WO2015108398A1 - 지속형 인슐린 및 그 용도 - Google Patents

지속형 인슐린 및 그 용도 Download PDF

Info

Publication number
WO2015108398A1
WO2015108398A1 PCT/KR2015/000576 KR2015000576W WO2015108398A1 WO 2015108398 A1 WO2015108398 A1 WO 2015108398A1 KR 2015000576 W KR2015000576 W KR 2015000576W WO 2015108398 A1 WO2015108398 A1 WO 2015108398A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
glycine
amino acids
amino acid
chain
Prior art date
Application number
PCT/KR2015/000576
Other languages
English (en)
French (fr)
Inventor
정성엽
황상연
오의림
박성희
김현욱
임창기
권세창
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/113,027 priority Critical patent/US10253082B2/en
Priority to CR20160376A priority patent/CR20160376A/es
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to CA2937168A priority patent/CA2937168A1/en
Priority to MA43289A priority patent/MA43289B1/fr
Priority to MA46146A priority patent/MA46146A1/fr
Priority to BR112016016578A priority patent/BR112016016578A2/pt
Priority to EA201691374A priority patent/EA201691374A1/ru
Priority to AU2015206890A priority patent/AU2015206890B2/en
Priority to MA39301A priority patent/MA39301A1/fr
Priority to EP15737856.3A priority patent/EP3098235A4/en
Priority to CN202311024383.1A priority patent/CN116987172A/zh
Priority to MYPI2016702501A priority patent/MY186251A/en
Priority to MX2016009434A priority patent/MX369656B/es
Priority to CN201580004573.4A priority patent/CN105916877A/zh
Priority to SG11201605680PA priority patent/SG11201605680PA/en
Priority to JP2016564933A priority patent/JP2017505141A/ja
Publication of WO2015108398A1 publication Critical patent/WO2015108398A1/ko
Priority to IL246782A priority patent/IL246782B/en
Priority to PH12016501414A priority patent/PH12016501414B1/en
Priority to ZA2016/05626A priority patent/ZA201605626B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin

Definitions

  • the present invention relates to an insulin analogue with reduced insulin receptor binding capacity and a sustained insulin using the same for the purpose of increasing the blood half-life of insulin.
  • Insulin is a glycemic control hormone secreted by the human pancreas, which transfers excess glucose in the blood to cells to supply energy to cells and maintain blood sugar at normal levels.
  • insulin does not show its normal function, which means that glucose in the blood cannot be used as an energy source and high blood glucose levels result in high blood glucose. Will be discharged. This is associated with several complications.
  • Insulin therapy is essential for diabetics with abnormal insulin production (Type I) or insulin resistance (Type II), and insulin administration can control blood glucose to normal levels.
  • insulin like other protein and peptide hormones, has a disadvantage in that the half-life of the body is extremely short and should be continuously repeated.
  • et al. described the process of removing insulin from the body. It is known that more than 50% of insulin is removed from the kidney, and the remaining insulin is removed through receptor mediated clearance (RMC) at target sites such as muscle, fat, and liver.
  • RMC receptor mediated clearance
  • the present inventors have made an effort to increase the blood half-life of insulin, and as a result, have developed an insulin analog with reduced binding to the insulin receptor, and for increasing the half-life and increasing the bioavailability or sustaining activity of the insulin, including the same. It has been found that the formulation can increase the blood half-life of insulin, completing the present invention.
  • One object of the present invention is to provide a novel insulin analogue and a sustained formulation thereof with reduced binding to the insulin receptor, with the aim of extending the half-life of insulin in the body.
  • one object of the present invention is to provide an insulin analogue with reduced insulin receptor binding as compared to native insulin.
  • Another object of the present invention is to provide a polynucleotide encoding the insulin analogue, an expression vector comprising the polynucleotide, and a transformant comprising the expression vector.
  • Another object of the present invention is (a) (i) insulin analogues and (ii) polyethylene glycols, fatty acids, cholesterol, albumin and fragments thereof, albumin binding agents, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, Preparing a biocompatible material selected from the group consisting of FcRn binding materials, in vivo connective tissues or derivatives thereof, nucleotides, fibronectin, transferrin, saccharides and polymers; And (b) connecting the insulin analogue and the biocompatible material.
  • Another object of the present invention is to provide a binder having the formula
  • X is an insulin analogue with reduced insulin receptor binding as compared to native insulin
  • L is a linker
  • a is 0 or a natural number, provided that when L is 2 or more, each L is independent of each other,
  • F is a substance that can increase the in vivo half-life of the insulin analogue.
  • Another object of the present invention is to provide a long-acting formulation for treating diabetes, comprising the conjugate.
  • Another object of the present invention is to provide a method for treating insulin-related diseases, comprising administering the insulin analogue or insulin analogue conjugate to an individual in need thereof.
  • One aspect for implementing the present invention is to provide an insulin analogue with reduced insulin receptor binding as compared to native insulin.
  • the insulin analogue is characterized in that the half-life is increased by more than 10% compared to natural insulin.
  • the insulin analogue is characterized in that one or more amino acids of native insulin are mutated or deleted.
  • the insulin analogue is amino acid 1, 2, 3, 5, 8, 10, 12, 16, 23, 24. Amino acid 25, amino acid 26, amino acid 27, amino acid 28, amino acid 29, amino acid 30, amino acid A, amino acid 1, amino acid 2, amino acid 5, amino acid 8, amino acid 10, One or more amino acids selected from the group consisting of amino acids 12, 14, 16, 17, 18, 19 and 21 are substituted or deleted with other amino acids.
  • the insulin analogue is selected from the group consisting of amino acid No. 8, amino acid No. 23, amino acid No. 24, amino acid No. 25, amino acid No. 1, amino acid No. 2, amino acid No. 14 and 19 No. It is characterized in that one or more selected amino acids are substituted with other amino acids.
  • the substituted amino acid of the insulin analogue is alanine, glutamic acid, asparagine, isoleucine, valine, glutamine, glycine, lysine, histidine, cysteine, phenylalanine, tryptophan, proline, serine, threonine and aspartic acid It is characterized by being selected.
  • the insulin analogue is characterized in that one or more amino acids of the insulin A chain or B chain are deleted to decrease insulin receptor binding ability.
  • the insulin analogue is characterized by comprising the A chain of SEQ ID NO: 37 represented by Formula 1 and the B chain of SEQ ID NO: 38 represented by Formula 2 below:
  • Xaa1 is glycine or alanine
  • Xaa2 is isoleucine or alanine
  • Xaa3 is tyrosine, glutamic acid or asparagine,
  • Xaa4 is tyrosine or alanine.
  • Xaa5 is glycine or alanine
  • Xaa6 is glycine or alanine
  • Xaa7 is phenylalanine or alanine
  • Xaa8 is phenylalanine or alanine.
  • the insulin analogue is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Xaa1 is alanine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is alanine
  • Xaa3 is tyrosine
  • Xaa4 is a tyrosine A chain
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is glutamic acid or asparagine
  • Xaa4 is tyrosine A chain
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain which is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is alanine
  • Xaa4 is glycine
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine A chain
  • Xaa5 is alanine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • Xaa5 is glycine in Formula 2
  • Xaa6 is alanine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine, Xaa6 is glycine, Xaa7 is alanine, Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine, Xaa6 is glycine, Xaa7 is phenylalanine, Xaa8 is characterized by comprising a B chain which is alanine.
  • Another aspect of the invention is a polynucleotide encoding the insulin analogue, an expression vector comprising the polynucleotide and a transformant comprising the expression vector.
  • Another aspect of the invention is a sustained insulin, characterized by incorporating a biocompatible material capable of extending the half-life to the insulin analogue.
  • the biocompatible material is polyethylene glycol, fatty acid, cholesterol, albumin and fragments thereof, albumin binding material, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, FcRn binding materials, in vivo connective tissue or Its derivative, nucleotide, fibronectin, transferrin (Transferrin), saccharides (saccharides), and is selected from the group consisting of polymers.
  • the insulin analogue and the biocompatible material are connected to each other by peptide bonds.
  • the insulin analogue and the biocompatible material are connected to each other through a linker selected from the group consisting of polyethylene glycol, fatty acids, saccharides, polymer polymers, low molecular weight compounds, nucleotides, and combinations thereof. .
  • the insulin analogue and the biocompatible material are connected through a linker interposed therebetween, wherein the biocompatible material is an FcRn binding material,
  • the linker may be a peptide linker or polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinylethyl ether, biodegradable polymer, lipid polymer, chitin , Hyaluronic acid and a combination thereof is characterized in that the connection through a non-peptidyl linker selected from the group consisting of.
  • the FcRn binding agent is a polypeptide comprising an immunoglobulin Fc region.
  • each end of the non-peptidyl linker is characterized in that it is bound to the amine group or thiol group of the biocompatible material and insulin analog, respectively.
  • Another aspect of the present invention provides a combination of (a) (i) insulin analogues and (ii) polyethylene glycols, fatty acids, cholesterol, albumin and fragments thereof, albumin binding agents, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, Preparing a biocompatible material selected from the group consisting of FcRn binding materials, in vivo connective tissues or derivatives thereof, nucleotides, fibronectin, transferrin, saccharides and polymers; And (b) linking the insulin analogue and the biocompatible material.
  • X is an insulin analogue with reduced insulin receptor binding as compared to native insulin
  • L is a linker
  • a is 0 or a natural number, provided that when L is 2 or more, each L is independent of each other,
  • F is a substance that can increase the in vivo half-life of the insulin analogue.
  • X is characterized by an insulin analogue in which one or more amino acids of the B or A chains of insulin are mutated or deleted with reduced insulin receptor binding as compared to native insulin.
  • the insulin analogue is amino acid 1, 2, 3, 5, 8, 10, 12, 16, 23, 24. Amino acid 25, amino acid 26, amino acid 27, amino acid 28, amino acid 29, amino acid 30, amino acid A, amino acid 1, amino acid 2, amino acid 5, amino acid 8, amino acid 10, One or more amino acids selected from the group consisting of amino acids 12, 14, 16, 17, 18, 19 and 21 are substituted or deleted with other amino acids.
  • the insulin analogue is selected from the group consisting of amino acid No. 8, amino acid No. 23, amino acid No. 24, amino acid No. 25, amino acid No. 1, amino acid No. 2, amino acid No. 14 and 19 No. It is characterized in that one or more selected amino acids are substituted with other amino acids.
  • the substituted amino acid is selected from the group consisting of alanine, glutamic acid, asparagine, isoleucine, valine, glutamine, glycine, lysine, histidine, cysteine, phenylalanine, tryptophan, proline, serine, threonine and aspartic acid It features.
  • the substance that can increase the in vivo half-life of the insulin analogue is polyethylene glycol, fatty acid, cholesterol, albumin and fragments thereof, albumin binding agents, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, FcRn It is characterized in that the binder, in vivo connective tissue, nucleotides, fibronectin, transferrin, saccharides and polymers selected from the group consisting of polymers.
  • L is selected from the group consisting of peptides, polyethylene glycols, fatty acids, saccharides, polymers, low molecular weight compounds, nucleotides, and combinations thereof.
  • X and F are each bonded to each other by L by a covalent chemical bond, a non-covalent chemical bond, or a combination thereof.
  • the polymer is polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinylethyl ether, biodegradable polymer, lipid polymer, It is characterized in that it is a non-peptidyl linker selected from the group consisting of chitin, hyaluronic acid, oligonucleotides and combinations thereof.
  • the F is an IgG Fc region.
  • Another aspect of the invention is an insulin sustained preparation with increased in vivo sustainability and stability, comprising said conjugate.
  • Another aspect of the invention is a long-acting formulation for treating diabetes, comprising the conjugate.
  • Another aspect of the invention is a method of treating insulin related diseases comprising administering the insulin analogue or insulin analogue conjugate to an individual in need thereof.
  • the sustained insulin of the present invention has a markedly increased blood half-life compared to natural insulin, it can be used to increase the convenience of patients requiring insulin administration.
  • FIG. 1 is a diagram showing the results of analyzing the purity of the insulin analogue protein electrophoresis. This is the result of analog No. 7, which is a representative insulin analog. Lane 1: size marker, Lane 2: Natural Insulin, Lane 3: Insulin Analog (No. 7)
  • FIG. 3 is a result of peptide mapping analysis of the insulin analogue. Insulin analogues were analyzed for analog 7, analogue. (A) natural insulin, (B) insulin analogue (No. 7)
  • Figure 4 is the result of analyzing the purity of the insulin analogue-immunoglobulin Fc conjugate by protein electrophoresis. This is the result of analog No. 7, which is a representative insulin analog. Lane 1: size marker, lane 2: insulin analogue (No. 7) -immunoglobulin Fc conjugate
  • FIG. 5 shows the results of high pressure chromatography analysis of the insulin analogue-immunoglobulin Fc conjugate. This is the result of analog No. 7, which is a representative insulin analog.
  • A RP-HPLC
  • B SE-HPLC
  • C IE-HPLC
  • Figure 6 shows the results of pharmacokinetic analysis of normal type insulin-immunoglobulin Fc conjugate and insulin analogue-immunoglobulin Fc conjugate in normal rats.
  • A native insulin-immunoglobulin Fc conjugate and insulin analogue (No. 7) -immunoglobulin Fc conjugate
  • B native insulin-immunoglobulin Fc conjugate and insulin analogue
  • C Native insulin-immunoglobulin Fc conjugate and insulin analogue (No. 9) -immunoglobulin Fc conjugate
  • native insulin-immunoglobulin Fc conjugate (21.7 nmol / kg)
  • native insulin-immunoglobulin Fc conjugate (65.1 nmol / kg)
  • insulin analogue-immunoglobulin Fc conjugate (21.7 nmol / kg)
  • insulin analogue-immunoglobulin Fc conjugate (65.1 nmol / kg).
  • an insulin analogue with reduced insulin receptor binding as compared to native insulin.
  • insulin analog refers to a substance having the same blood glucose control function as insulin.
  • the insulin analogue is preferably a substance with reduced insulin receptor binding force as compared to natural insulin.
  • the insulin analogue may be an increase in half-life of more than 10% of natural insulin due to a decrease in binding force to the insulin receptor, but is not limited thereto.
  • the insulin analogue may be an insulin analogue in which one or more amino acids of the B or A chains of insulin are reduced or deleted, in which insulin receptor binding ability is reduced compared to native insulin.
  • some amino acids of native insulin may be modified in the form of additions, deletions or substitutions to reduce insulin receptor binding capacity as compared to native insulin.
  • Natural insulin is a hormone secreted by the pancreas and generally regulates blood glucose in the body by promoting glucose uptake in cells and inhibiting breakdown of fat.
  • Insulin is processed in the form of a proinsulin precursor that has no glycemic control function and becomes insulin having glycemic control function.
  • Insulin consists of two polypeptide chains, A-chain and B-chain, each comprising 21 and 30 amino acid residues, which are interconnected by two disulfide bridges.
  • the A- and B-chains of native insulin may comprise amino acid sequences represented by SEQ ID NOs: 39 and 40, respectively.
  • Insulin analogs used in the examples of the present invention are insulin analogs made by genetic recombination technology, but the present invention is not limited to this, but includes all insulin analogs with reduced insulin receptor binding capacity.
  • the insulin analogue includes inverted insulin, insulin variants, insulin fragments, insulin agonists, derivatives, and the like, and the method of preparation includes not only genetic recombination but also solid phase. It may also be prepared by a solid phase method, but is not limited thereto.
  • the insulin agonist means a substance that binds to the in vivo receptor of insulin and exhibits biological activity of insulin regardless of its structure.
  • the insulin derivatives have a function of regulating blood glucose in the body, and show homology to each of the amino acid sequences of the A- and B-chains of native insulin, and some groups of amino acid residues are chemically substituted (e.g., alpha-methylation, alpha-hydroxylation), peptide removal in the form of deamination or modification (eg N-methylation).
  • insulin derivatives also include peptide mimics and small molecule or high molecular compounds that can bind to the insulin receptor and regulate blood glucose in the body even though the amino acid sequence has no homology with the native insulin.
  • the insulin fragment refers to a form in which one or more amino acids are added to or deleted from insulin, and the added amino acid may be an amino acid (eg, a D-type amino acid) that does not exist in nature, and the insulin fragment has a function of regulating blood glucose in the body. Holds.
  • the added amino acid may be an amino acid (eg, a D-type amino acid) that does not exist in nature, and the insulin fragment has a function of regulating blood glucose in the body. Holds.
  • the insulin variant has a function of regulating blood glucose in the body as a peptide having one or more different amino acid sequences from insulin.
  • the preparation methods used in the insulin agonists, derivatives, fragments and variants of the present invention may be used independently and may be combined.
  • peptides having one or more different amino acid sequences and deamination introduced at amino terminal amino acid residues and having a function of regulating blood glucose in the body are also included in the scope of the present invention.
  • the insulin analogue is amino acid 1, 2, 3, 5, 8, 10, 12, 16, 23, 24 amino acids of the insulin B chain , Amino acid 25, amino acid 26, amino acid 27, amino acid 28, amino acid 29, amino acid 30, amino acid A, amino acid 1, amino acid 2, amino acid 5, amino acid 8, amino acid 10, 12
  • amino acids selected from the group consisting of amino acids, amino acids 14, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, and 21 amino acids may be substituted with another amino acid, and more specifically, B In the group consisting of amino acids 8, 23, 24, 25, A, 1, 2, 14 and 19 of the chain
  • One or more selected amino acids may be substituted with another amino acid.
  • At least one, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, eleven, twelve, thirteen, thirteen or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more, 23 or more, 24 or more, 25 or more, 26 or more, or 27 or more amino acids may be substituted with other amino acids, This is not restrictive.
  • amino acid residues at the positions described above may also be substituted with alanine, glutamic acid, asparagine, isoleucine, valine, glutamine, glycine, lysine, histidine, cysteine, phenylalanine, tryptophan, proline, serine, threonine or / and aspartic acid.
  • an insulin analogue in which one or more amino acids of the insulin A chain or B chain is deleted and thus the insulin receptor binding ability is reduced is included in the scope of the present invention, but an insulin analogue having the reduced insulin receptor binding ability may be included without limitation.
  • Insulin analogues according to the present invention are characterized by the substitution, addition, deletion or post-translational modification of amino acids (eg, methylation, acylation, ubiquitination, intramolecular covalent bonds) in the amino acid sequences of the A and B chains of native insulin. Introduced, it encompasses any peptide having reduced insulin receptor binding capacity as compared to native insulin. At the time of substitution or addition of such amino acids, not only 20 amino acids commonly observed in human proteins, but also amorphous or non-naturally occurring amino acids can be used. Commercial sources of atypical amino acids may include Sigma-Aldrich, ChemPep and Genzymepharmaceuticals. Peptides containing such amino acids and typical peptide sequences can be synthesized and purchased through commercial peptide synthesis companies such as American peptide company in the United States, Bachem or Anygen in Korea.
  • amino acids eg, methylation, acylation, ubiquitination, intramolecular covalent bonds
  • the insulin analogue may include A chain of SEQ ID NO: 37 represented by the following Formula 1 and B chain of SEQ ID NO: 38 represented by the following Formula 2.
  • the A-chain and B-chain sequence may be in a form interconnected by disulfide bonds. However, it is not limited thereto.
  • Xaa1 is glycine or alanine
  • Xaa2 is isoleucine or alanine
  • Xaa3 is tyrosine, glutamic acid or asparagine,
  • Xaa4 is tyrosine or alanine.
  • Xaa5 is glycine or alanine
  • Xaa6 is glycine or alanine
  • Xaa7 is phenylalanine or alanine
  • Xaa8 is phenylalanine or alanine.
  • the insulin analogue is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Xaa1 is alanine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is alanine
  • Xaa3 is tyrosine
  • Xaa4 is a tyrosine A chain
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is glutamic acid or asparagine
  • Xaa4 is tyrosine A chain
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain which is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is alanine
  • Xaa4 is glycine
  • Xaa5 is glycine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is alanine
  • Xaa6 is glycine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • Xaa5 is glycine in Formula 2
  • Xaa6 is alanine
  • Xaa7 is phenylalanine
  • Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine, Xaa6 is glycine, Xaa7 is alanine, Xaa8 comprises a B chain that is phenylalanine;
  • Xaa1 is glycine
  • Xaa2 is isoleucine
  • Xaa3 is tyrosine
  • Xaa4 is tyrosine
  • a chain and in Formula 2, Xaa5 is glycine, Xaa6 is glycine, Xaa7 is phenylalanine, Xaa8 may include the B chain which is alanine. However, it is not limited to the above example.
  • the present invention comprises at least 70%, specifically 80%, more specifically 90%, even more specifically 95% homology with the corresponding insulin analogue, including the above-described characteristic amino acid residues, Peptides having reduced insulin receptor binding capacity as compared to native insulin are also included within the scope of the present invention.
  • the term "homology" is intended to indicate a degree of similarity with the amino acid sequence of a wild type protein or a polynucleotide sequence encoding the same, and the amino acid sequence or polynucleotide sequence of the present invention. It includes sequences having the same sequence of at least such percentages. Such homology may be determined by visually comparing two sequences, but may be determined using a bioinformatic algorithm that analyzes the degree of homology by arranging the sequences to be compared side by side. Homology between the two amino acid sequences can be expressed as a percentage.
  • Useful automated algorithms are available in the GAP, BESTFIT, FASTA and TFASTA computer software modules of the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, W, USA). Automated alignment algorithms in this module include Needleman & Wunsch and Pearson & Lipman and Smith & Waterman sequence alignment algorithms. Algorithms and homology determinations for other useful arrays are automated in software including FASTP, BLAST, BLAST2, PSIBLAST and CLUSTAL W.
  • Another aspect of the invention is a polynucleotide encoding the insulin analogue, an expression vector comprising the polynucleotide and a transformant comprising the expression vector.
  • the insulin analogue is as described above.
  • the polynucleotide is deoxyribonucleotide (DNA) or ribonucleotide (RNA) present in single- or double-stranded form, and has a meaning including genomic DNA, cDNA, and RNA transcribed therefrom, and the basic nucleotide is Natural nucleotides, as well as analogs with modified sugar or base sites (Scheit, Nucleotide Analogs, John Wiley, New York, 1980; Uhlman and Peyman, Chemical Reviews, 90: 543-584, 1990). Polynucleotides of the invention can be isolated or prepared using standard molecular biology techniques.
  • an appropriate primer sequence can be used to amplify by PCR (polymerase chain reaction) from a native insulin gene sequence (NM_000207.2, NCBI) and prepared using standard synthetic techniques using an automated DNA synthesizer. can do.
  • the polynucleotide can be used interchangeably with the nucleic acid in the present invention.
  • the polynucleotide encoding the insulin analogue may include a polynucleotide encoding the amino acid sequences of the A and B chains described above, and examples thereof include SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 , Polynucleotides of SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, and SEQ ID NO: 35.
  • SEQ ID NO: 19 amino acid sequences of the A and B chains described above, and examples thereof include SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 , Polynucleotides of SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, and SEQ ID NO: 35.
  • SEQ ID NO: 19 amino acid sequences of the A and B chains described above, and examples thereof include SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 , Polyn
  • polynucleotide sequence described above it has at least 70% homology with the sequence, specifically 80% or more, more specifically 90% or even more specifically 95% or more, Polynucleotides encoding peptides having reduced insulin receptor binding capacity as compared to are also included in the scope of the present invention.
  • Recombinant vectors according to the invention are typically constructed as vectors for cloning or vectors for expression and as vectors for use of prokaryotic or eukaryotic cells as host cells.
  • the term "vector” refers to a nucleic acid construct that is a recombinant vector capable of expressing a protein of interest in a suitable host cell, and that includes an essential regulatory element operably linked to express a nucleic acid insert.
  • the present invention can produce a recombinant vector comprising a nucleic acid encoding an insulin analogue, by transforming or transfecting the recombinant vector into a host cell, the insulin analogue of the present invention can be obtained. .
  • the nucleic acid encoding the insulin analog is operably linked to the promoter.
  • the term “operatively linked” means a functional binding between a nucleic acid expression control sequence (eg, promoter, signal sequence, ribosomal binding site, transcription termination sequence, etc.) and another nucleic acid sequence. And, thereby, the regulatory sequence regulates transcription and / or translation of the other nucleic acid sequence.
  • promoter refers to a non-readed nucleic acid sequence upstream of a coding region, i.e., a polymerase, that contains a binding site for polymerase and has a transcription initiation activity to mRNA of a promoter subgene. It refers to the DNA region to initiate the transcription of the gene, and is located at the 5'-site of the mRNA transcription start site.
  • the vector of the present invention is a recombinant vector and the prokaryotic cell is a host
  • powerful promoters capable of promoting transcription e.g., tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.
  • ribosomal binding sites for initiation of translation and transcription / detoxification sequences e.g., tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.
  • vectors that can be used in the present invention are plasmids often used in the art (eg, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14).
  • plasmids often used in the art (eg, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14).
  • phages eg, ⁇ gt4 ⁇ ⁇ B, ⁇ -Charon, ⁇ z1 and M13, etc.
  • viruses eg SV
  • a promoter derived from the mammalian cell genome eg metallothionine promoter
  • a promoter derived from a mammalian virus eg adenovirus
  • Late promoters vaccinia virus 7.5K promoters
  • SV40 promoters e.g., SV40 derived poly adenylation sequences
  • tk promoters e.g., SV40 derived poly adenylation sequences
  • the recombinant vectors of the present invention include antibiotic resistance genes commonly used in the art as selection markers, for example ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline can be used.
  • antibiotic resistance genes commonly used in the art as selection markers, for example ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin And resistance genes for tetracycline can be used.
  • the recombinant vector of the present invention may further comprise other sequences as necessary to facilitate purification of the desired protein to be recovered, ie the insulin analogue.
  • the additionally included sequence may be a tag purification tag sequence, such as glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6 histidines. (hexahistidine) and the like, but the examples do not limit the type of sequence required for purification of the target protein.
  • Fusion proteins expressed by recombinant vectors comprising such tag sequences can be purified by affinity chromatography. For example, when glutathione-S-transferase is fused, glutathione, which is a substrate of this enzyme, can be used. When six histidine tags are used, a desired protein can be easily recovered by using a Ni-NTA column. .
  • a transformant transformed with the vector can be constructed.
  • transformation refers to introducing DNA into a host cell so that the DNA can be reproduced as a factor of a chromosome or by completion of chromosome integration. It means a phenomenon causing change.
  • transformation methods include the CaCl 2 precipitation method and the CaCl 2 precipitation method using a reducing agent called dimethyl sulfoxide (DMSO), which improves the efficiency of the Hanahan method, electroporation, calcium phosphate precipitation, plasma fusion method, and silicon.
  • DMSO dimethyl sulfoxide
  • the method for transforming a recombinant vector comprising a nucleic acid encoding an insulin analogue according to the present invention is not limited to the above examples, and transformation or transfection methods commonly used in the art may be used without limitation.
  • the transformant of the present invention can be obtained by introducing a recombinant vector containing a nucleic acid encoding an insulin analog that is a target nucleic acid into a host cell.
  • Suitable hosts for the present invention are not particularly limited as long as they allow expression of the nucleic acid of the present invention.
  • Specific examples of hosts that can be used in the present invention include bacteria of the genus Escherichia , such as E. coli ; Bacillus subtilis (Bacillus subtilis) and Bacillus (Bacillus), such as bacteria belonging to the genus; Bacteria of the genus Pseudomonas, such as Pseudomonas putida ; Yeasts such as Pichia pastoris , Saccharomyces cerevisiae , and Schizosaccharomyces pombe ; Insect cells such as Spodoptera luciferda (SF9); And animal cells such as CHO, COS, BSC and the like.
  • E. coli is used as the host cell.
  • Another aspect of the invention provides an agent that increases the half-life and bioavailability of the insulin analogue, or results in sustained activity maintenance.
  • the present invention provides a sustained insulin, characterized in that the insulin analogue is combined with a biocompatible material capable of extending the half-life.
  • the present invention also provides a binder having the formula (1).
  • X is an insulin analogue with reduced insulin receptor binding as compared to native insulin
  • L is a linker
  • a is 0 or a natural number, provided that when L is 2 or more, each L is independent of each other,
  • F is a substance that can increase the in vivo half-life of the insulin analogue.
  • the insulin analogue is as described above.
  • the insulin analogue when applied to a preparation which increases its half-life and increases bioavailability or brings about sustained activity, it has a superior half-life increase and in vivo activity effect as compared to native insulin. Can be represented.
  • the half-life is shown to be significantly increased compared to the natural insulin conjugate.
  • sustained insulin refers to a substance in which an insulin analogue is combined with a biocompatible substance capable of extending a half-life.
  • the long-acting insulin has an increased half-life compared to natural insulin.
  • biocompatible substance or substance capable of increasing the half-life in vivo means a substance capable of binding to the insulin analogue and extending its half-life.
  • Biocompatible materials capable of extending the half-life are used interchangeably with “carrier” in the present invention.
  • the biocompatible material or carrier may include any material that is capable of binding to the insulin analogue to extend its half-life, such as polyethylene glycol, fatty acid, cholesterol, albumin and fragments thereof, albumin binding material, and repeating units of specific amino acid sequences. It may be selected from the group consisting of polymers, antibodies, antibody fragments, FcRn binding material, in vivo connective tissue or derivatives thereof, nucleotides, fibronectin, transferrin, saccharides, and polymer polymers, but is not limited thereto. It doesn't work.
  • the biocompatible material or carrier may be coupled to the insulin analogue by covalent or non-covalent association.
  • the link between insulin analogues with reduced insulin receptor binding capacity and biocompatible materials or carriers that can extend half-life in vivo include genetic recombination methods and in vitro binding using polymers or small molecule chemicals. It doesn't work.
  • the FcRn binding agent may be an immunoglobulin Fc region, for example IgG Fc.
  • Ambrx's Recode technology which can attach polyethylene glycol in a specific position, may be included, and Neose's glycopegylation (glycopegylation) technology may be specifically attached to a sugar chain.
  • Neose's glycopegylation glycopegylation
  • releasable PEG technology in which polyethylene glycol is slowly removed in vivo may be included in the releasable PEG technology, but is not limited thereto and may include technologies that increase the bioavailability using PEG.
  • polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, biodegradable polymer, lipid polymer, chitin, hyaluronic acid, Polymeric polymers can also be coupled to the insulin analogues by the above technique.
  • albumin When albumin is used as a carrier, a technique may be included in which albumin or an albumin fragment is directly covalently bound to the insulin analogue to increase in vivo stability, and an agent that binds albumin even if albumin is not directly bound, for example, an albumin specific binding antibody.
  • a technique for binding an antibody fragment to an insulin analogue to bind to albumin and a technique for binding a specific peptide / protein (eg, albumin binding peptide produced using Affibody's albumod technology) to the insulin analogue may include, but may include, but are not limited to, a technique for binding a fatty acid having a binding force to albumin, and the like, any technique that can increase in vivo stability using albumin, binding methods and the like may be included in this.
  • Techniques for binding an insulin analogue using an antibody or antibody fragment as a carrier to increase half-life in vivo may also be included in the present invention. It may be an antibody or antibody fragment having the same FcRn binding site, and may be any antibody fragment that does not include an FcRn binding site such as Fab. CovX-body technology of CovX Co. using Catalytic Antibodies may be included therein, and a technique for increasing half-life in vivo by using an immunoglobulin Fc region may be included in the present invention.
  • a linker and a binding method for binding the Fc region and the insulin analogue may be a peptide bond or polyethylene glycol, but are not limited thereto and may be any chemical bond method.
  • the binding ratio between the Fc region and the insulin analogue may be 1: 1 or 1: 2, but is not limited thereto.
  • immunoglobulin Fc regions are biodegradable polypeptides that are metabolized in vivo, they are safe for use as carriers of drugs.
  • the immunoglobulin Fc region is advantageous in terms of the preparation, purification and yield of the conjugate because of its relatively low molecular weight compared to the whole immunoglobulin molecule, as well as the removal of Fab moieties that exhibit high heterogeneity because the amino acid sequence varies from antibody to antibody. It can be expected that the homogeneity of the protein is greatly increased and the possibility of inducing blood antigens is lowered.
  • the immunoglobulin Fc region refers to the heavy chain constant region 2 (CH2) and the heavy chain constant region 3, except for the heavy and light chain variable regions, heavy chain constant region 1 (CH1) and light chain constant region (CL1) of the immunoglobulin (CH3) portion, and may include a hinge portion in the heavy chain constant region.
  • the immunoglobulin Fc region of the present invention has substantially the same or improved effect as the natural type, except for the heavy and light chain variable regions of the immunoglobulin, some or all heavy chain constant region 1 (CH1) and / or light chain constant region It may be an extended Fc region including 1 (CL1). It may also be a region from which some fairly long amino acid sequences corresponding to CH 2 and / or CH 3 have been removed.
  • the immunoglobulin Fc region of the present invention comprises 1) CH1 domain, CH2 domain, CH3 domain and CH4 domain, 2) CH1 domain and CH2 domain, 3) CH1 domain and CH3 domain, 4) CH2 domain and CH3 domain, 5) Combination of one or two or more domains with an immunoglobulin hinge region (or a portion of the hinge region), 6) heavy chain constant region dimer of each domain and light chain constant region.
  • the immunoglobulin Fc region includes not only native amino acid sequences but also sequence variants thereof.
  • Amino acid sequence variants mean that one or more amino acid residues in a natural amino acid sequence have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • IgG Fc amino acid residues 214 to 238, 297 to 299, 318 to 322 or 327 to 331 which are known to be important for binding can be used as suitable sites for modification.
  • a site capable of forming a disulfide bond such as a site capable of forming a disulfide bond, a few amino acids at the N-terminus in a native Fc, or a methionine residue may be added at the N-terminus of a native Fc.
  • complement binding sites such as C1q binding sites may be removed, or ADCC (antibody dependent cell mediated cytotoxicity) sites may be removed to eliminate effector function.
  • it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, acetylation and amylation. may be modified.
  • the above-described Fc variant is a variant which exhibits the same biological activity as the Fc region of the present invention but increases structural stability against heat, pH, etc. of the Fc region.
  • the Fc region may be obtained from natural types separated in vivo from humans and animals such as cows, goats, pigs, mice, rabbits, hamsters, rats, and guinea pigs, and may be obtained from transformed animal cells or microorganisms. It may be recombinant or a derivative thereof.
  • the method obtained from the natural form can be obtained by separating the whole immunoglobulin from the human or animal living body, and then treating the protease. Papain is cleaved into Fab and Fc, and pepsin is cleaved into pF'c and F (ab) 2. This may be separated by Fc or pF'c using size-exclusion chromatography.
  • the recombinant immunoglobulin Fc region obtained from a microorganism is a human-derived Fc region.
  • the immunoglobulin Fc region may be in a natural sugar chain, an increased sugar chain compared to the natural form, a reduced sugar chain or a sugar chain removed from the natural form.
  • Conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms can be used to increase or decrease such immunoglobulin Fc sugar chains.
  • the immunoglobulin Fc region in which the sugar chain is removed from the Fc has a significant decrease in the binding capacity of the complement (c1q), and the antibody-dependent cytotoxicity or the complement-dependent cytotoxicity is reduced or eliminated, thereby not causing an unnecessary immune response in vivo. Do not.
  • a form more consistent with the original purpose as a carrier of the drug would be the immunoglobulin Fc region from which the sugar chains have been removed or unglycosylated.
  • the sugar chain removal refers to the Fc region from which the sugar is removed by an enzyme
  • the non-glycosylation refers to the Fc region that is not glycosylated by prokaryotic animals, preferably E. coli.
  • the immunoglobulin Fc region may be a human or animal origin, such as cattle, goats, pigs, mice, rabbits, hamsters, rats, guinea pigs, preferably human origin.
  • the immunoglobulin Fc region may be an Fc region by IgG, IgA, IgD, IgE, IgM derived or combinations thereof or hybrids thereof. It is preferably derived from IgG or IgM, which is most abundant in human blood and most preferably from IgG known to enhance the half-life of ligand binding proteins.
  • dimer or a multimer when forming a dimer or a multimer, means that the polypeptides encoding the same origin single chain immunoglobulin Fc region form a bond with the short chain polypeptides of different origin. That is, it is possible to prepare dimers or multimers from two or more fragments selected from the group consisting of Fc fragments of IgG Fc, IgA Fc, IgM Fc, IgD Fc and IgE.
  • hybrid is a term used to mean that there is a sequence corresponding to two or more immunoglobulin Fc fragments of different origins within an immunoglobulin Fc region of a single chain.
  • various types of hybrids are possible. That is, hybridization of a domain consisting of 1 to 4 domains from the group consisting of CH1, CH2, CH3 and CH4 of IgG Fc, IgM Fc, IgA Fc, IgE Fc and IgD Fc is possible, and may include a hinge.
  • IgG can also be divided into subclasses of IgG1, IgG2, IgG3 and IgG4 and combinations or hybridization thereof are also possible in the present invention.
  • CDC complementdependent cytotoxicity
  • Peptides or protein fragments used may be Elastin like polypeptide (ELP) consisting of repeating units of combinations of specific amino acids, and Xten technology, which is an artificial polypeptide PEG from versartis, is also included in the present invention. It also includes Structure Inducing Probe (SIP) technology, which increases half-life in vivo using Multi-Lysine from Zealand, and includes Prolor's CTP fusion technology, including transferrin or connective tissue, which is known to be highly stable in vivo. Fibronectin, a component thereof, and derivatives thereof may also be included. Peptides or proteins that bind to the insulin analogue are not limited thereto, and any peptide or protein that increases the in vivo half-life of the insulin analogue is within the scope of the present invention.
  • the carrier used to increase the half-life in vivo may be a non-peptide substance such as polysaccharide or fatty acid.
  • a carrier capable of increasing the in vivo half-life of the insulin analogue and the insulin analogue in which the binding force to the insulin receptor is reduced compared to the natural type may be linked through a linker.
  • the linker linking them to each other may be a peptidic linker or a non-peptidyl linker, for example, may be selected from the group consisting of polyethylene glycol, fatty acids, saccharides, high polymers, low molecular weight compounds, nucleotides, and combinations thereof. have.
  • the polymer may be polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, biodegradable polymer, lipid polymer, chitin, hyaluronic acid, oligo It may be a non-peptidyl linker selected from the group consisting of nucleotides and combinations thereof, but is not limited thereto.
  • the biodegradable polymers include biodegradable polymers such as PLA (polylactic acid, polylactic acid) and PLGA (polylactic-glycolic acid, polylactic-glycolic acid).
  • the non-peptidyl linkers include not only those described above, but also derivatives thereof known in the art and derivatives which can be easily prepared at the level of the art.
  • the linkage by the linker may be any chemical bond, such as a non-covalent chemical bond or a covalent chemical bond, without limitation.
  • non-peptidyl polymer in the present invention includes a biocompatible polymer in which two or more repeat units are bound.
  • the repeating units are linked to each other through any covalent bond, not a peptide bond.
  • Such non-peptidyl polymers can have both ends or three ends.
  • the conjugate may be prepared using a non-peptide linker as well as a peptide linker.
  • Non-peptide linkers can use a polymerase resistant polymer to maintain the blood half-life of the peptide similar to a carrier. Therefore, the non-peptidyl polymer that can be used in the present invention can be used without limitation as long as it is a polymer that is resistant to the above-described role, that is, protease in vivo.
  • the molecular weight of the non-peptidyl polymer is in the range of 1 to 100 kDa, preferably 1 to 20 kDa, but is not limited thereto.
  • non-peptidyl polymer of the present invention which is associated with the carrier, in particular the immunoglobulin Fc region, may be a combination of different kinds of polymers as well as one kind of polymer.
  • Non-peptidyl polymers used in the present invention may have a carrier, in particular an immunoglobulin Fc region, and a reactor capable of binding to the insulin analogue.
  • Both terminal reactors of the non-peptidyl polymer are preferably selected from the group consisting of reaction aldehyde groups, propion aldehyde groups, butyl aldehyde groups, maleimide groups and succinimide derivatives.
  • succinimidyl propionate, hydroxy succinimidyl, succinimidyl carboxymethyl or succinimidyl carbonate may be used as the succinimid derivative.
  • the non-peptidyl polymer has a reactor of reactive aldehyde groups at both ends, it is effective to minimize nonspecific reactions and to bind bioactive polypeptides and immunoglobulins at each end of the non-peptidyl polymer, respectively.
  • the final product resulting from reductive alkylation by aldehyde bonds is much more stable than those linked by amide bonds.
  • the aldehyde reactor selectively reacts at the N-terminus at low pH and can form covalent bonds with lysine residues at high pH, for example pH 9.0 conditions.
  • Both terminal reactors of the non-peptidyl polymer may be the same or different from each other.
  • one end may have a maleimide group and the other end may have an aldehyde group, a propion aldehyde group, or a butyl aldehyde group.
  • the hydroxy group may be activated into the various reactors by a known chemical reaction, or a polyethylene glycol having a commercially available modified reactor may be used.
  • the short chain insulin analogue conjugates of the invention can be prepared.
  • each end of the non-peptidyl linker may be bound to the amine or thiol group of the biocompatible material and the insulin analog, respectively.
  • the insulin analogue and the biocompatible material are connected through a linker interposed therebetween, wherein the biocompatible material is an FcRn binding material,
  • the linker may be a peptide linker or polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinylethyl ether, biodegradable polymer, lipid polymer, chitin , Hyaluronic acid, and combinations thereof may be in a form linked through a non-peptidyl linker selected from the group consisting of.
  • sustained release formulations using microparticles, nanoparticles, etc. using PLGA, hyaluronic acid, chitosan, etc. may be included therein.
  • formulations such as implants, inhalations, nasal formulations, and patches.
  • the sustained insulin or insulin analogue conjugate of the present invention not only maintains the in vivo activity of the existing insulin such as energy metabolism and sugar metabolism, but also has a dramatic effect on the blood half-life of the insulin analogue and the sustained effect of the peptide in vivo. It is useful for the treatment of diabetes (Diabetes).
  • Another aspect of the present invention provides a combination of (a) (i) insulin analogues and (ii) polyethylene glycols, fatty acids, cholesterol, albumin and fragments thereof, albumin binding agents, polymers of repeating units of specific amino acid sequences, antibodies, antibody fragments, Preparing a biocompatible material selected from the group consisting of FcRn binding materials, in vivo connective tissues or derivatives thereof, nucleotides, fibronectin, transferrin, saccharides and polymers; And (b) linking the insulin analogue and the biocompatible material.
  • the insulin analogue, biocompatible material and persistent insulin are as described above.
  • the insulin sustained preparation may be an insulin sustained preparation having increased in vivo persistence and stability compared to native insulin.
  • the long-acting formulation may be a pharmaceutical composition for treating diabetes.
  • the present invention is not limited thereto.
  • compositions comprising the conjugates of the invention may comprise a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers can be used as oral administration binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments and flavoring agents, and in the case of injectables, buffers, preservatives, analgesic
  • a topical agent, a solubilizer, an isotonicity agent, a stabilizer, etc. can be mixed and used, and in case of topical administration, a base, an excipient, a lubricant, a preservative, etc. can be used.
  • the formulation of the pharmaceutical composition of the present invention may be prepared in various ways by mixing with a pharmaceutically acceptable carrier as described above.
  • oral administration may be in the form of tablets, troches, capsules, elixirs, suspensions, syrups and wafers, and in the case of injections, they may be prepared in unit dosage ampoules or multiple dosage forms. Others may be formulated into solutions, suspensions, tablets, pills, capsules and sustained release preparations.
  • suitable carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl Cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • fillers may be further included.
  • Another aspect of the invention provides a method of treating insulin-related diseases comprising administering the insulin analogue or insulin analogue conjugate to an individual in need thereof.
  • the conjugate according to the present invention is useful for treating diabetes, and by administering a pharmaceutical composition comprising the same, the treatment of the disease can be achieved.
  • administration means introducing a predetermined substance into a patient by any suitable method, and the route of administration of the conjugate may be administered through any general route as long as the drug can reach the target tissue.
  • Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration and rectal administration, and the like are not limited thereto.
  • the oral composition upon oral administration, since the peptide is digested, it is desirable to formulate the oral composition to coat the active agent or to protect it from degradation in the stomach. It may preferably be administered in the form of an injection.
  • the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell.
  • the pharmaceutical composition of the present invention is determined according to the type of drug that is the active ingredient, along with various related factors such as the disease to be treated, the route of administration, the age, sex and weight of the patient and the severity of the disease. Since the pharmaceutical composition of the present invention has excellent persistence and titer in vivo, the frequency and frequency of administration of the pharmaceutical preparations of the present invention can be significantly reduced.
  • Table 1 shows the change sequences and analog names of the amino acids of each A or B chain. That is, in case of analog 1, glycine No. 1 of the A chain is substituted with alanine, and in case of analogue 4, glycine No. 8 of the B chain is substituted with alanine.
  • the PCR conditions for analog analog amplification were repeated 18 times for 30 seconds at 95 ° C, 30 seconds at 55 ° C, and 6 minutes at 68 ° C.
  • the insulin analog fragments obtained under these conditions were inserted into the pET22b vector for expression in inclusion bodies in cells, and the expression vectors thus obtained were named pET22b-insulin analogs 1-9.
  • the expression vector comprises a nucleic acid encoding the amino acid sequence of insulin analogs 1-9 under the control of the T7 promoter and expressed the insulin analog protein in inclusion body form in the host.
  • Table 3 below shows the DNA sequences and protein sequences of each insulin analog 1-9.
  • Recombinant insulin analog expression was performed under the control of the T7 promoter.
  • Each recombinant insulin analog expression vector was E. coli BL21-DE3 ( E. coli B F-dcm ompT hsdS (rB-mB-) gal ⁇ DE3); Novazen) was transformed. The transformation method followed the method recommended by Novagen.
  • Each single colony transformed with each recombinant expression vector was taken and inoculated in 2X Luria Broth (LB) medium containing ampicillin (50 ⁇ g / ml) and incubated at 37 ° C. for 15 hours.
  • LB 2X Luria Broth
  • Recombinant strain culture and 2X LB medium containing 30% glycerol were mixed at a ratio of 1: 1 (v / v), and each 1 ml was dispensed into cryo-tubes and stored at -140 ° C. This was used as a cell stock for the production of recombinant fusion proteins.
  • recombinant insulin analogues For expression of recombinant insulin analogues, 1 vial of each cell stock was dissolved and inoculated in 500 ml of 2 ⁇ Luria broth and shaken at 37 ° C. for 14-16 hours. When the value of OD 600 showed 5.0 or more, the culture was terminated, and this was used as the seed culture solution. Seed cultures were inoculated into 17 L fermentation medium using a 50 L fermenter (MSJ-U2, BEMARUBISHI, Japan) and initial bath fermentation started. Culture conditions were maintained at pH 6.70 using a temperature of 37 °C, air volume 20 L / min (1 vvm), stirring speed 500 rpm and 30% ammonia water.
  • Fermentation proceeded when the nutrients in the culture was limited, supplemented with additional feeding (feeding solution) to proceed with the oil value culture.
  • the growth of the strains was monitored by OD values and introduced with IPTG at a final concentration of 500 ⁇ M at OD values above 100.
  • the culture proceeds further to about 23-25 hours after introduction, and after the incubation, the recombinant strain is harvested using a centrifuge and stored at -80 ° C until use.
  • Cells were disrupted and refolded to convert the recombinant insulin analogs expressed in Example 2 into soluble form.
  • 100 g (wet weight) of cell pellets were resuspended in 1 L lysis buffer (50 mM Tris-HCl, pH 9.0), 1 mM EDTA, pH 8.0, 0.2 M NaCl and 0.5% Triton X-100.
  • Cells were disrupted by performing at 15,000 psi pressure using a microfluidizer processor M-110EH (AC Technology Corp. Model M1475C). The lysed cell lysates were centrifuged at 7,000 rpm at 4 ° C.
  • Salts were removed from the samples eluted with a Desalting column and replaced with buffer (10 mM Tris-HCl, pH 8.0). After adding trypsin corresponding to 1000 molar ratio of the obtained sample protein amount and carboxypeptide B corresponding to 2000 molar ratio, it stirred at 16 degreeC for 16 hours. In order to terminate the reaction, the pH was lowered to 3.5 using 1 M sodium citrate (pH 2.0).
  • the sample was rebound to a Source S (GE healthcare) column equilibrated with 20 mM sodium citrate (pH 2.0) buffer containing 45% ethanol, and then 20 mM containing 0.5 M potassium chloride and 45% ethanol.
  • Insulin analog protein was eluted with a 10 column dose linear concentration gradient using sodium citrate (pH 2.0) buffer to ensure concentrations from 0% to 100%.
  • Salt was removed from the sample eluted with a Desalting column and replaced with buffer 10 mM Tris-HCl, pH 7.5).
  • buffer 10 mM Tris-HCl, pH 7.5 In order to purely separate the pure insulin analogue from the sample obtained in Example 6, it was bound to an anion exchange column (Source Q: GE healthcare) equilibrated with 10 mM Tris (pH 7.5) buffer, followed by 0.5 M sodium crawl. Insulin analog proteins were eluted with a 10 column dose linear gradient using 10 mM Tris pH 7.5 buffer.
  • the molar ratio of insulin analog: PEG is 1: 4 and the insulin analog concentration is 5 mg / ml at about 4 ° C.
  • the reaction was carried out for 2 hours. In this case, the reaction was performed at 50 mM sodium citrate pH 6.0, 45% isopropanol, and reacted by adding a sodium cyanoborohydride reducing agent at a concentration of 3.0 mM.
  • the reaction solution was purified using SP-HP (GE Healthcare, USA) column using sodium citrate (pH 3.0), 45% ethanol buffer and KCl concentration gradient.
  • the molar ratio of the mono-PEGylated insulin analogue and immunoglobulin Fc fragment purified above was 1: 1-1: 2 and the total protein concentration was weakened.
  • the reaction was carried out at 25 ° C. for 13 hours at 20 mg / ml.
  • the reaction buffer conditions were 100 mM HEPES, pH 8.2, and 20 mM sodium cyanoborohydride was added as a reducing agent.
  • reaction solution was purified using a Tris-HCl (pH 7.5) buffer and a NaCl concentration gradient on a Q HP (GE Healthcare, USA) column to isolate and purify unreacted immunoglobulin Fc fragments and monopegylated insulin analogues. It was.
  • Insulin analog-immunoglobulin Fc fragment conjugates were then removed using Source 15ISO (GE Healthcare, USA) as a secondary column to remove the remaining immunoglobulin Fc fragment and the conjugate in which the insulin analogue was bound to the immunoglobulin Fc fragment. Got. At this time, eluted using a concentration gradient of ammonium sulfate (Ammonium sulfate) containing Tris-HCl (pH 7.5), eluted insulin analogue-immunoglobulin Fc conjugate is protein electrophoresis (SDS-PAGE, Figure 4) and high pressure Analysis using chromatography (HPLC) (FIG. 5).
  • Source 15ISO GE Healthcare, USA
  • Ammonium sulfate ammonium sulfate
  • Tris-HCl pH 7.5
  • HPLC high pressure Analysis using chromatography
  • the insulin receptor binding capacity of the insulin analogue-immunoglobulin Fc conjugate was analyzed using surface plasmon resonance (SPR, BIACORE 3000, GE healthcare).
  • the insulin receptor was immobilized on the CM5 chip by an amine coupling method, and the individual insulins, insulin analogues, native insulin-immunoglobulin Fc conjugates, and insulin analogue-immunoglobulin Fc conjugates diluted to five or more concentrations were independently flowed.
  • the binding force of the substance to the insulin receptor was confirmed.
  • the binding force of each material was calculated using BIAevaluation software, and the model used was 1: 1 Langmuir binding with baseline drift.
  • Insulin-immunoglobulin Fc conjugates ranged between 3.7 and 5.9% according to the experimental run.Insulin analog (No. 6) -immunoglobulin Fc conjugate was 0.9% or less, and insulin analogue (No. 7) -immunoglobulin Fc conjugate was 1.9%. Insulin analog (No. 8) -immunoglobulin Fc conjugate was 1.8%, and insulin analogue (No.
  • -immunoglobulin Fc conjugate was 3.3% of receptor binding ability (Table 4).
  • the insulin analogues of the present invention reduced insulin receptor binding ability as compared to natural insulin, as well as the insulin analogue-immunoglobulin Fc conjugates also observed that the insulin receptor binding ability was significantly reduced.
  • Example 10 of native insulin-immunoglobulin Fc conjugates and insulin analogue-immunoglobulin Fc conjugates in vitro Effect comparison
  • 3T3-L1 cell line derived from a mouse differentiated into adipocytes.
  • 3T3-L1 cells were maintained passaged 2-3 times a week using DMEM (Dulbeco's Modified Eagle's Medium, Gibco, Cat. No, 12430) medium containing 10% NBCS (newborn calf serum).
  • 3T3-L1 cells were suspended in differentiation medium (DMEM containing 10% FBS), and then inoculated with 48 x plates to give 5 x 10 4 cells per sphere and cultured for 48 hours. 1 ⁇ g / mL human insulin (Sigma, Cat.
  • the differentiated cells were washed once with serum-free DMEM medium, and then 250 ⁇ l each were added to induce serum depletion for 4 hours.
  • Human insulin was prepared from 10 ⁇ M to 0.01 ⁇ M, and native insulin-immunoglobulin Fc conjugates and insulin analogue-immunoglobulin Fc conjugates were serially diluted 10-fold in serum-free DMEM medium from 20 ⁇ M to 0.02 ⁇ M, respectively. 250 ⁇ l of the prepared samples were added to the cells, and then cultured in a 5% CO 2 incubator at 37 ° C. for 24 hours.
  • glucose residual amount of cultured medium 200 ⁇ l of medium was taken and diluted 5 times with D-PBS, respectively, and GOPOD (GOPOD Assay Kit, Megazyme, Cat.No. K-GLUC) analysis was performed. Based on the absorbance of the glucose standard solution, the residual glucose concentration of the medium was converted, and EC 50 for the glucose absorption capacity of the native insulin-immunoglobulin Fc conjugate and insulin analogue-immunoglobulin Fc conjugates was calculated, respectively.
  • GOPOD GPOD Assay Kit, Megazyme, Cat.No. K-GLUC
  • the native insulin-immunoglobulin Fc conjugate was 11.6%
  • the insulin analogue (No. 6) -immunoglobulin Fc conjugate was 0.43%
  • the insulin analogue No. 7
  • Insulin analog No. 8
  • Insulin analog No. 8
  • Insulin analogue No. 9
  • -immunoglobulin Fc conjugate showed 15.1% glucose absorption (Table 5).
  • the in vitro titers of the insulin analogue (No. 6) -immunoglobulin Fc conjugate and the insulin analogue (No. 7) -immunoglobulin Fc conjugate of the present invention were significantly reduced compared to the native insulin-immunoglobulin Fc conjugate, and insulin In vitro titers of analogue ( im ) -immunoglobulin Fc conjugates and insulin analogue (img. 9) -immunoglobulin Fc conjugates were observed at levels comparable to native insulin-immunoglobulin Fc conjugates.
  • Residual levels in the blood of the native insulin-immunoglobulin Fc conjugate and insulin analogue-immunoglobulin Fc conjugate at each time were measured using an enzyme linked immunosorbent assay (ELISA), and the kit used was Insulin ELISA. (ALPCO, USA) was used. However, a mouse anti-human IgG4 HRP conjugate (Alpha Diagnostic Intl, Inc, USA) was used as a detection antibody.
  • ELISA enzyme linked immunosorbent assay
  • the pharmacokinetics of the native insulin-immunoglobulin Fc conjugates and the insulin analogue-immunoglobulin Fc conjugates showed that the blood concentrations increased in proportion to the doses of the insulin-induced insulin analogues.
  • the immunoglobulin Fc conjugates showed a much increased half-life compared to the native insulin-Fc conjugate (FIG. 6).
  • insulin analogues of the present invention modified to reduce insulin receptor binding capacity, when the conjugate formed with the immunoglobulin Fc region, can dramatically increase the blood half-life in vivo and provide a stable insulin preparation. This suggests that it can be effectively used as a diabetes treatment.

Abstract

본 발명은 인슐린의 혈중 반감기 증대를 위한 목적으로 인슐린 수용체 결합력이 감소된 인슐린 아날로그, 및 이를 이용한 지속형 인슐린, 결합체 및 지속형 인슐린을 제조하는 방법에 관한 것이다.

Description

지속형 인슐린 및 그 용도
본 발명은 인슐린의 혈중 반감기 증대를 위한 목적을 가진, 인슐린 수용체 결합력이 감소된 인슐린 아날로그 및 그를 이용한 지속형 인슐린에 관한 것이다.
인슐린은 인체의 췌장에서 분비되는 혈당 조절 호르몬으로 혈액 내의 잉여 포도당을 세포로 옮겨 세포에 에너지원을 공급하는 한편 혈당을 정상 수준으로 유지시켜 주는 역할을 한다. 그러나 당뇨 환자의 경우 이러한 인슐린이 부족하거나 인슐린 저항성 및 베타 세포의 기능소실로 인하여 인슐린이 정상적인 기능을 나타내지 않아 혈액 내의 포도당을 에너지원으로 이용하지 못하고 혈중 포도당 수준이 높은 고혈당 증세를 나타내어 결국 소변으로 당을 배출하게 된다. 이는 여러 합병증과 연계되어 있다. 인슐린 생성이 이상이 있거나(Type I), 인슐린 내성으로 인한(Type II) 당뇨환자에게는 인슐린 치료가 필수적이며, 인슐린 투여로 인해 정상 수준으로 혈당을 조절할 수 있다. 하지만, 인슐린의 경우 다른 단백질 및 펩타이드 호르몬과 마찬가지로 체내의 반감기가 극히 짧아 지속적으로 반복투여를 해야 한다는 단점이 있다. 이와 같은 잦은 투여는 환자에게 엄청난 고통과 불편함을 야기하게 된다. 따라서, 단백질의 생체 내 반감기를 증가시켜 투여 횟수를 줄임으로써 환자의 삶의 질을 높이기 위한 여러 단백질 제형화 연구와 화학적 결합체 등(지방산 결합체, 폴리에틸렌중합체 결합체)에 대한 연구가 진행되어 왔다. 현재 시판중인 지속형 인슐린으로 사노피-아벤티스사(Sanofi-Aventis)의 인슐린 글라진(insulin glargine, lantus, 지속시간 약 20-22시간)과 노보노디스크사(Novo Nordisk)의 인슐린 디터미르(insulin detemir, levemir, 지속시간 약 18-22시간) 및 트레시바 (degludec, tresiba, 지속시간 약 40시간)가 있다. 이들 지속성 인슐린들은 혈중 인슐린 농도의 피크가 없어 기저 인슐린으로 적합하지만, 이들 또한 반감기가 충분하게 길지 않아 매일 1회 또는 2회 투여해야 하는 불편함이 여전히 존재한다. 따라서, 장기간 투여해야 하는 당뇨병 환자에서 투여 빈도를 획기적으로 낮추어 환자의 편의성을 증가시킨다는 목적 달성에는 한계가 있다.
Authier F et al (Biochem J. 1998 Jun 1;332 ( Pt 2):421-30.), Duckworth WC et al (Endocr Rev. 1998 Oct;19(5):608-24.) 및 Valera Mora ME et al (J Am Coll Nutr. 2003 Dec;22(6):487-93.) 등은 체내 인슐린의 제거과정에 대해 기술해놓았다. 이를 살펴보면 50%이상의 인슐린은 신장에서 제거되며, 나머지 인슐린들은 근육, 지방, 간 등의 작용 부위(target site)에서 수용체 매개 제거 공정(receptor mediated clearance, RMC)를 통해 제거되는 것으로 알려져 있다.
이와 관련하여
Lin S et al (J Pharmacol Exp Ther, 1998, 286(2):959-66.), Brange J et al (Diabetes Care. 1990 Sep;13(9):923-54), 및 Ribel U et al (Diabetes, 1990, 39: 1033-9.) 등에서는 인슐린의 RMC를 피하기 위해 in-vitro 활성을 약화시키는 경우, 인슐린의 혈중 농도를 증가시킬 수 있다는 내용의 보고를 하였다.
이러한 배경 하에서, 본 발명자들은 인슐린의 혈중 반감기를 증가시키기 위해 예의 노력한 결과, 인슐린 수용체에 대한 결합력이 감소한 인슐린 아날로그를 개발하였고, 이를 포함하는 인슐린의 반감기 증가 및 생체이용율의 증가 혹은 지속적인 활성유지를 위한 제제가 인슐린의 혈중 반감기를 증가시킬 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 하나의 목적은 인슐린의 체내 반감기 연장을 위한 목적을 가진, 인슐린 수용체에 대한 결합력이 감소된 신규한 인슐린 아날로그 및 그의 지속성 제형을 제공하는 것이다.
구체적으로, 본 발명의 하나의 목적은 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그를 제공하는 것이다.
본 발명이 또 하나의 목적은 상기 인슐린 아날로그를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터를 포함하는 형질전환체를 제공하는 것이다.
본 발명의 또 하나의 목적은 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질을 결합시킨 것을 특징으로 하는, 지속형 인슐린을 제공하는 것이다.
본 발명의 또 하나의 목적은 (a) (i) 인슐린 아날로그 및 (ii) 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 생체적합성 물질를 각각 준비하는 단계; 및 (b) 상기 인슐린 아날로그 및 생체적합성 물질를 연결하는 단계를 포함하는, 지속형 인슐린을 제조하는 방법을 제공하는 것이다.
본 발명의 또 하나의 목적은 하기 화학식 1을 갖는 결합체를 제공하는 것이다:
[화학식 1]
X-La-F;
여기에서
X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그이고,
L은 링커이고,
a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이다.
본 발명의 또 하나의 목적은 상기 결합체를 포함하는, 생체 내 지속성 및 안정성이 증가된 인슐린 지속성 제제를 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 결합체를 포함하는, 당뇨병 치료용 지속성 제제를 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 인슐린 아날로그 또는 인슐린 아날로그 결합체를 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 인슐린 관련 질환 치료 방법을 제공하는 것이다.
본 발명을 구현하기 위한 하나의 양태는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그를 제공하는 것이다.
하나의 구체예로서, 상기 인슐린 아날로그는 천연형 인슐린 대비 반감기가 10% 이상 증가함을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 천연형 인슐린의 하나 이상의 아미노산이 변이 또는 결실된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 인슐린 B쇄의 1번 아미노산, 2번 아미노산, 3번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 16번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, 26번 아미노산, 27번 아미노산, 28번 아미노산, 29번 아미노산, 30번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 14번 아미노산, 16번 아미노산, 17번 아미노산, 18번 아미노산, 19번 아미노산 및 21번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환되거나 결실된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 B쇄의 8번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 14번 아미노산 및 19번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그의 치환된 아미노산은 알라닌, 글루탐산, 아스파라긴, 이소루신, 발린, 글루타민, 글라이신, 라이신, 히스티딘, 시스테인, 페닐알라닌, 트립토판, 프로린, 세린, 트레오닌 및 아스파틱산으로 이루어진 군에서 선택되는 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 인슐린 A쇄 또는 B쇄의 하나 이상의 아미노산이 결실(deletion)되어 인슐린 수용체 결합력이 감소한 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 하기 일반식 1으로 표시되는 서열번호 37의 A쇄와 하기 일반식 2로 표시되는 서열번호 38의 B쇄를 포함하는 것을 특징으로 한다:
[일반식 1]
Xaa1-Xaa2-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Xaa3-Gln-Leu-Glu-Asn-Xaa4-Cys-Asn (서열번호: 37)
상기 일반식 1에서,
Xaa1은 글리신 또는 알라닌이고,
Xaa2는 이소류신 또는 알라닌이며,
Xaa3는 타이로신, 글루탐산 또는 아스파라긴이며,
Xaa4는 타이로신 또는 알라닌임.
[일반식 2]
Phe-Val-Asn-Gln-His-Leu-Cys-Xaa5-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Xaa6-Xaa7-Xaa8-Tyr-Thr-Pro-Lys-Thr (서열번호: 38)
상기 일반식 2에서,
Xaa5는 글리신 또는 알라닌이며,
Xaa6은 글리신 또는 알라닌이며,
Xaa7은 페닐알라닌 또는 알라닌이며,
Xaa8은 페닐알라닌 또는 알라닌임.
다른 구체예로서, 상기 인슐린 아날로그는
(i) 상기 일반식 1에서 Xaa1은 알라닌이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(ii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 알라닌이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(iii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 글루탐산 또는 아스파라긴이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(iv) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 알라닌인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(v) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 알라닌이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(vi) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 알라닌이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(vii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(viii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 알라닌인 B쇄를 포함하는 것을 특징으로 한다.
본 발명의 또 하나의 양태는 상기 인슐린 아날로그를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터를 포함하는 형질전환체이다.
본 발명의 또 하나의 양태는 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질을 결합시킨 것을 특징으로 하는, 지속형 인슐린이다.
하나의 구체예로서, 상기 생체적합성 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 및 고분자 중합체로 이루어진 군에서 선택된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그와 생체적합성 물질은 펩타이드 결합으로 서로 연결된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그와 생체적합성 물질은, 폴리에틸렌 글리콜, 지방산, 사카라이드(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택된 링커를 통해 서로 연결된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그와 생체적합성 물질은 그 사이에 개재하는 링커를 통하여 연결되어 있고, 상기 생체적합성 물질은 FcRn 결합물질이며,
상기 링커는 펩타이드 링커, 또는 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커를 통해 연결되는 것을 특징으로 한다.
다른 구체예로서, 상기 FcRn 결합물질은 면역글로불린 Fc 영역을 포함하는 폴리펩타이드인 것을 특징으로 한다.
다른 구체예로서, 상기 비펩타이드성 링커의 각 말단이 각각 상기 생체적합성물질과 인슐린 아날로그의 아민기 또는 티올기에 결합된 것을 특징으로 한다.
본 발명의 또 하나의 양태는 (a) (i) 인슐린 아날로그 및 (ii) 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 생체적합성 물질를 각각 준비하는 단계; 및 (b) 상기 인슐린 아날로그 및 생체적합성 물질를 연결하는 단계를 포함하는, 지속형 인슐린을 제조하는 방법이다.
본 발명의 또 하나의 양태는 하기 화학식 1을 갖는 결합체이다:
[화학식 1]
X-La-F;
여기에서
X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그이고,
L은 링커이고,
a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이다.
하나의 구체예로서, X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린의 B 쇄 또는 A 쇄의 하나 이상의 아미노산이 변이 또는 결실된 인슐린 아날로그인 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 인슐린 B쇄의 1번 아미노산, 2번 아미노산, 3번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 16번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, 26번 아미노산, 27번 아미노산, 28번 아미노산, 29번 아미노산, 30번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 14번 아미노산, 16번 아미노산, 17번 아미노산, 18번 아미노산, 19번 아미노산 및 21번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환되거나 결실된 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그는 B쇄의 8번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 14번 아미노산 및 19번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환된 것을 특징으로 한다.
다른 구체예로서, 상기 치환된 아미노산은 알라닌, 글루탐산, 아스파라긴, 이소루신, 발린, 글루타민, 글라이신, 라이신, 히스티딘, 시스테인, 페닐알라닌, 트립토판, 프로린, 세린, 트레오닌 및 아스파틱산으로 이루어진 군에서 선택되는 것을 특징으로 한다.
다른 구체예로서, 상기 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직, 뉴클레오타이드, 파이브로넥틴, 트랜스페린, 사카라이드 및 고분자 중합체로 이루어진 군에서 선택된 것을 특징으로 한다.
다른 구체예로서, 상기 L은 펩타이드, 폴리에틸렌 글리콜, 지방산, 사카라이드(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.
다른 구체예로서, 상기 X와 F는 공유 화학 결합, 비공유 화학 결합 또는 이들의 조합으로 L에 의해 서로 결합되는 것을 특징으로 한다.
다른 구체예로서, 상기 고분자 중합체는 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커인 것을 특징으로 한다.
다른 구체예로서, 상기 F는 IgG Fc 영역인 것을 특징으로 한다.
본 발명의 또 하나의 양태는 상기 결합체를 포함하는, 생체 내 지속성 및 안정성이 증가된 인슐린 지속성 제제이다.
본 발명의 또 하나의 양태는 상기 결합체를 포함하는, 당뇨병 치료용 지속성 제제이다.
본 발명의 또 하나의 양태는 상기 인슐린 아날로그 또는 인슐린 아날로그 결합체를 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 인슐린 관련 질환 치료 방법이다.
본 발명의 지속형 인슐린은 천연형 인슐린에 비해 현저히 증대된 혈중 반감기를 가지므로, 이를 사용하여 인슐린 투여를 필요로 하는 환자들의 편리성을 증대시킬 수 있다.
도 1은 인슐린 아날로그의 순도를 단백질 전기영동으로 분석한 결과를 나타낸 도이다. 대표적인 인슐린 아날로그인 7번 아날로그에 대한 결과이다. 1번 레인: 크기 마커 (size marker), 2번 레인: 천연형 인슐린, 3번 레인: 인슐린 아날로그 (7번)
도 2는 인슐린 아날로그의 순도를 고압 크로마토그래피로 분석한 결과이다. 대표적인 인슐린 아날로그인 7번 아날로그에 대한 결과이다. (A) RP-HPLC, (B) SE-HPLC
도 3은 인슐린 아날로그의 펩타이드 맵핑 분석한 결과이다. 인슐린 아날로그는 대표적인 아날로그인 7번 아날로그에 대하여 분석하였다. (A) 천연형 인슐린, (B) 인슐린 아날로그 (7번)
도 4는 인슐린 아날로그-면역글로불린 Fc 결합체의 순도를 단백질 전기영동으로 분석한 결과이다. 대표적인 인슐린 아날로그인 7번 아날로그에 대한 결과이다. 1번 레인: 크기 마커, 2번 레인: 인슐린 아날로그 (7번)-면역글로불린 Fc 결합체
도 5는 인슐린 아날로그-면역글로불린 Fc 결합체의 순도를 고압 크로마토그래피로 분석한 결과이다. 대표적인 인슐린 아날로그인 7번 아날로그에 대한 결과이다. (A) RP-HPLC, (B) SE-HPLC, (C) IE-HPLC
도 6은 천연형 인슐린-면역글로불린 Fc 결합체 및 인슐린 아날로그-면역글로불린 Fc결합체의 정상 랫드에서의 약동학적 분석을 나타낸 결과이다.
(A) 천연형 인슐린-면역글로불린 Fc 결합체 및 인슐린 아날로그(7번)-면역글로불린 Fc 결합체, (B) 천연형 인슐린-면역글로불린 Fc 결합체 및 인슐린 아날로그(8번)-면역글로불린 Fc 결합체, (C) 천연형 인슐린-면역글로불린 Fc 결합체 및 인슐린 아날로그(9번)-면역글로불린 Fc 결합체
○: 천연형 인슐린-면역글로불린 Fc 결합체 (21.7 nmol/kg), ●: 천연형 인슐린-면역글로불린 Fc 결합체 (65.1 nmol/kg), □: 인슐린 아날로그-면역글로불린 Fc 결합체 (21.7 nmol/kg), ■: 인슐린 아날로그-면역글로불린 Fc 결합체 (65.1 nmol/kg).
본 발명을 구현하기 위하여 하나의 양태로서 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그를 제공한다.
본 발명에서 용어, "인슐린 아날로그(insulin analog)"란 인슐린과 동일한 생체 내의 혈당 조절기능을 보유한 물질을 말한다. 본 발명의 목적상 상기 인슐린 아날로그는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된 물질인 것이 바람직하다. 또한, 상기 인슐린 아날로그는 인슐린 수용체에 대한 결합력 감소로 천연형 인슐린 대비 반감기가 10% 이상 증가한 것일 수 있으나, 이에 제한되지 않는다.
구체적으로, 상기 인슐린 아날로그는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린의 B 쇄 또는 A 쇄의 하나 이상의 아미노산이 변이 또는 결실된 인슐린 아날로그일 수 있다. 예컨대, 천연형 인슐린의 일부 아미노산을 부가, 결실 또는 치환의 형태로 변형시켜서 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된 것일 수 있다.
천연형 인슐린은 췌장에서 분비되는 호르몬으로서 일반적으로 세포 내 글루코스 흡수를 촉진하고 지방의 분해를 억제하여 체내의 혈당을 조절하는 역할을 한다. 인슐린은 혈당조절 기능이 없는 프로인슐린(proinsulin) 전구체의 형태에서 프로세싱을 거쳐 혈당 조절 기능을 가지는 인슐린이 된다. 인슐린은 2개의 폴리펩티드 사슬, 즉 각각 21개 및 30개 아미노산 잔기를 포함하는 A-쇄 및 B-쇄로 구성되어 있고, 이들은 2개의 이황화 다리로 상호 연결되어 있다. 천연형 인슐린의 A-쇄 및 B-쇄는 각각 하기 서열번호: 39 및 40으로 표시되는 아미노산 서열을 포함할 수 있다.
A-쇄:
Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn (서열번호: 39)
B-쇄:
Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Thr (서열번호: 40)
본 발명의 실시예에서 사용된 인슐린 아날로그는 유전자 재조합 기술로 만든 인슐린 아날로그이지만, 본 발명은 이것에만 국한되는 것이 아니라 인슐린 수용체 결합력이 감소된 모든 인슐린 아날로그를 포함한다.
구체적으로, 상기 인슐린 아날로그는 역방향 인슐린(inverted insulin), 인슐린 변이체(variants), 인슐린 단편(fragments), 인슐린 아고니스트(agonist), 유도체(derivatives) 등을 포함하며, 제조법으로는 유전자 재조합뿐만 아니라 고체상(solid phase) 방법으로도 제조할 수 있으나, 이에 제한되는 것은 아니다.
상기 인슐린 아고니스트는 구조와 상관없이 인슐린의 생체 내 수용체에 결합하여 인슐린의 생물학적 활성을 나타내는 물질을 의미한다.
상기 인슐린 유도체는 체내에서 혈당을 조절하는 기능을 보유하면서, 천연형 인슐린의 A-쇄 및 B-쇄의 아미노산 서열 각각에 대해 상동성을 보이며, 아미노산 한 잔기의 일부 그룹이 화학적으로 치환(예: alpha-methylation, alpha-hydroxylation), 제거(예: deamination) 또는 수식(예: N-methylation)된 형태의 펩타이드 형태를 포함한다. 또한, 인슐린 유도체에는 천연형 인슐린과 아미노산 서열에 상동성이 없어도 인슐린 수용체와 결합하여 체내에서 혈당을 조절할 수 있는 펩티드 모사체(mimic) 및 저분자 혹은 고분자 화합물 역시 포함한다.
상기 인슐린 단편은 인슐린에 하나 이상의 아미노산이 추가 또는 삭제된 형태를 의미하며 추가된 아미노산은 천연에 존재하지 않는 아미노산(예: D형 아미노산)일 수 있고, 이러한 인슐린 단편은 체내에서 혈당을 조절하는 기능을 보유한다.
상기 인슐린 변이체는 인슐린과 아미노산 서열이 하나 이상 다른 펩타이드로서 체내에서 혈당을 조절하는 기능을 보유한다.
본 발명의 인슐린 아고니스트, 유도체, 단편 및 변이체에서 각각 사용된 제조방법은 독립적으로 사용될 수 있고 조합도 가능하다. 예를 들어 아미노산 서열이 하나 이상 다르고 아미노 말단 아미노산 잔기에 탈아미노화(deamination)가 도입된 것으로 체내에서 혈당을 조절하는 기능을 보유한 펩티드 역시 본 발명의 범주에 포함된다.
구체적으로, 상기 인슐린 아날로그는 인슐린 B쇄의 1번 아미노산, 2번 아미노산, 3번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 16번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, 26번 아미노산, 27번 아미노산, 28번 아미노산, 29번 아미노산, 30번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 14번 아미노산, 16번 아미노산, 17번 아미노산, 18번 아미노산, 19번 아미노산 및 21번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환 된 것일 수 있으며, 보다 구체적으로는 B쇄의 8번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 14번 아미노산 및 19번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환된 것일 수 있다. 구체적으로, 상기 기술한 아미노산에서 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 17 이상, 18 이상, 19 이상, 20 이상, 21 이상, 22 이상, 23 이상, 24 이상, 25 이상, 26 이상, 또는 27 이상의 아미노산이 다른 아미노산으로 치환된 것일 수 있으나, 이에 제한되지 않는다.
상기 기술한 위치의 아미노산 잔기들은 또한 알라닌, 글루탐산, 아스파라긴, 이소루신, 발린, 글루타민, 글라이신, 라이신, 히스티딘, 시스테인, 페닐알라닌, 트립토판, 프로린, 세린, 트레오닌 또는/및 아스파틱산으로 치환될 수 있다. 또한, 인슐린 A쇄 또는 B쇄의 하나 이상의 아미노산이 결실(deletion) 되어 인슐린 수용체 결합력이 감소한 인슐린 아날로그도 본 발명의 범주에 속하나 인슐린 수용체 결합력이 감소된 인슐린 아날로그는 제한 없이 포함될 수 있다.
본 발명에 따른 인슐린 아날로그는 천연형 인슐린의 A쇄 및 B쇄의 아미노산 서열에서 아미노산의 치환, 부가, 결실 또는 번역 후 변형(예를 들어, 메틸화, 아실화, 유비퀴틴화, 분자 내 공유결합)이 도입되어, 천연형 인슐린에 비해 감소된 인슐린 수용체 결합력을 가지는 임의의 펩티드를 포괄한다. 상기 아미노산의 치환 또는 부가 시에는 인간 단백질에서 통상적으로 관찰되는 20개의 아미노산뿐만 아니라 비정형 또는 비-자연적 발생 아미노산을 사용할 수 있다. 비정형 아미노산의 상업적 출처에는 Sigma-Aldrich, ChemPep 및 Genzymepharmaceuticals가 포함될 수 있다. 이러한 아미노산이 포함된 펩티드와 전형적인 펩티드 서열은 상업화된 펩티드 합성 회사, 예를 들어 미국의 American peptide company, Bachem이나 한국의 Anygen을 통해 합성 및 구매가능하다.
보다 구체적으로, 상기 인슐린 아날로그는 하기 일반식 1으로 표시되는 서열번호 37의 A쇄와 하기 일반식 2로 표시되는 서열번호 38의 B쇄를 포함하는 것일 수 있다. 또한, 상기 A-쇄 및 B-쇄 서열이 이황화 결합으로 상호 연결된 형태일 수 있다. 다만, 이에 제한되는 것은 아니다.
[일반식 1]
Xaa1-Xaa2-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Xaa3-Gln-Leu-Glu-Asn-Xaa4-Cys-Asn (서열번호: 37)
상기 일반식 1에서,
Xaa1은 글리신 또는 알라닌이고,
Xaa2는 이소류신 또는 알라닌이며,
Xaa3는 타이로신, 글루탐산 또는 아스파라긴이며,
Xaa4는 타이로신 또는 알라닌임.
[일반식 2]
Phe-Val-Asn-Gln-His-Leu-Cys-Xaa5-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Xaa6-Xaa7-Xaa8-Tyr-Thr-Pro-Lys-Thr (서열번호: 38)
상기 일반식 2에서,
Xaa5는 글리신 또는 알라닌이며,
Xaa6은 글리신 또는 알라닌이며,
Xaa7은 페닐알라닌 또는 알라닌이며,
Xaa8은 페닐알라닌 또는 알라닌임.
보다 더 구체적으로, 상기 인슐린 아날로그는
(i) 상기 일반식 1에서 Xaa1은 알라닌이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(ii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 알라닌이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(iii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 글루탐산 또는 아스파라긴이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(iv) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 알라닌인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(v) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 알라닌이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(vi) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 알라닌이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(vii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
(viii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 알라닌인 B쇄를 포함하는 것일 수 있다. 그러나, 상기 예에 제한되는 것은 아니다. 그 예로, 상기 기술한 특징적인 아미노산 잔기를 포함하면서, 해당 인슐린 아날로그와 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90% 이상, 보다 더 구체적으로는 95% 이상의 상동성을 가지며, 천연형 인슐린에 비하여 감소된 인슐린 수용체 결합력을 가지는 펩타이드 역시 본 발명의 범주에 포함된다.
본 발명에서 용어, "상동성(homology)"은 천연형(wild type) 단백질의 아미노산 서열 또는 이를 코딩하는 폴리뉴클레오티드 서열과의 유사한 정도를 나타내기 위한 것으로서, 본 발명의 아미노산 서열 또는 폴리뉴클레오티드 서열과 상기와 같은 퍼센트 이상의 동일한 서열을 가지는 서열을 포함한다. 이러한 상동성은 두 서열을 육안으로 비교하여 결정할 수도 있으나, 비교대상이 되는 서열을 나란히 배열하여 상동성 정도를 분석해 주는 생물정보 알고리즘(bioinformatic algorithm)을 사용하여 결정할 수 있다. 상기 두 개의 아미노산 서열 사이의 상동성은 백분율로 표시할 수 있다. 유용한 자동화된 알고리즘은 Wisconsin Genetics Software Package (Genetics Computer Group, Madison, W, USA)의 GAP, BESTFIT, FASTA와 TFASTA 컴퓨터 소프트웨어 모듈에서 이용가능하다. 상기 모듈에서 자동화된 배열 알고리즘은 Needleman & Wunsch와 Pearson & Lipman과 Smith & Waterman 서열 배열 알고리즘을 포함한다. 다른 유용한 배열에 대한 알고리즘과 상동성 결정은 FASTP, BLAST, BLAST2, PSIBLAST와 CLUSTAL W를 포함하는 소프트웨어에서 자동화되어 있다.
본 발명의 또 하나의 양태는 상기 인슐린 아날로그를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터를 포함하는 형질전환체이다.
상기 인슐린 아날로그에 대해서는 앞서 설명한 바와 같다.
상기 폴리뉴클레오티드는, 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드(DNA) 또는 리보뉴클레오티드(RNA)로, 게놈 DNA, cDNA 및 이로부터 전사되는 RNA를 포함하는 의미를 가지며, 기본 구성단위인 뉴클레오티드는 자연의 뉴클레오티드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York, 1980; Uhlman 및 Peyman, Chemical Reviews, 90: 543-584, 1990). 본 발명의 폴리뉴클레오티드는 표준 분자생물학 기술을 이용하여 분리 또는 제조할 수 있다. 예를 들어, 적절한 프라이머 서열을 이용하여 천연형 인슐린 유전자 서열(NM_000207.2, NCBI)로부터 PCR(중합효소 연쇄반응)을 통해 증폭할 수 있고, 자동화된 DNA 합성기를 이용하는 표준 합성기술을 이용하여 제조할 수 있다. 상기 폴리뉴클레오티드는 본 발명에서 핵산과 혼용되어 사용될 수 있다.
상기 인슐린 아날로그를 코딩하는 폴리뉴클레오티드는 상기 기술한 A쇄 및 B쇄의 아미노산 서열을 코딩하는 폴리뉴클레오티드를 포함하는 것일 수 있고, 이의 예로는, 서열번호: 19, 서열번호: 21, 서열번호: 23, 서열번호: 25, 서열번호: 27, 서열번호: 29, 서열번호: 31, 서열번호: 33, 및 서열번호: 35의 폴리뉴클레오티드를 들 수 있다. 그러나, 상기 예에 제한되지 않는다. 그 예로, 상기 기술한 폴리뉴클레오티드 서열뿐만 아니라, 상기 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90% 이상, 보다 더 구체적으로는 95% 이상의 상동성을 가지며, 천연형 인슐린에 비하여 감소된 인슐린 수용체 결합력을 가지는 펩타이드를 코딩하는 폴리뉴클레오티드 역시 본 발명의 범주에 포함된다.
본 발명에 따른 재조합 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있고, 원핵세포 또는 진핵세포를 숙주세포로 사용하기 위한 벡터로서 구축될 수 있다.
본 발명에서 용어, "벡터"란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 핵산 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절요소를 포함하는 핵산 구조물(construct)을 의미한다. 본 발명은 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 제조할 수 있는데, 상기 재조합 벡터를 숙주세포에 형질전환(transformation) 또는 형질감염(transfection) 시킴으로써, 본 발명의 인슐린 아날로그를 수득할 수 있다.
본 발명에서 인슐린 아날로그를 코딩하는 핵산은 프로모터에 작동 가능하게 연결된다. 본 발명에서 용어, "작동 가능하게 연결된(operatively linked)"은 핵산 발현 조절서열(예: 프로모터, 시그널 서열, 라이보좀 결합부위, 전사 종결서열 등)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.
본 발명에서 용어, "프로모터"는 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 코딩 영역의 상위(upstream)의 비해독된 핵산 서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5'-부위에 위치한다.
예를 들어, 본 발명의 벡터가 재조합 벡터이고 원핵세포를 숙주로 하는 경우에, 전사를 진행시킬 수 있는 강력한 프로모터(예: tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로머터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합부위 및 전사/해독 종결서열을 포함하는 것이 일반적이다.
또한, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드(예: pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pPICZα 시리즈, pUC19 등), 파지(예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스(예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 재조합 벡터이고 진핵세포를 숙주로 하는 경우에, 포유동물 세포의 게놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 우두바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열(예: 소성장 호르몬 터미네이터 및 SV40 유래 폴리 아데닐화 서열)을 일반적으로 갖는다.
또한, 본 발명의 재조합 벡터는 선택 마커로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 사용될 수 있다.
본 발명의 재조합 벡터는 회수되는 목적 단백질, 즉 인슐린 아날로그의 정제를 용이하게 하기 위하여 필요에 따라 다른 서열을 추가로 포함할 수 있다. 상기 추가로 포함될 수 있는 서열은 단백질 정제용 태그 서열일 수 있으며, 예컨대, 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG(IBI, USA) 및 6개 히스티딘(hexahistidine) 등이 있으나, 상기 예들에 의하여 목적 단백질의 정제를 위하여 필요한 서열의 종류가 제한되는 것은 아니다.
상기와 같은 태그 서열을 포함하는 재조합 벡터에 의해 발현된 융합 단백질은 친화성 크로마토그래피에 의해 정제될 수 있다. 예컨대, 글루타티온-S-트랜스퍼라제가 융합된 경우에는 이 효소의 기질인 글루타티온을 이용할 수 있고, 6개 히스티딘 태그가 이용된 경우에는 Ni-NTA 칼럼을 이용하여 원하는 목적 단백질을 용이하게 회수할 수 있다.
상기 인슐린 아날로그를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 이용하여, 상기 벡터가 형질전환된 형질전환체가 구축될 수 있다.
본 발명에서 용어, "형질전환(transformation)"이란 DNA를 숙주세포 내로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로, 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다.
본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2침전법, CaCl2침전법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환법 등이 있다.
본 발명에 따른 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 형질전환시키기 위한 방법은 상기 예들에 국한되지 않으며, 당업계에서 통상적으로 사용되는 형질전환 또는 형질감염 방법이 제한 없이 사용될 수 있다.
목적 핵산인 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 숙주세포 내로 도입함으로써 본 발명의 형질전환체(transformant)를 획득할 수 있다.
본 발명에 적합한 숙주는 본 발명의 핵산을 발현하도록 하는 한 특별히 제한되지 않는다. 본 발명에 사용될 수 있는 숙주의 특정한 예로는 대장균(E. coli)과 같은 에스케리키아(Escherichia) 속 세균; 바실러스 서브틸리스(Bacillus subtilis)와 같은 바실러스(Bacillus) 속 세균; 슈도모나스 푸티다(Pseudomonas putida)와 같은 슈도모나스(Pseudomonas) 속 세균; 피키아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe)와 같은 효모; 스포도프테라 프루기페르다(SF9)와 같은 곤충세포; 및 CHO, COS, BSC 등과 같은 동물세포가 있다. 바람직하게는, 숙주세포로 대장균을 사용한다.
본 발명의 또 하나의 양태는 인슐린 아날로그의 반감기 증가 및 생체 이용율을 증가시키거나, 지속적인 활성 유지를 가져오는 제제를 제공한다.
또한, 본 발명은 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질을 결합시킨 것을 특징으로 하는, 지속형 인슐린을 제공한다.
또한, 본 발명은 하기 화학식 1을 갖는 결합체를 제공한다.
[화학식 1]
X-La-F;
여기에서
X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그이고,
L은 링커이고,
a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이다.
상기 인슐린 아날로그에 대해서는 앞서 설명한 바와 같다.
본 발명의 하나의 실시양태에 따르면, 인슐린 아날로그를 이의 반감기 증가 및 생체 이용율을 증가시키거나, 지속적인 활성 유지를 가져오는 제제에 적용하는 경우, 천연형 인슐린에 비하여 우수한 반감기 증가 및 생체 내 활성 효과를 나타낼 수 있다.
특히, 본 발명의 하나의 실시양태에 따르면, 이러한 생체 내 반감기를 연장시킬 수 있는 물질과 인슐린 아날로그를 결합하는 경우, 천연형 인슐린 결합체에 비해 월등히 증가한 생체 내 반감기를 보임을 확인하였다.
상기 인슐린 아날로그의 반감기 증가 및 생체 이용율을 증가시키거나, 지속적인 활성 유지를 가져오는 제제란, 인슐린 아날로그에 직접 공유결합하는 캐리어를 포함하는 제제나, 또는 직접적인 공유결합은 없더라도 인슐린 아날로그의 생체 내 활성 유지를 높일 수 있는 성분을 포함하는 제제를 말한다.
본 발명에서 "지속형 인슐린"이란, 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질이 결합된 물질을 말한다. 상기 지속형 인슐린은 천연형 인슐린에 비하여 반감기가 증대된 효과를 지닌다.
본 발명에서 "생체적합성 물질 또는 생체 내 반감기를 증가시킬 수 있는 물질"은 인슐린 아날로그에 결합되어 이의 반감기를 연장시킬 수 있는 물질을 의미한다. 상기 반감기를 연장시킬 수 있는 생체적합성 물질은 본 발명에서 "캐리어"와 혼용되어 사용된다.
상기 생체적합성 물질 혹은 캐리어는 인슐린 아날로그에 결합되어 이의 반감기를 연장시킬 수 있는 물질이라면 모두 포함하며, 그 예로 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 및 고분자 중합체로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되지 않는다. 상기 생체적합성 물질 혹은 캐리어는 공유 또는 비공유 결합으로 인슐린 아날로그에 결합될 수 있다.
또한 인슐린 수용체 결합력이 감소된 인슐린 아날로그와 생체 내 반감기를 연장할 수 있는 생체적합성 물질 혹은 캐리어와의 연결은 유전자 재조합 방법과 고분자 혹은 저분자 화학물질을 이용한 in vitro 결합 등을 포함하며 어느 결합방식에 한정되지 않는다. 상기 FcRn 결합물질은 면역글로불린 Fc 영역일 수 있으며, 그 예로 IgG Fc일 수 있다.
폴리에틸렌 글리콜을 캐리어로 사용시 위치특이적으로 폴리에틸렌 글리콜을 부착할 수 있는 Ambrx사의 Recode기술이 포함될 수 있으며, 당쇄부위에 특이적으로 부착할 수 있는 Neose사의 당페길화(glycopegylation) 기술이 포함될 수 있다. 또한 생체 내에서 폴리에틸렌 글리콜이 천천히 제거되는 releasable PEG 기술이 이에 포함될 수 있으나, 이에 한정되지 않으며 PEG를 이용하여 생체 내 이용율을 높인 기술들이 포함될 수 있다. 또한, 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산과 같은 고분자 중합체 역시 상기 기술에 의해 인슐린 아날로그에 결합될 수 있다.
알부민을 캐리어로 사용할 경우 알부민 혹은 알부민 단편을 직접 인슐린 아날로그에 직접 공유결합하여 생체 내 안정성을 높일 수 있는 기술이 포함될 수 있으며 알부민을 직접 결합하지 않더라도 알부민에 결합하는 물질, 예을 들어 알부민 특이적 결합 항체 혹은 항체 단편을 인슐린 아날로그에 결합시켜 알부민에 결합하게 하는 기술 및 알부민에 결합력을 가진 특정 펩타이드/단백질(예를 들어, Affibody사의 albumod 기술을 이용하여 생산된 알부민 결합 펩타이드)을 인슐린 아날로그에 결합하는 기술이 포함될 수 있으며, 알부민에 결합력을 가진 지방산 등을 결합시키는 기술들이 이에 포함될 수 있으나, 이에 한정되지 않으며, 알부민을 이용한 생체내 안정성을 높일 수 있는 어떤 기술, 결합방식 등이 이에 포함될 수 있다.
생체 내 반감기를 증가시키기 위해 항체 혹은 항체 단편을 캐리어로 사용하여 인슐린 아날로그에 결합시키는 기술도 본 발명에 포함될 수 있다. FcRn 결합 부위를 같는 항체 혹은 항체 단편일 수 있으며, Fab등 FcRn 결합부위를 포함하지 않는 어떠한 항체 단편일 수 있다. Catalytic 항체를 이용하는 CovX사의 CovX-body 기술이 이에 포함될 수 있으며, 면역글로불린 Fc 영역을 이용하여 생체 내 반감기를 증가시키는 기술도 본 발명에 포함될 수 있다.
면역글로불린 Fc 영역을 이용할 경우 Fc 영역과 인슐린 아날로그와 결합하는 링커 및 결합방식은 펩타이드 결합 혹은 폴리에틸렌글리콜 등일 수 있으나 이에 한정되지 않으며 어떠한 화학적 결합방식일 수 있다. 또한 Fc 영역과 인슐린 아날로그의 결합비는 1:1 혹은 1:2 일 수 있으나 이에 한정되지 않는다.
면역글로불린 Fc 영역은 생체 내에서 대사되는 생분해성의 폴리펩타이드이기 때문에, 약물의 캐리어로 사용하기에 안전하다. 또한, 면역글로불린 Fc 영역은 면역글로불린 전체 분자에 비해 상대적으로 분자량이 적기 때문에 결합체의 제조, 정제 및 수율 면에서 유리할 뿐만 아니라, 아미노산 서열이 항체마다 다르기 때문에 높은 비균질성을 나타내는 Fab 부분이 제거되기 때문에 물질의 동질성이 크게 증가되고 혈중 항원성의 유발 가능성도 낮아지게 되는 효과도 기대할 수 있다
본 발명에서, "면역글로불린 Fc 영역"은, 면역글로불린의 중쇄와 경쇄 가변영역, 중쇄 불변영역 1(CH1)과 경쇄 불변영역(CL1)을 제외한, 중쇄 불변영역 2(CH2) 및 중쇄 불변영역 3(CH3) 부분을 의미하며, 중쇄 불변영역에 힌지(hinge) 부분을 포함하기도 한다. 또한 본 발명의 면역글로불린 Fc 영역은 천연형과 실질적으로 동등하거나 향상된 효과를 갖는 한, 면역 글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄불변영역 1(CL1)을 포함하는 확장된 Fc영역일 수 있다. 또한, CH2및/또는 CH3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수도 있다.
즉, 본 발명의 면역글로불린 Fc 영역은 1) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인, 2)CH1 도메인 및 CH2 도메인, 3)CH1 도메인 및 CH3 도메인, 4)CH2 도메인 및 CH3 도메인, 5)1개 또는 2개의 이상의 도메인과 면역글로불린 힌지 영역(또는 힌지 영역의 일부)와의 조합, 6) 중쇄 불변영역 각 도메인과 경쇄 불변영역의 이량체일 수 있다.
또한, 상기 면역글로불린 Fc 영역은 천연형 아미노산 서열뿐만 아니라 이의 서열 변이체(mutant)를 포함한다. 아미노산 서열 변이체란 천연 아미노산 서열 중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다. 예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다.
또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가될 수도 있는 등 다양한 종류의 변이체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예로 C1q 결합부위가 제거될 수도 있고, ADCC(antibody dependent cell mediated cytotoxicity) 부위가 제거될 수도 있다. 이러한 면역글로불린 Fc 영역의 서열 유도체를 제조하는 기술은 국제특허공개 제WO 97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다.
분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩타이드에서의 아미노산 교환은 당해 분야에 공지되어 있다 (H.Neurath, R.L.Hill, The Proteins, Academic Press, New York, 197 9). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.
경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화 (acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation) 및 아밀화(amidation) 등으로 수식(modification)될 수도 있다.
상기 기술한 Fc 변이체는 본 발명의 Fc 영역과 동일한 생물학적 활성을 나타내나 Fc 영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 변이체다.
또한, 이러한 Fc 영역은 인간 및 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물의 생체 내에서 분리한 천연형으로부터 얻어질 수도 있고, 형질전환된 동물세포 또는 미생물로부터 얻어진 재조합형 또는 이의 유도체 일 수 있다. 여기서, 천연형으로부터 획득하는 방법은 전체 면역글로불린을 인간 또는 동물의 생체로부터 분리한 후, 단백질 분해효소를 처리하여 얻을 수 있다. 파파인을 처리할 경우에는 Fab 및 Fc로 절단되고, 펩신을 처리할 경우에는 pF'c 및 F(ab)2로 절단된다. 이를 크기 배제 크로마토그래피(size-exclusion chromatography) 등을 이용하여 Fc 또는 pF'c를 분리할 수 있다.
바람직하게는 인간 유래의 Fc 영역을 미생물로부터 수득한 재조합형 면역글로불린 Fc 영역이다.
또한, 면역글로불린 Fc 영역은 천연형 당쇄, 천연형에 비해 증가된 당쇄, 천연형에 비해 감소한 당쇄 또는 당쇄가 제거된 형태일 수 있다. 이러한 면역글로불린 Fc 당쇄의 증감 또는 제거에는 화학적 방법, 효소학적 방법 및 미생물을 이용한 유전 공학적 방법과 같은 통상적인 방법이 이용될 수 있다. 여기서, Fc에서 당쇄가 제거된 면역글로불린 Fc 영역은 보체(c1q)의 결합력이 현저히 저하되고, 항체-의존성 세포독성 또는 보체-의존성 세포독성이 감소 또는 제거되므로, 생체 내에서 불필요한 면역반응을 유발하지 않는다. 이런 점에서 약물의 캐리어로서의 본래의 목적에 보다 부합하는 형태는 당쇄가 제거되거나 비당쇄화된 면역글로불린 Fc 영역이라 할 것이다.
본 발명에서 당쇄의 제거(Deglycosylation)는 효소로 당을 제거한 Fc 영역을 말하며, 비당쇄화(Aglycosylation)는 원핵동물, 바람직하게는 대장균에서 생산하여 당쇄화되지 않은 Fc 영역을 의미한다.
한편, 면역글로불린 Fc 영역은 인간 또는 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물기원일 수 있으며, 바람직하게는 인간기원이다. 또한, 면역글로불린 Fc 영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 Fc 영역일 수 있다. 바람직하게는 인간 혈액에 가장 풍부한 IgG 또는 IgM 유래이며 가장 바람직하게는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래이다.
한편, 본 발명에서 "조합"이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 Fc 영역을 암호화하는 폴리펩타이드가 상이한 기원의 단쇄 폴리펩타이드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
본 발명에서 "하이브리드(hybrid)"란 단쇄의 면역글로불린 Fc 영역 내에 2개 이상의 상이한 기원의 면역글로불린 Fc 단편에 해당하는 서열이 존재함을 의미하는 용어이다. 본 발명의 경우 여러 형태의 하이브리드가 가능하다. 즉, IgG Fc, IgM Fc, IgA Fc, IgE Fc 및 IgD Fc의 CH1, CH2, CH3 및 CH4로 이루어진 그룹으로부터 1개 내지 4개 도메인으로 이루어진 도메인의 하이브리드가 가능하며, 힌지를 포함할 수 있다.
한편, IgG 역시 IgG1, IgG2, IgG3 및 IgG4의 서브클래스로 나눌 수 있고 본 발명에서는 이들의 조합 또는 이들의 혼성화도 가능하다. 바람직하게는 IgG2 및 IgG4 서브클래스이며, 가장 바람직하게는 보체 의존적 독성(CDC, complementdependent cytotoxicity)과 같은 이펙터 기능(effector function)이 거의 없는 IgG4의 Fc 영역이다. 즉, 가장 바람직한 본 발명의 약물의 캐리어용 면역글로불린 Fc 영역은, 인간 IgG4 유래의 비-당쇄화된 Fc 영역이다. 인간 유래의 Fc 영역은 인간 생체에서 항원으로 작용하여 이에 대한 새로운 항체를 생성하는 등의 바람직하지 않은 면역 반응을 일으킬 수 있는 비-인간 유래의 Fc 영역에 비하여 바람직하다.
생체 내 반감기를 증가시키기 위해 펩타이드 혹은 단백질 단편을 캐리어로 사용하여 인슐린 아날로그에 결합시키는 기술도 본 발명에 포함될 수 있다. 사용되는 펩타이드 혹은 단백질 단편은 특정 아미노산의 조합의 반복단위로 구성된 Elastin like polypeptide (ELP) 일수 있으며 versartis사의 인위적 폴리펩타이드 PEG인 Xten 기술도 본 발명에 포함된다. 또한 Zealand사의 multi-Lysine을 이용하여 생체 내 반감기를 증가시키는 Structure inducing probe(SIP) 기술도 이에 포함되며 Prolor사의 CTP 융합기술도 이에 포함되며, 생체 내 안정성이 높다고 알려진 트랜스페린(transferrin) 혹은 결합조직의 구성성분인 피브로넥틴(fibronectin) 등과 이의 유도체등도 포함될 수 있다. 인슐린 아날로그에 결합시키는 펩타이드 혹은 단백질은 이에 한정되지 않으며 인슐린 아날로그의 생체내 반감기를 증가시키는 어떠한 펩타이드 혹은 단백질은 본 발명의 범주에 포함된다.
또한 생체내 반감기를 증가시키기 위해 사용되는 캐리어는 폴리사카라이드 (Polysaccharide) 혹은 지방산(fatty acid) 등 비펩타이드 물질일 수 있다.
상기 인슐린 수용체에 대한 결합력이 천연형에 비하여 감소한 인슐린 아날로그와 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 캐리어는 링커를 통하여 연결될 수 있다.
이들을 서로 연결하는 링커는 펩타이드성 링커 또는 비펩타이드성 링커일 수 있으며, 그 예로 폴리에틸렌 글리콜, 지방산, 사카라이드(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있다.
상기 고분자 중합체는 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커일 수 있으나, 이에 제한되지 않는다. 상기 생분해성 고분자는 PLA(폴리락트산, polylactic acid) 및 PLGA(폴리락틱-글리콜산, polylactic-glycolic acid)와 같은 생분해성 고분자를 포함한다.
상기 비펩타이드성 링커는 상기 기술한 것뿐만 아니라, 당해 분야에 이미 알려진 이들의 유도체 및 당해 분야의 기술 수준에서 용이하게 제조할 수 있는 유도체들도 본 발명의 범위에 포함한다.
상기 링커에 의한 결합은 비공유화학 결합 혹은 공유화학결합 등 어떠한 화학적 결합일 수 있으며, 그 제한은 없다.
보다 구체적으로, 본 발명에서 비펩타이드성 중합체는 반복 단위가 2개 이상 결합된 생체적합성 중합체를 포함한다. 상기 반복 단위들은 펩타이드 결합이 아닌 임의의 공유결합을 통해 서로 연결된다. 이와 같은 비펩타이드성 중합체는 양 말단 또는 세 말단을 가질 수 있다.
기존 인프레임 퓨전(inframe fusion) 방법으로 제조된 융합 단백질에서 사용된 펩타이드성 링커의 경우, 생체 내에서 단백질분해효소에 의해 쉽게 절단되어 캐리어에 의한 활성 약물의 혈중반감기 증가 효과를 기대만큼 얻을 수 없을 수도 있으므로, 본 발명에서는 펩타이드 링커 뿐 아니라 비펩타이드 링커를 이용하여 결합체를 제조할 수 있다. 비펩타이드 링커는 단백질분해효소에 저항성 있는 중합체를 사용하여 캐리어와 유사하게 펩타이드의 혈중반감기를 유지할 수 있다. 그러므로, 본 발명에서 사용될 수 있는 비펩타이드성 중합체는 상기와 같은 역할, 즉 생체 내 단백질분해효소에 저항성 있는 중합체이면 제한없이 사용될 수 있다. 비펩타이드성 중합체의 분자량은 1 내지 100 kDa 범위, 바람직하게는 1 내지 20 kDa 범위이나, 이에 제한되지 않는다.
또한, 상기 캐리어, 특히 면역글로불린 Fc 영역과 결합되는 본 발명의 비펩타이드성 중합체는 한 종류의 중합체뿐만 아니라 상이한 종류의 중합체들의 조합이 사용될 수도 있다.
본 발명에 사용되는 비펩타이드성 중합체는 캐리어, 특히 면역글로불린 Fc 영역, 그리고 인슐린 아날로그와 결합될 수 있는 반응기를 가질 수 있다.
상기 비펩타이드성 중합체의 양 말단 반응기는 반응 알데히드 그룹, 프로피온 알테히드 그룹, 부틸 알테히드 그룹, 말레이미드(maleimide) 그룹 및 석시니미드(succinimide) 유도체로 이루어진 군으로부터 선택되는 것이 바람직하다. 상기에서, 석시니미드 유도체로는 석시니미딜 프로피오네이트, 히드록시 석시니미딜, 석시니미딜 카르복시메틸 또는 석시니미딜 카보네이트가 이용될 수 있다. 특히, 상기 비펩타이드성 중합체가 양 말단에 반응 알데히드 그룹의 반응기를 갖는 경우, 비특이적 반응을 최소화하고, 비펩타이드성 중합체의 양 말단에서 생리활성 폴리펩타이드 및 면역글로불린과 각각 결합하는데 효과적이다. 알데히드 결합에 의한 환원성 알킬화로 생성된 최종 산물은 아미드 결합으로 연결된 것보다 훨씬 안정적이다. 알데히드 반응기는 낮은 pH에서 N-말단에 선택적으로 반응하며, 높은 pH, 예를 들어 pH 9.0 조건에서는 라이신 잔기와 공유결합을 형성할 수 있다.
상기 비펩타이드성 중합체의 양 말단 반응기는 서로 같거나 다를 수 있다. 예를 들어, 한쪽 말단에는 말레이미드 그룹을, 다른 쪽 말단에는 알데히드 그룹, 프로피온 알데히드 그룹, 또는 부틸 알데히드 그룹을 가질 수 있다. 양쪽 말단에 히드록시 반응기를 갖는 폴리에틸렌 글리콜을 비펩타이드성 중합체로 이용하는 경우에는 공지의 화학반응에 의해 상기 히드록시기를 상기 다양한 반응기로 활성화하거나, 상업적으로 입수 가능한 변형된 반응기를 갖는 폴리에틸렌 글리콜을 이용하여 본 발명의 단쇄 인슐린 아날로그 결합체를 제조할 수 있다.
또한, 상기 인슐린 아날로그와 생체적합성 물질이 서로 링커를 통해 연결된 경우, 상기 비펩타이드성 링커의 각 말단이 각각 상기 생체적합성물질과 인슐린 아날로그의 아민기 또는 티올기에 결합된 것일 수 있다.
보다 구체적인 양태로서, 상기 인슐린 아날로그와 생체적합성 물질은 그 사이에 개재하는 링커를 통하여 연결되어 있고, 상기 생체적합성 물질은 FcRn 결합물질이며,
상기 링커는 펩타이드 링커, 또는 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커를 통해 연결되는 형태일 수 있다.
한편, 생체이용율을 증가 혹은 지속적인 활성유지를 할 수 있는 제제로는 PLGA, 히알루론산, 키토산등을 이용한 마이크로 파티클, 나노파티클 등에 의한 서방성(sustained release) 제형이 이에 포함될 수 있다
또한, 생체 이용율을 증가 혹은 지속적인 활성유지를 할 수 있는 다른 양태의 제제로는 임플란트(implant), 흡입제(inhalation), 나잘(nasal) 제제, 패치(patch)와 같은 형태의 제제일 수 있다.
이러한 본 발명의 지속형 인슐린, 혹은 인슐린 아날로그 결합체는 에너지 대사 및 당 대사와 같은 기존의 인슐린의 생체 내 활성이 유지될 뿐만 아니라 인슐린 아날로그의 혈중 반감기 및 이로 인한 상기 펩타이드의 생체 내 효력 지속효과가 획기적으로 증가하게 하므로, 당뇨(Diabetes)의 치료에 유용하다.
본 발명의 또 하나의 양태는 (a) (i) 인슐린 아날로그 및 (ii) 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 생체적합성 물질를 각각 준비하는 단계; 및 (b) 상기 인슐린 아날로그 및 생체적합성 물질를 연결하는 단계를 포함하는, 지속형 인슐린을 제조하는 방법을 제공한다.
상기 인슐린 아날로그, 생체적합성 물질 및 지속성 인슐린에 대해서는 앞서 설명한 바와 같다.
본 발명의 또 하나의 양태는 상기 인슐린 아날로그 결합체를 포함하는 인슐린 지속성 제제를 제공한다. 상기 인슐린 지속성 제제는 생체 내 지속성 및 안정성이 천연형 인슐린에 비하여 증가된 인슐린 지속성 제제일 수 있다. 상기 지속성 제제는 당뇨병 치료용 약제학적 조성물일 수 있다. 다만, 이에 제한되지 않는다.
본 발명의 결합체를 포함한 약제학적 조성물은 약제학적으로 허용가능한 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 경구투여시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소 및 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제 및 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제 및 보존제 등을 사용할 수 있다. 본 발명의 약제학적 조성물의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽 및 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 환약, 캡슐 및 서방형 제제 등으로 제형화 할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다.
또한, 충진제, 항응집제, 윤활제, 습윤제, 향료 및 방부제 등을 추가로 포함할 수 있다.
본 발명의 또 하나의 양태는 상기 인슐린 아날로그 또는 인슐린 아날로그 결합체를 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 인슐린 관련 질환 치료 방법를 제공한다.
본 발명에 따른 결합체는 당뇨 치료에 유용한바, 이를 포함하는 약제학적 조성물을 투여함으로써, 상기 질환의 치료를 도모할 수 있다.
본 발명에서 "투여"는, 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 상기 결합체의 투여 경로는 약물이 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강 내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장 내 투여 등이 될 수 있으나, 이에 제한되지는 않는다. 그러나 경구 투여시, 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 하는 것이 바람직하다. 바람직하게는 주사제 형태로 투여될 수 있다. 또한, 약제학적 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
또한, 본 발명의 약제학적 조성물은 치료할 질환, 투여 경로, 환자의 연령, 성별 및 체중 및 질환의 중등도 등의 여러 관련 인자와 함께, 활성성분인 약물의 종류에 따라 결정된다. 본 발명의 약제학적 조성물은 생체 내 지속성 및 역가가 우수하므로, 본 발명의 약제학적 제제의 투여 횟수 및 빈도를 현저하게 감소시킬 수 있다.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
실시예 1: 단쇄 인슐린 아날로그 발현 벡터의 제작
보유 중인 천연형 인슐린 발현 벡터를 주형으로 하여 A쇄 또는 B쇄의 아미노산을 하나씩 변형시킨 인슐린 아날로그들을 제작하기 위해 순방향 및 역방향 올리고 뉴클레오타이드를 합성한 후(표 2), PCR을 진행하여 각각의 아날로그 유전자를 증폭하였다.
하기 표 1에 각각의 A 쇄 또는 B쇄의 아미노산의 변화 서열 및 아날로그 이름을 나타냈다. 즉, 아날로그 1의 경우 A쇄의 1번 글리신이 알라닌으로 치환, 아날로그 4의 경우 B쇄의 8번 글리신이 알라닌으로 치환된 형태이다.
표 1
아날로그 변화서열
아날로그 1 A1G->A
아날로그 2 A2I->A
아날로그 3 A19Y->A
아날로그 4 B8G->A
아날로그 5 B23G->A
아날로그 6 B24F->A
아날로그 7 B25F->A
아날로그 8 A14Y->E
아날로그 9 A14Y->N
인슐린 아날로그 증폭을 위한 프라이머는 하기 표 2에 나타냈다.
표 2
Figure PCTKR2015000576-appb-T000001
인슐린 아날로그 증폭을 위한 PCR 조건은 95℃에서 30초, 55℃에서 30초, 68℃에서 6분으로 이 과정을 18회 반복하였다. 이와 같은 조건에서 얻어진 인슐린 아날로그 단편을 세포 내에서 봉입체 형태로 발현시키기 위하여 pET22b 벡터에 삽입하였으며, 이렇게 얻어진 발현 벡터를 pET22b-인슐린 아날로그 1 내지 9라 명명하였다. 상기 발현 벡터는 T7 프로모터의 조절 하에 인슐린 아날로그 1 내지 9의 아미노산 서열을 코딩하는 핵산을 포함하며, 숙주 내에서 인슐린 아날로그 단백질을 봉입체 형태로 발현시켰다.
하기 표 3에 각각의 인슐린 아날로그 1 내지 9의 DNA 서열 및 단백질 서열을 나타냈다.
표 3
아날로그 서열 서열번호
Analog 1 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GCG ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 19
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Ala Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 20
Analog 2 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC GCG GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 21
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ala Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 22
Analog 3 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC GCG TGC AAC 23
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Ala Cys Asn 24
Analog 4 DNA TTC GTT AAC CAA CAC TTG TGT GCG TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 25
단백질 Phe Val Asn Gln His Leu Cys Ala Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 26
Analog 5 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GCG TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 27
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Ala Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 28
Analog 6 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC GCG TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 29
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Ala Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 30
Analog 7 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC GCG TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC 31
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Ala Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn 32
Analog 8 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC GAA CAG CTG GAG AAC TAC TGC AAC TGA 33
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Glu Gln Leu Glu Asn Tyr Cys Asn 34
Analog 9 DNA TTC GTT AAC CAA CAC TTG TGT GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC CGC CGG GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG AAG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC AAC CAG CTG GAG AAC TAC TGC AAC TGA 35
단백질 Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Asn Gln Leu Glu Asn Tyr Cys Asn 36
실시예 2: 재조합 인슐린 아날로그 융합 펩타이드의 발현
T7 프로모터 조절하의 재조합 인슐린 아날로그 발현을 수행 하였다. 각각의 재조합 인슐린 아날로그 발현 벡터로 E.coli BL21-DE3(E.coli B F-dcm ompT hsdS(rB-mB-) gal λDE3); 노바젠)을 형질전환하였다. 형질전환 방법은 노바젠사에서 추천하는 방법을 따랐다. 각 재조합 발현 벡터가 형질 전환된 각각의 단일 콜로니를 취하여 암피실린(50㎍/ml)이 포함된 2X 루리아 브로스(Luria Broth, LB) 배지에 접종하고, 37℃에서 15시간 배양하였다. 재조합 균주 배양액과 30% 글리세롤이 포함된 2X LB 배지를 1:1(v/v)의 비율로 혼합하여 각 1ml씩 크라이오-튜브에 분주하고, -140℃에 보관하였다. 이를 재조합 융합 단백질의 생산을 위한 세포 스톡(cell stock)으로 사용하였다.
재조합 인슐린 아날로그들의 발현을 위하여, 각 세포 스톡 1 바이알을 녹여 500 ml의 2X 루리아 브로스에 접종하고 37℃에서 14~16시간 동안 진탕 배양하였다. OD600의 값이 5.0 이상을 나타내면 배양을 종료하고, 이를 종 배양액으로 사용하였다. 50 L 발효기(MSJ-U2, B.E.MARUBISHI, 일본)를 이용하여 종 배양액을 17 L의 발효 배지에 접종하고 초기 배스(bath) 발효를 시작하였다. 배양조건은 온도 37℃, 공기량 20 L/분(1 vvm), 교반 속도 500 rpm 그리고 30% 암모니아수를 사용하여 pH 6.70으로 유지시켰다. 발효 진행은 배양액 내의 영양소가 제한되었을 때, 추가배지(feeding solution)를 첨가하여 유가배양을 진행하였다. 균주의 성장은 OD 값에 의해 모니터링하며, OD 값이 100 이상에서 최종 농도 500 μM의 IPTG로 도입하였다. 배양은 도입 후 약 23~25시간까지 더 진행하며, 배양 종료 후, 원심 분리기를 사용하여 재조합 균주를 수확하여 사용 시까지 -80℃에 보관하였다.
실시예 3: 재조합 인슐린 아날로그의 회수 및 재접힘 (refolding)
상기 실시예 2에서 발현시킨 재조합 인슐린 아날로그들을 가용성 형태로 바꾸기 위해 세포를 파쇄하고 리폴딩하였다. 세포 펠렛 100 g(wet weight)을 1 L 용해 완충액(50 mM Tris-HCl(pH 9.0), 1 mM EDTA(pH 8.0), 0.2 M NaCl 및 0.5% 트리톤 X-100)에 재부유하였다. 미세용액화(microfluidizer) 프로세서 M-110EH(AC Technology Corp. Model M1475C)를 이용하여 15,000 psi 압력으로 수행하여 세포를 파쇄하였다. 파쇄된 세포 용해물을 7,000 rpm으로 4℃에서 20분 원심분리하여 상층액을 버리고, 3 L 세척완충액(0.5% 트리톤 X-100 및 50 mM Tris-HCl(pH 8.0), 0.2 M NaCl, 1 mM EDTA)에 재부유하였다. 7,000 rpm으로 4℃에서 20분 동안 원심분리하여 펠렛을 증류수에 재부유한 후, 동일한 방법으로 원심분리하였다. 펠렛을 취하여 400 ml의 완충액(1 M Glycine, 3.78 g Cysteine-HCl, pH 10.6)에 재부유하여 상온에서 1시간 동안 교반하였다. 재부유된 재조합 인슐린 아날로그 회수를 위하여 400 ml의 8 M 우레아를 추가한 후 40℃에서 1시간 교반하였다. 가용화된 재조합 인슐린 아날로그의 재접힘(refolding)을 위하여 7,000 rpm으로 4℃에서 30분간 원심분리한 후 상층액을 취한 후 여기에 7.2 L의 증류수를 연동펌프(peristaltic pump)를 이용하여 1000 ml/hr의 유속으로 넣어주면서 4℃에서 16시간 교반하였다.
실시예 4: 양이온 결합 크로마토그래피 정제
45% 에탄올이 포함된 20 mM 소디움 사이트레이트 (pH 2.0) 완충액으로 평형화된 Source S (GE healthcare사) 컬럼에 재접합이 끝난 시료를 결합시킨 후, 염화칼륨 0.5 M과 45% 에탄올이 포함된 20 mM 소디움 사이트레이트 (pH 2.0) 완충액을 사용하여 농도가 0%에서 100%가 되도록 10 컬럼 용량의 선형 농도구배로 인슐린 아날로그 단백질을 용출하였다.
실시예 5: 트립신(Trypsin)과 카복시펩티데이즈 B(Carboxypeptidase B) 처리
디솔팅 컬럼(Desalting column)으로 용출된 시료에서 염을 제거하고, 완충용액(10 mM Tris-HCl, pH 8.0)으로 교체하였다. 얻어진 시료 단백량의 1000몰비에 해당하는 트립신과 2000몰비에 해당하는 카복시펩티데이즈 B를 첨가한 후, 16℃에서 16시간 교반하였다. 반응을 종료하기 위하여 1 M 소디움 사이트레이트(pH 2.0)를 이용하여 pH를 3.5로 낮추었다.
실시예 6: 양이온 결합 크로마토 그래피 정제
반응이 끝난 시료를 45% 에탄올이 포함된 20 mM 소디움 사이트레이트 (pH 2.0) 완충액으로 평형화된 Source S(GE healthcare사) 컬럼에 다시 결합시킨 후, 염화칼륨 0.5 M과 45% 에탄올이 포함된 20 mM 소디움 사이트레이트(pH 2.0) 완충액을 사용하여 농도가 0%에서 100%가 되도록 10 컬럼 용량의 선형 농도구배로 인슐린 아날로그 단백질을 용출하였다.
실시예 7: 음이온 결합 크로마토 그래피 정제
디솔팅 컬럼(Desalting column)으로 용출된 시료에서 염을 제거하고, 완충용액 10 mM Tris-HCl, pH 7.5)으로 교체하였다. 상기 실시예 6에서 얻어진 시료에서 순수한 인슐린 아날로그를 순수 분리하기 위해 10 mM 트리스 (pH 7.5) 완충액으로 평형화된 음이온 교환 컬럼 (Source Q: GE healthcare사)에 결합시킨 후, 0.5 M 소디움 크롤라이드가 포함된 10 mM 트리스 (pH 7.5) 완충액을 사용하여 농도가 0%에서 100%가 되도록 10 컬럼 용량의 선형 농도구배로 인슐린 아날로그 단백질을 용출하였다.
정제된 인슐린 아날로그의 순도는 단백질 전기영동(SDS-PAGE, 도 1) 및 고압 크로마토그래피(HPLC)를 사용하여 분석하였으며(도 2), 아미노산의 변경 확인은 펩타이드맵핑(도 3)과 각 피크의 분자량 분석을 통하여 확인하였다.
그 결과, 각각의 인슐린 아날로그가 목적하는 바에 따라, 아미노산 서열이 변경이 되었음을 확인할 수 있었다.
실시예 8: 인슐린 아날로그(7번) - 면역글로불린 Fc 결합체의 제조
인슐린 아날로그 베타 체인의 N-말단에 3.4K ALD2 PEG(NOF, 일본)를 페길화시키기 위하여, 인슐린 아날로그:PEG의 몰 비를 1:4로, 인슐린 아날로그 농도를 5 mg/ml로 4℃에서 약 2시간 반응시켰다. 이때 반응은 50 mM 소디움 사이트레이트(Sodium Citrate) pH 6.0, 45% 이소프로판올에서 이루어졌으며, 3.0 mM 농도의 소디움 시아노보로하이드라이드 환원제를 첨가하여 반응시켰다. 반응액은 소디움 사이트레이트(pH 3.0), 45% 에탄올이 포함된 버퍼와 KCl 농도 구배를 이용한 SP-HP(GE Healthcare, 미국) 컬럼을 사용하여 정제하였다.
인슐린 아날로그-면역글로불린 Fc 단편 결합체를 제조하기 위하여, 위에서 정제된 모노 페길화된(mono-PEGylated) 인슐린 아날로그와 면역글로불린 Fc 단편의 몰비가 1:1 - 1:2 가 되도록 하고 전체 단백질 농도를 약 20 mg/ml로 하여 25℃에서 13시간 반응시켰다. 이때 반응 완충액 조건은 100 mM HEPES, pH 8.2이며, 환원제로서 20 mM 소디움 시아노보로하이드라이드를 첨가하였다.
반응이 종결된 후 반응액은 Q HP(GE Healthcare, 미국) 컬럼에 Tris-HCl (pH 7.5) 버퍼와 NaCl 농도 구배를 이용하여 반응하지 않은 면역글로불린 Fc 단편, 모노페길화된 인슐린 아날로그를 분리 정제하였다.
이후 Source 15ISO(GE Healthcare, 미국)를 2차 컬럼으로 사용하여, 잔류한 면역글로불린 Fc 단편 및 인슐린 아날로그가 면역글로불린 Fc 단편에 2개 이상 결합된 결합체를 제거하여, 인슐린 아날로그-면역글로불린 Fc 단편 결합체를 얻었다. 이때, Tris-HCl(pH 7.5)가 포함된 암모늄 설페이트(Ammonium sulfate)의 농도구배를 이용하여 용출하였으며, 용출된 인슐린 아날로그-면역글로불린 Fc 결합체는 단백질 전기영동 (SDS-PAGE, 도 4) 및 고압 크로마토그래피(HPLC)를 사용하여 분석하였다(도 5).
그 결과, 거의 99%의 순도로 정제되었음을 확인할 수 있었다.
실시예 9: 천연형 인슐린, 인슐린 아날로그, 천연형 인슐린-면역글로불린 Fc 결합체와 인슐린 아날로그- 면역글로불린 Fc 결합체들의 인슐린 수용체 결합력 비교
인슐린 아날로그-면역글로불린 Fc 결합체의 인슐린 수용체 결합력을 측정하기 위하여, 표면 플라스몬 공명(SPR, BIACORE 3000, GE healthcare)을 이용하여 분석하였다. CM5칩에 인슐린 수용체를 아민 커플링 방법으로 고정화 시키고, 5개 이상의 농도로 희석한 천연형 인슐린, 인슐린 아날로그, 천연형 인슐린-면역글로불린 Fc 결합체, 인슐린 아날로그-면역글로불린 Fc 결합체를 독립적으로 흘려주어 각각의 물질의 인슐린 수용체에 대한 결합력을 확인하였다. 각 물질의 결합력은 BIAevaluation 소프트웨어를 이용하여 산출하였으며, 이때 사용된 모델은 1:1 Langmuir binding with baseline drift를 이용하였다.
그 결과, 인간 인슐린과 대비하여 인슐린 아날로그(6번)은 14.8%, 인슐린 아날로그(7번)은 9.9%, 인슐린 아날로그(8번)은 57.1%, 인슐린 아날로그(9번)은 78.8%, 천연형 인슐린-면역글로불린 Fc 결합체는 실험 run에 따라 3.7-5.9%사이를 보였으며, 인슐린 아날로그(6번)-면역글로불린 Fc 결합체는 0.9%이하, 인슐린 아날로그(7번)-면역글로불린 Fc 결합체는 1.9%, 인슐린 아날로그(8번)-면역글로불린 Fc 결합체는 1.8%, 인슐린 아날로그(9번)-면역글로불린 Fc 결합체는 3.3%의 수용체 결합력이 확인되었다(표 4). 이와 같이 본 발명의 인슐린 아날로그들은 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소되었으며, 이뿐만 아니라 인슐린 아날로그-면역글로불린 Fc 결합체들 또한 인슐린 수용체 결합력이 현저히 감소되었음을 관찰하였다.
표 4 인슐린 수용체에 대한 결합력 비교
시험번호 물질명 ka(1/Ms,X105) kd(1/s,X10-3) KD(nM)
시험 1 천연형 인간 인슐린 2.21(100%) 7.47(100%) 35.05(100%)
인슐린 아날로그(6번) 0.28(12.6%) 6.60(88.4%) 237.0(14.8%)
시험 2 천연형 인간 인슐린 2.29(100%) 10.1(100%) 46.1(100%)
천연형 인슐린-면역글로불린 Fc 결합체 0.09(3.9%) 7.8(77.2%) 781.3(5.9%)
인슐린 아날로그(6번) 면역글로불린 Fc 결합체 0.02(0.9%) 10.1(100%) 5260.0(0.9%)
시험 3 천연형 인간 인슐린 1.76(100%) 10.73(100%) 63.47(100%)
인슐린 아날로그(7번) 0.14(7.8%) 8.34(77.7%) 642.0(9.9%)
천연형 인슐린-면역글로불린 Fc 결합체 0.05(2.7%) 5.85(54.5%) 1236.67(5.1%)
인슐린 아날로그(7번) 면역글로불린 Fc 결합체 0.02(1.3%) 7.20(67.1%) 3270.0(1.9%)
시험 4 천연형 인간 인슐린 2.9(100%) 12.4(100%) 42.0(100%)
인슐린 아날로그(8번) 1.78(60.0%) 12.9(104.6%) 73.4(57.1%)
천연형 인슐린-면역글로불린 Fc 결합체 0.06(2.1%) 6.9(56.1%) 1140.0(3.7%)
인슐린 아날로그(8번) 면역글로불린 Fc 결합체 0.03(0.9%) 6.4(51.6%) 2320.0(1.8%)
시험 5 천연형 인간 인슐린 2.0(100%) 9.7(100%) 50.4(100%)
인슐린 아날로그(9번) 1.85(92.5%) 11.9(122.5%) 64.0(78.8%)
천연형 인슐린-면역글로불린 Fc 결합체 0.09(4.3%) 7.4(76.5%) 862.0(5.9%)
인슐린 아날로그(9번) 면역글로불린 Fc 결합체 0.05(2.4%) 7.3(75.0%) 1536.7(3.3%)
실시예 10: 천연형 인슐린-면역글로불린 Fc 결합체와 인슐린 아날로그- 면역글로불린 Fc 결합체들의 in vitro 효력 비교
인슐린 아날로그-면역글로불린 Fc 결합체의 in vitro 효력을 측정하기 위하여, 지방세포로 분화시킨 마우스 유래의 3T3-L1 세포주를 이용한 글루코스 흡수능(glucose uptake, 또는 지질 합성능) 시험을 실시하였다. 3T3-L1 세포를 10% NBCS(신생 송아지 혈청)를 포함한 DMEM(Dulbeco's Modified Eagle's Medium, Gibco, Cat.No, 12430) 배지를 이용하여 주 2~3회 계대 배양하며 유지하였다. 3T3-L1 세포를 분화용 배지(10% FBS를 포함한 DMEM)를 이용하여 현탁한 후, 48구판에 구 당 5 x 104개가 되도록 세포를 접종하여 48시간 동안 배양하였다. 지방세포로의 분화를 위하여 분화용 배지에 1 ㎍/mL 인간 인슐린(Sigma, Cat. No. I9278), 0.5 mM IBMX(3-isobutyl-1-methylxanthine, Sigma, Cat. No.I5879), 1 μM Dexamethasone(Sigma, Cat. No. D4902)을 혼합하고, 기존 배지를 제거한 후 구당 250 ㎕씩 넣어주었다. 48시간 후 분화용 배지에 1 ㎍/mL의 인간 인슐린만을 첨가한 배지로 다시 교환하였다. 이후, 48시간마다 1 ㎍/mL의 인간 인슐린을 첨가한 분화용 배지로 교환하면서 7-9일 간 지방세포로의 분화가 유도되는 것을 확인하였다. 글루코스 흡수능 시험을 위하여, 분화가 끝난 세포를 무혈청 DMEM 배지로 1회 수세한 후 250 ㎕씩 넣어 4시간 동안 혈청 고갈을 유도하였다. 인간 인슐린은 10 μM부터 0.01 μM까지, 천연형 인슐린-면역글로불린 Fc결합체와 인슐린 아날로그-면역글로불린 Fc 결합체들은 각각 20 μM부터 0.02 μM까지 무혈청 DMEM 배지로 10배씩 순차적으로 희석하여 준비하였다. 준비된 시료를 세포에 각각 250 ㎕씩 첨가한 후, 24시간 동안 37℃, 5% CO2배양기에서 배양하였다. 배양이 끝난 배지의 글루코스 잔량을 측정을 위해 200 ㎕의 배지를 취해 D-PBS로 각각 5배 희석하여 GOPOD(GOPOD Assay Kit, Megazyme, Cat. No. K-GLUC) 분석을 진행하였다. 글루코스 표준용액의 흡광도를 기준으로 배지의 잔여 글루코스 농도를 환산하고, 천연형 인슐린-면역글로불린 Fc 결합체, 인슐린 아날로그-면역글로불린 Fc 결합체들의 글루코즈 흡수능에 대한 EC50를 각각 산출하였다.
그 결과, 인간 인슐린과 대비하여 천연형 인슐린-면역글로불린 Fc 결합체는 11.6%, 인슐린 아날로그(6번)-면역글로불린 Fc 결합체는 0.43%, 인슐린 아날로그(7번)-면역글로불린 Fc 결합체는 1.84%, 인슐린 아날로그(8번)-면역글로불린 Fc 결합체는 16.0%, 인슐린 아날로그(9번)-면역글로불린 Fc 결합체는 15.1%의 글루코스 흡수능을 보였다(표 5).
이와 같이 본 발명의 인슐린 아날로그(6번)-면역글로불린 Fc 결합체와 인슐린 아날로그(7번)-면역글로불린 Fc 결합체의 in vitro 역가는 천연형 인슐린-면역글로불린 Fc 결합체와 비교하여 획기적으로 감소되었으며, 인슐린 아날로그(8번)-면역글로불린 Fc 결합체와 인슐린 아날로그(9번)-면역글로불린 Fc 결합체의 in vitro 역가는 천연형 인슐린-면역글로불린 Fc 결합체와 유사한 수준으로 관찰되었다.
표 5
시험번호 물질명 글루코스 흡수능 (천연형 인슐린 대비 비율)
시험 1 천연형 인간 인슐린 100%
천연형 인슐린-면역글로불린 Fc 결합체 11.6%
인슐린 아날로그 6번-면역글로불린 Fc 결합체 0.43%
인슐린 아날로그 7번-면역글로불린 Fc 결합체 1.84%
시험 2 천연형 인간 인슐린 100%
천연형 인슐린-면역글로불린 Fc 결합체 15.2%
인슐린 아날로그 8번-면역글로불린 Fc 결합체 16.0%
시험 3 천연형 인간 인슐린 100%
천연형 인슐린-면역글로불린 Fc 결합체 11.7%
인슐린 아날로그 9번-면역글로불린 Fc 결합체 15.1%
실시예 11: 인슐린 아날로그-면역글로불린 Fc 결합체의 약동학 (pharmacokinetics) 확인
인슐린 아날로그-면역글로불린 Fc 결합체들의 약동학을 확인하기 위하여 5일 동안 실험실에 적응한 정상 랫트(SD rat, 수컷, 6주령)에서 시간에 따른 혈중 농도 비교 시험을 진행하였다. 천연형 인슐린-면역글로불린 Fc 결합체와 인슐린 아날로그-면역글로불린 Fc 결합체들을 21.7 nmol/kg와 65.1 nmol/kg를 각각 피하 투여한 후 0, 1, 4, 8, 24, 48, 72, 96, 120, 144, 168, 192, 216시간에서 채혈하였다. 각 시간에서의 천연형 인슐린-면역글로불린 Fc 결합체 및 인슐린 아날로그-면역글로불린 Fc 결합체들의 혈중 내 잔여 농도는 효소결합 면역흡착 분석법(ELISA, enzyme linked immunosorbent assay)이용하여 측정하였으며, 사용된 키트는 Insulin ELISA(ALPCO, 미국)를 사용하였다. 단, 측정항체(detection antibody)로는 mouse anti-human IgG4 HRP conjugate (Alpha Diagnostic Intl, Inc, 미국)를 사용하였다.
천연형 인슐린-면역글로불린 Fc 결합체와 인슐린 아날로그-면역글로불린 Fc결합체들의 약동학을 살펴본 결과 두 물질 모두 투여 농도에 비례하여 혈중 농도가 증가함을 알 수 있었으며, 인슐린 수용체에 대한 낮은 결합력을 보이는 인슐린 아날로그-면역글로불린 Fc 결합체들이 천연형 인슐린-Fc 결합체에 비해 매우 증가한 반감기를 보임을 알 수 있었다(도 6).
이와 같은 결과들은 인슐린 수용체 결합력이 감소하도록 변형된 본 발명의 인슐린 아날로그들이, 면역글로불린 Fc 영역과 결합된 결합체를 형성하였을 경우 실제 생체 내에서 혈중 반감기가 획기적으로 증가하여 안정적인 인슐린 제제로 제공될 수 있으며 당뇨병 치료제로 효과적으로 사용될 수 있음을 시사하는 것이다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (32)

  1. 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그.
  2. 제1항에 있어서, 천연형 인슐린 대비 반감기가 10% 이상 증가함을 특징으로 하는 인슐린 아날로그.
  3. 제1항에 있어서, 상기 인슐린 아날로그는 천연형 인슐린의 하나 이상의 아미노산이 변이 또는 결실된 것인, 인슐린 아날로그.
  4. 제3항에 있어서, 상기 인슐린 아날로그는 인슐린 B쇄의 1번 아미노산, 2번 아미노산, 3번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 16번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, 26번 아미노산, 27번 아미노산, 28번 아미노산, 29번 아미노산, 30번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 14번 아미노산, 16번 아미노산, 17번 아미노산, 18번 아미노산, 19번 아미노산 및 21번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환되거나 결실된 것인, 인슐린 아날로그.
  5. 제4항에 있어서, 상기 인슐린 아날로그는 B쇄의 8번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 14번 아미노산 및 19번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환된 것인, 인슐린 아날로그.
  6. 제4항에 있어서, 상기 치환된 아미노산은 알라닌, 글루탐산, 아스파라긴, 이소루신, 발린, 글루타민, 글라이신, 라이신, 히스티딘, 시스테인, 페닐알라닌, 트립토판, 프로린, 세린, 트레오닌 및 아스파틱산으로 이루어진 군에서 선택되는 것인, 인슐린 아날로그.
  7. 제4항에 있어서, 상기 인슐린 아날로그는 인슐린 A쇄 또는 B쇄의 하나 이상의 아미노산이 결실(deletion)되어 인슐린 수용체 결합력이 감소한 것인, 인슐린 아날로그.
  8. 제1항에 있어서, 상기 인슐린 아날로그는 하기 일반식 1으로 표시되는 서열번호 37의 A쇄와 하기 일반식 2로 표시되는 서열번호 38의 B쇄를 포함하는 것인, 인슐린 아날로그:
    [일반식 1]
    Xaa1-Xaa2-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Xaa3-Gln-Leu-Glu-Asn-Xaa4-Cys-Asn (서열번호: 37)
    상기 일반식 1에서,
    Xaa1은 글리신 또는 알라닌이고,
    Xaa2는 이소류신 또는 알라닌이며,
    Xaa3는 타이로신, 글루탐산 또는 아스파라긴이며,
    Xaa4는 타이로신 또는 알라닌임.
    [일반식 2]
    Phe-Val-Asn-Gln-His-Leu-Cys-Xaa5-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Xaa6-Xaa7-Xaa8-Tyr-Thr-Pro-Lys-Thr (서열번호: 38)
    상기 일반식 2에서,
    Xaa5는 글리신 또는 알라닌이며,
    Xaa6은 글리신 또는 알라닌이며,
    Xaa7은 페닐알라닌 또는 알라닌이며,
    Xaa8은 페닐알라닌 또는 알라닌임.
  9. 제8항에 있어서, 상기 인슐린 아날로그는
    (i) 상기 일반식 1에서 Xaa1은 알라닌이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (ii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 알라닌이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (iii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 글루탐산 또는 아스파라긴이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (iv) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 알라닌인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6은 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (v) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 알라닌이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (vi) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 알라닌이며, Xaa7은 페닐알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (vii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 알라닌이며, Xaa8은 페닐알라닌인 B쇄를 포함하거나;
    (viii) 상기 일반식 1에서 Xaa1은 글리신이고, Xaa2는 이소류신이며, Xaa3는 타이로신이며, Xaa4는 타이로신인 A쇄 및 상기 일반식 2에서 Xaa5는 글리신이고, Xaa6는 글리신이며, Xaa7은 페닐알라닌이며, Xaa8은 알라닌인 B쇄를 포함하는 것인,
    인슐린 아날로그.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 인슐린 아날로그를 코딩하는 폴리뉴클레오티드.
  11. 제10항의 폴리뉴클레오티드를 포함하는 발현 벡터.
  12. 제11항의 발현 벡터를 포함하는, 인간을 제외한 형질전환체.
  13. 제1항 내지 제9항 중 어느 한 항에 따른, 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질을 결합시킨 것을 특징으로 하는, 지속형 인슐린.
  14. 제13항에 있어서, 상기 생체적합성 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide), 및 고분자 중합체로 이루어진 군에서 선택된 것인, 지속형 인슐린.
  15. 제13항에 있어서, 상기 인슐린 아날로그와 생체적합성 물질은 펩타이드 결합으로 서로 연결된 것인, 지속형 인슐린.
  16. 제13항에 있어서, 상기 인슐린 아날로그와 생체적합성 물질은, 폴리에틸렌 글리콜, 지방산, 사카라이드(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택된 링커를 통해 서로 연결된 것인, 지속형 인슐린.
  17. 제13항에 있어서,
    상기 인슐린 아날로그와 생체적합성 물질은 그 사이에 개재하는 링커를 통하여 연결되어 있고, 상기 생체적합성 물질은 FcRn 결합물질이며,
    상기 링커는 펩타이드 링커, 또는 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커를 통해 연결되는 것인 지속형 인슐린.
  18. 제17항에 있어서, 상기 FcRn 결합물질은 면역글로불린 Fc 영역을 포함하는 폴리펩타이드인, 지속형 인슐린.
  19. 제17항에 있어서, 상기 비펩타이드성 링커의 각 말단이 각각 상기 생체적합성 물질과 인슐린 아날로그의 아민기 또는 티올기에 결합된 것인, 지속형 인슐린.
  20. (a) (i) 인슐린 아날로그 및 (ii) 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 생체적합성 물질를 각각 준비하는 단계; 및
    (b) 상기 인슐린 아날로그 및 생체적합성 물질를 연결하는 단계를 포함하는, 지속형 인슐린을 제조하는 방법.
  21. 하기 화학식 1을 갖는 결합체:
    [화학식 1]
    X-La-F;
    여기에서
    X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린 아날로그이고,
    L은 링커이고,
    a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
    F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이다.
  22. 제21항에 있어서,
    X는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 인슐린의 B 쇄 또는 A 쇄의 하나 이상의 아미노산이 변이 또는 결실된 인슐린 아날로그인 것인, 결합체.
  23. 제21항에 있어서,
    상기 인슐린 아날로그는 인슐린 B쇄의 1번 아미노산, 2번 아미노산, 3번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 16번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, 26번 아미노산, 27번 아미노산, 28번 아미노산, 29번 아미노산, 30번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 5번 아미노산, 8번 아미노산, 10번 아미노산, 12번 아미노산, 14번 아미노산, 16번 아미노산, 17번 아미노산, 18번 아미노산, 19번 아미노산 및 21번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환되거나 결실된 것인, 결합체.
  24. 제23항에 있어서,
    상기 인슐린 아날로그는 B쇄의 8번 아미노산, 23번 아미노산, 24번 아미노산, 25번 아미노산, A쇄의 1번 아미노산, 2번 아미노산, 14번 아미노산 및 19번 아미노산으로 이루어진 군에서 선택된 하나 또는 그 이상의 아미노산이 다른 아미노산으로 치환된 것인, 결합체.
  25. 제23항에 있어서, 상기 치환된 아미노산은 알라닌, 글루탐산, 아스파라긴, 이소루신, 발린, 글루타민, 글라이신, 라이신, 히스티딘, 시스테인, 페닐알라닌, 트립토판, 프로린, 세린, 트레오닌 및 아스파틱산으로 이루어진 군에서 선택되는 것인, 결합체.
  26. 제21항에 있어서,
    인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 것인, 결합체.
  27. 제21항에 있어서,
    L은 펩타이드, 폴리에틸렌 글리콜, 지방산, 사카라이드(saccharide), 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 결합체.
  28. 제21항에 있어서,
    X와 F는 공유 화학 결합, 비공유 화학 결합 또는 이들의 조합으로 L에 의해 서로 결합되는 것인, 결합체.
  29. 제27항에 있어서,
    고분자 중합체는 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 비펩타이드성 링커인, 결합체.
  30. 제21항에 있어서,
    F는 IgG Fc 영역인 것인, 결합체.
  31. 제21항 내지 제30항 중 어느 한 항의 결합체를 포함하는, 생체 내 지속성 및 안정성이 증가된 인슐린 지속성 제제.
  32. 제21항 내지 제30항 중 어느 한 항의 결합체를 포함하는, 당뇨병 치료용 지속성 제제.
PCT/KR2015/000576 2014-01-20 2015-01-20 지속형 인슐린 및 그 용도 WO2015108398A1 (ko)

Priority Applications (19)

Application Number Priority Date Filing Date Title
CN202311024383.1A CN116987172A (zh) 2014-01-20 2015-01-20 长效胰岛素及其用途
EP15737856.3A EP3098235A4 (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
MYPI2016702501A MY186251A (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
CR20160376A CR20160376A (es) 2014-01-20 2015-01-20 Insulina de acción prolongada y uso de la misma
MA46146A MA46146A1 (fr) 2014-01-20 2015-01-20 Insuline a action prolongée et utilisation associée
BR112016016578A BR112016016578A2 (pt) 2014-01-20 2015-01-20 Insulina de ação prolongada e uso daanálogo de insulina, polinucleotídeo, vetor de expressão, transformante, insulina de ação prolongada bem como seu método de preparação e formulação da mesma, conjugado, e uso do mesmo mesma
EA201691374A EA201691374A1 (ru) 2014-01-20 2015-01-20 Инсулин длительного действия и его применение
AU2015206890A AU2015206890B2 (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
MA39301A MA39301A1 (fr) 2014-01-20 2015-01-20 Insuline à action prolongée et utilisation associée
US15/113,027 US10253082B2 (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
MA43289A MA43289B1 (fr) 2014-01-20 2015-01-20 Insuline à action prolongée et utilisation associée
CA2937168A CA2937168A1 (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
MX2016009434A MX369656B (es) 2014-01-20 2015-01-20 Insulina de accion prolongada y uso de la misma.
CN201580004573.4A CN105916877A (zh) 2014-01-20 2015-01-20 长效胰岛素及其用途
SG11201605680PA SG11201605680PA (en) 2014-01-20 2015-01-20 Long-acting insulin and use thereof
JP2016564933A JP2017505141A (ja) 2014-01-20 2015-01-20 長時間作用型インスリンおよびその使用
IL246782A IL246782B (en) 2014-01-20 2016-07-14 Long-acting insulin and its uses
PH12016501414A PH12016501414B1 (en) 2014-01-20 2016-07-18 Long-acting insulin and use thereof
ZA2016/05626A ZA201605626B (en) 2014-01-20 2016-08-15 Long-acting insulin and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0006938 2014-01-20
KR20140006938 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015108398A1 true WO2015108398A1 (ko) 2015-07-23

Family

ID=53543214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000576 WO2015108398A1 (ko) 2014-01-20 2015-01-20 지속형 인슐린 및 그 용도

Country Status (22)

Country Link
US (1) US10253082B2 (ko)
EP (1) EP3098235A4 (ko)
JP (1) JP2017505141A (ko)
KR (1) KR102406654B1 (ko)
CN (2) CN116987172A (ko)
AU (1) AU2015206890B2 (ko)
BR (1) BR112016016578A2 (ko)
CA (1) CA2937168A1 (ko)
CL (1) CL2016001844A1 (ko)
CR (1) CR20160376A (ko)
DO (1) DOP2016000176A (ko)
EA (1) EA201691374A1 (ko)
EC (1) ECSP16068524A (ko)
IL (1) IL246782B (ko)
MA (3) MA39301A1 (ko)
MX (1) MX369656B (ko)
MY (1) MY186251A (ko)
PE (1) PE20161153A1 (ko)
PH (1) PH12016501414B1 (ko)
SG (1) SG11201605680PA (ko)
WO (1) WO2015108398A1 (ko)
ZA (1) ZA201605626B (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039267A1 (en) 2015-08-28 2017-03-09 Hanmi Pharm. Co., Ltd. Novel insulin analogs and use thereof
US9855318B2 (en) 2015-05-07 2018-01-02 Eli Lilly And Company Fusion proteins
WO2018143729A1 (ko) 2017-02-03 2018-08-09 한미약품 주식회사 지속성이 증가된 생리활성 물질의 결합체 및 이의 용도
JP2019531075A (ja) * 2016-09-23 2019-10-31 ハンミ ファーマシューティカル カンパニー リミテッド インスリン受容体との結合力が減少された、インスリンアナログ及びその用途
US11098102B2 (en) 2018-12-11 2021-08-24 Sanofi Insulin conjugates
TWI798209B (zh) * 2017-03-23 2023-04-11 南韓商韓美藥品股份有限公司 對胰島素受體有降低親和性之胰島素類似物之接合物及其用途

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031317B1 (ru) 2014-01-20 2018-12-28 Клив Байосайенсиз, Инк. КОНДЕНСИРОВАННЫЕ ПИРИМИДИНЫ В КАЧЕСТВЕ ИНГИБИТОРОВ КОМПЛЕКСА p97
CN108064173B (zh) 2014-11-21 2021-05-18 默沙东公司 胰岛素受体部分激动剂
KR20170036643A (ko) * 2015-09-24 2017-04-03 한미약품 주식회사 인슐린의 제조 방법
WO2019066603A1 (ko) * 2017-09-29 2019-04-04 한미약품 주식회사 효력이 향상된 지속성 단백질 결합체
KR102646845B1 (ko) * 2018-08-08 2024-03-14 주식회사 대웅제약 클로스트리파인을 이용한 지속형 인슐린 아날로그 복합체의 활성형 제조방법
KR20200017078A (ko) 2018-08-08 2020-02-18 주식회사 대웅제약 지속형 인슐린 아날로그 및 그 복합체
TW202120536A (zh) * 2019-07-31 2021-06-01 美商美國禮來大藥廠 鬆弛素(relaxin)類似物及其使用方法
IL295826A (en) 2020-03-31 2022-10-01 Hanmi Pharm Ind Co Ltd Novel il-2 analogs that stimulate the immune system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
KR20050121748A (ko) * 2003-04-29 2005-12-27 일라이 릴리 앤드 캄파니 연장된 시간 작용을 갖는 인슐린 유사체
KR20100111683A (ko) * 2008-01-09 2010-10-15 사노피-아벤티스 도이칠란트 게엠베하 극히 지연된 시간-작용 프로필을 갖는 신규 인슐린 유도체
KR20110134210A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 유도체 약물 결합체
JP2012062311A (ja) * 2003-07-25 2012-03-29 Conjuchem Llc 持続性インスリン誘導体及びその方法
US20120184488A1 (en) * 2009-09-01 2012-07-19 Case Western Reserve University Insulin analogues of enhanced receptor-binding specificity

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175145A (en) 1988-08-26 1992-12-29 Amylin Pharmaceuticals, Inc. Treatment of diabetes mellitus with amylin agonists
US5422339A (en) * 1991-03-19 1995-06-06 Joslin Diabetes Center, Inc. Peptides having insulin autoantibody but not insulin receptor binding capacity
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
ES2234560T3 (es) 1999-01-06 2005-07-01 Genentech, Inc. Variante mutante del factor de crecimiento de tipo insulina (igf-i).
AR036711A1 (es) 2001-10-05 2004-09-29 Bayer Corp Peptidos que actuan como agonistas del receptor del glp-1 y como antagonistas del receptor del glucagon y sus metodos de uso farmacologico
DE10227232A1 (de) 2002-06-18 2004-01-15 Aventis Pharma Deutschland Gmbh Saure Insulinzubereitungen mit verbesserter Stabilität
US20050176108A1 (en) * 2003-03-13 2005-08-11 Young-Min Kim Physiologically active polypeptide conjugate having prolonged in vivo half-life
PL2256134T3 (pl) 2003-11-13 2014-06-30 Hanmi Science Co Ltd Fragment Fc Ig do nośnika leku i sposób jego wytwarzania
EP1917363B1 (en) * 2005-08-16 2011-06-22 Novo Nordisk A/S Method for making mature insulin polypeptides
EP2049149B1 (en) * 2006-07-31 2015-04-15 Novo Nordisk A/S Pegylated extended insulins
WO2008049711A1 (en) * 2006-10-27 2008-05-02 Novo Nordisk A/S Peptide extended insulins
US7790677B2 (en) 2006-12-13 2010-09-07 Elona Biotechnologies Insulin production methods and pro-insulin constructs
JP2008169195A (ja) 2007-01-05 2008-07-24 Hanmi Pharmaceutical Co Ltd キャリア物質を用いたインスリン分泌ペプチド薬物結合体
EP2017288A1 (en) 2007-07-16 2009-01-21 Novo Nordisk A/S Protease stabilized, pegylated insulin analogues
JP2009019027A (ja) 2007-07-16 2009-01-29 Hanmi Pharmaceutical Co Ltd アミノ末端のアミノ酸が変異したインスリン分泌ペプチド誘導体
CN101743252A (zh) 2007-07-16 2010-06-16 诺沃-诺迪斯克有限公司 蛋白酶稳定化的、peg化的胰岛素类似物
WO2009022013A1 (en) 2007-08-15 2009-02-19 Novo Nordisk A/S Insulin analogues with an acyl and aklylene glycol moiety
BRPI0820535B8 (pt) 2007-11-16 2021-05-25 Novo Nordisk As composições farmacêuticas contendo insulina e um peptídeo insulinotrópico
DE102008003568A1 (de) 2008-01-09 2009-07-16 Sanofi-Aventis Deutschland Gmbh Neue Insulinderivate mit extrem verzögertem Zeit-/ Wirkungsprofil
EP2229407B1 (de) 2008-01-09 2016-11-16 Sanofi-Aventis Deutschland GmbH Neue insulinderivate mit extrem verzögertem zeit- / wirkungsprofil
DE102008025008A1 (de) 2008-05-24 2009-11-26 Sanofi-Aventis Deutschland Gmbh Neue Insulinderivate mit extrem verzögertem Zeit-/ Wirkungsprofil
CN101970477B (zh) * 2008-03-14 2014-12-31 诺沃-诺迪斯克有限公司 蛋白酶稳定的胰岛素类似物
MX2010009850A (es) * 2008-03-18 2010-09-30 Novo Nordisk As Analogos de insulina acilados y etabilizados contra proteasas.
US8993516B2 (en) 2008-04-14 2015-03-31 Case Western Reserve University Meal-time insulin analogues of enhanced stability
RS59913B1 (sr) 2008-10-17 2020-03-31 Sanofi Aventis Deutschland Kombinacija insulina i glp-1-agonista
AU2009335712B2 (en) * 2008-12-19 2015-09-17 Indiana University Research And Technology Corporation Insulin analogs
CA2744558A1 (en) 2008-12-19 2010-07-15 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
EA021146B1 (ru) 2009-03-27 2015-04-30 Глаксо Груп Лимитед Продукты слияния и конъюгаты лекарственных средств
KR101058209B1 (ko) 2009-12-30 2011-08-22 전자부품연구원 Ofdm 방식의 디지털 방송 시스템의 빠른 동기 방법
AR081066A1 (es) 2010-04-02 2012-06-06 Hanmi Holdings Co Ltd Conjugado de insulina donde se usa un fragmento de inmunoglobulina
KR101324828B1 (ko) 2010-06-08 2013-11-01 한미사이언스 주식회사 면역글로불린 단편을 이용한 단쇄 인슐린 아날로그 약물 결합체
CN103068842B (zh) * 2010-06-16 2016-10-19 印第安纳大学研究及科技有限公司 对胰岛素受体具有高活性的单链胰岛素激动剂
KR101382593B1 (ko) 2010-07-21 2014-04-10 한미사이언스 주식회사 신규한 지속형 글루카곤 결합체 및 이를 포함하는 비만 예방 및 치료용 약학적 조성물
AU2011282988A1 (en) 2010-07-28 2013-01-31 Smartcells, Inc. Recombinantly expressed insulin polypeptides and uses thereof
JP2014504597A (ja) 2011-01-20 2014-02-24 ジーランド ファーマ アクティーゼルスカブ アシル化グルカゴン類似体とインスリン類似体の組合せ物
EP2681346B1 (en) 2011-03-02 2017-09-06 Oerlikon Surface Solutions AG, Pfäffikon Sliding component coated with metal-comprising carbon layer for improving wear and friction behavior by tribological applications under lubricated conditions
CN102675452B (zh) * 2011-03-17 2015-09-16 重庆富进生物医药有限公司 具持续降血糖和受体高结合的人胰岛素及类似物的偶联物
CA2834876A1 (en) 2011-05-03 2012-11-08 Teijin Aramid B.V. Antiballistic panel
UA113626C2 (xx) 2011-06-02 2017-02-27 Композиція для лікування діабету, що містить кон'югат інсуліну тривалої дії та кон'югат інсулінотропного пептиду тривалої дії
US20140349922A1 (en) 2011-06-02 2014-11-27 Udi Eyal Fima Long-acting glp-1/glucagon receptor agonists
CN103732618B (zh) 2011-06-10 2018-10-09 韩美科学株式会社 新型泌酸调节肽衍生物和包含该泌酸调节肽衍生物的用于治疗肥胖的药物组合物
TWI601744B (zh) 2011-06-17 2017-10-11 韓美科學股份有限公司 包含調酸素與免疫球蛋白片段之複合物及其用途
US9165768B2 (en) 2011-12-16 2015-10-20 Lg Innotek Co., Ltd. Method for deposition of silicon carbide and silicon carbide epitaxial wafer
CA2898730A1 (en) 2012-01-20 2013-07-25 Case Western Reserve University Glutamic acid-stabilized insulin analogues
KR101665009B1 (ko) 2012-03-09 2016-10-11 한미사이언스 주식회사 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물
AR091902A1 (es) 2012-07-25 2015-03-11 Hanmi Pharm Ind Co Ltd Formulacion liquida de un conjugado de insulina de accion prolongada
KR101968344B1 (ko) 2012-07-25 2019-04-12 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 고지혈증 치료용 조성물
AR094821A1 (es) 2012-07-25 2015-09-02 Hanmi Pharm Ind Co Ltd Formulación líquida de un conjugado de péptido insulinotrópico de acción prolongada
AR092862A1 (es) 2012-07-25 2015-05-06 Hanmi Pharm Ind Co Ltd Formulacion liquida de insulina de accion prolongada y un peptido insulinotropico y metodo de preparacion
WO2014049610A2 (en) 2012-09-26 2014-04-03 Cadila Healthcare Limited Peptides as gip, glp-1 and glucagon receptors triple-agonist
PL2916819T3 (pl) 2012-11-06 2020-01-31 Hanmi Pharm. Co., Ltd. Płynna formuła koniugatu białka zawierająca oksyntomodulinę i fragment immunoglobulinowy
AU2014221531B2 (en) 2013-02-26 2018-08-23 Hanmi Pharm. Co., Ltd. Novel insulin analog and use thereof
AR100639A1 (es) 2014-05-29 2016-10-19 Hanmi Pharm Ind Co Ltd Composición para tratar diabetes que comprende conjugados de análogos de insulina de acción prolongada y conjugados de péptidos insulinotrópicos de acción prolongada
KR101676542B1 (ko) 2014-12-30 2016-11-16 건국대학교 산학협력단 프로인슐린의 면역학적 용도

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
KR20050121748A (ko) * 2003-04-29 2005-12-27 일라이 릴리 앤드 캄파니 연장된 시간 작용을 갖는 인슐린 유사체
JP2012062311A (ja) * 2003-07-25 2012-03-29 Conjuchem Llc 持続性インスリン誘導体及びその方法
KR20100111683A (ko) * 2008-01-09 2010-10-15 사노피-아벤티스 도이칠란트 게엠베하 극히 지연된 시간-작용 프로필을 갖는 신규 인슐린 유도체
US20120184488A1 (en) * 2009-09-01 2012-07-19 Case Western Reserve University Insulin analogues of enhanced receptor-binding specificity
KR20110134210A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 인슐린 유도체 약물 결합체

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AUTHIER F ET AL., BIOCHEM J., vol. 332, 1 June 1998 (1998-06-01), pages 421 - 30
BRANGE J ET AL., DIABETES CARE., vol. 13, no. 9, September 1990 (1990-09-01), pages 923 - 54
DUCKWORTH WC ET AL., ENDOCR REV., vol. 19, no. 5, October 1998 (1998-10-01), pages 608 - 24
H. NEURATH; R. L. HILL: "The Proteins", 1979, ACADEMIC PRESS
LIN S ET AL., J PHARMACOL EXP THER, vol. 286, no. 2, 1998, pages 959 - 66
RIBEL U ET AL., DIABETES, vol. 39, 1990, pages 1033 - 9
SCHEIT: "Nucleotide Analogs", 1980, JOHN WILEY
UHLMAN; PEYMAN, CHEMICAL REVIEWS, vol. 90, 1990, pages 543 - 584
VALERA MORA ME ET AL., J AM COLL NUTR., vol. 22, no. 6, December 2003 (2003-12-01), pages 487 - 93

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11253574B2 (en) 2015-05-07 2022-02-22 Eli Lilly And Company Fusion proteins and methods of use
US9855318B2 (en) 2015-05-07 2018-01-02 Eli Lilly And Company Fusion proteins
US10709766B2 (en) 2015-05-07 2020-07-14 Eli Lilly And Company Fusion proteins
TWI781083B (zh) * 2015-08-28 2022-10-21 南韓商韓美藥品股份有限公司 新型胰島素類似物
JP2018526001A (ja) * 2015-08-28 2018-09-13 ハンミ ファーマシューティカル カンパニー リミテッド 新規なインスリンアナログ及びその用途
EP3341404A4 (en) * 2015-08-28 2019-08-21 Hanmi Pharm. Co., Ltd. NOVEL INSULIN ANALOGUES AND THEIR USE
JP7252280B2 (ja) 2015-08-28 2023-04-04 ハンミ ファーマシューティカル カンパニー リミテッド 新規なインスリンアナログ及びその用途
US10647753B2 (en) 2015-08-28 2020-05-12 Hanmi Pharm. Co., Ltd. Insulin analogs and use thereof
CN108350056A (zh) * 2015-08-28 2018-07-31 韩美药品股份有限公司 新型胰岛素类似物及其用途
AU2016317449B2 (en) * 2015-08-28 2021-01-07 Hanmi Pharm. Co., Ltd. Novel insulin analogs and use thereof
WO2017039267A1 (en) 2015-08-28 2017-03-09 Hanmi Pharm. Co., Ltd. Novel insulin analogs and use thereof
CN108350056B (zh) * 2015-08-28 2021-09-21 韩美药品股份有限公司 新型胰岛素类似物及其用途
JP2021168687A (ja) * 2015-08-28 2021-10-28 ハンミ ファーマシューティカル カンパニー リミテッド 新規なインスリンアナログ及びその用途
US11396534B2 (en) 2016-09-23 2022-07-26 Hanmi Pharm. Co., Ltd. Insulin analogs with reduced affinity to insulin receptor and use thereof
AU2017332408B2 (en) * 2016-09-23 2022-02-10 Hanmi Pharm. Co., Ltd. Insulin analogs with reduced affinity to insulin receptor and use thereof
JP2019531075A (ja) * 2016-09-23 2019-10-31 ハンミ ファーマシューティカル カンパニー リミテッド インスリン受容体との結合力が減少された、インスリンアナログ及びその用途
JP7158378B2 (ja) 2016-09-23 2022-10-21 ハンミ ファーマシューティカル カンパニー リミテッド インスリン受容体との結合力が減少された、インスリンアナログ及びその用途
WO2018143729A1 (ko) 2017-02-03 2018-08-09 한미약품 주식회사 지속성이 증가된 생리활성 물질의 결합체 및 이의 용도
TWI798209B (zh) * 2017-03-23 2023-04-11 南韓商韓美藥品股份有限公司 對胰島素受體有降低親和性之胰島素類似物之接合物及其用途
US11752216B2 (en) 2017-03-23 2023-09-12 Hanmi Pharm. Co., Ltd. Insulin analog complex with reduced affinity for insulin receptor and use thereof
US11098102B2 (en) 2018-12-11 2021-08-24 Sanofi Insulin conjugates

Also Published As

Publication number Publication date
US10253082B2 (en) 2019-04-09
EP3098235A4 (en) 2017-10-18
CR20160376A (es) 2016-10-07
MY186251A (en) 2021-06-30
PH12016501414A1 (en) 2016-09-14
BR112016016578A2 (pt) 2017-10-03
AU2015206890B2 (en) 2019-05-23
US20170101455A1 (en) 2017-04-13
MA43289B1 (fr) 2019-12-31
SG11201605680PA (en) 2016-09-29
JP2017505141A (ja) 2017-02-16
EA201691374A1 (ru) 2016-12-30
MA39301A1 (fr) 2018-01-31
ECSP16068524A (es) 2018-11-30
KR102406654B1 (ko) 2022-06-10
CN116987172A (zh) 2023-11-03
AU2015206890A1 (en) 2016-08-04
CN105916877A (zh) 2016-08-31
MA46146A1 (fr) 2020-12-31
CA2937168A1 (en) 2015-07-23
ZA201605626B (en) 2017-11-29
IL246782B (en) 2020-01-30
IL246782A0 (en) 2016-08-31
KR20150087130A (ko) 2015-07-29
DOP2016000176A (es) 2017-02-15
CL2016001844A1 (es) 2017-01-06
PE20161153A1 (es) 2016-10-27
EP3098235A1 (en) 2016-11-30
PH12016501414B1 (en) 2016-09-14
MX369656B (es) 2019-11-15
MX2016009434A (es) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2015108398A1 (ko) 지속형 인슐린 및 그 용도
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2014133324A1 (ko) 신규한 인슐린 아날로그 및 이의 용도
WO2017052321A1 (ko) 다수의 생리활성 폴리펩타이드 및 면역글로불린 Fc 영역을 포함하는, 단백질 결합체
WO2019066586A1 (ko) 글루카곤 유사 펩타이드-2(glp-2) 유도체의 지속형 결합체
WO2018056764A1 (ko) 인슐린 수용체와의 결합력이 감소된, 인슐린 아날로그 및 이의 용도
WO2018117613A1 (ko) 뇌 표적 지속성 단백질 결합체
WO2020060122A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 이의 용도
WO2012173422A9 (en) A conjugate comprising oxyntomodulin and an immunoglobulin fragment, and use thereof
WO2015183038A1 (ko) 지속형 인슐린 아날로그 결합체 및 지속형 인슐린 분비 펩타이드 결합체를 포함하는 당뇨병 치료용 조성물
WO2019066570A1 (ko) 지속형 단쇄 인슐린 아날로그 및 이의 결합체
AU2016317449B2 (en) Novel insulin analogs and use thereof
WO2015152618A1 (ko) 면역글로불린 fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2018143729A1 (ko) 지속성이 증가된 생리활성 물질의 결합체 및 이의 용도
WO2018174668A2 (ko) 인슐린 수용체와의 결합력이 감소된 인슐린 아날로그의 결합체 및 이의 용도
US20080146500A1 (en) Selective Vpac2 Receptor Peptide Agonists
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2019190293A1 (ko) 뇌 표적 지속성 단백질 결합체, 이의 제조 방법, 및 이를 포함하는 조성물
WO2016006963A1 (en) Insulin analogue
WO2020130749A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 및 인슐린을 포함하는 약학 조성물
WO2015199511A1 (en) Novel long-acting insulin analogue and use thereof
EP1756156B1 (en) Selective vpac2 receptor peptide agonists
WO2022080986A1 (ko) Glp-1/gip 이중작용제, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2020071865A1 (ko) 글루카곤 및 이를 포함하는 조합물의 치료학적 용도
WO2019022563A2 (ko) 이두로네이트 2-설파타제 결합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 246782

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2937168

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12016501414

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2016564933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001252-2016

Country of ref document: PE

Ref document number: 15113027

Country of ref document: US

Ref document number: MX/A/2016/009434

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015737856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: NC2016/0000531

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016578

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201691374

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201607933

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2015206890

Country of ref document: AU

Date of ref document: 20150120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: CR2016-000376

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 39301

Country of ref document: MA

ENP Entry into the national phase

Ref document number: 112016016578

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160718