WO2016056810A1 - 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물 - Google Patents

내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물 Download PDF

Info

Publication number
WO2016056810A1
WO2016056810A1 PCT/KR2015/010529 KR2015010529W WO2016056810A1 WO 2016056810 A1 WO2016056810 A1 WO 2016056810A1 KR 2015010529 W KR2015010529 W KR 2015010529W WO 2016056810 A1 WO2016056810 A1 WO 2016056810A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
heat resistant
heat
seed
Prior art date
Application number
PCT/KR2015/010529
Other languages
English (en)
French (fr)
Inventor
채주병
박은선
전태영
김영민
김종범
김창술
정유성
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2016553199A priority Critical patent/JP6304907B2/ja
Priority to US15/022,550 priority patent/US9845370B2/en
Priority to CN201580002156.6A priority patent/CN105705533B/zh
Publication of WO2016056810A1 publication Critical patent/WO2016056810A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/08Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a method for producing a heat resistant resin, a heat resistant resin and a heat resistant ABS resin composition, in particular, to prepare a heat resistant resin with a high polymerization conversion rate and a reduced polymerization coagulum under a short polymerization time and fine when agglomerated. It provides a manufacturing method that can also reduce the content, from the heat-resistant resin and heat-resistant ABS resin composition with improved heat deformation temperature and processability.
  • the emulsion-polymerized heat-resistant SAN has the advantages of having a high Tg and a high molecular weight, while the polymerization takes a long time and the workability and productivity due to the high temperature and pressurization process in the flocculation / drying process is inferior.
  • Patent Document 1 US4340723 A
  • Patent Document 2 US5171814 A
  • heat-resistant resins can be prepared with high polymerization conversion and reduced polymerization coagulum under a short polymerization time, and can also reduce fine content during aggregation.
  • the technology has been confirmed and the present invention has been completed.
  • an object of the present invention is to provide a method for producing a heat resistant resin having a polymerization rate and cohesiveness, and a heat resistant resin obtained therefrom and a heat resistant ABS resin composition having improved heat deformation temperature and processability.
  • the glass transition temperature (Tg) is at least 140 °C, the average particle diameter of 300 to 700 Pa, the weight average under 70 to 80 parts by weight of the heat-resistant compound monomer and 30 to 20 parts by weight of the vinyl cyan compound monomer Polymerizing a heat resistant compound-vinylcyan compound-based seed having a molecular weight (Mw) of 200,000 to 300,000 g / mol; And (b) a shell surrounding the seed, wherein the glass transition temperature (Tg) is 135 to 145 ° C. under 30 to 80 parts by weight of the seed and 70 to 20 parts by weight of the heat resistant compound monomer and the vinyl cyan compound monomer, and a weight average molecular weight (Mw). It provides a method of producing a heat-resistant resin comprising ;; polymerizing a heat-resistant compound-vinyl cyan compound-based shell having a) 100,000 to 150,000 g / mol.
  • the heat-resistant compound-vinylcyan compound seed and the heat-resistant compound-vinylcyan compound shell surrounding the seed have a structure having a weight average molecular weight (Mw) of 100,000 to 150,000 g / mol and a glass transition temperature (Tg). ) Provides a heat resistant SAN resin having 135 to 145 °C.
  • thermoplastic ABS resin composition comprising the above-mentioned heat-resistant SAN resin, the heat deformation temperature (HDT) exceeds 100 °C, the melt index (MI) is 3.5 to 4.0.
  • a heat-resistant resin is prepared from a high polymerization conversion rate and a reduced coagulum under a short polymerization time, and provides a manufacturing method that can also reduce the fine content during aggregation, and from the heat resistance It is effective to provide a heat-resistant ABS resin composition with improved resin and heat distortion temperature and workability.
  • Heat-resistant resin manufacturing method according to the invention can be carried out in the following steps as a specific example:
  • the method for producing a heat resistant resin according to the present invention may be carried out in another example by the following steps:
  • the heat resistant compounds of step (a) and (b) may be alpha methyl styrene, for example, and in this case, there is an effect of excellent heat resistance and balance of physical properties.
  • the vinyl cyan compound of step (a) and (b) may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile and ethacrylonitrile, and in this case, the effect of excellent heat resistance and mechanical properties is excellent. have.
  • step (a) has a technical feature to meet the lower glass transition temperature lower limit proposed in order to offset the decrease in the glass transition temperature (Tg) due to the formation of a lower molecular weight in step (b).
  • the weight average molecular weight (Mw) is less than 200,000 g / mol may cause a decrease in the glass transition temperature, if it exceeds 300,000 g / mol, the molding processability of the final polymer using the prepared seed may be lowered Can be.
  • step (a) if the average particle diameter is less than 300 kPa, the emulsifier is excessively used to obtain the polymer, so that the glass transition temperature of the final polymer may be lowered, and if the average particle diameter exceeds 700 kPa, the shell in the subsequent step (b) It is not expected to increase the polymerization rate during the polymerization.
  • the glass transition temperature of the entire resin after the shell polymerization may be sharply lowered.
  • the total time required for polymerization in steps (a) and (b) is, for example, within 4 hours, 3 to 4 hours, or 3 hours, and the polymerization conversion rates of steps (a) and (b) are each examples, It may be 98.5% or more, 99.0% or more, or 99.0 to 99.5%, and the residual monomer content is reduced within this range to have excellent heat resistance.
  • the (meth) acrylic acid alkyl ester monomer and the aromatic vinyl compound monomer are contained within 2 to 5 parts by weight, or 3 to 5 parts by weight of 20 to 30 parts by weight of the vinyl cyan compound monomer. And (meth) acrylic acid alkyl ester monomers or aromatic vinyl compound monomers (except alphamethylstyrene).
  • (meth) acrylic acid alkyl ester examples include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid decyl ester and (meth ) Acrylic acid lauryl ester may be one or more selected from the group consisting of, in this case there is an excellent effect of mechanical and physical properties balance.
  • the aromatic vinyl compound may be at least one selected from the group consisting of styrene, paramethyl styrene, orthomethyl styrene, paraethyl styrene, and vinyl toluene, for example, in this case, the mechanical properties and the physical properties are excellent in balance.
  • Step (a) is a specific example, (a-1) 70 to 80 parts by weight of the heat-resistant compound monomer, 8 to 10 parts by weight of the vinyl cyan compound monomer, (meth) acrylic acid alkyl ester monomer and aromatic vinyl compound monomer (except alphamethylstyrene) ) At least one selected from 0 to 2 parts by weight under a saturated hydrocarbon-based emulsifier of C 12 to C 18 to perform emulsion polymerization; (a-2) emulsion polymerization by continuously adding 5 to 15 parts by weight of a vinylcyan compound monomer at a point of polymerization conversion rate of 83 to 88% under a saturated hydrocarbon emulsifier of C 12 to C 18 ; And (a-3) polymerizing a batch of 2 to 8 parts by weight of the vinyl cyan compound monomer at a polymerization conversion rate of 92 to 96%.
  • Step (a) is another example, (a-1) 72 to 78 parts by weight of the heat-resistant compound monomer, 8 to 10 parts by weight of the vinyl cyan compound monomer, (meth) acrylic acid alkyl ester monomer and aromatic vinyl compound monomer (alphamethylstyrene 0 to 2 parts by weight of at least one selected from C) to a saturated hydrocarbon-based emulsifier of C 12 to C 18 in a batch step of emulsion polymerization; (a-2) emulsion polymerization by continuously adding 7 to 12 parts by weight of a vinyl cyan compound monomer under a saturated hydrocarbon emulsifier of C 12 to C 18 at a polymerization conversion rate of 84 to 86%; And (a-3) polymerizing 3 to 6 parts by weight of the vinyl cyan compound monomer in a batch at 93 to 95% of the polymerization conversion rate.
  • a-1 72 to 78 parts by weight of the heat-resistant compound monomer, 8 to 10 parts by weight of the vinyl cyan compound
  • At least one selected from the (meth) acrylic acid alkyl ester monomer and the aromatic vinyl compound monomer (except alphamethylstyrene) may be included, for example, in an amount of 0.1 to 2 parts by weight.
  • the saturated hydrocarbon-based emulsifier of C 12 to C 18 for example, an alkali salt of lauric acid, an alkali salt of stearic acid, an alkali salt of palmitic acid, and the like can be used.
  • the saturated hydrocarbon-based emulsifier of C 12 to C 18 may be included as 1.4 to 2.9 parts by weight, or 2.0 to 2.9 parts by weight in step (a-1) based on 100 parts by weight of the total monomers constituting step (a).
  • the total amount of the emulsifier used in the step (a-1) in step (a-2) may be included in an amount of 2.1 to 4.0 parts by weight, or 2.1 to 3.5 parts by weight, and prepared in step (a) within this range.
  • the average particle diameter of the seeds, the weight average molecular weight (Mw) and the glass transition temperature (Tg) has the effect that can be adjusted appropriately.
  • a mercaptan molecular weight regulator may be applied together with an initiator, if necessary.
  • the mercaptan molecular weight modifier may be included in 0.1 to 0.2 parts by weight based on a total of 100 parts by weight of the total monomer constituting the step (a).
  • the initiator may be used in combination with a water-soluble initiator such as potassium persulfate or a fat-soluble peroxide initiator in combination with the oxidation-reduction catalyst, it is preferable to use a fat-soluble peroxide initiator to polymerize at the initial 70 °C or less.
  • the redox catalyst for example, dextrose, sodium pyrolate, ferrous sulfate, and the like may be used.
  • Specific examples of the redox catalyst include dextrose 0.025 to 100 parts by weight based on 100 parts by weight of the total monomers constituting the step (a). 0.035 parts by weight, sodium pyrrolate 0.05 to 0.06 parts by weight, ferrous sulfate 0.005 to 0.0015 parts by weight.
  • the step (a) may be carried out at 30 to 80 °C as an example, for example in the step (a-1) 50 to 70 °C, (a-2) and (a-3) respectively 70 to 80 °C Can be.
  • the heat resistant compound monomer may be included in an amount of 5 to 60 parts by weight, or 10 to 55 parts by weight based on 100 parts by weight of the total seed and the total monomers constituting the shell.
  • the vinyl cyan compound monomer may be included in an amount of 5 to 20 parts by weight, or 10 to 15 parts by weight, based on 100 parts by weight of the total monomers and the seed constituting the shell.
  • step (b) may include (meth) acrylic acid alkyl ester monomers and aromatic vinyl compound monomers (alphamethyl) within 1 to 5 parts by weight, or 2 to 4 parts by weight of the vinyl cyan compound monomers. Styrene), or (meth) acrylic acid alkyl ester monomers or aromatic vinyl compound monomers (except alphamethylstyrene).
  • (meth) acrylic acid alkyl ester examples include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid decyl ester and (meth ) Acrylic acid lauryl ester may be one or more selected from the group consisting of, in this case there is an excellent effect of mechanical and physical properties balance.
  • the aromatic vinyl compound may be at least one selected from the group consisting of styrene, paramethyl styrene, orthomethyl styrene, paraethyl styrene, and vinyl toluene, for example, in this case, the mechanical properties and the physical properties are excellent in balance.
  • Step (b) is a specific example, (b-1) 30 to 80 parts by weight of the seed, 7 to 45 parts by weight of the heat resistant compound monomer, 3 to 10 parts by weight of the vinyl cyan compound monomer and (meth) acrylic acid alkyl ester and aromatic vinyl compound 0 to 2 parts by weight of one or more selected from (excluding alphamethylstyrene), an emulsifier mixture of C 12 to C 18 saturated hydrocarbon-based emulsifiers and monomeric or polymeric emulsifiers having unsaturated double bonds, and C 6 to C 12 Carrying out a batch polymerization under a molecular weight regulator mixture of a mercaptan molecular weight regulator and a dimer molecular weight regulator; (b-2) At a 83 to 88% polymerization conversion rate, 3 to 10 parts by weight of the heat resistant compound monomer and 3 to 5 parts by weight of the vinyl cyan compound monomer are continuously added under a saturated hydrocarbon emulsifier of C 12 to C 18 to perform emul
  • Step (b) is another example, (b-1) 30 to 80 parts by weight of the seed, 7 to 45 parts by weight of the heat resistant compound monomer, 3 to 10 parts by weight of the vinyl cyan compound monomer and (meth) acrylic acid alkyl ester and aromatic vinyl 0 to 2 parts by weight of at least one selected from compounds (except alphamethylstyrene), an emulsifier mixture of C 12 to C 18 saturated hydrocarbon-based emulsifiers and monomeric or polymeric emulsifiers having unsaturated double bonds, and C 6 to C 12 Carrying out a batch polymerization under a mixture of a mercaptan molecular weight regulator and a molecular weight regulator of a dimer-based molecular weight regulator; (b-2) at a polymerization conversion rate of 84 to 86%, continuously adding 3 to 10 parts by weight of the heat resistant compound monomer and 3 to 5 parts by weight of the vinyl cyan compound monomer under a saturated hydrocarbon emulsifier of C 12 to C 18 to perform
  • At least one selected from the (meth) acrylic acid alkyl ester monomer and the aromatic vinyl compound monomer (except alphamethylstyrene) may be included, for example, in an amount of 0.1 to 2 parts by weight.
  • the molecular weight regulator mixture of C 6 to C 12 mercaptan molecular weight regulator and dimer-based molecular weight regulator is, for example, a weight ratio of 50:50 to 90:10, or 60:40 to 90:10 As a weight ratio, it may be included in 0.2 to 0.5 parts by weight, or 0.2 to 0.4 parts by weight, based on 100 parts by weight of the total monomers and the seed constituting the shell of the step (b), polymerization conversion rate, coagulation content, The reaction time, glass transition temperature and weight average molecular weight and the like can be adjusted appropriately.
  • the dimer-based molecular weight modifier refers to alphamethylstyrene dimers, such as ASMD-alphamethylstyrene, unless otherwise specified.
  • the molecular weight modifier may be applied with an initiator, for example.
  • the initiator may be used in combination with a water-soluble initiator such as potassium persulfate or an oil-soluble peroxide initiator and an oxidation-reduction catalyst.
  • a water-soluble initiator such as potassium persulfate or an oil-soluble peroxide initiator and an oxidation-reduction catalyst.
  • a fat-soluble peroxide initiator is preferable.
  • the redox catalyst may include dextrose, sodium pyrolate, and ferrous sulfate, and specific examples thereof may include 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrolate, and 0.0015 parts by weight of ferrous sulfate. .
  • the emulsifier mixture of a C 12 to C 18 saturated hydrocarbon-based emulsifier and an emulsifier having a low molecular weight unsaturated double bond is, for example, a weight ratio of 50:50 to 90:10, or 60:40 to As a weight ratio of 90:10, it may be included in 0.5 to 1.0 parts by weight, or 0.6 to 0.9 parts by weight, based on 100 parts by weight of the total monomers and the total monomers constituting the shell of the step (b).
  • the emulsifier having a low molecular weight unsaturated double bond may be a monomolecular emulsifier having an unsaturated double bond and copolymerizable with a monomer.
  • an anionic emulsifier or a neutral emulsifier having an allyl group, an alkenyl group, or a propenyl group can be used.
  • Specific examples of the anionic emulsifier having an allyl group include sulfate salts of polyoxyethylene and allylglycidyl nonylphenyl ether, and anionic emulsifiers having the alkenyl group include alkenyl succinate, and the like.
  • neutral emulsifiers examples include ether series of polyoxyethylene allylglycidyl nonylphenyl, and the like.
  • Anionic emulsifiers having a propenyl group include ammonium sulfate salts of polyoxyethylene allylglycidyl nonylpropenyl phenyl ether. have.
  • the saturated hydrocarbon-based emulsifier of C 12 to C 18 is 0.2 to 0.5 parts by weight, based on 100 parts by weight of the total monomers and the seed constituting the shell of the step (b), for example, Or 0.2 to 0.4 parts by weight.
  • Step (b) may be performed at 30 to 80 ° C., for example, at 50 to 70 ° C. in step (b-1), and 70 to 80 ° C. at step (b-2) and (b-3), respectively. Can be.
  • Coagulation of the step (b) polymerization may be, for example, 0.03% by weight or less, 0.018% by weight or less, or 0.012 to 0.018% by weight.
  • the polymer may be aggregated within a temperature range normally used, and may be aggregated at 100 to 130 ° C or 100 to 120 ° C as a specific example.
  • the coagulant used in the coagulation may be used, for example, acid coagulants such as sulfuric acid, phosphoric acid and hydrochloric acid, or salt coagulants such as magnesium sulfate and calcium chloride, alone or in combination, and 0.1 to 5 parts by weight based on 100 parts by weight of the total resin solids. Can be used within the range.
  • acid coagulants such as sulfuric acid, phosphoric acid and hydrochloric acid
  • salt coagulants such as magnesium sulfate and calcium chloride
  • the method of preparing the heat resistant resin can shorten the polymerization reaction time by achieving the above-described two-step polymerization method, achieve polymerization stability, and at the same time, effective aggregation can be performed without deteriorating the physical properties of the heat resistant ABS in the polymer agglomeration process using the same. Efficient
  • a heat-resistant SAN resin obtained by the above-described method has a structure of a heat-resistant compound-vinyl cyan compound seed and a heat-resistant compound-vinyl cyan compound shell surrounding the seed, the weight average molecular weight of 100,000 to 150,000 g / mol, Or 120,000 to 140,000 g / mol and a glass transition temperature of 135 to 145 ° C, or 137 to 142 ° C.
  • the heat-resistant ABS resin composition comprising the heat-resistant SAN resin and ABS resin described above, the heat distortion temperature (HDT) is more than 100 °C, or 105 to 108 °C, the melt index (MI) is 3.5 to 4.0 Resin can be provided.
  • HDT heat distortion temperature
  • MI melt index
  • the SAN resin may be included in 50 to 80 parts by weight, or 60 to 80 parts by weight, and the ABS resin may be included in 50 to 20 parts by weight or 40 to 20 parts by weight.
  • the ABS resin may be, for example, a dry powder type having a rubber content of 30 to 80% by weight, or 40 to 70% by weight.
  • ABS resin composition may include additives such as lubricants and heat stabilizers within the range that does not affect the physical properties, if necessary.
  • a redox catalyst consisting of 0.03 parts by weight of t-butylhydroperoxide, 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrolate, and 0.0015 parts by weight of ferrous sulfate and polymerized for an additional 1 hour.
  • a redox catalyst consisting of 0.03 parts by weight of t-butylhydroperoxide, 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrolate, and 0.0015 parts by weight of ferrous sulfate and polymerized for an additional 1 hour.
  • the polymerization conversion rate of the final polymer was 99.5%, the average particle size was 350 ⁇ , and the glass transition temperature of the sample obtained by drying the obtained latex at 160 ° C. for 30 minutes was 142 ° C., and the weight average molecular weight was 250,000 g /. mol level.
  • the polymerization conversion rate is 1.5 g of the prepared latex in a 150 °C hot air dryer after drying for 15 minutes to determine the total solids content (TSC) to calculate the weight, and calculated the conversion rate in the following formula 1,
  • TSC total solids content
  • the average particle diameter was measured by diluting the prepared latex 1 g in distilled water 100 g, using a light scattering measuring device (Nicomp), and recorded the number average particle diameter of the measuring device.
  • step 1 preparation of S1
  • 75 parts by weight of alphamethylstyrene, 8 parts by weight of acrylonitrile and 2 parts by weight of methyl methacrylate are 2.0 parts by weight of potassium laurate Except that was added and polymerized together, it was carried out in the same manner as in (a) seed polymerization step 1 (manufactured by S1). Physical properties for the latex are shown together in Table 1.
  • step 1 preparation of S1
  • the polymerization is carried out by adding 3.5 parts by weight of potassium lauryl acid, which is initially added in a batch, and the polymerization conversion rate is 85% after which potassium lauryl acid is continuously added in the form of an emulsion.
  • an oxidation-reduction catalyst consisting of 0.02 parts by weight of t-butyl hydroperoxide, 0.035 parts by weight of dextrose, 0.06 parts by weight of sodium pyrolate and 0.0015 parts by weight of ferrous sulfate was collectively administered, and the polymerization was performed while raising the temperature to 70 ° C. for 1 hour. Was carried out. The polymerization conversion was 85% level.
  • an emulsion composed of 100 parts by weight of ion-exchanged water, 10 parts by weight of alphamethylstyrene, 3 parts by weight of acrylonitrile, and 0.3 parts by weight of potassium laurate was heated to 75 ° C. for 1 hour while being continuously added.
  • the polymerization conversion was at 94% level.
  • the polymerization conversion rate of the obtained final polymer was 99.5% level, the weight average molecular weight was 120,000 g / mol, the latex obtained was agglomerated using 1 part by weight of CaCl 2 at 100 to 120 ° C and then dried at 160 ° C for 30 minutes The glass transition temperature was about 137 °C.
  • Example 2 The same experiment as in Example 1 was repeated except that the latex S1, which was initially added, was replaced with S3, and was added in the manner shown in Table 2 below.
  • Example 2 The same experiment as in Example 1 was carried out in the same manner as in Example 1, except that the mercaptan molecular weight regulator was not included, the dimer-based molecular weight regulator was used in 0.5 parts by weight, and was added in the manner shown in Table 2 below. Repeated.
  • step (a-1) 75 parts by weight of alphamethylstyrene and 10 parts by weight of acrylonitrile are added without adding a seed in step (a-1), 1.5 parts by weight of Fatty soap (fatty acid emulsifier) is added, and in step (a-2), acryl
  • Fatty soap fatty acid emulsifier
  • step (a-2) acryl
  • 1.0 part by weight of fatty acid emulsifier was added based on 10 parts by weight of ronitrile, and was added in the manner shown in Table 2.
  • Example 2 The same experiment as in Example 1 was repeated except that the latex S1 was initially added to S4, and was added in the manner shown in Table 2 below.
  • Coagulum (% by weight): The polymerized latex is filtered through a 200 mesh filter, and then the coagulum on the filter is dried in an oven at 80 ° C. to remove moisture. Calculated as a percentage.
  • Glass transition temperature (Tg, °C) After drying the powder obtained through the aggregation for 30 minutes on an oven at 165 °C, the value measured at a temperature rising rate of 10 °C / min through a DSC instrument was recorded.
  • Examples 1 to 3 subjected to the two-step polymerization according to the present invention is Comparative Example 3, which does not perform the two-step polymerization, or Comparative Example 1 using seeds (S3) having an inappropriate particle size range even if carried out. And it was confirmed that to provide a high polymerization conversion and polymerization stability and a high glass transition temperature in a short time compared to 2. In addition, in the case of Comparative Example 4 using the seed (S4) having a very small particle diameter, it was confirmed that the glass transition temperature is somewhat reduced.
  • Fine (fine particle) content (% by weight): Particle diameters were measured using a standard mesh (No. 200 mesh) and expressed as percentages for the passage through 200 mesh.
  • Examples 1 to 3 subjected to the two-step polymerization according to the present invention is Comparative Example 3, which does not perform the two-step polymerization, or Comparative Example 1 using the seed (S3) having an inappropriate particle size range even if performed. And it was confirmed that both the moisture content and the fine particles (fine) content compared to 2.
  • Comparative Example 4 using a seed (S4) having a very small particle diameter as the emulsifier is added in excess, the cohesiveness is lowered under the same flocculant content, and thus, the water content improvement effect is insignificant, and the content of fine particles is fine. It was confirmed that the increase.
  • MI melt index, g / 10 min
  • HDT heat deformation temperature, ° C.
  • Preparation Examples 1 to 3 prepared using Examples 1 to 3 subjected to two-step polymerization according to the present invention were prepared using Comparative Example 3, which was not subjected to two-step polymerization.
  • Example 3 or two-step polymerization impact strength (IMP), melt index (MI) in a short time compared to Comparative Examples 1 and 2 prepared using Comparative Examples 1 and 2 using seeds (S3) having an inappropriate particle size range ) And the heat deflection temperature (HDT) were both improved.
  • Comparative Preparation Example 4 prepared using Comparative Example 4 using a seed (S4) having a very small particle diameter it was confirmed that the impact strength and the heat deflection temperature (HDT) were lowered as the residual low molecular weight material was included in excess.
  • IMP impact strength
  • MI melt index
  • HDT heat deflection temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 내열성 수지의 제조방법, 내열성 수지 및 내열 ABS 수지에 관한 것으로, 본 발명에 따르면 내열성 수지를 단축된 중합시간 하에 높은 중합 전환율과 저감된 중합 응고분(coagulum)으로 제조하고, 응집 시 파인(fine) 함량 또한 저감시킬 수 있는 제조방법을 제공하고, 이로부터 내열성 수지 및 열변형온도와 가공성이 개선된 내열 ABS 수지 조성물을 제공하는 효과가 있다.

Description

내열성 수지의 제조방법, 내열성 수지 및 내열 ABS 수지 조성물
〔출원(들)과의 상호 인용〕
본 출원은 2014년 10월 07일자 한국 특허 출원 제 10-2014-0134717 호 및 2015년 10월 02일자 한국 특허 출원 제 10-2015-0138837 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 내열성 수지의 제조방법, 내열성 수지 및 내열 ABS 수지 조성물에 관한 것으로, 특히 내열성 수지를 단축된 중합시간 하에 높은 중합 전환율과 저감된 중합 응고분(coagulum)으로 제조하고 응집 시 파인(fine) 함량 또한 저감시킬 수 있는 제조방법을 제공하고, 이로부터 내열성 수지 및 열 변형온도와 가공성이 개선된 내열 ABS 수지 조성물의 제공에 관한 것이다.
일반적으로 유화중합 내열 SAN은 높은 Tg와 높은 분자량을 가지는 장점을 가진데 반하여 중합 시 장시간이 소요되고 응집/건조 공정 시 높은 온도와 가압공정으로 인한 작업성 및 생산성이 떨어지는 단점이 있다.
이에 유화제 및 개시제를 증량하여 중합 속도를 개선하는 방법 내지 유기 용제 등을 투입하여 응집성을 개선하는 방법 등이 시도되었으나 유화제 및 개시제의 증량은 첨가제 불순물 및 올리고머의 생성량 증가에 따라 Tg의 저하폭이 커지는 단점이 있고 유기 용제의 투입에 의한 응집성 개선은 유기 용제의 휘발에 의한 작업성 저하 및 잔류 유기 용제로 인한 Tg 저하로 인한 본연의 내열 특성을 저해하는 문제점을 야기할 수 있다.
따라서 중합 속도와 응집성을 확보하면서 본연의 내열 특성을 유지할 수 있는 기술에 대해 개발이 필요하다..
〔선행기술문헌〕
〔특허문헌〕
(특허문헌 1) US4340723 A
(특허문헌 2) US5171814 A
본 발명자들은 이러한 문제점을 해결하도록 예의 연구를 계속한 결과, 내열성 수지를 단축된 중합시간 하에 높은 중합 전환율과 저감된 중합 응고분(coagulum)으로 제조하고 응집 시 파인(fine) 함량 또한 저감시킬 수 있는 기술을 확인하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 중합 속도와 응집성이 확보된 내열성 수지의 제조방법, 및 이로부터 수득된 내열성 수지와 이를 포함하고 열변형온도와 가공성이 개선된 내열 ABS 수지 조성물을 제공하는 것이다.
본 발명에 따르면, (a) 내열성 화합물 단량체 70 내지 80 중량부 및 비닐시안 화합물 단량체 30 내지 20 중량부 하에 유리전이온도(Tg)가 140℃ 이상이고, 평균 입자경이 300 내지 700 Å이며, 중량평균 분자량(Mw)이 200,000 내지 300,000 g/mol인 내열성 화합물-비닐시안 화합물계 시드를 중합하는 단계; 및 (b) 상기 시드를 감싸는 쉘로서, 시드 30 내지 80 중량부 및 내열성 화합물 단량체와 비닐시안 화합물 단량체 70 내지 20 중량부 하에 유리전이온도(Tg)가 135 내지 145 ℃이고, 중량평균 분자량(Mw)이 100,000 내지 150,000 g/mol인 내열성 화합물-비닐시안 화합물계 쉘을 중합하는 단계;를 포함하는 내열성 수지의 제조방법을 제공한다.
또한, 본 발명에 따르면, 내열성 화합물- 비닐시안 화합물 시드 및 상기 시드를 감싸는 내열성 화합물- 비닐시안 화합물 쉘의 구조를 갖고 중량평균 분자량(Mw)이 100,000 내지 150,000 g/mol이고, 유리전이온도(Tg)가 135 내지 145 ℃인 내열성 SAN 수지를 제공한다.
나아가, 본 발명에 따르면, 상술한 내열성 SAN 수지를 포함하고, 열변형온도(HDT)가 100 ℃를 초과하고, 용융지수(MI)가 3.5 내지 4.0인 내열 ABS 수지 조성물을 제공한다.
본 발명에 따르면, 내열성 수지를 단축된 중합시간 하에 높은 중합 전환율과 저감된 중합 응고분(coagulum)으로 제조하고, 응집 시 파인(fine) 함량 또한 저감시킬 수 있는 제조방법을 제공하고, 이로부터 내열성 수지 및 열변형온도와 가공성이 개선된 내열 ABS 수지 조성물을 제공하는 효과가 있다.
이하, 본 발명에 대하여 상세하게 설명한다.
본 발명에 따른 내열성 수지 제조방법은 구체적인 예로 다음 단계로 수행될 수 있다:
(a) 내열성 화합물 단량체 70 내지 80 중량부 및 비닐시안 화합물 단량체 30 내지 20 중량부를 포함하며, 유리전이온도가 140 ℃ 이상이고, 평균 입자경이 300 내지 700 Å이며, 중량평균 분자량이 200,000 내지 300,000 g/mol인 내열성 화합물-비닐시안 화합물계 시드를 중합하는 단계; 및 (b) 상기 시드를 감싸는 쉘로서, 시드 30 내지 80 중량부 및 내열성 화합물 단량체와 비닐시안 화합물 단량체 70 내지 20 중량부를 포함하며, 유리전이온도가 135 내지 145 ℃이고, 중량평균 분자량이 100,000 내지 150,000 g/mol인 내열성 화합물-비닐시안 화합물계 쉘을 중합하는 단계.
본 발명에 따른 내열성 수지 제조방법은 또 다른 예로 다음 단계로 수행될 수 있다:
(a) 내열성 화합물 단량체 75 내지 80 중량부 및 비닐시안 화합물 단량체 25 내지 20 중량부를 포함하며, 유리전이온도가 140 내지 142 ℃이고, 평균 입자경이 350 내지 450 Å이며, 중량평균 분자량이 250,000 내지 300,000 g/mol인 내열성 화합물-비닐시안 화합물계 시드를 중합하는 단계; 및 (b) 상기 시드를 감싸는 쉘로서, 시드 30 내지 80 중량부 및 내열성 화합물 단량체와 비닐시안 화합물 단량체 70 내지 20 중량부를 포함하며, 유리전이온도가 137 내지 142 ℃이고, 중량평균 분자량이 120,000 내지 140,000 g/mol인 내열성 화합물-비닐시안 화합물계 쉘을 중합하는 단계.
상기 (a) 및 (b) 단계의 내열성 화합물은 일례로 알파메틸스티렌일 수 있고, 이 경우 내열성 및 물성 밸런스가 우수한 효과가 있다.
상기 (a) 및 (b) 단계의 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 내열성 및 기계적 물성이 우수한 효과가 있다.
특히, 상기 (a) 단계는 이후 (b) 단계에서 낮은 분자량의 형성에 따른 유리전이온도(Tg)의 저하폭을 상쇄하기 위하여 제시한 유리전이온도 하한치를 충족시키는데 기술적 특징을 갖는다.
상기 (a) 단계에서, 중량평균 분자량(Mw)이 200,000 g/mol 미만이면 유리전이온도의 저하를 유발할 수 있고, 300,000 g/mol을 초과하면 제조된 시드를 이용한 최종 중합체의 성형 가공성이 저하될 수 있다.
상기 (a) 단계에서, 평균 입자경이 300 Å 미만이면 해당 중합체를 얻기 위해 유화제가 과도하게 사용되므로 최종 중합체의 유리전이온도 저하를 유발할 수 있고, 700 Å를 초과하면 후속되는 (b) 단계에서 쉘 중합 시의 중합속도 증가를 기대할 수 없다.
상기 (a) 단계에서, 유리전이온도가 140 ℃ 미만이면, 후속되는 (b) 단계에서 쉘 중합 이후 전체 수지의 유리전이온도가 급격히 저하될 수 있다.
상기 (a) 단계와 (b) 단계의 중합 총 소요시간은 일례로 4시간 이내, 3 내지 4시간, 혹은 3시간 이내로서, (a) 단계와 (b) 단계의 중합 전환율은 각각 일례로, 98.5 % 이상, 99.0 % 이상, 혹은 99.0 내지 99.5 %일 수 있고, 이 범위 내에서 잔류 모노머 함량을 저감시켜 내열성이 우수한 효과가 있다.
상기 (a) 단계는 일례로 상기 비닐시안 화합물 단량체 20 내지 30 중량부 중 2 내지 5 중량부, 혹은 3 내지 5 중량부의 범위 내에서 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)에서 선택된 1종 이상, 혹은 (메트)아크릴산 알킬 에스테르 단량체 또는 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)를 포함할 수 있다.
상기 (메트)아크릴산 알킬 에스테르는 일례로 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, 파라메틸스티렌, 오쏘메틸스티렌, 파라에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 (a) 단계는 구체적인 예로, (a-1) 내열성 화합물 단량체 70 내지 80 중량부, 비닐시안 화합물 단량체 8 내지 10 중량부, (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 일괄 투입하여 유화 중합하는 단계; (a-2) 중합 전환율 83 내지 88 % 지점에서, 비닐시안 화합물 단량체 5 내지 15 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및 (a-3) 중합 전환율 92 내지 96 % 지점에서, 비닐시안 화합물 단량체 2 내지 8 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행될 수 있다.
상기 (a) 단계는 또 다른 예로, (a-1) 내열성 화합물 단량체 72 내지 78 중량부, 비닐시안 화합물 단량체 8 내지 10 중량부, (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 일괄 투입하여 유화 중합하는 단계; (a-2) 중합 전환율 84 내지 86 % 지점에서, 비닐시안 화합물 단량체 7 내지 12 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및 (a-3) 중합 전환율 93 내지 95 % 지점에서, 비닐시안 화합물 단량체 3 내지 6 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행될 수 있다.
상기 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외) 중에서 선택된 1종 이상은 일례로 0.1 내지 2 중량부로 포함될 수 있다.
상기 (a-1) 단계에서, C12 내지 C18의 포화 탄화수소계 유화제로는 일례로, 라우릴산의 알칼리염, 스테아르산의 알칼리염, 팔미트산의 알칼리염 등을 사용할 수 있다.
상기 C12 내지 C18의 포화 탄화수소계 유화제는 (a) 단계를 구성하는 전체 단량체 총 100 중량부를 기준으로, (a-1) 단계에서 1.4 내지 2.9 중량부, 혹은 2.0 내지 2.9 중량부로 포함될 수 있고, (a-2) 단계에서 상기 (a-1) 단계의 유화제 사용량과의 총 합량이 2.1 내지 4.0 중량부, 혹은 2.1 내지 3.5중량부로 포함될 수 있으며, 이 범위 내에서 (a) 단계에서 제조한 시드의 평균 입자경, 중량평균 분자량(Mw) 및 유리전이온도(Tg)를 적절하게 조절할 수 있는 효과가 있다.
상기 (a-1) 단계에서, 필요에 따라 멀캅탄류 분자량 조절제가 개시제와 함께 적용될 수 있다. 상기 멀캅탄류 분자량 조절제는 상기 (a) 단계를 구성하는 전체 단량체 총 100 중량부를 기준으로, 0.1 내지 0.2 중량부로 포함될 수 있다.
상기 개시제는 포타슘 퍼설페이트 등의 수용성 개시제 혹은 지용성 퍼옥사이드 개시제가 산화-환원 촉매와 병용하여 사용될 수 있으며, 반응초기 70 ℃ 이하에서 중합시키기 위해서는 지용성 퍼옥사이드 개시제의 사용이 바람직하다.
상기 산화-환원 촉매는 일례로, 덱스트로즈, 피롤린산 나트륨 및 황산제일철 등을 사용할 수 있고, 구체적인 예로는 상기 (a) 단계를 구성하는 전체 단량체 총 100 중량부를 기준으로, 덱스트로즈 0.025 내지 0.035 중량부, 피롤린산 나트륨 0.05 내지 0.06 중량부, 황산제일철 0.005 내지 0.0015 중량부로 구성될 수 있다.
상기 (a) 단계는 일례로 30 내지 80 ℃에서 수행될 수 있고, 구체적인 예로 (a-1) 단계에서 50 내지 70 ℃, (a-2) 및 (a-3)단계에서 각각 70 내지 80 ℃일 수 있다.
상기 (b) 단계에서, 상기 내열성 화합물 단량체는 일례로 쉘을 구성하는 시드와 전체 단량체 총 100 중량부를 기준으로, 5 내지 60 중량부, 혹은 10 내지 55 중량부로 포함될 수 있다.
상기 (b)단계에서, 상기 비닐시안 화합물 단량체는 일례로 쉘을 구성하는 시드와 전체 단량체 총 100 중량부를 기준으로, 5 내지 20 중량부, 혹은 10 내지 15 중량부로 포함될 수 있다.
또 다른 예로, (b) 단계는 상기 비닐시안 화합물 단량체 5 내지 20 중량부 중 1 내지 5 중량부, 혹은 2 내지 4 중량부의 범위 내에서 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)에서 선택된 1종 이상, 혹은 (메트)아크릴산 알킬 에스테르 단량체 또는 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)를 포함할 수 있다.
상기 (메트)아크릴산 알킬 에스테르는 일례로 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, 파라메틸스티렌, 오쏘메틸스티렌, 파라에틸스티렌 및 비닐톨루엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 기계적 물성 및 물성 밸런스가 우수한 효과가 있다.
상기 (b) 단계는 구체적인 예로, (b-1) 시드 30 내지 80 중량부, 내열성 화합물 단량체 7 내지 45 중량부, 비닐시안 화합물 단량체 3 내지 10 중량부 및 (메트)아크릴산 알킬 에스테르와 방향족 비닐 화합물(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를, C12 내지 C18의 포화 탄화수소계 유화제와 불포화 이중결합을 가진 단량체형 혹은 고분자형 유화제의 유화제 혼합물, 및 C6 내지 C12의 멀캅탄류 분자량 조절제 및 다이머계 분자량 조절제의 분자량 조절제 혼합물 하에 일괄 투입하여 유화 중합하는 단계; (b-2) 중합 전환율 83 내지 88 % 지점에서, 내열성 화합물 단량체 3 내지 10 중량부, 비닐시안 화합물 단량체 3 내지 5 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및 (b-3) 중합 전환율 92 내지 96 % 지점에서, 비닐시안 화합물 단량체 1 내지 5 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행될 수 있다.
상기 (b) 단계는 또 다른 예로, (b-1) 시드 30 내지 80 중량부, 내열성 화합물 단량체 7 내지 45 중량부, 비닐시안 화합물 단량체 3 내지 10 중량부 및 (메트)아크릴산 알킬 에스테르와 방향족 비닐 화합물(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를, C12 내지 C18의 포화 탄화수소계 유화제와 불포화 이중결합을 가진 단량체형 혹은 고분자형 유화제의 유화제 혼합물, 및 C6 내지 C12의 멀캅탄류 분자량 조절제 및 다이머계 분자량 조절제의 분자량 조절제 혼합물 하에 일괄 투입하여 유화 중합하는 단계; (b-2) 중합 전환율 84 내지 86 % 지점에서, 내열성 화합물 단량체 3 내지 10 중량부, 비닐시안 화합물 단량체 3 내지 5 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및
(b-3) 중합 전환율 93 내지 95 % 지점에서, 비닐시안 화합물 단량체 1 내지 5 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행될 수 있다.
상기 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외) 중에서 선택된 1종 이상은 일례로 0.1 내지 2 중량부로 포함될 수 있다.
상기 (b-1) 단계에서, C6 내지 C12의 멀캅탄류 분자량 조절제 및 다이머계 분자량 조절제의 분자량 조절제 혼합물은 일례로 50:50 내지 90:10의 중량비, 혹은 60:40 내지 90:10의 중량비로서, 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부를 기준으로, 0.2 내지 0.5 중량부, 혹은 0.2 내지 0.4 중량부로 포함될 수 있고, 이 범위 내에서 중합 전환율, 응고분, 반응시간, 유리전이온도 및 중량평균 분자량 등을 적절하게 조절 할 수 있는 효과가 있다.
상기 다이머계 분자량 조절제는 달리 특정하지 않는 한, ASMD-알파메틸스티렌 등 알파메틸스티렌 다이머를 지칭한다.
상기 분자량 조절제는 일례로 개시제와 함께 적용될 수 있다. 상기 개시제는 포타슘 퍼설페이트 등의 수용성 개시제 혹은 지용성 퍼옥사이드 개시제와 산화-환원 촉매를 병용하여 사용할 수 있으며, 반응초기 70℃ 이하에서 중합시키기 위해서는 지용성 퍼옥사이드 개시제의 사용이 바람직하다.
상기 산화-환원 촉매는 일례로 덱스트로즈, 피롤린산 나트륨 및 황산제일철 등을 사용할 수 있고, 구체적인 예로는 덱스트로즈 0.035 중량부, 피롤린산 나트륨 0.06 중량부 및 황산제일철 0.0015 중량부로 구성될 수 있다.
상기 (b-1) 단계에서, C12 내지 C18의 포화 탄화수소계 유화제 및 저분자량의 불포화 이중결합을 갖는 유화제의 유화제 혼합물은 일례로 50:50 내지 90:10의 중량비, 혹은 60:40 내지 90:10의 중량비로서, 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부를 기준으로, 0.5 내지 1.0 중량부, 혹은 0.6 내지 0.9 중량부로 포함될 수 있다.
상기 저분자량의 불포화 이중결합을 갖는 유화제는 불포화 이중결합을 가지고 단량체와 공중합이 가능한 단분자성 유화제일 수 있고, 일례로, 알릴기, 알케닐기, 또는 프로페닐기를 갖는 음이온계 유화제 혹은 중성계 유화제를 사용할 수 있다. 구체적인 예로, 상기 알릴기를 갖는 음이온계 유화제는 폴리옥시에틸렌, 알릴글리시딜 노닐페닐 에테르의 설페이트염 등이 있고, 상기 알케닐기를 갖는 음이온계 유화제로는 알케닐 호박산염 등이 있으며, 상기 알릴기를 가지는 중성계 유화제로는 폴리옥시에틸렌 알릴글리시딜 노닐페닐의 에테르 계열 등이 있고, 상기 프로페닐기를 갖는 음이온계 유화제로는 폴리옥시에틸렌 알릴글리시딜 노닐프로페닐 페닐에테르의 암모늄 설페이트염 등이 있다.
상기 (b-2) 단계에서, 상기 C12 내지 C18의 포화 탄화수소계 유화제는 일례로 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부를 기준으로, 0.2 내지 0.5 중량부, 혹은 0.2 내지 0.4 중량부로 포함될 수 있다.
상기 (b) 단계는 일례로 30 내지 80 ℃에서 수행될 수 있고, 구체적인 예로 (b-1) 단계에서 50 내지 70 ℃, (b-2) 및 (b-3) 단계에서 각각 70 내지 80 ℃일 수 있다.
상기 (b) 단계 중합의 응고분(coagulum)은 일례로 0.03 중량% 이하, 0.018 중량% 이하, 혹은 0.012 내지 0.018 중량%일 수 있다.
또한, 상기 중합물을 통상 사용되는 온도 범위 내에서 응집할 수 있고, 구체적인 예로 100 내지 130 ℃, 혹은 100 내지 120 ℃에서 응집할 수 있다.
상기 응집에 사용되는 응집제는 일례로 황산, 인산 및 염산 등과 같은 산 응집제 또는 황산 마그네슘 및 염화 칼슘 등과 같은 염 응집제를 단독 또는 혼합하여 사용할 수 있고, 전체 수지 고형분 100 중량부 기준으로 0.1 내지 5 중량부 범위 내로 사용할 수 있다.
상기 내열성 수지의 제조방법은 상기한 2 단계 중합 방법의 적용으로 중합 반응시간을 단축하고, 중합 안정성을 달성하며, 동시에 이를 이용한 중합체의 응집 공정상에서 내열 ABS의 물성 저하 없이 효과적인 응집을 수행할 수 있으므로 효율적이다.
본 발명에서는 상술한 방법에 의해 수득되는 내열성 SAN 수지로서, 내열성 화합물- 비닐시안 화합물 시드 및 상기 시드를 감싸는 내열성 화합물- 비닐시안 화합물 쉘의 구조를 갖고, 중량평균 분자량이 100,000 내지 150,000 g/mol, 혹은 120,000 내지 140,000 g/mol이며, 유리전이온도가 135 내지 145℃, 혹은 137 내지 142 ℃인 수지를 제공할 수 있다.
또한, 본 발명에서는 상술한 내열성 SAN 수지 및 ABS 수지를 포함하는 내열 ABS 수지 조성물로서, 열변형온도(HDT)가 100 ℃ 초과, 혹은 105 내지 108 ℃이고, 용융지수(MI)가 3.5 내지 4.0인 수지를 제공할 수 있다.
상기 SAN 수지는 일례로, 50 내지 80 중량부, 혹은 60 내지 80 중량부로 포함될 수 있고, 상기 ABS 수지는 일례로 50 내지 20 중량부, 혹은 40 내지 20 중량부로 포함될 수 있다.
상기 상기 ABS 수지는 일례로 고무함량이 30 내지 80 중량%, 혹은 40 내지 70 중량%인 건조 분체 타입일 수 있다.
또한, 상기 ABS 수지 조성물은 필요에 따라 활제, 열안정제 등의 첨가제를 물성에 영향을 미치지 않는 범위 내에서 포함할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1 내지 3 및 비교예 1 내지 4
(a) 시드 중합단계 1(S1 제조)
질소 치환 반응기에 이온교환수 150 중량부, 알파메틸스티렌 75 중량부, 아크릴로니트릴 10 중량부를, 라우릴산칼륨 2.5 중량부와 50 ℃에서 30분간 교반한 다음 t-부틸 하이드로퍼옥사이드 0.02 중량부, 덱스트로즈 0.035 중량부, 피롤린산 나트륨 0.06 중량부 및 황산제일철 0.0015 중량부로 구성된 산화환원 촉매를 일괄 투여하고 70 ℃로 1시간 동안 승온하면서 중합을 실시하였다. 상기 중합 전환율은 85 % 수준이었다.
그런 다음 이온교환수 100 중량부, 아크릴로니트릴 10 중량부 및 라우릴산칼륨 1.0 중량부로 구성된 유화액을 75 ℃까지 1시간 30분 동안 승온하면서 동시에 연속 투입하였다. 상기 중합 전환율은 94 % 수준이었다.
이어서 아크릴로니트릴 5 중량부를 t-부틸하이드로퍼옥사이드 0.03 중량부, 덱스트로즈 0.035 중량부, 피롤린산나트륨 0.06 중량부, 황산제일철 0.0015 중량부로 구성된 산화환원 촉매와 함께 일괄 투여하고 추가적으로 1시간 동안 중합을 실시하였다.
최종 중합체의 중합 전환율은 99.5 % 수준이었고, 평균 입자경은 350Å 수준이었으며, 얻어진 라텍스를 160 ℃에서 30분간 건조한 샘플에 대한 유리전이온도 측정결과 유리전이온도는 142 ℃이었고, 중량평균 분자량은 250,000 g/mol 수준이었다.
참고로, 상기 중합 전환율 측정은 제조된 라텍스 1.5 g을 150 ℃ 열풍 건조기 내에서 15분 간 건조 후 무게를 측정하여 총 고형분 함량(TSC)을 구하고, 하기 수학식 1로 중합 전환율을 계산하였고, 상기 평균 입자경 측정은 제조된 라텍스 1 g을 증류수 100 g에 희석 시킨 후, 이를 광산란방식의 측정기기(Nicomp)를 이용하여 측정하고, 해당 측정 기기의 수평균 입자경을 기록하였다.
Figure PCTKR2015010529-appb-M000001
(a) 시드 중합단계 2(S2 제조)
상기 (a) 시드 중합단계 1(S1 제조)에서, 반응 초기 일괄 투입되는 단량체로서 알파메틸스티렌 75 중량부, 아크릴로니트릴 8 중량부 및 메틸메타크릴레이트 2 중량부를 라우릴산칼륨 2.0 중량부와 함께 투입하여 중합시킨 것을 제외하고는 상기 (a) 시드 중합단계 1(S1 제조)과 동일한 방법으로 실시하였다. 해당 라텍스에 대한 물성은 표 1에 함께 나타내었다.
(a) 시드 중합단계 3(S3 제조)
상기 (a) 시드 중합단계 2(S2 제조)에서, 반응 초기 일괄 투입되는 단량체로서 알파메틸스티렌 75 중량부, 아크릴로니트릴 8 중량부 및 메틸메타크릴레이트 2 중량부를 라우릴산칼륨 1.5 중량부와 함께 투입하여 중합시키고, 유화액의 형태로 연속 투입될 때 사용되는 라우릴산 칼륨의 함량을 0.5 중량부 투입한 것을 제외하고는 상기 (a) 시드 중합단계 2(S2 제조)와 동일한 방법으로 실시하였다. 해당 라텍스에 대한 물성은 표 1에 함께 나타내었다.
(a) 시드 중합단계 4(S4 제조)
상기 (a) 시드 중합단계 1(S1 제조)에서, 반응 초기 일괄 투입되는 라우릴산칼륨을 3.5 중량부로 투입하여 중합시키고, 중합 전환율은 85 % 이후, 유화액의 형태로 연속 투입되는 라우릴산칼륨을 1.5 중량부로 투입한 것을 제외하고는 상기 (a) 시드 중합단계 1(S1 제조)와 동일한 방법으로 실시하였다. 해당 라텍스에 대한 물성은 표 1에 함꼐 나타내었다.
구분 S1 S2 S3 S4
(a-1) 단계(일괄 투입) 알파메틸스티렌(wt%)* 75 75 75 75
아크릴로니트릴(wt%)* 10 8 8 10
메틸메타크릴레이트(wt%)* - 2 2 -
(a-2) 단계(연속 투입) 아크릴로니트릴(wt%)* 10 10 10 10
(a-3) 단계(일괄 투입) 아크릴로니트릴(wt%)* 5 5 5 5
유화제 (a-1) 단계내 사용량(phr:*100wt% 기준)/(a-2) 단계내 사용량(phr:*100wt% 기준) 2.5/1.0 2.5/1.0 1.5/0.5 3.5/1.5
중합 전환율 % 99.5 99.0 99.0 99.9
평균 입자경 350 450 800 250
중량평균 분자량 g/mol 250,000 250,000 200,000 250,000
유리전이온도 142 140 140 140
b) 쉘 중합단계
실시예 1
질소 치환된 반응기에, 상기 (a) 시드 중합단계 1에서 중합된 라텍스(고형분 기준) S1 30 중량부에 대하여, 이온교환수 150 중량부, 알파메틸스티렌 45 중량부, 아크릴로니트릴 10 중량부를 라우릴산칼륨 0.5 중량부 및 알케닐 석시네이트칼륨(상품명: Latemul ASK) 0.2 중량부, n-도데실 멀캅탄 0.3 중량부 및 알파메틸스티렌 다이머 0.2 중량부와 함께, 일괄 투입하여 50 ℃에서 30분간 교반 후, t-부틸 하이드로퍼옥사이드 0.02 중량부, 덱스트로즈 0.035 중량부, 피롤린산 나트륨 0.06 중량부 및 황산제일철 0.0015 중량부로 구성된 산화-환원 촉매를 일괄 투여하고 70 ℃로 1시간 동안 승온하면서 중합을 실시하였다. 상기 중합 전환율은 85 % 수준이었다.
그런 다음 이온교환수 100 중량부, 알파메틸스티렌 10 중량부, 아크릴로니트릴 3 중량부 및 라우릴산 칼륨 0.3 중량부로 구성된 유화액을 75 ℃까지 1시간 동안 승온하면서 동시에 연속 투입하였다. 상기 중합 전환율은 94 % 수준이었다.
이어서 아크릴로니트릴 2 중량부를, t-부틸 하이드로퍼옥사이드 0.03 중량부, 덱스트로즈 0.035 중량부, 피롤린산 나트륨 0.06 중량부 및 황산제일철 0.0015 중량부로 구성된 산화-환원 촉매와 함께 일괄 투여하고 추가적으로 1시간 동안 중합을 실시하였다.
수득된 최종 중합체의 중합전환율은 99.5 % 수준이었고, 중량평균 분자량은 120,000 g/mol이었으며, 수득된 라텍스를 100 내지 120 ℃에서 CaCl2 1 중량부를 사용하여 응집한 다음 160 ℃에서 30분 간 건조한 샘플에 대한 측정결과 유리전이온도는 137 ℃ 수준이었다.
실시예 2
실시예 1과 동일한 방법을 통해 실시하되, 초기 투입되는 라텍스 S1을 80 중량부(고형분 기준) 투입하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
실시예 3
실시예 2와 동일한 방법을 통해 실시하되, 초기 투입되는 라텍스 S1을 S2로 대체하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
비교예 1
실시예 1과 동일한 방법을 통해 실시하되, 초기 투입되는 라텍스 S1을 S3으로 대체하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
비교예 2
실시예 1과 동일한 방법을 통해 실시하되, 멀캅탄류 분자량 조절제를 미포함하고, 다이머계 분자량 조절제를 0.5 중량부로 사용하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
비교예 3
실시예 1과 동일한 방법을 통해 실시하되, 초기 투입되는 라텍스 S1을 미포함하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
구체적으로는, (a-1) 단계에서 시드 투입 없이 알파메틸스티렌 75 중량부 및 아크릴로니트릴 10 중량부를 투입하고, Fatty soap(지방산 유화제) 1.5 중량부를 투입하고, (a-2) 단계에서 아크릴로니트릴 10 중량부에 대하여 지방산 유화제 1.0 중량부를 포함하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
비교예 4
실시예 1과 동일한 방법을 통해 실시하되, 초기 투입되는 라텍스 S1을 S4로 대체하고, 하기 표 2에 나타낸 방식으로 투입한 것을 제외하고는 실시예 1과 동일한 실험을 반복하였다.
[시험예]
상기 실시예 1 내지 3 및 비교예 1 내지 4에서 수득된 SAN 수지에 대한 물성을 다음과 같이 측정하고, 그 결과를 하기 표 2에 함께 정리하였다.
측정 방법
* 응고분(coagulum, 중량%): 중합을 마친 라텍스를 200 메쉬(mesh)의 필터를 통해 거른 후, 필터 상에 걸린 응고물을 80 ℃의 오븐에서 건조하여 수분을 제거한 것을 전체 투입된 모노머 총량에 대해 백분율로 계산하였다.
* 유리전이온도(Tg, ℃): 응집을 통해 얻어진 파우더를 165 ℃의 오븐 상에 30분 간 건조한 후, DSC 기기를 통해 승온 속도 10 ℃/min 하에 측정한 값을 기록하였다.
구분 실시예 비교예
1 2 3 1 2 3 4
(b-1) 단계(일괄 투입) 시드(wt%)* 30(S1) 80(S1) 80(S2) 30(S3) 30(S3) - 30(S4)
알파메틸스티렌(wt%)* 45 7 7 45 45 75 45
아크릴로니트릴(wt%)* 10 3 3 10 10 10 10
(b-2) 단계(연속 투입) 알파메틸스티렌(wt%)* 10 3 3 10 10 10 10
아크릴로니트릴(wt%)* 3 5 5 3 3 - 3
(b-3) 단계(일괄 투입) 아크릴로니트릴(wt%)* 2 2 2 2 2 5 2
멀캅탄류 분자량조절제 Phr(*100wt% 기준) 0.3 0.3 0.3 0.3 - 0.2 0.3
다이머계 분자량 조절제 Phr(*100wt% 기준) 0.2 0.2 0.2 0.2 0.5 - 0.2
중합 전환율 % 99.5 99.2 98.7 95.2 94.3 96.5 99.7
응고분 중량% 0.014 0.012 0.018 0.320 0.470 0.270 0.01
반응시간 Hr 3.0 3.0 3.0 6.0 8.0 12.0 3.0
중량평균 분자량 g/mol 120,000 140,000 130,000 80,000 100,000 220,000 130,000
유리전이온도 137 142 140 132 118 135 135
상기 표 2에서 보듯이, 본 발명에 따라 2 단계 중합을 실시한 실시예 1 내지 3은 2 단계 중합을 실시하지 않은 비교예 3, 혹은 실시하더라도 부적절한 입경 범위를 갖는 시드(S3)를 사용한 비교예 1 및 2 대비 단시간에 높은 중합 전환율과 중합 안정성 및 높은 유리전이온도를 제공하는 것을 확인할 수 있었다. 또한, 입경이 매우 작은 시드(S4)를 사용한 비교예 4의 경우, 유리전이온도가 다소 저하되는 것을 확인할 수 있었다.
[응집 실험]
또한, 상기 실시예 1 내지 3 및 비교예 1 내지 4의 내열성 SAN 수지에 대한 응집 물성을 다음의 측정 방법에 따라 측정하고, 그 결과를 하기표 3에 함께 정리하였다.
측정 방법
* 함수율(%): 수분 측정기(METTLER/TOLEDO HR83-P)를 사용하여 150 ℃에서 완전 건조 후 무게변화를 측정하였다.
* 파인(fine, 미세입자) 함량(중량%): 표준 망체(No. 200 mesh)를 사용하여 입경을 측정하고, 200 메쉬(mesh) 통과분에 대한 것을 백분율로 나타내었다.
응집 물성 실시예 비교예
1 2 3 1 2 3 4
함수율(%) 27 30 32 28 25 75 45
파인 함량(중량 %) 10 18 15 5 2 32 20
상기 표 3에서 보듯이, 본 발명에 따라 2 단계 중합을 실시한 실시예 1 내지 3은 2 단계 중합을 실시하지 않은 비교예 3, 혹은 실시하더라도 부적절한 입경 범위를 갖는 시드(S3)를 사용한 비교예 1 및 2 대비 함수율과 미세입자(fine) 함량이 모두 개선되는 것을 확인할 수 있었다. 또한, 입경이 매우 작은 시드(S4)를 사용한 비교예 4의 경우, 유화제가 과량 첨가됨에 따라 동일한 응집제 함량 하에서 응집성이 저하되고, 이에 따라 함수율 개선 효과가 미미하며, 미세입자(fine)의 함량이 증가된 것을 확인할 수 있었다.
제조예 1 내지 3 및 비교제조예 1 내지 4
상기 실시예 1 내지 3 및 비교예 1 내지 4에서 수득된 SAN 수지 75 중량부를 고무함량이 60 중량%인 ABS 건조 분체 27.5 중량부에 적용하고 내부 활제 1 중량부 및 열안정제 0.1 중량부를 혼합하여 230 ℃에서 압출가공하여 얻어진 펠렛을 이용하여 사출과정을 통해 물성 측정을 위한 시편을 제조하였다.
각 시편을 하기 내열 ABS 평가 기준에 따라 구체적으로 다음과 같이 측정하고 그 결과를 하기 표 4에 함께 정리하였다.
측정 방법
* IMP(아이조드 충격강도, 1/4"): 두께 1/4"인 시편을 이용하여 ASTM D256의 방법에 따라 측정하였다.
* MI(용융지수, g/10 min): 220 ℃, 10 kg 하중 조건 하에 ASTM D1238 방법에 따라 측정하였다.
* HDT(열변형온도, ℃): ASTM D648 조건 하에 측정하였다.
내열 ABS 물성 제조예 비교제조예
1 2 3 1 2 3 4
IMP(1/4") 17 18 17 14 15 18 16
MI(g/10 min) 4.0 3.5 3.7 4.5 4.3 2.5 4.5
HDT(℃) 105 108 106 97 95 100 102
상기 표 4에서 보듯이, 본 발명에 따라 2 단계 중합을 실시한 실시예 1 내지 3을 사용하여 제조한 제조예 1 내지 3은, 2 단계 중합을 실시하지 않은 비교예 3을 사용하여 제조한 비교제조예 3, 혹은 2 단계 중합을 실시하더라도 부적절한 입경 범위를 갖는 시드(S3)를 사용한 비교예 1 및 2를 사용하여 제조한 비교제조예 1 및 2 대비 단시간에 충격강도(IMP), 용융지수(MI) 및 열변형온도(HDT)가 모두 개선된 것을 확인할 수 있었다. 또한, 입경이 매우 작은 시드(S4)를 사용한 비교예 4를 사용하여 제조한 비교제조예 4의 경우 잔류되는 저분자 물질이 과량으로 포함됨에 따라 충격강도 및 열변형온도(HDT)가 저하되는 것을 확인할 수 있었다.
이 같은 결과들은, 중합에 시드 입자를 적용함으로써 새로운 입자형성을 제한하고, 이에 따른 불순물의 함량을 최소화하며, 동시에 1 단계 중합 실시 대비 부분적으로 응집성을 개선할 수 있는 단계의 중합을 추가함으로써 유리전이온도 저하 폭을 최소화함에 기인한 것으로 유추된다.

Claims (16)

  1. (a) 내열성 화합물 단량체 70 내지 80 중량부 및 비닐시안 화합물 단량체 30 내지 20 중량부를 포함하며, 유리전이온도가 140 ℃ 이상이고, 평균 입자경이 300 내지 700 Å이며, 중량평균 분자량이 200,000 내지 300,000 g/mol인 내열성 화합물-비닐시안 화합물계 시드를 중합하는 단계; 및
    (b) 상기 시드를 감싸는 쉘로서, 시드 30 내지 80 중량부 및 내열성 화합물 단량체와 비닐시안 화합물 단량체 70 내지 20 중량부를 포함하며, 유리전이온도가 135 내지 145 ℃이고, 중량평균 분자량이 100,000 내지 150,000 g/mol인 내열성 화합물-비닐시안 화합물계 쉘을 중합하는 단계;를 포함하는 것을 특징으로 하는 내열성 수지의 제조방법.
  2. 제1항에 있어서,
    상기 (a) 단계와 (b) 단계의 중합 총 소요시간은 4시간 이내로서, (a) 단계와 (b) 단계의 중합 전환율은 각각 98.5 % 이상인 것을 특징으로 하는 내열성 수지의 제조방법.
  3. 제1항에 있어서,
    상기 (a) 단계는 비닐시안 화합물 단량체 20 내지 30 중량부 중 2 내지 5 중량부의 범위 내에서 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 내열성 수지의 제조방법.
  4. 제1항에 있어서,
    상기 (a) 단계는 (a-1) 내열성 화합물 단량체 70 내지 80 중량부, 비닐시안 화합물 단량체 8 내지 10 중량부, (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 일괄 투입하여 유화 중합하는 단계;
    (a-2) 중합 전환율 83 내지 88 % 지점에서, 비닐시안 화합물 단량체 5 내지 15 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및
    (a-3) 중합 전환율 92 내지 96 % 지점에서, 비닐시안 화합물 단량체 2 내지 8 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행되는 것을 특징으로 하는 내열성 수지의 제조방법.
  5. 제4항에 있어서,
    상기 (a-1) 단계의 유화제는 상기 (a) 단계를 구성하는 전체 단량체 총 100 중량부 기준, 1.4 내지 2.9 중량부로 포함되고, (a-2) 단계의 유화제는 상기 (a-1) 단계의 유화제 사용량과의 총 합량이 2.1 내지 4.0 중량부 함량 범위 내로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  6. 제1항에 있어서,
    상기 (b) 단계에서, 상기 내열성 화합물 단량체는 쉘을 구성하는 시드와 전체 단량체 총 100 중량부 기준, 5 내지 60 중량부로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  7. 제1항에 있어서,
    상기 (b) 단계에서, 상기 비닐시안 화합물 단량체는 쉘을 구성하는 시드와 전체 단량체 총 100 중량부 기준, 5 내지 20 중량부로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  8. 제7항에 있어서,
    상기 (b) 단계는 비닐시안 화합물 단량체 5 내지 20 중량부 중 1 내지 5 중량부의 범위 내에서 (메트)아크릴산 알킬 에스테르 단량체 및 방향족 비닐 화합물 단량체(알파메틸스티렌 제외)에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 내열성 수지의 제조방법.
  9. 제1항에 있어서,
    상기 (b) 단계는, (b-1) 시드 30 내지 80 중량부, 내열성 화합물 단량체 7 내지 45 중량부, 비닐시안 화합물 단량체 3 내지 10 중량부 및 (메트)아크릴산 알킬 에스테르와 방향족 비닐 화합물(알파메틸스티렌 제외) 중에서 선택된 1종 이상 0 내지 2 중량부를, C12 내지 C18의 포화 탄화수소계 유화제와 불포화 이중결합을 가진 단량체형 혹은 고분자형 유화제의 유화제 혼합물, 및 C6 내지 C12의 멀캅탄류 분자량 조절제 및 다이머계 분자량 조절제의 분자량 조절제 혼합물 하에 일괄 투입하여 유화 중합하는 단계;
    (b-2) 중합 전환율 83 내지 88 % 지점에서, 내열성 화합물 단량체 3 내지 10 중량부, 비닐시안 화합물 단량체 3 내지 5 중량부를 C12 내지 C18의 포화 탄화수소계 유화제 하에 연속 투입하여 유화 중합하는 단계; 및
    (b-3) 중합 전환율 92 내지 96 % 지점에서, 비닐시안 화합물 단량체 1 내지 5 중량부를 일괄 투입하여 중합하는 단계;를 포함하여 수행되는 것을 특징으로 하는 내열성 수지의 제조방법.
  10. 제9항에 있어서,
    상기 (b-1) 단계에서, C6 내지 C12의 멀캅탄류 분자량 조절제 및 다이머계 분자량 조절제의 분자량 조절제 혼합물은 50:50 내지 90:10의 중량비로서, 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부 기준, 0.2 내지 0.5 중량부로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  11. 제1항에 있어서,
    상기 (b-1) 단계에서, C12 내지 C18의 포화 탄화수소계 유화제 및 저분자량의 불포화 이중결합을 갖는 유화제의 유화제 혼합물은 50:50 내지 90:10의 중량비로서, 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부 기준, 0.5 내지 1.0 중량부로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  12. 제1항에 있어서,
    상기 (b-2) 단계에서, C12 내지 C18의 포화 탄화수소계 유화제는 상기 (b) 단계의 쉘을 구성하는 시드와 전체 단량체 총 100 중량부 기준, 0.2 내지 0.5 중량부로 포함되는 것을 특징으로 하는 내열성 수지의 제조방법.
  13. 제1항에 있어서,
    상기 (b) 단계 중합의 응고분(coagulum)은 0.03 중량% 이하인 것을 특징으로 하는 내열성 수지의 제조방법.
  14. (a) 내열성 화합물 단량체 70 내지 80 중량부 및 비닐시안 화합물 단량체 30 내지 20 중량부를 포함하며, 유리전이온도가 140 ℃ 이상이고, 평균 입자경이 300 내지 700 Å이며, 중량평균 분자량이 200,000 내지 300,000 g/mol인 내열성 화합물-비닐시안 화합물계 시드; 및
    (b) 상기 시드를 감싸는 쉘로서, 시드 30 내지 80 중량부 및 내열성 화합물 단량체와 비닐시안 화합물 단량체 70 내지 20 중량부를 포함하며, 유리전이온도가 135 내지 145 ℃이고, 중량평균 분자량이 100,000 내지 150,000 g/mol인 내열성 화합물-비닐시안 화합물계 쉘;을 포함하는 것을 특징으로 하는 내열성 SAN 수지.
  15. 제14항에 있어서,
    상기 내열성 수지는 중량평균 분자량이 100,000 내지 150,000 g/mol이며, 유리전이온도가 135 내지 145 ℃인 것을 특징으로 하는 내열성 SAN 수지.
  16. 제14항의 내열성 SAN 수지 및 ABS 수지를 포함하고, 열변형온도(HDT)가 100 ℃ 초과이고, 용융지수(MI)가 3.5 내지 4.0인 것을 특징으로 하는 내열 ABS 수지 조성물.
PCT/KR2015/010529 2014-10-07 2015-10-06 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물 WO2016056810A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016553199A JP6304907B2 (ja) 2014-10-07 2015-10-06 耐熱性樹脂の製造方法、耐熱性樹脂及び耐熱abs樹脂組成物
US15/022,550 US9845370B2 (en) 2014-10-07 2015-10-06 Method of preparing heat-resistant resin, heat-resistant resin and heat-resistant ABS resin composition
CN201580002156.6A CN105705533B (zh) 2014-10-07 2015-10-06 制备耐热树脂的方法,耐热树脂和耐热abs树脂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140134717 2014-10-07
KR10-2014-0134717 2014-10-07
KR10-2015-0138837 2015-10-02
KR1020150138837A KR101706471B1 (ko) 2014-10-07 2015-10-02 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물

Publications (1)

Publication Number Publication Date
WO2016056810A1 true WO2016056810A1 (ko) 2016-04-14

Family

ID=55916805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010529 WO2016056810A1 (ko) 2014-10-07 2015-10-06 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물

Country Status (5)

Country Link
US (1) US9845370B2 (ko)
JP (1) JP6304907B2 (ko)
KR (1) KR101706471B1 (ko)
CN (1) CN105705533B (ko)
WO (1) WO2016056810A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039031B1 (ko) 2016-12-09 2019-11-01 주식회사 엘지화학 열가소성 수지의 제조방법, 이를 포함하는 열가소성 수지 조성물 및사출 성형품의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920178A (en) * 1988-03-05 1990-04-24 Bayer Aktiengesellschaft Seeded emulsion polymerization of α-methylstyrene and acrylonitrile
US4972032A (en) * 1987-12-17 1990-11-20 The Dow Chemical Company Process for preparing copolymers of alpha-methylstyrene and acrylonitrile
KR20090052364A (ko) * 2006-08-18 2009-05-25 바스프 에스이 아크릴로니트릴, 스티렌 및 부타디엔 기재의 열가소성 성형조성물
KR20100062418A (ko) * 2008-12-02 2010-06-10 주식회사 엘지화학 내열성이 우수한 알파메틸스티렌계 공중합체 및 이의 제조방법
KR20130090307A (ko) * 2012-02-03 2013-08-13 주식회사 엘지화학 아크릴계 충격보강제 및 이를 포함하는 열가소성 수지 조성물

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8000355A (nl) 1980-01-19 1981-08-17 Stamicarbon Werkwijze voor het bereiden van een polymeer van alfa-methylstyreen.
JPS578208A (en) * 1980-06-16 1982-01-16 Kanegafuchi Chem Ind Co Ltd High-alpha-methylstyrene content copolyymer, its production and composition containing the same
US5171814A (en) 1980-06-16 1992-12-15 Kanegafuchi Kagaku Kogyo Alpha-methylstyrene high-content copolymers, a process for their production and thermoplastic resin compositions containing alpha-methylstyrene high-content copolymers
JPS5986613A (ja) * 1982-11-10 1984-05-18 Ube Saikon Kk α−メチルスチレン共重合体の製造方法
JPH0699492B2 (ja) * 1984-06-05 1994-12-07 日本合成ゴム株式会社 耐熱性樹脂の製造方法
US4874829A (en) * 1987-05-22 1989-10-17 Monsanto Company Process for preparing α-methylstyrene-acrylonitrile polymers
JPH0830082B2 (ja) * 1987-07-09 1996-03-27 住友ダウ株式会社 熱可塑性樹脂の製造方法
DE3806075A1 (de) * 1988-02-26 1989-09-07 Bayer Ag Terpolymerisatlatices
KR0131573B1 (ko) * 1993-09-14 1998-04-13 성재갑 내열성 공중합체의 제조방법
KR100417066B1 (ko) * 2001-01-08 2004-02-05 주식회사 엘지화학 내열성이 우수한 열가소성 수지의 제조방법
JP4364539B2 (ja) * 2003-03-31 2009-11-18 日本エイアンドエル株式会社 熱板融着用樹脂組成物および車両用灯具のランプハウジング成形品
CN101020730A (zh) * 2006-02-15 2007-08-22 宜兴市丽莱化工有限公司 耐热共聚物的合成方法
CN101503548B (zh) * 2008-02-04 2010-12-15 中国石油天然气股份有限公司 一种提高了光泽度的耐热树脂组合物及制备方法
CN101503555B (zh) * 2008-02-04 2011-04-20 中国石油天然气股份有限公司 一种耐热树脂组合物及制备方法
CN102030958B (zh) * 2010-11-26 2013-04-03 上海纳米技术及应用国家工程研究中心有限公司 耐热型asa树脂组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972032A (en) * 1987-12-17 1990-11-20 The Dow Chemical Company Process for preparing copolymers of alpha-methylstyrene and acrylonitrile
US4920178A (en) * 1988-03-05 1990-04-24 Bayer Aktiengesellschaft Seeded emulsion polymerization of α-methylstyrene and acrylonitrile
KR20090052364A (ko) * 2006-08-18 2009-05-25 바스프 에스이 아크릴로니트릴, 스티렌 및 부타디엔 기재의 열가소성 성형조성물
KR20100062418A (ko) * 2008-12-02 2010-06-10 주식회사 엘지화학 내열성이 우수한 알파메틸스티렌계 공중합체 및 이의 제조방법
KR20130090307A (ko) * 2012-02-03 2013-08-13 주식회사 엘지화학 아크릴계 충격보강제 및 이를 포함하는 열가소성 수지 조성물

Also Published As

Publication number Publication date
US20160297909A1 (en) 2016-10-13
KR20160041780A (ko) 2016-04-18
CN105705533B (zh) 2018-04-24
US9845370B2 (en) 2017-12-19
JP6304907B2 (ja) 2018-04-04
CN105705533A (zh) 2016-06-22
KR101706471B1 (ko) 2017-02-13
JP2016535165A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
WO2016089042A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2013115610A1 (ko) Asa계 그라프트 공중합체 조성물
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2016056810A1 (ko) 내열성 수지의 제조방법, 내열성 수지 및 내열 abs 수지 조성물
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2019103369A2 (ko) 그라프트 공중합체 분말의 제조방법
WO2016099129A1 (ko) 디엔계 고무 중합체의 제조방법, 이로부터 제조된 디엔계 고무 중합체 및 이를 포함하는 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2015030415A1 (ko) 투명 abs 수지 및 투명 abs 수지 조성물
WO2020130400A1 (ko) 열가소성 수지 조성물
WO2016105171A1 (ko) 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2018110825A2 (ko) 열가소성 수지의 제조방법
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021033953A1 (ko) 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이 그라프트 공중합체를 포함하는 열가소성 수지 조성물
WO2013105737A1 (ko) 열 안정화제 프리 열가소성 수지 조성물 및 그 제조방법
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553199

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022550

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849263

Country of ref document: EP

Kind code of ref document: A1