도록, 메인 가스분사부(60)를 더 포함할 수 있다. 메인 가스분사부(60)는 시료 저장부(10)의 시료(1)에 아르곤 가스, 헬륨 가스 등의 비활성 가스를 분사함으로써, 시료(1) 내에 함유된 공기를 방출시킬 수 있다. 공기에는 산소, 질소, 수소 등과 같은 기체가 존재하는데, 이러한 기체는 플라즈마가 발생한 때에 스펙트럼에 영향을 미칠 수 있다. 따라서, 메인 가스분사부(60)는 1차적으로 시료 저장부(10)의 시료(1)에 반응성이 거의 없는 비활성 가스를 분사하여, 스펙트럼에 영향을 미칠 수 있는 공기를 제거할 수 있다. 그리하여, 본 발명에 따른 액체 분석장치는 검출 민감도가 크게 향상되고, 분석결과의 반복재현성을 높일 수 있다.
제1 공급부(11)는 중공관 형상으로 형성된 파이프(pipe)이다. 제1 공급부(11)에서 액적으로 미립화된 시료(1a)가 이동(P1: 제1 과정)하여 제1 공급부(11)의 말단에서 노즐을 통해 분무될 수 있다. 액적으로 미립화된 시료(1a)는 약 100nm 내지 수 ㎛의 크기를 가질 수 있다.
시료 저장부(10)에는 시료(1)를 액적으로 미립화하여 제1 공급부(11)에 분무하는 액적분사부(도면부호 미도시)를 포함할 수 있다. 여기서, 액적분사부는 네블라이저(nebulizer) 또는 아토마이저(atomizer)를 포함할 수 있다. 네블라이저는 아토마이저에 의한 경우보다 상대적으로 액적(1a)의 크기가 크고, 이온성, 입자상 물질의 동시 검출이 가능하다는 특징이 있다. 반면, 아토마이저는 액적(1a)의 크기가 작고, 건조를 시킬 경우에 물의 영향을 최소화시킬 수 있는 특징이 있다. 액적분사부에 의해 분사되는 시료(1a)는 별도의 건조과정을 거치지 않으므로, 네블라이저를 이용하는 것이 바람직하다. 다만, 액적분사부가 반드시 네블라이저에 한정되는 것은 아니고, 시료(1) 내의 물질에 따라 아토마이저를 이용할 수도 있다.
제1 공급부(11)의 말단에서 노즐을 통해 시료(1a)가 분무되기 전에, 시료(1a)에 비활성 가스가 분사되도록, 제1 가스분사부(70)를 더 포함할 수 있다. 이러한 제1 가스분사부(70)는 제1 공급부(11)의 말단에서 노즐을 통해 분무되기 전의 시료(1a)에 아르곤 가스, 헬륨 가스 등의 비활성 가스를 분사함으로써, 시료(1a) 내에 함유된 공기를 2차적으로 방출시킬 수 있다. 따라서, 본 발명에 따른 액체 분석장치는 검출 민감도가 더욱 향상되고, 분석결과의 반복재현성을 더욱 높일 수 있다.
시료(1a)를 보다 원활히 수송하기 위해서, 제1 공급부(11)에 펌프(미도시)를 더 포함할 수 있다. 펌프는 시료(1a)를 수송하기 위한 흡입력을 제공하는 범위 내에서 제1 공급부(11)의 어디에도 배치될 수 있지만, 제1 공급부(11)의 말단에 배치되는 것이 바람직하다.
제1 공급부(11)의 말단에서 분사되는 시료(1a)에는 레이저빔(21a)이 조사되고, 시료(1a)는 증기화되어 전자와 양이온으로 분리됨에 따라 플라즈마가 생성될 수 있다. 플라즈마는 여기 상태에서 기저 상태로 돌아가면서 플라즈마 빛(31a)을 방출하고, 플라즈마 빛(31a)을 스펙트로미터(30)에서 수집하여 스펙트럼을 계측하여 원소를 정성/정략적으로 분석할 수 있다. 플라즈마 빛(31a)은 약 200~900nm의 파장으로 발생할 수 있으므로, 색수차(Chromatic Aberration)에 의한 검출 효율이 저하되는 현상을 막기 위해, 스펙트로미터(30)의 입력 렌즈(도면부호 미도시)는 색수차를 방지하는 렌즈를 사용하거나, 스펙트로미터(30) 내에서 색수차를 보정하는 과정을 더 진행할 수 있다. 컨트롤러(40)는 레이저빔(21a)의 출력을 제어하고, 스펙트로미터(30)의 계측 결과를 분석하여 컴퓨터(41)[도 2 참조]에 표시할 수 있다.
제2 공급부(15)는 제1 공급부(11)와 마찬가지로 중공관 형상으로 형성된 파이프이다. 다만, 제2 공급부(15)는 액적으로 미립화된 시료(1a)가 이동하는 것이 아니고, 액체 상태의 시료(1b) 자체가 이동할 수 있다. 제2 공급부(15)로 이동하는 시료(1b)는 네블라이저 또는 아토마이저에 의해 액적으로 미립화되지 않지만, 소정의 직경 이하를 가지는 액적으로 변환이 필요한 범위 내에서는 네블라이저 또는 아토마이저를 사용할 수도 있다.
제2 공급부(15)로의 시료(1b)의 이동(P2: 제2 과정)은, 시료(1) 내 오염물질의 검출한계가 낮을 경우, 또는 제1 과정(P1)으로 실시간 모니터링 중에 오염물질이 검출되는 정도가 기준치를 크게 초과하는 경우에, 더 정확한 측정을 위해 제2 과정(P2)으로 전환하여 사용할 수 있다. 시료(1)의 농도가 소정의 농도 값 이하이어서 제1 공급부(11)로 시료(1a)의 이동(P1)으로는 스펙트로미터(30)에 의한 계측이 불가능할 경우에, 제2 공급부(15)로부터 분사된 시료(1b)를 가열 건조할 수 있다. 오염물질에 비해 상대적으로 물이 많이 포함된 시료(1)는 검출 민감도가 낮아서, 제1 공급부(11)를 통한 시료(1a)의 플라즈마 빛(31a)을 분석하더라도 원하는 분석 값을 얻을 수 없다. 따라서, 시료(1)를 가열 건조하여 물을 증발시킴으로써, 시료(1)의 농도를 소정의 농도 값 이상으로 높이고 분석을 진행하는 것이다.
한편, 제2 공급부(15)를 통해 이동(P2)된 시료(1b)는 수송판(90) 상부에 위치하도록 분사될 수 있다. 제2 공급부(15)의 말단에는 노즐 또는 주사기를 설치하여 적절한 액적의 크기로 시료(1b)를 분사할 수 있다. 수송판(90)은 회전 가능한 판 형상으로 형성되며, 일면(상부면)에 시료(1b)가 흡착 배치될 수 있다.
수송판(90)의 일면(상부면)은 친수성 처리가 더해질 수 있다. 친수성 처리는 수송판(90)에 친수막 코팅 또는 친수성 필터를 결합하는 방식 등을 통해 수행될 수 있다. 기존의 Al 필터 등을 이용한 액체분석은 시료 내의 염분 및 오염물질들로 인하여, 시료가 결정화가 진행되는 문제점이 있었다. 그리하여, 시료의 분석 정확도가 낮고, 균일한 결과를 얻지 못하는 문제점이 있었다. 하지만 본 발명은, 수송판(90)에 친수성 처리가 더해짐에 따라, 시료(1b)가 용이하게 흡착 배치될 수 있으며, 시료(1b)가 수송판(90) 상에서 균등하게 퍼트려질 수 있으며, 시료(1b)가 건조되는 시간이 단축될 수 있으며, 시료(1b)가 건조 후에 결정화가 진행되는 것을 방지하는 이점이 있다. 그리하여, 분석 정확도가 높고 균일한 결과를 얻을 수 있다.
또한, 수송판(90)의 상부면에 시료(1b)가 더 안정적으로 흡착될 수 있도록 함몰된 복수의 배치홀(미도시)이 형성될 수 있다. 배치홀은 시료(1b)가 안정적으로 수송판(90)에 흡착되도록 형성된 미세한 구멍이다. 따라서, 수송판(90)이 이동될 때에도, 수송판(90)에 배치된 시료(1b)는 진동이나 충격에 영향을 덜 받는다. 수송판(90)은 하부에 연결된 모터 등의 회전부재(91)에 의해 회전될 수 있다.
수송판(90)이 회전하면, 수송판(90) 상부에 흡착 배치된 시료(1b)도 같이 이동하여, 레이저빔(21b)이 조사될 수 있는 위치로 이동될 수 있다. 수송판(90)은 시료(1b) 내의 물질에 따라 플라즈마 빛(31b)에 영향을 미치지 않는 재질로 형성될 수 있다. 예를 들어, 시료(1b) 내의 물질이 중금속인 경우에는 나일론(nylon)으로 형성되고, 탄소화합물인 경우에는 메탈 성분으로 형성될 수 있다. 다만, 수송판(90)이 반드시 이러한 재질에 한정되는 것은 아니다.
시료(1)를 가열 건조하기 위해서, 수송판(90)의 내부에는 히팅부(95)가 배치될 수 있으나, 수송판(90)의 하부에 히팅부가 배치될 수도 있다. 히팅부(95)는 수송판(90)에 열을 가하는 가열장치로서, 수송판(90)의 일면에 배치된 시료(1b)를 가열하여 물을 증발시킨다. 이때, 히팅부(95)의 가열온도는 제어부(미도시)에 의해서 제어될 수 있다.
레이저빔(21b)이 조사되는 시료(1b)에 직접 비활성 가스가 분사되도록 제2 가스분사부(80)를 더 포함할 수 있다. 제2 가스분사부(80)는 상술한 제1 가스분사부(70)에 대응된다. 다만, 시료(1b)에 직접 비활성 가스를 분사하는 점에서, 레이저빔(21a)이 조사되기 전의 시료(1a)이 비활성 가스를 분사하는 제1 가스분사부(70)와 차이가 있다. 이는, 시료(1b)가 수송판(90)을 통해 이동되는 과정에서 공기와 접촉하므로, 레이저빔(21b)이 조사되는 때에 비활성 가스를 분사하여 좀 더 효과적으로 시료(1b) 내의 공기를 제거하기 위함이다. 시료(1b) 내에 함유된 공기를 2차적으로 방출시킬 수 있으므로, 본 발명에 따른 액체 분석장치는 검출 민감도가 더욱 향상되고, 분석결과의 반복재현성을 더욱 높일 수 있다.
수송판(90)에 의해 이동된 시료(1b)에는 레이저빔(21b)이 조사되고, 시료(1b)는 증기화되어 전자와 양이온으로 분리됨에 따라 플라즈마가 생성될 수 있다. 플라즈마는 여기 상태에서 기저 상태로 돌아가면서 플라즈마 빛(31b)을 방출하고, 플라즈마 빛(31b)을 스펙트로미터(30)에서 수집하여 스펙트럼을 계측하여 원소를 정성/정략적으로 분석할 수 있다. 컨트롤러(40)는 레이저빔(21b)의 출력을 제어하고, 스펙트로미터(30)의 계측 결과를 분석하여 컴퓨터(41)[도 2 참조]에 표시할 수 있다.
도 4는 본 발명의 다른 실시예에 따른 액체 분석장치의 부분 개략도, 도 5는 도 4에 도시된 수송판의 정면도, 도 6은 도 4에 도시된 수송판의 사시도이다. 도 4 내지 6의 다른 실시예는 수송판(100)의 구성만이 도 1의 실시예와 차이가 있고, 나머지 구성요소는 동일하므로 그 설명을 생략한다.
도 4 내지 도 6을 참조하면, 제2 공급부(15)를 통해 이동(P2)된 시료(1c)는 수송판(100) 상부에 위치하도록 분사될 수 있다. 수송판(100)은 소정의 길이는 갖는 판 형상으로 형성되며, 일면(상부면)에 시료(1c)가 흡착 배치될 수 있다.
흡착 배치가 용이하도록 수송판(100)의 일면(상부면)은 친수성 처리가 더해질 수 있다.
수송판(100)의 일면(상부면)은 친수성 처리가 더해질 수 있다. 친수성 처리는 수송판(100)에 친수막 코팅 또는 친수성 필터를 결합하는 방식 등을 통해 수행될 수 있다. 수송판(100)에 친수성 처리가 더해짐에 따라, 시료(1c)가 용이하게 흡착 배치될 수 있으며, 시료(1c)가 수송판(100) 상에서 균등하게 퍼트려질 수 있으며, 시료(1c)가 건조되는 시간이 단축될 수 있으며, 시료(1c)가 건조 후에 결정화가 진행되는 것을 방지하는 이점이 있다. 그리하여, 분석 정확도가 높고 균일한 결과를 얻을 수 있다.
또한, 수송판(100)의 상부면에 시료(1c)가 더 안정적으로 흡착될 수 있도록 함몰된 복수의 배치홀(102)이 형성될 수 있다. 배치홀(102)은 시료(1c)가 안정적으로 수송판(100)에 흡착되도록 형성된 미세한 구멍이다. 따라서, 수송판(100)이 이동될 때에도, 수송판(100)에 배치된 시료(1c)는 진동이나 충격에 영향을 덜 받는다.
수송판(100)은 길이 방향을 따라 이동(101)하므로, 수송판(100)에 배치된 시료(1c)는 가열 건조된 후 레이저빔(21c)에 조사되도록 이동될 수 있다. 수송판(100)은 시료(1c) 내의 물질에 따라 플라즈마 빛(31c)에 영향을 미치지 않는 재질로 형성될 수 있다. 예를 들어, 시료(1c) 내의 물질이 중금속인 경우에는 나일론(nylon)으로 형성되고, 탄소화합물인 경우에는 메탈 성분으로 형성될 수 있다. 다만, 수송판(100)이 반드시 이러한 재질에 한정되는 것은 아니다.
시료(1)를 가열 건조하기 위해서, 수송판(100)의 하부에는 히팅부(105)가 배치될 수 있으나, 수송판(100)의 내부에 히팅부가 배치될 수도 있다. 히팅부(105)는 수송판(100)에 열을 가하는 가열장치로서, 수송판(100)의 일면에 배치된 시료(1c)를 가열하여 물을 증발시킨다. 이때, 히팅부(105)의 가열온도는 제어부(미도시)에 의해서 제어될 수 있다.
수송판(100)에 의해 이동된 시료(1c)에는 레이저빔(21c)이 조사되고, 시료(1c)는 증기화되어 전자와 양이온으로 분리됨에 따라 플라즈마가 생성될 수 있다. 플라즈마는 여기 상태에서 기저 상태로 돌아가면서 플라즈마 빛(31c)을 방출하고, 플라즈마 빛(31c)을 스펙트로미터(30)에서 수집하여 스펙트럼을 계측하여 원소를 정성/정략적으로 분석할 수 있다. 컨트롤러(40)는 레이저빔(21c)의 출력을 제어하고, 스펙트로미터(30)의 계측 결과를 분석하여 컴퓨터(41)[도 2 참조]에 표시할 수 있다.
위와 같이 본 발명의 액체 분석장치는, 샘플링된 액상의 시료(1)를 곧바로 주입하여 분석할 수 있는 효과가 있다. 복잡한 전처리 과정을 거칠 필요가 없고, 화학시약 등을 사용하지도 않는 장치로서, 휴대성을 가지므로, 채취한 액체 시료(1)의 성분을 현장에서 바로 분석할 수 있는 효과가 있다.
그리고, 시료(1)를 미립화하여 분사하거나, 가열 건조한 후에 레이저빔(21)을 조사하므로, 사용하는 레이저 강도를 최소화 할 수 있는 효과가 있다[도 7 이하를 참조하여 후술할 실험예에서는 60mJ/pulse, 200mJ/pulse의 에너지를 가지는 레이저빔(21)을 사용한다]. 레이저 강도가 최소화 되므로, 발열을 최소화 할 수 있고, 이를 통해 제품을 경량화 할 수 있는 효과가 있다. 그리하여, 이동성을 확보한 휴대용 분석 장치로서 설계할 수 있는 것이다.
그리고, 시료 저장부(10) 내의 시료(1)의 액적의 크기와 양을 조절하는 것을 고려할 필요 없이, 네블라이저 또는 아토마이저에 의해 퍼져 있는 미립화된 시료(1a)를 제1 공급부(11)의 말단에서 노즐을 통해 분무할 수 있으므로, 액적을 집적할 수 있는 효과가 있다. 여기에 더하여, 시료(1a)에 비활성 가스를 분사하여 시료(1a) 내의 함유된 공기를 방출시킴에 따라, 집적 효율을 높이고, 주위 공기로부터의 영향을 차단할 수 있고, 이로써 검출 민감도를 더 향상시킬 수 있는 효과가 있다.
그리고, 오염물질의 농도가 낮아 검출한계가 낮을 경우, 또는 실시간 모니터링 중에 오염물질이 검출되는 정도가 기준치를 크게 초과하는 경우에는 액체 시료(1)를 가열 건조하여 농축과정을 거침으로써, 액체 증발 후 남아 있는 고체를 분석할 수 있다. 그리하여, 시료(1)의 농도를 높이고 검출 민감도를 상승시킬 수 있는 효과가 있다.
그리고, 제1 공급부(11)를 통한[제1 과정(P1)] 빠르고 간편한 측정 및 제2 공급부(15)를 통한[제2 과정(P2)] 정교한 측정이 모두 가능한 효과가 있다. 또한, 제1 공급부(11)를 통한 분석 결과와 제2 공급부(15)를 통한 분석 결과를 상호 보완한 결과를 제시하여 분석 정밀도를 향상시키는 것이 가능한 효과가 있다.
그리고, 시료 저장부(10)에서의 제1, 2 공급부(11, 15)를 통해 분무, 분사되는 과정, 및 수송부(90, 100)와 히팅부(95, 105)를 통해 시료(1b, 1c)를 이송하는 과정을 통한 분석으로 시스템 자동화가 가능한 효과가 있다.
(실험예)
이하에서는, 본 발명의 액체 분석장치를 사용한 실험 결과에 대해 살펴본다.
도 7 및 도 8은 본 발명의 일 실시예에 따른 측정 결과를 나타내는 그래프이다. 동일한 액체 시료(1)에 포함된 Mg의 수치를 분석한 결과로서, 도 7은 제1 공급부(11)를 통해 액적으로 미립화된 시료(1a)에 레이저빔(21a)을 조사하여 플라즈마 빛(31a)를 분석한 것이고, 도 8은 제2 공급부(15)를 통해 분사된 시료(1b)를 수송판(95, 105) 상에서 가열 건조하는 과정을 거친 후, 레이저빔(21b, 21c)을 조사하여 플라즈마 빛(31b, 31c)를 분석한 것이다.
도 7의 경우 200 mJ/pulse의 레이저 에너지를 가하였고, 도 8의 경우 수송판(95, 105) 상에 친수성 필터[Filter paper 53(HYUNDAI MICRO), 직경 110mm, 공극 사이즈 1-2㎛]를 커버하여, 70 ℃에서 10분간 가열 건조하여 60 mJ/pulse의 레이저 에너지를 가하였다. 도 7 및 도 8에서 Mg의 ppm이 상승할수록 LIBS(laser induced breakdown spectroscopy) peak area가 상승하는 그래프가 나타났고, 선형성(R2)은 0.9719, 0.9948로 1에 가까운 수치를 보였다. 특히, 도 8은 물을 가열 건조하여 오염물질의 농도를 높였으므로, 보다 선형성이 높게 나왔으며, 상대적으로 적은 레이저 에너지를 사용하고도 분석이 가능하였다.
따라서, 본 발명의 액체 분석장치를 통해서도 신뢰성이 높은 분석 결과가 나오는 것을 확인할 수 있으며, 휴대성이 높은 액체 분석장치를 통해 현장에서 실시간 분석이 가능함을 확인할 수 있었다.
도 9 내지 도 12는 각종 액체 시료에 대한 타겟 원소의 검출 파장을 나타내는 표이다. 본 발명의 액체 분석장치는 도 9 내지 도 12를 참조하여 셰일가스 회수수, 일반 폐수, 광산 폐수(광산 배수), 원전 폐수 등으로부터 샘플링된 액체 시료(1)에 포함된 타겟 원소의 스펙트럼을 계측하여, 해당 원소의 정량/정성 분석이 가능한 이점이 있다.
도 13은 본 발명의 일 실시예에 따른 제1 과정(P1)을 통한 ICP-OES(Inductively Coupled Plasma Optical Emission Spectrometer)와 LIBS(Laser Induced Breakdown Spectroscopy)의 원소성분 분석결과를 나타내는 표이다.
도 13의 X 축은 ICP-OES를 통해 시료 내의 타겟 성분에 대한 농도를, Y축은 본 발명의 액체 분석장치(LIBS)를 통해 시료 내의 타겟 성분의 측정값으로서 제1 공급부(11)에서 분무되는 시료(1a)에 곧바로 레이저빔(21a)을 조사한 분석결과를 나타낸다.
셰일가스 회수수로부터 샘플링된 시료(1)를 분석하였으며, 200 mJ/pulse의 레이저빔(21a)를 딜레이 타임 1㎲로 조사하였으며, 스펙트로미터(30)는 LIBS2000+를 사용하였다.
시료 내의 각각의 성분인 Mg, Ca, Na, K에 대하여 ICP-OES와 LIBS의 데이터의 선형성(R2)은 각각 0.8261, 0.8068, 0.8338, 0.8233으로 1에 상당히 근접하는 수치를 보였다. 이를 통해, 시료 내의 성분에 대한 표준 분석 방법인 ICP-OES의 분석 결과와 비교할 때, 본 발명의 LIBS의 분석 결과가 신뢰성 있는 수준임을 확인할 수 있었다.
도 14는 본 발명의 일 실시예에 따른 제2 과정(P2)을 통한 ICP-OES와 LIBS의 원소성분 분석결과를 나타내는 표이다.
도 14의 X 축은 ICP-OES를 통해 시료 내의 타겟 성분에 대한 농도를, Y축은 본 발명의 액체 분석장치(LIBS)를 통해 시료 내의 타겟 성분의 측정값으로서 제2 공급부(15)에서 분사되는 시료(1b, 1c)를 수송판(90, 100) 상에서 가열 건조 과정을 거친 후 레이저빔(21b, 21c)을 조사한 분석결과를 나타낸다.
셰일가스 회수수로부터 샘플링된 시료(1)를 분석하였으며, 60 mJ/pulse의 레이저빔(21b)를 딜레이 타임 1㎲로 조사하였으며, 스펙트로미터(30)는 LIBS2000+를 사용하였다. 제2 과정(P2)은 시료의 가열 건조 과정이 추가되므로, 상대적으로 에너지가 낮은 레이저빔(21b)을 사용할 수 있는 이점이 있다. 수송판(90, 100) 상에 친수성 필터를 결합하여, 시료(1b, 1c)를 흡착 배치하였고, 10분간 70℃로 가열 건조를 수행하였다.
시료 내의 각각의 성분인 Mg, Ca, Na, K에 대하여 ICP-OES와 LIBS의 데이터의 선형성(R2)은 각각 0.8841, 0.9402, 0.8796, 0.8810으로 1에 상당히 근접하는 수치를 보였으며, 시료를 농축하여 분석을 진행하므로, 제1 과정(P1)의 결과보다 1에 근접하는 수치를 보였다. 이를 통해, 시료 내의 성분에 대한 표준 분석 방법인 ICP-OES의 분석 결과와 본 발명의 LIBS의 분석 결과가 실질적으로 동일한 수준임을 확인할 수 있었다.
도 13 및 도 14를 통해, 본 발명의 액체 분석장치를 통해서도 신뢰성이 높은 분석 결과가 나오는 것을 확인할 수 있으며, 휴대성이 높은 액체 분석장치를 통해 현장에서 실시간 분석이 가능함을 확인할 수 있었다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.

Claims (24)

  1. 액체 내 오염물질의 화학적 원소 분석장치로서,
    샘플링된 액상의 시료가 저장되는 시료 저장부;
    레이저빔을 발진하여, 상기 시료 저장부로부터 분사되는 상기 시료에 상기 레이저빔을 조사하는 레이저부; 및
    상기 레이저빔이 상기 시료에 조사되어 발생한 플라즈마 빛을 수집하여 상기 플라즈마 빛의 스펙트럼을 계측하는 스펙트로미터
    를 포함하는 것을 특징으로 하는 액체 분석장치.
  2. 제1항에 있어서,
    상기 시료 저장부는 제1 공급부 또는 제2 공급부 중 적어도 하나에 시료를 공급하는 것을 특징으로 하는 액체 분석장치.
  3. 제2항에 있어서,
    상기 시료 저장부는 상기 제1 공급부에 상기 시료를 액적으로 미립화하여 분무하는 액적분사부를 포함하는 것을 특징으로 하는 액체 분석장치.
  4. 제1항에 있어서,
    상기 시료 저장부에 비활성 가스를 분사하는 메인 가스분사부를 더 포함하는 것을 특징으로 하는 액체 분석장치.
  5. 제4항에 있어서,
    상기 제1 공급부의 말단에서 분무되기 전의 상기 시료에 비활성 가스를 분사하는 제1 가스분사부를 더 포함하는 것을 특징으로 하는 액체 분석장치.
  6. 제4항에 있어서,
    상기 제1 공급부에는, 상기 시료를 수송하는 펌프를 더 포함하는 것을 특징으로 하는 액체 분석장치.
  7. 제1항에 있어서,
    상기 시료가 상기 시료 저장부에 저장되기 전에 상기 시료를 필터링하는 멤브레인 필터를 더 포함하며,
    상기 멤브레인 필터는, 막 형상으로 형성되고, 표면에 상기 시료를 필터링하는 필터공이 관통되어, 상기 시료 내의 입자상 물질과 이온성 물질을 분리하는 것을 특징으로 하는 액체 분석장치.
  8. 제2항에 있어서,
    상기 제2 공급부는 상기 시료가 수송판 상부에 위치하도록 분사하는 것을 특징으로 하는 액체 분석장치.
  9. 제8항에 있어서,
    상기 수송판의 적어도 일면은 친수성 처리된 것을 특징으로 하는 액체 분석장치.
  10. 제8항에 있어서,
    상기 수송판은 회전 가능한 판 형상으로 형성되어, 상부면에 상기 제2 공급부에 의해 분사된 상기 시료가 흡착 배치되고, 상기 수송판이 회전함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동하는 것을 특징으로 하는 액체 분석장치.
  11. 제8항에 있어서,
    상기 수송판은 소정의 길이를 갖는 판 형상으로 형성되어, 상부면에 상기 제2 공급부에 의해 분사된 상기 시료가 흡착 배치되고, 상기 수송판이 길이 방향을 따라 이동함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동하는 것을 특징으로 하는 액체 분석장치.
  12. 제10항 또는 제11항에 있어서,
    상기 수송판의 상부면에 상기 시료가 흡착되도록 함몰된 복수의 배치홀이 형성되는 것을 특징으로 하는 액체 분석장치.
  13. 제10항 또는 제11항에 있어서,
    상기 수송판 내부에 배치되거나 상기 수송판의 하부에 배치되어, 상기 수송판에 열을 가하여 상기 시료를 가열 건조하는 히팅부를 더 포함하는 것을 특징으로 하는 액체 분석장치.
  14. 제10항 또는 제11항에 있어서,
    상기 레이저빔이 조사되는 상기 시료에 비활성 가스를 분사하는 제2 가스분사부를 더 포함하는 것을 특징으로 하는 액체 분석장치.
  15. 액체 내 오염물질의 화학적 원소 분석방법으로서,
    (a) 샘플링된 액상의 시료를 저장하는 단계;
    (b) 저장된 시료를 분무하고, 레이저빔을 분무되는 상기 시료에 조사하는 단계; 및
    (c) 상기 레이저빔이 상기 시료에 조사되어 발생한 플라즈마 빛을 수집하여 상기 플라즈마 빛의 스펙트럼을 계측하는 단계
    를 포함하는 것을 특징으로 하는 액체 분석방법.
  16. 제15항에 있어서,
    상기 시료를 액적으로 미립화하여 분무하고, 분무된 상기 시료에 레이저빔을 조사하는 것을 특징으로 하는 액체 분석방법.
  17. 제15항에 있어서,
    상기 저장된 시료에 비활성 가스를 분사하는 것을 특징으로 하는 액체 분석방법.
  18. 제15항에 있어서,
    상기 시료가 분무되기 전에 상기 시료에 비활성 가스를 분사하는 것을 특징으로 하는 액체 분석방법.
  19. 제15항에 있어서,
    상기 시료를 저장하기 전에, 막 형상으로 형성되고, 표면에 상기 시료를 필터링하는 필터공이 관통된 멤브레인 필터를 사용하여, 상기 시료 내의 입자상 물질과 이온성 물질을 분리하는 것을 특징으로 하는 액체 분석방법.
  20. 제15항에 있어서,
    상기 시료를 수송판 상부면에 흡착 배치되도록 분사하고, 상기 수송판을 이동함에 따라 상기 시료가 상기 레이저빔에 조사되도록 위치가 이동하는 것을 특징으로 하는 액체 분석방법.
  21. 제15항에 있어서,
    상기 수송판의 적어도 일면은 친수성 처리된 것을 특징으로 하는 액체 분석방법.
  22. 제20에 있어서,
    상기 수송판의 상부면에 상기 시료가 흡착되도록 함몰된 복수 개의 배치홀이 형성되는 것을 특징으로 하는 액체 분석방법.
  23. 제20항에 있어서,
    히팅부를 상기 수송판 내부에 배치하거나 상기 수송판의 하부에 배치하여, 상기 수송판에 열을 가함에 따라 상기 시료를 가열 건조하는 것을 특징으로 하는 액체 분석방법.
  24. 제20항에 있어서,
    상기 레이저빔이 조사되는 상기 시료에 비활성 가스를 분사하는 것을 특징으로 하는 액체 분석방법.
PCT/KR2015/012911 2014-11-28 2015-11-30 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법 WO2016085313A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2966149A CA2966149C (en) 2014-11-28 2015-11-30 Chemical element analysis device and method for contaminants in liquid
US15/531,069 US10175173B2 (en) 2014-11-28 2015-11-30 Chemical element analysis device and method for contaminants in liquid
CN201580059415.9A CN107075944A (zh) 2014-11-28 2015-11-30 液体内污染物质的化学元素分析装置以及分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140168248 2014-11-28
KR10-2014-0168248 2014-11-28
KR1020150167638A KR101723535B1 (ko) 2014-11-28 2015-11-27 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법
KR10-2015-0167638 2015-11-27

Publications (2)

Publication Number Publication Date
WO2016085313A2 true WO2016085313A2 (ko) 2016-06-02
WO2016085313A3 WO2016085313A3 (ko) 2016-07-21

Family

ID=56075117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012911 WO2016085313A2 (ko) 2014-11-28 2015-11-30 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법

Country Status (1)

Country Link
WO (1) WO2016085313A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062349A (zh) * 2021-12-03 2022-02-18 吉林大学 一种利用飞秒激光诱导水膜的libs液体检测方法
CN114354520A (zh) * 2021-12-29 2022-04-15 杭州谱育科技发展有限公司 水中VOCs检测装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743321B2 (ja) * 1986-04-11 1995-05-15 株式会社日立製作所 放射性液体中の金属濃度測定方法
JP2005221373A (ja) * 2004-02-05 2005-08-18 Toshiba Corp 元素分析装置
ES2245875B1 (es) * 2004-03-26 2006-11-16 Joaquin Espuelas Peñalva Proceso de fabricacion y filtro de tejido no tejido y/o de laminas o estructuras inyectadas filtrantes obtenidos por dicho proceso para la filtracion y eliminacion de la legionella pneumofila.
KR100912676B1 (ko) * 2007-11-14 2009-08-19 광주과학기술원 나노 멤브레인과 에어로졸화 방법을 통한 콜로이드나노입자 측정 기술
KR101022538B1 (ko) * 2010-07-02 2011-03-16 광주과학기술원 플라즈마 발생장치 및 이를 구비하는 플라즈마 분광분석장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062349A (zh) * 2021-12-03 2022-02-18 吉林大学 一种利用飞秒激光诱导水膜的libs液体检测方法
CN114354520A (zh) * 2021-12-29 2022-04-15 杭州谱育科技发展有限公司 水中VOCs检测装置和方法

Also Published As

Publication number Publication date
WO2016085313A3 (ko) 2016-07-21

Similar Documents

Publication Publication Date Title
KR101723535B1 (ko) 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법
US20120079894A1 (en) Systems and methods for laser assisted sample transfer to solution for chemical analysis
WO2016085313A2 (ko) 액체 내 오염물질의 화학적 원소 분석장치 및 분석방법
CN105067593A (zh) 静电辅助增强激光诱导击穿光谱污水重金属元素检测装置
Yu et al. Simultaneous determination of trace lead and chromium in water using laser-induced breakdown spectroscopy and paper substrate
KR20130087846A (ko) 레이저 유도 분광분석법을 이용한 검출방법 및 검출장치
JP2006242595A (ja) 油中の有機ハロゲン化物検出装置
RU2414697C1 (ru) Способ детектирования и идентификации химических соединений и устройство для его осуществления
WO2003027650A2 (en) Method for detection and discrimination of polycyclic aromatic hydrocarbons (pahs) and monoaromatics based on laser-induced breakdown spectroscopy (libs)
EP0897108B1 (de) Verfahren und Vorrichtung zum analytischen Nachweis von Spuren
JP3605386B2 (ja) レーザ測定装置及び方法
JP3540756B2 (ja) 有機微量成分の検出装置
JP2004077176A (ja) 有機微量成分の検出装置
JP2003130770A (ja) 試料濃縮装置及び有機微量成分の検出装置
CN218646854U (zh) 一种液体中核素的检测***
JP2008304340A (ja) 試料分析法および装置
JP2003172697A (ja) 分析装置及び方法
JP2003247984A (ja) 有機ハロゲン化物濃度校正装置
Wang et al. Rapid detection of trace heavy metals using laser breakdown time-of-flight mass spectrometry
CN117629969A (zh) 一种液体中核素的检测***
JP3593088B2 (ja) 有害物質計測装置
CN112973352B (zh) 一种带有自检机构的废气处理装置
Kambe et al. Measurement of gas-and particle-phase organic species in diesel exhaust using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry
JP3868299B2 (ja) 廃棄炉の解体監視システム
JP3692342B2 (ja) 有機微量成分の検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862362

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2966149

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15531069

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15862362

Country of ref document: EP

Kind code of ref document: A2