WO2016035120A1 - Dc-dcコンバータ - Google Patents

Dc-dcコンバータ Download PDF

Info

Publication number
WO2016035120A1
WO2016035120A1 PCT/JP2014/072916 JP2014072916W WO2016035120A1 WO 2016035120 A1 WO2016035120 A1 WO 2016035120A1 JP 2014072916 W JP2014072916 W JP 2014072916W WO 2016035120 A1 WO2016035120 A1 WO 2016035120A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
converter
temperature
side switching
low
Prior art date
Application number
PCT/JP2014/072916
Other languages
English (en)
French (fr)
Inventor
和田 文雄
宏哉 山内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016546205A priority Critical patent/JP6289647B2/ja
Priority to PCT/JP2014/072916 priority patent/WO2016035120A1/ja
Priority to US15/325,198 priority patent/US10122273B2/en
Priority to CN201480081694.4A priority patent/CN106664014A/zh
Priority to DE112014006918.3T priority patent/DE112014006918T5/de
Publication of WO2016035120A1 publication Critical patent/WO2016035120A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC-DC converter.
  • the synchronous rectification type DC-DC converter disclosed in Patent Document 1 performs synchronous rectification by driving a low-side switching element when the electrical load is relatively high, and low-side switching when the electrical load is low.
  • Asynchronous rectification (diode rectification) is performed by a diode connected in parallel with the element without being driven. According to such a technique, the current conversion efficiency can be improved.
  • the conventional technique has a problem that the conversion efficiency is not always improved in actual use because the synchronous / asynchronous switching is performed according to only the electric load regardless of the operating ambient temperature.
  • a semiconductor element using silicon or the like as a raw material has a problem that the conversion efficiency is remarkably lowered because an electrical loss increases at a high temperature.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of increasing the conversion efficiency regardless of the operating ambient temperature.
  • the DC-DC converter according to the present invention includes a high-side switching element and a low-side switching element, a driving unit that drives the high-side switching element and the low-side switching element to perform synchronous rectification, and the low-side switching element.
  • a free-wheeling diode connected in parallel to the element, and a temperature detection unit that detects the temperature of the free-wheeling diode.
  • the drive unit stops driving the low-side switching element when the temperature detected by the temperature detection unit is equal to or lower than a predetermined first threshold value.
  • the conversion efficiency of the DC-DC converter can be increased regardless of the operating ambient temperature.
  • FIG. 1 is a circuit diagram showing a configuration of a DC-DC converter according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a driving method of the DC-DC converter according to Embodiment 1.
  • FIG. 6 is a circuit diagram showing a configuration of a DC-DC converter according to Embodiment 2.
  • FIG. 6 is a circuit diagram showing a configuration of a DC-DC converter according to Embodiment 3.
  • FIG. 10 is a circuit diagram showing a configuration of a DC-DC converter according to a modification of the third embodiment.
  • FIG. 1 is a circuit diagram showing a configuration of a DC-DC converter according to Embodiment 1 of the present invention.
  • FIG. 1 shows a step-down converter that outputs a DC voltage lower than an input DC voltage as an example of a DC-DC converter.
  • the DC-DC converter shown in FIG. 1 includes a high-side switching element 1, a low-side switching element 2, a diode 1a, a diode 2a, a freewheeling diode 3, an inductor 4, a capacitor 5, and a temperature detection circuit 11.
  • the switching elements 1 and 2 are connected in series between a high potential (Vin) and a low potential (ground potential).
  • the drain of the switching element 1 is connected to a high potential
  • the source of the switching element 1 is connected to the drain of the switching element 2
  • the source of the switching element 2 is connected to a low potential.
  • n-channel MOSFETs Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • the cathode of the diode 1 a is connected to the drain of the switching element 1, and the anode of the diode 1 a is connected to the source of the switching element 1.
  • the cathode of the diode 2 a is connected to the drain of the switching element 2, and the anode of the diode 2 a is connected to the source of the switching element 2.
  • the free-wheeling diode 3 is connected in parallel with the switching element 2 like the diode 2a. That is, the cathode of the return diode 3 is connected to the drain of the switching element 2, and the anode of the return diode 3 is connected to the source of the switching element 2. Note that, for example, a Schottky barrier diode is applied to the reflux diode 3.
  • One end of the inductor 4 is connected to the source of the switching element 1 and the drain of the switching element 2, and the other end of the inductor 4 is an output terminal of the DC-DC converter.
  • One end of the capacitor 5 is connected to the other end of the inductor 4, and the other end of the capacitor 5 is connected to the ground potential.
  • the temperature detection circuit 11 detects the temperature of the reflux diode 3 and outputs a voltage Vt corresponding to the temperature to the comparator 12b.
  • the temperature detection circuit 11 includes, for example, a temperature-voltage converter such as a semiconductor element, a thermistor, and a thermocouple.
  • the temperature-voltage converter is, for example, disposed (mounted) in the immediate vicinity of the free-wheeling diode 3 or on-chip thereof, and can output a voltage corresponding to the ambient temperature.
  • the reference voltage source 12a, the comparator 12b, and the drive circuit 12c constitute a drive unit 12.
  • the drive unit 12 drives the high-side switching element 1 and the low-side switching element 2 to perform synchronous rectification.
  • the drive part 12 stops the drive of the switching element 2, when the temperature detected by the temperature detection circuit 11 is below a predetermined 1st threshold value.
  • the reference voltage source 12a outputs a voltage Vref corresponding to the first threshold value to the comparator 12b.
  • the comparator 12b compares the voltage Vt from the temperature detection circuit 11 with the voltage Vref from the reference voltage source 12a, and outputs the comparison result to the drive circuit 12c. That is, the comparator 12b outputs a result indicating whether or not the temperature detected by the temperature detection circuit 11 is equal to or lower than the first threshold value to the drive circuit 12c.
  • the comparator 12 b outputs an H (High) signal for driving the low-side switching element 2.
  • the comparator 12b outputs an L (Low) signal for stopping the driving of the low-side switching element 2.
  • the driving circuit 12c can switch the switching elements 1 and 2 by applying a voltage to the gates VPG and VNG of the switching elements 1 and 2, respectively.
  • FIG. 2 is a waveform diagram showing a driving method (control method) of the switching elements 1 and 2 by the driving circuit 12c.
  • the drive circuit 12c When receiving a comparison result (H signal) indicating that the detected temperature exceeds the first threshold value from the comparator 12b, the drive circuit 12c performs driving to switch the switching elements 1 and 2 alternately in synchronization.
  • the drive circuit 12c when receiving a comparison result (L signal) indicating that the detected temperature is equal to or lower than the first threshold value from the comparator 12b, the drive circuit 12c maintains the drive of the high-side switching element 1 and The driving of the switching element 2 is stopped.
  • ⁇ Operation> By repeating the switching of the high-side switching element 1, a voltage including an AC component is generated at one end of the inductor 4.
  • the inductor 4 and the capacitor 5 generate an output voltage (Vout) lower than the input voltage (Vin) by smoothing the voltage including the AC component.
  • PWM pulse width modulation
  • the inductor 4 acts to maintain the current flow by the induced electromotive force.
  • the switching element 2 and the free-wheeling diode 3 have a rectifying function of flowing a current from the ground potential to the inductor 4.
  • the high-side switching element 1 and the low-side switching element 2 are driven in synchronization, and synchronous rectification is performed.
  • the switching element 2 stops driving, and the freewheeling diode 3 performs asynchronous rectification (diode rectification).
  • the diode 1a may also have the function of asynchronous rectification.
  • the temperature increase due to the electrical loss in the freewheeling diode 3 can be suppressed, so that the electrical loss at high temperature can be suppressed. Can do. For this reason, the conversion efficiency of the DC-DC converter can be increased regardless of the operating ambient temperature. Further, when the free-wheeling diode 3 is at a low temperature (low load), it is possible to suppress the backflow current to the switching element 2 and to reduce the loss caused thereby. In connection with this, the lifetime improvement of a semiconductor element can be anticipated. For example, these effects are considered to be particularly effective in a DC-DC converter using a voltage of several hundred volts. In addition, the cooling mechanism can be reduced in size and cost.
  • the drive unit 12 (here, the reference voltage source 12a, the comparator 12b, and the drive circuit 12c) of FIG. 1 may be constructed by one IC (Integrated Circuit) or may be constructed by a plurality of ICs. However, in the configuration in which the driving unit 12 is constructed by one IC, it is possible to expect a reduction in size, weight, and cost of the device.
  • At least one of the semiconductor elements constituting the DC-DC converter may be made of a wide band gap semiconductor such as silicon carbide (SiC), gallium nitride (GaN), or the like.
  • SiC silicon carbide
  • GaN gallium nitride
  • switching loss at a high temperature can be suppressed, so that it is particularly effective for a configuration in which driving and stopping are switched according to the temperature state as described above.
  • the switching elements 1 and 2 the diodes 1 a and 2 a, the freewheeling diode 3, and the like are assumed as the semiconductor elements here, but are not limited thereto.
  • FIG. 3 is a circuit diagram showing a configuration of the DC-DC converter according to Embodiment 2 of the present invention. Note that, in the DC-DC converter of the second and subsequent embodiments, the same or similar components as those described above are denoted by the same reference numerals, and different portions will be mainly described. As shown in FIG. 3, the DC-DC converter according to the second embodiment is obtained by adding a voltage monitor circuit 16 to the configuration of FIG. In FIG. 3, the temperature detection circuit 11 is not shown.
  • the voltage monitor circuit 16 (voltage detection unit) monitors (detects) the forward voltage (voltage) of the freewheeling diode 3, and outputs the voltage VF corresponding to the forward voltage to the comparator 12b.
  • the drive unit 12 drives the low-side switching element 2 when the voltage detected by the voltage monitor circuit 16 is equal to or lower than a predetermined second threshold value. To stop.
  • FIG. 4 is a circuit diagram showing a configuration of a DC-DC converter according to Embodiment 3 of the present invention.
  • a plurality of low-side switching elements 2 switching elements 2-1, 2-2,..., 2-n
  • a plurality of diodes 2a diodes 2a-1, 2a-2,..., 2a-n are connected in parallel to each other.
  • the drive unit 12 uniformly stops driving the plurality of switching elements 2 when the temperature detected by the temperature detection circuit 11 is equal to or lower than a predetermined first threshold value.
  • the DC-DC converter according to the third embodiment it is possible to suppress the temperature rise due to the electrical loss in the freewheeling diode 3 as compared with the first embodiment.
  • the lifetime of semiconductor elements such as switching element 2 can be expected to be longer than that of the first embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of a DC-DC converter according to a modification of the third embodiment.
  • the driving unit 12 uniformly stops driving the plurality of switching elements 2 when the temperature detected by the temperature detection circuit 11 is equal to or lower than a predetermined first threshold value.
  • the drive unit 12 individually stops driving the plurality of switching elements 2 when the temperature detected by the temperature detection circuit 11 is equal to or lower than a predetermined first threshold value. To do. As a result, the drive unit 12 can change the number of low-side switching elements 2 to be driven based on the temperature detected by the temperature detection circuit 11. As an example of changing the number of low-side switching elements 2 to be driven, the drive unit 12 reduces the number of switching elements 2 to be driven as the temperature detected by the temperature detection circuit 11 decreases. It is assumed that the number of switching elements 2 to be stopped is increased.
  • the DC-DC converter according to the present modification as described above, it is possible to suppress the temperature increase due to the electrical loss in the freewheeling diode 3 as compared with the first embodiment.
  • the lifetime of semiconductor elements such as switching element 2 can be expected to be longer than that of the first embodiment.
  • one drive circuit 12 c that controls the drive of the plurality of switching elements 2 is provided.
  • the present invention is not limited to this, and a plurality of drive circuits 12c that respectively control the drive of the plurality of switching elements 2 may be provided.
  • the present invention can freely combine each embodiment and each modification, and can appropriately modify and omit each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 動作周囲温度に関わらず変換効率を高めることが可能な技術を提供することを目的とする。DC-DCコンバータは、スイッチング素子1,2と、スイッチング素子1,2を駆動して同期整流を行う駆動部12と、スイッチング素子2に並列接続された還流ダイオード3と、還流ダイオード3の温度を検出する温度検出回路11とを備える。駆動部12は、温度検出回路11で検出された温度が、予め定められた第1閾値以下である場合に、スイッチング素子2の駆動を停止する。

Description

DC-DCコンバータ
 本発明は、DC-DCコンバータに関する。
 従来、直列接続された2つの半導体スイッチング素子を交互にスイッチングする駆動を行いつつ、それにより生じる交流成分をインダクタ及びコンデンサによって平滑する、いわゆる同期整流型DC-DCコンバータが広く用いられている。
 例えば特許文献1に開示の同期整流型DC-DCコンバータは、電気的負荷が比較的高い場合にはローサイドのスイッチング素子を駆動して同期整流を行い、電気的負荷が低い場合にはローサイドのスイッチング素子を駆動せずに、それと並列接続されたダイオードによって非同期整流(ダイオード整流)を行う。このような技術によれば、電流変換効率の向上が可能となる。
特開2006-296186号公報
 しかしながら、従来技術では、動作周囲温度に関わらず、電気的負荷のみに応じて同期/非同期の切り替えを行うため、実使用上、必ずしも変換効率が向上するとは限らないという問題があった。特に、シリコンなどを原材料とする半導体素子では、高温時には電気的な損失が大きくなることから、変換効率が著しく低下するという問題があった。
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、動作周囲温度に関わらず変換効率を高めることが可能な技術を提供することを目的とする。
 本発明に係るDC-DCコンバータは、ハイサイドのスイッチング素子及びローサイドのスイッチング素子と、前記ハイサイドのスイッチング素子及び前記ローサイドのスイッチング素子を駆動して同期整流を行う駆動部と、前記ローサイドのスイッチング素子に並列接続された還流ダイオードと、前記還流ダイオードの温度を検出する温度検出部とを備える。前記駆動部は、前記温度検出部で検出された温度が、予め定められた第1閾値以下である場合に、前記ローサイドのスイッチング素子の駆動を停止する。
 本発明によれば、動作周囲温度に関わらず、DC-DCコンバータの変換効率を高めることができる。
 本発明の目的、特徴、態様及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係るDC-DCコンバータの構成を示す回路図である。 実施の形態1に係るDC-DCコンバータの駆動方式を示す図である。 実施の形態2に係るDC-DCコンバータの構成を示す回路図である。 実施の形態3に係るDC-DCコンバータの構成を示す回路図である。 実施の形態3の変形例に係るDC-DCコンバータの構成を示す回路図である。
 <実施の形態1>
 図1は、本発明の実施の形態1に係るDC-DCコンバータの構成を示す回路図である。図1では、DC-DCコンバータの一例として、入力された直流電圧よりも低い直流電圧を出力する降圧コンバータが示されている。
 図1のDC-DCコンバータは、ハイサイドのスイッチング素子1と、ローサイドのスイッチング素子2と、ダイオード1aと、ダイオード2aと、還流ダイオード3と、インダクタ4と、コンデンサ5と、温度検出回路11と、基準電圧源12aと、比較器12bと、駆動回路12cとを備えている。
 スイッチング素子1,2は、高電位(Vin)と低電位(接地電位)との間に直列接続されている。スイッチング素子1のドレインは高電位と接続され、スイッチング素子1のソースはスイッチング素子2のドレインと接続され、スイッチング素子2のソースは低電位と接続されている。なお、図1では、スイッチング素子1,2にnチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を適用しているが、これに限ったものではない。
 ダイオード1aのカソードは、スイッチング素子1のドレインと接続され、ダイオード1aのアノードは、スイッチング素子1のソースと接続されている。同様に、ダイオード2aのカソードは、スイッチング素子2のドレインと接続され、ダイオード2aのアノードは、スイッチング素子2のソースと接続されている。
 還流ダイオード3は、ダイオード2aと同様にスイッチング素子2と並列接続されている。つまり、還流ダイオード3のカソードは、スイッチング素子2のドレインと接続され、還流ダイオード3のアノードは、スイッチング素子2のソースと接続されている。なお、還流ダイオード3には、例えばショットキーバリアダイオードが適用される。
 インダクタ4の一端は、スイッチング素子1のソース及びスイッチング素子2のドレインと接続されており、インダクタ4の他端は、DC-DCコンバータの出力端となっている。
 コンデンサ5の一端は、インダクタ4の他端と接続されており、コンデンサ5の他端は、接地電位と接続されている。
 温度検出回路11(温度検出部)は、還流ダイオード3の温度を検出し、当該温度に対応する電圧Vtを比較器12bに出力する。温度検出回路11は、例えば、半導体素子、サーミスタ及び熱電対などの温度-電圧変換器を含む。当該温度-電圧変換器は、例えば、還流ダイオード3の直近またはそのオンチップに配置(搭載)され、周辺温度に応じた電圧を出力することが可能となっている。
 基準電圧源12a、比較器12b及び駆動回路12cは、駆動部12を構成している。この駆動部12は、原則としてハイサイドのスイッチング素子1及びローサイドのスイッチング素子2を駆動して同期整流を行う。ただし、駆動部12は、温度検出回路11で検出された温度が、予め定められた第1閾値以下である場合には、スイッチング素子2の駆動を停止する。次に、このような機能を有する駆動部12の構成要素について説明する。
 基準電圧源12aは、第1閾値に対応する電圧Vrefを比較器12bに出力する。
 比較器12bは、温度検出回路11からの電圧Vtと、基準電圧源12aからの電圧Vrefとを比較し、その比較結果を駆動回路12cに出力する。つまり、比較器12bは、温度検出回路11で検出された温度が第1閾値以下であるか否かを示す結果を、駆動回路12cに出力する。ここでは、検出温度が第1閾値を超える場合には、比較器12bは、ローサイドのスイッチング素子2を駆動するためのH(High)信号を出力する。一方、検出温度が第1閾値以下である場合には、比較器12bは、ローサイドのスイッチング素子2の駆動を停止するためのL(Low)信号を出力する。
 駆動回路12cは、スイッチング素子1,2のゲートVPG,VNGのそれぞれに電圧を印加して、スイッチング素子1,2をスイッチングすることが可能となっている。
 図2は、駆動回路12cによるスイッチング素子1,2の駆動方式(制御方式)を示す波形図である。駆動回路12cは、検出温度が第1閾値を超えることを示す比較結果(H信号)を比較器12bから受けた場合には、スイッチング素子1,2を交互に同期してスイッチングする駆動を行う。一方、駆動回路12cは、検出温度が第1閾値以下であることを示す比較結果(L信号)を比較器12bから受けた場合には、ハイサイドのスイッチング素子1の駆動を維持しつつ、ローサイドのスイッチング素子2の駆動を停止する。
 <動作>
 ハイサイドのスイッチング素子1のスイッチングが繰り返されることにより、インダクタ4の一端には、交流成分を含む電圧が生成される。インダクタ4及びコンデンサ5は、当該交流成分を含む電圧を平滑化することにより、入力電圧(Vin)よりも低い出力電圧(Vout)を生成する。この際、スイッチング素子1をオフする期間とオンする期間とを調整するPWM(パルス幅変調)を行うことにより、出力電圧の電圧値を調整することが可能となる。
 さて、スイッチング素子1がオンからオフに切り替わった直後には、インダクタ4は、誘導起電力により電流の流れを維持しようと作用する。この作用による素子への影響を抑制するために、スイッチング素子2及び還流ダイオード3は、接地電位からインダクタ4に向かう方向に電流を流す整流機能を有する。
 本実施の形態1では、還流ダイオード3の温度が第1閾値を超える場合には、ハイサイドのスイッチング素子1とローサイドのスイッチング素子2とが同期して駆動し、同期整流が行われる。一方、還流ダイオード3の温度が第1閾値以下である場合には、スイッチング素子2の駆動が停止し、還流ダイオード3により非同期整流(ダイオード整流)が行われる。なお、ダイオード1aも非同期整流の機能を担ってもよい。
 <実施の形態1のまとめ>
 以上のような本実施の形態1に係るDC-DCコンバータによれば、還流ダイオード3での電気的な損失による温度上昇を抑制することができるので、高温時の電気的な損失を抑制することができる。このため、動作周囲温度に関わらず、DC-DCコンバータの変換効率を高めることができる。また、還流ダイオード3の低温時(低負荷時)には、スイッチング素子2への逆流電流を抑制することが可能となり、それによる損失を軽減することが可能となる。これに伴い、半導体素子の高寿命化が期待できる。例えば数百Vの電圧が使用されるDC-DCコンバータにおいては、これらの効果が特に有効になると考えられる。また、冷却機構の小型化・低コスト化も期待できる。
 <実施の形態1の変形例>
 図1の駆動部12(ここでは基準電圧源12a、比較器12b及び駆動回路12c)は、一つのIC(Integrated Circuit)によって構築されてもよいし、複数のICによって構築されてもよい。ただし、駆動部12が一つのICによって構築された構成では、装置の小型化、軽量化及び低コスト化が期待できる。
 また、DC-DCコンバータを構成する半導体素子の少なくともいずれか1つは、例えば炭化珪素(SiC)、窒化ガリウム(GaN)などのワイドバンドギャップ半導体から構成されてもよい。このような構成によれば、高温時のスイッチング損失を抑制することができるので、上述のように温度状況に応じて駆動及び停止を切り替える構成には特に有効である。なお、ここでいう半導体素子には、例えば、スイッチング素子1,2、ダイオード1a,2a、及び、還流ダイオード3などが想定されるが、これに限ったものではない。
 なお、以上の変形例は、後述する実施の形態2,3においても適用可能である。
 <実施の形態2>
 図3は、本発明の実施の形態2に係るDC-DCコンバータの構成を示す回路図である。なお、本実施の形態2以降のDC-DCコンバータにおいて、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、異なる部分について主に説明する。図3に示すように、本実施の形態2に係るDC-DCコンバータは、図1の構成に、電圧モニタ回路16を追加したものである。なお、図3では、温度検出回路11の図示は省略している。
 電圧モニタ回路16(電圧検出部)は、還流ダイオード3の順方向電圧(電圧)をモニタ(検出)し、当該順方向電圧に対応する電圧VFを比較器12bに出力する。
 駆動部12は、温度検出回路11で検出された温度と同様にして、電圧モニタ回路16で検出された電圧が、予め定められた第2閾値以下である場合に、ローサイドのスイッチング素子2の駆動を停止する。
 以上のような本実施の形態2に係るDC-DCコンバータによれば、電気的負荷に対して実施の形態1と同様の効果を得ることができる。
 <実施の形態3>
 図4は、本発明の実施の形態3に係るDC-DCコンバータの構成を示す回路図である。図4に示すように、本実施の形態3に係るDC-DCコンバータでは、複数のローサイドのスイッチング素子2(スイッチング素子2-1,2-2,…,2-n)が互いに並列接続されている。また、同様に、複数のダイオード2a(ダイオード2a-1,2a-2,…,2a-n)も互いに並列接続されている。
 本実施の形態3では、駆動部12は、温度検出回路11で検出された温度が、予め定められた第1閾値以下である場合に、複数のスイッチング素子2の駆動を一律に停止する。
 以上のような本実施の形態3に係るDC-DCコンバータによれば、実施の形態1よりも、還流ダイオード3での電気的な損失による温度上昇を抑制することができる。また、実施の形態1よりもスイッチング素子2などの半導体素子の高寿命化が期待できる。
 <実施の形態3の変形例>
 図5は、実施の形態3の変形例に係るDC-DCコンバータの構成を示す回路図である。
 上述の実施の形態3では、駆動部12は、温度検出回路11で検出された温度が、予め定められた第1閾値以下である場合に、複数のスイッチング素子2の駆動を一律に停止した。
 これに対して、本変形例では、駆動部12は、温度検出回路11で検出された温度が、予め定められた第1閾値以下である場合に、複数のスイッチング素子2の駆動を個別に停止する。これにより、駆動部12は、温度検出回路11で検出された温度に基づいて、駆動すべきローサイドのスイッチング素子2の数を変更することが可能となっている。なお、駆動すべきローサイドのスイッチング素子2の数を変更する一例としては、駆動部12が、温度検出回路11で検出された温度が低くなるにつれて、駆動すべきスイッチング素子2の数を減らしていく(停止すべきスイッチング素子2の数を増やしていく)ことなどが想定される。
 以上のような本変形例に係るDC-DCコンバータによれば、実施の形態1よりも、還流ダイオード3での電気的な損失による温度上昇を抑制することができる。また、実施の形態1よりもスイッチング素子2などの半導体素子の高寿命化が期待できる。
 なお、図5では、複数のスイッチング素子2の駆動を制御する一の駆動回路12cが設けられている。しかしこれに限ったものではなく、複数のスイッチング素子2の駆動をそれぞれ制御する複数の駆動回路12cが設けられてもよい。
 また、本発明は、その発明の範囲内において、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
 1,2 スイッチング素子、3 還流ダイオード、11 温度検出回路、12 駆動部、16 電圧モニタ回路。

Claims (6)

  1.  ハイサイドのスイッチング素子及びローサイドのスイッチング素子と、
     前記ハイサイドのスイッチング素子及び前記ローサイドのスイッチング素子を駆動して同期整流を行う駆動部と、
     前記ローサイドのスイッチング素子に並列接続された還流ダイオードと、
     前記還流ダイオードの温度を検出する温度検出部と
    を備え、
     前記駆動部は、
     前記温度検出部で検出された温度が、予め定められた第1閾値以下である場合に、前記ローサイドのスイッチング素子の駆動を停止する、DC-DCコンバータ。
  2.  請求項1に記載のDC-DCコンバータであって、
     前記還流ダイオードの電圧を検出する電圧検出部をさらに備え、
     前記駆動部は、
     前記電圧検出部で検出された電圧が、予め定められた第2閾値以下である場合に、前記ローサイドのスイッチング素子の駆動を停止する、DC-DCコンバータ。
  3.  請求項1または請求項2に記載のDC-DCコンバータであって、
     複数の前記ローサイドのスイッチング素子が互いに並列接続された、DC-DCコンバータ。
  4.  請求項3に記載のDC-DCコンバータであって、
     前記駆動部は、
     前記温度検出部で検出された温度に基づいて、駆動すべき前記ローサイドのスイッチング素子の数を変更する、DC-DCコンバータ。
  5.  請求項1または請求項2に記載のDC-DCコンバータであって、
     前記駆動部は、一つのIC(Integrated Circuit)によって構築される、DC-DCコンバータ。
  6.  請求項1または請求項2に記載のDC-DCコンバータであって、
     前記DC-DCコンバータを構成する半導体素子の少なくともいずれか1つはワイドバンドギャップ半導体からなる、DC-DCコンバータ。
PCT/JP2014/072916 2014-09-01 2014-09-01 Dc-dcコンバータ WO2016035120A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016546205A JP6289647B2 (ja) 2014-09-01 2014-09-01 Dc−dcコンバータ
PCT/JP2014/072916 WO2016035120A1 (ja) 2014-09-01 2014-09-01 Dc-dcコンバータ
US15/325,198 US10122273B2 (en) 2014-09-01 2014-09-01 DC-DC converter
CN201480081694.4A CN106664014A (zh) 2014-09-01 2014-09-01 Dc-dc转换器
DE112014006918.3T DE112014006918T5 (de) 2014-09-01 2014-09-01 DC-DC-Wandler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072916 WO2016035120A1 (ja) 2014-09-01 2014-09-01 Dc-dcコンバータ

Publications (1)

Publication Number Publication Date
WO2016035120A1 true WO2016035120A1 (ja) 2016-03-10

Family

ID=55439229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072916 WO2016035120A1 (ja) 2014-09-01 2014-09-01 Dc-dcコンバータ

Country Status (5)

Country Link
US (1) US10122273B2 (ja)
JP (1) JP6289647B2 (ja)
CN (1) CN106664014A (ja)
DE (1) DE112014006918T5 (ja)
WO (1) WO2016035120A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212790A (ja) * 2016-05-24 2017-11-30 ルネサスエレクトロニクス株式会社 Dcdcコンバータ及びそれを備えた無線通信装置
CN108011504A (zh) * 2016-11-01 2018-05-08 台达电子工业股份有限公司 驱动方法与驱动装置
KR101989362B1 (ko) * 2018-04-11 2019-06-14 성균관대학교산학협력단 패스 트랜지스터 및 패스 트랜지스터가 포함된 벅-컨버터
WO2020066182A1 (ja) * 2018-09-27 2020-04-02 日本電産株式会社 駆動制御装置、駆動装置およびパワーステアリング装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646465B1 (ko) * 2015-05-27 2016-08-05 현대자동차주식회사 친환경 차량의 승압형 컨버터 제어 장치 및 방법
CN106253641B (zh) * 2016-08-26 2018-12-28 重庆西南集成电路设计有限责任公司 一种整流二极管替代电路及反偏截止驱动电路
WO2022000774A1 (zh) * 2020-06-29 2022-01-06 上海汇瑞半导体科技有限公司 一种二极管电流旁路控制电路及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017061A (ja) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp 電力変換装置及びエレベータ制御装置
JP2013013220A (ja) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp 電力変換装置
JP2013115931A (ja) * 2011-11-29 2013-06-10 Denso Corp スイッチング素子の駆動回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262628B2 (en) * 2004-07-02 2007-08-28 Primarion, Inc. Digital calibration with lossless current sensing in a multiphase switched power converter
US6954054B2 (en) * 2003-10-17 2005-10-11 International Business Machines Corporation Total feed forward switching power supply control
JP4984569B2 (ja) 2005-03-18 2012-07-25 富士通株式会社 スイッチングコンバータ
JP2007166874A (ja) 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP4177392B2 (ja) * 2006-06-08 2008-11-05 三菱電機株式会社 半導体電力変換装置
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
JP4581030B2 (ja) * 2007-12-20 2010-11-17 パナソニック株式会社 電力変換装置および電力変換装置の制御方法
JP5712483B2 (ja) * 2008-12-12 2015-05-07 日産自動車株式会社 過電流検出装置
JP5651927B2 (ja) 2009-04-27 2015-01-14 日産自動車株式会社 スイッチング制御回路
US20120049820A1 (en) * 2010-08-30 2012-03-01 Intersil Americas Inc. Soft start method and apparatus for a bidirectional dc to dc converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017061A (ja) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp 電力変換装置及びエレベータ制御装置
JP2013013220A (ja) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp 電力変換装置
JP2013115931A (ja) * 2011-11-29 2013-06-10 Denso Corp スイッチング素子の駆動回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212790A (ja) * 2016-05-24 2017-11-30 ルネサスエレクトロニクス株式会社 Dcdcコンバータ及びそれを備えた無線通信装置
CN108011504A (zh) * 2016-11-01 2018-05-08 台达电子工业股份有限公司 驱动方法与驱动装置
US10666148B2 (en) 2016-11-01 2020-05-26 Delta Electronics, Inc. Detecting current magnitude and direction in a non-isolated DC/DC converter
US10998821B2 (en) 2016-11-01 2021-05-04 Delta Electronics, Inc. Converter and control method thereof
KR101989362B1 (ko) * 2018-04-11 2019-06-14 성균관대학교산학협력단 패스 트랜지스터 및 패스 트랜지스터가 포함된 벅-컨버터
WO2020066182A1 (ja) * 2018-09-27 2020-04-02 日本電産株式会社 駆動制御装置、駆動装置およびパワーステアリング装置
JPWO2020066182A1 (ja) * 2018-09-27 2021-09-16 日本電産株式会社 駆動制御装置、駆動装置およびパワーステアリング装置

Also Published As

Publication number Publication date
US20170187288A1 (en) 2017-06-29
JPWO2016035120A1 (ja) 2017-04-27
DE112014006918T5 (de) 2017-05-11
JP6289647B2 (ja) 2018-03-07
US10122273B2 (en) 2018-11-06
CN106664014A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6289647B2 (ja) Dc−dcコンバータ
US8767424B2 (en) Power conversion apparatus which performs power conversion with synchronous rectification
US10038438B2 (en) Power semiconductor element driving circuit
WO2012176403A1 (ja) 昇降圧型ac/dcコンバータ
US10135437B2 (en) Drive control apparatus
TW201801434A (zh) 用於電壓調節器之過電流保護電路及方法
JPWO2016139745A1 (ja) 電力変換器
US10530269B2 (en) AC-DC converter
JP2012199763A (ja) ゲートドライブ回路
JP2015061322A (ja) 電力変換装置
JP6008930B2 (ja) 電力変換装置
US10763737B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
JP5326605B2 (ja) 電力変換装置
WO2015045035A1 (ja) 開閉装置、電力変換装置、モータ駆動装置、送風機、圧縮機、空気調和機、冷蔵庫及び冷凍機
JP2004032937A (ja) 同期整流用mosfetの制御回路
US20160072386A1 (en) Switching power supply
JP5527187B2 (ja) 半導体装置
EP2567453B1 (en) A controller and a method for a dc converter, and also a dc converter
US9791881B2 (en) Self-driven synchronous rectification for a power converter
JP6167244B2 (ja) 電力変換装置、モータ装置および逆変換器モジュール
JP5531490B2 (ja) 電力変換装置
KR20190019330A (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
CN111357184A (zh) 电力转换装置
KR20190019331A (ko) 전력 변환 장치, 이를 포함하는 공기 조화기 및 그 제어 방법
CN115864869A (zh) 一种ac/dc转换的控制电路、方法及电源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546205

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15325198

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006918

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901195

Country of ref document: EP

Kind code of ref document: A1