WO2015131436A1 - 一种规模化制备碳纳米管中空纤维膜的方法 - Google Patents

一种规模化制备碳纳米管中空纤维膜的方法 Download PDF

Info

Publication number
WO2015131436A1
WO2015131436A1 PCT/CN2014/076349 CN2014076349W WO2015131436A1 WO 2015131436 A1 WO2015131436 A1 WO 2015131436A1 CN 2014076349 W CN2014076349 W CN 2014076349W WO 2015131436 A1 WO2015131436 A1 WO 2015131436A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
hollow fiber
mixture
fiber membrane
polyvinyl butyral
Prior art date
Application number
PCT/CN2014/076349
Other languages
English (en)
French (fr)
Inventor
全燮
魏高亮
陈硕
于洪涛
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US15/120,637 priority Critical patent/US10179314B2/en
Publication of WO2015131436A1 publication Critical patent/WO2015131436A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures

Definitions

  • the invention relates to the field of membrane technology, in particular to a method for preparing a carbon nanotube hollow fiber membrane by scale.
  • Membrane separation technology has the functions of separation, concentration, purification and refining. It is also characterized by high efficiency, energy saving, environmental protection, molecular filtration and simple filtration process, and easy control. It has been widely used in food, medicine, biology and environmental protection. Chemical, metallurgical, energy, petroleum, water treatment and other fields have produced enormous economic and social benefits, and have become one of the most important means in today's separation science.
  • the hollow fiber membrane has many advantages over the flat membrane and the tubular membrane: (1) the membrane cost per unit membrane area is low; (2) The membrane module can be made into any size and shape; (3) The hollow fiber membrane has a high packing density in the membrane module. The membrane volume per unit volume is large and the flux is large. Due to the simple preparation and low cost of the polymer hollow fiber membrane, it currently occupies the vast majority of the hollow fiber membrane market. However, commercial polymer membranes face some technical disadvantages during use, such as contamination, poor chlorine resistance, low flux, poor temperature resistance, and single function.
  • the invention mainly aims at the shortcomings of the existing carbon nanotube hollow fiber membrane preparation technology, that is, the preparation process is high in cost, the steps are cumbersome and the efficiency is low, and a rapid, low-cost, large-scale preparation of the carbon nanotube hollow fiber membrane is proposed.
  • the preparation method proposed by the invention has simple process, no need of expensive materials and equipment, flexible and controllable method, and strong adaptability.
  • the basic idea of the present invention is to disperse acidified carbon nanotubes, polyvinyl butyral and polymer additives in an organic solvent, prepare a preliminary hollow fiber by a wet spinning technique, and calcine under an anaerobic condition. Independently self-supporting carbon nanotube hollow fiber membrane .
  • the method for preparing a carbon nanotube hollow fiber membrane by scale according to the present invention comprises the following steps:
  • Acidification of carbon nanotubes The carbon nanotubes are placed in a mixture of concentrated nitric acid and concentrated sulfuric acid, and the volume ratio of concentrated sulfuric acid to concentrated nitric acid in the mixed solution is not more than 5; and the temperature is kept at 40 to 80 o C for 0.5 ⁇ 6 hours. The mixture is then diluted to separate the carbon nanotubes.
  • the mass ratio of the casting solution to carbon nanotubes, polyvinyl butyral and organic solvent is 1: 0.2 ⁇ 1:4 ⁇ 8 ;
  • the casting solution described in the step (2) further comprises a polymer additive, and the mass ratio of the carbon nanotubes to the carbon nanotubes is not more than 0.2.
  • the polymer additive in the step (2) is a mixture of one or more of polyacrylonitrile, polyvinylidene fluoride and sulfonated polyphenylene ether.
  • the organic solvent in the step (2) is N,N-dimethylformamide, N,N-dimethylacetamide, N- A mixture of one or more of methylpyrrolidone.
  • the carbon nanotubes in the step (1) are a mixture of one or more of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the drying in the step (3) is dried at room temperature or freeze-dried.
  • the invention has the advantages that the preparation process of the invention is simple, no expensive material is needed, the method is flexible, and is suitable for all types of carbon nanotubes; the preparation efficiency is high; and the prepared hollow carbon fiber hollow fiber membrane has a large void ratio. High flux and electrical conductivity.
  • figure 1 It is a scanning electron microscope image of a hollow fiber membrane of carbon nanotubes prepared by using the technology of the present invention without adding a polymer additive and drying at room temperature.
  • figure 2 It is a scanning electron microscope image of a hollow fiber membrane of carbon nanotubes prepared by adding a polymer additive and drying at room temperature by using the technology of the present invention.
  • image 3 It is a scanning electron microscope image of a hollow fiber membrane of carbon nanotubes prepared by using the technique of the present invention without adding a polymer additive and freeze-drying.
  • Figure 4 is a partially enlarged SEM image of Figure 1.
  • Step 1 Weigh 10g of multi-walled carbon nanotubes with an outer diameter of 60-100nm into a mixture of concentrated nitric acid and concentrated sulfuric acid (volume ratio) 1:3), heat to 60 °C, keep warm for 4 hours. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified multi-walled carbon nanotubes and 2.5g of polyvinyl butyral in 50g of N,N-dimethylformamide
  • a casting solution is obtained.
  • the casting solution was passed through a spinneret at 15 mL/h, water at a rate of 7 mL/h, and wet-spun into water. Change water several times to remove N, N- After dimethylformamide, a hollow fiber of a mixture of carbon nanotubes and polyvinyl butyral is obtained;
  • the third step the hollow fiber of carbon nanotubes and polyvinyl butyral mixture is taken out from the water, dried at room temperature, placed in a tubular resistance furnace, and protected by argon gas. After calcination at 600 ° C for 1 hour, and then naturally cooled to room temperature, a hollow fiber membrane of carbon nanotubes was obtained.
  • the first step Weigh 10g of multi-walled carbon nanotubes with an outer diameter of 60-100nm and pour a mixture of concentrated nitric acid and concentrated sulfuric acid ( In a volume ratio of 1:2), heat to 40 °C and keep it for 6 hours. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified multi-walled carbon nanotubes, 1.5g of polyvinyl butyral and 1g of polyacrylonitrile in 80g In N,N-dimethylformamide, a casting solution was obtained. The casting solution was passed through a spinning head at a rate of 10 mL/h at 20 mL/h, and wet-spun into water. Change water several times to remove N, N- After dimethylformamide, an initial hollow fiber of a mixture of carbon nanotubes/polyvinyl butyral/polyacrylonitrile is obtained;
  • the third step the initial hollow fiber is taken out from the water, dried at room temperature, placed in a tubular resistance furnace, and vacuumed at 1000 ° C. After an hour, it was naturally cooled to room temperature to obtain a carbon nanotube hollow fiber membrane.
  • Step 1 Weigh 10g of multi-walled carbon nanotubes with an outer diameter of 60-100nm into a mixture of concentrated nitric acid and concentrated sulfuric acid (volume ratio) 1:3), heat to 60 °C, keep warm for 6 hours. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified multi-walled carbon nanotubes and 1g of polyvinyl butyral in 50g N, N- In dimethylformamide, a casting solution was obtained. The casting solution was passed through a spinning head at a rate of 10 ml/h at 15 ml/h, and wet-spun into water. Change water several times to remove N, N- After dimethylformamide, a hollow fiber of a mixture of carbon nanotubes and polyvinyl butyral is obtained;
  • the third step the hollow fiber of carbon nanotubes and polyvinyl butyral mixture is removed from the water, freeze-dried, and placed in a tubular resistance furnace, argon gas protection 800 After calcination at ° C for 1 hour, and then naturally cooled to room temperature, a hollow fiber membrane of carbon nanotubes was obtained.
  • the first step weigh 10g of single-walled carbon nanotubes into a mixture of concentrated nitric acid and concentrated sulfuric acid (volume ratio 1:3), heated to 40 °C , keep warm for 0.5 hours. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified single-walled carbon nanotubes, 2.5g of polyvinyl butyral and 1g of sulfonated polyphenylene ether in 80g In N,N-dimethylformamide, a casting solution was obtained. The casting solution was passed through a spinning head at a rate of 15 ml/h at 30 ml/h, and wet-spun into water. Change water several times to remove N, N- After dimethylformamide, an initial hollow fiber of a mixture of carbon nanotubes/polyvinyl butyral/sulfonated polyphenylene ether is obtained;
  • the third step the initial hollow fiber is taken out from the water, dried at room temperature, placed in a tubular resistance furnace, and argon gas is protected at 800 ° C, calcined 2 After an hour, it was naturally cooled to room temperature to obtain a carbon nanotube hollow fiber membrane.
  • Step 1 Weigh 10g of multi-walled carbon nanotubes with an outer diameter of 20-40nm into a mixture of concentrated nitric acid and concentrated sulfuric acid (volume ratio) 1:3), heat to 60 °C, keep warm for 1 hour. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified multi-walled carbon nanotubes, 2.5g of polyvinyl butyral and 1g of sulfonated polyphenylene ether in 70g In N,N-dimethylacetamide, a casting solution was obtained. The casting solution was passed through a spinning head at a rate of 10 mL/h at 20 mL/h, and wet-spun into water. Change water several times to remove N, N- After dimethylacetamide, a hollow fiber of a mixture of carbon nanotubes, polyvinyl butyral and sulfonated polyphenylene ether is obtained;
  • the hollow fiber of carbon nanotubes, polyvinyl butyral and sulfonated polyphenylene ether mixture is taken out from the water, dried at room temperature, placed in a tubular resistance furnace, and argon gas is protected at 700 ° C, calcined 2 After an hour, it was naturally cooled to room temperature to obtain a carbon nanotube hollow fiber membrane.
  • Step 1 Weigh 10g of multi-walled carbon nanotubes with an outer diameter of 40-60nm into a mixture of concentrated nitric acid and concentrated sulfuric acid (volume ratio) 1:3), heat to 60 °C, keep warm for 3 hours. Then diluting the concentrated acid solution, and separating the carbon nanotubes by vacuum filtration;
  • Step 2 Disperse 5g of acidified multi-walled carbon nanotubes and 2.5g of polyvinyl butyral in 50g N -
  • a casting solution was obtained.
  • the casting solution was passed through a spinneret at 4 mL/h, water at a rate of 4 mL/h, and wet-spun into water. Change water several times to remove N - After the pirone, a hollow fiber of a mixture of carbon nanotubes and polyvinyl butyral is obtained;
  • the third step the hollow fiber of carbon nanotubes and polyvinyl butyral mixture is taken out from the water, dried at room temperature, placed in a tubular resistance furnace, and protected by argon gas. After calcination at 600 ° C for 2 hours, and then naturally cooled to room temperature, a hollow fiber membrane of carbon nanotubes was obtained.

Abstract

本发明公开了一种规模化制备碳纳米管中空纤维膜的方法,属于膜技术领域。将碳纳米管放在的浓硝酸和浓硫酸的混合液中,在40~80℃下保温0.5~6小时,取出碳纳米管;将酸化后的碳纳米管、聚乙烯醇缩丁醛分散在有机溶剂中制成铸膜液;铸膜液作为壳液、水作为芯液,同时通过纺丝机的纺丝头,以壳液流速:芯液流速=0.5~5:1 纺进水凝固浴中;碳纳米管、聚乙烯醇缩丁醛和有机溶剂的质量比为 1:0.2~1:4~8 ;无氧条件下600~1200 ℃煅烧1~4h,得到碳纳米管中空纤维膜。本发明制备工艺简单,无需昂贵的设备和药品,成本低;无需模板,效率高,并可规模化生产;制备出的中空纤维膜空隙率大,通量高,耐酸碱,能导电。

Description

一种规模化制备碳纳米管中空纤维膜的方法
技术领域
本发明涉及膜技术领域,特别涉及一种规模化制备碳纳米管中空纤维膜的方法。
背景技术
膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。
作为三种膜结构形式中的一种,中空纤维膜较平板膜和管式膜具有诸多优点: (1) 单位膜面积的膜成本低; (2) 膜组件可做成任意大小和形状; (3) 中空纤维膜在膜组件内的装填密度大 , 单位体积的膜面积大、通量大。由于高分子中空纤维膜制备简单,成本较低,目前占据中空纤维膜市场的绝大部分份额。但是,商业化的高分子膜在使用过程中面临着一些技术缺点,例如易污染,抗氯性差,通量低,耐温性差,功能单一。研究发现,利用碳纳米管组装成的中空纤维膜很好地解决了这些问题,主要表现在:孔隙率高,通量高;膜孔类型独特,不易堵塞;吸附容量高,可以去除水中不能被截留的小分子;吸附饱和后,具有独特的原位电化学再生能力。目前只有一种制备碳纳米管中空纤维膜的方法 [ 报道在专利 201310272800.4( 申请号 ) 中 ] 。而在这种基于电泳沉积的制备方法中,需要利用金属丝作为模版,后期再把其刻蚀掉,这就大大增加了制备成本。其次,碳纳米管是一层一层沉积到金属模板上的,且每次只能制备一根,过程较为繁琐,制备效率很低。
发明内容
本发明主要是针对现有碳纳米管中空纤维膜制备技术存在的缺点,即制备过程成本高,步骤较为繁琐,效率低,而提出一种快速,低成本,规模化制备碳纳米管中空纤维膜的方法。本发明所提出的制备方法,工艺简单,无需昂贵的材料和设备,方法灵活可控,适应性强。
本发明的基本构思是将酸化的碳纳米管,聚乙烯醇缩丁醛和高分子添加剂分散在有机溶剂中,通过湿法纺丝技术制备出初成中空纤维,无氧条件下煅烧,即可得到独立自支撑的碳纳米管中空纤维膜 。
本发明所提出的一种规模化制备碳纳米管中空纤维膜的方法,包括如下步骤:
( 1 )碳纳米管的酸化: 将碳纳米管放在浓硝酸和浓硫酸的混合液中,混合液中浓硫酸和浓硝酸的体积比不大于 5 ; 在 40~80 oC 下保温 0.5~6 小时。然后将混合液稀释,将碳纳米管分离出来。
( 2 )湿法纺丝:将酸化后的碳纳米管、聚乙烯醇缩丁醛分散在有机溶剂中制成铸膜液;将铸膜液作为壳液、水作为芯液,同时通过纺丝机的纺丝头,以壳液流速 : 芯液流速 =0.5~5:1 的速度纺 进水凝固浴中,得到碳纳米管和聚乙烯醇缩丁醛混合物的初成中空纤维;
其中,所述铸膜液为碳纳米管、聚乙烯醇缩丁醛和有机溶剂三者之间的质量比为 1: 0.2~1:4~8 ;
( 3 )无氧煅烧:把碳纳米管和聚乙烯醇缩丁醛混合物的初成中空纤维取出,干燥后,无氧条件下 600~1200 ℃ 煅烧 1~4 小时,冷却得到碳纳米管中空纤维膜。
其中, 步骤( 2 )中所述的铸膜液还包括 高分子添加剂,其与 碳纳米管的质量比不大于 0.2 。
步骤( 2 )中所述高分子添加剂为聚丙烯腈、聚偏氟乙烯、磺化聚苯醚的一种或几种的混合。
步骤( 2 )中所述有机溶剂为 N,N- 二甲基甲酰胺、 N,N- 二甲基乙酰胺、 N- 甲基吡咯烷酮的一种或几种的混合物。
步骤( 1 )中所述碳纳米管为单壁碳纳米管,双壁碳纳米管或多壁碳纳米管的一种或几种的混合。
步骤( 3 )中所述干燥为室温干燥或冷冻干燥。
本发明的有益效果是:本发明的制备工艺简单,无需昂贵的材料;方法灵活,对所有类型的碳纳米管都适合;制备效率高;所制备出的碳纳米管中空纤维膜空隙率大,通量高,能导电。
附图说明
图 1 是利用本发明涉及到的技术在不加高分子添加剂,室温干燥情况下所制备出的碳纳米管中空纤维膜的扫描电镜图片。
图 2 是利用本发明涉及到的技术在加入高分子添加剂,室温干燥情况下所制备出的碳纳米管中空纤维膜的扫描电镜图片。
图 3 是利用本发明涉及到的技术在不加高分子添加剂,冷冻干燥情况下所制备出的碳纳米管中空纤维膜的扫描电镜图片。
图 4 是图 1 中局部放大的扫描电镜图片。
具体实施方式
下面通过发明的技术方案和具体实施方式进一步说明碳纳米管中空纤维膜的制备细节,但本发明不仅仅局限于以下实施例。
实施例 1
第一步:称取 10g 外直径为 60-100nm 的多壁碳纳米管放入浓硝酸和浓硫酸的混合液里 ( 体积比 1:3) ,加热到 60 ℃ ,保温 4 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的多壁碳纳米管和 2.5g 聚乙烯醇缩丁醛分散在 50g N,N- 二甲基甲酰胺 中,得到铸膜液。把铸膜液以 15mL/h ,水以 7mL/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N,N- 二甲基甲酰胺后,得到碳纳米管和聚乙烯醇缩丁醛混合物的中空纤维;
第三步 :将碳纳米管和聚乙烯醇缩丁醛混合物中空纤维从水里捞出,室温干燥后,放入管式电阻炉中,氩气保护 600 ℃ 下,煅烧 1 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的多壁碳纳米管 中空纤维膜表面无开裂, 外径为 500μm ,内径为 340 μm ,如图 1 。
实施例 2
第一步: : 称取 10g 外直径为 60-100nm 的多壁碳纳米管倒入浓硝酸和浓硫酸的混合液 ( 体积比 1:2) 里,加热到 40 ℃ ,保温 6 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的多壁碳纳米管、 1.5g 聚乙烯醇缩丁醛和 1g 聚丙烯腈分散在 80g N,N- 二甲基甲酰胺中,得到铸膜液。把铸膜液以 20mL/h ,水以 10mL/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N,N- 二甲基甲酰胺后,得到碳纳米管 / 聚乙烯醇缩丁醛 / 聚丙烯腈混合物的初成中空纤维;
第三步 :将此初成中空纤维从水里捞出,室温干燥后,放入管式电阻炉中,真空 1000 ℃ 下,煅烧 1 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的多壁碳纳米管中空纤维膜表面无开裂,膜断面呈现大孔结构, 外径为 800μm ,内径 560μm ,如图 2 。
实施例 3
第一步:称取 10g 外直径为 60-100nm 的多壁碳纳米管放入浓硝酸和浓硫酸的混合液里 ( 体积比 1:3) ,加热到 60 ℃ ,保温 6 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的多壁碳纳米管和 1g 聚乙烯醇缩丁醛分散在 50g N,N- 二甲基甲酰胺中,得到铸膜液。把铸膜液以 15ml/h ,水以 10ml/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N,N- 二甲基甲酰胺后,得到碳纳米管和聚乙烯醇缩丁醛混合物的中空纤维;
第三步:将碳纳米管和聚乙烯醇缩丁醛混合物中空纤维从水里捞出,冷冻干燥后,放入管式电阻炉中,氩气保护 800 ℃ 下,煅烧 1 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的多壁碳纳米管中空纤维膜表面无开裂,膜断面呈现非对称结构, 外径为 700μm ,内径 500μm ,如图 3 。
实施例 4
第一步:称取 10g 单壁碳纳米管放入浓硝酸和浓硫酸的混合液里 ( 体积比 1:3) ,加热到 40 ℃ ,保温 0.5 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的单壁碳纳米管、 2.5g 聚乙烯醇缩丁醛和 1g 磺化聚苯醚分散在 80g N,N- 二甲基甲酰胺中,得到铸膜液。把铸膜液以 30ml/h ,水以 15ml/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N,N- 二甲基甲酰胺后,得到碳纳米管 / 聚乙烯醇缩丁醛 / 磺化聚苯醚混合物的初成中空纤维;
第三步 :将此初成中空纤维从水里捞出,室温干燥后,放入管式电阻炉中,氩气保护 800 ℃ 下,煅烧 2 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的单壁碳纳米管 中空纤维膜表面无开裂, 外径为 750μm ,内径为 580 μm 。
实施例 5
第一步:称取 10g 外直径为 20-40nm 的多壁碳纳米管放入浓硝酸和浓硫酸的混合液里 ( 体积比 1:3) ,加热到 60 ℃ ,保温 1 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的多壁碳纳米管、 2.5g 聚乙烯醇缩丁醛和 1g 磺化聚苯醚分散在 70g N,N- 二甲基乙酰胺中,得到铸膜液。把铸膜液以 20mL/h ,水以 10mL/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N,N- 二甲基乙酰胺后,得到碳纳米管、聚乙烯醇缩丁醛和磺化聚苯醚混合物的中空纤维;
第三步 :将碳纳米管、聚乙烯醇缩丁醛和磺化聚苯醚混合物中空纤维从水里捞出,室温干燥后,放入管式电阻炉中,氩气保护 700 ℃ 下,煅烧 2 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的多壁碳纳米管 中空纤维膜表面无开裂, 外径为 800μm ,内径为 600 μm 。
实施例 6
第一步:称取 10g 外直径为 40-60nm 的多壁碳纳米管放入浓硝酸和浓硫酸的混合液里 ( 体积比 1:3) ,加热到 60 ℃ ,保温 3 小时。然后将浓酸溶液稀释,碳纳米管通过真空抽滤分离出来;
第二步:将 5g 酸化后的多壁碳纳米管和 2.5g 聚乙烯醇缩丁醛分散在 50g N - 吡络烷酮中,得到铸膜液。把铸膜液以 4mL/h ,水以 4mL/h 的速度通过纺丝头,湿纺到水中。多次换水去除 N - 吡络烷酮后,得到碳纳米管和聚乙烯醇缩丁醛混合物的中空纤维;
第三步 :将碳纳米管和聚乙烯醇缩丁醛混合物中空纤维从水里捞出,室温干燥后,放入管式电阻炉中,氩气保护 600 ℃ 下,煅烧 2 小时,之后自然冷却至室温,即得到碳纳米管中空纤维膜。
扫描电镜照片表明:制备的多壁碳纳米管 中空纤维膜表面无开裂, 外径为 550μm ,内径为 380 μm 。

Claims (1)

1、一种规模化制备碳纳米管中空纤维膜的方法,其特征在于,包括如下步骤:
( 1 )碳纳米管的酸化:将碳纳米管放在浓硝酸和浓硫酸的混合液中,混合液中浓硫酸和浓硝酸的体积比不大于 5 ;在 40~80 ℃ 下保温 0.5~6 小时,将碳纳米管分离出来;
( 2 )湿法纺丝:将酸化后的碳纳米管、聚乙烯醇缩丁醛分散在有机溶剂中制成铸膜液;将铸膜液作为壳液、水作为芯液,同时通过纺丝机的纺丝头,以壳液流速 : 芯液流速 =0.5~5:1 的速度纺进水凝固浴中,得到碳纳米管和聚乙烯醇缩丁醛混合物初成中空纤维;
其中,所述铸膜液为碳纳米管、聚乙烯醇缩丁醛和有机溶剂三者之间的质量比为 1: 0.2~1:4~8 ;
( 3 )无氧煅烧:把碳纳米管和聚乙烯醇缩丁醛混合物初成中空纤维取出,干燥后,无氧条件下 600~1200 ℃ 煅烧 1~4 小时,冷却得到碳纳米管中空纤维膜。
2 、根据权利要求 1 所述的方法,其特征在于,步骤( 2 )中所述的铸膜液还包括高分子添加剂,其与碳纳米管的质量比不大于 0.2 。
3 、根据权利要求 2 所述的方法,其特征在于,所述的高分子添加剂为聚丙烯腈、聚偏氟乙烯、磺化聚苯醚的一种或几种的混合。
4 、根据权利要求 1 或 2 或 3 所述的方法,其特征在于,步骤( 2 )中所述的有机溶剂为 N,N- 二甲基甲酰胺、 N,N- 二甲基乙酰胺、 N- 甲基吡咯烷酮的一种或几种的混合物。
5 、根据权利要求 1 或 2 或 3 所述的方法,其特征在于,步骤( 1 )中所述的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管的一种或几种的混合。
6 、根据权利要求 4 所述的方法,其特征在于,步骤( 1 )中所述的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管的一种或几种的混合。
PCT/CN2014/076349 2014-03-05 2014-04-28 一种规模化制备碳纳米管中空纤维膜的方法 WO2015131436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/120,637 US10179314B2 (en) 2014-03-05 2014-04-28 Method for the high-throughput preparation of carbon nanotube hollow fiber membranes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410079152.5 2014-03-05
CN201410079152.5A CN104028112B (zh) 2014-03-05 2014-03-05 一种规模化制备碳纳米管中空纤维膜的方法

Publications (1)

Publication Number Publication Date
WO2015131436A1 true WO2015131436A1 (zh) 2015-09-11

Family

ID=51459242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076349 WO2015131436A1 (zh) 2014-03-05 2014-04-28 一种规模化制备碳纳米管中空纤维膜的方法

Country Status (3)

Country Link
US (1) US10179314B2 (zh)
CN (1) CN104028112B (zh)
WO (1) WO2015131436A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587841B (zh) * 2015-01-27 2017-02-22 昆明纳太科技有限公司 导电滤膜及其制备方法和应用
CN104787748B (zh) * 2015-04-28 2016-11-02 南京工业大学 一种垂直生长的开口碳纳米管薄膜的制备方法
KR101999707B1 (ko) * 2015-09-25 2019-07-12 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
CN105688683A (zh) * 2016-02-23 2016-06-22 大连海洋大学 高机械强度的碳纳米管复合中空纤维膜及其制备方法
CN105561806A (zh) * 2016-02-23 2016-05-11 大连海洋大学 规模化制备g-C3N4中空纤维膜的方法
JP2017160562A (ja) * 2016-03-10 2017-09-14 ナノサミット株式会社 導電性繊維及びその製造方法
CN108996488A (zh) * 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备方法
CN108708076A (zh) * 2018-04-09 2018-10-26 南京捷纳思新材料有限公司 湿纺制备核壳结构聚氨酯-碳纳米管导电无纺布的方法
WO2020014942A1 (zh) * 2018-07-20 2020-01-23 大连理工大学 一种柔韧的碳纳米管功能化的导电中空纤维膜及其制备方法
CN110124531B (zh) * 2019-05-21 2020-12-11 大连理工大学 一种电化学强化下产生羟基自由基的多孔碳-碳纳米管中空纤维膜的制备方法
CN110327789B (zh) * 2019-07-05 2022-02-15 大连理工大学 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN111298664B (zh) * 2020-03-16 2020-10-27 中国人民解放***箭军工程设计研究院 一种中空纤维气体分离复合膜及其制备方法
CN111298666B (zh) * 2020-03-16 2020-11-10 中国人民解放***箭军工程设计研究院 一种含有取向性碳纳米管的中空纤维正渗透复合膜及其制备方法
CN113058443A (zh) * 2021-04-25 2021-07-02 哈尔滨工业大学 一种中空纤维无机膜的制备方法
CN113600034A (zh) * 2021-08-30 2021-11-05 大连海事大学 一种亚氧化钛中空纤维膜的制备方法
CN115105957B (zh) * 2022-07-26 2023-05-12 浙江易膜新材料科技有限公司 一种pan/pvdf/pvb三元合金中空纤维超滤膜及其制备方法
CN115920666A (zh) * 2022-11-16 2023-04-07 大连理工大学 一种柔韧的碳纳米管导电中空纤维膜及其规模化制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290020A1 (en) * 2006-08-31 2008-11-27 Eva Marand Method for making oriented single-walled carbon nanotube/;polymer nano-composite membranes
US20130098833A1 (en) * 2010-04-22 2013-04-25 Nanyang Technological University Method of preparing a nanocomposite membrane and nanocomposite membranes prepared thereof
CN103140278A (zh) * 2010-09-30 2013-06-05 海绵股份有限公司 用于正向渗透的薄膜复合膜及其制备方法
CN103316594A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜的制备方法
CN103316597A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜
CN103464004A (zh) * 2013-06-21 2013-12-25 浙江海洋学院 高强度纳米改性超滤膜及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098877A1 (en) * 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
US7611628B1 (en) * 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
TWI434904B (zh) * 2006-10-25 2014-04-21 Kuraray Co 透明導電膜、透明電極基板及使用它之液晶配向膜之製法、以及碳奈米管及其製法
CN102078772A (zh) * 2009-11-26 2011-06-01 复旦大学 一种碳纳米管-聚合物杂化膜及其制备方法
WO2012040089A1 (en) * 2010-09-20 2012-03-29 Siemens Industry, Inc. Polymeric membrane for heat exchange applications and method of fabrication thereof
EP2604331B1 (en) * 2011-12-15 2017-01-25 Gambro Lundia AB Doped membranes
CN102553462B (zh) * 2012-01-11 2014-04-16 上海理工大学 一种碳纳米管/聚苯胺/聚砜复合超滤膜及其制备方法
CN102614784A (zh) * 2012-04-05 2012-08-01 天津工业大学 聚偏氟乙烯-碳纳米管复合分离膜及其制备方法
EP2827412A1 (en) * 2013-07-16 2015-01-21 DWI an der RWTH Aachen e.V. Microtubes made of carbon nanotubes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290020A1 (en) * 2006-08-31 2008-11-27 Eva Marand Method for making oriented single-walled carbon nanotube/;polymer nano-composite membranes
US20130098833A1 (en) * 2010-04-22 2013-04-25 Nanyang Technological University Method of preparing a nanocomposite membrane and nanocomposite membranes prepared thereof
CN103140278A (zh) * 2010-09-30 2013-06-05 海绵股份有限公司 用于正向渗透的薄膜复合膜及其制备方法
CN103464004A (zh) * 2013-06-21 2013-12-25 浙江海洋学院 高强度纳米改性超滤膜及其制备方法
CN103316594A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜的制备方法
CN103316597A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜

Also Published As

Publication number Publication date
CN104028112A (zh) 2014-09-10
CN104028112B (zh) 2016-01-13
US10179314B2 (en) 2019-01-15
US20170014777A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2015131436A1 (zh) 一种规模化制备碳纳米管中空纤维膜的方法
WO2014175517A1 (ko) 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법
CN103882559B (zh) 高比表面多孔碳纤维及其制备方法与应用
CN109956466B (zh) 一种兼具面内方向和厚度方向高热导率的石墨烯基复合膜及其制备方法
WO2018205290A1 (zh) 一种基于 MXene 的复合纳滤膜及其制备方法
WO2011149165A1 (ko) 두께관통형 미세기공을 가지는 고분자 또는 고분자복합재료 멤브레인 및 그 제조방법
WO2012010069A1 (zh) 一种在大孔载体上NaA沸石分子筛膜的合成方法
JP5829787B2 (ja) 分離膜の製造方法
CN107051382B (zh) 一种二氧化碳吸附用多孔碳纳米纤维材料及其制备方法
CN108455582A (zh) 一种低成本三维多孔石墨烯材料的制备方法
WO2013143345A1 (zh) 一种同质增强型聚偏氟乙烯中空纤维膜的制备方法
CN107304490B (zh) 一种石墨烯/聚酰亚胺复合碳纤维的制备方法
WO2019024544A1 (zh) 一种自支撑高透湿绝热气凝胶薄膜及其制备方法
CN103316594B (zh) 一种碳纳米管中空纤维膜的制备方法
CN103966701A (zh) 一种多孔碳化硅纳米纤维的制备方法
Zhou et al. Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers
CN108176256B (zh) 一种耐高温复合纳米纤维过滤膜制备方法
CN103626166A (zh) 石墨烯的制备方法
CN113308753A (zh) 一种高温可吸附的多孔聚酰亚胺纳米纤维及其制备方法和应用
CN109173731A (zh) 一种冷冻干燥技术制备金属有机骨架@氧化石墨烯杂化膜的方法
CN110938897A (zh) 一种快速制备纤维状多孔材料的技术
CN109763211B (zh) 一种CdS/SiC全中空介孔纳米纤维的制备方法
CN109206147A (zh) 一种结构炭膜及其制备方法
CN107469640A (zh) 一种高气体渗透性炭膜的制备方法
CN114682101B (zh) 一种碳中空纤维膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884649

Country of ref document: EP

Kind code of ref document: A1