WO2016035188A1 - 内燃機関搭載車両 - Google Patents

内燃機関搭載車両 Download PDF

Info

Publication number
WO2016035188A1
WO2016035188A1 PCT/JP2014/073354 JP2014073354W WO2016035188A1 WO 2016035188 A1 WO2016035188 A1 WO 2016035188A1 JP 2014073354 W JP2014073354 W JP 2014073354W WO 2016035188 A1 WO2016035188 A1 WO 2016035188A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
control unit
vehicle
fuel injection
Prior art date
Application number
PCT/JP2014/073354
Other languages
English (en)
French (fr)
Inventor
武広 西殿
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN201480081753.8A priority Critical patent/CN106794835B/zh
Priority to PCT/JP2014/073354 priority patent/WO2016035188A1/ja
Priority to EP14901134.8A priority patent/EP3190020B1/en
Priority to JP2016546260A priority patent/JP6332656B2/ja
Publication of WO2016035188A1 publication Critical patent/WO2016035188A1/ja
Priority to US15/449,038 priority patent/US20170174207A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device of an internal combustion engine mounted on a vehicle.
  • an internal combustion engine mounted in a vehicle such as a car has a function of driving a generator to generate electric power and charging the battery mounted on the vehicle while being used for the on-vehicle device.
  • a generator to generate electric power and charging the battery mounted on the vehicle while being used for the on-vehicle device.
  • large-capacity batteries are mounted, and it is necessary to charge the batteries on many occasions.
  • Patent Document 1 in an internal combustion engine mounted on a hybrid vehicle or a plug-in hybrid vehicle, in-cylinder fuel injection for directly injecting fuel into the cylinder and intake for injecting fuel to the intake passage Vehicles capable of simultaneously or selectively aisle fuel injection have been developed.
  • vehicle of Patent Document 1 for example, at low speeds with low running noise, only the intake passage fuel injection is performed, thereby suppressing the operation of the high-pressure fuel pump that boosts the fuel for in-cylinder fuel injection to reduce operating noise. be able to.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a vehicle equipped with an internal combustion engine capable of performing in-cylinder fuel injection and intake manifold fuel injection, and the combustion efficiency of the internal combustion engine. To provide a vehicle capable of reducing knock noise while securing the
  • an internal combustion engine-equipped vehicle of the present invention comprises: a first fuel injection portion directly injecting into a cylinder of an internal combustion engine; and a second fuel injecting fuel into an intake passage of the internal combustion engine
  • the injection unit a rotating electrical machine connected to the output shaft of the internal combustion engine, a battery storing electric power generated by the rotating electrical machine, and the internal combustion engine operating according to the charge amount of the battery
  • a control unit for charging the battery and performing fuel injection by the first fuel injection unit during the operation.
  • knock noise when power is generated according to the charge amount of the battery, knock noise is reduced by in-cylinder injection, so the load is generated by power generation in a low noise state such as at low load operation or low vehicle speed.
  • the knocking noise that is more noticeable than the operation noise of the high pressure fuel pump for in-cylinder injection can be reduced to suppress the noise generated as a whole of the vehicle and improve the comfort.
  • FIG. 1 is a schematic configuration view of a plug-in hybrid vehicle according to an embodiment of the present invention. It is a sectional view showing the structure of the engine in this embodiment. It is a map which shows an example of the selection condition of the fuel-injection system in this embodiment. It is a flowchart which shows the selection control point of the fuel injection system by the electric power generation request
  • FIG. 1 is a schematic configuration diagram of a plug-in hybrid vehicle (hereinafter referred to as a vehicle 1) according to an embodiment of the present invention.
  • the vehicle 1 (internal combustion engine mounted vehicle) of the present embodiment is capable of driving by driving the front wheel 3 by the output of the engine 2 (internal combustion engine), and is capable of driving the front wheel 4 and the rear wheel 5 electrically. It is a four-wheel drive vehicle provided with an electric rear motor 6 to be driven.
  • the engine 2 can drive the drive shaft 8 of the front wheels 3 through the reduction gear 7 and can generate electric power by driving the motor generator 9 (rotating electric machine) through the reduction gear 7.
  • the motor generator 9 has a function of being supplied with electric power from a driving battery 11 (battery) mounted on the vehicle 1 and driving it to start the engine 2.
  • the front motor 4 is supplied with high voltage power from the drive battery 11 and the motor generator 9 via the front control unit 10 to drive it, and drives the drive shaft 8 of the front wheel 3 via the reduction gear 7.
  • the speed reducer 7 incorporates a clutch 23 capable of switching between transmission and reception of power between the output shaft of the engine 2 and the drive shaft 8 of the front wheel 3.
  • the rear motor 6 is driven by being supplied with high voltage power from the drive battery 11 via the rear control unit 12, and drives the drive shaft 14 of the rear wheel 5 via the reduction gear 13.
  • the electric power generated by the motor generator 9 can charge the drive battery 11 via the front control unit 10 and can supply electric power to the front motor 4 and the rear motor 6.
  • the driving battery 11 is configured of a secondary battery such as a lithium ion battery, and includes a battery module (not shown) configured by collecting a plurality of battery cells.
  • the front control unit 10 controls the output of the front motor 4 and controls the amount of power generation of the motor generator 9 based on the control signal from the hybrid control unit 20 (vehicle control unit, control unit) mounted on the vehicle 1 It has a function.
  • the rear control unit 12 has a function of controlling the output of the rear motor 6 based on a control signal from the hybrid control unit 20.
  • the engine control unit 22 (internal combustion engine control unit, control unit) controls a fuel injection amount, a fuel injection timing, an intake amount, etc. to the engine 2 based on a control signal (request output) from the hybrid control unit 20.
  • the drive control of the engine 2 is performed.
  • the vehicle 1 is provided with a charger (not shown) that charges the drive battery 11 with an external power supply.
  • the hybrid control unit 20 is a control device for comprehensively controlling the vehicle 1, and includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer, etc. It comprises.
  • the front control unit 10, the rear control unit 12, and the engine control unit 22 are connected to the input side of the hybrid control unit 20, and detection and operation information from these devices are input.
  • the front control unit 10, the rear control unit 12, the engine control unit 22, and the clutch 23 of the reduction gear 7 are connected.
  • the hybrid control unit 20 calculates a vehicle request output necessary for driving the vehicle 1 based on various detection amounts such as the accelerator operation information degree of the vehicle 1 and various operation information, and the engine control unit 22, the front Control signals are sent to the control unit 10, the rear control unit 12 and the reduction gear 7 to switch the running mode (EV mode, series mode, parallel mode), the output of the engine 2, the front motor 4 and the rear motor 6, the motor generator 9 Control the output (generated power) of
  • the engine 2 In the EV mode, the engine 2 is stopped, and the front motor 4 and the rear motor 6 are driven to travel by the power supplied from the drive battery 11.
  • the clutch 23 of the reduction gear 7 is disconnected, and the motor generator 9 is operated by the engine 2. Then, the front motor 4 and the rear motor 6 are driven to travel by the electric power generated by the motor generator 9 and the electric power supplied from the drive battery 11.
  • the rotational speed of the engine 2 is set to a predetermined value, and the electric power generated by the surplus output is supplied to the drive battery 11 to charge the drive battery 11.
  • the clutch 23 of the reduction gear 7 is connected, and power is mechanically transmitted from the engine 2 through the reduction gear 7 to drive the front wheel 3. Further, the front motor 4 and the rear motor 6 are driven to travel by the electric power generated by operating the motor generator 9 by the engine 2 and the electric power supplied from the driving battery 11.
  • the hybrid control unit 20 sets the traveling mode to the parallel mode in the efficient area of the engine 2 as in the high speed area. Further, in the region excluding the parallel mode, that is, in the middle and low speed region, switching is made between the EV mode and the series mode based on the charging rate SOC (charging amount) of the driving battery 11. Further, when the charging rate SOC of the drive battery 11 falls below the allowable range, the hybrid control unit 20 forcibly drives the engine 2 to generate power even if the vehicle 1 is stopped and the engine 2 is stopped. It has a power generation function during stoppage to charge the driving battery 11. During power generation while stopped, the series mode is selected.
  • the vehicle 1 is provided with a charge mode switch 25 (forced charge request unit) for instructing a charge mode for forcibly charging the drive battery 11.
  • a charge mode switch 25 force charge request unit
  • the hybrid control unit 20 drives the engine 2 to operate the motor generator 9 regardless of the charging rate SOC of the drive battery 11. The power is generated, and the drive battery 11 is forcibly charged so as to be fully charged.
  • the charge mode switch 25 is operated, if the engine 2 is stopped, the engine 2 is forcibly started to perform charging.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the engine 2 of the present embodiment.
  • the engine 2 according to the present embodiment is a multi-cylinder gasoline engine provided with a turbocharger 29 (supercharger).
  • FIG. 2 illustrates the internal structure of one cylinder, and the other cylinders have the same structure.
  • the cylinder head 30 of the engine 2 is provided with an intake port 32 (intake passage) communicating with the combustion chamber 31 and an exhaust port 33, and an intake valve 34 for opening and closing between the intake port 32 and the combustion chamber 31; An exhaust valve 35 for opening and closing between the combustion chamber 31 and the combustion chamber 31 and a spark plug 36 having an electrode disposed facing the combustion chamber 31 are provided. Furthermore, in the cylinder head 30 of the engine 2 of the present embodiment, the intake passage fuel injection valve 37 (second fuel injection portion) for injecting the fuel into the intake port 32 and the fuel in the combustion chamber 31 (in the cylinder) An in-cylinder fuel injection valve 38 (first fuel injection unit) that directly injects
  • the intake passage fuel injection valve 37 has an injection port disposed at the intake port 32 and injects low pressure fuel supplied by the feed pump 40 from a fuel tank 39 mounted at the rear of the vehicle into the intake port 32.
  • the fuel injection by the intake passage fuel injection valve 37 is referred to as intake passage fuel injection (MPI injection).
  • the in-cylinder fuel injection valve 38 has an injection port disposed in the combustion chamber 31 and injects the high pressure fuel supplied from the high pressure fuel pump 41 into the combustion chamber 31.
  • the high pressure fuel pump 41 boosts the low pressure fuel supplied from the feed pump 40 and supplies it to the in-cylinder fuel injection valve 38.
  • the fuel injection by the in-cylinder fuel injection valve 38 is referred to as in-cylinder fuel injection (DI injection).
  • the turbine 29a of the turbocharger 29 is disposed in the exhaust passage 42 connected to the exhaust port 33 of the engine 2, and the compressor 29b of the turbocharger 29 is disposed in the intake passage 43 connected to the intake port 32.
  • the turbine 29 a is rotationally driven by the air pressure, and the intake air in the intake passage 43 is supercharged to the intake port 32 side by the compressor 29 b which rotates with the turbine 29 a.
  • an air flow valve 44 for controlling the intake amount is provided on the upstream side of the compressor 29b of the intake passage 43.
  • the engine control unit 22 is a control device for controlling the engine 2 and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), a timer, etc. Be done.
  • the hybrid control unit 20, a rotational speed sensor 45 for detecting the rotational speed of the engine 2, an intake pressure sensor (not shown), etc. are connected to the input side of the engine control unit 22, and detection and operation information from these devices are It is input.
  • the hybrid control unit 20, the airflow valve 44, the spark plug 36, the intake passage fuel injection valve 37, the in-cylinder fuel injection valve 38, etc. are connected to the output side of the engine control unit 22. Then, the engine control unit 22 can obtain the required output input from the hybrid control unit 20, the airflow valve 44, the spark plug 36, the intake passage fuel injection valve 37, the in-cylinder fuel injection valve 38, the high pressure fuel pump 41, etc. Control.
  • the engine control unit 22 further performs MPI injection by the intake passage fuel injection valve 37 based on the vehicle state when the operation of the engine 2 is requested, the intake passage fuel injection valve 37 and the in-cylinder fuel injection valve 38.
  • the fuel injection method of the engine 2 is changed by selecting MPI + DI injection in which fuel is injected by both.
  • FIG. 3 is a map showing an example of the selection state of the fuel injection system in the present embodiment.
  • MPI + DI injection is selected when the engine rotation speed Ne or the charging efficiency Ec is high, that is, when the output of the engine 2 is high, the engine rotation speed Ne and the charging
  • the charging efficiency Ec is a value related to the output torque of the engine 2.
  • MPI + DI injection is selected.
  • DI injection discharges unburned fuel into the exhaust gas to raise the exhaust temperature, thereby activating an exhaust gas purification catalyst (not shown) provided in the exhaust passage 42.
  • the engine control unit 22 outputs a power generation request from the hybrid control unit 20 as when the vehicle is generating power or operating the charge mode switch 25 in a region where the charging efficiency Ec is low and MPI injection is selected. If it is, MPI + DI injection is selected.
  • FIG. 4 is a flow chart showing a selection control procedure of the fuel injection system according to the power generation request.
  • the engine control unit 22 repeatedly executes this control.
  • step S10 it is determined whether the output torque T of the engine 2 is less than or equal to a predetermined value T1.
  • the output torque T of the engine 2 may be obtained from, for example, the charging efficiency Ec calculated based on the intake amount of the engine 2.
  • the predetermined value T1 may be set to an output torque corresponding to the upper limit value of the charging efficiency Ec for performing fuel injection only by MPI injection in FIG. If the output torque T of the engine 2 is less than or equal to the predetermined value T1 (predetermined load), the process proceeds to step S20. If the output torque T of the engine 2 is larger than the predetermined value T1, the process proceeds to step S40. In this step, the determination may be made based on the vehicle speed instead of the output torque T of the engine 2.
  • the process proceeds to step S20, and when the vehicle speed is larger than the predetermined vehicle speed V1, the process proceeds to step S40.
  • the predetermined vehicle speed V1 may be set to the upper limit value of the vehicle speed at which fuel injection is performed only by MPI injection.
  • step S20 it is determined whether there is a power generation request.
  • the power generation request is a request for driving the motor generator 9 by the hybrid control unit 20 to generate electric power, for example, due to an increase in power consumption, a decrease in charge capacity of the battery, or the like. If there is a power generation request, the process proceeds to step S40. If there is no power generation request, the process proceeds to step S30.
  • step S30 MPI injection which performs fuel injection only with the intake passage fuel injection valve 37 is selected. Then, this routine ends.
  • step S40 MPI + DI injection in which fuel is injected from both the intake passage fuel injection valve 37 and the in-cylinder fuel injection valve 38 is selected. Then, this routine ends.
  • the engine 2 is provided with two types of fuel injection valves, the in-cylinder fuel injection valve 38 and the intake passage fuel injection valve 37, and both MPI injection and DI injection are possible.
  • both MPI injection and DI injection can be performed to increase the fuel injection amount and secure the output.
  • the charging rate SOC of the drive battery 11 decreases or the charge mode switch 25 is operated. If there is a demand for power generation, MPI + DI injection is selected.
  • MPI + DI injection is selected.
  • a load due to power generation is applied during operation in a low noise operation state such as a low load operation
  • knock noise is likely to be generated from the engine 2, and high frequency knock noise may be noticeable.
  • by further performing DI injection to MPI injection generation of knock noise can be suppressed by the cooling effect of fuel injection into the cylinder.
  • the combustion efficiency of the engine 2 can be improved to improve the fuel efficiency.
  • the injection amount by DI injection can be suppressed to an amount necessary to avoid the generation of knock noise, and the operation noise of the high pressure fuel pump 41 is reduced. be able to.
  • the traveling mode is switched as in the parallel mode, the series mode, and the EV mode, and the necessity of the power generation request may be switched only during traveling in the parallel mode. Therefore, in the present embodiment, when the vehicle travels in the parallel mode, when the load is low or the vehicle speed is low, MPI injection is performed by the intake passage fuel injection valve 37 when there is no power generation request, and MPI + DI injection is received when the power generation request is received. I do. As described above, in the present embodiment, it is effective to reduce noise by switching the fuel injection method according to the necessity of the power generation request while traveling the vehicle in the parallel mode.
  • the hybrid control unit 20 outputs a power generation request when the charge ratio SOC of the drive battery 11 falls below the allowable range, the charge ratio SOC of the drive battery 11 is less than the first predetermined value while the vehicle is traveling. It is recommended that a power generation request be made when the power supply capacity of the drive battery 11 falls and the power generation request be made when the state of charge SOC of the drive battery 11 falls below a second predetermined value lower than the first predetermined value. . In the case where the engine 2 is stopped while the vehicle is stopped, when the state of charge SOC falls below the second predetermined value, a power generation request is made and the motor generator 9 is driven to start the engine 2. As described above, when the charging rate SOC of the drive battery 11 is greatly reduced while the vehicle is stopped, the engine 2 is started by requesting power generation, so the frequency of operation of the engine 2 is suppressed, which is more effective for noise reduction.
  • the engine control unit 22 perform fuel injection control during power generation to perform MPI + DI injection only at no supercharging when there is a power generation request. .
  • knocking noise is effectively reduced by performing DI injection at the time of low output torque such as no supercharging that knock noise is likely to occur.
  • the engine control unit 22 may control the wastegate valve or the like so as to be supercharged when performing fuel injection control at the time of power generation when power generation is requested. As described above, by forcibly performing no supercharging, DI injection is performed in a state where the output torque is surely suppressed, and the knocking noise is effectively reduced.
  • MPI injection is performed at low load
  • MPI + DI injection is performed when a power generation request is made in the region where MPI injection is performed, but only MPI injection is performed regardless of load.
  • MPI + DI injection may be performed when a power generation request is made.
  • at least DI injection may be performed, and the injection methods other than the power generation request may be changed as appropriate.
  • the present invention may be applied to an engine equipped with a turbocharger other than a turbocharger such as a supercharger, or may be applied to an engine not equipped with a turbocharger.
  • the present invention is applied to a plug-in hybrid vehicle switchable between EV mode, series mode, and parallel mode, and the series mode is made to the power generation request, however, various types
  • the present invention is also applicable to a type of hybrid vehicle or a plug-in hybrid vehicle.
  • the hybrid control unit 20 and the engine control unit 22 may be one control unit.
  • the present invention can be widely applied to a vehicle having an internal combustion engine capable of in-cylinder fuel injection and intake manifold fuel injection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 エンジン(2)の燃焼室(31)内に燃料を直接噴射する第1の筒内燃料噴射弁(38)と、エンジン(2)の吸気ポート(32)に燃料を噴射する吸気通路燃料噴射弁(37)と、エンジン(2)の出力軸に接続されるモータジェネレータ(9)と、モータジェネレータ(9)で発電された電力を蓄える駆動用バッテリ11と、駆動用バッテリ11の充電率(SOC)に応じてエンジン(2)を運転しモータジェネレータ(9)で発電して駆動用バッテリ11を充電し、当該運転の際に筒内燃料噴射弁(38)による燃料噴射を行うハイブリッドコントロールユニット(20)及びエンジンコントロールユニット(20)と、を備える。

Description

内燃機関搭載車両
 本発明は、車両に搭載された内燃機関の制御装置に関する。
 従来より、自動車等の車両に搭載された内燃機関は、発電機を駆動して発電させ、当該車載機器に使用するとともに車両に搭載されたバッテリを充電する機能を備えている。
 特に、ハイブリッド車やプラグインハイブリッド車のように、電動機によって走行可能な車両では、大容量のバッテリを搭載しており、多くの機会でバッテリを充電する必要があり、停車時においても内燃機関を作動させてバッテリを充電させる車両がある。
 ところで、特許文献1に記載されているように、ハイブリッド車やプラグインハイブリッド車に搭載された内燃機関において、筒内に燃料を直接噴射する筒内燃料噴射と、吸気通路に燃料を噴射する吸気通路燃料噴射を同時にあるいは選択的に可能な車両が開発されている。特許文献1の車両では、例えば走行音の低い低速時には吸気通路燃料噴射のみ行うことで、筒内燃料噴射するために燃料を昇圧させる高圧燃料ポンプの作動を抑制して、作動音の低減を図ることができる。
特開2006-291922号公報
 しかしながら、特許文献1の車両は、例えば低速走行時に発電することが必要となった状況では、筒内燃料噴射を行わず吸気通路燃料噴射のみ行なわれるが、これにより高圧燃料ポンプの作動音が抑制されたとしても、内燃機関が低回転高負荷であるため、高圧燃料ポンプの作動音よりも不快なノック音が目立つ虞がある。このようなノック音は、上記のように停車時にバッテリを充電させる場合には、より目立つものとなってしまう。ノック音の発生を回避する手段としては、点火時期を遅らせるリタード制御が知られているが、燃焼効率が低下してしまうので、燃費が低下するといった問題点がある。
 本発明は、この様な問題を解決するためになされたもので、その目的とするところは、筒内燃料噴射と吸気通路燃料噴射が可能な内燃機関を搭載する車両において、内燃機関の燃焼効率を確保しつつノック音を低減可能な車両を提供することにある。
 上記の目的を達成するために、本発明の内燃機関搭載車両は、内燃機関の筒内に直接噴射する第1の燃料噴射部と、前記内燃機関の吸気通路に燃料を噴射する第2の燃料噴射部と、前記内燃機関の出力軸に接続される回転電機と、前記回転電機で発電された電力を蓄える電池と、前記電池の充電量に応じて前記内燃機関を運転し前記回転電機で発電して前記電池を充電し、前記運転の際に前記第1の燃料噴射部による燃料噴射を行う制御部と、を有する。
 これにより、電池を充電させる際には、第1の燃料噴射部により筒内に直接燃料が噴射されて内燃機関を運転するので、燃料の気化による冷却効果によってノック音の発生が抑制される。
 本発明によれば、電池の充電量に応じて発電する際に、筒内噴射によってノック音が低減されるので、例えば低負荷運転時や低車速時のような低騒音状態で発電により負荷が増加する状況では、筒内噴射用の高圧燃料ポンプの作動音よりも目立つノック音を低減して、車両全体としての発生音を抑えて快適性を向上させることができる。また、ノック音を低減させるために、リタード制御を行う必要がなくなり、燃焼効率を確保して、燃費を向上させることができる。
本発明の一実施形態に係るプラグインハイブリッド車の概略構成図である。 本実施形態におけるエンジンの構造を示す断面図である。 本実施形態における燃料噴射方式の選択状況の一例を示すマップである。 本実施形態における発電要求による燃料噴射方式の選択制御要領を示すフローチャートである。
 以下、本発明の実施形態を図面に基づき説明する。
 図1は、本発明の一実施形態に係るプラグインハイブリッド車(以下、車両1という)の概略構成図である。
 本実施形態の車両1(内燃機関搭載車両)は、エンジン2(内燃機関)の出力によって前輪3を駆動して走行可能であるとともに、前輪3を駆動する電動のフロントモータ4及び後輪5を駆動する電動のリヤモータ6を備えた4輪駆動車である。
 エンジン2は、減速機7を介して前輪3の駆動軸8を駆動可能であるとともに、減速機7を介してモータジェネレータ9(回転電機)を駆動して発電させることが可能となっている。また、モータジェネレータ9は、車両1に搭載された駆動用バッテリ11(電池)から電力を供給されて駆動し、エンジン2を始動させる機能を有する。
 フロントモータ4は、フロントコントロールユニット10を介して、駆動用バッテリ11及びモータジェネレータ9から高電圧の電力を供給されて駆動し、減速機7を介して前輪3の駆動軸8を駆動する。減速機7には、エンジン2の出力軸と前輪3の駆動軸8との間の動力の伝達を断接切換え可能な、クラッチ23が内蔵されている。
 リヤモータ6は、リヤコントロールユニット12を介して駆動用バッテリ11から高電圧の電力を供給されて駆動し、減速機13を介して後輪5の駆動軸14を駆動する。
 モータジェネレータ9によって発電された電力は、フロントコントロールユニット10を介して駆動用バッテリ11を充電可能であるとともに、フロントモータ4及びリヤモータ6に電力を供給可能である。
 駆動用バッテリ11は、リチウムイオン電池等の二次電池で構成され、複数の電池セルをまとめて構成された図示しない電池モジュールを有している。
 フロントコントロールユニット10は、車両1に搭載されたハイブリッドコントロールユニット20(車両制御部、制御部)からの制御信号に基づき、フロントモータ4の出力を制御するとともに、モータジェネレータ9の発電量を制御する機能を有する。
 リヤコントロールユニット12は、ハイブリッドコントロールユニット20からの制御信号に基づきリヤモータ6の出力を制御する機能を有する。
 エンジンコントロールユニット22(内燃機関制御部、制御部)は、ハイブリッドコントロールユニット20からの制御信号(要求出力)に基づき、エンジン2への燃料噴射量及び燃料噴射時期、吸気量等を制御して、エンジン2の駆動制御を行う。
 また、車両1には、駆動用バッテリ11を外部電源によって充電する図示しない充電機が備えられている。
 ハイブリッドコントロールユニット20は、車両1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)及びタイマ等を含んで構成される。
 ハイブリッドコントロールユニット20の入力側には、フロントコントロールユニット10、リヤコントロールユニット12、エンジンコントロールユニット22が接続されており、これらの機器からの検出及び作動情報が入力される。
 一方、ハイブリッドコントロールユニット20の出力側には、フロントコントロールユニット10、リヤコントロールユニット12、エンジンコントロールユニット22、減速機7のクラッチ23が接続されている。
 そして、ハイブリッドコントロールユニット20は、車両1のアクセル操作情報度等の各種検出量及び各種作動情報に基づいて、車両1の走行駆動に必要とする車両要求出力を演算し、エンジンコントロールユニット22、フロントコントロールユニット10、リヤコントロールユニット12、減速機7に制御信号を送信して、走行モード(EVモード、シリーズモード、パラレルモード)の切換え、エンジン2とフロントモータ4とリヤモータ6の出力、モータジェネレータ9の出力(発電電力)を制御する。
 EVモードでは、エンジン2を停止し、駆動用バッテリ11から供給される電力によりフロントモータ4やリヤモータ6を駆動して走行させる。
 シリーズモードでは、減速機7のクラッチ23を切断し、エンジン2によりモータジェネレータ9を作動する。そして、モータジェネレータ9により発電された電力及び駆動用バッテリ11から供給される電力によりフロントモータ4やリヤモータ6を駆動して走行させる。また、シリーズモードでは、エンジン2の回転速度を所定値に設定し、余剰出力によって発電した電力を駆動用バッテリ11に供給して駆動用バッテリ11を充電する。
 パラレルモードでは、減速機7のクラッチ23を接続し、エンジン2から減速機7を介して機械的に動力を伝達して前輪3を駆動させる。また、エンジン2によりモータジェネレータ9を作動させて発電した電力及び駆動用バッテリ11から供給される電力によってフロントモータ4やリヤモータ6を駆動して走行させる。
 ハイブリッドコントロールユニット20は、高速領域のように、エンジン2の効率のよい領域では、走行モードをパラレルモードとする。また、パラレルモードを除く領域、即ち中低速領域では、駆動用バッテリ11の充電率SOC(充電量)に基づいてEVモードとシリーズモードとの間で切換える。
 ハイブリッドコントロールユニット20は、更に、駆動用バッテリ11の充電率SOCが許容範囲より低下したときには、車両1が停止してエンジン2が停止していても、エンジン2を強制的に駆動して発電させて駆動用バッテリ11を充電させる停車中発電機能を有している。なお、停車中発電時には、シリーズモードが選択される。
 また、車両1には、駆動用バッテリ11を強制的に充電させるチャージモードを指示するチャージモードスイッチ25(強制充電要求部)が備えられている。ハイブリッドコントロールユニット20は、運転者等によるチャージモードスイッチ25の操作によりチャージモードが指示された場合に、駆動用バッテリ11の充電率SOCに拘わらず、エンジン2を駆動しモータジェネレータ9を作動させて発電し、駆動用バッテリ11が満充電となるように強制的に充電させる。なお、チャージモードスイッチ25が操作されたときに、エンジン2が停止している場合には、エンジン2を強制的に始動して充電を行う。
 図2は、本実施形態のエンジン2の概略構成を示す断面図である。
 図2に示すように、本実施形態に係るエンジン2は、ターボチャージャ29(過給機)を備えた多気筒のガソリンエンジンである。図2では、1つの気筒の内部構造を図示しており、他の気筒も同様の構造である。
 エンジン2のシリンダヘッド30には、燃焼室31に連通する吸気ポート32(吸気通路)及び排気ポート33が設けられるとともに、吸気ポート32と燃焼室31との間を開閉する吸気弁34、排気ポート33と燃焼室31との間を開閉する排気弁35、燃焼室31に面して電極が配置された点火プラグ36が設けられている。
 更に、本実施形態のエンジン2のシリンダヘッド30には、吸気ポート32内に燃料を噴射する吸気通路燃料噴射弁37(第2の燃料噴射部)と、燃焼室31内(筒内)に燃料を直接噴射する筒内燃料噴射弁38(第1の燃料噴射部)とが備えられている。
 吸気通路燃料噴射弁37は、吸気ポート32に噴射口が配置され、車両後部に搭載された燃料タンク39からフィードポンプ40によって供給された低圧の燃料を吸気ポート32内に噴射する。なお、この吸気通路燃料噴射弁37による燃料噴射を吸気通路燃料噴射(MPI噴射)という。
 筒内燃料噴射弁38は、燃焼室31に噴射口が配置され、高圧燃料ポンプ41から供給された高圧の燃料を燃焼室31内に噴射する。高圧燃料ポンプ41は、フィードポンプ40から供給された低圧の燃料を昇圧して筒内燃料噴射弁38に供給する。なお、この筒内燃料噴射弁38による燃料噴射を筒内燃料噴射(DI噴射)という。
 エンジン2の排気ポート33に接続された排気通路42にはターボチャージャ29のタービン29aが配置され、吸気ポート32に接続された吸気通路43にはターボチャージャ29のコンプレッサ29bが配置されており、排気圧によってタービン29aが回転駆動され、タービン29aとともに回転するコンプレッサ29bによって吸気通路43内の吸気を吸気ポート32側へ過給する。
 吸気通路43のコンプレッサ29bの上流側には、吸気量を制御するエアフローバルブ44が設けられている。
 エンジンコントロールユニット22は、エンジン2の制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)及びタイマ等を含んで構成される。
 エンジンコントロールユニット22の入力側には、ハイブリッドコントロールユニット20、エンジン2の回転速度を検出する回転速度センサ45、図示しない吸気圧センサ等が接続されており、これらの機器からの検出及び作動情報が入力される。
 一方、エンジンコントロールユニット22の出力側には、ハイブリッドコントロールユニット20、エアフローバルブ44、点火プラグ36、吸気通路燃料噴射弁37、筒内燃料噴射弁38等が接続されている。
 そして、エンジンコントロールユニット22は、ハイブリッドコントロールユニット20から入力した要求出力が得られるように、エアフローバルブ44、点火プラグ36、吸気通路燃料噴射弁37、筒内燃料噴射弁38、高圧燃料ポンプ41等を制御する。
 本実施形態では、エンジンコントロールユニット22は、更に、エンジン2の運転要求時において、車両状態に基づいて吸気通路燃料噴射弁37によるMPI噴射、吸気通路燃料噴射弁37と筒内燃料噴射弁38の両方によって燃料噴射するMPI+DI噴射を選択して、エンジン2の燃料噴射方式を変更する。
 図3は、本実施形態における燃料噴射方式の選択状況の一例を示すマップである。
 図3に示すように、本実施形態のエンジン2は、エンジン回転速度Neあるいは充填効率Ecが高い場合、即ちエンジン2の出力が高い場合には、MPI+DI噴射が選択され、エンジン回転速度Ne及び充填効率Ecが低い場合、即ちエンジン2の出力が低い場合には、MPI噴射が行われる。なお、充填効率Ecは、エンジン2の出力トルクに関連する値である。
 また、エンジン始動から所定時間経過するまでのウォームアップ中(W/U中)では、MPI+DI噴射が選択される。このときの、DI噴射は、排気中に未燃燃料を排出して排気温度を上昇させ、排気通路42に設けられた図示しない排気浄化触媒の活性化を図る。
 更に、本実施形態では、エンジンコントロールユニット22は、充填効率Ecが低くMPI噴射が選択される領域において、停車中発電時やチャージモードスイッチ25操作時のようにハイブリッドコントロールユニット20から発電要求が出力された場合には、MPI+DI噴射が選択される。
 図4は、発電要求による燃料噴射方式の選択制御要領を示すフローチャートである。
 エンジンコントロールユニット22は、ハイブリッドコントロールユニット20からエンジン2の運転要求がある場合に、本制御を繰り返し実行する。
 始めに、ステップS10では、エンジン2の出力トルクTが所定値T1以下であるか否かを判別する。なお、エンジン2の出力トルクTは、例えばエンジン2の吸気量に基づいて演算された充填効率Ecから求めればよい。所定値T1は、図3において、MPI噴射のみで燃料噴射を行う充填効率Ecの上限値に対応する出力トルクに設定すればよい。エンジン2の出力トルクTが所定値T1(所定負荷)以下である場合には、ステップS20に進む。エンジン2の出力トルクTが所定値T1より大きい場合には、ステップS40に進む。なお、本ステップにおいて、エンジン2の出力トルクTの代わりに車速に基づいて判定してもよい。例えば、車速が所定車速V1以下である場合にステップS20に進み、車速が所定車速V1より大きい場合にステップS40に進む。当該所定車速V1は、MPI噴射のみで燃料噴射を行う車速の上限値に設定すればよい。
 ステップS20では、発電要求があるか否かを判別する。発電要求は、例えば電力消費量増大やバッテリの充電容量低下等により、ハイブリッドコントロールユニット20により、モータジェネレータ9を駆動させて発電させる要求である。発電要求がある場合には、ステップS40に進む。発電要求がない場合には、ステップS30に進む。
 ステップS30では、吸気通路燃料噴射弁37のみで燃料噴射を行うMPI噴射を選択する。そして、本ルーチンを終了する。
 ステップS40では、吸気通路燃料噴射弁37と筒内燃料噴射弁38の両方で燃料噴射を行うMPI+DI噴射を選択する。そして、本ルーチンを終了する。
 以上のように、本実施形態では、エンジン2には筒内燃料噴射弁38と吸気通路燃料噴射弁37の2種類の燃料噴射弁を備えており、MPI噴射とDI噴射の両方が可能である。そして、充填効率Ecの低い低負荷運転時(または低車速時)ではMPI噴射のみ行って、DI噴射を行わないことで、筒内燃料噴射弁38に高圧の燃料を供給するための高圧燃料ポンプ41の作動を抑え、作動音の発生を抑制することができる。また、充填効率Ecの高い高負荷運転時(または高車速時)ではMPI噴射とDI噴射の両方を行って燃料噴射量を増加させ出力を確保することができる。
 そして、本実施形態では、上記のようにMPI噴射のみ行うように設定された充填効率Ecの低い低負荷運転時において、駆動用バッテリ11の充電率SOCが低下したりチャージモードスイッチ25が操作されたりして発電要求がある場合には、MPI+DI噴射が選択される。このように低負荷運転時のような低騒音運転状態での運転時において、発電による負荷が掛かる場合には、エンジン2からノック音が発生し易くなり、高周波であるノック音が目立つ虞があるが、本実施形態では、MPI噴射に更にDI噴射を行うことで、筒内への燃料噴射による冷却効果によりノック音の発生が抑えられる。また、ノック音の発生を回避するために点火時期をリタードさせる必要がなくなり、エンジン2の燃焼効率を向上させ、燃費の向上を図ることができる。
 また、このときDI噴射だけでなくMPI噴射も行うことで、DI噴射による噴射量をノック音の発生を回避するのに必要な量に抑えることができ、高圧燃料ポンプ41の作動音を低減させることができる。
 特に、停車中発電時のような走行負荷のない低負荷状態で発電要求を受けた場合に、本実施形態のようにDI噴射を行うことで騒音低下に大幅に有効となる。
 また、停車中発電時だけでなく、低車速時のように発電による負荷の増加によりノック音が発生する可能性のある状況下において、バッテリの充電容量低下等により充電要求があった場合にMPI+DI噴射を行うことで、DI噴射によりノック音の発生が抑えられる。
 なお、本実施形態の車両1では、パラレルモード、シリーズモード、EVモードといったように走行モードが切り換わり、パラレルモードによる走行中でのみ発電要求の要否が切り換わる可能性がある。したがって、本実施形態では、パラレルモードにおける車両走行時において、低負荷または低車速時では、発電要求がない場合に吸気通路燃料噴射弁37によるMPI噴射を行い、発電要求を受けた場合にMPI+DI噴射を行う。このように、本実施形態では、パラレルモードによる車両走行中において、発電要求の要否に応じて燃料の噴射方法を切換えることで騒音低下に有効となる。
 また、ハイブリッドコントロールユニット20は、駆動用バッテリ11の充電率SOCが許容範囲より低下したときには、発電要求を出力するが、車両走行中では駆動用バッテリ11の充電率SOCが第1の所定値以下に低下した場合に発電要求をし、停車中では駆動用バッテリ11の充電率SOCが第1の所定値よりも低い第2の所定値以下に低下した場合に発電要求をするように設定するとよい。停車中においてエンジン2が停止している場合には、充電率SOCが第2の所定値以下に低下した場合に、発電要求をするとともにモータジェネレータ9を駆動してエンジン2を始動させる。このように停車中では駆動用バッテリ11の充電率SOCが大きく低下した場合に発電要求をしてエンジン2を始動させるので、エンジン2の作動頻度を抑制して、騒音低下に更に有効となる。
 また、エンジン2には、ターボチャージャ29が備えられているが、エンジンコントロールユニット22は、発電要求があった場合に無過給時に限定してMPI+DI噴射を行う発電時燃料噴射制御を行うとよい。このように無過給時に限定することで、ノック音が発生し易い無過給時のような低出力トルク時において、DI噴射が行われることで、効果的にノック音が低減される。
 また、エンジンコントロールユニット22は、エンジン2が過給領域であっても、発電要求時に発電時燃料噴射制御を行う際に無過給となるようにウエストゲートバルブ等の制御をしてもよい。このように強制的に無過給とすることで、確実に出力トルクが抑えられた状態で、DI噴射が行われ、効果的にてノック音が低減される。
 以上で発明の実施形態の説明を終えるが、発明の形態は本実施形態に限定されるものではない。
 例えば本実施形態では、低負荷時にMPI噴射が行われ、このMPI噴射が行われる領域において、発電要求がなされた場合にMPI+DI噴射が行われるが、負荷に拘わらずMPI噴射のみが行われるようなエンジンにおいて、発電要求がなされた場合にMPI+DI噴射が行われるようにしてもよい。このように、発電要求があった場合には、少なくともDI噴射が行われればよく、発電要求時以外の噴射方式については、適宜変更してもよい。
 また、スーパーチャージャ等のターボチャージャ以外の過給機を備えたエンジンに本発明を適用してもよいし、過給機を備えていないエンジンに適用してもよい。
 また、本実施形態では、EVモード、シリーズモード、パラレルモードに切り替え可能なプラグインハイブリッド車に本発明を適用しており、発電要求に対してシリーズモードにするが、各種モードに拘わらず、各種形式のハイブリッド車あるいはプラグインハイブリッド車でも適用可能である。
 また、ハイブリッドコントロールユニット20とエンジンコントロールユニット22を一つのコントロールユニットとしてもよい。本願発明は、筒内燃料噴射と吸気通路燃料噴射が可能な内燃機関を有する車両に対して広く適用することができる。
  2 エンジン(内燃機関)
  9 モータジェネレータ
 11 駆動用バッテリ(電池)
 20 ハイブリッドコントロールユニット(車両制御部、制御部)
 22 エンジンコントロールユニット(内燃機関制御部、制御部)
 23 クラッチ
 25 チャージモードスイッチ(強制充電要求部)
 29 ターボチャージャ(過給機)
 31 燃焼室(筒内)
 32 吸気ポート(吸気通路)
 37 吸気通路燃料噴射弁(第2の燃料噴射部)
 38 筒内燃料噴射弁(第1の燃料噴射部)
 41 高圧燃料ポンプ

Claims (10)

  1.  内燃機関の筒内に燃料を直接噴射する第1の燃料噴射部と、
     前記内燃機関の吸気通路に燃料を噴射する第2の燃料噴射部と、
     前記内燃機関の出力軸に接続されるモータジェネレータと、
     前記回転電機で発電された電力を蓄える電池と、
     前記電池の充電量に応じて前記内燃機関を運転し前記回転電機で発電して前記電池を充電し、前記運転の際に前記第1の燃料噴射部による燃料噴射を行う制御部と、
    を有する内燃機関搭載車両。
  2.  前記制御部は前記電池の充電量に応じて発電量を判断し前記内燃機関に運転を要求する車両制御部と、
     前記車両制御部からの要求により前記内燃機関を運転する内燃機関制御部からなり、
     前記内燃機関制御部は前記車両制御部から発電を要求されて運転する際に前記第1の燃料噴射部による燃料噴射を行う請求項1の内燃機関搭載車両。
  3.  前記内燃機関制御部は所定負荷または所定車速以下で運転する際は前記第2の燃料噴射部により燃料を噴射して運転し、前記所定負荷または所定車速以下で運転中に前記車両制御部から発電を要求された際は、前記第1の燃料噴射部による燃料を噴射して運転する請求項2に記載の内燃機関搭載車両。
  4.  前記車両制御部は、車両が走行中の場合は、前記電池の充電量が第1の所定値を下回った場合に前記内燃機関制御部に対し発電を要求し、前記車両が停止している場合は、前記電池の充電量が前記第1の所定値より低い第2所定値を下回った場合に前記内燃機関制御部に対し発電を要求する請求項2に記載の内燃機関搭載車両。
  5.  前記内燃機関車両は前記電池の充電量に関わらず強制的に充電する強制充電要求部を有し、
     前記車両制御部は車両が停止している場合は、前記強制充電要求部により強制充電が要求された場合に前記内燃機関制御部に対し発電を要求する請求項2に記載の内燃機関搭載車両。
  6.  前記内燃機関は過給機を備え、
     前記内燃機機関制御部は、前記車両制御部からの発電の要求により前記内燃機関を運転する際に、前記過給機の無過給領域で前記内燃機関を運転する請求項2に記載の内燃機関搭載車両。
  7.  前記内燃機関は車両の駆動輪にクラッチを介して接続され
     前記内燃機関制御部は、所定負荷または所定車速以下で前記クラッチを接続して前記駆動輪を駆動する際は前記第2の燃料噴射部により燃料を噴射して運転し、前記所定負荷または所定車速以下で運転中に前記車両制御部から発電を要求された際は、前記第1の燃料噴射部による燃料を噴射して運転する請求項2に記載の内燃機関搭載車両。
  8.  前記車両制御部は、車両が走行中の場合は、前記電池の充電量が第1の所定値を下回った場合に前記内燃機関制御部に対し発電を要求し、前記車両が停止中かつ前記内燃機関が停止している際に、前記電池の充電量が第1の所定値より低い第2の所定値を下回った場合は、前記内燃機関制御部に対し発電を要求するとともに前記回転電機を駆動して前記内燃機関を始動させる請求項2に記載の内燃機関搭載車両。
  9.  前記内燃機関搭載車両は前記電池の充電量に関わらず強制的に充電する強制充電要求部を有し、
     前記車両制御部は車両が停止中かつ前記内燃機関が停止している際に前記強制充電要求部により強制充電が要求された場合は、前記内燃機関制御部に対し発電を要求するとともに前記回転電機を駆動して前記内燃機関を始動させる請求項2に記載の内燃機関搭載車両。
  10.  前記制御部は前記回転電機を駆動するときは第2の燃料噴射部による燃料噴射に加えて前記第1の燃料噴射部による燃料噴射を行う請求項1から9のいずれか1項に記載の内燃機関搭載車両。
PCT/JP2014/073354 2014-09-04 2014-09-04 内燃機関搭載車両 WO2016035188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480081753.8A CN106794835B (zh) 2014-09-04 2014-09-04 配备有内燃引擎的车辆
PCT/JP2014/073354 WO2016035188A1 (ja) 2014-09-04 2014-09-04 内燃機関搭載車両
EP14901134.8A EP3190020B1 (en) 2014-09-04 2014-09-04 Vehicle equipped with internal combustion engine
JP2016546260A JP6332656B2 (ja) 2014-09-04 2014-09-04 内燃機関搭載車両
US15/449,038 US20170174207A1 (en) 2014-09-04 2017-03-03 Vehicle equipped with internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073354 WO2016035188A1 (ja) 2014-09-04 2014-09-04 内燃機関搭載車両

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/449,038 Continuation US20170174207A1 (en) 2014-09-04 2017-03-03 Vehicle equipped with internal combustion engine

Publications (1)

Publication Number Publication Date
WO2016035188A1 true WO2016035188A1 (ja) 2016-03-10

Family

ID=55439287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073354 WO2016035188A1 (ja) 2014-09-04 2014-09-04 内燃機関搭載車両

Country Status (5)

Country Link
US (1) US20170174207A1 (ja)
EP (1) EP3190020B1 (ja)
JP (1) JP6332656B2 (ja)
CN (1) CN106794835B (ja)
WO (1) WO2016035188A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170927A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の排ガス循環故障診断装置
JP2017170925A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の故障診断装置
JP2017170926A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の排ガス循環故障診断装置
KR20180068213A (ko) * 2016-12-13 2018-06-21 현대자동차주식회사 마일드 하이브리드 차량의 제어 방법 및 그 제어 장치
JP2020019457A (ja) * 2018-08-03 2020-02-06 スズキ株式会社 ハイブリッド車両

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207037A1 (de) * 2016-04-26 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines einen elektrischen Energiespeicher aufweisenden Hybridfahrzeuges mit einem Elektromotor und mit einem Verbrennungsmotor
KR20190046335A (ko) * 2017-10-26 2019-05-07 현대자동차주식회사 마일드 하이브리드 차량의 제어 방법 및 그 제어 장치
DE102018123740A1 (de) * 2018-07-26 2020-01-30 Schaeffler Technologies AG & Co. KG Hybridgetriebe, Hybrid-Antriebsanordnung und Verfahren zum Betreiben einer Hybrid-Antriebsanordnung
KR102496810B1 (ko) * 2018-10-04 2023-02-06 현대자동차 주식회사 마일드 하이브리드 차량의 엔진 토크 제어 방법 및 장치
US11708063B2 (en) * 2021-09-01 2023-07-25 Hyundai Motor Company Hybrid electric vehicle and method of operating engine of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270401A (ja) * 1999-03-17 2000-09-29 Denso Corp ハイブリッド車用空調装置。
JP2001003779A (ja) * 1999-06-17 2001-01-09 Aichi Corp 電気駆動式作業車
JP2005061361A (ja) * 2003-08-19 2005-03-10 Mazda Motor Corp 電動過給機付エンジンを備えた車両の制御装置
WO2014024515A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP2014133458A (ja) * 2013-01-09 2014-07-24 Mitsubishi Motors Corp ハイブリッド車の作動制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442318B2 (ja) * 2004-05-21 2010-03-31 トヨタ自動車株式会社 ハイブリッド車両におけるデュアル噴射型内燃機関の空燃比学習制御方法および空燃比学習制御装置
JP2005337171A (ja) * 2004-05-28 2005-12-08 Toyota Motor Corp エンジン電子制御装置及びそれを搭載した車両
JP4375276B2 (ja) * 2005-04-14 2009-12-02 トヨタ自動車株式会社 車両の制御装置
US7676321B2 (en) * 2007-08-10 2010-03-09 Ford Global Technologies, Llc Hybrid vehicle propulsion system utilizing knock suppression
US8485940B2 (en) * 2009-04-14 2013-07-16 Toyota Jidosha Kabushiki Kaisha Power control device
US8096125B2 (en) * 2009-12-23 2012-01-17 Ford Global Technologies, Llc Methods and systems for emission system control
JP5741149B2 (ja) * 2011-04-01 2015-07-01 トヨタ自動車株式会社 内燃機関の制御装置
US9359968B2 (en) * 2013-03-14 2016-06-07 Cummins Ip, Inc. Air-fuel-ratio dithering using a dual fuel path source
GB2520556B (en) * 2013-11-26 2016-05-25 Ford Global Tech Llc A method of controlling a mild hybrid electric vehicle
US9759135B2 (en) * 2014-04-04 2017-09-12 Ford Global Technologies, Llc Method and system for engine control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270401A (ja) * 1999-03-17 2000-09-29 Denso Corp ハイブリッド車用空調装置。
JP2001003779A (ja) * 1999-06-17 2001-01-09 Aichi Corp 電気駆動式作業車
JP2005061361A (ja) * 2003-08-19 2005-03-10 Mazda Motor Corp 電動過給機付エンジンを備えた車両の制御装置
WO2014024515A1 (ja) * 2012-08-10 2014-02-13 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP2014133458A (ja) * 2013-01-09 2014-07-24 Mitsubishi Motors Corp ハイブリッド車の作動制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170927A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の排ガス循環故障診断装置
JP2017170925A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の故障診断装置
JP2017170926A (ja) * 2016-03-18 2017-09-28 三菱自動車工業株式会社 ハイブリッド車両の排ガス循環故障診断装置
KR20180068213A (ko) * 2016-12-13 2018-06-21 현대자동차주식회사 마일드 하이브리드 차량의 제어 방법 및 그 제어 장치
KR102359915B1 (ko) * 2016-12-13 2022-02-07 현대자동차 주식회사 마일드 하이브리드 차량의 제어 방법 및 그 제어 장치
JP2020019457A (ja) * 2018-08-03 2020-02-06 スズキ株式会社 ハイブリッド車両
JP7283039B2 (ja) 2018-08-03 2023-05-30 スズキ株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
EP3190020A1 (en) 2017-07-12
CN106794835B (zh) 2019-06-18
CN106794835A (zh) 2017-05-31
JPWO2016035188A1 (ja) 2017-04-27
US20170174207A1 (en) 2017-06-22
EP3190020B1 (en) 2020-08-05
EP3190020A4 (en) 2018-06-13
JP6332656B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2016035188A1 (ja) 内燃機関搭載車両
US9821795B2 (en) Hybrid vehicle and control method for hybrid vehicle
JP5554391B2 (ja) 排ガス発電機を備えたハイブリッド車両の制御装置および排ガス発電機を備えたハイブリッド車両の制御方法
US10087858B2 (en) Vehicle and control method for vehicle
US20160114791A1 (en) Hybrid vehicle
JP5406270B2 (ja) 電動過給機を備えたハイブリッド車両の駆動方法、及び駆動装置
US20190283730A1 (en) Control system for hybrid vehicle
US10302033B2 (en) Control system of internal combustion engine and control method for the control system
CN111734524B (zh) 混合动力车辆和控制混合动力车辆的方法
JP7139073B2 (ja) ハイブリッド車両の制御装置
JP5736920B2 (ja) ハイブリッド車のエンジン制御装置
JP5750964B2 (ja) 火花点火式気体燃料エンジンの制御装置
JP7475795B2 (ja) 制御装置
JP6634807B2 (ja) ハイブリッド車両の駆動制御装置
JP2014144749A (ja) ハイブリッド車両の制御装置
JP7362216B2 (ja) ハイブリッド車両の制御装置
WO2022163410A1 (ja) 駆動制御装置及び駆動制御方法
JP7258422B2 (ja) ハイブリッド車両の制御装置
JP2014088132A (ja) 制御装置
JP2023040948A (ja) 車両の制御装置
JP2023040946A (ja) 車両の制御装置
JP2023053690A (ja) 制御装置
JP2023044814A (ja) 制御装置
JP2023053457A (ja) 制御装置
JP2023056961A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546260

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014901134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901134

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE