WO2016000444A1 - 一种超高强度超高韧性石油套管及其制造方法 - Google Patents

一种超高强度超高韧性石油套管及其制造方法 Download PDF

Info

Publication number
WO2016000444A1
WO2016000444A1 PCT/CN2015/070978 CN2015070978W WO2016000444A1 WO 2016000444 A1 WO2016000444 A1 WO 2016000444A1 CN 2015070978 W CN2015070978 W CN 2015070978W WO 2016000444 A1 WO2016000444 A1 WO 2016000444A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
strength
toughness
steel
oil casing
Prior art date
Application number
PCT/CN2015/070978
Other languages
English (en)
French (fr)
Inventor
董晓明
张忠铧
柏林
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410307023.7A external-priority patent/CN104046910B/zh
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2016575505A priority Critical patent/JP6456986B2/ja
Priority to US15/322,683 priority patent/US20170159157A1/en
Priority to DE112015003075.1T priority patent/DE112015003075T5/de
Publication of WO2016000444A1 publication Critical patent/WO2016000444A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a metallurgical product and a manufacturing method thereof, in particular to a petroleum casing and a manufacturing method thereof.
  • the Chinese Patent Publication No. CN101586450A published on August 27, 2008, entitled "The oil casing with high strength and high toughness and its manufacturing method” relates to a steel grade for oil casing,
  • the chemical element component (wt.%) is: C: 0.22 to 0.4%, Si: 0.17 to 0.35%, Mn: 0.45 to 0.60%, Cr: 0.95 to 1.10%, Mo: 0.70 to 0.80%, and Al: 0.015 to 0.040. %, Ni ⁇ 0.20%, Cu ⁇ 0.20%, V: 0.070 to 0.100%, Ca > 0.0015%, P ⁇ 0.010%, S ⁇ 0.003%, and the balance is iron.
  • the Chinese patent document also provides a method of manufacturing the oil casing, the steps of which include: 1) Ingredient smelting; 2) continuous casting and rolling and 3) tube processing.
  • the steel grade disclosed in the above Chinese literature has a strength of 1100 MPa, but its transverse impact toughness is only 90 J, and the toughness index is low.
  • the Chinese patent document entitled "High strength and high toughness oil casing and its manufacturing method” is disclosed in CN101250671A, published on November 25, 2009, and relates to a petroleum casing and a manufacturing method thereof.
  • the chemical element content of the sleeve is (wt.%): C: 0.16 to 0.28, Si: ⁇ 0.5, Mn: 0.3 to 1.10, Cr: 0.3 to 1.10, Mo: 0.60 to 0.95, and Al: 0.015 to 0.060.
  • Japanese Patent Publication No. JPH11-131189A published on May 18, 1999, entitled "Manufacturing Method of a Steel Pipe” discloses a method of producing a steel pipe.
  • This production method proposes heating in a temperature range of 750 to 400 ° C and then rolling in a range of 20% or more of the deformation amount to produce a steel pipe product having a yield strength of 950 MPa or more and having good toughness.
  • the lower rolling temperature is prone to martensite structure, which is a microstructure that is not allowed in petroleum casing products.
  • the object of the present invention is to provide an ultra-high-strength ultra-high-toughness oil casing which has both ultra-high strength and ultra-high toughness, and its strength can reach above 150 ksi steel grade, and its 0 degree lateral Charpy impact
  • the work is not less than 10% of the 150ksi steel grade yield strength, which can meet the strength and toughness requirements of oil well pipes in deep and ultra-deep well oil and gas fields.
  • the present invention proposes an ultra-high-strength ultra-high-toughness oil casing, whose chemical element mass distribution ratio is:
  • the balance is Fe and other unavoidable impurities.
  • the inevitable impurities in the technical solution are mainly P and S elements, wherein P is controlled to be ⁇ 0.015%, and S is controlled to be ⁇ 0.003%.
  • C is a carbide forming element which can increase the strength of steel.
  • the C content is less than 0.12 wt.%, the hardenability of the steel is lowered, thereby lowering the toughness of the steel.
  • the C content is higher than 0.18 wt.%, the segregation of the steel is remarkably deteriorated, thereby Will cause a decrease in the toughness of the steel.
  • Si:Si is solid-dissolved in ferrite, which can increase the yield strength of steel, but the addition amount of Si element should not be too high. Too high Si element will deteriorate the workability and toughness of steel, and less than 0.1wt.% of Si The element makes the oil casing easy to oxidize, so the Si content should be controlled to 0.10 to 0.40 wt.%.
  • Mn is a forming element of austenite, which can improve the hardenability of steel.
  • the Mn content is less than 1.1 wt.%, the hardenability of the steel is remarkably lowered, thereby reducing the proportion of martensite in the steel. Further, the toughness of the steel is lowered; when the Mn content is more than 1.6 wt.%, the segregation of the structure in the steel is remarkably increased, thereby affecting the uniformity and impact performance of the hot rolled structure. For this reason, in the technical solution of the present invention, the Mn content is controlled to be between 1.10 and 1.60 wt.%.
  • Cr is an element which strongly enhances the hardenability of steel, and is a forming element of a strong carbide.
  • the strong carbides precipitated during tempering can increase the strength of the steel.
  • the Cr content is higher than 0.4 wt.%, it is easy to precipitate coarse M 23 C 6 carbide at the grain boundary, thereby lowering the toughness of the steel.
  • the Cr content is less than 0.1 wt.%, it is difficult to increase the quenching of the steel. Permeability, the effect of its addition is not obvious.
  • the content of Cr is designed to be 0.1-0.4 wt.% in the ultra-high strength ultra-high toughness petroleum casing according to the present invention.
  • Mo mainly improves the strength and tempering stability of steel by means of carbide and solid solution strengthening.
  • the carbon content is low, when the content of Mo added exceeds 0.5 wt.% or more, it is difficult for Mo to form more carbide precipitation phases with C, which causes waste of the added alloy.
  • the Mo content is less than 0.2 wt.%, the strength of the oil casing cannot reach the high strength requirement.
  • the present invention controls the Mo content to be between 0.2 and 0.5 wt.% based on this.
  • Nb is an element of fine crystals and precipitation strengthening in steel, which can compensate for the decrease in strength due to the decrease in carbon content.
  • the Nb content is less than 0.02 wt.%, the addition effect is not obvious.
  • the Nb content is more than 0.04 wt.%, it is easy to form coarse Nb (CN), thereby lowering the toughness of the steel. Therefore, in the technical solution of the present invention, the Nb content should be controlled to 0.02 to 0.04 wt.%.
  • Ti is a forming element of a strong carbonitride which can remarkly refine austenite grains in steel and can compensate for a decrease in strength due to a decrease in carbon content. If the Ti content is >0.05wt.%, it is easy to form coarse TiN, which will reduce the toughness of the material; if the Ti content is less than 0.02wt.%, Ti cannot fully react with N to form TiN, then B in the steel will The N reaction forms a brittle phase of BN, thereby reducing the toughness of the material. In the ultra high strength ultra high toughness oil casing of the present invention, the Ti content needs to be controlled to 0.02 to 0.05 wt.%.
  • B can also significantly improve the hardenability of steel elements.
  • the B element can solve the problem of poor hardenability due to a decrease in the C content.
  • the B content is less than 0.0015 wt.%, the effect of improving the hardenability of the steel is not remarkable.
  • the B content is set to be 0.0015 to 0.005 wt.%.
  • Al element is a good deoxidizing nitrogen-fixing element, which can refine the crystal grains, and the content is preferably 0.01-0.05% by weight;
  • Ca is an element that can purify molten steel, which promotes spheroidization of MnS and improves the impact toughness of steel.
  • the content of Ca is controlled to be 0.0005 to 0.005 wt.%.
  • the N element should be controlled to have a content in the range as small as possible.
  • Ti, B and N in the above elements also need to satisfy the formula:
  • the ultra high strength ultra high toughness petroleum sleeve according to the present invention further contains a V element, and the V element ranges from 0 ⁇ V ⁇ 0.1wt.%.
  • the V element can refine the grains in the steel, and the carbides involved in the formation can greatly increase the strength of the steel. However, when the amount of V added reaches a certain level, the reinforcing effect is not significant. Therefore, for the technical solution of the present invention, if the V element is added, the amount of addition is ⁇ 0.10% by weight.
  • microstructure in the ultra high strength ultra high toughness oil casing of the present invention is tempered sorbite.
  • the microstructure in the steel is tempered sorbite, which has the best toughness, and the microstructure is transformed from martensite structure.
  • this microstructure has the best toughness, and this kind of microstructure is transformed from martensite structure.
  • the use of alloy elements such as C, Mn, Cr, Mo to reduce the low segregation structure to improve the toughness of the steel will inevitably reduce the hardenability of the steel, which in turn will reduce the toughness of the steel. Based on this, high-strength and high-toughness steels need to balance the segregation and hardenability of steel.
  • the technical scheme of the invention adopts a low carbon and low alloy component system to obtain a low segregation microstructure, and at the same time, B and Ti are added to improve the hardenability and thereby improve the toughness of the steel, thereby ensuring uniform tempered sorbite.
  • the present invention also provides a method for manufacturing the above-mentioned ultra high strength ultra high toughness oil casing, which comprises the steps of: smelting; continuous casting; perforation; rolling; sizing; heat treatment.
  • the superheat of the controlled molten steel is lower than 30 ° C, and the continuous casting drawing speed is 1.8-2.2 m/min.
  • the continuous casting speed is controlled to 1.8-2.2 m/min in order to reduce the segregation of components in the steel.
  • the round billet subjected to the continuous casting step is soaked in a furnace at 1200 to 1240 ° C, and the perforation temperature is 1180. -1240 ° C.
  • the finishing rolling temperature is controlled to be 900 to 950 °C.
  • the sizing temperature is 850 to 900 °C.
  • the austenitizing temperature is controlled to 900-930 ° C, the temperature is maintained for 30-60 minutes, and then quenched, and then Tempered at 450-550 ° C, holding time 50-80 min, and finally 400-550 ° C heat sizing.
  • the lower tempering temperature is used to achieve higher strength of the steel, thus increasing the toughness and greatly reducing the alloying cost.
  • the ultra high strength ultra high toughness oil casing described in the invention can be used for manufacturing oil casing with ultra high strength and super high toughness of steel grade above 150 ksi.
  • the 150ksi steel grade casing made of the ultra high strength ultra high toughness oil casing described in the present invention has a yield strength of 1034-1241 MPa, a tensile strength of ⁇ 1103 MPa, an elongation of 20%-30%, and a 0 degree lateral Charpy impact energy. Less than 150ksi steel grade yield strength of 10% ( ⁇ 120J), ductile-brittle transition temperature ⁇ -70 °C.
  • the yield strength of the 155ksi steel grade casing made of the ultra high strength ultra high toughness oil casing described in the present invention is 1069-1276 MPa, the tensile strength is ⁇ 1138 MPa, the elongation is 20%-25%, and the 0 degree transverse Charpy impact energy is not Less than 155ksi steel grade yield strength of 10% ( ⁇ 120J), ductile-brittle transition temperature ⁇ -60 ° C.
  • the ultra-high-strength ultra-high-toughness petroleum casing according to the present invention adds B to increase the hardenability of the steel, and replaces the alloying elements such as Cr and Mo added by the conventional steel, so that the alloying cost of the oil casing is increased. Reduced, high strength and good toughness.
  • the method for manufacturing the ultra-high-strength ultra-high-toughness oil casing described in the invention achieves high strength and good toughness of the steel by controlling the heat treatment process, has simple process operation, and is easy to realize large-scale production and manufacture. Good economic benefits.
  • Figure 1 shows the metallographic structure of the ultra high strength ultra high toughness petroleum casing of Example A5.
  • Figure 2 shows the morphology of the precipitated phase of the ultra high strength ultra high toughness petroleum casing of Example A5.
  • Figure 3 shows the metallographic structure of the sleeve in Comparative Example B1.
  • Figure 4 shows the morphology of the precipitated phase of the sleeve in Comparative Example B2.
  • Figure 5 shows the morphology of the precipitated phase of the sleeve in Comparative Example B3.
  • the ultra-high-strength ultra-high-toughness petroleum casing and the manufacturing method thereof according to the present invention will be further described below according to specific embodiments, but the specific embodiments and related descriptions do not constitute an undue limitation on the technical solutions of the present invention.
  • Perforation the round billet subjected to the continuous casting step is soaked in a ring furnace at 1200-1240 ° C, and the perforation temperature is 1180-1240 ° C;
  • control sizing temperature is 850-900 ° C
  • Heat treatment control the austenitizing temperature to 900-930 ° C, quenching after 30-60 min of heat preservation, then tempering at 450-550 ° C, holding time 50-80 min, and finally heat setting at 400-550 ° C.
  • Table 1 lists the mass ratios of the chemical elements in the examples A1-A5 and Comparative Examples B1-B4 in the present case.
  • Table 2 lists the various process parameters for the manufacture of Examples A1-A5 and Comparative Examples B1-B4.
  • Table 3 shows the mechanical properties of the sleeves involved in Examples A1-A5 and Comparative Examples B1-B4.
  • the yield strength of the sleeves in each of the above embodiments A1-A5 is ⁇ 1050Mpa (the strength of the steel level above 150ksi has been reached), the tensile strength is ⁇ 1090Mpa, and the lateral impact energy is 0°. Both are ⁇ 128J, the elongation is ⁇ 23%, and the ductile-brittle transition temperature is ⁇ -60°C, that is, the sleeves in Examples A1-A5 have ultra-high strength and high toughness, which can be suitable for deep wells, The oil pipe used in the ultra-deep well.
  • Figure 1 shows the metallographic structure of the ultra high strength ultra high toughness petroleum casing of Example A5
  • Figure 2 shows the morphology of the precipitated phase of the ultra high strength ultra high toughness petroleum casing of Example A5.
  • the banded structure formed by the segregation of the components was not observed in the metallographic structure of the oil casing of Example A5.
  • the carbide of the precipitated phase of the oil casing in the embodiment A5 is fine and uniformly distributed. Therefore, the strength of the ultrahigh-strength ultra-high-toughness oil casing in the embodiment A5 can reach 150 ksi or more. And the lateral 0 degree impact toughness reaches 120J or more.
  • Figure 3 shows the metallographic structure of the sleeve in Comparative Example B1.
  • Comparative Example B1 Since the content of C and Mn in Comparative Example B1 is low, resulting in low hardenability of steel, as shown in FIG. 3, there is more ferrite structure in the metallographic structure of Comparative Example B1, and the sleeve after heat treatment. The tube strength is insufficient, and the 0° lateral impact work is not high, which is not suitable for the oil casing processed into high strength and super high toughness.
  • Figure 4 shows the morphology of the precipitated phase of the sleeve in Comparative Example B2
  • Figure 5 shows the morphology of the precipitated phase of the sleeve in Comparative Example B3.
  • the comparative element B2 is rich in alloying elements such as C, Mn, Cr and Mo in the segregation zone. As a result, the local alloy composition is not uniform, so that carbides formed on the segregation zone are large and coarse.
  • the alloying elements such as C, Cr, and Mo in Comparative Example B3 are beyond the scope defined by the technical solution of the present invention, resulting in serious segregation of the casing after heat treatment, and severe segregation may result in insufficient casing toughness. , reducing the toughness index of steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)

Abstract

一种超高强度超高韧性石油套管,其化学元素质量百分比为:C:0.12~0.18%;Si:0.1~0.4%;Mn:1.1~1.6%;Cr:0.1~0.4%;Mo:0.2~0.5%;Nb:0.02~0.04%;Ti:0.02~0.05%;B:0.0015~0.005%;Al:0.01~0.05%;Ca:0.0005~0.005%;N≤0.008%;且满足0<(Ti-3.4N)≤0.02%,Ti/B≥10;余量为Fe和其他不可避免的杂质。该石油套管的强度能够达到150ksi钢级以上,同时其0℃横向夏比冲击功不小于150ksi钢级屈服强度的10%。

Description

一种超高强度超高韧性石油套管及其制造方法 技术领域
本发明涉及一种冶金产品及其制造方法,尤其涉及一种石油套管及其制造方法。
背景技术
目前,世界上深井、超深井油气资源的开采得到越来越多的重视。我国西部油田资源埋藏极深,地质结构复杂,最深的油气井已经超过了8000米,随之而来的是对于开采油气井的套管强度要求的显著提高。众所周知,随着钢级的增高以及材料屈服强度的增大,材料的硬度会相应地增大,材料的韧性则会逐渐下降,并且材料对表面缺陷的敏感程度会进一步地增大。开采深井、超深井用的套管对强度和韧性要求很高,在满足高强度的同时要尽可能提高其韧性指标,以保证生产使用的安全性。
但是,钢的强度和韧性、塑性通常表现为互为消长的关系,强度高的钢通常其塑性和韧性较低,同样地,如果要使得钢具有较高的塑性和韧性,就必须降低钢的强度。为此,兼具较高韧性和较高强度的钢材料的开发难度极大。当前能够实现工业应用的套管强度能够达到170ksi,但是,该套管的冲击韧性仅为50-80J。相关指导文件指出,用于压力容器的高强度钢的冲击韧性需要达到其屈服强度的10%。由此,国内各大油田,例如塔里木油田,也对深井、超深井用套管的性能提出了相同的标准,然而,现有的强度150ksi(屈服强度1034MPa)以上的高强钢的冲击韧性性能远低于这一标准。
公开号为CN101586450A,公开日为2008年8月27日,名称为“具有高强度和高韧性的石油套管及其制造方法”的中国专利文献涉及一种用于石油套管的钢种,其化学元素成分(wt.%)为:C:0.22~0.4%,Si:0.17~0.35%,Mn:0.45~0.60%,Cr:0.95~1.10%,Mo:0.70~0.80%,Al:0.015~0.040%,Ni<0.20%,Cu<0.20%,V:0.070~0.100%,Ca>0.0015%,P<0.010%,S<0.003%,余量为铁。该中国专利文献还提供制造该石油套管的方法,其步骤包括有:1) 配料冶炼;2)连铸连轧以及3)管加工。上述中国文献所公开的钢种的强度达到1100Mpa,但是其横向冲击韧性仅为90J,韧性指标较低。
公开号为CN101250671A,公开日为2009年11月25日,名称为“具有高强度和高韧性石油套管及其制造方法”的中国专利文献涉及了一种石油套管及其制造方法,该石油套管的化学元素质量百分含量为(wt.%):C:0.16~0.28,Si:≤0.5,Mn:0.3~1.10,Cr:0.3~1.10,Mo:0.60~0.95,Al:0.015~0.060,其中酸溶Als/Al≥0.8,Ni:<0.60,Cu:0.05~0.25,V:0.06~0.20,Ca>0.0015,Nb:≤0.05,Ti:≤0.05,P<0.010,S<0.002,O:<0.0024,H:<0.0002,N:<0.008,B:0.0~0.005,余量为Fe。该中国专利文献公开的石油套管的横向冲击韧性只有80J,其韧性指标也较低。
公开日为JPH11-131189A,公开日为1999年5月18日,名称为“一种钢管的制造方法”的日本专利文献,其公开了一种钢管的制造方法。该制造方法提出在750-400℃温度范围内加热,然后在20%或60%变形量以上的范围内进行轧制,生产获得屈服强度950Mpa以上、具有良好韧性的钢管产品。不过,由于此工艺技术的加热温度较低,轧制难度较大;此外,轧制温度较低容易产生马氏体组织,而这一微观组织是石油套管产品所不允许出现的微观组织。
发明内容
本发明的目的在于提供一种超高强度超高韧性石油套管,该石油套管兼具有超高强度和超高韧性,其强度能够达到150ksi钢级以上,同时其0度横向夏比冲击功不小于150ksi钢级屈服强度的10%,可以满足深井、超深井油气田对油井管提出的强度和韧性的要求。
为了实现上述目的,本发明提出了一种超高强度超高韧性石油套管,其化学元素质量百分配比为:
C:0.12-0.18%;
Si:0.1-0.4%;
Mn:1.1-1.6%;
Cr:0.1-0.4%;
Mo:0.2-0.5%;
Nb:0.02-0.04%;
Ti:0.02-0.05%;
B:0.0015-0.005%;
Al:0.01-0.05%;
Ca:0.0005-0.005%;
N≤0.008%;
且满足0<(Ti-3.4N)≤0.02%,
Ti/B≥10;
余量为Fe和其他不可避免的杂质。
本技术方案中不可避免的杂质主要是P和S元素,其中P控制为≤0.015%,S控制为≤0.003%。
本发明所述的超高强度超高韧性石油套管中的各化学元素的设计原理为:
C:C为碳化物形成元素,其可以提高钢的强度。当C含量低于0.12wt.%时,会使得钢的淬透性降低,从而降低钢的韧性,然而,当C含量高于0.18wt.%时,则会显著地恶化钢的偏析,从而也会造成钢的韧性的降低。为了达到石油套管的高强度高韧性的要求,在本发明的技术方案中需要将C元素的含量控制为0.12~0.18wt.%。
Si:Si固溶于铁素体,其可以提高钢的屈服强度,但是Si元素的添加量不宜过高,太高的Si元素会恶化钢的加工性和韧性,低于0.1wt.%的Si元素会使得石油套管容易氧化,因此,应该将Si含量控制为0.10~0.40wt.%。
Mn:Mn为奥氏体的形成元素,其可以提高钢的淬透性。在本发明所述的超高强度超高韧性石油套管的钢种体系中,当Mn含量小于1.1wt.%时,钢的淬透性会显著降低,从而降低钢中马氏体的比例,进而降低钢的韧性;当Mn含量大于1.6wt.%时,钢中的组织偏析又会显著增加,由此,会影响热轧组织的均匀性和冲击性能。基于这一原因,在本发明的技术方案中将Mn含量控制在1.10~1.60wt.%之间。
Cr:Cr是强烈的提高钢的淬透性的元素,其是强碳化物的形成元素。回火时析出的其强碳化物能够提高钢的强度。不过,当Cr含量高于0.4wt.%时,容易在晶界析出粗大的M23C6碳化物,从而降低钢的韧性,当Cr含量低于0.1 wt.%时,则难以提高钢的淬透性,其添加效果不明显。在本发明所述的超高强度超高韧性石油套管中将Cr的含量设计为0.1-0.4wt.%。
Mo:Mo主要是通过碳化物及固溶强化形式来提高钢的强度及回火稳定性。在本发明的技术方案中,由于碳含量较低,因此,当添加Mo的含量超过0.5wt.%以上时,Mo难以与C形成更多的碳化物析出相,这样会造成添加合金的浪费。一旦Mo含量低于0.2wt.%时,则石油套管的强度就无法达到高强度的要求。本发明基于此而将Mo含量控制在0.2~0.5wt.%之间。
Nb:Nb是钢中细晶和析出强化的元素,可弥补因碳含量降低而引起的强度下降。当Nb含量小于0.02wt.%时,其添加作用并不明显,当Nb含量大于0.04wt.%时,其则容易形成粗大的Nb(CN),从而降低钢的韧性。因而,在本发明的技术方案中应该将Nb含量控制为0.02~0.04wt.%。
Ti:Ti是强碳氮化物的形成元素,其能够显著地细化钢中奥氏体晶粒,可以弥补因碳含量降低而引起的强度下降。若Ti含量>0.05wt.%,容易形成粗大的TiN,这样会降低材料的韧性;若Ti含量<0.02wt.%,Ti则不能充分地与N反应形成TiN,则钢中的B就会与N反应形成BN的脆性相,从而降低材料的韧性。在本发明的超高强度超高韧性石油套管中需要将Ti含量控制为0.02~0.05wt.%
B:B也可以显著提高钢的淬透性的元素。在C含量低的钢种中,B元素可以解决因C含量降低而带来的淬透性差的问题。然而,当B含量低于0.0015wt.%时提高钢的淬透性的作用并不显著,当B含量高于0.005wt.%,则易于形成BN脆性相,从而降低钢的韧性。故而,在本发明的技术方案中将B含量设定为0.0015~0.005wt.%。
Al:Al元素是良好的脱氧固氮元素,可细化晶粒,按重量百分比宜采用含量0.01~0.05%;
Ca:Ca是可以净化钢液的元素,其能够促使MnS球化,提高钢材的冲击韧性,但Ca含量过高时容易在钢中形成粗大的非金属夹杂物。因此,在本发明的技术方案中将Ca的含量控制为0.0005~0.005wt.%。
N:在本技术方案中,应当控制N元素在含量范围为越少越好。
与此同时,为了保证Ti和N的充分结合以避免B和N形成BN脆性相而降低钢材的韧性指标,上述元素中的Ti、B和N还需要满足公式:
0<(Ti-3.4N)≤0.02%;且
Ti/B≥10。
进一步地,本发明所述的超高强度超高韧性石油套管中还含有V元素,V元素范围为0<V≤0.1wt.%。
V元素能够细化钢中晶粒,其参与形成的碳化物能够大幅提高钢的强度。然而,当V的添加量达到一定程度时,其增强效果并不明显,因此,对于本发明的技术方案来说,如果添加V元素的话,其添加量≤0.10wt%。
更进一步地,本发明所述的超高强度超高韧性石油套管中的微观组织为回火索氏体。
为了套管获得良好的强韧性配合,钢中的微观组织为回火索氏体,这种微观组织具有最佳的强韧性,而该种微观组织是由马氏体组织转变而来。钢材料淬火后所形成的马氏体组织越多,之后转变得到的回火索氏体组织也就越多。
由于钢管管坯在凝固过程中枝晶偏析会导致轧制后管体存在大量的偏析带,在偏析带上C、Mn、Cr和Mo等合金元素富集,局部合金成分分布不均匀,因此在偏析带上形成的碳化物较多且粗大。同时,在偏析带上的钢的硬度和强度偏高,导致其韧性偏低。为了降低套管的成分偏析,可以采取降低C、Mn、Cr、Mo等合金元素的措施,然而,从另一方面来说,为了套管获得良好的强韧性配合,钢材料的微观组织为回火索氏体,这种微观组织具有最佳的强韧性,而该种微观组织是由马氏体组织转变而来。钢材料淬火后所形成的马氏体组织越多,之后转变得到的回火索氏体组织也就越多,由此可知,提高淬透性以获得更多的马氏体组织是保证材料强韧性的关键因素。采用降低C、Mn、Cr、Mo等合金元素获得低偏析组织从而来提高钢的韧性的措施,必然会降低钢的淬透性,进而会降低钢的强韧性。基于此,高强高韧性钢种需要对钢的偏析和淬透性进行合理平衡。本发明的技术方案采用低碳和低合金的成分体系获得低偏析的微观组织,同时,又加入B和Ti以提高淬透性从而提升钢的韧性,进而保证获得均匀的回火索氏体。
相应地,本发明还提出了上述超高强度超高韧性石油套管的制造方法,其包括步骤:冶炼;连铸;穿孔;轧制;定径;热处理。
进一步地,在本发明所述的超高强度超高韧性石油套管的制造方法中的 上述连铸步骤中,控制钢水过热度低于30℃,连铸拉速为1.8-2.2m/min。
将连铸拉速控制为1.8-2.2m/min是为了降低钢中成分偏析。
进一步地,在本发明所述的超高强度超高韧性石油套管的制造方法中的上述穿孔步骤中,经过连铸步骤的圆坯在1200-1240℃的炉内均热,穿孔温度为1180-1240℃。
更进一步地,在本发明所述的超高强度超高韧性石油套管的制造方法中的上述轧制步骤中,控制终轧温度为900-950℃。
更进一步地,在本发明所述的超高强度超高韧性石油套管的制造方法中的上述定径步骤中,定径温度为850-900℃。
更进一步地,在在本发明所述的超高强度超高韧性石油套管的制造方法中的上述热处理步骤中:控制奥氏体化温度为900-930℃,保温30-60min后淬火,然后在450-550℃回火,保温时间50-80min,最后400-550℃热定径。
采用较低的回火温度以使得钢材获得较高的强度,这样,在提高强韧性的同时,还大幅度地降低了合金添加成本。
本发明所述的超高强度超高韧性石油套管可以用于制造150ksi以上钢级的具有超高强度且超高韧性的石油套管。
由本发明所述的超高强度超高韧性石油套管制成的150ksi钢级套管的屈服强度1034-1241MPa,抗拉强度≥1103MPa,延伸率20%-30%,0度横向夏比冲击功不小于150ksi钢级屈服强度的10%(≥120J),韧脆转变温度≤-70℃。
由本发明所述的超高强度超高韧性石油套管制成的155ksi钢级套管的屈服强度1069-1276MPa,抗拉强度≥1138MPa,延伸率20%-25%,0度横向夏比冲击功不小于155ksi钢级屈服强度的10%(≥120J),韧脆转变温度≤-60℃。
本发明所述的超高强度超高韧性石油套管由于添加了B来增加钢的淬透性,其代替了常规钢种所添加的Cr和Mo等合金元素,使得石油套管的合金添加成本降低,强度高且韧性好。
本发明所述的超高强度超高韧性石油套管的制造方法通过对热处理工艺的控制来使得钢材获得较高的强度和较好的韧性,过程操作简单,易于实现大规模的生产制造,具有良好的经济效益。
附图说明
图1显示了实施例A5中的超高强度超高韧性石油套管的金相组织。
图2显示了实施例A5中的超高强度超高韧性石油套管的析出相形貌。
图3显示了对比例B1中的套管的金相组织。
图4显示了对比例B2中的套管的析出相形貌。
图5显示了对比例B3中的套管的析出相形貌。
具体实施方式
下面将根据具体实施例对本发明所述的超高强度超高韧性石油套管及其制造方法做出进一步说明,但是具体实施例和相关说明并不构成对于本发明的技术方案的不当限定。
实施例A1-A5和对比例B1-B4
按照下述步骤制造实施例A1-A5和对比例B1-B4中的套管:
1)冶炼:控制实施例A1-A5和对比例B1-B4中的各化学元素的质量百分配比如表1所示;
2)连铸:连铸成管坯,控制钢水过热度低于30℃,连铸拉速为1.8-2.2m/min;
3)穿孔:经过连铸步骤的圆坯在1200-1240℃的环形炉内均热,穿孔温度为1180-1240℃;
4)轧制:控制终轧温度为900-950℃;
5)定径:控制定径温度为850-900℃;
6)热处理:控制奥氏体化温度为900-930℃,保温30-60min后淬火,然后在450-550℃回火,保温时间50-80min,最后400-550℃热定径。
表1列出了本案实施例A1-A5和对比例B1-B4中的各化学元素的质量百分配比。
表1.(wt.%,余量为Fe和其他不可避免的杂质)
序号 C Si Mn Cr Mo Nb Ti B Al Ca N V Ti-3.4N Ti/B
A1 0.12 0.2 1.1 0.1 0.2 0.03 0.02 0.0015 0.01 0.0005 0.004 - 0.0064 20
A2 0.13 0.1 1.2 0.2 0.3 0.02 0.025 0.002 0.04 0.001 0.005 0.03 0.008 12.5
A3 0.14 0.3 1.3 0.3 0.4 0.03 0.04 0.003 0.05 0.005 0.006 0.05 0.0196 13
A4 0.16 0.4 1.4 0.4 0.5 0.03 0.04 0.004 0.03 0.003 0.007 0.07 0.0162 10
A5 0.18 0.25 1.6 0.2 0.4 0.04 0.05 0.005 0.02 0.002 0.008 0.1 0.0128 10
B1 0.1 0.26 0.5 1 0.2 0.04 0.02 0.005 0.023 0.002 0.008 0.05 -0.0072 4
B2 0.15 0.33 1.2 0.5 0.3 0.03 - - 0.04 0.002 0.005 0.03 -0.017  
B3 0.24 0.2 0.9 1 0.6 0.02 0.02 0.004 0.04 0.001 0.006 0.05 -0.0004 5
B4 0.18 0.3 1.2 0.3 0.4 0.04 0.02 0.004 0.05 0.003 0.008 0.06 -0.0072 5
表2列出了制造本案实施例A1-A5和对比例B1-B4的各项工艺参数。
表2.
Figure PCTCN2015070978-appb-000001
Figure PCTCN2015070978-appb-000002
表3示出了实施例A1-A5和对比例B1-B4中所涉及的套管的力学性能。
表3.
序号 屈服强度(MPa) 抗拉强度(MPa) 延伸率(%) 横向冲击功,0℃(J) 韧脆转变温度(℃)
A1 1050 1090 25 142 -80
A2 1070 1110 23 136 -70
A3 1090 1140 24 138 -70
A4 1120 1160 23 131 -60
A5 1100 1150 23 128 -60
B1 940 1010 23 125 -60
B2 960 1040 26 110 -55
B3 1090 1160 25 57 -25
B4 1070 1110 21 75 -30
从表3中可以看出,上述各实施例A1-A5中的套管的屈服强度均≥1050Mpa(已经达到了150ksi钢级以上的强度),抗拉强度均≥1090Mpa,并且0°横向冲击功均≥128J,延伸率均≥23%,韧脆转变温度均≤-60℃,即实施例A1-A5中的套管均具有超高的强度和超高的韧性,其能够适合制成深井、超深井开采用的石油管。反之,由于对比例B1中的Mn和Cr超出了本发明的技术方案所限定的范围,对比例B2中未添加B和Ti,对比例B3中的C,Mn,Cr和Mo超出了本发明的技术方案所限定的范围,对比例B4中的Ti和N元素不满足0<(Ti-3.4N)≤0.02%和Ti/B≥10的条件,使得对比例B1-B4中的套管的至少一项力学性能未能达到高强度且高韧性石油套管的标准。
图1示出了实施例A5中的超高强度超高韧性石油套管的金相组织,且 图2示出了实施例A5中的超高强度超高韧性石油套管的析出相形貌。
如图1所示,在实施例A5中的石油套管的金相组织上并未发现因成分偏析而导致生成的带状组织。如图2所示,在实施例A5中的石油套管的析出相的碳化物细小且分布均匀,因此,实施例A5中的超高强度超高韧性石油套管的强度可以达到150ksi钢级以上且横向0度冲击韧性达到120J以上。
图3示出了对比例B1中的套管的金相组织。
由于对比例B1中的C和Mn含量较低,从而导致钢的淬透性低,如图3所示,对比例B1的金相组织中存在较多的铁素体组织,经过热处理之后的套管强度不足,并且0°横向冲击功也不高,其不适应于加工成高超强度且超高韧性的石油套管。
图4显示了对比例B2中的套管的析出相形貌,而图5则显示了对比例B3中的套管的析出相形貌。
由于管坯在凝固过程中的枝晶偏析会导致轧制后管体存在大量的偏析带,因此,如图4所示,对比例B2在偏析带上C、Mn、Cr和Mo等合金元素富集,局部合金成分不均匀,从而在偏析带上形成的碳化物较多且粗大。
又如图5所示,对比例B3中的C、Cr、Mo等合金元素超出了本发明的技术方案所限定的范围,导致热处理后套管偏析比较严重,偏析严重则会导致套管韧性不足,降低了钢的韧性指标。
要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (11)

  1. 一种超高强度超高韧性石油套管,其特征在于,其化学元素质量百分配比为:
    C:0.12-0.18%;Si:0.1-0.4%;Mn:1.1-1.6%;Cr:0.1-0.4%;Mo:0.2-0.5%;Nb:0.02-0.04%;Ti:0.02-0.05%;B:0.0015-0.005%;Al:0.01-0.05%;Ca:0.0005-0.005%;N≤0.008%;且满足0<(Ti-3.4N)≤0.02%,Ti/B≥10;余量为Fe和其他不可避免的杂质。
  2. 如权利要求1所述的超高强度超高韧性石油套管,其特征在于,还含有0<V≤0.1wt%的V元素。
  3. 如权利要求1所述的超高强度超高韧性石油套管,其特征在于,其微观组织为回火索氏体。
  4. 如权利要求1所述的超高强度超高韧性石油套管,其特征在于,其屈服强度为1034-1241MPa,抗拉强度≥1103MPa,延伸率为20%-30%,0度横向夏比冲击功不小于屈服强度的10%,韧脆转变温度≤-70℃。
  5. 如权利要求1所述的超高强度超高韧性石油套管,其特征在于,其屈服强度为1069-1276MPa,抗拉强度≥1138MPa,延伸率为20%-25%,0度横向夏比冲击功不小于屈服强度的10%,韧脆转变温度≤-60℃。
  6. 如权利要求1-5中任意一项所述的超高强度超高韧性石油套管的制造方法,其包括步骤:冶炼;连铸;穿孔;轧制;定径;热处理。
  7. 如权利要求6所述的超高强度超高韧性石油套管的制造方法,其特征在于,在所述连铸步骤中,控制钢水过热度低于30℃,连铸拉速为1.8-2.2m/min。
  8. 如权利要求6所述的超高强度超高韧性石油套管的制造方法,其特征在于,在所述穿孔步骤中,经过连铸步骤的圆坯在1200-1240℃的炉内均热,穿孔温度为1180-1240℃。
  9. 如权利要求6所述的超高强度超高韧性石油套管的制造方法,其特征在于,在所述轧制步骤中,控制终轧温度为900-950℃。
  10. 如权利要求6所述的超高强度超高韧性石油套管的制造方法,其特征在于,在所述定径步骤中,定径温度为850-900℃。
  11. 如权利要求6所述的超高强度超高韧性石油套管的制造方法,其特征在于,在所述热处理步骤中:控制奥氏体化温度为900-930℃,保温30-60min后淬火,然后在450-550℃回火,保温时间50-80min,最后400-550℃热定径。
PCT/CN2015/070978 2014-06-30 2015-01-19 一种超高强度超高韧性石油套管及其制造方法 WO2016000444A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016575505A JP6456986B2 (ja) 2014-06-30 2015-01-19 超高強度・超高靱性油井管およびその製造方法
US15/322,683 US20170159157A1 (en) 2014-06-30 2015-01-19 Ultra-high-strength and ultra-high-toughness oil casing and manufacturing method thereof
DE112015003075.1T DE112015003075T5 (de) 2014-06-30 2015-01-19 Mantelrohr für Erdöl mit ultrahoher Stärke und Zähigkeit sowie dessen Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410307023.7 2014-06-30
CN201410307023.7A CN104046910B (zh) 2014-06-30 一种超高强度超高韧性石油套管及其制造方法

Publications (1)

Publication Number Publication Date
WO2016000444A1 true WO2016000444A1 (zh) 2016-01-07

Family

ID=51500300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070978 WO2016000444A1 (zh) 2014-06-30 2015-01-19 一种超高强度超高韧性石油套管及其制造方法

Country Status (4)

Country Link
US (1) US20170159157A1 (zh)
JP (1) JP6456986B2 (zh)
DE (1) DE112015003075T5 (zh)
WO (1) WO2016000444A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136786B (zh) * 2018-10-31 2019-11-22 达力普石油专用管有限公司 非调质n80钢级石油套管及其制备方法
CN113637892B (zh) 2020-05-11 2022-12-16 宝山钢铁股份有限公司 一种高强度抗挤毁石油套管及其制造方法
CN112176241B (zh) * 2020-09-23 2021-11-16 达力普石油专用管有限公司 一种低合金耐腐蚀油套管材料及其制备方法
CN117758157A (zh) * 2024-01-31 2024-03-26 延安嘉盛石油机械有限责任公司 一种油套管及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063940A (ja) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れた高強度鋼の製造方法
JP2001172739A (ja) * 1999-12-15 2001-06-26 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れた油井用鋼材およびそれを用いた油井用鋼管の製造方法
CN101413088A (zh) * 2008-12-02 2009-04-22 天津商业大学 耐硫化氢应力腐蚀的石油套管及其制造方法
CN101586450A (zh) * 2009-04-29 2009-11-25 天津钢管集团股份有限公司 具有高强度和高韧性石油套管及其制造方法
CN101845586A (zh) * 2009-03-25 2010-09-29 宝山钢铁股份有限公司 一种石油套管用钢、电阻焊石油套管及其制造方法
CN101864542A (zh) * 2009-04-16 2010-10-20 上海梅山钢铁股份有限公司 高频电阻直缝焊油井管用钢及其制造方法
CN104046910A (zh) * 2014-06-30 2014-09-17 宝山钢铁股份有限公司 一种超高强度超高韧性石油套管及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210241A (ja) * 1985-07-08 1987-01-19 Sumitomo Metal Ind Ltd 耐食性と圧潰強度の優れた継目無油井管用鋼
JP3249210B2 (ja) * 1992-12-22 2002-01-21 新日本製鐵株式会社 耐ssc性の優れた低硬度高靭性シームレス鋼管の製造法
JPH07331381A (ja) * 1994-06-06 1995-12-19 Nippon Steel Corp 高強度高靭性継目無鋼管およびその製造法
JPH0920961A (ja) * 1995-07-04 1997-01-21 Nippon Steel Corp 低温用シームレス鋼管の製造法
CN101629476B (zh) * 2009-08-05 2012-05-23 天津钢管集团股份有限公司 耐-40~-80℃低温的高强高韧性石油套管
WO2013007729A1 (en) * 2011-07-10 2013-01-17 Tata Steel Ijmuiden Bv Hot-rolled high-strength steel strip with improved haz-softening resistance and method of producing said steel
CN102747272B (zh) * 2012-08-01 2014-08-27 攀枝花贝氏体耐磨管道有限公司 一种b-p-t钢管及制备方法
US9803256B2 (en) * 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063940A (ja) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れた高強度鋼の製造方法
JP2001172739A (ja) * 1999-12-15 2001-06-26 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れた油井用鋼材およびそれを用いた油井用鋼管の製造方法
CN101413088A (zh) * 2008-12-02 2009-04-22 天津商业大学 耐硫化氢应力腐蚀的石油套管及其制造方法
CN101845586A (zh) * 2009-03-25 2010-09-29 宝山钢铁股份有限公司 一种石油套管用钢、电阻焊石油套管及其制造方法
CN101864542A (zh) * 2009-04-16 2010-10-20 上海梅山钢铁股份有限公司 高频电阻直缝焊油井管用钢及其制造方法
CN101586450A (zh) * 2009-04-29 2009-11-25 天津钢管集团股份有限公司 具有高强度和高韧性石油套管及其制造方法
CN104046910A (zh) * 2014-06-30 2014-09-17 宝山钢铁股份有限公司 一种超高强度超高韧性石油套管及其制造方法

Also Published As

Publication number Publication date
JP6456986B2 (ja) 2019-01-23
US20170159157A1 (en) 2017-06-08
DE112015003075T5 (de) 2017-03-23
JP2017525844A (ja) 2017-09-07
CN104046910A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US10851432B2 (en) Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
KR20220129609A (ko) 광산 체인용 스틸 및 그 제조방법
CN105441801B (zh) 一种超高强度超高韧性石油套管及其tmcp制造方法
CN103938095B (zh) 一种165ksi钢级高强高韧钻杆及其制造方法
MX2008016193A (es) Productos tubulares para campo petrolero de acero sin costura, con acero de baja aleacion y metodo para producir un tubo de acero sin costura.
CN108004462B (zh) 一种抗硫化氢应力腐蚀开裂的油套管及其制造方法
WO2016000444A1 (zh) 一种超高强度超高韧性石油套管及其制造方法
CN108624810B (zh) 一种低成本高强度高抗硫油井管及其制造方法
CA3032502C (en) Sucker rod steel and manufacturing method thereof
WO2021078255A1 (zh) 一种抗挤毁石油套管及其制造方法
CN111607744B (zh) 一种厚壁高强高韧石油套管及其制造方法
CN110616365B (zh) 一种高强度膨胀套管及其制造方法
US11519049B2 (en) Low temperature resistant oil casing having high strength and high toughness, and manufacturing method thereof
US11459643B2 (en) High-strength and high-toughness perforating gun tube and manufacturing method therefor
CN103966526A (zh) 大壁厚油气输送管件三通用钢板及其生产方法
JP7458685B2 (ja) 高強度の抗崩壊オイルケーシングおよびその製造方法
WO2022179595A1 (zh) 一种高强韧贝氏体地质钻探管及其制造方法
CN104046910B (zh) 一种超高强度超高韧性石油套管及其制造方法
CN116875913A (zh) 一种经济型耐低温无缝钢管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575505

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322683

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003075

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815562

Country of ref document: EP

Kind code of ref document: A1