WO2016063398A1 - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
WO2016063398A1
WO2016063398A1 PCT/JP2014/078201 JP2014078201W WO2016063398A1 WO 2016063398 A1 WO2016063398 A1 WO 2016063398A1 JP 2014078201 W JP2014078201 W JP 2014078201W WO 2016063398 A1 WO2016063398 A1 WO 2016063398A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
output shaft
speed
ratio
gear ratio
Prior art date
Application number
PCT/JP2014/078201
Other languages
French (fr)
Japanese (ja)
Inventor
庸浩 小林
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480081046.9A priority Critical patent/CN106662240B/en
Priority to PCT/JP2014/078201 priority patent/WO2016063398A1/en
Priority to JP2016555021A priority patent/JP6201062B2/en
Publication of WO2016063398A1 publication Critical patent/WO2016063398A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing

Definitions

  • the present invention relates to a transmission mounted on a vehicle or the like.
  • a four-bar linkage mechanism type comprising an input shaft to which driving force from a driving source for traveling such as an engine is transmitted, an output shaft arranged in parallel with the rotation center axis of the input shaft, and a plurality of lever crank mechanisms A continuously variable transmission is known (see, for example, Patent Document 1).
  • the lever crank mechanism is provided with a rotating portion that can rotate integrally with an input shaft, and a rotating radius adjusting mechanism that can adjust the rotating radius of the rotating portion;
  • a swing link provided with an end and pivotally supported on the output shaft, one end rotatably connected to the rotating portion of the turning radius adjusting mechanism, and the other end swings the swing link.
  • a connecting rod connected to the moving end.
  • a one-way clutch is provided as a one-way rotation prevention mechanism that idles the swing link with respect to the output shaft when attempting to rotate to the other side with respect to the shaft.
  • the turning radius adjustment mechanism is a disc-shaped cam part that rotates integrally with the input shaft while being eccentric with respect to the input shaft, and is rotatable while being eccentric with respect to the cam part, and the connecting rod is rotatable. And a pinion shaft provided with a plurality of pinions in the axial direction. The pinion shaft is rotated by the driving force transmitted from the adjustment driving source.
  • the turning radius adjusting mechanism includes a disk-like rotating part having a through hole that is formed by being eccentric from the center, and an inner surface attached to the inner peripheral surface of the through hole of the rotating part.
  • Some of them are composed of two second pinions that mesh with the gear.
  • the first pinion and the two second pinions are arranged so that a triangle whose apex is the central axis thereof is an equilateral triangle.
  • the cam portion is formed with a through-hole penetrating in the direction of the rotation center axis of the input shaft and formed at a position eccentric with respect to the center of the cam portion.
  • the cam portion has a notch hole that communicates the outer peripheral surface of the cam portion and the inner peripheral surface of the through hole in a region opposite to the center of the cam portion across the rotation center axis of the input shaft. Yes.
  • Adjacent cam portions are fixed with bolts to form a cam portion coupling body.
  • the cam part connection body has an input part connected to one axial end thereof, and the cam part connection body and the input part constitute a cam shaft (input shaft).
  • the camshaft may be configured by attaching a cam portion or a cam portion coupling body to the outer surface of a hollow rod-like input portion by spline coupling or the like.
  • the cam part connection body is hollow by connecting through holes of each cam part, and a pinion shaft is inserted inside. And the pinion shaft inserted in the cam part coupling body is exposed from the notch hole of each cam part.
  • the rotating part is provided with a receiving hole for receiving the camshaft.
  • Internal teeth are formed on the inner peripheral surface of the receiving hole. The internal teeth mesh with the pinion shaft exposed from the notch (through hole) of each cam portion.
  • the cam portions are set so that the phases are different from each other, and the plurality of cam portions make a round in the circumferential direction of the rotation center axis of the input shaft. For this reason, the connecting rods externally fitted to the rotating portions provided in the respective cam portions allow the respective swing links to transmit torque to the output shaft in order so that the output shaft can be smoothly rotated.
  • a one-way clutch that is a one-way rotation prevention mechanism is provided on the downstream side of a lever crank mechanism that is a transmission mechanism. Therefore, a transmission ratio that is obtained by dividing the input rotation speed of the transmission mechanism by the output rotation speed. Is larger than a predetermined value (hereinafter referred to as “transmission speed ratio”), the driving force is not transmitted to the output shaft.
  • the transmission gear ratio is kept at a value slightly larger than the transmission transmission gear ratio, and the time for changing to the transmission transmission gear ratio when the acceleration request is made is set. There is a case where control is performed to shorten and improve the responsiveness.
  • the gear ratio changes depending on the rotation radius of the rotating portion of the rotation radius adjusting mechanism, the gear ratio is greater than the transmission gear ratio when the engine speed is constant.
  • the control is performed such that the rotation radius is slightly smaller than the value at which the driving force is transmitted to the output shaft so as to be slightly increased.
  • the gear ratio to be kept on standby is set to a value far away from the transmission gear ratio, the transmission gear ratio is transmitted when an acceleration request is made. There is a possibility that the time required for the change to become longer and the responsiveness may be lowered. As a result, the drivability of a vehicle or the like equipped with the transmission may be reduced.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a transmission that can prevent unintended transmission of driving force and has good responsiveness.
  • a transmission according to the present invention includes an input shaft that rotates when a driving force of a traveling drive source is transmitted, an output shaft that transmits the driving force to driving wheels, and a rotation transmitted from the input shaft.
  • a speed change mechanism that changes the speed and outputs the speed ratio can be changed, and when the rotational speed output from the speed change mechanism exceeds the rotational speed of the output shaft, the driving force is transmitted to the output shaft.
  • a one-way rotation prevention mechanism that is in a non-transmission state in which the driving force is not transmitted to the output shaft when the rotational speed output from the transmission mechanism is equal to or lower than the rotational speed of the output shaft; and a control unit that controls the gear ratio of the transmission mechanism
  • the control unit is configured to receive an acceleration request and a deceleration request for the output shaft transmitted based on predetermined information, and the transmission of the transmission mechanism in which the one-way rotation prevention mechanism is in a transmission state.
  • Ratio is the transmission gear ratio, and from the transmission gear ratio
  • the first gear ratio is a gear ratio determined to be large and the non-transmission state can be maintained when the rotational speed of the output shaft decreases at the maximum deceleration.
  • the gear ratio is larger than the transmission gear ratio
  • the acceleration request is When the speed change is made, the speed change ratio determined so as to be in a transmission state within a predetermined time is set as the second speed change ratio.
  • the control unit When the acceleration request is not made and the speed reduction request is made, the control unit When the acceleration request is not made and the deceleration request is not made, the control unit sets the speed ratio to be larger than the transmission speed ratio and the first speed ratio. Control is performed so that the value is 2 or less.
  • the speed ratio is reduced by the maximum deceleration of the output shaft.
  • control is performed so that the value becomes equal to or higher than the first gear ratio determined so that the non-transmission state can be maintained, so that unintended driving force can be transmitted even when the rotation speed of the output shaft rapidly decreases. It does not occur.
  • the transmission ratio is transmitted within a predetermined time when the acceleration request for the output shaft is made. Since the control is performed so that the value is equal to or smaller than the second speed ratio determined so as to be in the state, when the acceleration request is made, a good responsiveness that quickly enters the transmission state is realized.
  • the transmission of the present invention has an adjustment drive source that transmits the driving force to the transmission mechanism, and the transmission mechanism is transmitted with the drive force from the adjustment drive source and can rotate integrally with the input shaft.
  • a turning radius adjusting mechanism that is provided with a rotating portion and that can adjust the turning radius of the rotating portion, a swinging link that is provided with a swinging end portion and is pivotally supported by the output shaft, and one end portion is a turning radius
  • a lever crank mechanism that has a connecting rod that is rotatably connected to the rotating part of the adjusting mechanism and whose other end is connected to the swinging end, and converts the rotational movement of the input shaft into the swinging movement of the swinging link.
  • the one-way rotation prevention mechanism is in the transmission state with the swing link fixed to the output shaft when the swing link is about to rotate to the one side with respect to the output shaft.
  • the first transmission gear ratio and the second transmission gear ratio are configured to release the transmission state by idling the dynamic link.
  • the first transmission gear ratio and the second transmission gear ratio are the amount of change in the rotation radius of the rotating unit with respect to the driving force transmitted from the adjusting drive source, and control. It may be configured to be determined based on a response time from when the command of the part is received until the turning radius of the rotating part changes to the target turning radius.
  • the control unit sets the speed ratio to be equal to or higher than the first speed ratio and to the second speed ratio.
  • the control unit can control the gear ratio to a value that matches the second gear ratio. preferable.
  • FIGS. 3A and 3B are explanatory diagrams showing changes in the rotation radius of the input side fulcrum of the lever crank mechanism of the continuously variable transmission of FIG. 1, 3A is “maximum”, 3B is “medium”, and 3C is rotation radius. “Small” and 3D indicate cases where the radius of rotation is “0”.
  • FIG. 4 is an explanatory diagram showing changes in the swing range of the output side fulcrum with respect to changes in the rotation radius of the input side fulcrum of the lever crank mechanism of the continuously variable transmission of FIG.
  • the movement range is “medium”, 4C indicates the swing range is “small”, and 4D indicates the swing range is “0”.
  • the graph which shows the eccentric amount of the rotating disk with respect to the phase of the pinion shaft of the turning radius adjustment mechanism of the continuously variable transmission of FIG. The graph which shows the change of the variation
  • the graph which shows the transmission gear ratio with respect to the rotational speed of the output shaft of the continuously variable transmission of FIG. 1, a 1st gear ratio, and a 2nd gear ratio.
  • the flowchart which shows the process which a control part performs when the one-way clutch of the continuously variable transmission of FIG. 1 is a non-transmission state.
  • IVT Infinity Variable Transmission
  • this embodiment is an embodiment in the case where the continuously variable transmission is mounted on a vehicle, the continuously variable transmission of the present invention can be mounted on other vehicles and unmanned vehicles such as ships. .
  • the continuously variable transmission 1 of the present embodiment includes an input shaft 2, an output shaft 3 arranged in parallel with the rotation center axis P ⁇ b> 1 of the input shaft 2, and a rotation center axis P ⁇ b> 1 of the input shaft 2.
  • the six turning radius adjusting mechanisms 4 provided above and the acceleration request and the deceleration request for the output shaft 3 transmitted based on predetermined information (for example, turning on or off the accelerator pedal and the brake pedal) are received.
  • a control unit (not shown) for controlling the eccentric amount R1 of the turning radius adjusting mechanism 4 (speed ratio i of a lever crank mechanism 20 (transmission mechanism) described later).
  • the input shaft 2 rotates around the rotation center axis P1 by transmitting a driving force from the engine ENG which is a driving source for traveling.
  • the engine ENG which is a driving source for traveling.
  • the output shaft 3 transmits a rotational driving force to driving wheels (not shown) of the vehicle via a differential gear (not shown).
  • a propeller shaft may be provided instead of the differential gear.
  • the turning radius adjusting mechanism 4 has a cam disk 5 provided on the rotation center axis P1 of the input shaft 2 and a rotating disk 6 (rotating part) that is rotatably fitted on the cam disk 5.
  • the cam disks 5 have a disk shape, and are provided in pairs so that they can rotate integrally with the input shaft 2 while being eccentric with respect to the rotation center axis P1 of the input shaft 2.
  • Each set of cam disks 5 is set so as to have a phase difference of 60 °, and is arranged so that the six sets of cam disks 5 make a round in the circumferential direction of the rotation center axis P1 of the input shaft 2.
  • the cam disk 5 is formed with a through hole 5a that penetrates in the direction of the rotation center axis P1 of the input shaft 2 and is formed at a position eccentric to the center P2 of the cam disk 5. Further, the cam disk 5 communicates with the outer peripheral surface of the cam disk 5 and the inner peripheral surface of the through hole 5a in a region opposite to the center P2 of the cam disk 5 across the rotation center axis P1 of the input shaft 2. A notch hole 5b is formed.
  • the two cam disks 5 are fixed with bolts (not shown). Further, one of the two cam disks 5 is formed integrally with the other of the other two cam disks 5 of the adjacent turning radius adjusting mechanism 4 to form an integral cam portion. Yes. Of the cam disks 5, the cam disk 5 that is closest to the engine ENG is formed integrally with the input end 2a. In this way, the input shaft 2 (camshaft) is configured by the input end 2a and the plurality of cam disks 5.
  • the integral cam portion may be formed by integral molding, or may be integrated by welding two cam disks 5. Further, as a method of integrally forming the cam disk 5 and the input shaft 2 that are closest to the engine ENG, the cam disk 5 and the input end 2a may be welded together. It may be integrated.
  • the rotary disk 6 has a disk shape in which a receiving hole 6 a is provided at a position eccentric from the center P ⁇ b> 3, and is provided to be rotatable with respect to the rotation center axis P ⁇ b> 1 of the input shaft 2. .
  • a set of cam disks 5 is rotatably fitted in the receiving holes 6a.
  • an internal tooth 6 b is provided in the receiving hole 6 a of the rotating disk 6 at a position between the pair of cam disks 5.
  • the receiving hole 6a of the rotating disk 6 has a distance Ra from the rotation center axis P1 of the input shaft 2 to the center P2 of the cam disk 5 (center of the receiving hole 6a) and the center P2 of the cam disk 5 to the center of the rotating disk 6.
  • the cam disk 5 is eccentric so that the distance Rb to P3 is the same.
  • the input shaft 2 constituted by the input end 2a and the plurality of cam disks 5 is provided with an insertion hole formed by connecting the through holes 5a of the cam disk 5.
  • the input shaft 2 has a hollow shaft shape in which one end opposite to the engine ENG is open and the other end is closed.
  • the pinion shaft 7 is disposed concentrically with the rotation center axis P1 so as to be rotatable relative to the input shaft.
  • the pinion shaft 7 has a pinion 7a at a position corresponding to the internal teeth 6b of the rotary disk 6.
  • the pinion shaft 7 is positioned between the pinions 7a adjacent to each other in the direction of the rotation center axis P1 of the input shaft 2, and a pinion bearing 7b is provided.
  • the pinion shaft 7 supports the input shaft via the pinion bearing 7b.
  • the pinion 7 a is formed integrally with the shaft portion of the pinion shaft 7.
  • the pinion 7 a meshes with the internal teeth 6 b of the rotating disk 6 through the notch hole 5 b of the cam disk 5.
  • the pinion 7a may be configured separately from the pinion shaft 7 and connected to the pinion shaft 7 by spline coupling.
  • the term “pinion 7 a” is defined as including the pinion shaft 7.
  • the pinion shaft 7 is connected to a differential mechanism 8 composed of a planetary gear mechanism or the like.
  • the differential mechanism 8 is configured as, for example, a planetary gear mechanism, and is connected to an input shaft 2 configured by a sun gear 9, an input end 2 a, and a plurality of cam disks 5.
  • a stepped pinion 12 including a second ring gear 11 coupled to the pinion shaft 7, a large diameter portion 12 a meshing with the sun gear 9 and the first ring gear 10, and a small diameter portion 12 b meshing with the second ring gear 11.
  • a carrier 13 that pivotally and revolves freely.
  • the sun gear 9 is connected to a rotary shaft 14a of an actuator 14 (adjusting drive source) for the pinion shaft 7, and a driving force is transmitted from the actuator 14. Therefore, the driving force of the actuator 14 is also transmitted to the pinion 7 a via the differential mechanism 8.
  • the rotational speed of the pinion shaft 7 is made slower than the rotational speed of the input shaft 2
  • the rotational speed of the sun gear 9 is Ns
  • the rotational speed of the first ring gear 10 is NR1
  • the gear ratio between the sun gear 9 and the first ring gear 10 first When j is the number of teeth of the ring gear 10 / the number of teeth of the sun gear 9, the number of rotations of the carrier 13 is (j ⁇ NR1 + Ns) / (j + 1).
  • the gear ratio between the sun gear 9 and the second ring gear 11 ((number of teeth of the second ring gear 11 / number of teeth of the sun gear 9) ⁇ (number of teeth of the large diameter portion 12a of the stepped pinion 12 / number of teeth of the small diameter portion 12b). ) Is k, the rotation speed of the second ring gear 11 is ⁇ j (k + 1) NR1 + (k ⁇ j) Ns ⁇ / ⁇ k (j + 1) ⁇ .
  • the rotating disk 6 rotates with respect to the cam disk 5 from the rotation center axis P ⁇ b> 1 of the input shaft 2 to the center P ⁇ b> 2 of the cam disk 5 and the center P ⁇ b> 2 of the cam disk 5.
  • the disc 6 is eccentric so that the distance Rb to the center P3 of the disc 6 is the same.
  • the center P3 of the rotary disk 6 is positioned on the same line as the rotation center axis P1 of the input shaft 2, and the distance between the rotation center axis P1 of the input shaft 2 and the center P3 of the rotary disk 6 (of the turning radius adjusting mechanism 4).
  • the rotation radius that is, the eccentricity R1 can be set to “0”.
  • the input-side annular portion 15a of the connecting rod 15 is rotatably fitted to the rotary disk 6 via connecting rod bearings 16 each consisting of a set of two ball bearings arranged in the axial direction.
  • the output shaft 3 is rotatably supported by six connecting links 18 corresponding to the connecting rod 15 via a one-way clutch 17 (one-way rotation prevention mechanism).
  • the one-way clutch 17 is provided between the swing link 18 and the output shaft 3, and the swing link 18 rotates relative to the output shaft 3 on one side about the rotation center axis P ⁇ b> 5 of the output shaft 3.
  • the rocking link 18 is fixed to the output shaft 3 and the driving force is transmitted to the output shaft 3 (transmission state), and the relative rotation to the other side, the rocking link 18 with respect to the output shaft 3 is transmitted. Is not transmitted and the driving force is not transmitted to the output shaft 3 (non-transmitting state).
  • the swing link 18 is formed in an annular shape, and a swing end portion 18a connected to the output-side annular portion 15b of the connecting rod 15 is provided below the swing link 18.
  • the swing end portion 18a is provided with a pair of projecting pieces 18b projecting so as to sandwich the output-side annular portion 15b from the axial direction.
  • the pair of projecting pieces 18b are provided with insertion holes 18c corresponding to the inner diameter of the output-side annular portion 15b.
  • the swing link 18 is provided with an annular portion 18d.
  • the annular portion 18d is fitted on the output shaft 3 through the one-way clutch 17 so as to be swingable.
  • a lever crank mechanism 20 (transmission mechanism) is configured by the turning radius adjustment mechanism 4, the swing link 18, and the connecting rod 15 having the above-described configuration. .
  • the lever crank mechanism 20 and the one-way clutch 17 are housed in a transmission case 21.
  • lubricating oil forms an oil reservoir.
  • the swing link 18 is disposed such that the swing end portion 18a is immersed in an oil reservoir of lubricating oil collected below the transmission case 21.
  • the transmission case 21 is spaced from one end wall 21a fixed to the engine ENG, the other end wall 21b disposed to face the one end wall 21a, the lever crank mechanism 20 and the one-way clutch 17. And is formed by a peripheral wall portion 21c that connects the outer edge of the one end wall portion 21a and the outer edge of the other end wall portion 21b.
  • the one end wall portion 21a and the other end wall portion 21b are formed with openings for supporting the output shaft 3 for supporting the input shaft, and bearings 22 are fitted into these openings. ing.
  • lever crank mechanisms 20 In addition, in this embodiment, the thing provided with the six lever crank mechanisms 20 was demonstrated. However, the number of lever crank mechanisms in the continuously variable transmission of the present invention is not limited to that number. For example, five or less lever crank mechanisms may be provided, or seven or more lever crank mechanisms may be provided. May be.
  • the input shaft 2 is constituted by the input end portion 2a and the plurality of cam disks 5, and the input shaft 2 is provided with an insertion hole formed by connecting the through holes 5a of the cam disk 5.
  • the input shaft in the continuously variable transmission of the present invention is not limited to that configured as described above.
  • the input shaft 2 is formed in a hollow shaft shape having an insertion hole so that one end is open, and the through hole is formed larger than that of the present embodiment so that the input shaft 2 can be inserted into a disc-shaped cam disk.
  • the cam disk may be splined to the outer peripheral surface of the input portion configured in a hollow shaft shape.
  • a notch hole corresponding to the notch hole of the cam disk is provided in the input portion composed of the hollow shaft. Then, the pinion inserted into the input part meshes with the internal teeth of the rotating disk through the notch hole of the input part and the notch hole of the cam disk.
  • the one-way clutch 17 is used as the one-way rotation prevention mechanism.
  • the one-way rotation prevention mechanism in the continuously variable transmission of the present invention is not limited to the one-way clutch, and for example, the rotation direction of the swing link capable of transmitting torque from the swing link to the output shaft can be switched.
  • a two-way clutch may be used.
  • the continuously variable transmission 1 of this embodiment includes a total of six lever crank mechanisms 20 (four-bar linkage mechanisms) as shown in FIG.
  • the lever crank mechanism 20 includes a connecting rod 15, a swing link 18, and a rotating radius adjusting mechanism 4 having a rotating disk 6 and having an adjustable rotating radius.
  • the lever crank mechanism 20 converts the rotational motion of the input shaft 2 into the swing motion of the swing link 18.
  • each connecting rod 15 pushes the swing end 18a between the input shaft 2 and the output shaft 3 toward the output shaft 3 or pulls it toward the input shaft 2 while changing the phase.
  • the rocking link 18 is rocked by alternately repeating.
  • the connecting rod 15 causes the swing link 18 to rotate to the one side with respect to the output shaft 3.
  • the swing link 18 is fixed to the output shaft 3 and transmits torque to the output shaft 3.
  • the swing link 18 rotates to the other side with respect to the output shaft 3, the swing link 18 idles with respect to the output shaft 3, and no torque is transmitted to the output shaft 3.
  • the one-way clutch 17 applies driving force to the output shaft 2 when the rotational speed output from the lever crank mechanism 20 (transmission mechanism) (the swing speed of the swing link 20) exceeds the rotational speed of the output shaft 3.
  • the rotational speed output from the lever crank mechanism 20 is equal to or lower than the rotational speed of the output shaft 3, the driving force is not transmitted to the output shaft 3.
  • the turning radius adjusting mechanisms 4 of the six lever crank mechanisms 20 are arranged with phases shifted by 60 degrees, so that the output shaft 3 has six lever cranks.
  • the mechanism 20 is rotated in order.
  • FIG. 3 is a diagram showing the positional relationship between the pinion shaft 7 and the rotating disk 6 in a state where the rotating radius (the eccentric amount R1) of the center P3 (input side fulcrum) of the rotating disk 6 of the rotating radius adjusting mechanism 4 is changed. is there.
  • FIG. 3A shows a state in which the amount of eccentricity R1 is set to “maximum”, and the pinion shaft 7 so that the rotation center axis P1 of the input shaft 2, the center P2 of the cam disk 5, and the center P3 of the rotation disk 6 are aligned. And the rotating disk 6 are positioned.
  • the gear ratio h is “minimum”.
  • FIG. 3B shows a state in which the eccentric amount R1 is set to “medium” which is smaller than that in FIG. 3A
  • FIG. 3C shows a state in which the eccentric amount R1 is set to “small” which is further smaller than that in FIG.
  • the gear ratio h is “medium” which is larger than the gear ratio h in FIG. 3A in FIG. 3B and “large” which is larger than the gear ratio h in FIG. 3B in FIG.
  • FIG. 3D shows a state where the amount of eccentricity R1 is “0”, and the rotation center axis P1 of the input shaft 2 and the center P3 of the rotating disk 6 are located concentrically.
  • the gear ratio h is “infinity ( ⁇ )”.
  • FIG. 4 is a diagram showing the relationship between the rotation radius (eccentricity R1) of the center P3 (input side fulcrum) of the rotary disk 6 of the rotary radius adjusting mechanism 4 and the swing range ⁇ 2 of the swing motion of the swing link 18. It is.
  • FIG. 4A shows the case where the eccentric amount R1 is “maximum” in FIG. 3A (when the gear ratio h is “minimum”)
  • FIG. 4B shows the case where the eccentric amount R1 is “medium” in
  • FIG. 4C shows the case where the eccentric amount R1 is “small” in FIG. 3C (when the gear ratio h is “large”)
  • FIG. 4D shows the amount of eccentricity R1 shown in FIG. Is the swing range ⁇ 2 when the gear ratio is “0” (when the gear ratio h is “infinity ( ⁇ )”).
  • R2 is the length of the swing link 18. More specifically, R2 is the distance from the rotation center axis P5 of the output shaft 3 to the connection point between the connecting rod 15 and the swinging end 18a, that is, the center of the connection pin 19 (output-side fulcrum P4). . ⁇ 1 is the phase of the rotating disk 6 of the turning radius adjusting mechanism 4.
  • FIG. 5 is a graph showing the phase ⁇ 3 of the pinion shaft 7 driven by the actuator 14 and the eccentric amount R1 of the rotating disk 6 of the turning radius adjusting mechanism 4 of the lever crank mechanism 20 rotated by driving of the pinion shaft 7. .
  • the eccentric amount R1 of the rotating disk 6 increases as the phase ⁇ 3 of the pinion shaft 7 increases.
  • the change amount of the eccentricity R1 becomes smaller as the value of the phase ⁇ 3 before the change is larger.
  • FIG. 6 is a graph showing changes in the amount of change in the eccentric amount R1 of the rotary disk 6 of the rotary radius adjusting mechanism 4 with respect to changes in the rotational speed of the engine ENG of the continuously variable transmission 1.
  • transmission eccentricity As shown in FIG. 6, when the rotational speed input from the engine ENG to the lever crank mechanism 20 (transmission mechanism) is constant, the one-way clutch 17 is in a transmission state in which the driving force is transmitted to the output shaft 3.
  • the amount of eccentricity of the disk 6 (hereinafter, this amount of eccentricity is referred to as “transmission eccentricity”) is determined by the rotational speed of the output shaft 3.
  • the swing speed of the swing link 18 (that is, the output rotational speed of the lever crank mechanism 20) is proportional to the eccentric amount R1 of the rotary disk 6.
  • the gear ratio i of the lever crank mechanism 20 is obtained by dividing the input rotation speed (rotation speed of the input shaft 2) of the lever crank mechanism 20 by the output rotation speed. Therefore, the gear ratio i of the lever crank mechanism 20 decreases as the eccentric amount R1 of the rotating disk 6 increases when the input rotation speed is constant.
  • the gear ratio i is a gear ratio corresponding to the transmission eccentricity (hereinafter, this gear ratio is referred to as "transmission gear ratio").
  • transmission gear ratio a gear ratio corresponding to the transmission eccentricity
  • FIG. 7 shows the transmission eccentricity (transmission speed ratio) with respect to the rotational speed of the output shaft 3 when the rotational speed of the engine ENG is constant, and the output shaft even when the rotational speed of the output shaft 3 decreases with the maximum deceleration.
  • the first eccentric amount (first gear ratio) determined so as to maintain the non-transmission state in which the swing link 18 is idled with respect to 3 and the driving force is not transmitted to the output shaft 3, and the transmission eccentricity.
  • a second eccentric amount (second gear ratio) that is smaller than the amount (greater than the transmission gear ratio) and determined to be in a transmission state within a predetermined time when an acceleration request for the output shaft 3 is made. It is a graph to show.
  • the first eccentric amount is a change in the eccentric amount R1 of the rotary disk 6 with respect to the maximum deceleration of the output shaft 3 and the displacement amount of the phase ⁇ 3 of the pinion shaft 7 when the rotational speed of the engine ENG is constant.
  • Response time for example, the actual eccentricity R1 is the target
  • the time required for changing to the amount of eccentricity is determined based on the sum of the dead time until the actuator 14 is driven).
  • the maximum deceleration is a value determined by the performance of the brake and tire of the vehicle on which the continuously variable transmission 1 is mounted.
  • This first eccentric amount (first gear ratio) is “0” (as the gear ratio) in the region where the rotational speed of the output shaft 3 is close to “0”, as shown by a broken line with a large interval in the graph of FIG. “Infinity ( ⁇ )”), and in other regions, the amount of increase is slightly larger than the amount of increase in transmission eccentricity, and increases in accordance with the amount of eccentricity R1.
  • the second eccentric amount (second speed change ratio) is determined when the rotational speed of the engine ENG is constant and the rotation disk 6 has a predetermined amount of time (for example, 200 msec) with respect to the amount of displacement of the phase ⁇ 3 of the pinion shaft 7. It is determined based on the amount of change of the eccentricity R1 (see FIG. 5) and the response time from when the command of the control unit is received until the eccentricity R1 of the rotating disk 6 changes to the target eccentricity.
  • This second eccentricity (second speed change ratio) is “0” (as the speed change ratio) in the region where the rotational speed of the output shaft 3 is close to “0”, as shown by a broken line with a small interval in the graph of FIG. “Infinity ( ⁇ )”), and in other regions, the amount of increase is slightly larger than the amount of increase in transmission eccentricity, and increases in accordance with the amount of eccentricity R1. Further, the increase amount of the second eccentric amount is larger than the increase amount of the first eccentric amount, and the region where the second eccentric amount is “0” is larger than the region where the first eccentric amount is “0”. large.
  • the first eccentric amount (first gear ratio) and the second eccentric amount (second gear ratio) shown in FIG. 7 are examples. If the first speed ratio is larger than the transmission speed ratio and can maintain the non-transmission state when the rotational speed of the output shaft 3 decreases at the maximum deceleration, the value shown in FIG. May be different values.
  • the second speed ratio is different from the value shown in FIG. 7 as long as the second speed ratio is larger than the transmission speed ratio and is a value that is in a transmission state within a predetermined time when an acceleration request is made to the output shaft. It may be.
  • the control unit for controlling the driving of the turning radius adjusting mechanism 4 includes an input side turning speed sensor for detecting the turning speed on the input side of the turning radius adjusting mechanism 4 (that is, the turning speed of the input shaft 2), and the turning speed on the output side.
  • An output-side rotational speed sensor that detects (that is, a swing speed of the swing link 18), an accelerator opening sensor that detects the opening degree of the throttle valve according to the operation amount of the accelerator pedal, and the operation amount of the brake pedal. It has a brake sensor to detect.
  • control unit determines whether or not the accelerator pedal is off based on the output signal of the accelerator opening sensor (that is, whether or not the coasting traveling is not requested to accelerate the output shaft 3). Is determined (FIG. 8 / STEP1).
  • the control unit When the accelerator pedal is off (in the case of YES in FIG. 8 / STEP 1), the control unit is smaller than the transmission eccentric amount and not more than the first eccentric amount at the rotational speed of the output shaft 3 at that time. Whether there is an eccentricity amount R1 (gear ratio i greater than the transmission gear ratio, greater than the first gear ratio, and greater than or equal to the second gear ratio) that satisfies the three conditions of greater than or equal to the second eccentric amount. Is determined (FIG. 8 / STEP2).
  • the eccentric amount R1 (speed ratio i) satisfies all three conditions, the output shaft 3 is intended even when the rotational speed of the output shaft 3 rapidly decreases due to a sudden deceleration of the vehicle or the like. There is no risk of transmission of driving force not being generated. Further, when an acceleration request is made to the output shaft 3 (when the accelerator pedal is turned on), the eccentric amount R1 (speed ratio i) is rapidly changed to the transmission eccentric amount (transmission speed ratio). Can do.
  • the control unit waits for the maximum value (minimum value of speed ratio i).
  • a signal for driving the pinion shaft 7 is determined so as to be determined as an eccentric amount R1 (speed ratio i), and the phase ⁇ 3 of the pinion shaft 7 becomes a value corresponding to the eccentric amount R1 (speed ratio i). It outputs to the actuator 14 (FIG. 8 / STEP3).
  • the control unit determines whether or not the brake pedal is on (that is, with respect to the output shaft 3). Whether or not a deceleration request has been made is determined (FIG. 8 / STEP 4).
  • the control unit determines that the value of the phase ⁇ 3 of the pinion shaft 7 is greater than the amount of transmission eccentricity at the rotational speed of the output shaft 3 at that time.
  • a signal for driving the pinion shaft 7 is output to the actuator 14 so as to be a value corresponding to the eccentric amount R1 that satisfies the two conditions that are smaller and equal to or less than the first eccentric amount (FIG. 8 / STEP 5).
  • the eccentric amount R1 satisfies these two conditions (that is, when the second eccentric amount is not considered and the eccentric amount R1 for waiting for only the transmission eccentric amount and the first eccentric amount is considered as a condition).
  • the responsiveness when an acceleration request is made may be slightly reduced.
  • the rotational speed of the output shaft 3 suddenly decreases due to a sudden deceleration of the vehicle, the output shaft 3
  • there is no possibility that unintended driving force is transmitted.
  • the control unit is configured such that the eccentric amount R1 is equal to or less than the first eccentric amount, and is close to the second eccentric amount (the transmission ratio i is equal to or greater than the first transmission ratio, and the first (A value close to 2 speed ratio). This is to make the response times substantially uniform within a range in which prevention of unintended transmission can be realized even in a state where priority is given to prevention of unintended transmission.
  • the control unit determines that the value of the phase ⁇ 3 of the pinion shaft 7 is the second eccentric amount at the rotational speed of the output shaft 3 at that time.
  • a signal for driving the pinion shaft 7 is output to the actuator 14 (ie, STEP 6) so that the gear ratio becomes a value corresponding to (that is, the gear ratio i matches the second gear ratio).
  • the eccentric amount R1 coincides with the second eccentric amount (that is, when the first eccentric amount is not considered and the eccentric amount R1 for waiting for only the transmission eccentric amount and the second eccentric amount is considered as a condition).
  • the acceleration request is made, a very good responsiveness can be realized in which the transmission state is quickly achieved. Furthermore, the response time becomes uniform.
  • the control unit sends a signal for driving the turning radius adjusting mechanism 4 to the actuator 14 in accordance with the accelerator opening. It outputs (FIG. 8 / STEP7).
  • the present invention can also be applied to a transmission other than a continuously variable transmission.
  • the control unit sets the speed ratio i to be equal to or higher than the first speed ratio and the second speed change. The control is performed so that the value is close to the ratio, and when the acceleration request is not made and the deceleration request is not made, the speed ratio i is controlled so as to coincide with the second speed ratio. (FIG. 8 / STEP5 and STEP6).
  • the reason why such control is performed is to improve the drivability of a vehicle or the like equipped with a transmission by making the response time substantially uniform.
  • the present invention is not limited to such a configuration, and at least when the acceleration request is not made and the deceleration request for the output shaft is made, the control unit sets the gear ratio to the first speed change.
  • the gear ratio is larger than the transmission gear ratio and less than the second gear ratio. It suffices if the control is performed.
  • the transmission mechanism can prevent unintended transmission of the driving force, and can realize good responsiveness.
  • Actuator (adjusting drive source), 15 ... Connecting rod, 15a ... Input side annular part, 15b ... Output side annular portion, 16 ... connecting rod bearing, 17 ... one-way clutch (one-way rotation prevention mechanism), 18 ... swing link, 18a ... swing end, 18b ... projecting piece, 18c ... insertion hole, 19 ... connection Pin, 2 ... lever crank mechanism (transmission mechanism), 21 ... transmission case, 21a ... one end wall part, 21b ... other end wall part, 21c ... peripheral wall part, 22 ... bearing, ENG ... engine (driving drive source), h ... none Gear ratio of the step transmission 1, i... Gear ratio of the turning radius adjusting mechanism 4 (transmission mechanism), P1...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a transmission that can prevent the unintentional transmission of drive force and has good responsiveness. A control unit of a continuously variable transmission 1 controls the gear ratio of a lever crank mechanism 20 so that when acceleration is not requested and deceleration is requested to an output shaft 3, the gear ratio is a value at or above a first gear ratio at which a non-transmission state can be maintained when the rotational rate of the output shaft 3 has decreased at the maximum rate of deceleration, and so that when acceleration is not requested and deceleration is not requested, the gear ratio is greater than a transmission gear ratio at which a one-way clutch 17 enters into a transmission state, and enters into a transmission state within a prescribed duration.

Description

変速機transmission
 本発明は、車両等に搭載される変速機に関する。 The present invention relates to a transmission mounted on a vehicle or the like.
 従来、エンジン等の走行用駆動源からの駆動力が伝達される入力軸と、入力軸の回転中心軸線と平行に配置された出力軸と、複数のてこクランク機構とを備える四節リンク機構型の無段変速機が知られている(例えば、特許文献1参照)。 Conventionally, a four-bar linkage mechanism type comprising an input shaft to which driving force from a driving source for traveling such as an engine is transmitted, an output shaft arranged in parallel with the rotation center axis of the input shaft, and a plurality of lever crank mechanisms A continuously variable transmission is known (see, for example, Patent Document 1).
 特許文献1に記載の無段変速機において、てこクランク機構は、入力軸と一体的に回転可能な回転部が設けられ、その回転部の回転半径を調節自在な回転半径調節機構と、揺動端部が設けられ出力軸に揺動自在に軸支された揺動リンクと、一方の端部が回転半径調節機構の回転部に回転自在に接続し、他方の端部が揺動リンクの揺動端部に接続されたコネクティングロッドとを有している。 In the continuously variable transmission described in Patent Document 1, the lever crank mechanism is provided with a rotating portion that can rotate integrally with an input shaft, and a rotating radius adjusting mechanism that can adjust the rotating radius of the rotating portion; A swing link provided with an end and pivotally supported on the output shaft, one end rotatably connected to the rotating portion of the turning radius adjusting mechanism, and the other end swings the swing link. And a connecting rod connected to the moving end.
 揺動リンクと出力軸との間には、揺動リンクが、出力軸を中心として、出力軸に対して一方側に回転しようとするときに出力軸に対して揺動リンクを固定し、出力軸に対して他方側に回転しようとするときに出力軸に対して揺動リンクを空転させる一方向回転阻止機構としてのワンウェイクラッチが設けられている。 Between the swing link and the output shaft, the swing link is fixed to the output shaft when the swing link is about to rotate to the one side with respect to the output shaft. A one-way clutch is provided as a one-way rotation prevention mechanism that idles the swing link with respect to the output shaft when attempting to rotate to the other side with respect to the shaft.
 回転半径調節機構は、入力軸に対して偏心した状態で入力軸と一体的に回転する円盤状のカム部と、このカム部に対して偏心した状態で回転自在であり、コネクティングロッドが回転自在に外嵌している回転部と、複数のピニオンを軸方向に備えるピニオンシャフトとで構成されている。ピニオンシャフトは、調節用駆動源から伝達された駆動力によって回転する。 The turning radius adjustment mechanism is a disc-shaped cam part that rotates integrally with the input shaft while being eccentric with respect to the input shaft, and is rotatable while being eccentric with respect to the cam part, and the connecting rod is rotatable. And a pinion shaft provided with a plurality of pinions in the axial direction. The pinion shaft is rotated by the driving force transmitted from the adjustment driving source.
 なお、回転半径調節機構は、特許文献1に示されるものの他、中心から偏心して穿設された貫通孔を有する円盤状の回転部と、回転部の貫通孔の内周面に取り付けられた内歯ギヤと、入力軸に固定され内歯ギヤに噛合する第1ピニオンと、調節用駆動源からの駆動力が伝達されるキャリアと、それぞれがキャリアによって自転及び公転自在に軸支され、内歯ギヤに噛合する2個の第2ピニオンとで構成されたものもある。この場合、第1ピニオンと2つの第2ピニオンは、それらの中心軸線を頂点とする三角形が正三角形になるように配置されている。 In addition to the one shown in Patent Document 1, the turning radius adjusting mechanism includes a disk-like rotating part having a through hole that is formed by being eccentric from the center, and an inner surface attached to the inner peripheral surface of the through hole of the rotating part. A tooth gear, a first pinion fixed to the input shaft and meshed with the internal gear, a carrier to which the driving force from the adjustment driving source is transmitted, and each of which is supported by the carrier so as to freely rotate and revolve. Some of them are composed of two second pinions that mesh with the gear. In this case, the first pinion and the two second pinions are arranged so that a triangle whose apex is the central axis thereof is an equilateral triangle.
 カム部には、入力軸の回転中心軸線方向に貫通し、カム部の中心に対して偏心した位置に穿設された貫通孔が形成されている。また、カム部には、入力軸の回転中心軸線を挟んでカム部の中心と反対側となる領域に、カム部の外周面と貫通孔の内周面とを連通させる切欠孔が形成されている。そして、隣接するカム部同士は、ボルトで固定されてカム部連結体を構成している。 The cam portion is formed with a through-hole penetrating in the direction of the rotation center axis of the input shaft and formed at a position eccentric with respect to the center of the cam portion. The cam portion has a notch hole that communicates the outer peripheral surface of the cam portion and the inner peripheral surface of the through hole in a region opposite to the center of the cam portion across the rotation center axis of the input shaft. Yes. Adjacent cam portions are fixed with bolts to form a cam portion coupling body.
 カム部連結体は、その軸方向一端に入力部が連結され、カム部連結体と入力部とで、カムシャフト(入力軸)が構成される。なお、カムシャフトは、特許文献1に示される構成のものの他、中空の棒状の入力部の外面に、カム部又はカム部連結体をスプライン結合等で取り付けて構成したものもある。 The cam part connection body has an input part connected to one axial end thereof, and the cam part connection body and the input part constitute a cam shaft (input shaft). In addition to the configuration shown in Patent Document 1, the camshaft may be configured by attaching a cam portion or a cam portion coupling body to the outer surface of a hollow rod-like input portion by spline coupling or the like.
 カム部連結体は、各カム部の貫通孔が連なることによって中空となっており、内部にピニオンシャフトが挿入される。そして、カム部連結体に挿入されたピニオンシャフトは、各カム部の切欠孔から露出する。 The cam part connection body is hollow by connecting through holes of each cam part, and a pinion shaft is inserted inside. And the pinion shaft inserted in the cam part coupling body is exposed from the notch hole of each cam part.
 回転部は、カムシャフトを受け入れる受入孔が設けられている。その受入孔の内周面には内歯が形成されている。その内歯は、各カム部の切欠(貫通孔)から露出しているピニオンシャフトと噛合する。 The rotating part is provided with a receiving hole for receiving the camshaft. Internal teeth are formed on the inner peripheral surface of the receiving hole. The internal teeth mesh with the pinion shaft exposed from the notch (through hole) of each cam portion.
 カムシャフトとピニオンシャフトの回転速度が同一の場合には、カム部に対して偏心した状態で回転自在な回転部がカム部に対して相対回転しないので、回転部の中心(入力側支点)の回転運動の半径が維持される。一方、カムシャフトとピニオンシャフトの回転速度が異なる場合には、回転部がカム部に対して相対回転し、入力側支点の回転運動の半径(回転部の回転半径)が変更されて、変速比が変化する。具体的には、回転部の回転半径(偏心量)が大きくなるほど、変速比が小さくなる。 When the rotational speeds of the camshaft and the pinion shaft are the same, the rotating part that is rotatable relative to the cam part does not rotate relative to the cam part, so the center of the rotating part (input side fulcrum) The radius of rotational motion is maintained. On the other hand, when the rotational speeds of the camshaft and the pinion shaft are different, the rotating part rotates relative to the cam part, and the radius of the rotational movement of the input side fulcrum (the rotating radius of the rotating part) is changed. Changes. Specifically, the gear ratio becomes smaller as the turning radius (the amount of eccentricity) of the rotating part becomes larger.
 この無段変速機では、カムシャフトを回転させることによって、カム部とともに回転部を回転させると、回転部に外嵌しているコネクティングロッドの一方の端部が回転運動して、コネクティングロッドの他方の端部と接続されている揺動リンクが揺動する。そして、揺動リンクは、ワンウェイクラッチを介して出力軸に軸支されているので、一方側に回転するときのみ出力軸に回転駆動力(トルク)を伝達する。 In this continuously variable transmission, when the rotating portion is rotated together with the cam portion by rotating the camshaft, one end of the connecting rod that is externally fitted to the rotating portion rotates, and the other end of the connecting rod The swing link connected to the end of the swings. And since the rocking | fluctuation link is pivotally supported by the output shaft via the one-way clutch, only when rotating to one side, rotational drive force (torque) is transmitted to an output shaft.
 また、カム部は、それぞれ位相が異なるように設定され、複数のカム部で入力軸の回転中心軸線の周方向を一回りするようになっている。そのため、各カム部に設けられた回転部に外嵌したコネクティングロッドによって、各揺動リンクが順にトルクを出力軸に伝達し、出力軸をスムーズに回転させることができるようになっている。 Also, the cam portions are set so that the phases are different from each other, and the plurality of cam portions make a round in the circumferential direction of the rotation center axis of the input shaft. For this reason, the connecting rods externally fitted to the rotating portions provided in the respective cam portions allow the respective swing links to transmit torque to the output shaft in order so that the output shaft can be smoothly rotated.
特許第5570661号公報Japanese Patent No. 5570661
 従来の変速機では、変速機構であるてこクランク機構の下流側に一方向回転阻止機構であるワンウェイクラッチを設けているので、変速機構の入力回転数を出力回転数で除算して求められる変速比が所定の値(以下、「伝達変速比」という。)より大きい場合には、出力軸に駆動力が伝達されない。 In a conventional transmission, a one-way clutch that is a one-way rotation prevention mechanism is provided on the downstream side of a lever crank mechanism that is a transmission mechanism. Therefore, a transmission ratio that is obtained by dividing the input rotation speed of the transmission mechanism by the output rotation speed. Is larger than a predetermined value (hereinafter referred to as “transmission speed ratio”), the driving force is not transmitted to the output shaft.
 一方で、応答性を向上させるために、出力軸に駆動力が伝達されていない状態で、出力軸に対する加速要求がなされた際には、迅速に出力軸に対して駆動力が伝達されることが好ましい。すなわち、加速要求がなされた際には、変速比を迅速に伝達変速比以下まで変化させることができることが好ましい。 On the other hand, in order to improve responsiveness, when an acceleration request for the output shaft is made without the driving force being transmitted to the output shaft, the driving force is quickly transmitted to the output shaft. Is preferred. That is, when an acceleration request is made, it is preferable that the gear ratio can be quickly changed to a transmission gear ratio or less.
 そのため、出力軸に対する加速要求がなされていない場合には、変速比を伝達変速比よりもわずかに大きい値に待機させておき、加速要求がなされた際に伝達変速比まで変化させるための時間を短縮して、応答性を向上させる制御を行うことがある。 Therefore, when the acceleration request for the output shaft is not made, the transmission gear ratio is kept at a value slightly larger than the transmission transmission gear ratio, and the time for changing to the transmission transmission gear ratio when the acceleration request is made is set. There is a case where control is performed to shorten and improve the responsiveness.
 例えば、特許文献1の無段変速機においては、変速比は回転半径調節機構の回転部の回転半径によって変化するので、エンジンの回転数が一定の場合には、変速比が伝達変速比よりもわずかに大きくなるように、回転半径を出力軸に駆動力が伝達される値よりもわずかに小さくしておくという制御を行うことがある。 For example, in the continuously variable transmission of Patent Document 1, since the gear ratio changes depending on the rotation radius of the rotating portion of the rotation radius adjusting mechanism, the gear ratio is greater than the transmission gear ratio when the engine speed is constant. In some cases, the control is performed such that the rotation radius is slightly smaller than the value at which the driving force is transmitted to the output shaft so as to be slightly increased.
 しかし、従来の変速機では、出力軸に対する加速要求がなされていない場合に、変速比を伝達変速比よりもわずかに大きい値に待機させておくと、車両を急減速させた等の理由によって出力軸の回転速度が急激に低下した際に、変速比が伝達変速比を下回り、出力軸に対して意図しない駆動力の伝達が生じるおそれがある。 However, in the conventional transmission, when the acceleration request for the output shaft is not made, if the transmission gear ratio is kept at a value slightly larger than the transmission transmission gear ratio, the vehicle is output for reasons such as sudden deceleration of the vehicle. When the rotational speed of the shaft is abruptly reduced, the gear ratio is lower than the transmission gear ratio, and there is a possibility that unintended driving force is transmitted to the output shaft.
 一方で、そのような意図しない駆動力の伝達を生じさせないために、待機させておく変速比を伝達変速比から大きく離れた値に設定すると、加速要求がなされた際に変速比を伝達変速比まで変化させるための時間が長くなってしまい、応答性が低下してしまうおそれがある。その結果、その変速機を搭載した車両等のドライバビリティが低下してしまうおそれがある。 On the other hand, in order not to cause such unintentional transmission of the driving force, if the gear ratio to be kept on standby is set to a value far away from the transmission gear ratio, the transmission gear ratio is transmitted when an acceleration request is made. There is a possibility that the time required for the change to become longer and the responsiveness may be lowered. As a result, the drivability of a vehicle or the like equipped with the transmission may be reduced.
 本発明は以上の点に鑑みてなされたものであり、意図しない駆動力の伝達が防止でき、良好な応答性を有する変速機を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a transmission that can prevent unintended transmission of driving force and has good responsiveness.
 上記目的を達成するために、本発明の変速機は、走行用駆動源の駆動力が伝達され回転する入力軸と、駆動輪に駆動力を伝達する出力軸と、入力軸から伝達された回転速度を変速して出力し、変速比を変更可能な変速機構と、変速機構から出力された回転速度が出力軸の回転速度を超えたときに出力軸に駆動力を伝達する伝達状態になり、変速機構から出力された回転速度が出力軸の回転速度以下のときに出力軸に駆動力を伝達しない非伝達状態になる一方向回転阻止機構と、変速機構の変速比を制御する制御部とを備えた変速機であって、制御部は、所定の情報に基づいて送信される出力軸に対する加速要求及び減速要求を受信可能に構成され、一方向回転阻止機構が伝達状態になる変速機構の変速比を伝達変速比とし、伝達変速比よりも大きく、且つ、出力軸の回転速度が最大減速度で低下した際に非伝達状態を維持できるように定められた変速比を第1変速比とし、伝達変速比よりも大きく、且つ、加速要求がなされた際に所定時間内に伝達状態となるように定められた変速比を第2変速比とし、加速要求がなされておらず、且つ、減速要求がなされているときには、制御部は、変速比を第1変速比以上の値になるように制御し、加速要求がなされておらず、且つ、減速要求がなされていないときには、制御部は、変速比を伝達変速比よりも大きく、且つ、第2変速比以下の値になるように制御することを特徴とする。 In order to achieve the above object, a transmission according to the present invention includes an input shaft that rotates when a driving force of a traveling drive source is transmitted, an output shaft that transmits the driving force to driving wheels, and a rotation transmitted from the input shaft. A speed change mechanism that changes the speed and outputs the speed ratio can be changed, and when the rotational speed output from the speed change mechanism exceeds the rotational speed of the output shaft, the driving force is transmitted to the output shaft. A one-way rotation prevention mechanism that is in a non-transmission state in which the driving force is not transmitted to the output shaft when the rotational speed output from the transmission mechanism is equal to or lower than the rotational speed of the output shaft; and a control unit that controls the gear ratio of the transmission mechanism The control unit is configured to receive an acceleration request and a deceleration request for the output shaft transmitted based on predetermined information, and the transmission of the transmission mechanism in which the one-way rotation prevention mechanism is in a transmission state. Ratio is the transmission gear ratio, and from the transmission gear ratio The first gear ratio is a gear ratio determined to be large and the non-transmission state can be maintained when the rotational speed of the output shaft decreases at the maximum deceleration. The gear ratio is larger than the transmission gear ratio, and the acceleration request is When the speed change is made, the speed change ratio determined so as to be in a transmission state within a predetermined time is set as the second speed change ratio. When the acceleration request is not made and the speed reduction request is made, the control unit When the acceleration request is not made and the deceleration request is not made, the control unit sets the speed ratio to be larger than the transmission speed ratio and the first speed ratio. Control is performed so that the value is 2 or less.
 このように構成された本発明の変速機では、出力軸に対する加速要求がなされておらず、且つ、減速要求がなされているときには、変速比が、出力軸の回転速度が最大減速度で低下した際に非伝達状態を維持できるように定められた第1変速比以上の値になるように制御されるので、出力軸の回転速度が急激に低下した際にも、意図しない駆動力の伝達が生じることがない。 In the transmission according to the present invention configured as described above, when the acceleration request for the output shaft is not made and when the deceleration request is made, the speed ratio is reduced by the maximum deceleration of the output shaft. In this case, control is performed so that the value becomes equal to or higher than the first gear ratio determined so that the non-transmission state can be maintained, so that unintended driving force can be transmitted even when the rotation speed of the output shaft rapidly decreases. It does not occur.
 一方で、本発明の変速機では、出力軸に対する加速要求がなされておらず、且つ、減速要求がなされていないときには、変速比が、出力軸に対する加速要求がなされた際に所定時間内に伝達状態となるように定められた第2変速比以下の値になるように制御されるので、加速要求がなされた際には迅速に伝達状態となる良好な応答性が実現されている。 On the other hand, in the transmission of the present invention, when the acceleration request for the output shaft is not made and the deceleration request is not made, the transmission ratio is transmitted within a predetermined time when the acceleration request for the output shaft is made. Since the control is performed so that the value is equal to or smaller than the second speed ratio determined so as to be in the state, when the acceleration request is made, a good responsiveness that quickly enters the transmission state is realized.
 したがって、本発明の変速機によれば、意図しない駆動力の伝達が防止するとともに、良好な応答性を得ることができる。 Therefore, according to the transmission of the present invention, it is possible to prevent unintended transmission of the driving force and to obtain good responsiveness.
 また、本発明の変速機においては、変速機構に駆動力を伝達する調節用駆動源を有し、変速機構は、調節用駆動源から駆動力が伝達され、入力軸と一体的に回転可能な回転部が設けられ回転部の回転半径を調節自在な回転半径調節機構、揺動端部が設けられ出力軸に揺動自在に軸支された揺動リンク、及び、一方の端部が回転半径調節機構の回転部に回転自在に接続され、他方の端部が揺動端部に接続されたコネクティングロッドを有し、入力軸の回転運動を揺動リンクの揺動運動に変換するてこクランク機構であり、一方向回転阻止機構は、揺動リンクが出力軸に対して一方側に回転しようとするときに出力軸に対して揺動リンクを固定して伝達状態になり、揺動リンクが出力軸に対して他方側に回転しようとするときに出力軸に対して揺動リンクを空転させて伝達状態を解除するように構成され、第1変速比及び第2変速比は、調節用駆動源から伝達された駆動力に対する回転部の回転半径の変化量、及び、制御部の指令を受けてから回転部の回転半径が目標回転半径に変化するまでの応答時間に基づいて定められているように構成してもよい。 The transmission of the present invention has an adjustment drive source that transmits the driving force to the transmission mechanism, and the transmission mechanism is transmitted with the drive force from the adjustment drive source and can rotate integrally with the input shaft. A turning radius adjusting mechanism that is provided with a rotating portion and that can adjust the turning radius of the rotating portion, a swinging link that is provided with a swinging end portion and is pivotally supported by the output shaft, and one end portion is a turning radius A lever crank mechanism that has a connecting rod that is rotatably connected to the rotating part of the adjusting mechanism and whose other end is connected to the swinging end, and converts the rotational movement of the input shaft into the swinging movement of the swinging link. The one-way rotation prevention mechanism is in the transmission state with the swing link fixed to the output shaft when the swing link is about to rotate to the one side with respect to the output shaft. When trying to rotate to the other side of the shaft, The first transmission gear ratio and the second transmission gear ratio are configured to release the transmission state by idling the dynamic link. The first transmission gear ratio and the second transmission gear ratio are the amount of change in the rotation radius of the rotating unit with respect to the driving force transmitted from the adjusting drive source, and control. It may be configured to be determined based on a response time from when the command of the part is received until the turning radius of the rotating part changes to the target turning radius.
 また、本発明の変速機においては、加速要求がなされておらず、且つ、減速要求がなされているときには、制御部は、変速比を第1変速比以上であり、且つ、第2変速比に近い値になるように制御し、加速要求がなされておらず、且つ、減速要求がなされていないときには、制御部は、変速比を第2変速比と一致する値になるように制御することが好ましい。 In the transmission of the present invention, when the acceleration request is not made and the deceleration request is made, the control unit sets the speed ratio to be equal to or higher than the first speed ratio and to the second speed ratio. When the acceleration request is not made and the deceleration request is not made, the control unit can control the gear ratio to a value that matches the second gear ratio. preferable.
 このように構成すれば、意図しない伝達の防止を優先する状態でも、意図しない伝達の防止を実現できる範囲で応答時間をほぼ均一にすることができるので、その変速機を搭載した車両等のドライバビリティを向上させることができる。 With this configuration, even when priority is given to prevention of unintended transmission, the response time can be made almost uniform within a range in which prevention of unintentional transmission can be realized. Can be improved.
第1実施形態に係る無段変速機の一部を示す断面図。Sectional drawing which shows a part of continuously variable transmission which concerns on 1st Embodiment. 図1の無段変速機のてこクランク機構の構成を軸方向から示す説明図。Explanatory drawing which shows the structure of the lever crank mechanism of the continuously variable transmission of FIG. 1 from an axial direction. 図1の無段変速機のてこクランク機構の入力側支点の回転半径の変化を示す説明図であり、3Aは回転半径が「最大」、3Bは回転半径が「中」、3Cは回転半径が「小」、3Dは回転半径が「0」の場合を示す。FIGS. 3A and 3B are explanatory diagrams showing changes in the rotation radius of the input side fulcrum of the lever crank mechanism of the continuously variable transmission of FIG. 1, 3A is “maximum”, 3B is “medium”, and 3C is rotation radius. “Small” and 3D indicate cases where the radius of rotation is “0”. 図1の無段変速機のてこクランク機構の入力側支点の回転半径の変化に対する出力側支点の揺動範囲の変化を示す説明図であり、4Aは揺動範囲が「最大」、4Bは揺動範囲が「中」、4Cは揺動範囲が「小」、4Dは揺動範囲が「0」の場合を示す。FIG. 4 is an explanatory diagram showing changes in the swing range of the output side fulcrum with respect to changes in the rotation radius of the input side fulcrum of the lever crank mechanism of the continuously variable transmission of FIG. The movement range is “medium”, 4C indicates the swing range is “small”, and 4D indicates the swing range is “0”. 図1の無段変速機の回転半径調節機構のピニオンシャフトの位相に対する回転ディスクの偏心量を示すグラフ。The graph which shows the eccentric amount of the rotating disk with respect to the phase of the pinion shaft of the turning radius adjustment mechanism of the continuously variable transmission of FIG. 図1の無段変速機のエンジンの回転速度の変化に対する回転半径調節機構の回転ディスクの偏心量の変化量の変化を示すグラフ。The graph which shows the change of the variation | change_quantity of the eccentric amount of the rotating disk of the turning radius adjustment mechanism with respect to the change of the rotational speed of the engine of the continuously variable transmission of FIG. 図1の無段変速機の出力軸の回転速度に対する伝達変速比、第1変速比、第2変速比を示すグラフ。The graph which shows the transmission gear ratio with respect to the rotational speed of the output shaft of the continuously variable transmission of FIG. 1, a 1st gear ratio, and a 2nd gear ratio. 図1の無段変速機のワンウェイクラッチが非伝達状態であるときに制御部が行う処理を示すフローチャート。The flowchart which shows the process which a control part performs when the one-way clutch of the continuously variable transmission of FIG. 1 is a non-transmission state.
 以下、図面を参照して、本発明の無段変速機の実施形態を説明する。本実施形態の無段変速機は、四節リンク機構型の無段変速機であり、変速比h(h=入力軸の回転速度/出力軸の回転速度)を無限大(∞)にして出力軸の回転速度を「0」にできる変速機、いわゆるIVT(Infinity Variable Transmission)の一種である。また、本実施形態は、無段変速機を車両に搭載した場合の実施形態であるが、本発明の無段変速機は、船舶等、他の乗り物や無人機にも搭載し得るものである。 Hereinafter, an embodiment of a continuously variable transmission according to the present invention will be described with reference to the drawings. The continuously variable transmission of the present embodiment is a four-bar linkage type continuously variable transmission, and outputs with a gear ratio h (h = rotational speed of the input shaft / rotational speed of the output shaft) set to infinity (∞). It is a kind of transmission that can make the rotation speed of the shaft “0”, so-called IVT (Infinity Variable Transmission). Although this embodiment is an embodiment in the case where the continuously variable transmission is mounted on a vehicle, the continuously variable transmission of the present invention can be mounted on other vehicles and unmanned vehicles such as ships. .
 本実施形態の無段変速機1は、図1に示すように、入力軸2と、入力軸2の回転中心軸線P1と平行に配置された出力軸3と、入力軸2の回転中心軸線P1上に設けられた6個の回転半径調節機構4と、所定の情報に基づいて送信される出力軸3に対する加速要求及び減速要求(例えば、アクセルペダル及びブレーキペダルのオン又はオフ)を受信して、回転半径調節機構4の偏心量R1(後述するてこクランク機構20(変速機構)の変速比i)を制御する制御部(不図示)とを備えている。 As shown in FIG. 1, the continuously variable transmission 1 of the present embodiment includes an input shaft 2, an output shaft 3 arranged in parallel with the rotation center axis P <b> 1 of the input shaft 2, and a rotation center axis P <b> 1 of the input shaft 2. The six turning radius adjusting mechanisms 4 provided above and the acceleration request and the deceleration request for the output shaft 3 transmitted based on predetermined information (for example, turning on or off the accelerator pedal and the brake pedal) are received. And a control unit (not shown) for controlling the eccentric amount R1 of the turning radius adjusting mechanism 4 (speed ratio i of a lever crank mechanism 20 (transmission mechanism) described later).
 入力軸2は、走行用駆動源であるエンジンENGからの駆動力が伝達されることで回転中心軸線P1を中心に回転する。なお、走行用駆動源としては、内燃機関の他、電動機等を用いてもよい。 The input shaft 2 rotates around the rotation center axis P1 by transmitting a driving force from the engine ENG which is a driving source for traveling. In addition, as a drive source for driving | running | working, you may use an electric motor etc. other than an internal combustion engine.
 出力軸3は、図示省略したデファレンシャルギヤを介して車両の駆動輪(図示省略)に回転駆動力を伝達させる。なお、デファレンシャルギヤの代わりにプロペラシャフトを設けてもよい。 The output shaft 3 transmits a rotational driving force to driving wheels (not shown) of the vehicle via a differential gear (not shown). A propeller shaft may be provided instead of the differential gear.
 回転半径調節機構4は、入力軸2の回転中心軸線P1上に設けられたカムディスク5と、カムディスク5に回転自在に外嵌している回転ディスク6(回転部)とを有する。 The turning radius adjusting mechanism 4 has a cam disk 5 provided on the rotation center axis P1 of the input shaft 2 and a rotating disk 6 (rotating part) that is rotatably fitted on the cam disk 5.
 カムディスク5は、円盤状であり、入力軸2の回転中心軸線P1に対して偏心した状態で、入力軸2と一体的に回転可能に、2個1組で設けられている。各1組のカムディスク5は、それぞれ位相が60°異なるように設定され、6組のカムディスク5で入力軸2の回転中心軸線P1の周方向を一回りするように配置されている。 The cam disks 5 have a disk shape, and are provided in pairs so that they can rotate integrally with the input shaft 2 while being eccentric with respect to the rotation center axis P1 of the input shaft 2. Each set of cam disks 5 is set so as to have a phase difference of 60 °, and is arranged so that the six sets of cam disks 5 make a round in the circumferential direction of the rotation center axis P1 of the input shaft 2.
 カムディスク5には、入力軸2の回転中心軸線P1方向に貫通し、カムディスク5の中心P2に対して偏心した位置に穿設された貫通孔5aが形成されている。また、カムディスク5には、入力軸2の回転中心軸線P1を挟んでカムディスク5の中心P2と反対側となる領域に、カムディスク5の外周面と貫通孔5aの内周面とを連通させる切欠孔5bが形成されている。 The cam disk 5 is formed with a through hole 5a that penetrates in the direction of the rotation center axis P1 of the input shaft 2 and is formed at a position eccentric to the center P2 of the cam disk 5. Further, the cam disk 5 communicates with the outer peripheral surface of the cam disk 5 and the inner peripheral surface of the through hole 5a in a region opposite to the center P2 of the cam disk 5 across the rotation center axis P1 of the input shaft 2. A notch hole 5b is formed.
 2個1組のカムディスク5同士はボルト(図示省略)で固定されている。また、2個1組のカムディスク5の一方は、隣接する回転半径調節機構4が有する他の2個1組のカムディスク5の他方と一体的に形成され、一体型カム部を構成している。また、カムディスク5のうち、最もエンジンENGに近い位置にあるカムディスク5は、入力端部2aと一体的に形成されている。このようにして、入力端部2aと複数のカムディスク5とで、入力軸2(カムシャフト)が構成されることとなる。 The two cam disks 5 are fixed with bolts (not shown). Further, one of the two cam disks 5 is formed integrally with the other of the other two cam disks 5 of the adjacent turning radius adjusting mechanism 4 to form an integral cam portion. Yes. Of the cam disks 5, the cam disk 5 that is closest to the engine ENG is formed integrally with the input end 2a. In this way, the input shaft 2 (camshaft) is configured by the input end 2a and the plurality of cam disks 5.
 なお、2個1組のカムディスク5同士は、ボルトではなく、他の手段で固定してもよい。また、一体型カム部は、一体成型で形成してもよく、2つのカムディスク5を溶接して一体化してもよい。また、最もエンジンENGに近い位置にあるカムディスク5と入力軸2とを一体的に形成する方法としては、一体成型で形成してもよく、カムディスク5と入力端部2aとを溶接して一体化してもよい。 Note that the two cam disks 5 may be fixed by other means instead of bolts. The integral cam portion may be formed by integral molding, or may be integrated by welding two cam disks 5. Further, as a method of integrally forming the cam disk 5 and the input shaft 2 that are closest to the engine ENG, the cam disk 5 and the input end 2a may be welded together. It may be integrated.
 回転ディスク6は、図2に示すように、その中心P3から偏心した位置に受入孔6aが設けられた円盤状であり、入力軸2の回転中心軸線P1に対して回転可能に設けられている。その受入孔6aには、各1組のカムディスク5が、回転自在に嵌め込まれている。また、回転ディスク6の受入孔6aには、図1に示すように、1組のカムディスク5の間となる位置に、内歯6bが設けられている。 As shown in FIG. 2, the rotary disk 6 has a disk shape in which a receiving hole 6 a is provided at a position eccentric from the center P <b> 3, and is provided to be rotatable with respect to the rotation center axis P <b> 1 of the input shaft 2. . A set of cam disks 5 is rotatably fitted in the receiving holes 6a. Further, as shown in FIG. 1, an internal tooth 6 b is provided in the receiving hole 6 a of the rotating disk 6 at a position between the pair of cam disks 5.
 また、回転ディスク6の受入孔6aは、入力軸2の回転中心軸線P1からカムディスク5の中心P2(受入孔6aの中心)までの距離Raとカムディスク5の中心P2から回転ディスク6の中心P3までの距離Rbとが同一となるように、カムディスク5に対して偏心している。 Further, the receiving hole 6a of the rotating disk 6 has a distance Ra from the rotation center axis P1 of the input shaft 2 to the center P2 of the cam disk 5 (center of the receiving hole 6a) and the center P2 of the cam disk 5 to the center of the rotating disk 6. The cam disk 5 is eccentric so that the distance Rb to P3 is the same.
 入力端部2aと複数のカムディスク5によって構成された入力軸2は、カムディスク5の貫通孔5aが連なることによって構成される挿通孔を備えている。これにより、入力軸2は、エンジンENGとは反対側の一方端が開口し他方端が閉塞した中空軸形状となっている。 The input shaft 2 constituted by the input end 2a and the plurality of cam disks 5 is provided with an insertion hole formed by connecting the through holes 5a of the cam disk 5. Thus, the input shaft 2 has a hollow shaft shape in which one end opposite to the engine ENG is open and the other end is closed.
 挿通孔には、回転中心軸線P1と同心に、ピニオンシャフト7が入力軸と相対回転自在となるように配置されている。 In the insertion hole, the pinion shaft 7 is disposed concentrically with the rotation center axis P1 so as to be rotatable relative to the input shaft.
 ピニオンシャフト7は、回転ディスク6の内歯6bと対応する位置にピニオン7aを有している。また、ピニオンシャフト7は、入力軸2の回転中心軸線P1方向において隣接するピニオン7aの間に位置させてピニオン軸受7bが設けられている。このピニオン軸受7bを介して、ピニオンシャフト7は、入力軸を支えている。 The pinion shaft 7 has a pinion 7a at a position corresponding to the internal teeth 6b of the rotary disk 6. The pinion shaft 7 is positioned between the pinions 7a adjacent to each other in the direction of the rotation center axis P1 of the input shaft 2, and a pinion bearing 7b is provided. The pinion shaft 7 supports the input shaft via the pinion bearing 7b.
 ピニオン7aは、ピニオンシャフト7のシャフト部と一体に形成されている。ピニオン7aは、カムディスク5の切欠孔5bを介して、回転ディスク6の内歯6bと噛合する。なお、ピニオン7aは、ピニオンシャフト7と別体に構成して、ピニオンシャフト7にスプライン結合で連結させてもよい。本実施形態においては、単にピニオン7aというときは、ピニオンシャフト7を含むものとして定義する。 The pinion 7 a is formed integrally with the shaft portion of the pinion shaft 7. The pinion 7 a meshes with the internal teeth 6 b of the rotating disk 6 through the notch hole 5 b of the cam disk 5. The pinion 7a may be configured separately from the pinion shaft 7 and connected to the pinion shaft 7 by spline coupling. In the present embodiment, the term “pinion 7 a” is defined as including the pinion shaft 7.
 また、ピニオンシャフト7は、遊星歯車機構などで構成される差動機構8が接続されている。 The pinion shaft 7 is connected to a differential mechanism 8 composed of a planetary gear mechanism or the like.
 差動機構8は、図1に示すように、例えば、遊星歯車機構として構成され、サンギヤ9と、入力端部2aと複数のカムディスク5によって構成された入力軸2に連結された第1リングギヤ10と、ピニオンシャフト7に連結された第2リングギヤ11と、サンギヤ9及び第1リングギヤ10と噛合する大径部12aと、第2リングギヤ11と噛合する小径部12bとからなる段付ピニオン12を自転及び公転自在に軸支するキャリア13とを有している。 As shown in FIG. 1, the differential mechanism 8 is configured as, for example, a planetary gear mechanism, and is connected to an input shaft 2 configured by a sun gear 9, an input end 2 a, and a plurality of cam disks 5. 10, a stepped pinion 12 including a second ring gear 11 coupled to the pinion shaft 7, a large diameter portion 12 a meshing with the sun gear 9 and the first ring gear 10, and a small diameter portion 12 b meshing with the second ring gear 11. And a carrier 13 that pivotally and revolves freely.
 サンギヤ9は、ピニオンシャフト7用のアクチュエータ14(調節用駆動源)の回転軸14aに連結されており、そのアクチュエータ14から駆動力が伝達される。したがって、ピニオン7aにも、差動機構8を介して、アクチュエータ14の駆動力が伝達される。 The sun gear 9 is connected to a rotary shaft 14a of an actuator 14 (adjusting drive source) for the pinion shaft 7, and a driving force is transmitted from the actuator 14. Therefore, the driving force of the actuator 14 is also transmitted to the pinion 7 a via the differential mechanism 8.
 ピニオンシャフト7の回転速度を入力軸2の回転速度と同一にした場合、サンギヤ9と第1リングギヤ10とが同一速度で回転することとなる。その結果、サンギヤ9、第1リングギヤ10、第2リングギヤ11及びキャリア13の4個の要素が相対回転不能なロック状態となって、第2リングギヤ11と連結するピニオンシャフト7が入力軸2と同一速度で回転する。 When the rotational speed of the pinion shaft 7 is the same as the rotational speed of the input shaft 2, the sun gear 9 and the first ring gear 10 rotate at the same speed. As a result, the four elements of the sun gear 9, the first ring gear 10, the second ring gear 11, and the carrier 13 are locked so as not to rotate relative to each other, and the pinion shaft 7 connected to the second ring gear 11 is the same as the input shaft 2. Rotates at speed.
 ピニオンシャフト7の回転速度を入力軸2の回転速度よりも遅くした場合、サンギヤ9の回転数をNs、第1リングギヤ10の回転数をNR1、サンギヤ9と第1リングギヤ10のギヤ比(第1リングギヤ10の歯数/サンギヤ9の歯数)をjとすると、キャリア13の回転数が(j・NR1+Ns)/(j+1)となる。また、サンギヤ9と第2リングギヤ11のギヤ比((第2リングギヤ11の歯数/サンギヤ9の歯数)×(段付ピニオン12の大径部12aの歯数/小径部12bの歯数))をkとすると、第2リングギヤ11の回転数が{j(k+1)NR1+(k-j)Ns}/{k(j+1)}となる。 When the rotational speed of the pinion shaft 7 is made slower than the rotational speed of the input shaft 2, the rotational speed of the sun gear 9 is Ns, the rotational speed of the first ring gear 10 is NR1, and the gear ratio between the sun gear 9 and the first ring gear 10 (first When j is the number of teeth of the ring gear 10 / the number of teeth of the sun gear 9, the number of rotations of the carrier 13 is (j · NR1 + Ns) / (j + 1). The gear ratio between the sun gear 9 and the second ring gear 11 ((number of teeth of the second ring gear 11 / number of teeth of the sun gear 9) × (number of teeth of the large diameter portion 12a of the stepped pinion 12 / number of teeth of the small diameter portion 12b). ) Is k, the rotation speed of the second ring gear 11 is {j (k + 1) NR1 + (k−j) Ns} / {k (j + 1)}.
 すなわち、入力軸2の回転速度とピニオンシャフト7の回転速度とに差がある場合、ピニオンシャフト7のピニオン7aと噛合する回転ディスク6の内歯6bを介して伝達されたアクチュエータ14からの駆動力により、回転ディスク6は、カムディスク5の中心P2を中心にカムディスク5の周縁を回転する。 That is, when there is a difference between the rotational speed of the input shaft 2 and the rotational speed of the pinion shaft 7, the driving force transmitted from the actuator 14 transmitted through the internal teeth 6 b of the rotating disk 6 meshing with the pinion 7 a of the pinion shaft 7. Thus, the rotating disk 6 rotates the periphery of the cam disk 5 around the center P2 of the cam disk 5.
 ところで、図2に示すように、回転ディスク6は、カムディスク5に対して、入力軸2の回転中心軸線P1からカムディスク5の中心P2までの距離Raと、カムディスク5の中心P2から回転ディスク6の中心P3までの距離Rbとが同一となるように偏心している。 As shown in FIG. 2, the rotating disk 6 rotates with respect to the cam disk 5 from the rotation center axis P <b> 1 of the input shaft 2 to the center P <b> 2 of the cam disk 5 and the center P <b> 2 of the cam disk 5. The disc 6 is eccentric so that the distance Rb to the center P3 of the disc 6 is the same.
 そのため、回転ディスク6の中心P3を入力軸2の回転中心軸線P1と同一線上に位置させて、入力軸2の回転中心軸線P1と回転ディスク6の中心P3との距離(回転半径調節機構4の回転半径)、すなわち、偏心量R1を「0」にすることもできる。 For this reason, the center P3 of the rotary disk 6 is positioned on the same line as the rotation center axis P1 of the input shaft 2, and the distance between the rotation center axis P1 of the input shaft 2 and the center P3 of the rotary disk 6 (of the turning radius adjusting mechanism 4). The rotation radius), that is, the eccentricity R1 can be set to “0”.
 回転ディスク6の周縁には、一方(入力軸2側)の端部に大径の入力側環状部15aを有し、他方(出力軸3)の端部に入力側環状部15aの径よりも小径の出力側環状部15bを有するコネクティングロッド15が、回転自在に接続している。 At the periphery of the rotary disk 6, there is a large-diameter input-side annular portion 15 a at one end (input shaft 2 side), and the other (output shaft 3) end is larger than the diameter of the input-side annular portion 15 a. A connecting rod 15 having a small-diameter output-side annular portion 15b is rotatably connected.
 コネクティングロッド15の入力側環状部15aは、軸方向に2個並べた2個1組のボールベアリングからなるコネクティングロッド軸受16を介して、回転ディスク6に回転自在に外嵌している。 The input-side annular portion 15a of the connecting rod 15 is rotatably fitted to the rotary disk 6 via connecting rod bearings 16 each consisting of a set of two ball bearings arranged in the axial direction.
 出力軸3には、ワンウェイクラッチ17(一方向回転阻止機構)を介して、6個の揺動リンク18が、コネクティングロッド15に対応させて揺動自在に軸支されている。 The output shaft 3 is rotatably supported by six connecting links 18 corresponding to the connecting rod 15 via a one-way clutch 17 (one-way rotation prevention mechanism).
 ワンウェイクラッチ17は、揺動リンク18と出力軸3との間に設けられ、揺動リンク18が出力軸3の回転中心軸線P5を中心として出力軸3に対して一方側に相対回転する場合には、出力軸3に対して揺動リンク18を固定して出力軸3に駆動力を伝達し(伝達状態)、他方側に相対回転する場合には、出力軸3に対して揺動リンク18を空転させて出力軸3に駆動力を伝達しない(非伝達状態)。 The one-way clutch 17 is provided between the swing link 18 and the output shaft 3, and the swing link 18 rotates relative to the output shaft 3 on one side about the rotation center axis P <b> 5 of the output shaft 3. When the rocking link 18 is fixed to the output shaft 3 and the driving force is transmitted to the output shaft 3 (transmission state), and the relative rotation to the other side, the rocking link 18 with respect to the output shaft 3 is transmitted. Is not transmitted and the driving force is not transmitted to the output shaft 3 (non-transmitting state).
 揺動リンク18は、環状に形成されており、その下方には、コネクティングロッド15の出力側環状部15bに連結される揺動端部18aが設けられている。揺動端部18aには、出力側環状部15bを軸方向から挟み込むように突出した一対の突片18bが設けられている。一対の突片18bには、出力側環状部15bの内径に対応する差込孔18cが穿設されている。 The swing link 18 is formed in an annular shape, and a swing end portion 18a connected to the output-side annular portion 15b of the connecting rod 15 is provided below the swing link 18. The swing end portion 18a is provided with a pair of projecting pieces 18b projecting so as to sandwich the output-side annular portion 15b from the axial direction. The pair of projecting pieces 18b are provided with insertion holes 18c corresponding to the inner diameter of the output-side annular portion 15b.
 差込孔18c及び出力側環状部15bに、揺動軸としての連結ピン19が挿入されることによって、コネクティングロッド15と揺動リンク18とが、相対回転可能に接続される。 When the connecting pin 19 as the swing shaft is inserted into the insertion hole 18c and the output-side annular portion 15b, the connecting rod 15 and the swing link 18 are connected so as to be relatively rotatable.
 また、揺動リンク18には、環状部18dが設けられている。環状部18dは、ワンウェイクラッチ17を介して、出力軸3に揺動可能に外嵌している。 Further, the swing link 18 is provided with an annular portion 18d. The annular portion 18d is fitted on the output shaft 3 through the one-way clutch 17 so as to be swingable.
 本実施形態の無段変速機1では、上記のような構成を有する回転半径調節機構4と、揺動リンク18と、コネクティングロッド15とによって、てこクランク機構20(変速機構)が構成されている。 In the continuously variable transmission 1 of the present embodiment, a lever crank mechanism 20 (transmission mechanism) is configured by the turning radius adjustment mechanism 4, the swing link 18, and the connecting rod 15 having the above-described configuration. .
 てこクランク機構20及びワンウェイクラッチ17は、変速機ケース21に収納されている。この変速機ケース21の下方には、潤滑油が油溜を形成している。そして、揺動リンク18は、その揺動端部18aが変速機ケース21の下方に溜まった潤滑油の油溜に油没するように配置されている。 The lever crank mechanism 20 and the one-way clutch 17 are housed in a transmission case 21. Below the transmission case 21, lubricating oil forms an oil reservoir. The swing link 18 is disposed such that the swing end portion 18a is immersed in an oil reservoir of lubricating oil collected below the transmission case 21.
 そのため、てこクランク機構20の駆動時には、揺動端部18aを油溜で潤滑するとともに、揺動リンク18の揺動運動により、油溜の潤滑油を掻き揚げて、無段変速機1の他の部品を潤滑させることができるようになっている。 Therefore, when the lever crank mechanism 20 is driven, the oscillating end portion 18a is lubricated by the oil reservoir, and the lubricating oil in the oil reservoir is lifted up by the oscillating motion of the oscillating link 18, so that The parts can be lubricated.
 また、変速機ケース21は、エンジンENGに固定されている一端壁部21aと、一端壁部21aに対向して配置されている他端壁部21bと、てこクランク機構20及びワンウェイクラッチ17を間隔を存して覆い、一端壁部21aの外縁と他端壁部21bの外縁とを連結する周壁部21cとによって形成されている。 Further, the transmission case 21 is spaced from one end wall 21a fixed to the engine ENG, the other end wall 21b disposed to face the one end wall 21a, the lever crank mechanism 20 and the one-way clutch 17. And is formed by a peripheral wall portion 21c that connects the outer edge of the one end wall portion 21a and the outer edge of the other end wall portion 21b.
 一端壁部21a他端壁部21bには、入力軸を軸支するための出力軸3を軸支するための開口部が形成されており、それらの開口部には、軸受22が嵌合されている。 The one end wall portion 21a and the other end wall portion 21b are formed with openings for supporting the output shaft 3 for supporting the input shaft, and bearings 22 are fitted into these openings. ing.
 なお、本実施形態においては、6個のてこクランク機構20を備えたものを説明した。しかし、本発明の無段変速機におけるてこクランク機構の数は、その数に限られず、例えば、5個以下のてこクランク機構を備えていてもよいし、7個以上のてこクランク機構を備えていてもよい。 In addition, in this embodiment, the thing provided with the six lever crank mechanisms 20 was demonstrated. However, the number of lever crank mechanisms in the continuously variable transmission of the present invention is not limited to that number. For example, five or less lever crank mechanisms may be provided, or seven or more lever crank mechanisms may be provided. May be.
 また、本実施形態においては、入力端部2aと複数のカムディスク5によって入力軸2を構成し、入力軸2がカムディスク5の貫通孔5aが連なることによって構成される挿通孔を備えるものを説明した。しかし、本発明の無段変速機における入力軸はこのように構成されたものに限られない。 Further, in the present embodiment, the input shaft 2 is constituted by the input end portion 2a and the plurality of cam disks 5, and the input shaft 2 is provided with an insertion hole formed by connecting the through holes 5a of the cam disk 5. explained. However, the input shaft in the continuously variable transmission of the present invention is not limited to that configured as described above.
 例えば、入力軸2を一端が開口するように挿通孔を有する中空軸状に構成し、円盤状のカムディスクに入力軸2を挿通できるように貫通孔を本実施形態のものよりも大きく形成して、カムディスクを中空軸状に構成された入力部の外周面にスプライン結合させてもよい。 For example, the input shaft 2 is formed in a hollow shaft shape having an insertion hole so that one end is open, and the through hole is formed larger than that of the present embodiment so that the input shaft 2 can be inserted into a disc-shaped cam disk. Thus, the cam disk may be splined to the outer peripheral surface of the input portion configured in a hollow shaft shape.
 この場合、中空軸からなる入力部には、カムディスクの切欠孔に対応させて切欠孔が設けられる。そして、入力部内に挿入されるピニオンは、入力部の切欠孔及びカムディスクの切欠孔を介して、回転ディスクの内歯と噛合する。 In this case, a notch hole corresponding to the notch hole of the cam disk is provided in the input portion composed of the hollow shaft. Then, the pinion inserted into the input part meshes with the internal teeth of the rotating disk through the notch hole of the input part and the notch hole of the cam disk.
 また、本実施形態においては、一方向回転阻止機構としてワンウェイクラッチ17を用いたものを説明した。しかし、本発明の無段変速機における一方向回転阻止機構はワンウェイクラッチに限らず、例えば、揺動リンクから出力軸にトルクを伝達可能な揺動リンクの出力軸に対する回転方向を切換自在に構成されるツーウェイクラッチを用いてもよい。 In the present embodiment, the one-way clutch 17 is used as the one-way rotation prevention mechanism. However, the one-way rotation prevention mechanism in the continuously variable transmission of the present invention is not limited to the one-way clutch, and for example, the rotation direction of the swing link capable of transmitting torque from the swing link to the output shaft can be switched. A two-way clutch may be used.
 次に、図1~図4を参照して、本実施形態の無段変速機1のてこクランク機構20について説明する。 Next, the lever crank mechanism 20 of the continuously variable transmission 1 according to this embodiment will be described with reference to FIGS.
 本実施形態の無段変速機1は、図1に示すように、合計6個のてこクランク機構20(四節リンク機構)を備えている。てこクランク機構20は、図2に示すように、コネクティングロッド15と、揺動リンク18と、回転ディスク6を有しその回転半径を調節自在な回転半径調節機構4とで構成されている。このてこクランク機構20によって、入力軸2の回転運動が、揺動リンク18の揺動運動に変換される。 The continuously variable transmission 1 of this embodiment includes a total of six lever crank mechanisms 20 (four-bar linkage mechanisms) as shown in FIG. As shown in FIG. 2, the lever crank mechanism 20 includes a connecting rod 15, a swing link 18, and a rotating radius adjusting mechanism 4 having a rotating disk 6 and having an adjustable rotating radius. The lever crank mechanism 20 converts the rotational motion of the input shaft 2 into the swing motion of the swing link 18.
 このてこクランク機構20では、回転半径調節機構4の回転ディスク6の中心P3(入力側支点)の回転半径(偏心量R1)が、「0」でない場合、入力軸2とピニオンシャフト7とを同一速度で回転させると、各コネクティングロッド15が、位相を変えながら、入力軸2と出力軸3との間で、揺動端部18aを、出力軸3側に押したり、入力軸2側に引いたりを交互に繰り返して、揺動リンク18を揺動させる。 In this lever crank mechanism 20, the input shaft 2 and the pinion shaft 7 are identical when the rotational radius (eccentricity R 1) of the center P 3 (input fulcrum) of the rotating disk 6 of the rotational radius adjusting mechanism 4 is not “0”. When rotating at a speed, each connecting rod 15 pushes the swing end 18a between the input shaft 2 and the output shaft 3 toward the output shaft 3 or pulls it toward the input shaft 2 while changing the phase. The rocking link 18 is rocked by alternately repeating.
 そして、揺動リンク18と出力軸3との間にはワンウェイクラッチ17が設けられているので、コネクティングロッド15によって、揺動リンク18が出力軸3に対して一方側に、出力軸3の回転速度を超える速度で回転するときには、揺動リンク18が出力軸3に対して固定され、出力軸3にトルクを伝達する。一方、揺動リンク18が出力軸3に対して他方側に回転するときには、揺動リンク18が出力軸3に対して空回りし、出力軸3にトルクを伝達しない。 Since the one-way clutch 17 is provided between the swing link 18 and the output shaft 3, the connecting rod 15 causes the swing link 18 to rotate to the one side with respect to the output shaft 3. When rotating at a speed exceeding the speed, the swing link 18 is fixed to the output shaft 3 and transmits torque to the output shaft 3. On the other hand, when the swing link 18 rotates to the other side with respect to the output shaft 3, the swing link 18 idles with respect to the output shaft 3, and no torque is transmitted to the output shaft 3.
 すなわち、ワンウェイクラッチ17は、てこクランク機構20(変速機構)から出力された回転速度(揺動リンク20の揺動速度)が出力軸3の回転速度を超えたときに出力軸2に駆動力を伝達する伝達状態になり、てこクランク機構20から出力された回転速度が出力軸3の回転速度以下のときに出力軸3に駆動力を伝達しない非伝達状態になる。 That is, the one-way clutch 17 applies driving force to the output shaft 2 when the rotational speed output from the lever crank mechanism 20 (transmission mechanism) (the swing speed of the swing link 20) exceeds the rotational speed of the output shaft 3. When the rotational speed output from the lever crank mechanism 20 is equal to or lower than the rotational speed of the output shaft 3, the driving force is not transmitted to the output shaft 3.
 本実施形態の無段変速機1では、6個のてこクランク機構20の回転半径調節機構4が、それぞれ60度ずつ位相を変えて配置されているので、出力軸3は、6個のてこクランク機構20で順に回転させられる。 In the continuously variable transmission 1 of the present embodiment, the turning radius adjusting mechanisms 4 of the six lever crank mechanisms 20 are arranged with phases shifted by 60 degrees, so that the output shaft 3 has six lever cranks. The mechanism 20 is rotated in order.
 図3は、回転半径調節機構4の回転ディスク6の中心P3(入力側支点)の回転半径(偏心量R1)を変化させた状態のピニオンシャフト7と回転ディスク6との位置関係を示す図である。 FIG. 3 is a diagram showing the positional relationship between the pinion shaft 7 and the rotating disk 6 in a state where the rotating radius (the eccentric amount R1) of the center P3 (input side fulcrum) of the rotating disk 6 of the rotating radius adjusting mechanism 4 is changed. is there.
 図3Aは、偏心量R1を「最大」とした状態を示し、入力軸2の回転中心軸線P1とカムディスク5の中心P2と回転ディスク6の中心P3とが一直線に並ぶように、ピニオンシャフト7と回転ディスク6とが位置する。この場合の変速比hは「最小」となる。 FIG. 3A shows a state in which the amount of eccentricity R1 is set to “maximum”, and the pinion shaft 7 so that the rotation center axis P1 of the input shaft 2, the center P2 of the cam disk 5, and the center P3 of the rotation disk 6 are aligned. And the rotating disk 6 are positioned. In this case, the gear ratio h is “minimum”.
 図3Bは、偏心量R1を図3Aよりも小さい「中」とした状態を示し、図3Cは、偏心量R1を図3Bよりも更に小さい「小」とした状態を示している。変速比hは、図3Bでは図3Aの変速比hよりも大きい「中」となり、図3Cでは図3Bの変速比hよりも大きい「大」となる。 FIG. 3B shows a state in which the eccentric amount R1 is set to “medium” which is smaller than that in FIG. 3A, and FIG. 3C shows a state in which the eccentric amount R1 is set to “small” which is further smaller than that in FIG. The gear ratio h is “medium” which is larger than the gear ratio h in FIG. 3A in FIG. 3B and “large” which is larger than the gear ratio h in FIG. 3B in FIG.
 図3Dは、偏心量R1を「0」とした状態を示し、入力軸2の回転中心軸線P1と、回転ディスク6の中心P3とが同心に位置する。この場合の変速比hは「無限大(∞)」となる。 FIG. 3D shows a state where the amount of eccentricity R1 is “0”, and the rotation center axis P1 of the input shaft 2 and the center P3 of the rotating disk 6 are located concentrically. In this case, the gear ratio h is “infinity (∞)”.
 図4は、回転半径調節機構4の回転ディスク6の中心P3(入力側支点)の回転半径(偏心量R1)と、揺動リンク18の揺動運動の揺動範囲θ2との関係を示す図である。 FIG. 4 is a diagram showing the relationship between the rotation radius (eccentricity R1) of the center P3 (input side fulcrum) of the rotary disk 6 of the rotary radius adjusting mechanism 4 and the swing range θ2 of the swing motion of the swing link 18. It is.
 図4Aは、偏心量R1が図3Aの「最大」である場合(変速比hが「最小」である場合)、図4Bは、偏心量R1が図3Bの「中」である場合(変速比hが「中」である場合)、図4Cは、偏心量R1が図3Cの「小」である場合(変速比hが「大」である場合)、図4Dは、偏心量R1が図3Dの「0」である場合(変速比hが「無限大(∞)」である場合)における揺動範囲θ2を示す。 4A shows the case where the eccentric amount R1 is “maximum” in FIG. 3A (when the gear ratio h is “minimum”), and FIG. 4B shows the case where the eccentric amount R1 is “medium” in FIG. 4C shows the case where the eccentric amount R1 is “small” in FIG. 3C (when the gear ratio h is “large”), FIG. 4D shows the amount of eccentricity R1 shown in FIG. Is the swing range θ2 when the gear ratio is “0” (when the gear ratio h is “infinity (∞)”).
 ここで、R2は、揺動リンク18の長さである。より具体的には、R2は、出力軸3の回転中心軸線P5からコネクティングロッド15と揺動端部18aとの連結点、すなわち、連結ピン19の中心(出力側支点P4)までの距離である。また、θ1は、回転半径調節機構4の回転ディスク6の位相である。 Here, R2 is the length of the swing link 18. More specifically, R2 is the distance from the rotation center axis P5 of the output shaft 3 to the connection point between the connecting rod 15 and the swinging end 18a, that is, the center of the connection pin 19 (output-side fulcrum P4). . Θ1 is the phase of the rotating disk 6 of the turning radius adjusting mechanism 4.
 この図4から明らかなように、偏心量R1が小さくなるにつれ、揺動リンク18の揺動範囲θ2が狭くなり、偏心量R1が「0」になった場合には、揺動リンク18は揺動しなくなる。 As is apparent from FIG. 4, as the eccentric amount R1 becomes smaller, the swing range θ2 of the swing link 18 becomes narrower, and when the eccentric amount R1 becomes “0”, the swing link 18 swings. Stops moving.
 次に、図5~図7を参照して、本実施形態の無段変速機1のてこクランク機構20(変速機構)の変速比iについて説明する。 Next, the gear ratio i of the lever crank mechanism 20 (transmission mechanism) of the continuously variable transmission 1 of the present embodiment will be described with reference to FIGS.
 図5は、アクチュエータ14によって駆動されるピニオンシャフト7の位相θ3と、ピニオンシャフト7の駆動によって回転されるてこクランク機構20の回転半径調節機構4の回転ディスク6の偏心量R1を示すグラフである。 FIG. 5 is a graph showing the phase θ3 of the pinion shaft 7 driven by the actuator 14 and the eccentric amount R1 of the rotating disk 6 of the turning radius adjusting mechanism 4 of the lever crank mechanism 20 rotated by driving of the pinion shaft 7. .
 図5に示すように、本実施形態の無段変速機1では、ピニオンシャフト7の位相θ3が増加するほど回転ディスク6の偏心量R1も増加する。ただし、位相θ3の変化量(すなわち、アクチュエータ14から伝達された駆動力)が同一であっても、変化前の位相θ3の値が大きいほど、偏心量R1の変化量は小さくなる。 As shown in FIG. 5, in the continuously variable transmission 1 of the present embodiment, the eccentric amount R1 of the rotating disk 6 increases as the phase θ3 of the pinion shaft 7 increases. However, even if the change amount of the phase θ3 (that is, the driving force transmitted from the actuator 14) is the same, the change amount of the eccentricity R1 becomes smaller as the value of the phase θ3 before the change is larger.
 図6は、無段変速機1のエンジンENGの回転速度の変化に対するに対する回転半径調節機構4の回転ディスク6の偏心量R1の変化量の変化を示すグラフである。 FIG. 6 is a graph showing changes in the amount of change in the eccentric amount R1 of the rotary disk 6 of the rotary radius adjusting mechanism 4 with respect to changes in the rotational speed of the engine ENG of the continuously variable transmission 1.
 図6に示すように、てこクランク機構20(変速機構)に対してエンジンENGから入力される回転数が一定である場合、ワンウェイクラッチ17が出力軸3に駆動力を伝達する伝達状態になる回転ディスク6の偏心量(以下、この偏心量を「伝達偏心量」という。)は、出力軸3の回転速度によって定まる。回転ディスク6の偏心量R1が伝達偏心量以上になると、揺動リンク18がワンウェイクラッチ17によって出力軸3に固定され、出力軸3に駆動力が伝達される。 As shown in FIG. 6, when the rotational speed input from the engine ENG to the lever crank mechanism 20 (transmission mechanism) is constant, the one-way clutch 17 is in a transmission state in which the driving force is transmitted to the output shaft 3. The amount of eccentricity of the disk 6 (hereinafter, this amount of eccentricity is referred to as “transmission eccentricity”) is determined by the rotational speed of the output shaft 3. When the eccentric amount R1 of the rotating disk 6 becomes equal to or larger than the transmission eccentric amount, the swing link 18 is fixed to the output shaft 3 by the one-way clutch 17 and the driving force is transmitted to the output shaft 3.
 ところで、揺動リンク18の揺動速度(すなわち、てこクランク機構20の出力回転速度)は、回転ディスク6の偏心量R1に比例する。また、てこクランク機構20の変速比iは、てこクランク機構20の入力回転速度(入力軸2の回転速度)を出力回転速度で除算して求められる。したがって、てこクランク機構20の変速比iは、入力回転速度が一定である場合には、回転ディスク6の偏心量R1が大きくなるほど小さくなる。 Incidentally, the swing speed of the swing link 18 (that is, the output rotational speed of the lever crank mechanism 20) is proportional to the eccentric amount R1 of the rotary disk 6. The gear ratio i of the lever crank mechanism 20 is obtained by dividing the input rotation speed (rotation speed of the input shaft 2) of the lever crank mechanism 20 by the output rotation speed. Therefore, the gear ratio i of the lever crank mechanism 20 decreases as the eccentric amount R1 of the rotating disk 6 increases when the input rotation speed is constant.
 したがって、てこクランク機構20では、エンジンENGの回転速度(入力回転速度)が一定である場合、変速比iが、伝達偏心量に対応する変速比(以下、この変速比を「伝達変速比」という。)以下になると、出力軸3に駆動力が伝達される。 Therefore, in the lever crank mechanism 20, when the rotational speed (input rotational speed) of the engine ENG is constant, the gear ratio i is a gear ratio corresponding to the transmission eccentricity (hereinafter, this gear ratio is referred to as "transmission gear ratio"). .) The driving force is transmitted to the output shaft 3 in the following cases.
 図7は、エンジンENGの回転速度が一定である場合における、出力軸3の回転速度に対する伝達偏心量(伝達変速比)、出力軸3の回転速度が最大減速度で低下した際にも出力軸3に対して揺動リンク18を空転させて出力軸3に駆動力を伝達しない状態である非伝達状態を維持できるように定められた第1偏心量(第1変速比)、及び、伝達偏心量よりも小さく(伝達変速比よりも大きく)、且つ、出力軸3に対する加速要求がなされた際に所定時間内に伝達状態となるように定められた第2偏心量(第2変速比)を示すグラフである。 FIG. 7 shows the transmission eccentricity (transmission speed ratio) with respect to the rotational speed of the output shaft 3 when the rotational speed of the engine ENG is constant, and the output shaft even when the rotational speed of the output shaft 3 decreases with the maximum deceleration. The first eccentric amount (first gear ratio) determined so as to maintain the non-transmission state in which the swing link 18 is idled with respect to 3 and the driving force is not transmitted to the output shaft 3, and the transmission eccentricity. A second eccentric amount (second gear ratio) that is smaller than the amount (greater than the transmission gear ratio) and determined to be in a transmission state within a predetermined time when an acceleration request for the output shaft 3 is made. It is a graph to show.
 第1偏心量(第1変速比)は、エンジンENGの回転速度が一定である場合、出力軸3の最大減速度、ピニオンシャフト7の位相θ3の変位量に対する回転ディスク6の偏心量R1の変化量(図5参照)、及び、制御部の指令を受けてから回転ディスク6の偏心量R1が目標偏心量(目標回転半径)に変化するまでの応答時間(例えば、実際に偏心量R1が目標偏心量にまで変化するために必要な時間にアクチュエータ14が駆動するまでの無駄時間を加算した時間)に基づいて定められる。なお、最大減速度は、無段変速機1を搭載する車両のブレーキやタイヤの性能等により定まる値である。 The first eccentric amount (first gear ratio) is a change in the eccentric amount R1 of the rotary disk 6 with respect to the maximum deceleration of the output shaft 3 and the displacement amount of the phase θ3 of the pinion shaft 7 when the rotational speed of the engine ENG is constant. Response time (for example, the actual eccentricity R1 is the target) until the eccentricity R1 of the rotating disk 6 changes to the target eccentricity (target rotational radius) after receiving the command of the control unit (see FIG. 5) and the control unit. The time required for changing to the amount of eccentricity is determined based on the sum of the dead time until the actuator 14 is driven). The maximum deceleration is a value determined by the performance of the brake and tire of the vehicle on which the continuously variable transmission 1 is mounted.
 この第1偏心量(第1変速比)は、例えば図7のグラフにおいて間隔の大きい破線で示すように、出力軸3の回転数が「0」に近い領域では「0」(変速比としては「無限大(∞)」)となり、それ以外の領域では伝達偏心量の増加量よりもわずかに大きい増加量で偏心量R1に応じて増加する。 This first eccentric amount (first gear ratio) is “0” (as the gear ratio) in the region where the rotational speed of the output shaft 3 is close to “0”, as shown by a broken line with a large interval in the graph of FIG. “Infinity (∞)”), and in other regions, the amount of increase is slightly larger than the amount of increase in transmission eccentricity, and increases in accordance with the amount of eccentricity R1.
 第2偏心量(第2変速比)は、エンジンENGの回転速度が一定である場合、任意に定められた所定時間(例えば、200msec)、ピニオンシャフト7の位相θ3の変位量に対する回転ディスク6の偏心量R1の変化量(図5参照)、及び、制御部の指令を受けてから回転ディスク6の偏心量R1が目標偏心量に変化するまでの応答時間に基づいて定められる。 The second eccentric amount (second speed change ratio) is determined when the rotational speed of the engine ENG is constant and the rotation disk 6 has a predetermined amount of time (for example, 200 msec) with respect to the amount of displacement of the phase θ3 of the pinion shaft 7. It is determined based on the amount of change of the eccentricity R1 (see FIG. 5) and the response time from when the command of the control unit is received until the eccentricity R1 of the rotating disk 6 changes to the target eccentricity.
 この第2偏心量(第2変速比)は、例えば図7のグラフにおいて間隔の小さい破線で示すように、出力軸3の回転数が「0」に近い領域では「0」(変速比としては「無限大(∞)」)となり、それ以外の領域では伝達偏心量の増加量よりもわずかに大きい増加量で偏心量R1に応じて増加する。また、第2偏心量の増加量は、第1偏心量の増加量よりも大きく、また、第2偏心量が「0」である領域は、第1偏心量が「0」である領域よりも大きい。 This second eccentricity (second speed change ratio) is “0” (as the speed change ratio) in the region where the rotational speed of the output shaft 3 is close to “0”, as shown by a broken line with a small interval in the graph of FIG. “Infinity (∞)”), and in other regions, the amount of increase is slightly larger than the amount of increase in transmission eccentricity, and increases in accordance with the amount of eccentricity R1. Further, the increase amount of the second eccentric amount is larger than the increase amount of the first eccentric amount, and the region where the second eccentric amount is “0” is larger than the region where the first eccentric amount is “0”. large.
 なお、図7で示した第1偏心量(第1変速比)及び第2偏心量(第2変速比)は、一例である。第1変速比は、伝達変速比よりも大きく、且つ、出力軸3の回転速度が最大減速度で低下した際に非伝達状態を維持できるような値であれば、図7で示した値とは異なる値であってもよい。第2変速比は、伝達変速比よりも大きく、且つ、出力軸に対する加速要求がなされた際に所定時間内に伝達状態となるような値であれば、図7で示した値とは異なる値であってもよい。 The first eccentric amount (first gear ratio) and the second eccentric amount (second gear ratio) shown in FIG. 7 are examples. If the first speed ratio is larger than the transmission speed ratio and can maintain the non-transmission state when the rotational speed of the output shaft 3 decreases at the maximum deceleration, the value shown in FIG. May be different values. The second speed ratio is different from the value shown in FIG. 7 as long as the second speed ratio is larger than the transmission speed ratio and is a value that is in a transmission state within a predetermined time when an acceleration request is made to the output shaft. It may be.
 次に、図8を参照して、入力軸2の回転速度が一定であり、ワンウェイクラッチ17が非伝達状態であるときに、本実施形態の無段変速機1の回転半径調節機構4の制御部が、待機させておく偏心量R1(変速比i)を決定するまでに行う処理について説明する。 Next, referring to FIG. 8, when the rotational speed of the input shaft 2 is constant and the one-way clutch 17 is in the non-transmitting state, the control of the turning radius adjusting mechanism 4 of the continuously variable transmission 1 of the present embodiment. A process performed by the unit until the eccentric amount R1 (speed ratio i) to be kept on standby is determined will be described.
 回転半径調節機構4の駆動を制御する制御部には、回転半径調節機構4の入力側の回転速度(すなわち、入力軸2の回転速度)を検知する入力側回転速度センサ、出力側の回転速度(すなわち、揺動リンク18の揺動速度)を検知する出力側回転速度センサ、アクセルペダルの操作量に応じたスロットル弁の開度を検知するアクセル開度センサ、及び、ブレーキペダルの操作量を検知するブレーキセンサを有している。 The control unit for controlling the driving of the turning radius adjusting mechanism 4 includes an input side turning speed sensor for detecting the turning speed on the input side of the turning radius adjusting mechanism 4 (that is, the turning speed of the input shaft 2), and the turning speed on the output side. An output-side rotational speed sensor that detects (that is, a swing speed of the swing link 18), an accelerator opening sensor that detects the opening degree of the throttle valve according to the operation amount of the accelerator pedal, and the operation amount of the brake pedal. It has a brake sensor to detect.
 まず、制御部は、アクセル開度センサの出力信号に基づいて、アクセルペダルがオフであるか否か(すなわち、出力軸3に対して加速要求がなされていないコースティング走行であるか否か)を判断する(図8/STEP1)。 First, the control unit determines whether or not the accelerator pedal is off based on the output signal of the accelerator opening sensor (that is, whether or not the coasting traveling is not requested to accelerate the output shaft 3). Is determined (FIG. 8 / STEP1).
 アクセルペダルがオフであった場合(図8/STEP1でYESの場合)には、制御部は、その時点の出力軸3の回転速度において、伝達偏心量よりも小さく、第1偏心量以下であり、第2偏心量以上であるという3つの条件を満たす偏心量R1(伝達変速比よりも大きく、第1変速比以上であり、第2変速比以下である変速比i)が存在するか否かを判断する(図8/STEP2)。 When the accelerator pedal is off (in the case of YES in FIG. 8 / STEP 1), the control unit is smaller than the transmission eccentric amount and not more than the first eccentric amount at the rotational speed of the output shaft 3 at that time. Whether there is an eccentricity amount R1 (gear ratio i greater than the transmission gear ratio, greater than the first gear ratio, and greater than or equal to the second gear ratio) that satisfies the three conditions of greater than or equal to the second eccentric amount. Is determined (FIG. 8 / STEP2).
 偏心量R1(変速比i)が3つの条件を全て満たす場合には、車両を急減速させた等の理由によって出力軸3の回転速度が急激に低下した際にも、出力軸に対して意図しない駆動力の伝達が生じるおそれがない。また、出力軸3に対して加速要求がなされた際に(アクセルペダルがオンになった際に)、迅速に偏心量R1(変速比i)を伝達偏心量(伝達変速比)まで変化させることができる。 When the eccentric amount R1 (speed ratio i) satisfies all three conditions, the output shaft 3 is intended even when the rotational speed of the output shaft 3 rapidly decreases due to a sudden deceleration of the vehicle or the like. There is no risk of transmission of driving force not being generated. Further, when an acceleration request is made to the output shaft 3 (when the accelerator pedal is turned on), the eccentric amount R1 (speed ratio i) is rapidly changed to the transmission eccentric amount (transmission speed ratio). Can do.
 3つの条件を全て満たす偏心量R1(変速比i)が存在していた場合(図8/STEP2でYESの場合)には、制御部は、その最大値(変速比iの最小値)を待機させておく偏心量R1(変速比i)として決定し、ピニオンシャフト7の位相θ3をその偏心量R1(変速比i)に対応する値になるように、ピニオンシャフト7を駆動させるための信号をアクチュエータ14に対して出力する(図8/STEP3)。 When there is an eccentric amount R1 (speed ratio i) that satisfies all three conditions (FIG. 8 / YES in STEP2), the control unit waits for the maximum value (minimum value of speed ratio i). A signal for driving the pinion shaft 7 is determined so as to be determined as an eccentric amount R1 (speed ratio i), and the phase θ3 of the pinion shaft 7 becomes a value corresponding to the eccentric amount R1 (speed ratio i). It outputs to the actuator 14 (FIG. 8 / STEP3).
 3つの条件を全て満たす偏心量R1が存在していなかった場合(図8/STEP2でNOの場合)には、制御部は、ブレーキペダルがオンであるか否か(すなわち、出力軸3に対して減速要求がなされているか否か)を判断する(図8/STEP4)。 When the eccentricity R1 that satisfies all three conditions does not exist (in the case of NO in FIG. 8 / STEP2), the control unit determines whether or not the brake pedal is on (that is, with respect to the output shaft 3). Whether or not a deceleration request has been made is determined (FIG. 8 / STEP 4).
 ブレーキペダルがオンであった場合(図8/STEP4でYESの場合)には、制御部は、ピニオンシャフト7の位相θ3の値が、その時点の出力軸3の回転速度において、伝達偏心量よりも小さく、第1偏心量以下であるという2つの条件を満たす偏心量R1に対応する値になるように、ピニオンシャフト7を駆動させる信号をアクチュエータ14に対して出力する(図8/STEP5)。 When the brake pedal is on (in the case of YES in FIG. 8 / STEP4), the control unit determines that the value of the phase θ3 of the pinion shaft 7 is greater than the amount of transmission eccentricity at the rotational speed of the output shaft 3 at that time. A signal for driving the pinion shaft 7 is output to the actuator 14 so as to be a value corresponding to the eccentric amount R1 that satisfies the two conditions that are smaller and equal to or less than the first eccentric amount (FIG. 8 / STEP 5).
 偏心量R1がこれらの2つの条件を満たす場合(すなわち、第2偏心量を考慮せず、伝達偏心量及び第1偏心量のみを待機させる偏心量R1を決定するための条件として考慮した場合)には、加速要求がなされた際の応答性は若干低下する場合があるが、車両を急減速させた等の理由によって出力軸3の回転速度が急激に低下した際にも、出力軸3に対して意図しない駆動力の伝達が生じるおそれがない。 When the eccentric amount R1 satisfies these two conditions (that is, when the second eccentric amount is not considered and the eccentric amount R1 for waiting for only the transmission eccentric amount and the first eccentric amount is considered as a condition). In some cases, the responsiveness when an acceleration request is made may be slightly reduced. However, when the rotational speed of the output shaft 3 suddenly decreases due to a sudden deceleration of the vehicle, the output shaft 3 On the other hand, there is no possibility that unintended driving force is transmitted.
 具体的には、制御部は、この場合において、偏心量R1を第1偏心量以下であり、且つ、第2偏心量に近い値(変速比iを第1変速比以上であり、且つ、第2変速比に近い値)になるように制御する。これは、意図しない伝達の防止を優先する状態でも、意図しない伝達の防止を実現できる範囲で応答時間をほぼ均一にするためである。 Specifically, in this case, the control unit is configured such that the eccentric amount R1 is equal to or less than the first eccentric amount, and is close to the second eccentric amount (the transmission ratio i is equal to or greater than the first transmission ratio, and the first (A value close to 2 speed ratio). This is to make the response times substantially uniform within a range in which prevention of unintended transmission can be realized even in a state where priority is given to prevention of unintended transmission.
 なお、2つの条件を満たす偏心量R1が存在していない場合は理論上存在しない。しかし、制御部がこれらの2つの条件を満たす偏心量R1が存在しないと判断した場合には、制御部は、ピニオンシャフト7の位相θ3の値が、駆動力の伝達が生じえない偏心量R1=0に対応する値になるように、ピニオンシャフト7を駆動させるための信号をアクチュエータ14に対して出力する。これは、安全性確保のためである。 It should be noted that the eccentricity R1 that satisfies the two conditions does not exist theoretically. However, when the control unit determines that there is no eccentric amount R1 that satisfies these two conditions, the control unit determines that the value of the phase θ3 of the pinion shaft 7 is such that the drive force cannot be transmitted. A signal for driving the pinion shaft 7 is output to the actuator 14 so as to be a value corresponding to = 0. This is for ensuring safety.
 ブレーキペダルがオフであった場合(図8/STEP4でNOの場合)には、制御部は、ピニオンシャフト7の位相θ3の値が、その時点の出力軸3の回転速度において、第2偏心量に対応する値になるように(すなわち、変速比iが第2変速比に一致するように)、ピニオンシャフト7を駆動させる信号をアクチュエータ14に対して出力する(図8/STEP6)。 When the brake pedal is off (NO in FIG. 8 / STEP4), the control unit determines that the value of the phase θ3 of the pinion shaft 7 is the second eccentric amount at the rotational speed of the output shaft 3 at that time. A signal for driving the pinion shaft 7 is output to the actuator 14 (ie, STEP 6) so that the gear ratio becomes a value corresponding to (that is, the gear ratio i matches the second gear ratio).
 偏心量R1が第2偏心量と一致する場合(すなわち、第1偏心量を考慮せず、伝達偏心量及び第2偏心量のみを待機させる偏心量R1を決定するための条件として考慮した場合)には、加速要求がなされた際には迅速に伝達状態となる極めて良好な応答性が実現される。さらに、応答時間も均一になる。 When the eccentric amount R1 coincides with the second eccentric amount (that is, when the first eccentric amount is not considered and the eccentric amount R1 for waiting for only the transmission eccentric amount and the second eccentric amount is considered as a condition). In this case, when the acceleration request is made, a very good responsiveness can be realized in which the transmission state is quickly achieved. Furthermore, the response time becomes uniform.
 なお、伝達偏心量よりも小さく、第2偏心量以上であるという2つの条件を満たす偏心量R1が存在していない場合は理論上存在しない。しかし、制御部がこれらの2つの条件を満たす偏心量R1が存在しないと判断した場合には、制御部は、ピニオンシャフト7の位相θ3の値が、駆動力の伝達が生じえない偏心量R1=0に対応する値になるように、ピニオンシャフト7を駆動させるための信号をアクチュエータ14に対して出力する。これは、安全性確保のためである。 Note that there is theoretically no case where there is no eccentric amount R1 that satisfies the two conditions of being smaller than the transmission eccentric amount and being equal to or larger than the second eccentric amount. However, when the control unit determines that there is no eccentric amount R1 that satisfies these two conditions, the control unit determines that the value of the phase θ3 of the pinion shaft 7 is such that the drive force cannot be transmitted. A signal for driving the pinion shaft 7 is output to the actuator 14 so as to be a value corresponding to = 0. This is for ensuring safety.
 なお、アクセルペダルがオンであった場合(図8/STEP1でNOの場合)には、制御部は、アクセル開度に応じて回転半径調節機構4を駆動させるための信号をアクチュエータ14に対して出力する(図8/STEP7)。 If the accelerator pedal is on (NO in FIG. 8 / STEP1), the control unit sends a signal for driving the turning radius adjusting mechanism 4 to the actuator 14 in accordance with the accelerator opening. It outputs (FIG. 8 / STEP7).
 このような制御が行われる本実施形態の無段変速機1によれば、意図しない駆動力の伝達が防止するとともに、良好な応答性を得ることができる。 According to the continuously variable transmission 1 of the present embodiment in which such control is performed, unintended driving force transmission can be prevented and good responsiveness can be obtained.
 以上、図示の実施形態について説明したが、本発明はこのような形態に限られるものではない。 Although the illustrated embodiment has been described above, the present invention is not limited to such a form.
 例えば、上記実施形態では、本発明を無段変速機に適用した場合を説明したが、本発明は、無段変速機以外の変速機にも適用し得るものである。 For example, although the case where the present invention is applied to a continuously variable transmission has been described in the above embodiment, the present invention can also be applied to a transmission other than a continuously variable transmission.
 また、上記実施形態では、制御部は、出力軸3に対する加速要求がなされておらず、且つ、減速要求がなされているときには、変速比iを第1変速比以上であり、且つ、第2変速比に近い値になるように制御するとともに、加速要求がなされておらず、且つ、減速要求がなされていないときには、変速比iを第2変速比と一致する値になるように制御している(図8/STEP5及びSTEP6)。 In the above embodiment, when the acceleration request for the output shaft 3 is not made and the deceleration request is made, the control unit sets the speed ratio i to be equal to or higher than the first speed ratio and the second speed change. The control is performed so that the value is close to the ratio, and when the acceleration request is not made and the deceleration request is not made, the speed ratio i is controlled so as to coincide with the second speed ratio. (FIG. 8 / STEP5 and STEP6).
 このような制御を行っているのは、応答時間をほぼ均一にすることによって、変速機を搭載した車両等のドライバビリティを向上させるためである。 The reason why such control is performed is to improve the drivability of a vehicle or the like equipped with a transmission by making the response time substantially uniform.
 しかし、本発明はこのような構成に限定されるものではなく、制御部は、少なくとも、加速要求がなされておらず、且つ、出力軸に対する減速要求がなされているときには、変速比を第1変速比以上の値になるように制御し、加速要求がなされておらず、且つ、減速要求がなされていないときには、変速比を伝達変速比よりも大きく、且つ、第2変速比以下の値になるように制御していればよい。 However, the present invention is not limited to such a configuration, and at least when the acceleration request is not made and the deceleration request for the output shaft is made, the control unit sets the gear ratio to the first speed change. When the acceleration request is not made and the deceleration request is not made, the gear ratio is larger than the transmission gear ratio and less than the second gear ratio. It suffices if the control is performed.
 このような制御を行えば、変速機構は、意図しない駆動力の伝達が防止でき、良好な応答性を実現することができる。 If such control is performed, the transmission mechanism can prevent unintended transmission of the driving force, and can realize good responsiveness.
1…無段変速機、2…入力軸、2a…入力端部、3…出力軸、4…回転半径調節機構、5…カムディスク、5a…貫通孔、5b…切欠孔、6…回転ディスク(回転部)、6a…受入孔、6b…内歯、7…ピニオンシャフト、7a…ピニオン、7b…ピニオン軸受、8…差動機構、14a…回転軸、9…サンギヤ、10…第1リングギヤ、11…第2リングギヤ、12…段付ピニオン、12a…大径部、12b…小径部、13…キャリア、14…アクチュエータ(調節用駆動源)、15…コネクティングロッド、15a…入力側環状部、15b…出力側環状部、16…コネクティングロッド軸受、17…ワンウェイクラッチ(一方向回転阻止機構)、18…揺動リンク、18a…揺動端部、18b…突片、18c…差込孔、19…連結ピン、20…てこクランク機構(変速機構)、21…変速機ケース、21a…一端壁部、21b…他端壁部、21c…周壁部、22…軸受、ENG…エンジン(走行用駆動源)、h…無段変速機1の変速比、i…回転半径調節機構4(変速機構)の変速比、P1…入力軸2の回転中心軸線、P2…カムディスク5の中心、P3…回転ディスク6の中心(入力側支点)、P4…連結ピン19の中心(出力側支点)、P5…出力軸3の回転中心軸線、Ra…P1とP2の距離、Rb…P2とP3の距離、R1…P1とP3の距離(偏心量,回転ディスク6の中心(入力側支点P3)の回転半径)、R2…P4とP5の距離(揺動リンク18の長さ)、θ1…回転ディスク6の位相、θ2…揺動リンク18の揺動範囲、θ3…ピニオンシャフト7の位相。 DESCRIPTION OF SYMBOLS 1 ... Continuously variable transmission, 2 ... Input shaft, 2a ... Input end, 3 ... Output shaft, 4 ... Rotation radius adjustment mechanism, 5 ... Cam disk, 5a ... Through-hole, 5b ... Notch hole, 6 ... Rotation disk ( Rotating part), 6a ... receiving hole, 6b ... internal teeth, 7 ... pinion shaft, 7a ... pinion, 7b ... pinion bearing, 8 ... differential mechanism, 14a ... rotating shaft, 9 ... sun gear, 10 ... first ring gear, 11 2nd ring gear, 12 ... Stepped pinion, 12a ... Large diameter part, 12b ... Small diameter part, 13 ... Carrier, 14 ... Actuator (adjusting drive source), 15 ... Connecting rod, 15a ... Input side annular part, 15b ... Output side annular portion, 16 ... connecting rod bearing, 17 ... one-way clutch (one-way rotation prevention mechanism), 18 ... swing link, 18a ... swing end, 18b ... projecting piece, 18c ... insertion hole, 19 ... connection Pin, 2 ... lever crank mechanism (transmission mechanism), 21 ... transmission case, 21a ... one end wall part, 21b ... other end wall part, 21c ... peripheral wall part, 22 ... bearing, ENG ... engine (driving drive source), h ... none Gear ratio of the step transmission 1, i... Gear ratio of the turning radius adjusting mechanism 4 (transmission mechanism), P1... The center axis of rotation of the input shaft 2, P2 ... center of the cam disk 5, P3. Side fulcrum), P4... Center of output pin 19 (output fulcrum), P5... Rotation center axis of output shaft 3, Ra... P1 and P2 distance, Rb... P2 and P3 distance, R1. (Eccentric amount, rotational radius of the center of the rotating disk 6 (input side fulcrum P3)), R2... Distance between P4 and P5 (length of the swinging link 18), .theta.1... Phase of the rotating disk 6, .theta.2. 18 swing range, θ3... Phase of pinion shaft 7.

Claims (3)

  1.  走行用駆動源の駆動力が伝達され回転する入力軸と、
     駆動輪に駆動力を伝達する出力軸と、
     前記入力軸から伝達された回転速度を変速して出力し、変速比を変更可能な変速機構と、
     前記変速機構から出力された回転速度が前記出力軸の回転速度を超えたときに前記出力軸に駆動力を伝達する伝達状態になり、前記変速機構から出力された回転速度が前記出力軸の回転速度以下のときに前記出力軸に駆動力を伝達しない非伝達状態になる一方向回転阻止機構と、
     前記変速機構の変速比を制御する制御部とを備えた変速機であって、
     前記制御部は、所定の情報に基づいて送信される加速要求及び減速要求を受信可能に構成され、
     前記一方向回転阻止機構が前記伝達状態になる前記変速機構の前記変速比を伝達変速比とし、前記伝達変速比よりも大きく、且つ、前記出力軸の回転速度が最大減速度で低下した際に前記非伝達状態を維持できるように定められた前記変速比を第1変速比とし、前記伝達変速比よりも大きく、且つ、前記加速要求がなされた際に所定時間内に前記伝達状態となるように定められた前記変速比を第2変速比とし、
     前記加速要求がなされておらず、且つ、前記減速要求がなされているときには、前記制御部は、前記変速比を前記第1変速比以上の値になるように制御し、
     前記加速要求がなされておらず、且つ、前記減速要求がなされていないときには、前記制御部は、前記変速比を前記伝達変速比よりも大きく、且つ、前記第2変速比以下の値になるように制御することを特徴とする変速機。
    An input shaft that is rotated by the driving force of the driving source for traveling; and
    An output shaft for transmitting driving force to the driving wheels;
    A speed change mechanism capable of shifting and outputting the rotational speed transmitted from the input shaft and changing a speed ratio;
    When the rotational speed output from the transmission mechanism exceeds the rotational speed of the output shaft, the transmission force is transmitted to the output shaft, and the rotational speed output from the transmission mechanism is the rotational speed of the output shaft. A one-way rotation prevention mechanism that is in a non-transmitting state in which the driving force is not transmitted to the output shaft when the speed is lower than the speed;
    A transmission including a control unit that controls a gear ratio of the transmission mechanism,
    The control unit is configured to be able to receive an acceleration request and a deceleration request transmitted based on predetermined information,
    The transmission ratio of the transmission mechanism in which the one-way rotation prevention mechanism is in the transmission state is defined as a transmission transmission ratio, and is greater than the transmission transmission ratio, and the rotational speed of the output shaft is reduced at the maximum deceleration. The transmission gear ratio determined so as to maintain the non-transmission state is the first transmission gear ratio, which is larger than the transmission transmission gear ratio, and is in the transmission state within a predetermined time when the acceleration request is made. The gear ratio determined in (2) is used as the second gear ratio,
    When the acceleration request is not made and the deceleration request is made, the control unit controls the speed ratio to be a value equal to or higher than the first speed ratio,
    When the acceleration request is not made and the deceleration request is not made, the control unit makes the speed ratio larger than the transmission speed ratio and not more than the second speed ratio. A transmission characterized by being controlled.
  2.  請求項1に記載の変速機であって、
     前記変速機構に駆動力を伝達する調節用駆動源を有し、
     前記変速機構は、前記調節用駆動源から駆動力が伝達され、前記入力軸と一体的に回転可能な回転部が設けられ前記回転部の回転半径を調節自在な回転半径調節機構、揺動端部が設けられ前記出力軸に揺動自在に軸支された揺動リンク、及び、一方の端部が前記回転半径調節機構の前記回転部に回転自在に接続され、他方の端部が前記揺動端部に接続されたコネクティングロッドを有し、前記入力軸の回転運動を前記揺動リンクの揺動運動に変換するてこクランク機構であり、
     前記一方向回転阻止機構は、前記揺動リンクが前記出力軸に対して一方側に回転しようとするときに前記出力軸に対して前記揺動リンクを固定して前記伝達状態になり、前記揺動リンクが前記出力軸に対して他方側に回転しようとするときに前記出力軸に対して前記揺動リンクを空転させて前記伝達状態を解除するように構成され、
     前記第1変速比及び前記第2変速比は、前記調節用駆動源から伝達された駆動力に対する前記回転部の回転半径の変化量、及び、前記制御部の指令を受けてから前記回転部の回転半径が目標回転半径に変化するまでの応答時間に基づいて定められていることを特徴とする変速機。
    The transmission according to claim 1,
    An adjustment drive source for transmitting drive force to the speed change mechanism;
    The speed change mechanism is provided with a rotating portion that is transmitted with the driving force from the adjusting drive source and is rotatable integrally with the input shaft, and is capable of adjusting the turning radius of the rotating portion, and a swing end. A swing link that is pivotally supported by the output shaft and one end is rotatably connected to the rotating portion of the turning radius adjusting mechanism, and the other end is the swinging link. A lever crank mechanism having a connecting rod connected to the moving end, and converting the rotational motion of the input shaft into the swing motion of the swing link;
    The one-way rotation prevention mechanism fixes the swing link with respect to the output shaft and enters the transmission state when the swing link is about to rotate to one side with respect to the output shaft. When the dynamic link is about to rotate to the other side with respect to the output shaft, the swing link is idled with respect to the output shaft to release the transmission state,
    The first speed ratio and the second speed ratio are determined by the amount of change in the rotation radius of the rotation unit with respect to the driving force transmitted from the adjustment drive source, and the command of the control unit after receiving a command from the control unit. A transmission characterized in that it is determined based on a response time until the turning radius changes to a target turning radius.
  3.  請求項1又は請求項2に記載の変速機であって、
     前記加速要求がなされておらず、且つ、前記減速要求がなされているときには、前記制御部は、前記変速比を前記第1変速比以上であり、且つ、前記第2変速比に近い値になるように制御し、
     前記加速要求がなされておらず、且つ、前記減速要求がなされていないときには、前記制御部は、前記変速比を前記第2変速比と一致する値になるように制御することを特徴とする変速機。
    The transmission according to claim 1 or claim 2,
    When the acceleration request is not made and the deceleration request is made, the control unit makes the speed ratio equal to or higher than the first speed ratio and close to the second speed ratio. To control and
    When the acceleration request is not made and the deceleration request is not made, the control unit controls the speed ratio to be a value that matches the second speed ratio. Machine.
PCT/JP2014/078201 2014-10-23 2014-10-23 Transmission WO2016063398A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480081046.9A CN106662240B (en) 2014-10-23 2014-10-23 Speed changer
PCT/JP2014/078201 WO2016063398A1 (en) 2014-10-23 2014-10-23 Transmission
JP2016555021A JP6201062B2 (en) 2014-10-23 2014-10-23 transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078201 WO2016063398A1 (en) 2014-10-23 2014-10-23 Transmission

Publications (1)

Publication Number Publication Date
WO2016063398A1 true WO2016063398A1 (en) 2016-04-28

Family

ID=55760466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078201 WO2016063398A1 (en) 2014-10-23 2014-10-23 Transmission

Country Status (3)

Country Link
JP (1) JP6201062B2 (en)
CN (1) CN106662240B (en)
WO (1) WO2016063398A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115285276B (en) * 2022-08-10 2023-06-02 八方电气(苏州)股份有限公司 Stepless speed change mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309229A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Stepped shift control device for continuously variable transmission
JP2010255704A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Vehicle control device
JP2013001190A (en) * 2011-06-14 2013-01-07 Honda Motor Co Ltd Drive control device, and drive control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810468B2 (en) * 2007-03-01 2011-11-09 トヨタ自動車株式会社 Shift control device
US8636620B2 (en) * 2010-10-28 2014-01-28 Jatco Ltd Automatic transmission
JP5838677B2 (en) * 2011-09-12 2016-01-06 日産自動車株式会社 Vehicle drive device
JP5690693B2 (en) * 2011-09-21 2015-03-25 本田技研工業株式会社 Shift control device
US9005080B1 (en) * 2011-11-18 2015-04-14 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive device
DE112013000337T5 (en) * 2012-02-24 2014-08-28 Aisin Aw Co., Ltd. control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309229A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Stepped shift control device for continuously variable transmission
JP2010255704A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Vehicle control device
JP2013001190A (en) * 2011-06-14 2013-01-07 Honda Motor Co Ltd Drive control device, and drive control method

Also Published As

Publication number Publication date
CN106662240A (en) 2017-05-10
CN106662240B (en) 2018-05-01
JPWO2016063398A1 (en) 2017-04-27
JP6201062B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5982563B2 (en) Continuously variable transmission
JP5638146B2 (en) Drive control device
JP6201062B2 (en) transmission
JP6407119B2 (en) Power transmission device
JP2014156900A (en) Continuously variable transmission
JP6072730B2 (en) Power transmission device for vehicle
JP5908610B2 (en) Continuously variable transmission
JP2012251609A (en) Continuously variable transmission
JP2015017699A (en) Continuously variable transmission
JP6067593B2 (en) Continuously variable transmission
JP6087320B2 (en) Continuously variable transmission
JP5826146B2 (en) Control device for continuously variable transmission
JP2017032086A (en) Continuously variable transmission
JP6309377B2 (en) Radial thrust bearing preload adjustment structure and continuously variable transmission using the same
JP5836252B2 (en) Control device for continuously variable transmission
JP6204834B2 (en) Continuously variable transmission
JP6178915B2 (en) Continuously variable transmission
JP6155230B2 (en) Continuously variable transmission
JP6111207B2 (en) Continuously variable transmission
JP6105362B2 (en) Continuously variable transmission
JP6087308B2 (en) Continuously variable transmission
JP5982262B2 (en) Continuously variable transmission
JP2015209899A (en) Continuously variable transmission
JP2015183778A (en) Continuously variable transmission
JP6087309B2 (en) Continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904629

Country of ref document: EP

Kind code of ref document: A1