WO2016063724A1 - 三相中性点クランプ式の電力変換装置 - Google Patents

三相中性点クランプ式の電力変換装置 Download PDF

Info

Publication number
WO2016063724A1
WO2016063724A1 PCT/JP2015/078447 JP2015078447W WO2016063724A1 WO 2016063724 A1 WO2016063724 A1 WO 2016063724A1 JP 2015078447 W JP2015078447 W JP 2015078447W WO 2016063724 A1 WO2016063724 A1 WO 2016063724A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
command value
neutral point
voltage command
value
Prior art date
Application number
PCT/JP2015/078447
Other languages
English (en)
French (fr)
Inventor
賢司 小堀
鎮教 濱田
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2016063724A1 publication Critical patent/WO2016063724A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to a three-phase neutral point clamp type multi-level power converter, and more particularly to neutral point voltage control using PWM control.
  • FIG. 7 is a configuration diagram showing a main circuit in a three-phase neutral point clamp type power converter connected to a motor load.
  • the switching devices IGBT in FIG. 7
  • the switching devices S1 to S12 are turned ON / OFF, and an AC voltage is output to the output terminals U, V, and W.
  • This power converter divides the DC voltage PN between the smoothing capacitors Cdc1 and Cdc2, and outputs three-level potentials of the DC potentials P and N and the neutral point potential NP using PWM modulation (Pulse Width Modulation). Is.
  • neutral point potential control (Neutral Point Control) is performed to suppress variations in DC voltages Vdc1 and Vdc2.
  • the neutral point potential control takes a deviation between the DC voltage Vdc1 of the smoothing capacitor Cdc1 on the positive electrode side (P side) between the DC voltages PN and the DC voltage Vdc2 of the smoothing capacitor Cdc2 on the negative electrode side (N side). Is controlled so that becomes zero.
  • FIG. 8 is a block diagram showing a control circuit of a three-phase neutral point clamp type power converter.
  • the phase detector enc is attached to the motor M, and the phase detection value is theta_det.
  • three-phase currents (motor currents) Iu, Iv, and Iw are three-phase to two-phase converted based on the phase detection value theta_det, and a d-axis current detection value Id_det and a q-axis current detection value Iq_det are obtained. obtain.
  • the d-axis current command value Id_cmd and the q-axis current command value Iq_cmd are set as target values, and PI control is performed so that the d-axis current detection values Id_det and Iq_det follow the target values.
  • the output of the current control unit ACR becomes the two-phase voltage command values Vd_cmd and Vq_cmd.
  • the two-phase voltage command values Vd_cmd and Vq_cmd are subjected to two-phase / three-phase conversion by the two-phase / three-phase converter 2 to generate a three-phase voltage command value V_cmd.
  • the neutral point potential control unit NPC calculates a neutral point potential compensation amount V_cmp based on the DC voltages Vdc1 and Vdc2.
  • the neutral point potential compensation amount V_cmp is added to the three-phase voltage command value V_cmd, and the voltage command after the addition is set as a correction voltage command value V_cmd ′.
  • the correction voltage command value V_cmd ′ is limited by the limiter LMT, and the limit processing voltage command value V_cmd ′′ is input to the PWM processing unit PWM.
  • the limiter LMT outputs the correction voltage command value as it is as the limit processing voltage command value V_cmd ′′ when the correction voltage command value V_cmd ′ is below the threshold value, and sets the threshold value when the correction voltage command value V_cmd ′ is equal to or greater than the threshold value. Output as limit processing voltage command value V_cmd ′′.
  • the purpose of providing the limiter LMT is to prevent the gate commands GI_H and GI_L, which will be described later, from becoming abnormal pulses (minimum pulses, etc.) and to prevent distortion in the output voltage and output current of the power converter. .
  • the PWM processing unit PWM generates the gate commands GI_H and GI_L of the switching devices S1 to S12 using the limit processing voltage command value Vcmd ′′.
  • a method of generating the gate commands GI_H and GI_L by comparing the triangular wave carrier signal and the limit processing voltage command value V_cmd ′′ is general.
  • the corrected voltage command value V_cmp ′ is a value obtained by adding the neutral point potential compensation amount V_cmp to the three-phase voltage command value V_cmd.
  • a large output current of the power converter that is, motor current
  • the output of the current control unit ACR is two-phase.
  • the three-phase voltage command value V_cmd after the three-phase conversion also increases.
  • the capacitor capacities of the smoothing capacitors Cdc1 and Cdc2 in FIG. 7 are generally equal, the deviation of the initial charge value, that is, the deviation between the DC voltages Vdc1 and Vdc2 becomes large due to manufacturing variations and aging degradation. That is, the neutral point potential compensation amount V_cmp immediately after startup tends to increase.
  • the gain of the current control or neutral point voltage control is lowered.
  • the steady-state control performance decreases. Therefore, a control mechanism that takes into account the interference between current control and neutral point potential control without reducing the gain of neutral point potential control is required.
  • One aspect of the present invention is a three-phase neutral point clamp type power converter, and its control circuit includes a d-axis current command value and d
  • a current control unit that calculates a two-phase voltage command value by a current control function that performs PI control based on a deviation from the detected shaft current value and a deviation between the q-axis current command value and the q-axis current detected value;
  • a two-phase three-phase conversion unit that converts a phase voltage command value into a three-phase voltage command value, a neutral point potential control unit that calculates a neutral point potential compensation amount that compensates for a voltage deviation of a smoothing capacitor connected in series, Output a value that limits the neutral point potential compensation amount as a limit compensation amount until a preset time has elapsed since the start of operation of the power converter, and after a preset time has elapsed since the start of the operation of the power converter The neutral point potential compensation amount is output as it
  • a limiter that outputs the threshold value as a limit processing voltage command value when the correction voltage command value is equal to or greater than the threshold value, and a PWM control unit that performs PWM control based on the limit treatment voltage command value.
  • the limiting means sets the limit compensation amount to 0 until a preset time elapses after the power converter starts operation.
  • the limiting means sets the limit compensation amount to 0 until the power conversion device starts operation, and the limit compensation amount until a preset time elapses after the power conversion device starts operation. Is gradually increased.
  • the load connected to the three-phase AC output of the power converter is a motor
  • the three-phase current detection value is converted to the d-axis current detection value and the q-axis current detection value based on the phase detection value of the motor
  • the two-phase voltage command value is converted into a three-phase voltage command value based on the phase detection value of the motor.
  • the power conversion device is connected to a grid, and converts a three-phase current detection value into a d-axis current detection value and a q-axis current detection value based on a detection value of the system phase.
  • the two-phase voltage command value is converted into a three-phase voltage command value based on the phase detection value.
  • FIG. 2 is a block diagram illustrating a control circuit according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a control circuit in a second embodiment.
  • 9 is a time chart showing an input / output operation of a variable limiter according to the second embodiment.
  • FIG. 9 is a block diagram illustrating a control circuit according to a third embodiment.
  • FIG. 9 is a block diagram illustrating a control circuit according to a fourth embodiment.
  • the block diagram which shows an example of the conventional control circuit.
  • Embodiments 1 to 4 of the three-phase neutral point clamp type multilevel power conversion device according to the present invention will be described below in detail with reference to FIGS.
  • FIG. 1 is a block diagram illustrating a control circuit of the power conversion device according to the first embodiment.
  • the control circuit of the first embodiment takes into account interference between current control and neutral point potential control.
  • the neutral point potential compensation amount V_cmp output by the neutral point potential control unit NPC is limited until the preset time elapses from the start of operation of the power converter.
  • the delay is limited by the delay counter 4).
  • the delay counter 4 is triggered by a signal at the start of operation of the power conversion device (hereinafter referred to as an operation start signal) Start trigger, and the limit compensation amount until the time constant ⁇ elapses after the operation start signal Start trigger is input.
  • 0 is output as V_cmp_o
  • the neutral point potential compensation amount V_cmp is output as the limit compensation amount V_cmp_o after the time constant ⁇ elapses after the operation start signal Start trigger is input.
  • the time constant ⁇ is calculated based on the d-axis inductance Ld, the q-axis inductance Lq, and the resistance R of the connected motor M.
  • the values of the d-axis inductance Ld, the q-axis inductance Lq, and the resistance R are determined in advance by an impedance measurement test of the motor M or the like.
  • V_cmd ′ V_cmd.
  • V_cmd ′ V_cmd.
  • V_cmp V_cmd + V_cmp.
  • the correction voltage command value V_cmd ′ is neutral during the period from the start of operation of the power conversion device (that is, at the time of motor start) to the time constant ⁇ . It operates only with the three-phase voltage command value V_cmd calculated by the current control without being affected by the potential compensation amount V_cmd. Therefore, current control and neutral point potential control do not interfere, and the output voltage of the power converter operates stably. As a result, a failure stop due to overcurrent protection or overvoltage protection does not occur. Further, since the gains of the current control and neutral point potential control are not lowered in the steady state, it is possible to suppress the deterioration of the control performance in the steady state.
  • the limit compensation amount V_cmp_o is made variable according to the passage of time using the operation start signal Start trigger as a trigger. Others are the same as in the first embodiment.
  • variable limiter 5 is provided instead of the delay counter 4, and an operation start signal Start trigger of the power conversion device and a neutral point potential compensation amount V_cmp are input.
  • variable limiter 5 does not add the compensation amount step by step, but outputs 0 as the limit compensation amount V_cmp_o until the operation start signal Start trigger is input, and the operation start signal Start trigger is input as shown in FIG.
  • the limit compensation amount V_cmp_o is gradually increased in a cushioned manner until the time constant ⁇ , and the neutral point potential compensation amount is set as the limit compensation amount V_cmp_o after the time constant ⁇ elapses after the operation start signal Start trigger is input.
  • V_cmp is output as it is.
  • the limit compensation amount V_cmp_o can be reduced during the period from the start of operation of the power conversion device (that is, when the motor is started) to the time constant ⁇ , interference between current control and neutral point potential control can occur. It becomes small and it becomes possible to stabilize the output voltage of a power converter device. Further, since the neutral point potential compensation amount V_cmp is output as it is as the limit compensation amount V_cmp_0 and the gain is not lowered at the steady state, it is possible to suppress the deterioration of the control performance at the steady state.
  • FIG. 4 shows a main circuit configuration diagram of a three-phase neutral point clamp type power conversion device interconnected with the grid. Input filters Lf and Cf are inserted between the three-phase system voltages Vrs, Vst and Vtr and the three-phase neutral point clamp type power converter.
  • FIG. 5 shows a block diagram of the DC voltage control and current control block of FIG. 4 and 5, the system voltages Vrs, Vst, and Vtr are measured, and the system phase pll_out is obtained using a PLL (Phase Locked Loop) circuit.
  • PLL Phase Locked Loop
  • the three-phase two-phase converter 1 converts the three-phase current detection values (system currents) Ir, Is, It into the d-axis current detection value Id_det and the q-axis current detection value Iq_det based on the system phase pll_out. Is converted to Further, the two-phase three-phase converter 2 converts the two-phase voltage command values Vd_cmd and Vq_cmd into the three-phase voltage command value V_cmd based on the system phase pll_out.
  • Vdc_cmd command for the voltage between PN terminals in FIG. 4
  • AVR voltage control: Automatic Voltage Regulator
  • the correction voltage command value V_cmd ′ reaches the threshold value by adding the compensation amounts of the current control and neutral point potential control during the boosting operation at the start of operation of the power converter, and the limit processing voltage command value V_cmd ′. Since 'is easily restricted, a delay counter 4 is provided. The delay counter 4 calculates a time constant ⁇ based on the input filter inductance Lf and the capacitor Cf. The limit compensation amount V_vmp_o is set to 0 until the time constant ⁇ elapses after the operation start signal Start trigger is input. After the time constant ⁇ has elapsed after the operation start signal Start trigger is input, the limit compensation amount V_cmp_o is medium. By outputting the neutral point potential compensation amount V_cmp as it is, current control and neutral point potential control are made non-interfering, and stable control characteristics can be obtained. As a result, the system currents Ir, Is, It are stabilized.
  • the control circuit of the third embodiment is provided with a variable limiter 5 instead of the delay counter 4 as in the second embodiment.
  • FIG. 6 shows a control circuit according to the fourth embodiment.
  • variable limiter 5 may be performed in the same manner as in the second embodiment.
  • the limit compensation amount V_cmp_o can be reduced at the start of operation of the power converter, and the neutral point potential compensation amount V_cmp can be used as the limit compensation amount V_cmp_o in the steady state. Can be output as they are, so that the interference between the current control and the neutral point potential control is reduced without degrading the control performance in the steady state, and stable control characteristics can be obtained. As a result, the alternating currents Ir, Is, It are stabilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 電流制御部AVRにおいて、d軸電流指令値Id_cmdとd軸電流検出値Id_detとの偏差、q軸電流指令値Iq_cmdとq軸電流検出値Iq_detとの偏差に基づいてPI制御を行い、電圧指令値Vd_cmd,Vq_cmdを演算する。また、中性点電位制御部NPCにより直列接続された平滑コンデンサの電圧偏差を補償する中性点電位補償量V_cmpを演算する。制限手段4において、運転開始時から予め設定された時間経過するまで中性点電位補償量V_cmpを制限する。加算器3において制限された中性点電位補償量V_cmpと電圧指令値Vd_cmdを加算し、補正電圧指令値V_cmd'を演算する。この補正電圧指令値V_cmd'に基づいてPWM制御部PWMによりPWM制御をする。これにより、PWM制御を行う三相中性点クランプ式の電力変換装置において、電流制御と中性点電位制御の干渉を抑制する。

Description

三相中性点クランプ式の電力変換装置
 本発明は、三相中性点クランプ式のマルチレベル電力変換装置に係り、特に、PWM制御を用いた中性点電圧制御に関する。
 図7は、モータ負荷を接続した三相中性点クランプ式の電力変換装置における主回路を示す構成図である。スイッチングデバイス(図7ではIGBT)S1~S12にゲート指令を入力することによりスイッチングデバイスS1~S12をON/OFF動作させ、出力端子U,V,Wに交流電圧を出力する。
 この電力変換装置は直流電圧P-N間を平滑コンデンサCdc1,Cdc2により分割し、直流電位P、Nおよび中性点電位NPの3レベルの電位をPWM変調(Pulse Width Modulation)を用いて出力するものである。
 ACR(電流制御:Automatic Current Regulator)の後、直流電圧Vdc1とVdc2のばらつきを抑える中性点電位制御(Neutral Point Control)を行っている。中性点電位制御は直流電圧P-N間の正極側(P側)の平滑コンデンサCdc1の直流電圧Vdc1と、負極側(N側)の平滑コンデンサCdc2の直流電圧Vdc2の偏差をとり、この偏差が零になるように制御を行うものである。
 この電力変換装置の三相交流出力に接続する負荷をモータMとして電流制御をする場合を例にとり、電力変換装置の制御回路を説明する。図8は、三相中性点クランプ式の電力変換装置の制御回路を示すブロック図である。
 モータMには位相検出器encが取り付けられており、位相検出値をtheta_detとする。三相二相変換器1において、三相電流(モータ電流)Iu,Iv,Iwを位相検出値theta_detに基づいて三相二相変換し、d軸電流検出値Id_detおよびq軸電流検出値Iq_detを得る。
 次に、電流制御部ACRにおいて、d軸電流指令値Id_cmd,q軸電流指令値Iq_cmdを目標値とし、この目標値にd軸電流検出値Id_det,Iq_detが追従するようにPI制御を行う。電流制御部ACRの出力は二相電圧指令値Vd_cmd,Vq_cmdとなる。
 二相電圧指令値Vd_cmd,Vq_cmdは、二相三相変換器2により二相三相変換が行われ、三相電圧指令値V_cmdが生成される。次に、中性点電位制御部NPCにおいて、直流電圧Vdc1,Vdc2に基づいて中性点電位補償量V_cmpを演算する。加算器3において、三相電圧指令値V_cmdに中性点電位補償量V_cmpを加算し、加算後の電圧指令を補正電圧指令値V_cmd'とする。
 さらに、この補正電圧指令値V_cmd’に対し、リミッタLMTにより電圧制限をかけ、リミット処理電圧指令値V_cmd’’をPWM処理部PWMへ入力する。ここで、リミッタLMTは補正電圧指令値V_cmd’が閾値を下回る場合、補正電圧指令値をそのままリミット処理電圧指令値V_cmd’’として出力し、補正電圧指令値V_cmd’が閾値以上の場合、閾値をリミット処理電圧指令値V_cmd’’として出力する。リミッタLMTを設ける目的は、後述のゲート指令GI_H,GI_Lが異常なパルス(極小パルスなど)となることを抑制し、電力変換装置の出力電圧や出力電流に歪が生じることを防止するためである。
 PWM処理部PWMでは、リミット処理電圧指令値Vcmd’’を用いて、各スイッチングデバイスS1~S12のゲート指令GI_H,GI_Lを生成する。図8には示していないが、三角波キャリア信号とリミット処理電圧指令値V_cmd’’を比較してゲート指令GI_H,GI_Lを生成する方法が一般的である。
 上記の技術は、特許文献1~3に記載されている。
 図8に示すように、補正電圧指令値V_cmp’は、三相電圧指令値V_cmdに中性点電位補償量V_cmpを加算した値である。電力変換装置の運転開始時すなわちモータMの始動時は、モータMの始動トルクの関係で大きな電力変換装置の出力電流(すなわちモータ電流)が必要になるため、電流制御部ACRの出力を二相三相変換した三相電圧指令値V_cmdも大きくなる。
 この三相電圧指令値V_cmdと中性点電位補償量V_cmpが重畳すると、補正電圧指令値V_cmd’が閾値に達しやすくリミッタLMTの動作によりリミット処理電圧指令値に制限がかかり、V_cmd’≠V_cmd’’となる。その結果、安定動作が困難となり、電力変換装置の出力電流や出力電圧が過電流・過電圧になることがある。その場合、過電流保護や過電圧保護などで故障停止してしまい、電力変換装置を運転できなくなる。
 また、図7の平滑コンデンサCdc1,Cdc2のコンデンサ容量は等しくすることが一般的であるが、製造のばらつきや経年劣化などにより初期充電値の偏差すなわち直流電圧Vdc1とVdc2の偏差が大きくなる。すなわち、起動直後の中性点電位補償量V_cmpは大きくなりやすい。これらの要因から補正電圧指令値V_cmd’が閾値に達してリミット処理電圧指令値V_cmd’’が制限されることを回避するには電流制御もしくは中性点電圧制御のゲインを下げることになる。しかし、そのトレードオフとして、定常時の制御性能が低下する。そこで中性点電位制御のゲインを下げることなく電流制御と中性点電位制御の干渉を考慮した制御機構が必要になる。
 以上示したように、PWM制御を行う三相中性点クランプ式の電力変換装置において、電流制御と中性点電位制御の干渉を抑制することが課題となる。
WO97/25766 特開平6-233537号公報 特開平10-248262号公報
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、 三相中性点クランプ式の電力変換装置であって、その制御回路は、d軸電流指令値とd軸電流検出値との偏差、および、q軸電流指令値とq軸電流検出値との偏差に基づいてPI制御を行う電流制御機能により、二相電圧指令値を演算する電流制御部と、二相電圧指令値を三相電圧指令値に変換する二相三相変換部と、直列接続された平滑コンデンサの電圧偏差を補償する中性点電位補償量を演算する中性点電位制御部と、電力変換装置の運転開始時から予め設定された時間経過するまで制限補償量として中性点電位補償量を制限した値を出力し、電力変換装置の運転開始時から予め設定された時間経過後は制限補償量として中性点電位補償量をそのまま出力する制限手段と、制限補償量と三相電圧指令値を加算し、補正電圧指令値を演算する加算部と、補正電圧指令値が閾値を下回る場合、補正電圧指令値をそのままリミット処理電圧指令値として出力し、補正電圧指令値が閾値以上の場合、閾値をリミット処理電圧指令値として出力するリミッタと、前記リミット処置電圧指令値に基づいてPWM制御をするPWM制御部と、を備えたことを特徴とする。
 また、その一態様として、前記制限手段は、電力変換装置が運転を開始してから予め設定された時間経過するまで制限補償量を0とすることを特徴とする。
 また、他の態様として、前記制限手段は、電力変換装置が運転開始するまで制限補償量を0とし、電力変換装置が運転開始してから予め設定された時間経過するまでの間に制限補償量を徐々に増加させることを特徴とする。
 また、その一態様として、前記電力変換装置の三相交流出力に接続する負荷はモータであり、モータの位相検出値に基づいて三相電流検出値をd軸電流検出値,q軸電流検出値に変換し、モータの位相検出値に基づいて二相電圧指令値を三相電圧指令値に変換することを特徴とする。
 また、他の態様として、前記電力変換装置は系統に連系されており、系統位相の検出値に基づいて三相電流検出値をd軸電流検出値,q軸電流検出値に変換し、系統位相の検出値に基づいて二相電圧指令値を三相電圧指令値に変換することを特徴とする。
 本発明によれば、PWM制御を行う三相中性点クランプ式の電力変換装置において、電流制御と中性点電位制御の干渉を抑制することが可能となる。
実施形態1における制御回路を示すブロック図。 実施形態2における制御回路を示すブロック図。 実施形態2における可変リミッタの入出力動作を示すタイムチャート。 系統に連系した三相中性点クランプ式の電力変換装置の主回路構成図。 実施形態3における制御回路を示すブロック図。 実施形態4における制御回路を示すブロック図。 モータ負荷に接続した三相中性点クランプ式の電力変換装置の主回路構成図。 従来における制御回路の一例を示すブロック図。
 以下、本発明に係る三相中性点クランプ式のマルチレベル電力変換装置における実施形態1~4を図1~図6に基づいて詳述する。
 [実施形態1]
 図1は、本実施形態1における電力変換装置の制御回路を示すブロック図である。本実施形態1の制御回路は、電流制御と中性点電位制御の干渉を考慮している。図8と同一の箇所は同一符号を付してその説明を省略する。
 本実施形態1では、図1に示すように中性点電位制御部NPCが出力する中性点電位補償量V_cmpを電力変換装置の運転開始時から予め設定された時間経過するまで制限手段(本実施形態1ではディレイカウンタ4)により制限する。ディレイカウンタ4は、電力変換装置の運転開始時の信号(以下、運転開始信号と称する)Start triggerをトリガとし、運転開始信号Start triggerが入力されてから時定数τが経過するまでは制限補償量V_cmp_oとして0を出力し、運転開始信号Start triggerが入力されてから時定数τが経過後は制限補償量V_cmp_oとして中性点電位補償量V_cmpを出力する。
 ディレイカウンタ4では接続されたモータMのd軸インダクタンスLdとq軸インダクタンスLqと抵抗Rとに基づき、時定数τが算出されている。ここでd軸インダクタンスLd,q軸インダクタンスLq,抵抗Rの値は、別途モータMのインピーダンス測定試験などによってあらかじめ求めておくこととする。
 電力変換装置の運転開始から時定数τまでの期間では、ディレイカウンタ4は零を出力するため、V_cmd’=V_cmdとなる。一方、運転開始時から時定数τの時間経過後に、制限補償量V_cmp_oとして中性点電位補償量V_cmpを三相電圧指令値V_cmdに加算する。したがって、V_cmd’=V_cmd+V_cmpとなる。
 以上示したように、本実施形態1における電力変換装置によれば、電力変換装置の運転開始時(すなわちモータ始動時)から上記時定数τまでの期間、補正電圧指令値V_cmd’は中性点電位補償量V_cmpから影響せずに電流制御で算出された三相電圧指令値V_cmdのみで動作する。そのため、電流制御と中性点電位制御は干渉せず、電力変換装置の出力電圧は安定して動作する。その結果、過電流保護や過電圧保護による故障停止が発生しない。また、定常時において電流制御と中性点電位制御のゲインを下げていないため定常時の制御性能が低下することを抑制することが可能となる。
 [実施形態2]
 本実施形態2は、制限補償量V_cmp_oを運転開始信号Start triggerをトリガとして時間経過に応じて可変にしたものである。その他は実施形態1と同様である。
 具体的には、ディレイカウンタ4の代わりに可変リミッタ5を設け、電力変換装置の運転開始信号Start triggerと、中性点電位補償量V_cmpと、を入力する。
 可変リミッタ5は、ステップ的に補償量を加算するのではなく、図3に示すように、運転開始信号Start trigger入力するまで制限補償量V_cmp_oとして0を出力し、運転開始信号Start triggerが入力されてから時定数τまでの時間をクッション的に、制限補償量V_cmp_oを徐々に増加させ、運転開始信号Start triggerが入力されてから時定数τ経過後、制限補償量V_cmp_oとして中性点電位補償量V_cmpをそのまま出力する。
 本実施形態2によれば、電力変換装置の運転開始時(すなわちモータ始動時)から上記時定数τまでの期間、制限補償量V_cmp_oを小さくできるため、電流制御と中性点電位制御の干渉が小さくなり、電力変換装置の出力電圧を安定させることが可能となる。また、定常時は制限補償量V_cmp_0として中性点電位補償量V_cmpをそのまま出力しゲインを下げていないため、定常時の制御性能が低下することを抑制することが可能となる。
 [実施形態3]
 本実施形態3では、系統連系を行い直流電圧Vdc1,Vdc2の制御を行う場合を考える。まず、図4に系統連系した三相中性点クランプ式の電力変換装置の主回路構成図を示す。三相の系統電圧Vrs,Vst,Vtrと三相中性点クランプ式の電力変換装置との間に、入力フィルタLf,Cfを挿入している。
 続いて、図5に図4の直流電圧制御,電流制御ブロック構成図を示す。図4,5の基準電圧をVrsとし、系統電圧Vrs,Vst,Vtrを計測しPLL(Phase Locked Loop)回路を用いて系統位相pll_outを求める。
 本実施形態3では、三相二相変換器1により、系統位相pll_outに基づいて、三相電流検出値(系統電流)Ir,Is,Itがd軸電流検出値Id_det,q軸電流検出値Iq_detに変換される。また、二相三相変換器2により、系統位相pll_outに基づいて、二相電圧指令値Vd_cmd,Vq_cmdが三相電圧指令値V_cmdに変換される。
 また、本実施形態3では、直流電圧指令Vdc_cmd(図4のPN端子間電圧の指令)と直流電圧Vdc1,Vdc2の和との偏差をとり、AVR(電圧制御:Automatic Voltage Regulator)をかけた値を電流制御のd軸電流指令値Id_cmd,q軸電流指令値Iq_cmdとしている。なお、AVRの構成については、特許文献2に示されている。その他は実施形態1と同様である。
 系統連系時は、電力変換装置の運転開始時における昇圧動作時に電流制御と中性点電位制御の補償量を加算することで補正電圧指令値V_cmd’が閾値に達しリミット処理電圧指令値V_cmd’’が制限されやすいため、ディレイカウンタ4を設ける。ディレイカウンタ4では、入力フィルタのインダクタンスLfとコンデンサCfに基づき、時定数τを算出する。運転開始信号Start triggerが入力されてから時定数τの時間経過までは制限補償量V_vmp_oを0とし、運転開始信号Start triggerが入力されてから時定数τの時間経過後に、制限補償量V_cmp_oとして中性点電位補償量V_cmpをそのまま出力することで、電流制御と中性点電位制御が非干渉化し、安定した制御特性を得ることができる。これにより、系統電流Ir,Is,Itが安定化する。
 [実施形態4]
 本実施形態4は、実施形態3の制御回路に対し、実施形態2と同様に、ディレイカウンタ4の代わりに可変リミッタ5を設けたものである。図6に本実施形態4における制御回路を示す。
 可変リミッタ5の動作は、実施形態2と同様の演算をすればよく、電力変換装置の運転開始時は制限補償量V_cmp_oを小さくでき、定常時は制限補償量V_cmp_oとして中性点電位補償量V_cmpをそのまま出力できるため、定常時の制御性能を低下することなく、電流制御と中性点電位制御の干渉が小さくなり、安定した制御特性を得ることができる。これにより、交流電流Ir,Is,Itが安定化する。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。

Claims (5)

  1.  三相中性点クランプ式の電力変換装置であって、
     その制御回路は、
     d軸電流指令値とd軸電流検出値との偏差、および、q軸電流指令値とq軸電流検出値との偏差に基づいてPI制御を行う電流制御機能により、二相電圧指令値を演算する電流制御部と、
     二相電圧指令値を三相電圧指令値に変換する二相三相変換部と、
     直列接続された平滑コンデンサの電圧偏差を補償する中性点電位補償量を演算する中性点電位制御部と、
     電力変換装置の運転開始時から予め設定された時間経過するまで制限補償量として中性点電位補償量を制限した値を出力し、電力変換装置の運転開始時から予め設定された時間経過後は制限補償量として中性点電位補償量をそのまま出力する制限手段と、
     制限補償量と三相電圧指令値を加算し、補正電圧指令値を演算する加算部と、
     補正電圧指令値が閾値を下回る場合、補正電圧指令値をそのままリミット処理電圧指令値として出力し、補正電圧指令値が閾値以上の場合、閾値をリミット処理電圧指令値として出力するリミッタと、
     前記リミット処置電圧指令値に基づいてPWM制御をするPWM制御部と、を備えた三相中性点クランプ式の電力変換装置。
  2.  前記制限手段は、
     電力変換装置が運転を開始してから予め設定された時間経過するまで制限補償量を0とする請求項1記載の三相中性点クランプ式の電力変換装置。
  3.  前記制限手段は、
     電力変換装置が運転開始するまで制限補償量を0とし、電力変換装置が運転開始してから予め設定された時間経過するまでの間に制限補償量を徐々に増加させる請求項1記載の三相中性点クランプ式の電力変換装置。
  4.  前記電力変換装置の三相交流出力に接続する負荷はモータであり、
     モータの位相検出値に基づいて三相電流検出値をd軸電流検出値,q軸電流検出値に変換し、モータの位相検出値に基づいて二相電圧指令値を三相電圧指令値に変換する請求項1~3のうち何れかに記載の3相中性点クランプ式の電力変換装置。
  5.  前記電力変換装置は系統に連系されており、系統位相の検出値に基づいて三相電流検出値をd軸電流検出値,q軸電流検出値に変換し、系統位相の検出値に基づいて二相電圧指令値を三相電圧指令値に変換する請求項1~3のうち何れかに記載の3相中性点クランプ式の電力変換装置。
PCT/JP2015/078447 2014-10-20 2015-10-07 三相中性点クランプ式の電力変換装置 WO2016063724A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213280A JP2016082761A (ja) 2014-10-20 2014-10-20 三相中性点クランプ式の電力変換装置
JP2014-213280 2014-10-20

Publications (1)

Publication Number Publication Date
WO2016063724A1 true WO2016063724A1 (ja) 2016-04-28

Family

ID=55760768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078447 WO2016063724A1 (ja) 2014-10-20 2015-10-07 三相中性点クランプ式の電力変換装置

Country Status (2)

Country Link
JP (1) JP2016082761A (ja)
WO (1) WO2016063724A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298959A (ja) * 1988-05-27 1989-12-01 Mitsubishi Electric Corp Pwmコンバータ装置
JPH09172783A (ja) * 1995-12-19 1997-06-30 Toshiba Corp Npcインバータ装置
JPH09191656A (ja) * 1996-01-09 1997-07-22 Hitachi Ltd 多レベル電力変換装置
JP2003111433A (ja) * 2001-09-27 2003-04-11 Mitsubishi Electric Corp 中性点クランプ式3レベルインバータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298959A (ja) * 1988-05-27 1989-12-01 Mitsubishi Electric Corp Pwmコンバータ装置
JPH09172783A (ja) * 1995-12-19 1997-06-30 Toshiba Corp Npcインバータ装置
JPH09191656A (ja) * 1996-01-09 1997-07-22 Hitachi Ltd 多レベル電力変換装置
JP2003111433A (ja) * 2001-09-27 2003-04-11 Mitsubishi Electric Corp 中性点クランプ式3レベルインバータ装置

Also Published As

Publication number Publication date
JP2016082761A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6295782B2 (ja) 電力変換装置、発電システム、制御装置および電力変換方法
CN104934943B (zh) 过压保护装置、过压保护方法及无电解电容电机驱动***
WO2018077019A1 (zh) 电容小型化电机驱动***及其的防过压控制方法、装置
JP5742980B1 (ja) 電力変換装置の制御方法
US10951125B2 (en) Supression of cross current in a plural converter system
AU2017336112B2 (en) Control device for power converter
JP6131360B1 (ja) 電力変換装置
US9800189B2 (en) Apparatus for controlling inverter
US10199971B2 (en) Motor controller, flux command generator, and method for generating flux command
JP5888074B2 (ja) 電力変換装置
WO2016114330A1 (ja) 5レベル電力変換器および制御方法
JP2009142112A (ja) モータ制御装置とその制御方法
JP2019097366A (ja) 電力変換装置の漏電電流抑制制御方法
WO2016035434A1 (ja) モータ駆動装置
WO2016063724A1 (ja) 三相中性点クランプ式の電力変換装置
JP6264257B2 (ja) 三相中性点クランプ式の電力変換装置
CN111418144A (zh) 电动机的控制方法以及电动机的控制装置
KR102546709B1 (ko) 모터 제어용 인버터의 전압보상 방법
JP6658111B2 (ja) 交流電源装置およびその制御方法
JP2014135878A (ja) 三相コンバータのコントローラ、それを用いた電力変換装置
JP2015126607A (ja) モータ制御システム
US10903755B2 (en) Power conversion device
JP6194694B2 (ja) 電力変換装置
WO2023105710A1 (ja) 電力変換装置及び空気調和機
JP2012175743A (ja) Pwm電力変換器の制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851952

Country of ref document: EP

Kind code of ref document: A1