WO2016051935A1 - 半導体素子用のエピタキシャル基板およびその製造方法 - Google Patents

半導体素子用のエピタキシャル基板およびその製造方法 Download PDF

Info

Publication number
WO2016051935A1
WO2016051935A1 PCT/JP2015/070755 JP2015070755W WO2016051935A1 WO 2016051935 A1 WO2016051935 A1 WO 2016051935A1 JP 2015070755 W JP2015070755 W JP 2015070755W WO 2016051935 A1 WO2016051935 A1 WO 2016051935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
epitaxial substrate
composition
electron transit
Prior art date
Application number
PCT/JP2015/070755
Other languages
English (en)
French (fr)
Inventor
幹也 市村
宗太 前原
倉岡 義孝
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015560886A priority Critical patent/JP6173493B2/ja
Publication of WO2016051935A1 publication Critical patent/WO2016051935A1/ja
Priority to US15/468,309 priority patent/US10332975B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present invention relates to an epitaxial substrate formed by epitaxially forming a group 13 nitride layer on a base substrate, and more particularly to an epitaxial substrate for a HEMT device.
  • Patent Document 1 discloses a HEMT structure epitaxial film in which an AlN buffer layer and an insulating GaN layer are laminated in this order on a semi-insulating SiC substrate.
  • the group 13 nitride epitaxial substrate for HEMT elements has characteristics, such as high electron mobility, high sheet carrier density, low surface roughness, and high withstand voltage, Desired.
  • the inventor of the present invention refers to the disclosure of Patent Document 1 and Patent Document 2, and forms AlN nuclei on a semi-insulating SiC substrate having a main surface of (0001) plane and an off angle of 0.1 degree.
  • a layer, a GaN electron transit layer, an AlN spacer layer, and an InAlN barrier layer were sequentially laminated to produce a group 13 nitride epitaxial substrate for a HEMT device, and its characteristics were evaluated.
  • the obtained characteristics are not sufficient with an electron mobility ⁇ of about 500 cm 2 V ⁇ 1 s ⁇ 1 .
  • an intermediate layer made of AlGaN is provided between the AlN nucleation layer and the GaN electron transit layer, and the off-angle of the semi-insulating SiC substrate is set.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a group 13 nitride epitaxial substrate for a HEMT element capable of producing a HEMT element having excellent characteristics.
  • an epitaxial substrate for a semiconductor element includes a base substrate made of SiC and having a (0001) plane main surface, and one main surface of the base substrate.
  • Al 1-z N (0.13 ⁇ z ⁇ 0.23) or Al w Ga 1-w N (0.15 ⁇ w ⁇ 0.35) formed on the electron transit layer.
  • An intermediate layer made of group III nitride is further provided.
  • the epitaxial substrate for a semiconductor device further includes a spacer layer made of AlN between the electron transit layer and the barrier layer.
  • the electron transit layer is made of GaN.
  • a method for manufacturing an epitaxial substrate for a semiconductor device wherein a nucleation layer made of AlN is formed on one main surface of an underlying substrate made of SiC and having a main surface oriented in a (0001) plane.
  • Epitaxial formation of barrier layers made of group nitrides A barrier layer forming step, and the base substrate having a (0001) plane having an off angle of not less than 0.1 degrees and not more than 0.5 degrees is used.
  • a method for manufacturing an epitaxial substrate for a semiconductor device further comprises a spacer layer forming step of epitaxially forming a spacer layer made of AlN on the electron transit layer, In the barrier layer forming step, the barrier layer is formed on the spacer layer.
  • the electron transit layer is formed of GaN. did.
  • an epitaxial substrate for manufacturing a HEMT element having a high electron mobility can be obtained, and as a result, a HEMT element having a large maximum drain current can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an epitaxial substrate 10.
  • FIG. 5 is a graph in which electron mobility is plotted with respect to an off angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 in Example 1.
  • FIG. 5 is a graph in which electron mobility is plotted with respect to an off angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 in Example 2.
  • FIG. 6 is a graph in which electron mobility is plotted with respect to an off angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 in Example 3.
  • FIG. 5 is a graph in which electron mobility is plotted with respect to an off angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 in Example 1.
  • FIG. 5 is a graph in which the sheet carrier density is plotted against the off-angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 for all the samples in Examples 1 to 3.
  • FIG. It is the graph which plotted the maximum drain current of the HEMT element with respect to the electron mobility for all the samples of Example 1 thru
  • 4 is an AFM image of the surface of the epitaxial substrate 10 in which the off-angle of the base substrate 1 is 0.1 degree and the Al concentration of the intermediate layer 3 is 0.3 in Example 1.
  • FIG. An AFM image of the surface of the epitaxial substrate manufactured under the same conditions as the epitaxial substrate 10 of FIG. 7 except that the intermediate layer 3 is not provided.
  • Group 13 refers to aluminum (Al), gallium (Ga), indium (In), etc.
  • Group 14 refers to silicon (Si), germanium (Ge), tin (Sn), lead (Pb), etc.
  • 15 refers to nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and the like.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an epitaxial substrate 10 according to an embodiment of the present invention.
  • the epitaxial substrate 10 is a substrate for manufacturing a HEMT (High Electron Mobility Transistor) element which is a kind of semiconductor element. More specifically, the epitaxial substrate 10 is formed with a predetermined electrode pattern (not shown) on the upper surface thereof, and is divided into a predetermined size, whereby a large number of HEMT elements can be obtained. This is a mother board for use.
  • HEMT High Electron Mobility Transistor
  • the epitaxial substrate 10 is formed by epitaxially depositing a nucleation layer 2, an intermediate layer 3, an electron transit layer 4, a spacer layer 5, and a barrier layer 6 in this order on a base substrate 1. It has the structure formed.
  • a semi-insulating SiC single crystal substrate is used as base substrate 1. Specifically, it is a 6H—SiC substrate or 4H—SiC substrate having n conductivity type and having a specific resistance of about 10 4 ⁇ cm to 10 10 ⁇ cm, and is (0001) -plane-oriented, and 0.1 Those having an off angle of not less than 0.5 degrees and not more than 0.5 degrees are used.
  • the off-angle means an angle formed by the main surface normal direction of the base substrate 1 and the normal direction of the (0001) plane.
  • the thickness of the base substrate 1 is not particularly limited in terms of material, but a thickness of several hundred ⁇ m to several mm is preferable for convenience of handling.
  • the nucleation layer 2 is a layer formed of AlN to a thickness of 1 nm to 500 nm.
  • the nucleation layer 2 is a layer provided in order to improve the crystal quality of each layer formed thereon.
  • the intermediate layer 3 is a layer formed of a group 13 nitride having a composition of Al x Ga 1-x N (0.01 ⁇ x ⁇ 0.4) to a thickness of 1 nm to 500 nm.
  • the electron transit layer 4 is a layer formed of a group 13 nitride having a composition of Al y Ga 1-y N (0 ⁇ y ⁇ 1) to a thickness of 50 nm to 5000 nm.
  • the electron transit layer 4 is made of GaN.
  • the spacer layer 5 is a layer formed of AlN to a thickness of 0.5 nm to 1.5 nm.
  • the provision of the spacer layer 5 has an effect of enhancing the confinement of electrons in the two-dimensional electron gas region.
  • the spacer layer 5 is not an essential component and may be omitted.
  • the barrier layer 6 is a layer formed of a group 13 nitride having a composition of In z Al 1-z N (0.13 ⁇ z ⁇ 0.23) and having a thickness of 2 nm to 15 nm, or Al w Ga 1
  • This is a layer formed of a group 13 nitride having a composition of ⁇ wN (0.15 ⁇ w ⁇ 0.35) to a thickness of 10 nm to 40 nm. Note that when z ⁇ 0.13 and w> 0.35, microcracks are generated in the barrier layer 6 and an extreme decrease in electron mobility occurs in the epitaxial substrate 10, which is not preferable.
  • the interface between the electron transit layer 4 and the barrier layer 6 is a heterointerface
  • the electron transit layer 4 and the barrier layer 6 are A region including the spacer layer 5 in between is a heterointerface region. More specifically, in the interface or interface region, two-dimensional electrons in which a two-dimensional electron gas exists in a high concentration near the interface or the interface region of the electron transit layer 4 due to the spontaneous polarization effect and the piezoelectric polarization effect. A gas region is formed. However, the piezoelectric polarization effect occurs when the barrier layer 6 is formed of Al w Ga 1-w N.
  • the sheet carrier density of the epitaxial substrate 10 is higher than when the barrier layer 6 is formed of Al w Ga 1-w N. This is because the former spontaneous polarization is more significant than the sum of the latter spontaneous polarization and piezo polarization.
  • the sheet carrier density of the epitaxial substrate for HEMT elements is in principle influenced by the type, composition, thickness, etc. of the barrier layer.
  • Each layer provided on the base substrate 1 is preferably epitaxially formed in sequence using MOCVD (metal organic chemical vapor deposition).
  • MOCVD metal organic chemical vapor deposition
  • MO organic metal
  • TMI, TMA, TMG organic metal source gases
  • ammonia gas, hydrogen gas, and nitrogen gas can be supplied into the reactor.
  • Epitaxial growth can be achieved by using a known MOCVD furnace.
  • the base substrate 1 is placed on a susceptor provided in the reactor, and each layer is formed from TMG, TMA, and TMI in a state where the temperature of the base substrate is sequentially maintained at a predetermined formation temperature for each layer.
  • One or more kinds of gases selected according to the composition of the gas more specifically, a gas obtained by bubbling them and ammonia gas are supplied together with the carrier gas at a predetermined supply ratio according to the composition of each layer.
  • the group 15 / group 13 gas ratio means the supply amount of ammonia gas, which is a group 15 raw material, relative to the supply amount of the group 13 source gas (TMI, TMA, TMG) expressed as a molar ratio. Is the ratio.
  • the formation temperature means the susceptor heating temperature.
  • Nucleation layer 2 Formation temperature ⁇ 1000 ° C. to 1200 ° C .; Pressure in the reactor ⁇ 3 kPa to 30 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 5000-20000.
  • Intermediate layer 3 Formation temperature ⁇ 1000 ° C. to 1200 ° C .; Pressure in the reactor ⁇ 3 kPa to 30 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 1000-5000.
  • Electronic travel layer 4 Formation temperature ⁇ 1000 ° C. to 1200 ° C .; Pressure in the reactor ⁇ 30 kPa to 105 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 1000-5000.
  • Spacer layer 5 Formation temperature ⁇ 1000 ° C. to 1200 ° C .; Pressure in the reactor ⁇ 3 kPa to 30 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 10000 to 50000.
  • the barrier layer 6 ⁇ Al w Ga 1-w N: Formation temperature ⁇ 1000 ° C. to 1200 ° C .; Pressure in the reactor ⁇ 3 kPa to 30 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 5000-20000.
  • base substrate 1 made of (0001) plane SiC has an off angle of 0.1 degrees or more and 0.5 degrees or less.
  • an intermediate layer made of a group 13 nitride having a composition of Al x Ga 1-x N (0.01 ⁇ x ⁇ 0.4) between the nucleation layer 2 and the electron transit layer 4. It is characteristic in that 3 is provided.
  • the epitaxial substrate 10 has a high electron mobility of about 1300 cm 2 V ⁇ 1 s ⁇ 1 or more. This is a value more than twice the electron mobility realized in an epitaxial substrate that uses a base substrate having an off angle but does not have an intermediate layer.
  • the value of the electron mobility of 1300 cm 2 V ⁇ 1 s ⁇ 1 is an electron realized when various group 13 nitride epitaxial substrates for HEMT devices are manufactured using a (0001) plane sapphire substrate as a base substrate. It corresponds to the upper limit of mobility. Therefore, an electron mobility of 1300 cm 2 V ⁇ 1 s ⁇ 1 or more means that the epitaxial substrate has an extremely excellent electron mobility.
  • the combination of the base substrate 1 having an off angle in the above-described range and the intermediate layer 3 having the above-described composition range between the nucleation layer 2 and the electron transit layer 4 is 1300 cm. It has been found for the first time by the inventor of the present invention that the present invention has an effect in realizing an extremely high electron mobility of 2 V ⁇ 1 s ⁇ 1 or more.
  • a HEMT element having excellent characteristics for example, a HEMT element having a high maximum drain current can be produced.
  • the off-angle of the epitaxial substrate for manufacturing the HEMT element in which the electron transit layer and the barrier layer form the heterojunction interface region on the base substrate is 0.
  • a (0001) plane SiC substrate of 1 degree or more and 0.5 degree or less is used as a base substrate, and Al x Ga 1-x N (0 ... N) is provided between a nucleation layer and an electron transit layer provided immediately above the base substrate.
  • an intermediate layer made of a group 13 nitride having a composition of 01 ⁇ x ⁇ 0.4 an epitaxial substrate for producing a HEMT device having excellent electron mobility can be obtained, and thus excellent characteristics.
  • HEMT element can be obtained.
  • epitaxial substrates 10 having various configurations were prepared by MOCVD, and the electron mobility and the sheet carrier density were evaluated for each. Moreover, the HEMT element was produced using each obtained epitaxial substrate 10, and the maximum drain current was measured.
  • Example 1 the composition, thickness, and production conditions of the base substrate 1, the nucleation layer 2, the intermediate layer 3, the electron transit layer 4, the spacer layer 5, and the barrier layer 6 are fixed in all samples as follows.
  • the off-angle of the base substrate 1 is changed to five levels of 0.05 degrees, 0.1 degrees, 0.3 degrees, 0.5 degrees, and 0.7 degrees.
  • Al x By changing the Al concentration, which is the value of x in Ga 1-x N, to six levels of 0.005, 0.01, 0.03, 0.3, 0.4, and 0.6, all 30 types of epitaxial A substrate 10 was produced.
  • Base substrate 1 Composition ⁇ semi-insulating (0001) plane 4H—SiC; Thickness ⁇ 350 ⁇ m.
  • Nucleation layer 2 Composition ⁇ AlN; Thickness ⁇ 200 nm; Forming temperature ⁇ 1100 ° C .; Reactor pressure ⁇ 10 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 10000.
  • Intermediate layer 3 Composition ⁇ AlGaN; Thickness ⁇ 10 nm; Forming temperature ⁇ 1100 ° C .; Reactor pressure ⁇ 10 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 2000; TMA / (TMA + TMG) gas ratio ⁇ 0.005, 0.01, 0.03, 0.3, 0.4, 0.6 in ascending order of x.
  • Electronic travel layer 4 Composition ⁇ GaN; Thickness ⁇ 1000 nm; Forming temperature ⁇ 1100 ° C .; Reactor pressure ⁇ 100 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 2000.
  • Spacer layer 5 Composition ⁇ AlN; Thickness ⁇ 1 nm; Forming temperature ⁇ 1100 ° C .; Reactor pressure ⁇ 10 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 30000.
  • Barrier layer 6 Composition ⁇ In 0.18 Al 0.82 N; Thickness ⁇ 10 nm; Forming temperature ⁇ 800 ° C .; Reactor pressure ⁇ 10 kPa; Raw material carrier gas ⁇ Nitrogen; 15/13 gas ratio ⁇ 10000.
  • Example 2 the composition, thickness, and production conditions of the base substrate 1, the nucleation layer 2, the intermediate layer 3, the electron transit layer 4, the spacer layer 5, and the barrier layer 6 in all samples are as follows.
  • the off-angle of the base substrate 1 and the Al concentration of the intermediate layer 3 were determined in the same manner as in Example 1 to produce all 30 types of epitaxial substrates 10.
  • Base substrate 1 Composition ⁇ semi-insulating (0001) face 6H—SiC; Thickness ⁇ 400 ⁇ m.
  • Nucleation layer 2 Composition ⁇ AlN; Thickness ⁇ 10 nm; Forming temperature ⁇ 1050 ° C .; Reactor pressure ⁇ 5 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 7500.
  • Intermediate layer 3 Composition ⁇ Al x Ga 1-x N; Thickness ⁇ 100 nm; Forming temperature ⁇ 1050 ° C .; Reactor pressure ⁇ 5 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 1500; TMA / (TMA + TMG) gas ratio ⁇ 0.005, 0.01, 0.03, 0.3, 0.4, 0.6 in ascending order of x.
  • Electronic travel layer 4 Composition ⁇ GaN; Thickness ⁇ 2000 nm; Forming temperature ⁇ 1050 ° C .; Reactor pressure ⁇ 50 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 4000.
  • Spacer layer 5 Composition ⁇ AlN; Thickness ⁇ 1 nm; Forming temperature ⁇ 1050 ° C .; Reactor pressure ⁇ 5 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 10000.
  • Barrier layer 6 Composition ⁇ In 0.15 Al 0.85 N; Thickness ⁇ 8 nm; Forming temperature ⁇ 810 ° C .; Reactor pressure ⁇ 5 kPa; Raw material carrier gas ⁇ Nitrogen; 15/13 gas ratio ⁇ 5000.
  • Example 3 the spacer layer 5 is not provided, and the composition, thickness, and production conditions of the base substrate 1, the nucleation layer 2, the intermediate layer 3, the electron transit layer 4, and the barrier layer 6 are as follows for all samples.
  • the off-angle of the base substrate 1 and the Al concentration of the intermediate layer 3 were determined in the same manner as in Example 1 to produce a total of 30 types of epitaxial substrates 10.
  • Base substrate 1 Composition ⁇ semi-insulating (0001) plane 4H—SiC; Thickness ⁇ 350 ⁇ m.
  • Nucleation layer 2 Composition ⁇ AlN; Thickness ⁇ 100 nm; Forming temperature ⁇ 1150 ° C .; Reactor pressure ⁇ 15 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 15000.
  • Intermediate layer 3 Composition ⁇ Al x Ga 1-x N; Thickness ⁇ 1 nm; Forming temperature ⁇ 1150 ° C .; Reactor pressure ⁇ 15 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 3000; TMA / (TMA + TMG) gas ratio ⁇ 0.005, 0.01, 0.03, 0.3, 0.4, 0.6 in ascending order of x.
  • Electronic travel layer 4 Composition ⁇ GaN; Thickness ⁇ 3000 nm; Forming temperature ⁇ 1150 ° C .; Reactor pressure ⁇ 100 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 1000.
  • Barrier layer 6 Composition ⁇ Al 0.2 Ga 0.8 N; Thickness ⁇ 20 nm; Forming temperature ⁇ 1150 ° C .; Reactor pressure ⁇ 15 kPa; Raw material carrier gas ⁇ hydrogen; 15/13 gas ratio ⁇ 10000.
  • the electron mobility and the sheet carrier density were measured for all the 90 types of epitaxial substrates 10 that were all the epitaxial substrates 10 of Examples 1 to 3 by hole measurement by the van der Pauw method.
  • a HEMT device was prototyped using each epitaxial substrate. Specifically, a Ti / Al / Ni / Au multilayer film was deposited on each epitaxial substrate as an ohmic electrode, and a Pd / Ti / Au multilayer film was deposited as a Schottky electrode. The thickness of each layer in the Ti / Al / Ni / Au multilayer film was set to 15/75/15/40 nm in order. The thickness of each layer in the Pd / Ti / Au multilayer film was set to 40/20/60 nm in order. The gate length was 2 ⁇ m and the gate width was 15 ⁇ m. The element separation of the HEMT element was performed by RIE (reactive ion etching) using a chlorine-based gas, and a SiO 2 film as a protective film was formed on the element surface by sputtering.
  • RIE reactive ion etching
  • the off angle of the base substrate 1 is set to an off angle of 0.1 degrees to 0.5 degrees, and the intermediate layer 3 It can be seen that a high electron mobility of 1300 cm 2 V ⁇ 1 s ⁇ 1 or more can be obtained when the Al concentration is 0.1 or more and 0.4 or less. This means that the off-angle of the base substrate 1 is 0.1 to 0.5 degrees and the Al concentration in the intermediate layer 3 is 0.1 to 0.4. This means that there is an effect of increasing electron mobility.
  • FIG. 5 is a graph in which the sheet carrier density is plotted against the off-angle in the base substrate 1 for each sample having the same Al concentration in the intermediate layer 3 for all the samples of Examples 1 to 3.
  • the off angle in the base substrate 1 is expressed as “SiC substrate off angle”.
  • FIG. 6 is a graph in which the maximum drain current of the HEMT device is plotted against the electron mobility for all the samples of Examples 1 to 3. In FIG. 6, a broken line is attached where the electron mobility is 1300 cm 2 V ⁇ 1 s ⁇ 1 .
  • Example 1 and Example 2 the sheet carrier density was substantially constant around 2 ⁇ 10 13 cm ⁇ 2 regardless of the off-angle of the base substrate 1 and the Al concentration of the intermediate layer 3. It was. In the case of Example 3, it was almost constant at around 1 ⁇ 10 13 cm ⁇ 2 . In other words, the sheet carrier density was different between the examples, but was not dependent on the off-angle of the base substrate 1 and the Al concentration of the intermediate layer 3.
  • FIG. 6 shows that the maximum drain current has a positive correlation with the electron mobility in any of the Examples, and Example 3 in which the barrier layer 6 is formed of Al w Ga 1-w N. Rather than the barrier layer 6 formed of In z Al 1-z N and the spacer layer 5 provided, the first and second embodiments tend to have a larger maximum drain current. ,It is confirmed.
  • a HEMT device without the spacer layer 5 achieves a maximum drain current of 600 mA / mm or more, and the HEMT with the spacer layer 5 is provided.
  • the maximum drain current of 750 mA / mm or more is realized.
  • FIG. 7 shows, in more detail, the barrier layer of the surface of the epitaxial substrate 10 of the first embodiment in which the base substrate 1 has an off angle of 0.1 degrees and the Al concentration of the intermediate layer 3 is 0.3.
  • 6 is an AFM image of the surface of No. 6;
  • FIG. 8 is an AFM image of the surface of an epitaxial substrate manufactured under the same conditions as the epitaxial substrate 10 of FIG. 7 except that the intermediate layer 3 is not provided for comparison.
  • the provision of the intermediate layer 3 has an effect of improving the flatness on the surface of the epitaxial substrate 10, more specifically on the surface of the barrier layer 6. Furthermore, in view of the results shown in FIG. 2 and the like, the provision of the intermediate layer 3 realizes a highly flat surface free from pits, which is effective in improving the electron mobility in the epitaxial substrate 10. It is thought that he is playing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 特性の優れたHEMT素子を製造可能なHEMT素子用の13族窒化物エピタキシャル基板を提供する。半導体素子用のエピタキシャル基板が、SiCからなり主面が(0001)面配向してなる下地基板と、前記下地基板の一方主面上に形成された、AlNからなる核形成層と、前記核形成層の上に形成された、AlGa1-yN(0≦y<1)なる組成の13族窒化物からなる電子走行層と、前記電子走行層の上に形成された、InAl1-zN(0.13≦z≦0.23)もしくはAlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物からなる障壁層と、を備え、前記下地基板の(0001)面が0.1度以上0.5度以下のオフ角を有してなり、前記核形成層と前記電子走行層との間に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層をさらに備えるようにした。

Description

半導体素子用のエピタキシャル基板およびその製造方法
 本発明は、下地基板上に13族窒化物層がエピタキシャル形成されてなるエピタキシャル基板に関し、特に、HEMT素子用のエピタキシャル基板に関する。
 高電子移動度トランジスタ(HEMT)デバイスとして、SiC基板上に13族窒化物エピタキシャル膜にてHEMT構造を形成してなるHEMT素子用の13族窒化物エピタキシャル基板がすでに公知である。例えば、特許文献1が参照される。特許文献1には、半絶縁性のSiC基板上にAlN緩衝層と絶縁性GaN層とがこの順に積層形成されてなるHEMT構造エピタキシャル膜が、開示されている。
 HEMT素子が、例えば高出力、低損失、高周波動作などの高性能、かつ、高信頼性のものであるには、高相互コンダクタンス、高最大ドレイン電流、低オン抵抗、低リーク電流、低電流コラプス(low current collapse)、高遮断周波数、高耐電圧などの特性を具備する必要がある。そして、それらの特性が実現されるには、HEMT素子用の13族窒化物エピタキシャル基板が、高電子移動度、高シートキャリア密度、低表面粗度、高耐電圧などの特性を有することが、求められる。
 この点に関し、HEMTを初めとする高周波デバイス用のエピタキシャルウェハに関し、SiC下地基板上にGaN系半導体層を成長させる場合において、SiC下地基板のオフ角を0度以上0.2度以下とすることで、同一成長バッチ内または同一成長条件でのシート抵抗ばらつきを低減できることがすでに公知である。例えば、特許文献2が参照される。
 本発明の発明者は、特許文献1および特許文献2の開示内容を参考に、主面が(0001)面でありオフ角が0.1度である半絶縁性SiC基板上に、AlN核形成層、GaN電子走行層、AlNスペーサ層、InAlN障壁層を順次に積層してHEMT素子用の13族窒化物エピタキシャル基板を作製し、その特性を評価した。しかしながら、得られる特性は、電子移動度μが約500cm-1-1程度と、十分なものではなかった。また、得られたエピタキシャル基板の障壁層の表面には多数の微細なピットが発生しており、係るピットの存在が電子移動度の低下と何らかの関係があることが推察された。
 係る結果を踏まえ、本発明の発明者が鋭意検討を行ったところ、AlN核形成層とGaN電子走行層との間にAlGaNからなる中間層を設けるとともに、半絶縁性SiC基板のオフ角の設定を調整することが、特性の優れた、特に電子移動度の優れた、HEMT素子用の13族窒化物エピタキシャル基板、さらには、特性の優れた、例えば最大ドレイン電流の優れた、HEMT素子を作製するうえで有効である、との知見を得た。
特表2002-520880号公報 特開2013-187368号公報
 本発明は、上記課題に鑑みてなされたものであり、特性の優れたHEMT素子を製造可能なHEMT素子用の13族窒化物エピタキシャル基板を提供することを目的とする。
 上記課題を解決するため、本発明の第1の態様では、半導体素子用のエピタキシャル基板が、SiCからなり主面が(0001)面配向してなる下地基板と、前記下地基板の一方主面上に形成された、AlNからなる核形成層と、前記核形成層の上に形成された、AlGa1-yN(0≦y<1)なる組成の13族窒化物からなる電子走行層と、前記電子走行層の上に形成された、InAl1-zN(0.13≦z≦0.23)もしくはAlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物からなる障壁層と、を備え、前記下地基板の(0001)面が0.1度以上0.5度以下のオフ角を有してなり、前記核形成層と前記電子走行層との間に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層をさらに備える、ようにした。
 本発明の第2の態様では、第1の態様に係る半導体素子用のエピタキシャル基板が、前記電子走行層と前記障壁層との間に、AlNからなるスペーサ層をさらに備える、ようにした。
 本発明の第3の態様では、第1または第2の態様に係る半導体素子用のエピタキシャル基板において、前記電子走行層がGaNからなる、ようにした。
 本発明の第4の態様では、半導体素子用のエピタキシャル基板の製造方法が、SiCからなり主面が(0001)面配向してなる下地基板の一方主面上に、AlNからなる核形成層をエピタキシャル形成する核形成層形成工程と、前記核形成層の上に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層をエピタキシャル形成する中間層形成工程と、前記中間層の上に、AlGa1-yN(0≦y<1)なる組成の13族窒化物からなる電子走行層をエピタキシャル形成する電子走行層形成工程と、前記電子走行層の上に、InAl1-zN(0.13≦z≦0.23)もしくはAlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物からなる障壁層をエピタキシャル形成する障壁層形成工程と、を備え、前記下地基板として、(0001)面が0.1度以上0.5度以下のオフ角を有するものを用いる、ようにした。
 本発明の第5の態様では、第4の態様に係る半導体素子用のエピタキシャル基板の製造方法が、前記電子走行層の上にAlNからなるスペーサ層をエピタキシャル形成するスペーサ層形成工程、さらに備え、前記障壁層形成工程においては前記スペーサ層の上に前記障壁層を形成する、ようにした。
 本発明の第6の態様では、第4または第5の態様に係る半導体素子用のエピタキシャル基板の製造方法において、前記電子走行層形成工程においては前記電子走行層をGaNにて形成する、ようにした。
 本発明の第1ないし第6の態様によれば、電子移動度の大きなHEMT素子作製用のエピタキシャル基板を得ることができ、ひいては最大ドレイン電流の大きなHEMT素子を得ることができる。
エピタキシャル基板10の構成を模式的に示す断面図である。 実施例1について、中間層3のAl濃度が同じ試料ごとに、電子移動度を下地基板1におけるオフ角に対してプロットしたグラフである。 実施例2について、中間層3のAl濃度が同じ試料ごとに、電子移動度を下地基板1におけるオフ角に対してプロットしたグラフである。 実施例3について、中間層3のAl濃度が同じ試料ごとに、電子移動度を下地基板1におけるオフ角に対してプロットしたグラフである。 実施例1ないし実施例3の全ての試料について、中間層3のAl濃度が同じ試料ごとに、シートキャリア密度を下地基板1におけるオフ角に対してプロットしたグラフである。 実施例1ないし実施例3の全ての試料を対象に、HEMT素子の最大ドレイン電流を電子移動度に対してプロットしたグラフである。 実施例1のうち、下地基板1のオフ角が0.1度で、中間層3のAl濃度が0.3であるエピタキシャル基板10の表面のAFM像である。 中間層3を設けないようにした他は、図7のエピタキシャル基板10と同条件で作製したエピタキシャル基板の表面のAFM像である。
 本明細書中に示す周期表の族番号は、1989年国際純正応用化学連合会(International Union of Pure Applied Chemistry:IUPAC)による無機化学命名法改訂版による1~18の族番号表示によるものであり、13族とはアルミニウム(Al)・ガリウム(Ga)・インジウム(In)等を指し、14族とは、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等を指し、15族とは窒素(N)・リン(P)・ヒ素(As)・アンチモン(Sb)等を指す。
 図1は、本発明の実施の形態に係るエピタキシャル基板10の構成を模式的に示す断面図である。エピタキシャル基板10は、半導体素子の一種であるHEMT(高電子移動度トランジスタ)素子作製用の基板である。より詳細には、エピタキシャル基板10は、その上面に図示しない所定の電極パターンを形成したうえで所定サイズに分断する個片化を行うことで多数個のHEMT素子を得ることができる、HEMT素子作製用の母基板である。
 エピタキシャル基板10は、下地基板1の上に、それぞれが13族窒化物からなる核形成層2と、中間層3と、電子走行層4と、スペーサ層5と、障壁層6とをこの順にエピタキシャル形成してなる構成を有する。
 下地基板1としては、半絶縁性のSiC単結晶基板を用いる。具体的には、n導電型を呈し、比抵抗が10Ωcmから1010Ωcm程度の6H-SiC基板もしくは4H-SiC基板であって、(0001)面配向してなり、かつ、0.1度以上0.5度以下のオフ角を有するものを用いる。なお、本実施の形態において、オフ角とは、下地基板1の主面法線方向と(0001)面の法線方向とのなす角を意味する。
 下地基板1の厚みには特段の材質上の制限はないが、取り扱いの便宜上、数百μm~数mmの厚みのものが好適である。
 核形成層2は、AlNにて1nm~500nmの厚みに形成されてなる層である。核形成層2は、その上に形成される各層の結晶品質を良好なものとするために設けられる層である。
 中間層3は、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物にて1nm~500nmの厚みに形成されてなる層である。
 電子走行層4は、AlGa1-yN(0≦y<1)なる組成の13族窒化物にて50nm~5000nmの厚みに形成されてなる層である。好ましくは、電子走行層4はGaNにて形成されてなる。
 スペーサ層5は、AlNにて0.5nm~1.5nmの厚みに形成されてなる層である。スペーサ層5の具備には、二次元電子ガス領域における電子の閉じ込めを高める効果がある。ただし、スペーサ層5は必須の構成要素ではなく、省略されてもよい。
 障壁層6は、InAl1-zN(0.13≦z≦0.23)なる組成の13族窒化物にて2nm~15nmの厚みに形成されてなる層、もしくは、AlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物にて10nm~40nmの厚みに形成されてなる層である。なお、z<0.13およびw>0.35の場合、障壁層6にマイクロクラックが発生し、エピタキシャル基板10において極端な電子移動度の低下が生じるため好ましくない。また、z>0.23およびw<0.15の場合、エピタキシャル基板10において十分なシートキャリア密度を得ることが難しくなり、当該エピタキシャル基板10を用いてHEMT素子を作製した場合にドレイン電流量の低下が生じるため好ましくない。
 係る構成を有するエピタキシャル基板10においては、スペーサ層5を備えない場合は電子走行層4と障壁層6との界面がヘテロ界面となり、スペーサ層5を備える場合は電子走行層4と障壁層6との間のスペーサ層5を含む領域がヘテロ界面領域となる。当該界面もしくは界面領域には、より詳細には、電子走行層4の当該界面近傍もしくは界面領域近傍には、自発分極効果およびピエゾ分極効果により、二次元電子ガスが高濃度に存在する二次元電子ガス領域が形成されてなる。ただし、ピエゾ分極効果については、障壁層6をAlGa1-wNに形成する場合に生じる。なお、障壁層6をInAl1-zNにて形成する場合の方が、AlGa1-wNにて形成する場合に比して、エピタキシャル基板10のシートキャリア密度は高くなる。これは、前者の自発分極が、後者の自発分極とピエゾ分極との合計よりも著しいからである。なお、HEMT素子用のエピタキシャル基板のシートキャリア密度については、原理的に、障壁層の種類、組成、厚みなどの影響を受ける。
 下地基板1の上に設けられる各層は、MOCVD法(有機金属化学的気相成長法)を用いて順次にエピタキシャル形成されるのが好適である。具体的には、In、Al、Gaについての有機金属(MO)原料ガス(TMI、TMA、TMG)と、アンモニアガスと、水素ガスと、窒素ガスとをリアクタ内に供給可能に構成されてなる公知のMOCVD炉を用いることにより、エピタキシャル成長させることができる。
 すなわち、該リアクタ内に設けられたサセプタの上に下地基板1を載置し、あらかじめ各層について定められた形成温度に該下地基板の温度を順次に保った状態で、TMG、TMA、TMIから各層の組成に応じて選択される一又は複数種類のガス、より詳細には、それらをバブリングしたガスと、アンモニアガスとを、それぞれに各層の組成に応じた所定の供給比でキャリアガスともども供給することによって、核形成層2、中間層3、電子走行層4、スペーサ層5、および障壁層6を順次に形成することが出来る。
 例えば、以下のような条件で各層を成長させるのが好適である。なお、本実施の形態において、15族/13族ガス比とは、モル比で表した、13族原料ガス(TMI、TMA、TMG)の供給量に対する15族原料であるアンモニアガスの供給量の比である。また、以下において形成温度とはサセプタ加熱温度を意味する。
 核形成層2:
  形成温度→1000℃~1200℃;
  リアクタ内圧力→3kPa~30kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→5000~20000。
 中間層3:
  形成温度→1000℃~1200℃;
  リアクタ内圧力→3kPa~30kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→1000~5000。
 電子走行層4:
  形成温度→1000℃~1200℃;
  リアクタ内圧力→30kPa~105kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→1000~5000。
 スペーサ層5:
  形成温度→1000℃~1200℃;
  リアクタ内圧力→3kPa~30kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→10000~50000。
 障壁層6←InAl1-zNにて形成する場合:
  形成温度→700℃~900℃;
  リアクタ内圧力→3kPa~30kPa;
  原料キャリアガス→窒素;
  15族/13族ガス比→5000~20000。
 障壁層6←AlGa1-wNにて形成する場合:
  形成温度→1000℃~1200℃;
  リアクタ内圧力→3kPa~30kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→5000~20000。
 係る態様にて形成される、本実施の形態に係るエピタキシャル基板10においては、上述のように、(0001)面SiCからなる下地基板1としてオフ角が0.1度以上0.5度以下のものを用い、さらには、核形成層2と電子走行層4との間に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層3を設けてなる点で特徴的である。これらの要件をともに具備することで、エピタキシャル基板10は、約1300cm-1-1以上という高い電子移動度を有するものとなっている。これは、オフ角のある下地基板を用いているものの中間層を備えていないエピタキシャル基板において実現される電子移動度の2倍以上の値である。なお、1300cm-1-1という電子移動度の値は、(0001)面サファイア基板を下地基板に用いてHEMT素子用の13族窒化物エピタキシャル基板を種々作製した場合に実現される電子移動度の上限に相当する。それゆえ、電子移動度が1300cm-1-1以上であるということは、エピタキシャル基板が極めて優れた電子移動度を有するものであるということを意味する。
 このように、下地基板1が上述した範囲のオフ角を有することと、核形成層2と電子走行層4との間に上述した組成範囲の中間層3を具備することとの組み合わせが、1300cm-1-1以上という、極めて高い電子移動度の実現に効果を有することは、本発明の発明者によって初めて見出された知見である。
 また、係る優れた電子移動度を有する、本実施の形態に係るエピタキシャル基板10を用いることで、優れた特性のHEMT素子を、例えば、最大ドレイン電流の高いHEMT素子を、作製することができる。
 以上、説明したように、本実施の形態によれば、下地基板上において電子走行層と障壁層とがヘテロ接合界面領域を形成してなるHEMT素子作製用のエピタキシャル基板において、オフ角が0.1度以上0.5度以下の(0001)面SiC基板を下地基板とするとともに、該下地基板の直上に設ける核形成層と電子走行層との間にAlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層を設けるようにすることで、電子移動度の優れたHEMT素子作製用のエピタキシャル基板を得ることができ、ひいては優れた特性のHEMT素子を得ることができる。
 実施例1ないし実施例3として、種々の構成のエピタキシャル基板10をMOCVD法にて作製し、それぞれについて電子移動度とシートキャリア密度とを評価した。また、得られたそれぞれのエピタキシャル基板10を用いてHEMT素子を作製し、その最大ドレイン電流を測定した。
 実施例1においては、全ての試料において下地基板1、核形成層2、中間層3、電子走行層4、スペーサ層5、障壁層6の組成、厚み、および作製条件を以下のように固定する一方で、下地基板1のオフ角を0.05度、0.1度、0.3度、0.5度、0.7度の5水準に違え、さらには、中間層3についてはAlGa1-xNにおけるxの値であるAl濃度を0.005、0.01、0.03、0.3、0.4、0.6の6水準に違えることで、全30種類のエピタキシャル基板10を作製した。
 下地基板1:
  組成→半絶縁性(0001)面4H-SiC;
  厚み→350μm。
 核形成層2:
  組成→AlN;
  厚み→200nm;
  形成温度→1100℃;
  リアクタ内圧力→10kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→10000。
 中間層3:
  組成→AlGaN;
  厚み→10nm;
  形成温度→1100℃;
  リアクタ内圧力→10kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→2000;
  TMA/(TMA+TMG)ガス比→xの小さい順に0.005、0.01、0.03、0.3、0.4、0.6。
 電子走行層4:
  組成→GaN;
  厚み→1000nm;
  形成温度→1100℃;
  リアクタ内圧力→100kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→2000。
 スペーサ層5:
  組成→AlN;
  厚み→1nm;
  形成温度→1100℃;
  リアクタ内圧力→10kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→30000。
 障壁層6:
  組成→In0.18Al0.82N;
  厚み→10nm;
  形成温度→800℃;
  リアクタ内圧力→10kPa;
  原料キャリアガス→窒素;
  15族/13族ガス比→10000。
 また、実施例2においては、全ての試料において下地基板1、核形成層2、中間層3、電子走行層4、スペーサ層5、障壁層6の組成、厚み、および作製条件を以下のように固定する一方で、下地基板1のオフ角および中間層3のAl濃度については実施例1と同じように定めることで、全30種類のエピタキシャル基板10を作製した。
 下地基板1:
  組成→半絶縁性(0001)面6H-SiC;
  厚み→400μm。
 核形成層2:
  組成→AlN;
  厚み→10nm;
  形成温度→1050℃;
  リアクタ内圧力→5kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→7500。
 中間層3:
  組成→AlGa1-xN;
  厚み→100nm;
  形成温度→1050℃;
  リアクタ内圧力→5kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→1500;
  TMA/(TMA+TMG)ガス比→xの小さい順に0.005、0.01、0.03、0.3、0.4、0.6。
 電子走行層4:
  組成→GaN;
  厚み→2000nm;
  形成温度→1050℃;
  リアクタ内圧力→50kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→4000。
 スペーサ層5:
  組成→AlN;
  厚み→1nm;
  形成温度→1050℃;
  リアクタ内圧力→5kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→10000。
 障壁層6:
  組成→In0.15Al0.85N;
  厚み→8nm;
  形成温度→810℃;
  リアクタ内圧力→5kPa;
  原料キャリアガス→窒素;
  15族/13族ガス比→5000。
 さらに、実施例3においては、スペーサ層5は設けず、全ての試料において下地基板1、核形成層2、中間層3、電子走行層4、障壁層6の組成、厚み、および作製条件を以下のように固定する一方で、下地基板1のオフ角および中間層3のAl濃度については実施例1と同じように定めることで、全30種類のエピタキシャル基板10を作製した。
 下地基板1:
  組成→半絶縁性(0001)面4H-SiC;
  厚み→350μm。
 核形成層2:
  組成→AlN;
  厚み→100nm;
  形成温度→1150℃;
  リアクタ内圧力→15kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→15000。
 中間層3:
  組成→AlGa1-xN;
  厚み→1nm;
  形成温度→1150℃;
  リアクタ内圧力→15kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→3000;
  TMA/(TMA+TMG)ガス比→xの小さい順に0.005、0.01、0.03、0.3、0.4、0.6。
 電子走行層4:
  組成→GaN;
  厚み→3000nm;
  形成温度→1150℃;
  リアクタ内圧力→100kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→1000。
 障壁層6:
  組成→Al0.2Ga0.8N;
  厚み→20nm;
  形成温度→1150℃;
  リアクタ内圧力→15kPa;
  原料キャリアガス→水素;
  15族/13族ガス比→10000。
 得られた実施例1ないし実施例3の全てのエピタキシャル基板10である全90種のエピタキシャル基板10について、van der Pauw法によるホール測定によって電子移動度およびシートキャリア密度を測定した。
 さらに、それぞれのエピタキシャル基板を用いて、HEMT素子を試作した。具体的には、それぞれのエピタキシャル基板にオーミック電極としてTi/Al/Ni/Au多層膜を蒸着形成し、ショットキー電極としてPd/Ti/Au多層膜を蒸着形成した。Ti/Al/Ni/Au多層膜におけるそれぞれの層の厚みは順に15/75/15/40nmとした。また、Pd/Ti/Au多層膜におけるそれぞれの層の厚みは順に40/20/60nmとした。また、ゲート長は2μmとし、ゲート幅は15μmとした。HEMT素子の素子間分離は塩素系ガスを用いたRIE(反応性イオンエッチング)により行い、素子表面には、保護膜としてのSiO膜をスパッタリングにより形成した。
 図2、図3、および図4はそれぞれ、実施例1、実施例2、および実施例3について、中間層3のAl濃度が同じ試料ごとに、電子移動度を下地基板1におけるオフ角に対してプロットしたグラフである。ただし、各図においては、下地基板1におけるオフ角を「SiC基板オフ角」と表記している。また、電子移動度が1300cm-1-1のところに破線を付している。
 図2、図3、および図4からは、他の層構成を違えているにもかかわらず、下地基板1のオフ角を0.1度以上0.5度以下のオフ角とし、中間層3におけるAl濃度を0.1以上0.4以下とした場合には、1300cm-1-1以上という高い電子移動度が得られることがわかる。このことは、下地基板1のオフ角を0.1度以上0.5度以下のオフ角とし、中間層3におけるAl濃度を0.1以上0.4以下とすることが、エピタキシャル基板10における電子移動度を高める効果があることを意味する。
 また、図5は、実施例1ないし実施例3の全ての試料について、中間層3のAl濃度が同じ試料ごとに、シートキャリア密度を下地基板1におけるオフ角に対してプロットしたグラフである。ただし、図5においても、下地基板1におけるオフ角を「SiC基板オフ角」と表記している。さらに、図6は、実施例1ないし実施例3の全ての試料を対象に、HEMT素子の最大ドレイン電流を電子移動度に対してプロットしたグラフである。図6においては、電子移動度が1300cm-1-1のところに破線を付している。
 図5に示すように、実施例1および実施例2においては、シートキャリア密度は下地基板1のオフ角および中間層3のAl濃度によらず2×1013cm-2前後で概ね一定であった。また、実施例3の場合は、1×1013cm-2前後で概ね一定であった。すなわち、シートキャリア密度については実施例間で差異がみられたが、下地基板1のオフ角および中間層3のAl濃度に対する依存性はみられなかった。
 一方、図6からは、いずれの実施例においても最大ドレイン電流は電子移動度と正の相関があること、および、障壁層6をAlGa1-wNにて形成してなる実施例3よりも、障壁層6をInAl1-zNにて形成してなるとともにスペーサ層5を設けてなる実施例1および実施例2の方が、最大ドレイン電流が大きくなる傾向があることが、確認される。
 具体的には、電子移動度が1300cm-1-1以上である場合、スペーサ層5を備えていないHEMT素子では600mA/mm以上という最大ドレイン電流が実現され、スペーサ層5を備えるHEMT素子では750mA/mm以上という最大ドレイン電流が実現されている。
 また、図7は、実施例1のうち、下地基板1のオフ角が0.1度で、中間層3のAl濃度が0.3であるエピタキシャル基板10の表面の、より詳細には障壁層6の表面の、AFM像である。一方、図8は、比較のために、中間層3を設けないようにした他は、図7のエピタキシャル基板10と同条件で作製したエピタキシャル基板の表面のAFM像である。
 図8のAFM像においては、基板表面に多数のピットが確認される。ピットは、図面上では黒点として確認される。これに対して、図7のAFM像においてはそのようなピットは見られず、基板表面が良好な平坦性を有していることが確認された。係る相違は、中間層3の具備がエピタキシャル基板10の表面における、より詳細には障壁層6の表面における、平坦性を向上させる効果があることを示している。さらには、図2などの結果についても併せ鑑みると、中間層3を設けることによってピットの生じない平坦性の高い表面を実現したことが、エピタキシャル基板10における電子移動度を向上させるうえにおいて効果を奏しているものと考えられる。

Claims (6)

  1.  半導体素子用のエピタキシャル基板であって、
     SiCからなり主面が(0001)面配向してなる下地基板と、
     前記下地基板の一方主面上に形成された、AlNからなる核形成層と、
     前記核形成層の上に形成された、AlGa1-yN(0≦y<1)なる組成の13族窒化物からなる電子走行層と、
     前記電子走行層の上に形成された、InAl1-zN(0.13≦z≦0.23)もしくはAlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物からなる障壁層と、
    を備え、
     前記下地基板の(0001)面が0.1度以上0.5度以下のオフ角を有してなり、
     前記核形成層と前記電子走行層との間に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層をさらに備える、
    ことを特徴とする半導体素子用のエピタキシャル基板。
  2.  請求項1に記載の半導体素子用のエピタキシャル基板であって、
     前記電子走行層と前記障壁層との間に、AlNからなるスペーサ層をさらに備える、
    ことを特徴とする半導体素子用のエピタキシャル基板。
  3.  請求項1または請求項2に記載の半導体素子用のエピタキシャル基板であって、
     前記電子走行層がGaNからなる、
    ことを特徴とする半導体素子用のエピタキシャル基板。
  4.  半導体素子用のエピタキシャル基板の製造方法であって、
     SiCからなり主面が(0001)面配向してなる下地基板の一方主面上に、AlNからなる核形成層をエピタキシャル形成する核形成層形成工程と、
     前記核形成層の上に、AlGa1-xN(0.01≦x≦0.4)なる組成の13族窒化物からなる中間層をエピタキシャル形成する中間層形成工程と、
     前記中間層の上に、AlGa1-yN(0≦y<1)なる組成の13族窒化物からなる電子走行層をエピタキシャル形成する電子走行層形成工程と、
     前記電子走行層の上に、InAl1-zN(0.13≦z≦0.23)もしくはAlGa1-wN(0.15≦w≦0.35)なる組成の13族窒化物からなる障壁層をエピタキシャル形成する障壁層形成工程と、
    を備え、
     前記下地基板として、(0001)面が0.1度以上0.5度以下のオフ角を有するものを用いる、
    ことを特徴とする半導体素子用のエピタキシャル基板の製造方法。
  5.  請求項4に記載の半導体素子用のエピタキシャル基板の製造方法であって、
     前記電子走行層の上にAlNからなるスペーサ層をエピタキシャル形成するスペーサ層形成工程、
    さらに備え、
     前記障壁層形成工程においては前記スペーサ層の上に前記障壁層を形成する、
    ことを特徴とする半導体素子用のエピタキシャル基板の製造方法。
  6.  請求項4または請求項5に記載の半導体素子用のエピタキシャル基板の製造方法であって、
     前記電子走行層形成工程においては前記電子走行層をGaNにて形成する、
    ことを特徴とする半導体素子用のエピタキシャル基板の製造方法。
PCT/JP2015/070755 2014-10-03 2015-07-22 半導体素子用のエピタキシャル基板およびその製造方法 WO2016051935A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560886A JP6173493B2 (ja) 2014-10-03 2015-07-22 半導体素子用のエピタキシャル基板およびその製造方法
US15/468,309 US10332975B2 (en) 2014-10-03 2017-03-24 Epitaxial substrate for semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204683 2014-10-03
JP2014-204683 2014-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/468,309 Continuation US10332975B2 (en) 2014-10-03 2017-03-24 Epitaxial substrate for semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016051935A1 true WO2016051935A1 (ja) 2016-04-07

Family

ID=55629984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070755 WO2016051935A1 (ja) 2014-10-03 2015-07-22 半導体素子用のエピタキシャル基板およびその製造方法

Country Status (3)

Country Link
US (1) US10332975B2 (ja)
JP (1) JP6173493B2 (ja)
WO (1) WO2016051935A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117064A (ja) * 2017-01-19 2018-07-26 住友電気工業株式会社 窒化物半導体デバイス及び窒化物半導体デバイスの製造方法
WO2023026362A1 (ja) * 2021-08-24 2023-03-02 三菱電機株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924166B2 (ja) * 2018-05-14 2021-08-25 株式会社東芝 半導体装置
JP6903604B2 (ja) 2018-05-14 2021-07-14 株式会社東芝 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229439A (ja) * 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd 化合物半導体素子
JP2004335635A (ja) * 2003-05-06 2004-11-25 National Institute Of Advanced Industrial & Technology 微傾斜基板を用いた窒化物半導体薄膜素子及びその素子の製造方法
JP2012033575A (ja) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP4165030B2 (ja) * 2001-04-27 2008-10-15 日亜化学工業株式会社 窒化物半導体から成る単体基板の製造方法
JP2003068654A (ja) * 2001-08-27 2003-03-07 Hoya Corp 化合物単結晶の製造方法
JP4360085B2 (ja) * 2002-12-25 2009-11-11 株式会社デンソー 炭化珪素半導体装置
TW200610150A (en) * 2004-08-30 2006-03-16 Kyocera Corp Sapphire baseplate, epitaxial substrate and semiconductor device
JP4514584B2 (ja) 2004-11-16 2010-07-28 富士通株式会社 化合物半導体装置及びその製造方法
US7326963B2 (en) * 2004-12-06 2008-02-05 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
JP2007165431A (ja) * 2005-12-12 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタおよびその製造方法
KR101510461B1 (ko) * 2006-01-20 2015-04-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 반극성 (Al,In,Ga,B)N의 개선된 성장 방법
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
JP5307381B2 (ja) * 2007-11-12 2013-10-02 Hoya株式会社 半導体素子ならびに半導体素子製造法
JP5212283B2 (ja) * 2009-07-08 2013-06-19 日立電線株式会社 Iii族窒化物半導体自立基板の製造方法、iii族窒化物半導体自立基板、iii族窒化物半導体デバイスの製造方法及びiii族窒化物半導体デバイス
JP4959763B2 (ja) * 2009-08-28 2012-06-27 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
WO2012032915A1 (ja) * 2010-09-10 2012-03-15 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子用エピタキシャル基板の製造方法、および半導体素子
JP5806545B2 (ja) * 2011-08-03 2015-11-10 日本碍子株式会社 半導体素子、hemt素子、および半導体素子の製造方法
JP2013187368A (ja) 2012-03-08 2013-09-19 Hitachi Cable Ltd 窒化ガリウム系半導体エピタキシャルウェハの製造方法及び高周波デバイス用エピタキシャルウェハ
US9865721B1 (en) * 2016-06-15 2018-01-09 Qorvo Us, Inc. High electron mobility transistor (HEMT) device and method of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229439A (ja) * 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd 化合物半導体素子
JP2004335635A (ja) * 2003-05-06 2004-11-25 National Institute Of Advanced Industrial & Technology 微傾斜基板を用いた窒化物半導体薄膜素子及びその素子の製造方法
JP2012033575A (ja) * 2010-07-28 2012-02-16 Sumitomo Electric Ind Ltd 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117064A (ja) * 2017-01-19 2018-07-26 住友電気工業株式会社 窒化物半導体デバイス及び窒化物半導体デバイスの製造方法
WO2023026362A1 (ja) * 2021-08-24 2023-03-02 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP6173493B2 (ja) 2017-08-02
JPWO2016051935A1 (ja) 2017-04-27
US20170200806A1 (en) 2017-07-13
US10332975B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6170893B2 (ja) 半導体素子用エピタキシャル基板の作製方法
JP5524235B2 (ja) 半導体素子用エピタキシャル基板および半導体素子用エピタキシャル基板の製造方法
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5634681B2 (ja) 半導体素子
JP5492984B2 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
WO2011102044A1 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
JP5580009B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の作製方法
WO2009119357A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の作製方法
JP6152124B2 (ja) 半導体装置の製造方法
WO2013125126A1 (ja) 半導体素子および半導体素子の製造方法
JP2008544486A (ja) 直径100ミリメートルの炭化シリコン基板上の高均一性のiii族窒化物エピタキシャル層
JP5702058B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の作製方法
JP5788296B2 (ja) 窒化物半導体基板及びその製造方法
WO2011122322A1 (ja) エピタキシャル基板およびエピタキシャル基板の製造方法
US8405067B2 (en) Nitride semiconductor element
JP2019110344A (ja) 窒化物半導体装置および窒化物半導体基板
JP2009260296A (ja) 窒化物半導体エピタキシャルウエハ及び窒化物半導体素子
JP6173493B2 (ja) 半導体素子用のエピタキシャル基板およびその製造方法
JP2011049486A (ja) Iii族窒化物半導体積層ウェハ及びiii族窒化物半導体デバイス
JP2013145782A (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
JP5776344B2 (ja) 半導体装置
JP2008085123A (ja) 化合物半導体デバイス用基板およびそれを用いた化合物半導体デバイス
JP2015103665A (ja) 窒化物半導体エピタキシャルウエハおよび窒化物半導体
JP2012064977A (ja) Iii族窒化物半導体積層ウェハ及びiii族窒化物半導体デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560886

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847083

Country of ref document: EP

Kind code of ref document: A1