WO2022179595A1 - 一种高强韧贝氏体地质钻探管及其制造方法 - Google Patents

一种高强韧贝氏体地质钻探管及其制造方法 Download PDF

Info

Publication number
WO2022179595A1
WO2022179595A1 PCT/CN2022/077848 CN2022077848W WO2022179595A1 WO 2022179595 A1 WO2022179595 A1 WO 2022179595A1 CN 2022077848 W CN2022077848 W CN 2022077848W WO 2022179595 A1 WO2022179595 A1 WO 2022179595A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological drilling
bainite
drilling pipe
temperature
cooling
Prior art date
Application number
PCT/CN2022/077848
Other languages
English (en)
French (fr)
Inventor
孙文
刘耀恒
张忠铧
胡平
马燕楠
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US18/547,172 priority Critical patent/US20240229979A9/en
Priority to JP2023551208A priority patent/JP2024507906A/ja
Priority to EP22758959.5A priority patent/EP4279625A1/en
Publication of WO2022179595A1 publication Critical patent/WO2022179595A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a seamless steel pipe and a manufacturing method thereof, in particular to a geological drilling pipe and a manufacturing method thereof.
  • One of the objectives of the present disclosure is to provide a bainite geological drilling pipe, which has low production cost, good strength and toughness, and can obtain the level of Cr-Mo steel after quenching and tempering heat treatment without quenching and tempering heat treatment, And it has good resistance to physical stretching and torque.
  • the bainitic geological drilling pipe can be effectively used in the geological drilling industry, is conducive to promoting the green and efficient development of the geological drilling industry, and has very broad application prospects.
  • the present disclosure proposes a bainite geological drilling pipe, which contains the following chemical elements in mass percentage:
  • the bainitic geological drill pipe contains the following chemical elements in mass percent:
  • B element is also added in the chemical composition of the bainitic geological drilling pipe of the present disclosure.
  • the composite addition of B and Mn elements further improved the air-cooling hardenability and ensured the formation of stable granular bainite structure.
  • B element can also strengthen the grain boundary, prevent excessive precipitation of mao island, and improve the toughness of the material.
  • the C element is an important element to ensure the strength of the pipe.
  • the addition of C element can stabilize the bainite structure and effectively improve the air-cooling hardening of the material.
  • the content of C element in steel is too low, the bainite structure will be unstable, and the strength and toughness of the material will be deteriorated.
  • the content of C element in the steel should not be too high.
  • the mass percentage content of element C is controlled between 0.14-0.22%.
  • the Si element is a ferrite-forming element and also a deoxidizing element.
  • Si element can promote the formation of ferrite in the structure and inhibit the precipitation of carbides while improving the purity of molten steel.
  • the mass percentage content of Si element is controlled between 0.2-0.55%.
  • Mn In the bainitic geological drilling pipe of the present disclosure, Mn is an important element for improving the hardenability of the material in air cooling. Compared with Mo, Cr, W and other elements, Mn element is very cheap and easy to obtain. Compared with other elements, Mn element can significantly reduce the transformation point of bainite structure, thereby refining the structure and improving the strength and toughness.
  • the content of Mn element in the steel is lower than 2.1%, the upper bainite structure will be formed due to the decrease of hardenability, which will lead to poor toughness of the material.
  • the content of Mn element in the steel is higher than 2.9%, it will lead to serious Mn segregation, making the toughness of the material worse, and at the same time leading to worse welding performance. Based on this, in the bainite geological drilling pipe of the present disclosure, the mass percentage content of Mn is controlled between 2.1-2.9%.
  • Nb element can be combined with C element to form Nb carbide, which inhibits grain growth, thereby refining granular bainite structure and improving the strength of the material.
  • Nb can also inhibit the precipitation of proeutectoid ferrite and upper bainite, so as to obtain a stable granular structure at a lower cooling rate, refine the size of the Mayo island, and improve the toughness of the material. Therefore, in the bainite geological drilling pipe of the present disclosure, the mass percentage content of Nb element is controlled between 0.01-0.04%.
  • Al element is a better deoxidizing element in the bainitic geological drilling pipe of the present disclosure.
  • the content of Al element in the steel should not be too high, and adding too much Al element will easily cause alumina inclusions. Therefore, it is necessary to increase the proportion of acid-soluble aluminum in the total aluminum as much as possible, and then feed Al wire in an appropriate amount after vacuum degassing. Therefore, in the bainite geological drilling pipe of the present disclosure, the mass percentage content of Al element is controlled between 0.015-0.04%.
  • the B element can effectively increase the hardenability of the material.
  • the compound addition of B element and Mn element can further improve the air-cooling hardenability and ensure that the steel forms a stable granular bainite structure.
  • the B element can also strengthen the grain boundary, inhibit the formation of Mao Island, and improve the strength and toughness matching of the material.
  • the content of B element in steel is less than 0.001%, its effect is not obvious.
  • the content of element B in the steel is too high, for example, higher than 0.005%, it is difficult to precisely control the steelmaking process. Therefore, in the bainite geological drilling pipe of the present disclosure, the mass percentage content of element B is controlled between 0.001-0.005%.
  • the N element can cooperate with the Al element in the steel to form carbonitrides. Therefore, while controlling the mass percentage content of a single chemical element, it is also necessary to control the mass percentage content of Al and N elements to achieve Al/N ⁇ 3, so as to ensure the content of acid-soluble aluminum in the steel, so that the Al content in the steel is
  • the element can be fully combined with the N element to prevent the combination of the N element and the B element to form a brittle low melting point phase, so as to ensure the effect of the B element on the hardenability of the steel and prevent the grain boundary from embrittlement. Based on this, in the bainite geological drilling pipe of the present disclosure, the mass percentage content of N element is controlled to be 0 ⁇ N ⁇ 0.007%.
  • both P and S are unavoidable impurity elements in steel.
  • the content of impurity elements in steel should be reduced as much as possible.
  • the main body of the microstructure of the bainite geological drilling pipe is granular bainite, the proportion of the granular bainite is more than 95%, and the size is 4-10 ⁇ m.
  • the microstructure of the bainitic geological drill pipe further contains austenite in a phase ratio of 3-5%.
  • the wall thickness of the bainitic geological drill pipe is 12-30 mm.
  • the bainitic geological drilling pipe can achieve the following properties without quenching and tempering heat treatment: yield strength ⁇ 750MPa, tensile strength ⁇ 1100MPa, hardness ⁇ 35HRC, toughness ⁇ 60J, residual stress ⁇ 40MPa.
  • Another object of the present disclosure is to provide a method of manufacturing a bainite geological drilling pipe.
  • the manufacturing method has simple steps.
  • the bainite geological drilling pipe obtained by the manufacturing method has good strength and toughness, and the quenching and tempering level of Cr-Mo steel can be obtained without quenching and tempering heat treatment.
  • the bainite geological drilling pipe obtained by the manufacturing method has a yield strength of ⁇ 750MPa, a tensile strength of ⁇ 1100MPa, a hardness of ⁇ 35HRC, a toughness of ⁇ 60J, and a residual stress of ⁇ 40MPa, and has good resistance to solid tensile and torque.
  • the bainite geological drilling pipe obtained by the manufacturing method can be effectively used in the geological drilling industry, and promotes the green and efficient development of the geological drilling industry, and has a very broad application prospect.
  • the present disclosure proposes a method for manufacturing a bainite geological drilling pipe, comprising the following steps:
  • the manufacturing method of the present disclosure has a short production process flow, low production cost, greatly improves economy, does not require users to perform subsequent heat treatment, and effectively improves finished product processing efficiency and product quality stability. .
  • step (3) in the first stage of air cooling, the outer surface of the pipe body is cooled by air ring blowing, and the temperature before cooling is controlled to be ⁇ Ar3+50°C, and the cooling rate is 5-15 °C/s, cooling to the temperature range of Bs-100°C to Bs-50°C, can effectively avoid the transformation of pro-eutectoid ferrite and upper bainite, increase granular bainite to form supercooling, and refine granular Bainite structure.
  • step (3) of the manufacturing method of the present disclosure two-stage air cooling is used to process the pipe body after sizing.
  • the design of air-cooled high hardenability components, combined with cooling in a wide cooling rate range, can make the pipe obtain stable granular bainite structure, which is beneficial to the stability of the structure and properties of the thick-walled steel pipe, so that the pipe can obtain a lower Residual Stress.
  • the method of the present disclosure can effectively control the mutual cancellation of the thermal stress and the phase transformation stress during the cooling phase transformation process, thereby reducing the final residual stress and improving the deformation resistance of the steel pipe.
  • step (1) in the manufacturing method of the present disclosure, in step (1), the superheat degree of molten steel is lower than 30°C, and/or the pulling speed of continuous casting is 1.8-2.2 m/min.
  • step (2) the tube blank obtained in step (1) is cooled and then heated in a heating furnace (eg, annular heating furnace), and the heating temperature is 1240-1300 °C °C, heating time is 3-6h; then piercing, piercing temperature is 1180-1240 °C; continuous rolling after piercing, continuous rolling temperature is 1000 °C-1100 °C; then sizing, sizing temperature is Ac3+100 °C To Ac3+200°C, where Ac3 represents the austenitization temperature.
  • a heating furnace eg, annular heating furnace
  • the manufacturing method of the bainite geological drilling pipe of the present disclosure has the following advantages and beneficial effects:
  • a high-strength and tough bainitic geological drilling pipe with good strength and toughness can be obtained.
  • the bainitic geological drilling pipe not only has good mechanical properties at room temperature, but also Also has lower residual stress.
  • the bainitic geological drilling pipe of the present disclosure has good strength and toughness, and the quenching and tempering level of Cr-Mo steel can be obtained without quenching and tempering heat treatment, and its yield strength ⁇ 750MPa, tensile strength ⁇ 1100MPa, hardness ⁇ 35HRC, toughness ⁇ 35 60J, residual stress ⁇ 40MPa, and has good resistance to physical tensile and torque performance.
  • the manufacturing method of the bainite geological drilling pipe of the present disclosure has a short technological process, greatly improves the economy, does not require the user to perform a subsequent heat treatment process, improves the processing efficiency of the finished product and the quality stability of the product, and promotes the green geological drilling industry. Efficient development, has a very broad application prospects.
  • FIG. 1 is a typical metallographic structure diagram of the bainite geological drilling pipe of Example 1 under a microscope of 500 times magnification.
  • FIG. 2 is a photo of the microstructure of the bainite geological drilling pipe of Example 1 under a scanning electron microscope at a magnification of 2000 times.
  • the bainitic geological drilling pipes of Examples 1-6 and the comparative steel pipes of Comparative Examples 1-5 are all prepared by the following steps:
  • Heating, piercing, hot rolling and sizing Cool the tube blank, then heat it in an annular heating furnace, control the heating temperature to be 1240-1300°C, and control the heating time to 3-6h; then perform piercing and control the piercing temperature It is 1180-1240°C; after piercing, continuous rolling is performed, and the continuous rolling temperature is controlled to be 1000°C-1100°C; then sizing is performed, and the sizing temperature is controlled to be Ac3+100°C to Ac3+200°C, where Ac3 represents austenitization. temperature.
  • Two-stage air cooling two-stage air cooling is performed after the pipe body is sizing.
  • the first stage of air cooling the outer surface of the pipe body is cooled by air ring blowing, and the temperature before cooling satisfies ⁇ Ar3+50°C , the cooling rate is 5-15°C/s, and it is cooled to the temperature range of Bs-100°C to Bs-50°C;
  • the second stage of air cooling the tube body is cooled by natural air, and the cooling rate is 0.5-4°C/ s, where Ar3 represents the ferrite precipitation temperature during cooling, and Bs represents the bainite transformation start temperature.
  • the comparative steel pipe of Comparative Example 6 was manufactured by the same method as that of Example 1, the only difference was that the two-stage air cooling was not used after the pipe body was sizing, but only natural air cooling was performed.
  • the chemical composition design and related processes of the bainitic geological drilling pipes of Examples 1-6 all meet the design specification requirements of the present disclosure.
  • the comparative steel pipes of Comparative Examples 1-6 have parameters in chemical composition design or related processes that do not meet the design specification requirements of the present disclosure.
  • the content of C element in the comparative steel pipe of Comparative Example 1 is less than the design range; the content of Mn element in the comparative steel pipe of Comparative Example 2 is less than the design range; the content of Nb element in the comparative steel pipe of Comparative Example 3 is less than the design range; Comparative Example 4
  • the C element content in the comparative steel pipe of the comparative example is greater than the design range; the value of Al/N in the comparative steel pipe of the comparative example 5 does not meet the design range; although the chemical composition design of the comparative steel pipe of the comparative example 6 meets the design range of the present disclosure, it is in the manufacturing process.
  • the two-stage air cooling is not used after sizing, and only natural air cooling is performed.
  • Table 1 lists the mass percentage ratio of each chemical element of the bainitic geological drilling pipes of Examples 1-6 and the comparative steel pipes of Comparative Examples 1-6.
  • Table 2-1 and Table 2-2 list the specific process parameters of the bainitic geological drilling pipes of Examples 1-6 and the comparative steel pipes of Comparative Examples 1-6 in the above process steps.
  • Table 3 lists the mechanical properties test results of the bainitic geological drilling pipes of Examples 1-6 and the comparative steel pipes of Comparative Examples 1-6.
  • the bainitic geological drilling pipes of Examples 1-6 described in the present disclosure have very excellent mechanical properties and good toughness, and their yield
  • the strength is between 780MPa and 900MPa
  • the tensile strength is between 1120 and 1200MPa
  • the hardness is between 35-40HRC
  • the residual stress is between 0-35MPa
  • the longitudinal impact toughness at room temperature is between 65-100J.
  • the comprehensive properties of the comparative steel pipes of Comparative Examples 1-5 are obviously inferior to those of the bainite geological drilling of Examples 1-6.
  • the comparative steel pipes of Comparative Examples 1-2 have poor yield strength and tensile strength, and the longitudinal impact toughness and hardness at room temperature are not good;
  • the comparative steel pipes of Comparative Example 3 have poor yield strength and tensile strength, and poor hardness , the toughness does not meet the requirements; although the yield strength, tensile strength and hardness of the comparative steel pipe of Comparative Example 4 are higher, its room temperature longitudinal impact toughness is poor, and the residual stress is high;
  • the yield strength of the comparative steel pipe of Comparative Example 5 Room temperature longitudinal impact toughness and hardness are poor, and its residual stress is high.
  • the bainitic geological drilling pipes of Examples 1-6 have good strength and toughness, and the quenching and tempering level of Cr-Mo steel can be obtained without quenching and tempering heat treatment.
  • the processing efficiency of finished products and the stability of product quality have promoted the green and efficient development of the geological drilling industry and have very broad application prospects.
  • FIG. 1 is a typical metallographic structure diagram of the bainite geological drilling pipe of Example 1 under a microscope of 500 times magnification.
  • FIG. 2 is a photo of the microstructure of the bainite geological drilling pipe of Example 1 under a scanning electron microscope at a magnification of 2000 times.
  • the main body of the bainite geological drilling pipe of Example 1 is granular bainite, its structure is uniform granular bainite structure, its size is 4-10 ⁇ m, and contains a small amount of phase ratio 3-5% austenite.
  • the bainitic geological drilling pipe of Example 1 can use the slitting method to test the morphology after residual stress.
  • the residual stress of Example 1 is small, and the pipe body after slitting is basically closed, which can effectively prevent subsequent processing and use. deformed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本公开提供了一种贝氏体地质钻探管,其包含以质量百分比计的如下化学元素:C:0.14-0.22%,Si:0.2-0.55%,Mn:2.1-2.9%,Nb:0.01-0.04%,Al:0.015-0.04%,B:0.001-0.005%,0<N≤0.007%,余量为Fe和不可避免的杂质;并且Al与N的含量之比即Al/N≥3。此外,本公开还提供了上述贝氏体地质钻探管的制造方法,其包括如下步骤:(1)对钢水进行冶炼和铸造,制得管坯;(2)对管坯进行加热、穿孔、连轧和定径,制得管体;(3)对管体进行两段式空气冷却:在第一段空气冷却中,对管体的外表面进行空气环吹冷却,冷却前温度≥Ar3+50℃,冷却速率为5-15℃/s,冷却到Bs-100℃至Bs-50℃的温度范围;在第二段空气冷却中,对管体进行自然空气冷却,冷却速率为0.5-4℃/s。

Description

一种高强韧贝氏体地质钻探管及其制造方法 技术领域
本公开涉及一种无缝钢管及其制造方法,尤其涉及一种地质钻探管及其制造方法。
背景技术
近年来,鉴于浅层矿产资源的逐渐被开采殆尽,中国提出了“三深一土”及“深海钻探,海洋强国”等战略,地质钻探开始逐渐向大孔径、大深度方向发展。这一发展趋势会导致钻探管在服役过程中承受愈加恶劣的拉力、压力、弯曲力、扭转力、冲击力、摩擦力等复杂应力,钻探管很容易出现由过载导致的变形、断裂及磨损失效等问题,从而导致事故处理成本较高,钻探效率低下。因此,亟需开发出更高性能的钻探管产品,以满足行业发展需求。
目前,传统的地质钻探管产品已无法满足地质行业向深度方向发展的需求。实现更高级别的地质钻探管产品需要采用经调质热处理的Cr-Mo钢种。现有技术中的这种方式不仅合金成本、工艺成本高,而且热处理工序因环保要求受限,很多用户并不具备生产条件,且存在调质后易变形开裂、墩粗端性能不均匀等问题。
鉴于现有技术中的不足和缺陷,期望获得一种高强韧贝氏体地质钻探管,其具有较低的生产成本,具备良好的强韧性匹配,无需调质热处理即可得到Cr-Mo钢种经调质热处理后的水平,并且抗实体拉伸及扭矩性能良好。
发明内容
本公开的目的之一在于提供一种贝氏体地质钻探管,其具有较低的生产成本,良好的强韧性,无需调质热处理即可得到Cr-Mo钢种经调质热处理后的水平,并且抗实体拉伸及扭矩性能良好。该贝氏体地质钻探管能够有效应用于地质钻探行业中,有利于促进地质钻探行业的绿色高效发展,具有十分广阔的应用前景。
为了实现上述目的,本公开提出了一种贝氏体地质钻探管,其包含以质量百分比计的如下化学元素:
C:0.14-0.22%,Si:0.2-0.55%,Mn:2.1-2.9%,Nb:0.01-0.04%,Al:0.015-0.04%, B:0.001-0.005%,0<N≤0.007%,余量为Fe和不可避免的杂质;并且Al与N的含量之比即Al/N≥3。
在一个实施方案中,贝氏体地质钻探管包含以质量百分比计的如下化学元素:
C:0.14-0.22%,Si:0.2-0.55%,Mn:2.1-2.9%,Nb:0.01-0.04%,Al:0.015-0.04%,B:0.001-0.005%,0<N≤0.007%;余量为Fe和不可避免的杂质;其中Al/N≥3;所述贝氏体地质钻探管不含Cr、Mo和W元素。
在本公开的上述技术方案中,通过采用合理的化学成分设计,即通过包含中高含量的Mn,和/或化学成分中不含Cr、Mo、W等贵金属元素,不仅降低了合金成本,而且通过Mn元素对相变界面元素扩散的拖拽作用,明显降低了贝氏体相变点,从而实现组织细化,提升产品强韧性。
此外,在本公开的贝氏体地质钻探管的化学成分中还添加了B元素。B与Mn元素的复合添加进一步提高了空冷淬透性,保证了稳定的粒状贝氏体组织的形成。同时,B元素还可以强化晶界,防止马奥岛过多析出,提高材料的韧性。
在本公开的贝氏体地质钻探管中,各化学元素的设计原理具体如下所述:
C:在本公开的贝氏体地质钻探管中,C元素是保证管材强度的重要元素。C元素添加后可以稳定贝氏体组织,有效提高材料的空冷淬透。钢中C元素含量过低时会导致贝氏体组织不稳定,使材料的强度和韧性变差。同时,需要注意的是,钢中C元素含量不宜过高。当钢中C元素含量过高时,会导致钢材的韧塑性下降。因此,在本公开的贝氏体地质钻探管中,将C元素的质量百分含量控制在0.14-0.22%之间。
Si:在本公开的贝氏体地质钻探管中,Si元素是铁素体形成元素,也是脱氧元素。Si元素可以在提高钢水纯净度的同时,促进组织中铁素体形成,并抑制碳化物的析出。但需要注意的是,钢中Si元素含量过低时起不到上述相应的作用,且钢中Si元素含量超过0.55%以后对组织无改善。因此,在本公开的贝氏体地质钻探管中,将Si元素的质量百分含量控制在0.2-0.55%之间。
Mn:在本公开的贝氏体地质钻探管中,Mn是提高材料空冷淬透性的重要元素。相较于Mo、Cr、W等元素,Mn元素非常廉价易得,与其他元素相比,Mn元素可以明显降低贝氏体组织转变点,从而细化组织,提高强韧性。当钢中Mn元素含量低于2.1%时,由于淬透性下降形成上贝氏体组织,会导致材料的韧性较差。当钢中Mn元素含量高于2.9%时,会导致Mn偏析严重,使得材料的韧性变差,同时导致焊接性能变差。基于此,在本公开的贝氏体地质钻探管中,将Mn的质量百分含量控制在2.1-2.9%之间。
Nb:在本公开的贝氏体地质钻探管中,Nb元素可以与C元素结合形成Nb的碳化物,抑制晶粒长大,从而细化粒状贝氏体组织,提高材料的强度。同时,Nb还可以抑制先共析铁素体和上贝氏体的析出,从而在更低冷却速率下获得稳定的粒状组织,细化马奥岛尺寸,提高材料的韧性。因此,在本公开的贝氏体地质钻探管中,将Nb元素的质量百分含量控制在0.01-0.04%之间。
Al:在本公开的贝氏体地质钻探管中,Al元素是较好的脱氧元素。但需要注意的是,钢中Al元素含量不宜过高,加入过多的Al元素容易造成氧化铝夹杂。因此,需要尽量提高酸溶铝占全铝的比重,在真空脱气后再适量喂Al丝。因此,在本公开的贝氏体地质钻探管中,将Al元素的质量百分含量控制在0.015-0.04%之间。
B:在本公开的贝氏体地质钻探管中,B元素可以有效增加材料的淬透性。B元素与Mn元素的复合添加可以进一步提高空冷淬透性,保证钢材形成稳定的粒状贝氏体组织。此外,B元素还可以强化晶界,抑制马奥岛的形成,提高材料的强韧性匹配。当钢中的B元素含量小于0.001%时,其所起到的作用不明显。当钢中B元素含量太高时,例如高于0.005%时,则难以精确控制炼钢工艺。因此,在本公开的贝氏体地质钻探管中,将B元素的质量百分含量控制在0.001-0.005%之间。
N:在本公开的贝氏体地质钻探管中,N元素可以与钢中的Al元素配合形成碳氮化物。因此,在控制单一化学元素质量百分含量的同时,还需要控制Al元素和N元素的质量百分含量以实现Al/N≥3,从而保证钢中酸溶铝的含量,使得钢中的Al元素可以充分与N元素结合,从而防止N元素与B元素结合形成脆性低熔点相,以保证B元素对钢材淬透性提升效果,防止晶界脆化。基于此,在本公开的贝氏体地质钻探管中,将N元素的质量百分含量控制为0<N≤0.007%。
在一个实施方案中,在本公开的贝氏体地质钻探管中,在不可避免的杂质中,S≤0.01%,P≤0.006%。
在上述技术方案中,P和S均为钢中不可避免的杂质元素。在技术条件允许情况下,为了获得性能更好且质量更优的贝氏体地质钻探管,应尽可能降低钢材中杂质元素的含量。
在本公开中,钢中P元素含量过高会偏聚晶界,脆化晶界,从而严重恶化材料的韧性。并且,钢中S元素含量过高时会导致钢中夹杂物含量增多,对材料的低温韧性不利。因此,在技术条件允许的情况下,应尽可能地降低钢中的P、S元素含量。
在一个实施方案中,贝氏体地质钻探管的微观组织的主体为粒状贝氏体,所述粒状贝氏体的相比例为95%以上,尺寸为4-10μm。
在一个实施方案中,贝氏体地质钻探管的微观组织还含有相比例为3-5%的奥氏体。
在一个实施方案中,贝氏体地质钻探管的壁厚为12~30mm。
在一个实施方案中,贝氏体地质钻探管无需调质热处理即可达到如下性能:屈服强度≥750MPa,抗拉强度≥1100MPa,硬度≥35HRC,韧性≥60J,残余应力≤40MPa。
本公开的另一目的在于提供一种贝氏体地质钻探管的制造方法。该制造方法步骤简单。通过该制造方法获得的贝氏体地质钻探管具备良好的强韧性,且无需调质热处理即可得到Cr-Mo钢种的调质水平。通过该制造方法获得的贝氏体地质钻探管的屈服强度≥750MPa,抗拉强度≥1100MPa,硬度≥35HRC,韧性≥60J,残余应力≤40MPa,并具备良好的抗实体拉伸及扭矩性能。通过该制造方法获得的贝氏体地质钻探管可以有效应用于地质钻探行业中,并促进地质钻探行业绿色高效发展,具有十分广阔的应用前景。
为了实现上述目的,本公开提出了一种制造贝氏体地质钻探管的方法,包括以下步骤:
(1)对钢水进行冶炼和铸造,制得管坯;
(2)对管坯进行加热、穿孔、连轧和定径,制得管体;
(3)对管体进行两段式空气冷却:在第一段空气冷却中,对管体的外表面进行空气环吹冷却,冷却前温度≥Ar3+50℃,冷却速率为5-15℃/s,冷却到Bs-100℃至Bs-50℃的温度范围;在第二段空气冷却中,对管体进行自然空气冷却,冷却速率为0.5-4℃/s;其中Ar3表示冷却过程中铁素体析出温度,Bs表示贝氏体相变开始温度;
在本公开的上述技术方案中,本公开的制造方法的生产工艺流程短,生产成本较低,大幅度提升了经济性,无需用户进行后续热处理,同时有效提升了成品加工效率及产品质量稳定性。
需要说明的是,在上述步骤(3)中,在第一段空气冷却中,对管体的外表面进行空气环吹冷却,控制冷却前温度为≥Ar3+50℃,冷却速率为5-15℃/s,冷却到Bs-100℃至Bs-50℃的温度范围,可以有效避免先共析铁素体和上贝氏体相变,增大粒状贝氏体形成过冷度,细化粒状贝氏体组织。
在本公开的制造方法的步骤(3)中,采用了两段式空气冷却对定径后的管体进行处理。采用空冷高淬透性成分设计,并配合在较宽冷速范围内冷却,可使管材获得稳定的粒状贝氏体组织,有利于厚壁钢管的组织性能的稳定性,使管材获得较低的残余应力。通过两段式空气冷却,本公开的方法可以有效控制冷却相变过程中热应力和相变应力的相互抵消,从而降低最终残余应力,提高钢管的抗变形能力。
在一个实施方案中,在本公开的制造方法中,在步骤(1)中,钢水的过热度低于30℃, 和/或连铸的拉速为1.8-2.2m/min。
在一个实施方案中,在本公开的制造方法中,在步骤(2)中,将由步骤(1)获得的管坯冷却后在加热炉(例如环形加热炉)内加热,加热温度为1240-1300℃,加热时间为3-6h;然后进行穿孔,穿孔温度为1180-1240℃;穿孔后进行连轧,连轧温度为1000℃-1100℃;然后进行定径,定径温度为Ac3+100℃至Ac3+200℃,其中Ac3表示奥氏体化温度。
本公开的贝氏体地质钻探管的制造方法相较于现有技术具有如下所述的优点以及有益效果:
通过合理优化设计钢管的化学成分,并配合本公开的制造工艺,可以获得具有良好强韧性能的高强韧贝氏体地质钻探管,该贝氏体地质钻探管不仅具有较好的室温力学性能,还具有较低的残余应力。
本公开的贝氏体地质钻探管具备良好的强韧性,无需调质热处理即可得到Cr-Mo钢种的调质水平,其屈服强度≥750MPa,抗拉强度≥1100MPa,硬度≥35HRC,韧性≥60J,残余应力≤40MPa,并具备良好的抗实体拉伸及扭矩性能。
本公开的贝氏体地质钻探管的制造方法的工艺流程短,大幅提升了经济性,无需用户进行后续热处理工艺,同时提升了成品的加工效率及产品的质量稳定性,促进了地质钻探行业绿色高效发展,具有十分广阔的应用前景。
附图说明
图1为实施例1的贝氏体地质钻探管在500倍显微镜下的典型金相组织图。
图2为实施例1的贝氏体地质钻探管在2000倍扫描电镜下的微观组织照片。
具体实施方式
下面将结合具体的实施例和说明书附图对本公开的贝氏体地质钻探管及其制造方法做进一步的解释和说明,然而该解释和说明并不对本公开的技术方案构成不当限定。
实施例1-6和对比例1-6
实施例1-6的贝氏体地质钻探管和对比例1-5的对比钢管均采用以下步骤制得:
(1)按照下述表1所示的化学成分,利用电炉或转炉进行冶炼和铸造,制得管坯:采用废钢+高炉铁水的配料方案;铁水比例为50-60%,钢水经电炉冶炼,通过炉外精炼、真空脱气和氩气搅拌后,经过Ca处理进行夹杂物变性,降低O、H含量。合金浇铸成圆坯,浇铸过程中控制钢水的过热度低于30℃,并且控制连铸的拉速为1.8-2.2m/min,以降低成 分偏析。
(2)加热、穿孔、热轧和定径:将管坯冷却,然后在环形加热炉内加热,控制加热温度为1240-1300℃,控制加热时间为3-6h;然后进行穿孔,控制穿孔温度为1180-1240℃;穿孔后进行连轧,控制连轧温度为1000℃-1100℃;然后进行定径,控制定径温度为Ac3+100℃至Ac3+200℃,其中Ac3表示奥氏体化温度。
(3)两段式空气冷却:管体定径后进行两段式空气冷却,在第一段空气冷却中,对管体的外表面进行空气环吹冷却,冷却前温度满足≥Ar3+50℃,冷却速率为5-15℃/s,冷却到Bs-100℃至Bs-50℃的温度范围;在第二段空气冷却中,对管体进行自然空气冷却,冷却速度为0.5-4℃/s,其中Ar3表示冷却过程中铁素体析出温度,Bs表示贝氏体相变开始温度。
对比例6的对比钢管采用与实施例1相同的方法制造,所不同的仅在于其管体定径后并未采用两段式空气冷却,而仅进行自然空气冷却。
实施例1-6的贝氏体地质钻探管的化学成分设计以及相关工艺均满足本公开的设计规范要求。对比例1-6的对比钢管在化学成分设计或相关工艺中存在不满足本公开的设计规范要求的参数。
需要说明的是,对比例1的对比钢管中C元素含量小于设计范围;对比例2的对比钢管中Mn元素含量小于设计范围;对比例3的对比钢管中Nb元素含量小于设计范围;对比例4的对比钢管中C元素含量大于设计范围;对比例5的对比钢管中Al/N的值不符合设计范围;对比例6的对比钢管的化学成分设计虽然满足本公开设计范围,但其在制造过程中,定径后并未采用两段式空气冷却,其仅进行自然空气冷却。
表1列出了实施例1-6的贝氏体地质钻探管和对比例1-6的对比钢管的各化学元素的质量百分配比。
表1.(余量为Fe和除了P和S以外的其他不可避免的杂质)
Figure PCTCN2022077848-appb-000001
Figure PCTCN2022077848-appb-000002
表2-1和表2-2列出了实施例1-6的贝氏体地质钻探管和对比例1-6的对比钢管在上述工艺步骤中的具体工艺参数。
表2-1.
Figure PCTCN2022077848-appb-000003
表2-2.
Figure PCTCN2022077848-appb-000004
Figure PCTCN2022077848-appb-000005
将得到的实施例1-6的贝氏体地质钻探管和对比例1-6的对比钢管分别取样,并对各实施例和对比例的成品管材分别进行常温力学性能测试。各实施例和对比例的力学性能测试结果分别列于表3中。
相关性能测试方法如下所述:
力学性能测试:检测条件温度:23℃,湿度:56%,拉伸速率:屈服前为3mm/min,屈服后为28mm/min,按照GB/T 228.1-2010金属材料拉伸试验第1部分:室温拉伸试验的条件测得。
表3列出了实施例1-6的贝氏体地质钻探管和对比例1-6的对比钢管的力学性能测试结果。
表3.
Figure PCTCN2022077848-appb-000006
从表3中可以看出,相较于对比例1-6的对比钢管,本公开所述实施例1-6的贝氏体地质钻探管具有十分优异的力学性能和良好的强韧性,其屈服强度在780MPa~900MPa之间,抗拉强度在1120~1200MPa之间,硬度在35-40HRC之间,残余应力在0-35MPa之间,室温纵向冲击韧性在65-100J之间。
相应地,对比例1-5的对比钢管的综合性能均明显劣于实施例1-6的贝氏体地质钻探。 其中,对比例1-2的对比钢管的屈服强度和抗拉强度较差,并且室温纵向冲击韧性和硬度不佳;对比例3的对比钢管的屈服强度和抗拉强度较差,并且硬度不佳,韧性也不满足要求;对比例4的对比钢管的屈服强度、抗拉强度和硬度虽然较高,但其室温纵向冲击韧性较差,且残余应力较高;对比例5的对比钢管的屈服强度、室温纵向冲击韧性和硬度较差,且其残余应力较高。
对比例6的对比钢管的化学成分设计虽然满足本公开设计规范要求,但其在工艺过程中,定径后并未采用两段式空气冷却,因此其残余应力相当之高,且室温纵向冲击韧性也较差。
综上所述可以看出,实施例1-6的贝氏体地质钻探管具备良好的强韧性,无需调质热处理即可得到Cr-Mo钢种的调质水平,其屈服强度≥750MPa,抗拉强度≥1100MPa,硬度≥35HRC,韧性≥60J,残余应力≤40MPa,并具备良好的抗实体拉伸及扭矩性能,且生产工艺流程短,大幅提升了经济性,无需用户进行后续热处理,同时提升成品加工效率及产品质量稳定性,促进了地质钻探行业绿色高效发展,具有十分广阔的应用前景。
图1为实施例1的贝氏体地质钻探管在500倍显微镜下的典型金相组织图。
图2为实施例1的贝氏体地质钻探管在2000倍扫描电镜下的微观组织照片。
如图1和图2所示,实施例1的贝氏体地质钻探管的主体为粒状贝氏体,其组织为均匀粒状贝氏体组织,其尺寸为4-10μm,并含有少量的相比例为3-5%的奥氏体。
实施例1的贝氏体地质钻探管可以采用割缝法测试残余应力后的形貌,实施例1的残余应力较小,经割缝后的管体基本闭合,可以有效防止后续加工和使用中变形。
需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本公开的具体实施例。显然本公开不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本公开公开的内容直接得出或者很容易便联想到的,均应属于本公开的保护范围。

Claims (10)

  1. 一种贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管包含以质量百分比计的如下化学元素:
    C:0.14-0.22%,Si:0.2-0.55%,Mn:2.1-2.9%,Nb:0.01-0.04%,Al:0.015-0.04%,B:0.001-0.005%,0<N≤0.007%,余量为Fe和不可避免的杂质;
    Al与N的含量之比即Al/N≥3。
  2. 如权利要求1所述的贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管包含以质量百分比计的如下化学元素:
    C:0.14-0.22%,Si:0.2-0.55%,Mn:2.1-2.9%,Nb:0.01-0.04%,Al:0.015-0.04%,B:0.001-0.005%,0<N≤0.007%;余量为Fe和不可避免的杂质;
    Al与N的含量之比即Al/N≥3;
    所述贝氏体地质钻探管不含Cr、Mo和W元素。
  3. 如权利要求1或2所述的贝氏体地质钻探管,其特征在于,在不可避免的杂质中,S≤0.01%,P≤0.006%。
  4. 如权利要求1或2所述的贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管的微观组织的主体为粒状贝氏体,所述粒状贝氏体的相比例为95%以上,尺寸为4-10μm。
  5. 如权利要求1或2所述的贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管的微观组织还含有相比例为3-5%的奥氏体。
  6. 如权利要求1或2所述的贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管的壁厚为12~30mm。
  7. 如权利要求1或2所述的贝氏体地质钻探管,其特征在于,所述贝氏体地质钻探管无需调质热处理即达到如下性能:屈服强度≥750MPa,抗拉强度≥1100MPa,硬度≥35HRC,韧性≥60J,残余应力≤40MPa。
  8. 一种制造权利要求1-7中任一项所述的贝氏体地质钻探管的方法,其特征在于,所述方法包括以下步骤:
    (1)对钢水进行冶炼和铸造,制得管坯;
    (2)对管坯进行加热、穿孔、连轧和定径,制得管体;
    (3)对管体进行两段式空气冷却:在第一段空气冷却中,对管体的外表面进行空气环吹冷却,冷却前温度≥Ar3+50℃,冷却速率为5-15℃/s,冷却到Bs-100℃至 Bs-50℃的温度范围;在第二段空气冷却中,对管体进行自然空气冷却,冷却速率为0.5-4℃/s;其中Ar3表示冷却过程中铁素体析出温度,Bs表示贝氏体相变开始温度。
  9. 如权利要求8所述的方法,其特征在于,在步骤(1)中,钢水的过热度低于30℃,和/或连铸的拉速为1.8-2.2m/min。
  10. 如权利要求8所述的方法,其特征在于,在步骤(2)中,将由步骤(1)获得的管坯冷却后在加热炉内加热,加热温度为1240-1300℃,加热时间为3-6h;然后进行穿孔,穿孔温度为1180-1240℃;穿孔后进行连轧,连轧温度为1000℃-1100℃;然后进行定径,定径温度为Ac3+100℃至Ac3+200℃,其中Ac3表示奥氏体化温度。
PCT/CN2022/077848 2021-02-25 2022-02-25 一种高强韧贝氏体地质钻探管及其制造方法 WO2022179595A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/547,172 US20240229979A9 (en) 2021-02-25 2022-02-25 High-strength and high-toughness bainite geological drilling pipe and manufacturing method therefor
JP2023551208A JP2024507906A (ja) 2021-02-25 2022-02-25 高強度・高靭性ベイナイト地質掘削管およびその製造方法
EP22758959.5A EP4279625A1 (en) 2021-02-25 2022-02-25 High-strength and high-toughness bainite geological drilling pipe and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110213765.3A CN114959439B (zh) 2021-02-25 2021-02-25 一种高强韧贝氏体地质钻探管及其制造方法
CN202110213765.3 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022179595A1 true WO2022179595A1 (zh) 2022-09-01

Family

ID=82972973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077848 WO2022179595A1 (zh) 2021-02-25 2022-02-25 一种高强韧贝氏体地质钻探管及其制造方法

Country Status (5)

Country Link
US (1) US20240229979A9 (zh)
EP (1) EP4279625A1 (zh)
JP (1) JP2024507906A (zh)
CN (1) CN114959439B (zh)
WO (1) WO2022179595A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315214A (en) * 1976-07-29 1978-02-10 Nippon Kokan Kk <Nkk> Low carbon bainite steel of excellent hydrogen-induced crack resistance
JPH09184014A (ja) * 1995-12-28 1997-07-15 Nkk Corp 耐磨耗継目無鋼管およびその製造方法
CN101658879A (zh) * 2008-08-27 2010-03-03 宝山钢铁股份有限公司 一种无缝钢管制造方法
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
KR20170074285A (ko) * 2015-12-21 2017-06-30 주식회사 포스코 강도 및 인성이 우수한 파이프용 강재, 그 제조방법 및 이를 이용한 용접강관의 제조방법
CN109112427A (zh) * 2017-06-26 2019-01-01 宝山钢铁股份有限公司 一种高强高韧非调质地质钻探用钢管及其制造方法
JP6455650B1 (ja) * 2018-05-16 2019-01-23 新日鐵住金株式会社 トーションビーム用アズロール電縫鋼管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375085B1 (ko) * 1997-07-28 2003-03-07 닛폰 스틸 가부시키가이샤 인성이 우수하고 본질적으로 붕소를 함유하지 않는초고강도 용접성 강
JP2003342687A (ja) * 2002-05-28 2003-12-03 Nippon Steel Corp 強度延性バランスの優れた鋼管とその製造方法
JP5068688B2 (ja) * 2008-04-24 2012-11-07 新日本製鐵株式会社 穴広げ性に優れた熱延鋼板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315214A (en) * 1976-07-29 1978-02-10 Nippon Kokan Kk <Nkk> Low carbon bainite steel of excellent hydrogen-induced crack resistance
JPH09184014A (ja) * 1995-12-28 1997-07-15 Nkk Corp 耐磨耗継目無鋼管およびその製造方法
CN101658879A (zh) * 2008-08-27 2010-03-03 宝山钢铁股份有限公司 一种无缝钢管制造方法
KR20170074285A (ko) * 2015-12-21 2017-06-30 주식회사 포스코 강도 및 인성이 우수한 파이프용 강재, 그 제조방법 및 이를 이용한 용접강관의 제조방법
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN109112427A (zh) * 2017-06-26 2019-01-01 宝山钢铁股份有限公司 一种高强高韧非调质地质钻探用钢管及其制造方法
JP6455650B1 (ja) * 2018-05-16 2019-01-23 新日鐵住金株式会社 トーションビーム用アズロール電縫鋼管

Also Published As

Publication number Publication date
CN114959439B (zh) 2023-05-09
CN114959439A (zh) 2022-08-30
US20240229979A9 (en) 2024-07-11
JP2024507906A (ja) 2024-02-21
EP4279625A1 (en) 2023-11-22
US20240133490A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
CN101768698B (zh) 一种低成本屈服强度700mpa级非调质处理高强钢板及其制造方法
CN101928876B (zh) 加工性优良的trip/twip高强塑性汽车钢及其制备方法
CN102747290B (zh) 一种经济型耐磨钢管及其制造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN104357756A (zh) 一种抗硫化氢应力腐蚀直缝焊接石油套管及其制造方法
CN108315656A (zh) 一种免热处理的8.8级紧固件用冷镦钢及其制造方法
AU2022392619A1 (en) High-strength steel with good weather resistance and manufacturing method therefor
CN107974622B (zh) 一种厚度≥26.4mm的直缝埋弧焊管用X80管线钢板及生产方法
CN107974621A (zh) 一种经济型直缝埋弧焊管用x80管线钢板及生产方法
CA3181338A1 (en) Economical low-yield ratio and high-strength steel and manufacturing method therefor
CN103966526A (zh) 大壁厚油气输送管件三通用钢板及其生产方法
WO2019179354A1 (zh) 一种耐低温高强高韧油套管及其制造方法
JP7458685B2 (ja) 高強度の抗崩壊オイルケーシングおよびその製造方法
WO2022179595A1 (zh) 一种高强韧贝氏体地质钻探管及其制造方法
CN115584431A (zh) 一种页岩气井用高性能抗挤毁套管及加工方法
AU2020455074A1 (en) 800 MPa construction machinery medium-manganese medium-thickness steel and manufacturing method therefor
CN110284077A (zh) 一种薄规格高韧性管线钢的制造方法
CN116103579B (zh) 一种混凝土泵车用耐磨erw焊接钢管及其制造方法
CN108754325A (zh) 560MPa级Cu时效热煨弯管用钢板及生产方法
CN108754322A (zh) 一种高强度电阻焊套管及其制造方法
CN114959512B (zh) 稠油热采井用高强焊接套管用钢及生产方法、稠油热采井用高强焊接套管热处理方法
CN108728732A (zh) K55级直缝电阻焊石油套管用钢及其制造方法
WO2023231981A1 (zh) 一种高强度石油套管及其制造方法
WO2022242742A1 (zh) 一种抗二氧化碳腐蚀的无缝钢管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022758959

Country of ref document: EP

Effective date: 20230817

WWE Wipo information: entry into national phase

Ref document number: 18547172

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023551208

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE