WO2023105710A1 - 電力変換装置及び空気調和機 - Google Patents

電力変換装置及び空気調和機 Download PDF

Info

Publication number
WO2023105710A1
WO2023105710A1 PCT/JP2021/045325 JP2021045325W WO2023105710A1 WO 2023105710 A1 WO2023105710 A1 WO 2023105710A1 JP 2021045325 W JP2021045325 W JP 2021045325W WO 2023105710 A1 WO2023105710 A1 WO 2023105710A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
phase
modulation factor
modulation
Prior art date
Application number
PCT/JP2021/045325
Other languages
English (en)
French (fr)
Inventor
厚司 土谷
和徳 畠山
裕一 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023565802A priority Critical patent/JPWO2023105710A1/ja
Priority to PCT/JP2021/045325 priority patent/WO2023105710A1/ja
Publication of WO2023105710A1 publication Critical patent/WO2023105710A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to power converters and air conditioners.
  • a phase adjuster calculates a phase adjustment amount ⁇ P from the d-axis of the output voltage vector command based on the pulsation of the DC link voltage.
  • a power converter is disclosed that sums the phase references P * of .
  • a power conversion device includes a converter that rectifies an input AC voltage, a capacitor that smoothes the output of the converter to obtain a DC voltage, and a voltage that detects the voltage value of the DC voltage.
  • a detection unit an inverter that converts the DC voltage into a three-phase AC voltage, a current detection unit that detects a current value of the current output from the inverter, and a control unit that controls the inverter;
  • a voltage command value calculator that calculates a voltage command value, which is a command value of the voltage to be applied to the inverter, using the voltage value and the current value, and a voltage phase that corresponds to the voltage command value.
  • a modulation rate is calculated from the voltage value and the voltage command value, and when the modulation rate is greater than 1.0, the modulation is performed so that the voltage value can be linearly output with respect to the voltage command value.
  • a modulation rate compensator for calculating a corrected modulation rate with a corrected rate, and a PWM (Pulse Width Modulation) signal for controlling the inverter from the value obtained by adding the pulsation compensation phase to the voltage phase and the corrected modulation rate. and a PWM generator that generates the PWM.
  • An air conditioner includes the above power conversion device, a motor that is driven by the three-phase AC voltage output from the power conversion device to generate power, and a refrigerant that uses the power to generate power. and a compressor for compressing.
  • FIG. 1 is a block diagram schematically showing the configuration of an air conditioner according to an embodiment
  • FIG. 2 is a circuit diagram schematically showing the configuration of an electric motor drive device and a motor
  • FIG. 4 is a graph showing a U-phase voltage command value when applying a voltage to the U-phase in a sine wave mode
  • 4 is a graph showing a U-phase voltage command value when voltage is applied to the U-phase in a trapezoidal wave mode
  • (A) and (B) are graphs showing the phase current according to the capacity of the capacitor.
  • 4 is a block diagram schematically showing the configuration of a control unit
  • FIG. 3 is a block diagram schematically showing configurations of a pulsation phase compensator and a modulation factor compensator
  • FIG. 4 is a graph showing the operating frequency of the motor and the induced voltage characteristics of the motor with respect to the output voltage of the inverter.
  • 7 is a graph showing an example of a modulation factor correction table;
  • (A) and (B) are graphs for comparing motor phase current waveforms when both the amplitude and phase of the inverter output voltage are controlled.
  • (A) and (B) are block diagrams showing hardware configuration examples.
  • FIG. 11 is a block diagram showing a first modification of the modulation factor compensator;
  • FIG. 11 is a block diagram showing a second modification of the modulation factor compensator;
  • FIG. 1 is a block diagram schematically showing the configuration of an air conditioner 100 according to an embodiment.
  • the air conditioner 100 includes a compressor 1 , a four-way valve 2 , a heat exchanger 3 , an expansion mechanism 4 , a heat exchanger 5 and refrigerant pipes 6 .
  • Compressor 1, four-way valve 2, heat exchanger 3, expansion mechanism 4, and heat exchanger 5 are connected in sequence via refrigerant pipe 6 to form a refrigeration cycle.
  • the heat exchanger 3 is also called a first heat exchanger
  • the heat exchanger 5 is also called a second heat exchanger.
  • a compression mechanism 7 for compressing the refrigerant and a motor 8 for driving the compression mechanism 7 are provided inside the compressor 1 .
  • the motor 8 is a three-phase motor having three-phase windings of U-phase, V-phase and W-phase.
  • the motor 8 is driven by a three-phase AC voltage from the electric motor driving device 110 to generate power.
  • the air conditioner 100 also includes an electric motor drive device 110 as a power conversion device.
  • the electric motor driving device 110 is electrically connected to the motor 8 and applies voltage to the motor 8 to drive it.
  • the electric motor driving device 110 applies voltages Vu, Vv, and Vw to the U-phase, V-phase, and W-phase windings of the motor 8, respectively. It should be noted that the electric motor driving device 110 receives power supply from the power source 101 .
  • FIG. 2 is a circuit diagram schematically showing the configuration of the electric motor driving device 110 and the motor 8.
  • Motor drive device 110 includes converter 111, reactor 113, capacitor 114, voltage detector 115 as a voltage detector, current detector 116 as a current detector, inverter 120, and controller 130. .
  • the converter 111 converts AC power from the power supply 101 into DC power.
  • the converter 111 is composed of a rectifying diode 112 .
  • converter 111 rectifies the input AC voltage.
  • the converter 111 here is neither a step-up rectifier circuit nor a power factor improvement circuit using a switching element or the like.
  • Reactor 113 is connected between the positive output terminal of converter 111 and the positive terminal of inverter 120 . In other words, reactor 113 is connected in series with the positive terminal of converter 111 .
  • Capacitor 114 is connected between the positive terminal of inverter 120 and the negative output terminal of converter 111 . Capacitor 114 smoothes the output of converter 111 to a DC voltage. Reactor 113 and capacitor 114 smooth the output from converter 111 .
  • the voltage detection unit 115 detects the voltage value of the DC voltage across the capacitor 114 .
  • the detected voltage value is provided to control unit 130 as bus voltage value Vdc.
  • Current detection unit 116 detects current value Iv of V-phase current, current value Iu of U-phase current, and current value Iw of W-phase current output from inverter 120, and detects these current values Iv and Iu. , Iw to the control unit 130 .
  • the current detection unit 116 detects the current values of the three phases. may be calculated.
  • a current detection section that detects the current value of the bus current may be provided. In such a case, control unit 130 estimates the current values of the three phases from the detected current values.
  • Inverter 120 converts the DC voltage into a three-phase AC voltage.
  • the inverter 120 includes two switching elements 121a and 121d connected in series, two switching elements 121b and 121e connected in series, and two switching elements 121c and 121f connected in series. It is connected to the. Freewheeling diodes 122a-122f are provided in parallel with the switching elements 121a-121f, respectively.
  • one of the switching elements 121a to 121f will be referred to as the switching element 121 when there is no particular need to distinguish between the switching elements 121a to 121f.
  • One of the freewheeling diodes 122a to 122f is referred to as a freewheeling diode 122 when it is not necessary to distinguish between the freewheeling diodes 122a to 122f.
  • the switching elements 121 corresponding to PWM (Pulse Width Modulation) signals UP, VP, WP, UN, VN, and WN sent from the control unit 130 are driven.
  • the inverter 120 applies voltages Vu, Vv, and Vw corresponding to the driven switching elements 121 to the U-phase, V-phase, and W-phase windings of the motor 8, respectively.
  • a three-phase AC voltage is thereby applied to the motor 8 .
  • the inverter 120 may control the motor 8 of the compressor 1 by switching between a sine wave mode and a trapezoidal wave mode when converting the DC voltage into an arbitrary frequency and voltage.
  • FIG. 3 is a graph showing a U-phase voltage command value Vu * , which is a voltage command value when applying a voltage to the U-phase in a sine wave mode.
  • the U-phase voltage command value Vu * is compared with the carrier of frequency fc, and when the U-phase voltage command value Vu * is greater than the carrier, the U-phase voltage command value Vu * is smaller than the carrier, the PWM signal UP for switching the switching element 121a, which is the upper arm of the U phase, is output.
  • the PWM signal UN for switching the switching element 121d which is the lower arm of the U phase, is output as a signal of the opposite logic to the PWM signal UP.
  • the amplitude of the voltage command value Vu * is smaller than half the DC bus voltage value Vdc. There is a margin in the amplitude of Vu * .
  • FIG. 4 is a graph showing the U-phase voltage command value Vu * when voltage is applied to the U-phase in the trapezoidal wave mode.
  • part of the bus voltage value Vdc matches the voltage command value Vu * .
  • the reactor 113 and the capacitor 114 are often larger in size than other electrical components, and in that case, the power factor is poor. There is a tendency. Therefore, by reducing the capacity of the reactor 113 and the capacitor 114, power supply harmonics can be improved, and the circuit can be miniaturized and the cost can be reduced.
  • the DC voltage which is the input voltage of the inverter 120, pulsates at twice the frequency of the power supply phase number.
  • the inverter 120 needs to control the AC voltage of any frequency and amplitude based on the DC voltage with large pulsations.
  • FIG. 5A shows phase currents of the motor 8 when the capacity of the capacitor 114 is large
  • FIG. 5B shows phase currents of the motor 8 when the capacity of the capacitor 114 is small.
  • the phase current of the motor 8 pulsates under the influence of the pulsation of the bus voltage value Vdc. In this case, the current peak value fluctuates.
  • FIG. 6 is a block diagram schematically showing the configuration of control section 130.
  • Control unit 130 includes voltage command value calculation unit 131 , phase calculation unit 132 , pulsation phase compensation unit 133 , modulation factor compensation unit 134 , and PWM generation unit 135 .
  • Voltage command value calculation unit 131 calculates the voltage to be applied to inverter 120 using bus voltage value Vdc detected by voltage detection unit 115 and current values Iu, Iv, and Iw of each phase detected by current detection unit 116.
  • a voltage command value V * which is a command value, is calculated.
  • the voltage command value calculator 131 uses the bus voltage value Vdc and the current values Iu, Iv, and Iw to obtain the speed command value ⁇ ref which is the command value for the rotational speed of the motor 8 given from the outside.
  • the voltage command value V * is calculated so that the motor 8 rotates at the rotational speed at which the motor 8 is present.
  • the calculated voltage command value V * is provided to modulation factor compensator 134 and phase calculator 132 .
  • the processing in the voltage command value calculation unit 131 is known processing such as three-phase to two-phase conversion, rotating coordinate conversion, PI control, and fixed coordinate conversion, so detailed description thereof will be omitted.
  • Phase calculator 132 calculates a voltage phase corresponding to voltage command value V * .
  • tan ⁇ 1 (Vq * /Vd * ) (1)
  • Ripple phase compensator 133 calculates a pulsation compensation phase ⁇ , which is the phase of a pulsating component in the DC voltage input to inverter 120, from bus voltage value Vdc.
  • the pulsation phase compensator 133 extracts the pulsation component of the DC voltage superimposed on the voltage command value V * generated from the bus voltage value Vdc, and calculates the pulsation compensation phase, which is the phase of the pulsation component.
  • Modulation factor compensator 134 calculates a modulation factor from bus voltage value Vdc and voltage command value V * . Then, when the modulation factor is greater than 1.0, the modulation factor compensation unit 134 corrects the modulation factor so that the bus voltage value Vdc can be linearly output with respect to the voltage command value V * . Calculate the modulation factor Kh * h. Here, when the modulation factor is greater than 1.0, the modulation factor compensator 134 calculates the corrected modulation factor Kh * h by correcting the modulation factor so that the higher the bus voltage value Vdc, the larger the value. .
  • PWM generator 135 generates a PWM signal for controlling inverter 120 from a value obtained by adding pulsation compensation phase ⁇ to voltage phase ⁇ and correction modulation factor Kh * h. With only the ripple compensation phase ⁇ , the current ripple suppression effect cannot be sufficiently obtained in the region where the modulation factor is 1.0 or more. Both of the ratios Kh * h are used so that the effect of suppressing current ripple can be obtained even in the region where the modulation ratio is 1.0 or more. The generated PWM signal is output to inverter 120 .
  • FIG. 7 is a block diagram schematically showing the configurations of the pulsation phase compensator 133 and the modulation factor compensator 134. As shown in FIG.
  • the pulsation phase compensator 133 calculates a pulsation compensation phase ⁇ that is the phase of the pulsating component at the bus voltage value Vdc.
  • the pulsation phase compensator 133 includes an AC component extractor 133a, a calculator 133b, and an integrator 133c.
  • the AC component extraction unit 133a performs filter processing using a bandpass filter on the bus voltage value Vdc, thereby extracting only the pulsating component that is a pulsating component in the bus voltage value Vdc.
  • the bus voltage value Vdc mainly pulsates with frequency components obtained by doubling the product of the power supply frequency and the number of phases. Therefore, in the case of a three-phase AC power supply, there are many frequency components that are six times the power supply frequency, and in the case of a single-phase AC power supply, there are many frequency components that are twice the power supply frequency. Therefore, the AC component extractor 133a extracts the frequency of this portion. Power frequency x number of phases x 2 (2)
  • the calculation unit 133b converts the voltage value into a frequency component by dividing the pulsation component extracted by the AC component extraction unit 133a by the bus voltage value Vdc.
  • the integrator 133c calculates the pulsation compensation phase ⁇ by integrating the pulsation frequency component calculated by the calculator 133b.
  • the calculated ripple compensation phase ⁇ is provided to PWM generator 135 .
  • the modulation factor compensation unit 134 calculates the modulation factor corresponding to the voltage command value V * in the modulation factor calculation part 134a, and stores the modulation factor correction table so that the output voltage can be linearly output with respect to the modulation factor. It includes a section 134b, a modulation factor correction section 134c, and a limiter 134d. As a result, even if the modulation factor is 1.0 or more, the output voltage can be linearly output even when the output voltage fluctuates due to the pulsating component of the bus voltage value Vdc.
  • the modulation factor calculator 134a calculates the modulation factor Kh by the following equation (3).
  • the calculated modulation factor Kh is provided to the modulation factor corrector 134c.
  • the modulation factor correction table storage unit 134b stores a modulation factor correction table indicating a modulation factor correction coefficient for correcting the modulation factor.
  • FIG. 8 is a graph showing the induced voltage characteristics of the motor 8 with respect to the operating frequency of the motor 8 and the output voltage of the inverter 120 . As shown in FIG. 8, in the sine wave mode in which the modulation factor Kh is 1.0 or less, the operating frequency of the motor 8 and the output voltage of the inverter 120 exhibit linear characteristics. However, in the trapezoidal wave mode in which the modulation factor Kh is greater than 1.0, the operating frequency of the motor 8 and the output voltage of the inverter 120 exhibit nonlinear characteristics.
  • the voltage command value V * has a portion that matches the bus voltage value Vdc. , is output to the motor 8.
  • the modulation rate correction coefficient is modulated so as to become the modulation rate when it is assumed that the operating frequency of the motor 8 and the output voltage of the inverter 120 have linear characteristics. Shown in rate correction table.
  • FIG. 9 is a graph showing an example of a modulation factor correction table.
  • the voltage fundamental wave shown in FIG. 9 is the fundamental wave frequency component of the voltage command value, such as the sin wave of Vu * shown in FIG.
  • the fundamental wave component of the voltage command value is the frequency component that matches the electrical angular frequency component of the rotation speed of the motor.
  • the graph shown in FIG. 9 is a table that provides a linear output of the voltage fundamental wave component and the modulation factor.
  • the horizontal axis is the voltage fundamental wave component
  • the line voltage output from the inverter 120 has a sine wave shape, so the fundamental wave of the output voltage matches the sine wave component.
  • the modulation factor exceeds 1.0, the line voltage of the output of the inverter 120 becomes a rectangular waveform, and the amplitude of the rectangular waveform voltage does not match the amplitude of the fundamental wave component.
  • FIG. 8 is a diagram showing the modulation factor on the horizontal axis and the output voltage on the vertical axis.
  • FIG. 9 is a diagram in which the fundamental wave component of the output voltage is plotted on the horizontal axis and the modulation factor at that time is plotted on the vertical axis.
  • the modulation factor correction unit 134c multiplies the modulation factor Kh from the modulation factor calculation part 134a by the modulation factor correction coefficient corresponding to the modulation factor Kh to calculate the temporary corrected modulation factor Kh * .
  • the calculated provisional correction modulation factor Kh * is provided to the limiter 134d.
  • Limiter 134d fixes provisional correction modulation factor Kh * to the upper limit value when provisional correction modulation factor Kh * is equal to or greater than a predetermined upper limit value, thereby increasing the modulation factor for controlling inverter 120. Don't let it get too big. As described above, since there is a limit to linearly outputting the voltage fundamental wave and the modulation factor, the limiter 134d is provided to prevent the use of values exceeding the limit. The limiter 134d gives the value after processing to the PWM generator 135 as the corrected modulation factor Kh * h.
  • the PWM generator 135 generates a PWM signal based on the pulsation compensation phase ⁇ from the pulsation phase compensator 133, the corrected modulation factor Kh * h from the modulation factor compensator 134, and the phase ⁇ from the phase calculator 132. , outputs its PWM signal to the inverter 120 .
  • the PWM generator 135 calculates the control phase ⁇ # by adding the pulsation compensation phase ⁇ to the phase ⁇ , and generates the PWM signal based on the control phase ⁇ # and the corrected modulation factor Kh * h. Just do it.
  • the processing for generating the PWM signal from the phase and the modulation rate the conventional processing may be performed, so detailed description thereof will be omitted.
  • 10A and 10B show a comparison of motor phase current waveforms when both the amplitude and phase of the output voltage of inverter 120 are controlled.
  • 10A shows the motor phase current waveform when both the amplitude and phase of the output voltage of the inverter 120 are not controlled as in the embodiment
  • FIG. 10B shows the output voltage of the inverter 120.
  • 2 shows motor phase current waveforms when both the amplitude and phase of are controlled as in the embodiment.
  • the peak value of the phase current waveform of the motor 8 fluctuates at a low frequency when the control as in the embodiment is not performed. Resulting in.
  • the phase of the output voltage of inverter 120 is changed in accordance with the fluctuation amount of the DC voltage while outputting the voltage linearly even in the nonlinear region of the output voltage of inverter 120 by compensating for the amplitude of the voltage.
  • FIG. 10B the pulsation of the phase current waveform of the motor 8 can be suppressed.
  • Part or all of the control unit 130 described above includes, for example, a memory 10 and a CPU (Central Processing Unit) that executes programs stored in the memory 10, as shown in FIG. ) and the like.
  • a program may be provided through a network, or recorded on a recording medium and provided. That is, such programs may be provided as program products, for example.
  • control unit 130 may be, for example, as shown in FIG. Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) or other processing circuit 12 .
  • control unit 130 can be realized by a processing circuit network.
  • a modulation factor compensator 134 #1 as shown in FIG. 12 may be used instead of the modulation factor compensator 134 described in the embodiment.
  • the modulation factor compensator 134#1 includes a modulation factor calculator 134a, a modulation factor correction table storage part 134b, a modulation factor corrector 134c, and a limiter 134d#1.
  • the modulation factor calculator 134a, the modulation factor correction table storage part 134b, and the modulation factor corrector 134c of the modulation factor compensator 134#1 in Modification 1 are the same as the modulation factor calculator 134a of the modulation factor compensator 134 in the embodiment, the modulation This is the same as the rate correction table storage section 134b and the modulation rate correction section 134c.
  • Limiter 134 d # 1 in Modification 1 receives bus voltage value Vdc from voltage detector 115 . Further, the limiter 134d#1 varies the upper limit value according to the variation of the bus voltage value Vdc, thereby ensuring the voltage command amplitude necessary for the motor 8 and changing the voltage amplitude. For example, the limiter 134d#1 lowers the upper limit value when the fluctuation of the bus voltage value Vdc is large, and raises the upper limit value when the fluctuation of the bus voltage value Vdc is small.
  • the limiter 134d#1 calculates the modulation factor from the instantaneous value of the bus voltage value Vdc including the pulsating component so that the modulation factor Kh * h does not always exceed the upper limit. Under the condition that the bus voltage value Vdc is small, the modulation factor becomes large. For this reason, the upper limit value is varied with respect to the modulation rate so that the output voltage of the inverter 120 is not limited.
  • a modulation factor compensator 134 #2 as shown in FIG. 13 may be used instead of the modulation factor compensator 134 described in the embodiment.
  • the modulation factor compensation unit 134#2 includes a modulation factor calculation part 134a, a modulation factor correction table storage part 134b, a modulation factor correction part 134c, a limiter 134d#1, and a filtering process. and a portion 134e.
  • the modulation factor calculator 134a, the modulation factor correction table storage part 134b, and the modulation factor corrector 134c of the modulation factor compensator 134#2 in Modification 2 are similar to the modulation factor calculator 134a of the modulation factor compensator 134 in the embodiment. This is the same as the rate correction table storage section 134b and the modulation rate correction section 134c. Also, the limiter 134d#1 of the modulation factor compensator 134#2 in the second modification is the same as the limiter 134d#1 of the modulation factor compensator 134#1 in the first modification. However, the limiter 134d#1 in Modification 2 receives the filtered corrected modulation factor Kh * # from the filtering unit 134e, and fixes the upper limit of the processed corrected modulation factor Kh * #.
  • the filter processor 134e applies a low-pass filter to the provisional corrected modulation factor Kh * from the modulation factor corrector 134c to obtain a processed corrected modulation factor Kh * #. For example, if control stability is considered, a cutoff frequency that is 5 to 10 times greater than the frequency calculated by the above equation (2), or a cutoff that is 5 to 10 times greater than the bus voltage filter taken into control. It is appropriate that frequency is used. If control performance is given priority, it is more effective to lower the cutoff frequency of these filtering processes.
  • Modification 2 by variably moving the voltage limiter while applying the filter, it is possible to suppress the pulsation of the motor current while increasing the stability of the control with the filter.
  • the modulation factor compensator 134#2 shown in FIG. 13 is provided with a limiter 134d#1 that sets an upper limit on the value filtered by the filter processor 134e.
  • a limiter 134d#1 that sets an upper limit on the value filtered by the filter processor 134e.
  • limiter 134d#1 may not be provided.
  • the modulation factor compensator 134 #2 performs filtering with a low-pass filter on the value calculated by multiplying the modulation factor Kh by a modulation factor correction coefficient that increases as the bus voltage value Vdc increases.
  • a value obtained by performing the above is defined as a corrected modulation factor Kh * h.
  • the modulation factor compensator 134#2 shown in FIG. 13 is provided with a limiter 134d#1 capable of varying the upper limit value.
  • a limiter 134d with a fixed value may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電動機駆動装置(110)は、コンバータ(111)と、コンデンサ(114)と、電圧検出部(115)と、インバータ(120)と、電流検出部(116)と、制御部(130)と、を備える。制御部(130)は、電圧検出部(115)で検出された電圧値及び電流検出部(116)で検出された電流値を用いて、電圧指令値を算出し、その電圧指令値に対応する電圧位相を計算し、その電圧値から、インバータ(120)に入力される直流電圧において脈動している成分の位相である脈動補償位相を計算し、その電圧値及びその電圧指令値から変調率を算出し、その変調率が1.0よりも大きい場合に、その電圧値が大きいほど大きな値となるようにその変調率を補正した補正変調率を算出し、その電圧位相にその脈動補償位相を加算した値及びその補正変調率から、PWM信号を生成する。

Description

電力変換装置及び空気調和機
 本開示は、電力変換装置及び空気調和機に関する。
 一般に、単相交流電源からの交流をコンバータにより直流に変換し、この直流を直流コンデンサにより平滑化し、さらにインバータにより任意の周波数の交流に変換するシステムにおいては、コンバータからコンデンサに流れる電流に高調波が重畳されるため、直流リンク電圧が脈動する。
 そして、インバータにより直流電圧から3相交流電圧を作り出す場合、直流リンク電圧の脈動によって、相電流のビート現象と、トルクのリプルとが発生し問題となる。
 特許文献1は、このような脈動を抑制するために、位相調整器によって、直流リンク電圧の脈動に基づいて、出力電圧ベクトル指令のd軸からの位相の調整量ΔPが算出され、d軸からの位相基準Pを加算する電力変換装置を開示している。
特開平11-89297号公報
 従来の技術は、直流電圧に対して過変調領域で出力電圧の位相を補償することでモータ電流の急変又は跳ね上がりを抑制している。
 また、従来の技術は、電圧の振幅に関して、電圧リミット値を設けているが、この場合、インバータに入力される母線電圧の脈動が急変すると、必要なトルク電流を出力するためにインバータの出力電圧を増やす必要があるが、電圧リミット値によって必要な電圧値を出力できず、モータ電流のピーク値が変動してしまう。
 そこで、本開示の一又は複数の態様は、モータの運転範囲を狭めることなくインバータの入力段にある平滑用コンデンサの容量を小さくできるようにすることを目的とする。
 本開示の一態様に係る電力変換装置は、入力される交流電圧を整流するコンバータと、前記コンバータの出力を平滑化することで直流電圧とするコンデンサと、前記直流電圧の電圧値を検出する電圧検出部と、前記直流電圧を三相交流電圧に変換するインバータと、前記インバータから出力される電流の電流値を検出する電流検出部と、前記インバータを制御する制御部と、を備え、前記制御部は、前記電圧値及び前記電流値を用いて、前記インバータに印加する電圧の指令値である電圧指令値を算出する電圧指令値算出部と、前記電圧指令値に対応する電圧位相を計算する位相計算部と、前記電圧値から生成される前記電圧指令値に重畳する、前記直流電圧による脈動成分を抽出し、前記脈動成分の位相である脈動補償位相を計算する脈動位相補償部と、前記電圧値及び前記電圧指令値から変調率を算出し、前記変調率が1.0よりも大きい場合に、前記電圧指令値に対して前記電圧値を線形で出力することができるように、前記変調率を補正した補正変調率を算出する変調率補償部と、前記電圧位相に前記脈動補償位相を加算した値及び前記補正変調率から、前記インバータを制御するためのPWM(Pulse Width Modulation)信号を生成するPWM生成部と、を備えることを特徴とする。
 本開示の一態様に係る空気調和機は、上記の電力変換装置と、前記電力変換装置から出力される前記三相交流電圧により駆動され、動力を発生するモータと、前記動力を用いて冷媒を圧縮する圧縮機と、を備えることを特徴とする。
 本開示の一又は複数の態様によれば、モータの運転範囲を狭めることなくインバータの入力段にある平滑用コンデンサの容量を小さくすることができる。
実施の形態に係る空気調和機の構成を概略的に示すブロック図である。 電動機駆動装置及びモータの構成を概略的に示す回路図である。 U相に正弦波モードで電圧を印加する際におけるU相電圧指令値を示すグラフである。 U相に台形波モードで電圧を印加する際におけるU相電圧指令値を示すグラフである。 (A)及び(B)は、コンデンサの容量に応じた相電流を示すグラフである。 制御部の構成を概略的に示すブロック図である。 脈動位相補償部及び変調率補償部の構成を概略的に示すブロック図である。 モータの運転周波数と、インバータの出力電圧におけるモータの誘起電圧特性とを示すグラフである。 変調率補正テーブルの一例を示すグラフである。 (A)及び(B)は、インバータの出力電圧の振幅と位相の両方を制御した場合のモータ相電流波形を比較するためのグラフである。 (A)及び(B)は、ハードウェア構成例を示すブロック図である。 変調率補償部の第1の変形例を示すブロック図である。 変調率補償部の第2の変形例を示すブロック図である。
実施の形態.
 図1は、実施の形態に係る空気調和機100の構成を概略的に示すブロック図である。
 空気調和機100は、圧縮機1と、四方弁2と、熱交換器3と、膨張機構4と、熱交換器5と、冷媒配管6とを備える。圧縮機1、四方弁2、熱交換器3、膨張機構4及び熱交換器5は、冷媒配管6を介して順次接続され、冷凍サイクルを形成する。なお、熱交換器3を第1の熱交換器ともいい、熱交換器5を第2の熱交換器ともいう。
 圧縮機1の内部には、冷媒を圧縮する圧縮機構7と、この圧縮機構7を駆動するモータ8とが設けられている。モータ8は、U相、V相及びW相の三相の巻き線を有する三相モータである。
 モータ8は、電動機駆動装置110からの三相交流電圧により駆動され、動力を発生する。そして、圧縮機である圧縮機構7は、その動力を用いて冷媒を圧縮する。
 また、空気調和機100は、電力変換装置としての電動機駆動装置110を備える。
 電動機駆動装置110は、モータ8と電気的に接続され、モータ8に電圧を与えて駆動させる。電動機駆動装置110は、モータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwをそれぞれ印加する。
 なお、電動機駆動装置110は、電源101から電力の供給を受ける。
 図2は、電動機駆動装置110及びモータ8の構成を概略的に示す回路図である。
 電動機駆動装置110は、コンバータ111と、リアクタ113と、コンデンサ114と、電圧検出器としての電圧検出部115と、電流検出器としての電流検出部116と、インバータ120と、制御部130とを備える。
 コンバータ111は、電源101からの交流電力を、直流電力に変換する。ここでは、コンバータ111は、整流用のダイオード112により構成されている。言い換えると、コンバータ111は、入力される交流電圧を整流する。なお、ここでのコンバータ111は、昇圧型の整流回路、及び、スイッチング素子等を用いた力率改善回路の何れでもないものとする。
 リアクタ113は、コンバータ111の正極出力端子と、インバータ120の正極端子との間に接続される。言い換えると、リアクタ113は、コンバータ111の正極に直列に接続される。
 コンデンサ114は、インバータ120の正極端子と、コンバータ111の負極出力端子との間に接続される。コンデンサ114は、コンバータ111の出力を平滑化することで直流電圧とする。
 リアクタ113及びコンデンサ114により、コンバータ111からの出力が平滑化される。
 電圧検出部115は、コンデンサ114の両端の直流電圧の電圧値を検出する。検出された電圧値は、母線電圧値Vdcとして、制御部130に与えられる。
 電流検出部116は、インバータ120から出力されたV相の電流の電流値Iv、U相の電流の電流値Iu及びW相の電流の電流値Iwを検出して、これらの電流値Iv、Iu、Iwを制御部130に与える。
 なお、ここでは、電流検出部116は、三相の電流値をそれぞれ検出しているが、何れか二相の電流値を検出し、制御部130において、検出された二相の電流値から残りの一相の電流値を算出してもよい。
 さらに、電流検出部116の代わりに、母線電流の電流値を検出する電流検出部が設けられてもよい。このような場合には、制御部130は、検出された電流値から、三相のそれぞれの電流値を推定する。
 インバータ120は、直流電圧を三相交流電圧に変換する。
 例えば、インバータ120は、直列に接続された2つのスイッチング素子121a、121dと、直列に接続された2つのスイッチング素子121b、121eと、直列に接続された2つのスイッチング素子121c、121fとが、並列に接続されている。スイッチング素子121a~121fには、それぞれと並列に環流ダイオード122a~122fが備えられている。
 なお、以降の説明において、スイッチング素子121a~121fの各々を特に区別する必要がない場合には、スイッチング素子121a~121fの一つをスイッチング素子121という。
 また、環流ダイオード122a~122fの各々を特に区別する必要がない場合には、環流ダイオード122a~122fの一つを環流ダイオード122という。
 インバータ120では、制御部130より送られるPWM(Pulse Width Modulation)信号UP、VP、WP、UN、VN、WNに応じて、それぞれに対応したスイッチング素子121が駆動する。そして、インバータ120は、駆動されたスイッチング素子121に応じた電圧Vu、Vv、Vwを、モータ8のU相、V相、W相の巻き線に、それぞれ印加する。これにより、三相交流電圧がモータ8に印加される。
 ここで、インバータ120は、直流電圧を任意の周波数及び電圧に変換するときに、正弦波モードと、台形波モードとを切り替えて、圧縮機1のモータ8を制御することがある。
 図3は、U相に正弦波モードで電圧を印加する際における電圧指令値であるU相電圧指令値Vuを示すグラフである。
 図3に示されているように、U相電圧指令値Vuは、周波数fcのキャリアと比較され、U相電圧指令値Vuがキャリアよりも大きいときにHIGH、U相電圧指令値Vuがキャリアよりも小さいときにLOWとして、U相の上アームであるスイッチング素子121aをスイッチングするためのPWM信号UPが出力される。U相の下アームであるスイッチング素子121dをスイッチングするためのPWM信号UNは、PWM信号UPと逆論理の信号が出力される。
 図3に示されているように、正弦波モードでは、電圧指令値Vuの振幅が、直流の母線電圧値Vdcの半分よりも小さくなっているため、母線電圧値Vdcに対して電圧指令値Vuの振幅に余裕がある。
 図4は、U相に台形波モードで電圧を印加する際におけるU相電圧指令値Vuを示すグラフである。
 台形波モードでは、図4に示されているように、母線電圧値Vdcの一部と、電圧指令値Vuとが一致する。
 そして、図2に示されているような構成において、リアクタ113と、コンデンサ114とは、その他の電気部品と比べサイズが大型なもの使用することが多く、また、その場合、電源力率が悪い傾向にある。そのため、リアクタ113及びコンデンサ114の容量を小さくすることで、電源高調波を改善することができ、かつ、回路の小型化と、コスト削減とが可能となる。
 上記のように、交流電圧を直流電圧に変換することでインバータ120の入力電圧である直流電圧は、電源相数の2倍の周波数で脈動する。そして、装置の小型化及び低コスト化を目的にリアクタ113及びコンデンサ114の容量を小さくすることで、直流電圧の脈動は大きくなる。このため、インバータ120は、脈動の大きな直流電圧をもとに任意の周波数及び振幅の交流電圧を制御する必要がある。
 例えば、インバータ120の出力電圧が電圧指令値Vに対して非線形となる台形波モードで運転する場合、母線電圧の脈動の影響を受けて、インバータ120が出力する電圧指令値Vは、モータ8が回転するために必要な電圧ベクトル通りに出せないことが起きる。例えば、図5(A)は、コンデンサ114の容量が大きい場合のモータ8の相電流を示し、図5(B)は、コンデンサ114の容量が小さい場合のモータ8の相電流を示している。図5(B)に示されているように、コンデンサ114の容量が小さい場合、モータ8の相電流は、母線電圧値Vdcの脈動の影響を受けて、脈動している。この場合、電流ピーク値が変動してしまう。
 モータ8の相電流のピーク値が変動すると、例えば、永久磁石型の同期モータの場合、運転限界付近で減磁電流異常の電流が流れることで、永久磁石の特性に不可逆減磁が発生する。また、設定電流以下になるように制御が行われた場合でも、モータ8の運転範囲が狭くなる可能性がある。また、過電流は、モータ8を搭載する圧縮機1の振動又は騒音につながり、異常停止、破壊又は異音等につながるおそれがある。
 そこで、以下、以上のような問題に対応するため、インバータ120を制御する制御部130での制御について説明する。
 図6は、制御部130の構成を概略的に示すブロック図である。
 制御部130は、電圧指令値算出部131と、位相計算部132と、脈動位相補償部133と、変調率補償部134と、PWM生成部135とを備える。
 電圧指令値算出部131は、電圧検出部115で検出された母線電圧値Vdc及び電流検出部116で検出された各相の電流値Iu、Iv、Iwを用いて、インバータ120に印加する電圧の指令値である電圧指令値Vを算出する。ここでは、電圧指令値算出部131は、母線電圧値Vdc及び電流値Iu、Iv、Iwを用いて、外部から与えられるモータ8の回転速度の指令値である速度指令値ωrefで示されている回転速度でモータ8が回転するように、電圧指令値Vを算出する。算出された電圧指令値Vは、変調率補償部134及び位相計算部132に与えられる。
 電圧指令値算出部131での処理は、三相二相変換、回転座標変換、PI制御及び固定座標変換等の既知の処理であるため、詳細な説明は省略する。
 位相計算部132は、電圧指令値Vに対応する電圧位相を計算する。
 例えば、位相計算部132は、電圧指令値V=(Vd,Vq)から、下記の(1)式により、電圧位相θを計算する。
 θ=tan-1(Vq/Vd)               (1)
 脈動位相補償部133は、母線電圧値Vdcから、インバータ120に入力される直流電圧において脈動している成分の位相である脈動補償位相Δθを計算する。例えば、脈動位相補償部133は、母線電圧値Vdcから生成される電圧指令値Vに重畳する、直流電圧による脈動成分を抽出し、その脈動成分の位相である脈動補償位相を計算する。
 変調率補償部134は、母線電圧値Vdc及び電圧指令値Vから変調率を算出する。
 そして、変調率補償部134は、変調率が1.0よりも大きい場合に、電圧指令値Vに対して母線電圧値Vdcを線形で出力することができるように、変調率を補正した補正変調率Khhを算出する。ここでは、変調率補償部134は、その変調率が1.0よりも大きい場合に、母線電圧値Vdcが大きいほど大きな値となるように変調率を補正した補正変調率Khhを算出する。
 PWM生成部135は、電圧位相θに脈動補償位相Δθを加算した値及び補正変調率Khhから、インバータ120を制御するためのPWM信号を生成する。脈動補償位相Δθだけでは、変調率が1.0以上の領域で、電流脈動の抑制効果が十分に得られないため、本実施の形態におけるPWM生成部135は、脈動補償位相Δθと、補正変調率Khhの両方を使って、変調率が1.0以上の領域でも、電流脈動の抑制効果が得られるようにしている。生成されたPWM信号は、インバータ120に出力される。
 図7は、脈動位相補償部133及び変調率補償部134の構成を概略的に示すブロック図である。
 脈動位相補償部133は、母線電圧値Vdcにおいて脈動している成分の位相である脈動補償位相Δθを計算する。
 脈動位相補償部133は、交流成分抽出部133aと、演算部133bと、積分部133cとを備える。
 交流成分抽出部133aは、母線電圧値Vdcにバンドパスフィルタを用いたフィルタ処理を行うことで、母線電圧値Vdcにおいて脈動している成分である脈動成分のみを抽出する。母線電圧値Vdcは、下記の(2)式に示されているように、電源周波数と相数との積を2倍した周波数成分が主に脈動する。そのため、三相交流電源の場合は、電源周波数の6倍、単相交流電源の場合には、電源周波数の2倍の周波数成分が多くなる。従って、交流成分抽出部133aは、この部分の周波数を抽出する。
 電源周波数×相数×2                    (2)
 演算部133bは、交流成分抽出部133aで抽出された脈動成分を、母線電圧値Vdcで除算することにより、電圧値を周波数成分に変換する。
 積分部133cは、演算部133bで演算された脈動の周波数成分を積分することで、脈動補償位相Δθを計算する。計算された脈動補償位相Δθは、PWM生成部135に与えられる。
 変調率補償部134は、電圧指令値Vに対応する変調率を変調率計算部134aにて算出して、その変調率に対して出力電圧が線形に出力できるように、変調率補正テーブル記憶部134bと、変調率補正部134cと、リミッタ134dとを備える。
 これにより、母線電圧値Vdcの脈動成分による出力電圧変動に対しても、変調率が1.0以上であっても、線形に出力することが可能となる。
 変調率計算部134aは、下記の(3)式により、変調率Khを計算する。計算された変調率Khは、変調率補正部134cに与えられる。
Figure JPOXMLDOC01-appb-M000001
 変調率補正テーブル記憶部134bは、変調率を補正するための変調率補正係数を示す変調率補正テーブルを記憶する。
 図8は、モータ8の運転周波数と、インバータ120の出力電圧におけるモータ8の誘起電圧特性を示すグラフである。
 図8に示されているように、変調率Khが1.0以下となる正弦波モードでは、モータ8の運転周波数と、インバータ120の出力電圧とは線形の特性を示す。
 しかしながら、変調率Khが1.0よりも大きい台形波モードでは、モータ8の運転周波数と、インバータ120の出力電圧とは非線形の特性を示す。
 図4で説明したように、台形波モードでは、電圧指令値Vが母線電圧値Vdcと一致する部分があるため、母線電圧値Vdcが脈動していると、その脈動がインバータ120を介して、モータ8に出力されてしまう。
 このような状況を回避するため、本実施の形態では、モータ8の運転周波数と、インバータ120の出力電圧とが線形の特性になると仮定した場合における変調率となるような変調率補正係数を変調率補正テーブルで示す。
 具体的には、図8に示されている実線L2を破線L1に引き上げるために、変調率Khに乗算するための値が、変調率補正係数として特定される。
 図9は、変調率補正テーブルの一例を示すグラフである。
 図9に示されている電圧基本波は、図3に示されているVuのsin波ように、電圧指令値の基本波周波数成分のことである。例えば、同期モータの場合、電圧指令値の基本波成分は、モータの回転数の電気角周波数成分と一致する周波数成分が、電圧基本波となる。
 変調率が1.0を超えない範囲では、この電圧基本波成分と、変調率との関係は、1:1(線形)となるが、例えば、図4に示されているように、変調率が1.0を超えるとVuがVdc/2で制限される。このときのVuに対する基本波成分と、変調率とは、非線形になるため、図8に示されているような関係となる。
 そこで、電圧基本波成分と、変調率とが線形の出力になるようなテーブルが、図9に示されているグラフである。図9に示されているグラフでは、横軸は、電圧基本波成分であり、縦軸は、変調率と、電圧基本波成分とが線形になるために必要な変調率値=変調率補正係数である。
 具体的には、変調率が1.0以下の領域は、インバータ120が出力する線間電圧が正弦波状になるため、出力電圧の基本波が正弦波成分と一致する。しかしながら、変調率が1.0を超えると、インバータ120の出力の線間電圧は、矩形波状になり、矩形波状電圧の振幅と、基本波成分の振幅とは一致しなくなる。
 そのため、変調率に対する矩形波電圧の基本波成分と、矩形波状線間電圧とを計算することで、モータ8に実際にかかる電圧である電圧矩形波状線間電圧に対して変調率をどこまで出せばよいのかを計算することができる。
 ここで、変調率を横軸、出力電圧を縦軸として示した図が図8である。
 これに対して、出力電圧の基本波成分を横軸、その時の変調率を縦軸とした図が図9となる。図9に示されている変調率補正テーブルに従うことで、出力したい電圧に対応した変調率をテーブル的に求めることができる。図9では、正弦波で出力できる電圧振幅に対して最大1.1倍の電圧まで出力することが可能となる。
 変調率補正部134cは、変調率計算部134aからの変調率Khに、その変調率Khに対応する変調率補正係数を乗算することで、仮補正変調率Khを計算する。計算された仮補正変調率Khは、リミッタ134dに与えられる。
 リミッタ134dは、仮補正変調率Khが予め定められた上限値以上である場合には、仮補正変調率Khをその上限値に固定することで、インバータ120を制御するための変調率が大きくなりすぎないようにする。上記のように、電圧基本波と、変調率とを線形に出力するには限界があるため、その限界に対応する値以上の値を使わないようにするためにリミッタ134dが設けられている。リミッタ134dは、処理後の値を補正変調率Khhとして、PWM生成部135に与える。
 PWM生成部135は、脈動位相補償部133からの脈動補償位相Δθ、変調率補償部134からの補正変調率Khh及び位相計算部132からの位相θに基づいて、PWM信号を生成して、そのPWM信号をインバータ120に出力する。
 例えば、PWM生成部135は、脈動補償位相Δθを位相θに加算することで、制御位相θ#を算出し、その制御位相θ#及び補正変調率Khhに基づいて、PWM信号を生成すればよい。
 なお、位相及び変調率からPWM信号を生成する処理については、従来からの処理を行えばよいため、詳細な説明は省略する。
 インバータ120の出力電圧の振幅と位相の両方を制御した場合の、モータ相電流波形の比較を図10(A)及び(B)に示す。
 図10(A)は、インバータ120の出力電圧の振幅及び位相の両方を実施の形態のように制御しなかった場合のモータ相電流波形を示し、図10(B)は、インバータ120の出力電圧の振幅及び位相の両方を実施の形態のように制御した場合のモータ相電流波形を示している。
 図10(A)に示されているように、実施の形態のような制御を行わない場合には、電圧非線形領域の台形波モードにおいて、モータ8の相電流波形のピーク値が低周波数で変動してしまう。
 一方、実施の形態では、電圧の振幅を補償することでインバータ120の出力電圧の非線形領域でも線形に電圧を出力しつつ、直流電圧の変動量に合わせてインバータ120の出力電圧の位相を変化させることで、図10(B)に示されているように、モータ8の相電流波形の脈動を抑制することができる。
 例えば、インバータ120の出力電圧の非線形性を補償するには、マイコン上で計算することも可能であるが、図9に示されているようなテーブルデータをあらかじめ計算しておき、マイコンの記憶領域に書き込むことで演算処理負荷を下げることができる。
 以上に記載された制御部130の一部又は全部は、例えば、図11(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
 また、制御部130の一部又は全部は、例えば、図11(B)に示されているように、単一回路、複合回路、プログラムで動作するプロセッサ、プログラムで動作する並列プロセッサ、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の処理回路12で構成することもできる。
 以上のように、制御部130は、処理回路網により実現することができる。
変形例1.
 実施の形態に記載されている変調率補償部134の代わりに、図12に示されているような変調率補償部134#1が用いられてもよい。
 図12に示されているように、変調率補償部134#1は、変調率計算部134aと、変調率補正テーブル記憶部134bと、変調率補正部134cと、リミッタ134d#1とを備える。
 変形例1における変調率補償部134#1の変調率計算部134a、変調率補正テーブル記憶部134b及び変調率補正部134cは、実施の形態における変調率補償部134の変調率計算部134a、変調率補正テーブル記憶部134b及び変調率補正部134cと同様である。
 変形例1におけるリミッタ134d#1は、電圧検出部115からの母線電圧値Vdcを受け取る。
 そして、リミッタ134d#1は、さらに、母線電圧値Vdcの変動に合わせて上限値を可変することで、モータ8が必要な電圧指令振幅を確保して、電圧振幅を変化させる。リミッタ134d#1は、例えば、母線電圧値Vdcの変動が大きい場合には、その上限値を低くして、母線電圧値Vdcの変動が小さい場合には、その上限値を高くする。
 ここでは、リミッタ134d#1は、脈動成分を含む母線電圧値Vdcの瞬時値から、変調率Khhが常に上限値を超えないように変調率を計算する。母線電圧値Vdcが小さい条件では、変調率が大きくなる。このため、インバータ120の出力電圧制限されないように、変調率に対して上限値を可変させる。
 これにより、脈動位相補償部133による、母線電圧値Vdcの変動に合わせた電圧位相の制御と合わせて、電圧ベクトルの振幅と位相を振りながらインバータ120の出力電圧の制御発散を防ぐことができる。このため、総じて出力電圧補償の応答性を高めつつ、モータ相電流ピーク値安定させることができる。
変形例2.
 実施の形態に記載されている変調率補償部134の代わりに、図13に示されているような変調率補償部134#2が用いられてもよい。
 図13に示されているように、変調率補償部134#2は、変調率計算部134aと、変調率補正テーブル記憶部134bと、変調率補正部134cと、リミッタ134d#1と、フィルタ処理部134eとを備える。
 変形例2における変調率補償部134#2の変調率計算部134a、変調率補正テーブル記憶部134b及び変調率補正部134cは、実施の形態における変調率補償部134の変調率計算部134a、変調率補正テーブル記憶部134b及び変調率補正部134cと同様である。
 また、変形例2における変調率補償部134#2のリミッタ134d#1は、変形例1における変調率補償部134#1のリミッタ134d#1と同様である。
 但し、変形例2におけるリミッタ134d#1は、フィルタ処理部134eから、フィルタ処理後の処理済補正変調率Kh#を受け取り、処理済補正変調率Kh#の上限値を固定化する。
 フィルタ処理部134eは、変調率補正部134cからの仮補正変調率Khにローパスフィルタを適用することで、処理済補正変調率Kh#とする。
 例えば、制御安定性を考慮するならば、上記の(2)式で算出される周波数の5~10倍ほど大きなカットオフ周波数、又は、制御に取り込む母線電圧のフィルタの5~10倍のカットオフ周波数が用いられることが適切です。なお、制御性能優先であれば、これらのフィルタ処理のカットオフ周波数を下げた方がより効果がある。
 変形例2によれば、フィルタを掛けつつ、電圧リミッタを可変に動かすことで、フィルタにより制御の安定性を上げつつモータ電流の脈動を抑制することができる。
 図13に示されている変調率補償部134#2は、フィルタ処理部134eでフィルタ処理が行われた値に上限を設けるリミッタ134d#1が備えられているが、実施の形態は、このような例に限定されない。例えば、リミッタ134d#1が備えられていなくてもよい。この場合、変調率補償部134#2は、変調率Khに、母線電圧値Vdcが大きいほど大きな値となる変調率補正係数を乗算することで算出された値に対して、ローパスフィルタによるフィルタ処理を行った値を、補正変調率Khhとする。
 また、図13に示されている変調率補償部134#2においては、上限値を可変することのできるリミッタ134d#1が備えられているが、このようなリミッタ134d#1の代わりに、上限値が固定されたリミッタ134dが備えられていてもよい。
 1 圧縮機、 2 四方弁、 3 熱交換器、 4 膨張機構、 5 熱交換器、 6 冷媒配管、 7 圧縮機構、 8 モータ、 100 空気調和機、 110 電動機駆動装置、 111 コンバータ、 113 リアクタ、 114 コンデンサ、 115 電圧検出部、 116 電流検出部、 120 インバータ、 130 制御部、 131 電圧指令値算出部、 132 位相計算部、 133 脈動位相補償部、 133a 交流成分抽出部、 133b 演算部、 133c 積分部、 134,134#1,134#2 変調率補償部、 134a 変調率計算部、 134b 変調率補正テーブル記憶部、 134c 変調率補正部、 134d,134d#1 リミッタ、 134e フィルタ処理部、 135 PWM生成部。

Claims (7)

  1.  入力される交流電圧を整流するコンバータと、
     前記コンバータの出力を平滑化することで直流電圧とするコンデンサと、
     前記直流電圧の電圧値を検出する電圧検出部と、
     前記直流電圧を三相交流電圧に変換するインバータと、
     前記インバータから出力される電流の電流値を検出する電流検出部と、
     前記インバータを制御する制御部と、を備え、
     前記制御部は、
     前記電圧値及び前記電流値を用いて、前記インバータに印加する電圧の指令値である電圧指令値を算出する電圧指令値算出部と、
     前記電圧指令値に対応する電圧位相を計算する位相計算部と、
     前記電圧値から生成される前記電圧指令値に重畳する、前記直流電圧による脈動成分を抽出し、前記脈動成分の位相である脈動補償位相を計算する脈動位相補償部と、
     前記電圧値及び前記電圧指令値から変調率を算出し、前記変調率が1.0よりも大きい場合に、前記電圧指令値に対して前記電圧値を線形で出力することができるように、前記変調率を補正した補正変調率を算出する変調率補償部と、
     前記電圧位相に前記脈動補償位相を加算した値及び前記補正変調率から、前記インバータを制御するためのPWM(Pulse Width Modulation)信号を生成するPWM生成部と、を備えること
     を特徴とする電力変換装置。
  2.  前記変調率補償部は、前記変調率に、前記電圧値が大きいほど大きな値となる変調率補正係数を乗算することで算出された値を、前記補正変調率とすること
     を特徴とする請求項1に記載の電力変換装置。
  3.  前記変調率補償部は、前記算出された値に上限値を設けること
     を特徴とする請求項2に記載の電力変換装置。
  4.  前記変調率補償部は、前記変調率に、前記電圧値が大きいほど大きな値となる変調率補正係数を乗算することで算出された値に対して、ローパスフィルタによるフィルタ処理を行った値を、前記補正変調率とすること
     を特徴とする請求項1に記載の電力変換装置。
  5.  前記変調率補償部は、前記フィルタ処理が行われた値に上限値を設けること
     を特徴とする請求項4に記載の電力変換装置。
  6.  前記変調率補償部は、前記電圧値の変動が大きいほど、前記上限値を小さくすること
     を特徴とする請求項3又は5に記載の電力変換装置。
  7.  請求項1から6の何れか一項に記載の電力変換装置と、
     前記電力変換装置から出力される前記三相交流電圧により駆動され、動力を発生するモータと、
     前記動力を用いて冷媒を圧縮する圧縮機と、を備えること
     を特徴とする空気調和機。
PCT/JP2021/045325 2021-12-09 2021-12-09 電力変換装置及び空気調和機 WO2023105710A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023565802A JPWO2023105710A1 (ja) 2021-12-09 2021-12-09
PCT/JP2021/045325 WO2023105710A1 (ja) 2021-12-09 2021-12-09 電力変換装置及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045325 WO2023105710A1 (ja) 2021-12-09 2021-12-09 電力変換装置及び空気調和機

Publications (1)

Publication Number Publication Date
WO2023105710A1 true WO2023105710A1 (ja) 2023-06-15

Family

ID=86730028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045325 WO2023105710A1 (ja) 2021-12-09 2021-12-09 電力変換装置及び空気調和機

Country Status (2)

Country Link
JP (1) JPWO2023105710A1 (ja)
WO (1) WO2023105710A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223591A (ja) * 2001-01-24 2002-08-09 Toshiba Elevator Co Ltd エレベータ制御装置
JP2012213264A (ja) * 2011-03-31 2012-11-01 Daikin Ind Ltd モータ駆動装置
JP2013009509A (ja) * 2011-06-24 2013-01-10 Toyota Central R&D Labs Inc 充電システム
JP2015160697A (ja) * 2014-02-27 2015-09-07 三菱電機株式会社 エレベータの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223591A (ja) * 2001-01-24 2002-08-09 Toshiba Elevator Co Ltd エレベータ制御装置
JP2012213264A (ja) * 2011-03-31 2012-11-01 Daikin Ind Ltd モータ駆動装置
JP2013009509A (ja) * 2011-06-24 2013-01-10 Toyota Central R&D Labs Inc 充電システム
JP2015160697A (ja) * 2014-02-27 2015-09-07 三菱電機株式会社 エレベータの制御装置

Also Published As

Publication number Publication date
JPWO2023105710A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
JP5542609B2 (ja) 無効電力補償装置
US9853559B2 (en) Power conversion device with reduced current deviation
JP5742980B1 (ja) 電力変換装置の制御方法
JP5365058B2 (ja) コンバータの制御方法
US10951152B2 (en) Power conversion apparatus
JP6368664B2 (ja) アクティブフィルタ、及びそれを用いたモータ駆動装置、並びに冷凍装置
JP2015195678A (ja) 電力変換装置、発電システム、制御装置および電力変換方法
JP5813934B2 (ja) 電力変換装置
WO2019039168A1 (ja) 電力変換装置
JP2009247136A (ja) 電力変換装置およびその高調波電流抑制方法
JP2013215061A (ja) 電力変換装置
WO2023105710A1 (ja) 電力変換装置及び空気調和機
JP2018109859A (ja) 制御装置、電力変換装置、モータ駆動装置、及び、それを用いた冷凍機器
WO2020095377A1 (ja) 負荷駆動装置、冷凍サイクル装置及び空気調和機
WO2020213511A1 (ja) 空気調和装置
JP5928216B2 (ja) インバータ制御装置
WO2023105761A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067723A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
CN111819781B (zh) 整流电路装置
WO2023157045A1 (ja) 電力変換装置および空気調和機
WO2023067724A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023105689A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023073870A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
US10903755B2 (en) Power conversion device
JP6146511B2 (ja) インバータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565802

Country of ref document: JP