WO2015072627A1 - 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법 - Google Patents

황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법 Download PDF

Info

Publication number
WO2015072627A1
WO2015072627A1 PCT/KR2014/001589 KR2014001589W WO2015072627A1 WO 2015072627 A1 WO2015072627 A1 WO 2015072627A1 KR 2014001589 W KR2014001589 W KR 2014001589W WO 2015072627 A1 WO2015072627 A1 WO 2015072627A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
hydrogen sulfide
photon
fluorescence
Prior art date
Application number
PCT/KR2014/001589
Other languages
English (en)
French (fr)
Inventor
안교한
김도경
싱하수방카
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US15/037,168 priority Critical patent/US20160274123A1/en
Publication of WO2015072627A1 publication Critical patent/WO2015072627A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • G01N33/6815Assays for specific amino acids containing sulfur, e.g. cysteine, cystine, methionine, homocysteine

Definitions

  • the present invention selectively utilizes compounds containing alpha-beta unsaturated carbonyl ( ⁇ , ⁇ -unsaturated carbonyl) functional groups and acedan (Acedan, 2-acyl-6-dimethyl-amino-naphthalene) phosphor to selectively hydrogen sulfide in vivo It relates to a probe to detect and a method of manufacturing the probe.
  • Hydrogen sulfide is a substance present in equilibrium with its anion (HS ⁇ ) under physiological conditions, and is a gaseous compound that is important in signaling after carbon monoxide and nitrogen oxides. Hydrogen sulfide is involved in a variety of physiological processes, including modulate neuronal activity, relax smooth muscle, regulate an insulin release, induce angiogenesis, and suppress inflammation. Has been reported to date. Various analytical methods have been proposed to identify and characterize the biological phenomena caused by these hydrogen sulfides.
  • fluorescent probes using high nucleophilicity characteristic of hydrogen sulfide have been developed.
  • the key considerations in the development of such fluorescent probes are: (1) sulfides with high concentrations in vivo: glutathione (GHS), cysteine (Cys, cystein), homocysteine (Hcy, homocystein) High selectivity without interference from (2) high sensitivity to detect hydrogen sulfide present in cells, (3) fast response rate, (4) low cytotoxicity, and (5) imaging biological tissue Ability to do.
  • fluoride detection method of hydrogen sulfide using arylazide has the disadvantage of showing a low reaction rate and low selectivity in response to competitive biothiol.
  • Allylsulfonyl azide has a higher electrophilicity than allyl azide and thus responds quickly to hydrogen sulfide, but exhibits very low substrate selectivity. In particular, interference with glutathione, the most abundant sulphide, is a serious problem in developing hydrogen sulfide selective fluorescent probes.
  • the present inventors have completed the present invention by developing a molecular probe capable of fluorescence imaging of hydrogen sulfide in vivo in order to overcome the problems of the prior art.
  • the present invention provides a one-photon and / or two-photon fluorescent probe represented by the formula (1).
  • R 1 is hydrogen, alkyl, or substituted C 1-3 alkyl
  • R 2 is hydrogen, alkyl, or substituted C 1-3 alkyl
  • R 3 is hydrogen, alkyl, or substituted C 1-3 alkyl
  • R 4 is hydrogen or alkyl
  • R 5 may be CHO or COCF 3 .
  • R 1 is hydrogen or OCH 3 (methoxy)
  • R 2 is hydrogen or OCH 3 (methoxy)
  • R 3 is CH 2 CH 2 OH (ethanol)
  • R 4 is hydrogen and R 5 may be CHO.
  • the probe may be fluorescence in combination with hydrogen sulfide.
  • the present invention comprises the steps of injecting the photon and / or two-photon fluorescent probe into the cell, the injected fluorescent probe reacts with the hydrogen sulfide in the cell to fluoresce, observing the fluorescence under a one-photon or two-photon fluorescence microscope It provides a method for imaging intracellular hydrogen sulfide comprising a.
  • the present invention provides a method for preparing a hydrogen sulfide-sensing one-photon and / or two-photon fluorescent probe by introducing a methoxy functional group to R 1 and / or R 2 of Chemical Formula 1.
  • the fluorescent probe of the present invention has a two-photon excitation characteristic of exciting the excited state using energy (or twice the wavelength) of half the wavelength of a one-photon fluorescent probe ( Since it has a two-photon excitable, it has a merit that a very high resolution can be realized because it is not only affected by deep cell permeability, low cell destruction, quenching due to in vivo hemoglobin, etc. but also excites only the focal region.
  • Figure 1 shows the results of fluorescence change when the compound 2 according to the present invention reacted with various concentrations of hydrogen sulfide.
  • Figure 2 shows the results of the fluorescence change over time when the compound 2 according to the present invention reacted with hydrogen sulfide.
  • Figure 3 shows the results of fluorescence changes when the compound 2 according to the present invention reacted with hydrogen sulfide and biological sulfides (cysteine, homocysteine, glutathione).
  • Figure 4 shows the results of fluorescence change when the compound 2 according to the present invention reacted with various kinds of biological materials.
  • Figure 6 shows the results confirming the effect of acidity (pH) when the compound 2 according to the present invention reacts with hydrogen sulfide.
  • Figure 7 shows the results of the cell imaging experiments using a one-photon and two-photon fluorescence microscope using the compound 2 (Cpd 2) according to the present invention.
  • FIG. 8 shows the results of a mouse organ tissue imaging experiment using a two-photon fluorescence microscope using Compound 2 according to the present invention.
  • Figure 12 shows the results of confirming the hydrogen sulfide selectivity of the compounds 2, 3, 4 according to the present invention.
  • the present invention is characterized by providing a one-photon and / or two-photon fluorescent probe represented by the following formula (1).
  • R 1 is hydrogen, alkyl, or substituted C 1-3 alkyl
  • R 2 is hydrogen, alkyl, or substituted C 1-3 alkyl
  • R 3 is hydrogen, alkyl, or substituted C 1 It is preferably -3 alkyl
  • R 4 is hydrogen or alkyl
  • R 5 is CHO or COCF 3 , most preferably, as shown in the formula (18)
  • R 1 is hydrogen or OCH 3 (methoxy)
  • R 2 is Hydrogen or OCH 3 (methoxy)
  • R 3 is CH 2 CH 2 OH (ethanol)
  • R 4 is hydrogen
  • R 5 may be a compound that is CHO, but is not limited thereto.
  • alkyl refers to an aliphatic hydrocarbon group.
  • alkyl means “saturated alkyl” meaning that it does not contain any alkene or alkyne moiety, and "unsaturated alkyl” means that it contains at least one alkene or alkyne moiety. It is used as a concept that includes all of them.
  • the alkyl is not particularly limited, but may be preferably substituted C 1-3 alkyl.
  • the present inventors found that alpha-beta-unsaturated carbonyl functional groups and acedans (Acedan, 2-acyl) having an electron-rich, steric hindered aryl group (2-formyl-4,6-dimethoxyphenyl)
  • a fluorescent probe comprising a -6-dimethyl-amino-naphthalene) phosphor has been newly developed.
  • the unsaturated carbonyl functional group is to form a hydrogen sulfide bond with high selectivity and sensitivity
  • the acedan phosphor that provides a fluorescent signal is a material having two-photon fluorescence characteristics. It has excellent performance in cell and tissue imaging.
  • the compound of the probe exhibits a fluorescence change according to 1,4-addition reaction between the hydrogen sulfide and the alpha-beta unsaturated carbonyl functional group, thereby combining fluorescence selectively with hydrogen sulfide among various sulfides in vivo. It is done. That is, the alpha-beta unsaturated carbonyl group of the probe according to the present invention reacts with hydrogen sulfide to 1,4-addition to induce fluorescence turn-on of the acedan phosphor, thereby making high selection in various sulfides and biological substances. Detects only hydrogen sulfide with performance and sensitivity.
  • various sulfides (hydrogen sulfide, cysteine, homocysteine, glutathione) were added to the buffer solution with the probe of the present invention to observe the change in fluorescence over time, and it was confirmed that the reaction selectively reacted only with hydrogen sulfide. (See FIGS. 2 and 3).
  • fluorescence turn-on phenomenon was selectively observed only in hydrogen sulfide (see FIG. 4).
  • Two-photon fluorescence microscopy one of the cell and tissue imaging techniques, has advantages in terms of quenching due to deep cell permeability, low cell disruption, and low in vivo hemoglobin compared to one-photon fluorescence microscopy.
  • the hydrogen sulfide distribution in cells and tissues was imaged by two-photon fluorescence microscopy using the probe of the present invention, the probe of the present invention is excellent It was confirmed to image hydrogen sulfide in cells and tissues with efficiency (see FIGS. 7, 8, and 10).
  • the present invention comprises the steps of (a) injecting the fluorescent probe into the cell; (b) the injected fluorescent probe reacts with hydrogen sulfide in living cells to fluoresce; And (c) it can provide a method of imaging the intracellular hydrogen sulfide comprising the step of observing the fluorescence under a one-photon or two-photon fluorescence microscope.
  • the alpha-beta unsaturated carbonyl functional group has an electron donor functional group, most preferably methoxy, in ortho and para positions in order to have selectivity for hydrogen sulfide.
  • Quantum chemical calculations were performed to determine whether a (methoxy) group was needed, and the electron density for the carbon at the beta position where hydrogen bonds were formed in the molecule was lowered (where the electron density is getting higher toward a negative value). Due to the effect of electron density, it was found that only hydrogen sulfide having the highest activity among sulfides can participate in the chemical reaction (see FIG. 11).
  • R 1 and R 2 in Formula 1 may be substituted with a methoxy group or As a result of preparing a compound (Formula 2, 3, 4) that was not substituted at all and confirming hydrogen sulfide selectivity, it was found that the electron donor functional group affected hydrogen sulfide selectivity (see FIG. 12).
  • hydrogen sulfide detection comprising the step of preparing a compound of formula (2) by replacing all of the R 1 and R 2 of the formula (1) with a methoxy group by reacting the compound of formula (10) prepared in step 4) under acidic conditions
  • a method of making a one-photon and / or two-photon fluorescent probe is provided.
  • the organic chemical reaction can be prepared by the person skilled in the art based on methods known in the art to select the reaction solvent, ligand, catalyst and / or additives to make the same compound.
  • the probe according to the present invention can be effectively used to develop hydrogen sulfide inhibitors by treating hydrogen sulfide inhibitors with cells and observing them as fluorescent changes in the amount of hydrogen sulfide. Therefore, the present invention can provide a method for detecting a hydrogen sulfide generation inhibitory substance in vivo using the fluorescent probe of the present invention.
  • Step 1-1 Synthesis of 1- (6- (2- hydroxyethylamine) naphthalen-2-yl) ethanone (1- (6- (2- hydroxyethyl amino) naphthalen-2-yl) ethanone)
  • the pale yellow solid compound 5-1 obtained by concentration was separated by column chromatography (diameter 6 cm, height 15 cm) using silica gel (Merck-silicagel 60, 230-400 mesh) (developing solution: 20% EtOAc / Hexane) to give a pale yellow solid compound 5-2 (1.33 g, 80%).
  • 1 H NMR (CDCl 3 , 300 MHz, 293K): ⁇ 8.41 (1H, s), 7.98 (1H, dd), 7.87 (1H, d), 7.70 (1H, d), 7.16 (1H, dd), 5.4 (1H , s), 2.71 (3H, s).
  • the extracted organic layer was dried over Na 2 SO 4 (5 g), concentrated with intake (25 ° C., 20-500 mmHg), and the concentrated organic layer was heated using silica gel (Merck-silicagel 60, 230-400 mesh). Chromatography (6 cm in diameter, 15 cm in height) was carried out by separation (developing solution: 50: 1 v / v dichloromethane-methanol) to give a yellow solid compound 6 (0.86 g, 70%).
  • Step 1-2 Synthesis of 2-bromo-3,5- dimethoxybenz aldehyde
  • Step 1-3 Synthesis of 2- (1,3- dioxolan-2-yl) -4,6- dimethylbenzaldehyde (2- (1,3- dioxolan-2-yl) -4,6-dimethoxybenzaldehyde)
  • Steps 1-4 (I) -3- (2- (1,3-dioxolan-2-yl) -4,6-dimethoxyfeyl-1- (6- (2- hydroxyethylamino) Naphthalene-2-yl) prop-2-en-1-one) ((E) -3- (2- (1,3-dioxolan-2-yl) -4,6-dimethoxyphenyl) -1- (6 Synthesis of-(2-hydroxyethylamino) naphthalen-2-yl) prop-2-en-1-one)
  • Steps 1-5 (I) -2- (3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3 -oxotrop-1-enyl) -3,5-dimethoxy Synthesis of benzaldehyde) ((E) -2- (3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3-oxoprop-1-enyl) -3,5-dimethoxybenzaldehyde)
  • Step 2-1 Synthesis of 2- (3-methoxyphenyl) -1,3- dioxolane (2- (3-methoxyphenyl) -1,3- dioxolane)
  • Step 2-2 Synthesis of 2- (1,3- dioxalan-2-yl) -6-methoxybenzaldehyde (2- (1,3- dioxolan-2-yl) -6-methoxybenzaldehyde)
  • Step 2-3 (I) -3- (2- (1,3-dioxaran-2-yl) -6-methoxyphenyl) -1- (6- (2- hydroxyethylamino) Naphthalen-2-yl) ((E) -3- (2- (1,3-dioxolan-2-yl) -6-methoxyphenyl) -1- (6- (2-hydroxyethylamino) naphthalen-2-yl) prop -2-en-1-one) Synthesis
  • Step 2-4 (I) -2- (3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3 -oxoflov-1-enyl) -3-metholsibenzaldehyde) Synthesis of ((E) -2- (3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3-oxoprop-1-enyl) -3-methoxybenzaldehyde)
  • Step 3-1 Synthesis of 2- (1,3-dioxlan-2- yl) benzaldehyde (2- (1,3-dioxolan-2- yl) benzalde hyde)
  • Step 3-2 (I) -3- (2- (1,3-dioxan-2-yl) phenyl) -1- (6- (2-hydroethylamino ) naphthalen-2-yl) pro Ph-2-en-1-one) ((E) -3- (2- (1,3-dioxolan-2-yl) phenyl) -1- (6- (2-hydroxyethylamino) naphthalen-2-yl) synthesis of prop-2-en-1-one)
  • Step 3-3 (I) -2- (3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3 -oxoflov-1-enyl) benzaldehyde ((E) -2 Synthesis of-(3- (6- (2-hydroxyethylamino) naphthalen-2-yl) -3-oxoprop-1-enyl) benzaldehyde)
  • the fluorescence-onset mechanism according to the reaction of Compound 2 with hydrogen sulfide is shown in FIG. 1A, and the alpha-beta unsaturated carbonyl functional group of Compound 2 binds to hydrogen sulfide to induce a ring-type chemical reaction.
  • the result produced by the chemical reaction shows a strong fluorescence and shows a fluorescence emission wavelength of 510 nm at an excitation wavelength of 375 nm.
  • the fluorescence graph of Compound 2 was measured in buffer (pH 7.4, 10 mM HEPES buffer).
  • buffer pH 7.4, 10 mM HEPES buffer
  • PTI Photon Technical International Fluorescence System was used for fluorescence spectra analysis. A cell containing compound 2 in each device was used with a standard quartz cell having a thickness of 1 cm.
  • Compound 2 (10 ⁇ M) was treated with hydrogen sulfide at a concentration of 0 to 50 ⁇ M, respectively, and 5 minutes later, the fluorescence graph was confirmed.
  • compound 2 (10 ⁇ M) and biologically active substances (amino acids (Amino acid, Ala, Glu, Lys, Met), lipoic acid) anion (NO 2-, SO 4 2-, S 2 O 3 2-, SCN -, I -), was reacted an active oxygen (H 2 O 2)) were observed fluorescence change.
  • the buffer used in the experiment was the same as in Example 1, and the concentration of each biologically active substance was 100 ⁇ M. About 30 minutes after the addition of each biologically active substance, an excitation wavelength of 375 nm was used, and a fluorescence emission wavelength of 510 nm was confirmed.
  • Compound 2 (10 ⁇ M) was treated on HeLa cells (human cervical carcinoma cells) to observe the fluorescence change. It was. HeLa cells were cultured in Dulbecco's Modified Eagles Medium (DMEM, Hyclone) containing 10% fetal bovine serum (hyclone) and penicillin-streptomycin (Hyclone) at 5% CO2 and ambient temperature of 37 ° C. After culturing to cm 2 it was used for the experiment.
  • DMEM Dulbecco's Modified Eagles Medium
  • Hyclone fetal bovine serum
  • Hyclone penicillin-streptomycin
  • the one-photon fluorescence microscope used was the LSM710 confocal microscope from Carl Ziess, and the two-photon fluorescence microscope was a Chameleon Ultra model with a Ti-sapphire laser from Coherent.
  • the lens used for the two-photon fluorescence microscope was XLUMPLFNM, NA 1.0 model of Olympus, and the wavelength and laser power used for the two-photon fluorescence microscope were 880 nm and 15 mW, respectively.
  • the set of experiments constructed was as follows: (1) a control set without any treatment; (2) a set treated with only a probe (10 ⁇ M) of Compound 2 (Cpd 2) and incubated for 30 minutes; (3) a set of 30 minutes of pre-treatment with GSH (300 ⁇ M), followed by a probe (10 ⁇ M) of compound 2 (Cpd 2), followed by further 30 minutes of incubation; (4) a set of 30 minutes of pretreatment with Cys (300 ⁇ M), followed by treatment with a probe (10 ⁇ M) of Compound 2 (Cpd 2), followed by further 30 minutes of incubation; (5) a set of 30 minutes of pretreatment with Na 2 S (300 ⁇ M), followed by a probe of compound 2 (Cpd 2) (10 ⁇ M), followed by a further 30 minutes of incubation; (6) After incubation with PMA (50 ⁇ M, phorbol 12-myristate 13-acetate) for 30 minutes, the probe treated with Compound 2 (Cpd 2) probe (10 ⁇ M) and in
  • Tissue imaging of each organ of rats following Compound 2 treatment was performed using a two-photon fluorescence microscope. That is, the distribution of hydrogen sulfide (H 2 S) present in each organ of the rat (brain, kidney, liver, spleen, lung) was confirmed through Compound 2, and for this purpose, after injecting Compound 2 into the abdominal cavity of living mice The organ set (1 ') and the rat organs were taken out, and the organ set (2') soaked in the solution of Compound 2 was prepared.
  • the rat used in the experiment was C57BL6 type (SAMTAKO corp), 5 weeks old.
  • Tissues of each organ cut out were placed in an OCT complex (10% w / w polyvinyl alcohol, 25% w / w polyethylene glycol, 85.5% w / w inactive species) and immobilized, and each tissue was then replaced with a specimen block (Paul Marienfeld GMbH & Co. ) And treated with 4% PFA (paraformaldehyde) and stored for 10 minutes. Subsequently, the sample prepared by washing three times with PBS buffer and covering the surface with mount solution (Gel Mount, BIOMEDA) was subjected to the imaging experiment using the same two-photon fluorescence microscope as in Example 7.
  • OCT complex % w / w polyvinyl alcohol, 25% w / w polyethylene glycol, 85.5% w / w inactive species
  • each organ of the rat was first extracted, soaked in a solution of Compound 2 (10 ⁇ M) for 10 minutes, and pulled out to prepare a sample in the same manner as set (1') above and imaged. The experiment was performed.
  • FIG. 8A is a two-photon fluorescence image of each organ tissue not treated with Compound 2 as a control, showing very small auto-fluorescence values.
  • FIG. 8B shows that the signal was increased in the brain, kidney, liver, spleen, and lung as a result of the (1 ′) set. Since the compound 2 was intraperitoneally injected in the living state, it can be seen that the compound 2 was spread out to all organs, and particularly, the hydrogen sulfide in the brain was detected.
  • 8c shows strong fluorescence changes in the brain, liver, and lung as a result of set (b '), and confirms the distribution of hydrogen sulfide for each organ.
  • the scale bar means 30 ⁇ m
  • FIG. 8D shows the average value of fluorescence intensity for each organ, with the vertical axis representing fluorescence intensity in each tissue and the horizontal axis representing each organ.
  • Tissue imaging of each organ of zebrafish following compound 2 treatment was performed using a two-photon fluorescence microscope. That is, zebrafish were cultured in an environment containing Compound 2, and then each organ was extracted to examine the distribution of hydrogen sulfide (H 2 S) in the fish. Six-month-old zebrafish were used and the experiment consisted of two sets.
  • Set (1 ") contains zebrafish E3 media containing 100 ⁇ M of compound 2 (15 mM NaCl, 0.5 mM KCl, 1 mM MgSO 4 , 1 mM CaCl 2 , 0.15 mM KH 2 PO 4 , 0.05 mM Breed in Na 2 HPO 4 , 0.7 mM NaHCO 3 , pH 7.4), incubate at 27 ° C. for about 20 minutes, remove, wash with clean E3 media several times, and then wash each organ (brain, bure, eyes, gills, heart, 9 organs such as spleen, liver and kidney were extracted and observed with the same two-photon fluorescence microscope as in Example 7.
  • FIG. 9A is a result for set (1 ′′)
  • FIG. 9B is a result for set (2 ′′)
  • FIG. 9C is a fluorescence for each organ of set (1 ′′) and set (2 ′′).
  • the scale bar means 50 ⁇ m
  • FIGS. 9D, 9E, and 9F are graphs of fluorescence intensity for each organ in FIGS. 9A, 9B, and 9C, respectively.
  • the horizontal axis represents each organ.
  • cytotoxicity experiments were performed on HeLa cells (uterine cancer cells) by MTT method. That is, Compound 2 was treated with HeLa cells prepared in the same manner as in Example 7 for each concentration (0-100 ⁇ M).
  • MTT 3- (4,5-dimethldiazol-2-yl) -2, 5-diphenyltetrazolium bromide
  • 25 ⁇ L of MTT 3- (4,5-dimethldiazol-2-yl) -2, 5-diphenyltetrazolium bromide
  • solubilizing solution 50% dimethylformamide, 20% SDS, pH 7.4
  • Compound 2 is not toxic to cells.
  • electron affinity means that the calculated value becomes higher affinity toward the negative value, as shown in Fig. 11, the electron affinity of the enone to beta carbon as the methoxy functional group is introduced It was confirmed that the decrease.
  • Compound 2 showed high selectivity for hydrogen sulfide, whereas Compound 3 having one electron donor functional group introduced into the ortho position as shown in FIG. 12A is a compound. It was shown that hydrogen sulfide selectivity was relatively lower than 2, and as shown in FIG. 12B, Compound 4 having no electron donor functional group introduced did not show hydrogen sulfide selectivity under biological sulfide conditions (vertical axis: fluorescence intensity). , Horizontal axis: time).
  • the fluorescent probe of the present invention is a small organic molecule that can provide a fluorescence signal with high selectivity and sensitivity when selectively combined with hydrogen sulfide, thereby providing low substrate selectivity, low sensitivity, and slowness, which are problems of conventionally developed fluorescent probes.
  • the distribution of hydrogen sulfide in the living body can be observed with high resolution and bright images through a two-photon fluorescence microscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 알파-베타 불포화 카르보닐 (α,β-unsaturated carbonyl) 작용기 및 아세단(Acedan, 2-acyl-6-dimethyl-amino-naphthalene) 형광체를 포함하는 화합물을 이용하여 생체 내 황화수소를 선택적으로 감지하는 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 상기 형광 프로브의 제조방법에 관한 것으로, 보다 구체적으로 본 발명의 프로브는 화합물의 알파-베타 불포화 카르보닐 작용기가 황화수소와 선택적으로 결합하여 아세단 형광체의 형광 켜짐 현상을 유발한다. 본 발명에 따른 형광 프로브는 간편하게 합성할 수 있고, 이광자 여기가 가능하며, 생체 내에서 안정성 및 낮은 세포 독성을 갖는 작은 분자(small molecule) 프로브인 것을 특징으로 한다. 또한, 본 발명에 따른 형광 프로브는 황화수소와 선택적으로 반응해 형광 변화를 나타낼 수 있기 때문에 세포 또는 조직 내에서 황화수소 분포 등을 영상화할 수 있으므로, 영상화용 조성물 및 영상화 방법에 유용하게 이용될 수 있다.

Description

황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법
본 발명은 알파-베타 불포화 카르보닐(α,β-unsaturated carbonyl) 작용기 및 아세단(Acedan, 2-acyl-6-dimethyl-amino-naphthalene) 형광체를 포함하는 화합물을 이용하여 생체 내 황화수소를 선택적으로 감지하는 프로브 및 상기 프로브의 제조방법에 관한 것이다.
황화수소(Hydrogen sulfide, H2S)는 생리학적 조건하에서 그것의 음이온(HS-)과 평형을 이루며 존재하는 물질로서, 일산화탄소 및 질소 산화물에 이어서 신호전달에 중요하게 관여한 기체 화합물이다. 황화수소는 신경활동 조절(modulate neuronal activity), 평활근 이완(relax smooth muscle), 인슐린 분비조절(regulate an insulin release), 혈관 형성(induce angiogenesis), 염증 억제(suppress inflammation) 등 다양한 생리학적 과정들에 연관되어 있음이 현재까지 보고되고 있다. 이러한 황화수소에 의해 나타나는 생물학적 현상들을 확인하고, 그 특성을 규명하기 위해 다양한 분석 방법이 제시되어져 왔다. 예로서 '메틸렌블루 (methylene blue)' 방법의 경우 철 산화제 존재하 흡수 변화를 통해 분석하는 것이며, 「은/황화 이온 전극막 자동분석법」은 전위차법을 통한 전기화학적 분석법이다. 하지만 이러한 분석법들은 생체 내에서 황화수소를 감지하는 in vivo 분석 목적에는 적합하지 않으며, in vitro 분석의 경우에도 시료 준비 및 전처리 단계를 필요로 한다는 점에서 단점을 가진다. 따라서 생체 내 분석을 위해서는 비파괴적이고 감도 높은 측정을 할 수 있는 형광 프로브의 개발이 요구되어진다.
최근, 황화수소 특유의 높은 친핵성(nucleophilicity) 성질을 이용한 다양한 형광 프로브들이 개발되고 있다. 이러한 형광 프로브의 개발에 있어 중점적으로 고려되어야 하는 사항은 다음과 같다: (1) 생체 내 높은 농도를 가지는 황화물, 즉 글루타티온 (GHS, glutathion), 시스테인(Cys, cystein), 호모시스테인 (Hcy, homocystein)으로 부터 간섭을 받지 않는 높은 선택성, (2) 세포 내 존재하는 황화수소를 감지할 수 있는 높은 민감도, (3) 빠른 감응 속도, (4) 낮은 세포독성, 그리고 (5) 생체 조직을 영상화(imaging) 할 수 있는 능력.
한편, 현재까지 보고된 황화수소 감지 형광 프로브의 시스템은 모두 화학 반응(치환 및 환원 반응)을 이용하여 형광 변화를 구현하는 것들이다. (1) 알릴아자이드 (arylazide, ArN3) 화합물들은 황화수소에 의해 아릴아민 (arylamine, aryl-NH2)으로 변환되는데 이 때 형광 켜짐 현상을 유도하는 것이다. 여러 가지 형광 프로브가 보고되었으나(Yu, F.; Li, P.; Song, P.; Wang, B.; Zhaoa, J.; Han, K. Chem. Commun. 2012, 48, 2852. / Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 5767), 아릴아자이드를 이용한 황화 수소의 형광 감지 방법은 느린 반응 속도와 더불어 경쟁 바이오티올과도 감응하여 낮은 선택성을 나타내는 단점들을 가진다. (2) 알릴설포닐아자이드 (arylsulfonyl azide)는 알릴아자이드에 비해 높은 친전자성을 가짐에 따라 황화 수소에 빨리 감응하지만, 반대로 매우 낮은 기질 선택성을 보인다. 특히 생물학적으로 가장 풍부한 황화물인 글루타티온의 간섭은 황화수소 선택적 형광 프로브를 개발하는데 심각한 문제를 야기한다.
이러한 문제를 극복하기 위해 최근 이황화물 교환 반응(disulfide exchange)을 기반으로 한 시스템과, 분자 내 에스터 가수분해 반응에 따른 1,4-부가 반응 (conjugate addition followed by intramolecular ester hydrolysis reaction)을 기반으로 한 감응 계들이 보고되었다. 하지만 이들의 경우, 낮은 민감도로 인해 생체 내 황화수소를 감지하지 못하는 단점을 보이고 있다.
이에 본 발명자들은 종래기술의 문제점을 극복하기 위하여, 생체 내 황화수소의 형광 영상화가 가능한 분자 프로브를 개발함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 새로운 일광자 및/또는 이광자 형광 프로브, 상기 프로브의 제조방법 및 상기 프로브를 이용하여 세포 내 황화수소를 영상화하는 방법을 제공하는 것이다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 하기 화학식 1로 표시되는 일광자 및/또는 이광자 형광 프로브를 제공한다.
[화학식 1]
Figure PCTKR2014001589-appb-I000001
이때, 상기 화학식 1에서 R1은 수소, 알킬, 또는 치환된 C1-3 알킬이고, R2는 수소, 알킬, 또는 치환된 C1-3 알킬이고, R3는 수소, 알킬, 또는 치환된 C1-3 알킬이고, R4는 수소 또는 알킬이고, R5는 CHO 또는 COCF3일 수 있다.
본 발명의 일실시예에 있어서, 상기 화학식 1에서 R1은 수소 또는 OCH3(methoxy)이고, R2는 수소 또는 OCH3(methoxy)이고, R3는 CH2CH2OH(ethanol)이고, R4는 수소이고, R5는 CHO일 수 있다.
본 발명의 다른 실시예에 있어서, 상기 프로브는 황화수소와 결합하여 형광을 나타내는 것일 수 있다.
또한, 본 발명은 상기 일광자 및/또는 이광자 형광 프로브를 세포에 주입하는 단계, 주입된 형광 프로브가 세포 내 황화수소와 반응하여 형광을 나타내는 단계, 상기 형광을 일광자 또는 이광자 형광 현미경으로 관측하는 단계를 포함하는 세포 내 황화수소의 영상화 방법을 제공한다.
이에 더하여, 본 발명은 상기 화학식 1의 R1 및/또는 R2에 메톡시 작용기를 도입하여 황화수소 감지용 일광자 및/또는 이광자 형광 프로브를 제조하는 방법을 제공한다.
본 발명의 형광 프로브는 일광자(one-photon) 형광 프로브의 절반에 해당하는 파장의 에너지(또는 두 배에 해당하는 파장)를 이용해 들뜬 상태(excited state)로 여기(excitation) 시키는 이광자 여기 특성(two-photon excitable)을 가지므로, 깊은 세포 투과성, 낮은 세포 파괴성, 생체 내 헤모글로빈 등에 의한 소광 등에 영향을 적게 받을 뿐 아니라 초점 부위만 여기 시키기 때문에 매우 높은 해상도를 구현할 수 있는 장점을 가진다.
도 1은 본 발명에 따른 화합물 2가 여러 농도의 황화수소와 반응했을 때의 형광변화 결과를 나타낸 것이다.
도 2는 본 발명에 따른 화합물 2가 황화수소와 반응했을 때의 시간에 따른 형광변화 결과를 나타낸 것이다.
도 3은 본 발명에 따른 화합물 2가 황화수소 및 생물학적 황화물(시스테인, 호모시스테인, 글루타티온)과 반응했을 때의 형광변화 결과를 나타낸 것이다.
도 4는 본 발명에 따른 화합물 2가 다양한 종류의 생물학적 물질과 반응했을 때의 형광변화 결과를 나타낸 것이다.
도 5는 본 발명에 따른 화합물 2가 황화수소에 대한 민감도를 형광변화로 확인한 결과를 나타낸 것이다.
도 6은 본 발명에 따른 화합물 2가 황화수소와 반응할 때 산성도 (pH)의 영향을 확인한 결과를 나타낸 것이다.
도 7은 본 발명에 따른 화합물 2(Cpd 2)를 이용하여 일광자 및 이광자 형광 현미경으로 세포 영상화 실험을 수행한 결과를 나타낸 것이다.
도 8은 본 발명에 따른 화합물 2를 이용하여 이광자 형광 현미경으로 쥐 장기 조직 영상화 실험을 수행한 결과를 나타낸 것이다.
도 9는 본 발명에 따른 화합물 2를 이용하여 이광자 형광 현미경으로 물고기 장기 조직 영상화 실험을 수행한 결과를 나타낸 것이다.
도 10은 본 발명에 따른 화합물 2의 세포독성을 확인한 결과를 나타낸 것이다
도 11은 본 발명에 따른 화합물 2, 3, 4의 황화수소 선택성을 확인하기 위한 양자화학 계산 결과를 나타낸 것이다.
도 12는 본 발명에 따른 화합물 2, 3, 4의 황화수소 선택성을 확인한 결과를 나타낸 것이다.
본 발명은 하기 화학식 1로 표시되는 일광자 및/또는 이광자 형광 프로브를 제공함에 그 특징이 있다.
[화학식 1]
Figure PCTKR2014001589-appb-I000002
상기 화학식 1에서 R1은 수소, 알킬, 또는 치환된 C1-3 알킬이고, R2는 수소, 알킬, 또는 치환된 C1-3 알킬이고, R3는 수소, 알킬, 또는 치환된 C1-3 알킬이고, R4는 수소 또는 알킬이고, R5는 CHO 또는 COCF3인 것이 바람직하며, 가장 바람직하게는 하기 화학식 18과 같이, R1은 수소 또는 OCH3(methoxy)이고, R2는 수소 또는 OCH3(methoxy)이고, R3는 CH2CH2OH(ethanol)이고, R4는 수소이고, R5는 CHO인 화합물일 수 있으나 이에 한정되는 것은 아니다.
[화학식 18]
Figure PCTKR2014001589-appb-I000003
용어 "알킬(alkyl)"은 지방족 탄화수소 그룹을 의미한다. 본 발명에서 알킬은 어떠한 알켄이나 알킨 부위를 포함하고 있지 않음을 의미하는 "포화 알킬(saturated alkyl)"과, 적어도 하나의 알켄 또는 알킨 부위를 포함하고 있음을 의미하는 "불포화 알킬(unsaturated alkyl)"을 모두 포함하는 개념으로 사용되고 있다. 상기 알킬은 특별히 제한되는 것은 아니나, 바람직하게는 치환된 C1-3 알킬일 수 있다.
본 발명자들은 전자가 풍부하고 입체 장애를 가지는 아릴기(2-formyl-4,6-dimethoxyphenyl)를 가지는 알파-베타 불포화 카르보닐(α,β-unsaturated carbonyl) 작용기 및 아세단(Acedan, 2-acyl-6-dimethyl-amino-naphthalene) 형광체를 포함하는 형광 프로브를 신규 개발하였다. 본 발명에서 개발한 형광 프로브 화합물의 구조에서, 불포화 카르보닐 작용기는 높은 선택성과 민감도로 황화수소화 결합을 형성하도록 하며, 형광 신호를 제공하는 아세단 형광체는 이광자 형광 특성을 가지는 물질로서, 이광자 현미경을 통한 세포 및 조직 영상화에 있어 뛰어난 성능을 가지게 한다.
상기 프로브의 화합물은 황화수소와 알파-베타 불포화 카르보닐 작용기 간의 1,4-부가반응(Michael addition)에 따른 형광 변화를 나타냄으로써, 생체 내 다양한 황화물질 중 선택적으로 황화수소와 결합하여 형광을 나타내는 것을 특징으로 한다. 즉, 본 발명에 따른 프로브의 알파-베타 불포화 카르보닐기는 황화수소와 1,4-부가반응하여 아세단 형광체의 형광 켜짐 현상(fluorescence turn-on)을 유발함으로써 다양한 종류의 황화물 및 생물학적 물질 내에서 높은 선택성과 민감도로 황화수소만을 감지하는 특성을 가진다. 본 발명의 일실시예에서는 다양한 황화물(황화수소, 시스테인, 호모시스테인, 글루터티온)을 본 발명의 프로브와 함께 완충용액에 첨가하여 시간에 따른 형광 변화를 관찰한 결과, 선택적으로 황화수소에만 반응함을 확인하였다(도 2, 3 참조). 또한, 황화물을 제외한 생물학적 조건(아미노산, 활성산소 등)에서의 선택성을 관찰한 결과, 황화수소에만 선택적으로 형광 켜짐(fluorescence turn-on) 현상이 관찰됨을 확인하였다(도 4 참조).
세포 및 조직의 영상화 기법 중 이광자 형광 현미경(two-photon fluorescence microscopy)은 일광자 형광 현미경(one-photon fluorescence microscopy)에 비해 깊은 세포 투과성, 낮은 세포 파괴성, 낮은 생체 내 헤모글로빈 등에 의한 소광 측면에서 장점을 가진다. 본 발명의 일실시예에서는 세포 및 조직 내에서의 황화수소 분포를 영상화하기 위해, 본 발명의 프로브를 이용하여 이광자 형광 현미경으로 세포 및 조직 내에서의 황화수소 분포를 영상화한 결과, 본 발명의 프로브가 우수한 효율로 세포 및 조직 내 황화수소를 영상화함을 확인하였다(도 7, 8, 10 참조).
따라서 본 발명은 (a) 상기 형광 프로브를 세포에 주입하는 단계; (b) 주입된 형광 프로브가 생체 세포 내 황화수소와 반응하여 형광을 나타내는 단계; 및 (c) 상기 형광을 일광자 또는 이광자 형광 현미경으로 관측하는 단계를 포함하는 세포 내 황화수소의 영상화 방법을 제공할 수 있다.
이에 더하여, 본 발명의 일실시예에서는 알파-베타 불포화 카르보닐 작용기가 황화수소에 대한 선택성을 가지기 위하여 오쏘(ortho) 및 파라(para)위치에 전자주개(electron donor) 작용기, 가장 바람직하게는 메톡시(methoxy)기가 필요한 지 알아보기 위해 양자화학적 계산을 수행한 결과, 분자 내 수소결합이 생성되는 베타 위치의 탄소에 대한 전자밀도가 낮아짐을 확인하였으며(여기서 전자밀도는 음의 값으로 갈수록 높음을 뜻함), 이러한 전자밀도의 영향으로 인해 황화물 중에서 가장 높은 활성을 가지는 황화수소만이 화학반응에 참여할 수 있음을 알 수 있었다(도 11 참조), 또한, 본 발명의 다른 실시예에서는 오쏘 및 파라위치의 전자주개 작용기인 메톡시기의 역할을 확인하기 위하여, 상기 화학식 1의 R1 및 R2의 일부 또는 전부를 메톡시기로 치환하거나 아예 치환하지 않은 화합물(화학식 2, 3, 4)을 제조하고 황화수소 선택성 확인한 결과, 전자주개 작용기가 황화수소 선택성에 영향을 미침을 알 수 있었다(도 12 참조).
따라서 본 발명은 하기 반응식 1에 나타낸 바와 같이,
1) 화학식 5의 화합물을 팔라듐 촉매 하에서 헥(Heck) 반응시키고, 2-아미노에탄올과 부크워드(Bucherer) 반응시켜 화학식 6의 화합물을 제조하는 단계;
2) 화학식 7의 화합물을 산 촉매 하에서 에스터화 반응시킨 다음 순차적으로 브로모화 반응 및 환원-산화 반응시켜 화학식 8의 화합물을 제조하는 단계;
3) 상기 2) 단계에서 제조한 화학식 8의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시킨 다음 리튬-포밀화 반응시켜 화학식 9의 화합물을 제조하는 단계;
4) 상기 1) 단계에서 제조한 화학식 6의 화합물과 상기 3) 단계에서 제조한 화학식 9의 화합물을 알돌 축합 반응시켜 화학식 10의 화합물을 제조하는 단계; 및
5) 상기 4) 단계에서 제조한 화학식 10의 화합물을 산성 조건으로 반응시킴으로써 상기 화학식 1의 R1 및 R2의 전부를 메톡시기로 치환한 화학식 2의 화합물을 제조하는 단계를 포함하는 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법을 제공한다.
[반응식 1]
Figure PCTKR2014001589-appb-I000004
또한, 본 발명은 하기 반응식 2에 나타낸 바와 같이,
1') 화학식 11의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시켜 화학식 12의 화합물을 제조하는 단계;
2') 상기 1') 단계에서 제조한 화학식 12의 화합물을 리튬-포밀화 반응시켜 화학식 13의 화합물을 제조하는 단계;
3') 상기 2') 단계에서 제조한 화학식 13의 화합물과 상기 1) 단계에서 제조한 화학식 6의 화합물을 알돌 축합 반응시켜 화학식 14의 화합물을 제조하는 단계; 및
4') 상기 3') 단계에서 제조한 화학식 14의 화합물을 산성 조건으로 반응시킴으로써 상기 화학식 1의 R1 을 메톡시기로 치환한 화학식 3의 화합물을 제조하는 단계를 포함하는 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법을 제공한다.
[반응식 2]
Figure PCTKR2014001589-appb-I000005
또한, 본 발명은 하기 반응식 3에 나타낸 바와 같이,
1") 화학식 15의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시킨 다음 리튬-포밀화 반응 시켜 화학식 16의 화합물을 제조하는 단계;
2") 상기 1") 단계에서 제조한 화학식 16의 화합물과 상기 1) 단계에서 제조한 화학식 6의 화합물을 알돌 축합 반응시켜 화학식 17의 화합물을 제조하는 단계; 및
3") 상기 2") 단계에서 제조한 화학식 17의 화합물을 산성 조건으로 반응시킴으로써 상기 화학식 1의 R1 및 R2가 수소인 화학식 4의 화합물을 제조하는 단계를 포함하는 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법을 제공한다.
[반응식 3]
Figure PCTKR2014001589-appb-I000006
본 발명에서 상기 유기화학반응은 당업계에 공지된 방법을 토대로 당업자가 적절하게 반응용매, 리간드, 촉매 및/또는 첨가제를 선택함으로써 동일한 화합물이 제조되도록 할 수 있다.
나아가 본 발명에 따른 프로브는 황화수소를 억제하는 억제제를 세포에 처리 한 후 황화수소 양의 형광변화로 관찰하는 데 활용함으로써, 황화수소 억제제 개발에도 효과적으로 사용될 수 있다. 따라서 본 발명은 상기 본 발명의 형광 프로브를 이용하여 생체 내 황화수소 생성 억제 물질의 탐지하는 방법을 제공할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[합성예 1]
화합물 2의 합성 및 구조 분석
본 발명자들은 하기 반응식 1에 나타낸 경로에 따라 화학식 2의 화합물 2를 합성하였다.
[반응식 1]
Figure PCTKR2014001589-appb-I000007
단계 1-1: 1-(6-(2-히드록시에틸아민)나프탈렌-2-일)에타논(1-(6-(2-hydroxyethyl amino)naphthalen-2-yl)ethanone)의 합성
반응식 1의 화합물 6인 1-(6-(2-히드록시에틸아민)나프탈렌-2-일)에타논(1-(6-(2-hydroxyethylamino)naphthalen-2-yl)ethanone)를 합성하기 위하여, 먼저 합성 출발 물질인 화합물 5(6-Bromo-2-naphthol, 2 g, 8.97 mmol, Sigma-aldrich, B73406)와 Pd(OAc)2 (100 mg, 0.45 mmol), DPPP(Diphenyl-1-pyrenylphosphine, 370 mg, 0.9 mmol)을 ethylene glycol (15 mL)이 들어있는 반응용기에 넣어주었다. 그리고 이어서 2-hydroxylethyl vinyl ether (2.37 g, 27 mmol)와 triethylamine (3.12 mL, 22.4 mmol)을 반응 용기에 넣어준 다음 145℃ 온도에서 4시간 교반하였다. 4시간 후 상온(25 ℃)으로 반응물의 온도를 낮추고 용기를 열어 dichloromethane(15 mL)과 5% HCl(30 mL)을 넣은 후 상온에서 1시간 교반하였다. 1시간 후 분별 깔때기를 이용하여 유기층을 추출 한 다음 추출한 유기층을 Na2SO4(5 g)으로 건조시키고, 흡기기(aspirator, 25 ℃, 20~500 mmHg)를 이용하여 농축하였다. 그리고 농축하여 얻은 옅은 노란색의 고체 화합물 5-1을 실리카겔(Merck-silicagel 60, 230-400 mesh)을 이용한 컬럼크로마토그래피(직경 6 cm, 높이 15 cm) 방법으로 분리(전개 액: 20% EtOAc/Hexane)하여 옅은 노란색의 고체 화합물 5-2(1.33 g, 80%)를 얻었다. 1H NMR (CDCl3, 300MHz, 293K):δ 8.41 (1H, s), 7.98(1H, dd), 7.87(1H, d), 7.70(1H, d), 7.16(1H, dd), 5.4(1H, s), 2.71(3H, s).
다음으로, 상기로부터 얻은 옅은 노란색의 고체 화합물 5-2(1.0 g, 5.37 mmol)와 2-aminoethanol(1.64 g, 26.85), Na2S2O5(2 g, 10.74 mmol), H2O(15 mL)를 seal-tube 용기에 넣고, 145℃의 온도에서 48시간 교반하였다. 48시간 후 상온으로 온도를 낮추고 용기를 열어 dichloromethane(200 mL, 2회)과 H2O(300 mL)를 첨가하여 유기층을 추출하였다. 추출된 유기층은 Na2SO4(5 g)으로 건조하고, 흡기기(25 ℃, 20~500 mmHg)로 농축하였으며, 농축된 유기층을 실리카겔(Merck-silicagel 60, 230-400 mesh)을 이용한 컬럼 크로마토그래피(직경 6 cm, 높이 15 cm) 방법으로 분리(전개 액: 50:1 v/v dichloromethane-methanol)함으로써 노란색의 고체 화합물 6(0.86 g, 70%)을 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 8.31(1H, s), 7.91(1H, dd), 7.72(1H, d), 7.60(1H, d), 6.94(1H, dd), 6.84(1H, s), 4.46(1H, br.s), 3.94(2H, t), 3.44(2H, t), 2.67(3H, s), 1.66(1H, br.s). 13C NMR (75 MHz, CDCl3):δ197.74, 148.56, 138.05, 130.68, 130.63, 130.34, 125.87, 125.82, 124.60, 118.83, 103.45, 60.49, 45.75, 26.39. HRMS-EI (+): m/z calcd for C14H15NO2: 229.28, found 229.11.
단계 1-2: 2-브로모-3,5-다이메톡시벤즈알데히드(2-bromo-3, 5-dimethoxybenz aldehyde)의 합성
반응식 1의 화합물 8인 2-브로모-3,5-다이메톡시벤즈알데히드(2-bromo-3,5-dimethoxy benzaldehyde)를 합성하기 위하여, 먼저 합성 출발물질인 화합물 7(5.05 g, 27.7 mmol)을 MeOH (100 mL)에 녹인 후, H2SO4(0.2 mL, 3.75 mmol)를 0℃에서 넣어준 혼합물을 20 시간 reflux 시켰다. 20시간 후 상온으로 온도를 낮추고, 포화된 NaHCO3 용액을 넣어주어 pH를 7로 맞춘 다음 흡기기(25 ℃, 20~500 mmHg)로 남아있는 MeOH을 제거하였다. 그리고 EtOAc (200 mL, 4회)를 이용하여 유기층을 추출하였으며, 추출된 유기층에 Na2SO4(10 g)를 처리하여 유기층 내에 존재하는 물을 건조시켰다. 건조된 에틸아세테이트 유기층을 흡기기로 농축함으로써 화합물 7-1(5.35 g, 98%)을 수득하였으며, 별도의 분리과정 없이 다음 과정을 수행하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 7.16(2H, d), 6.62(1H, t), 3.89(3H, s), 3.81(6H, s).
수득한 화합물 7-1(2.0 g, 10.2 mmol)과 NaBH4(2.12 g, 56.1 mmol)를 THF(75 mL)에 넣어주고 reflux 시키면서 1시간에 걸쳐 MeOH(20 mL)를 천천히 넣어주었다. MeOH 첨가 후 1시간 더 reflux 시켜주고 상온으로 온도를 낮춰준 다음 상온으로 식혀진 혼합물에 1M HCl을 넣어 pH를 7로 맞추었다. 이어서 EtOAc (200 mL, 4회)를 이용하여 유기층을 추출하였으며, 추출된 유기층은 Na2SO4(10 g)로 유기층 내 잔존하는 물을 건조시켰다. 그리고 흡기기(25 ℃, 20~500 mmHg)로 유기층을 농축함으로써 화합물 7-2(1.22 g, 94%)를 수득하였으며, 별도의 분리과정 없이 다음 과정을 수행하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 6.51(2H, d), 6.37(1H, t), 4.61(2H, s), 3.78(6H, s).
수득한 화합물 7-2(1.0 g, 5.95 mmol)를 dichloromethane(50 mL)에 녹인 후 상온에서 pyridinium chlorochromate(3.85 g, 17.85 mmol)를 넣은 혼합물을 3시간 동안 상온 교반하였다. 3시간 후 혼합물에 2 g의 silica를 넣어주고, 흡기기(25 ℃, 20~500 mmHg)를 이용하여 dichloromethane을 제거하였다. dichloromethane이 제거된 silica 고체를 filter하고, 10 % EtOAc/Hexane 용액으로 여러 번 씻어준다음 filter를 통해 모아진 용액을 다시 흡기기로 용매를 제거함으로써 무색의 액체 화합물 7-3(920 mg, 93%)을 수득하였으며, 별도의 분리과정 없이 다음 과정을 수행하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 9.90(1H, s), 7.00(2H, d), 6.69(1H, t), 3.84(6H, s).
화합물 7-3(500 mg, 3.0 mmol)을 chloroform(10 mL)에 녹인 다음 1,3-dibromo-5,5-dimethylhydantoin(430 mg, 1.5 mmol)을 0℃에서 첨가한 혼합물을 상온에서 3시간 교반시키고, H2O(30 mL)를 넣어준 뒤 유기층을 추출하였다. 추출된 유기층을 Na2SO4(5 g)로 건조하고, 흡기기(25 ℃, 20~500 mmHg)로 농축함으로써 흰색을 띄는 고체 화합물 8(700 mg, 95%)을 수득하였으며, 별도의 추출과정 없이 다음 과정 수행을 위해 준비하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.41(1H, s), 7.04(1H, d), 6.71(1H, d), 3.91(3H, s), 3.85(3H, s). 13C NMR (75 MHz, CDCl3):δ192.1, 160.0, 157.1, 134.7, 109.1, 105.9, 103.4, 56.6, 55.8.
단계 1-3: 2-(1,3-다이옥소란-2-일)-4,6-다이메틸벤즈알데히드 (2-(1,3-dioxolan-2-yl)-4,6-dimethoxybenzaldehyde) 의 합성
반응식 1의 화합물 9인 2-(1,3-다이옥소란-2-일)-4,6-다이메틸벤즈알데히드 (2-(1,3-dioxolan-2-yl)-4,6-dimethoxybenzaldehyde)를 합성하기 위하여, 상기 단계 1-2로부터 수득한 화합물 8(500 mg, 2.04 mmol)을 Toluene (20 mL)에 녹였다. 그리고 ethylene glycol (190 μL, 3.06 mmol)과 p-toluenesulfonic acid monohydrate(39 mg, 0.21 mmol)를 첨가한 후 24 시간 동안 Dean-Stark 장비 설치 하에 reflux 반응을 수행하였다. 24시간 후 반용 용기를 상온으로 낮추고, 포화된 KOH-EtOH 용액을 5 mL 넣어준 다음 30분간 상온에서 교반한 후 50 mL의 H2O를 넣어주었다. 이후 EtOAc(50 mL)를 통해 유기층을 추출하였으며, 추출을 통해 얻어진 유기층은 Na2SO4(5 g)로 잔존하는 물을 건조시키고, 흡기기를 이용하여 농축했다. 그리고 실리카겔을 이용한 컬럼 크로마토그래피 (직경 3 cm, 높이 15 cm) 분리(전개 액: 10% EtOAc/Hexane) 방법으로 흰색의 고체 화합물 8-1(554 mg, 94%)을 얻었다. 1H NMR (CDCl3, 300MHz, 293K):δ 16.75(1H, d), 6.44(1H, d), 6.06(1H, s), 4.12-3.97(4H, m), 3.80(3H, s), 3.76(3H, s). 13C NMR(CDCl3, 75MHz, 293K):δ 159.8, 156.6, 138.3, 103.4, 102.4, 100.5, 65.3, 56.3, 55.5.
화합물 8-1(458 mg, 1.58 mmol)을 THF(10 mL) 용액에 녹인 후 -78℃로 온도를 낮추고, n-BuLi(1.6 M in hexane, 1.09 mL, 1.74 mmol)을 서서히 첨가한 다음 상온에서 1시간 교반하였다. 1시간 후 온도를 다시 0℃로 낮추고, DMF (370 μL, 7.42 mmol)를 서서히 첨가한 혼합물을 동일한 온도에서 1시간 더 교반하였으며, NH4Cl(2 mL)을 넣어주어 반응을 종결시켰다. 반응이 종결된 혼합물은 EtOAc(20 mL)과 H2O(20 mL)를 이용하여 유기층 추출을 수행하였으며, 얻어진 유기층은 Na2SO4(5 g)로 잔존하는 물을 건조시키고, 흡기기(25 ℃, 20~500 mmHg)로 농축함으로써 화합물 9(443 mg, 82 %)를 수득하였다. 상기 농축하여 수득한 화합물 9는 별도의 분리과정 없이 다음 과정 수행을 위해 준비되었다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.36(1H, s), 6.84(1H, d), 6.50(1H, s), 6.37(1H, d), 4.00-3.95(4H, m), 3.79(6H, s). 13C NMR(CDCl3, 75MHz, 293K):δ 189.5, 164.9, 164.8, 142.4, 116.6, 103.6, 99.6, 98.2, 65.2, 55.9, 55.5.
단계 1-4: (이)-3-(2-(1,3-다이옥소란-2-일)-4,6-다이메톡시페일-1-(6-(2-하이드록시에틸아미노)나프탈렌-2-yl)프로프-2-엔-1-온)((E)-3-(2-(1,3-dioxolan-2-yl)-4,6-dimethoxyphenyl)-1-(6-(2-hydroxyethylamino)naphthalen-2-yl)prop-2-en-1-one) 의 합성
반응식 1의 화합물 10인 (이)-3-(2-(1,3-다이옥소란-2-일)-4,6-다이메톡시페일-1-(6-(2-하이드록시에틸아미노)나프탈렌-2-yl)프로프-2-엔-1-온)((E)-3-(2-(1,3-dioxolan-2-yl)-4,6-dimethoxyphenyl)-1-(6-(2-hydroxy ethylamino)naphthalen-2-yl)prop-2-en-1-one)을 합성하기 위하여, 상기 단계 1-1로부터 수득한 화합물 6(230 mg, 1.0 mmol)과 상기 단계 1-3으로부터 수득한 화합물 9(477 mg, 2.0 mmol)를 EtOH(5 mL)에 녹였다. 그리고 상온에서 촉매량의 NaOH (23 mg)를 넣고 온도를 높여 3시간 동안 reflux를 수행한 후 다시 상온으로 온도를 낮추고 흡기기를 통해 EtOH을 제거하였다. EtOH이 제거된 혼합물에 dichloromethane(30 mL)과 H2O(10 mL)를 첨가하여 유기층 추출을 수행하였으며, 추출을 통해 얻어진 유기층에서 Na2SO4(5 g)로 잔존하는 물을 건조하고, 흡기기를 이용하여 농축했다. 마지막으로 실리카겔을 이용한 컬럼 크로마토그래피 (직경 2 cm, 높이 15 cm) 분리(전개 액: 50% EtOAc/Hexane) 방법을 통해 고체 화합물 10(383 mg, 85%)을 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 8.34(1H, s), 9.09(1H, d), 7.96(1H, dd), 7.85(1H, d), 7.64(1H, d), 7.56(1H, d), 6.92(1H, d), 6.86(1H, dd), 6.75(1H, d), 6.52(1H, d), 6.04(1H, s), 4.22-4.16(2H, m), 4.14-4.04(2H, m), 3.94-3.89(5H, m), 3.87(3H, s), 3.37(2H, t). 13C NMR(CDCl3, 75MHz, 293K):δ 190.0, 161.7, 160.9, 148.3, 139.5, 138.0, 136.8, 132.3, 131.0, 130.6, 126.4, 126.3, 125.9, 125.6, 118.8, 117.2, 104.2, 103.1, 101.4, 99.6, 65.6, 61.2, 56.0, 55.7, 45.9.
단계 1-5: (이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)-3,5-다이메톡시벤즈알데히드)((E)-2-(3-(6-(2-hydroxyethylamino) naphthalen-2-yl)-3-oxoprop-1-enyl)-3,5-dimethoxybenzaldehyde)의 합성
마지막으로, 반응식 1의 화합물 2인 ((이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)-3,5-다이메톡시벤즈알데히드)((E)-2-(3-(6-(2-hydroxy ethylamino)naphthalen-2-yl)-3-oxoprop-1-enyl)-3,5-dimethoxybenzaldehyde)를 합성하기 위해, 상기 단계 1-4로부터 수득한 화합물 10(383 mg, 0.85 mmol)을 CH3CN(7.5 mL)에 녹인 혼합물을 0℃로 온도를 낮춘 후 HCl(0.5 mL)을 천천히 넣어주었다. 그리고 동일 온도에서 5분간 교반한 다음 포화 NaHCO3 용액10 mL를 첨가하여 반응을 종결시키고, dichloromethane(30 mL)을 통해 유기층 추출을 수행하였으며, 추출을 통해 얻어진 유기층은 Na2SO4(3 g) 처리하여 잔존하는 물을 건조시키고, 흡기기를 이용하여 농축했다. 이후 실리카겔을 이용한 컬럼 크로마토그래피 (직경 2 cm, 높이 15 cm) 분리(전개 액: 50% EtOAc/Hexane) 방법을 통해 최종적으로 고체 화합물 2(300 mg, 87%)를 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.33(1H, s), 8.32(1H, s), 8.23(1H, d), 7.97(1H, d), 7.69(1H, d), 7.60(1H, d), 7.35(1H, d), 7.07(1H, d), 6.91(1H, d), 6.80(1H, s), 6.72(1H, s), 3.95-3.90(8H, m), 3.42(2H, t). 13C NMR(CDCl3, 75MHz, 293K):δ 191.7, 189.1, 161.6, 160.4, 148.5, 138.2, 137.4, 135.1, 131.8, 131.2, 130.7, 130.0, 126.5, 126.4, 125.5, 122.2, 118.9, 104.3, 103.5, 61.3, 56.3, 56.0, 45.8. HRMS: m/z calcd for C24H23NO5: 405.1576, found 405.1574.
[합성예 2]
화합물 3의 합성 및 구조 분석
본 발명자들은 하기 반응식 2에 나타낸 경로에 따라 화학식 3의 화합물 3을 합성하였다.
[반응식 2]
Figure PCTKR2014001589-appb-I000008
단계 2-1: 2-(3-메톡시페일)-1,3-다이옥소레인(2-(3-methoxyphenyl)-1,3-dioxolane )의 합성
반응식 2의 화합물 12인 2-(3-메톡시페일)-1,3-다이옥소레인(2-(3-methoxyphenyl)-1, 3-dioxolane)을 합성하기 위해, 합성 출발 물질인 화합물 11(1.0 g, 7.34 mmol)을 Toluene(20 mL)에 녹였다. 그리고 ethylene glycol(611 μL, 11.02 mmol)과 p-toluenesulfonic acid monohydrate(140 mg, 0.734 mmol)을 넣어준 후, 24 시간 동안 Dean-Stark 장비 설치 하에 reflux 반응을 수행였다. 24시간 후 반용 용기를 상온으로 낮추고, 포화된 KOH-EtOH 용액을 5 mL 넣어준 다음 30분간 상온에서 교반시켰으며, 50 mL의 H2O를 첨가하여 EtOAc(50 mL)을 통해 유기층 추출을 수행하였다. 추출을 통해 얻어진 유기층에서 Na2SO4(5 g)로 잔존하는 물을 건조시키고, 흡기기를 이용하여 농축한 다음 실리카겔을 이용한 컬럼 크로마토그래피 (직경 3 cm, 높이 15 cm) 분리(전개 액: 10% EtOAc/Hexane)방법을 통해 화합물 12(1.21 g, 92%)를 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 7.28(1H, t), 7.10-7.05(2H, m), 6.94-6.90(1H, m), 5.80(1H, s), 4.14-3.98(4H, m), 3.81(3H, s). 13C NMR(CDCl3, 75MHz, 293K):δ 159.9, 139.7, 129.6, 119.0, 115.2, 111.6, 103.7, 65.4, 55.4.
단계 2-2: 2-(1,3-다이옥사란-2-일)-6-메톡시벤즈알데하이드 (2-(1,3-dioxolan-2-yl)-6-methoxybenzaldehyde)의 합성
반응식 2의 화합물 13인 2-(1,3-다이옥사란-2-일)-6-메톡시벤즈알데하이드(2-(1,3-di oxolan-2-yl)-6-methoxybenzaldehyde)를 합성하기 위해, 합성 출발 물질인 화합물 12(930 mg, 5.16 mmol)를 cyclohexane 30 mL에 녹인 후, 얼음물을 이용해 온도를 0℃로 낮추었다. 그리고 n-BuLi(1.6 M in hexane, 3.225 mL, 5.16 mmol)을 첨가한 다음 상온으로 전환하여 30분간 반응시키고, DMF (0.803 μL, 10.32 mmol)를 첨가하여 1시간 교반하였다. 교반 후 포화된 소금물 5 mL와 H2O 20 mL, EtOAc(50 mL)을 통해 유기층 추출을 수행하였으며, 추출을 통해 얻은 유기층을 무수황산나트륨(5 g)으로 유기층 내 존재하는 물을 건조하고, 흡기기를 이용하여 농축함으로써 옅은 노란색의 액체 화합물 13(773 mg, 72%)을 수득하였다. 수득한 화합물 13은 별도의 분리과정 없이 다음 반응에 사용하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.60 (1H, s), 7.50(1H, t), 7.36(1H, d), 7.00(1H, dd), 6.52(1H, s), 4.08-4.05(4H, m), 3.91(3H, s). 13C NMR(CDCl3, 75MHz, 293K):δ 191.9, 162.6, 140.3, 134.9, 123.5, 118.7, 112.6, 100.1, 65.5, 56.2.
단계 2-3: (이)-3-(2-(1,3-다이옥사란-2-일)-6-메톡시페닐)-1-(6-(2-하ㅣ드록시에틸아미노)나프탈렌-2-일) ((E)-3-(2-(1,3-dioxolan-2-yl)-6-methoxyphenyl)-1-(6-(2-hydroxyethylamino)naphthalen-2-yl)prop-2-en-1-one)의 합성
반응식 2의 화합물 14인 (이)-3-(2-(1,3-다이옥사란-2-일)-6-메톡시페닐)-1-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)((E)-3-(2-(1,3-dioxolan-2-yl)-6-methoxyphenyl)-1-(6-(2-hydroxyethylamino) naphthalen-2-yl)prop-2-en-1-one)를 합성하기 위해, 합성 출발 물질인 상기 단계 2-2로부터 수득한 화합물 13(95 mg, 0.456 mmol)과 상기 합성예 1의 단계 1-1로부터 수득한 화합물 6(52 mg, 0.228 mmol)을 이용하여, 합성예 1의 단계 1-4와 동일한 방법으로 합성을 수행함으로써 화합물 14(70 mg, 74%)를 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 8.38(1H, s), 8.10(1H, d), 8.00(1H, d), 7.84(1H, d), 7.68(1H, d), 7.60(1H, d), 7.41-7.34(2H, m), 7.00-6.90(2H, m), 6.81(1H, s), 6.01(1H, s), 4.51(1H, br), 4.24-4.16(2H, m), 4.12-4.02(2H, m), 3.92(3H, s), 3.41(2H, t), 1.98(1H, br). 13C NMR(CDCl3, 75MHz, 293K):δ 190.4, 158.9, 148.3, 138.1, 137.9, 136.9, 142.2, 131.2, 130.8, 130.2, 128.6, 126.5, 126.4, 125.7, 124.6, 119.1, 118.8, 111.9, 104.3, 101.7, 65.7, 61.3, 56.1, 45.9.
단계 2-4: (이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)-3-메톨시벤즈알데하이드) ((E)-2-(3-(6-(2-hydroxyethylamino)naphthalen-2-yl)-3-oxoprop-1-enyl)-3-methoxybenzaldehyde)의 합성
마지막으로, 반응식 2의 화합물 3인 (이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)-3-메톨시벤즈알데하이드) ((E)-2-(3-(6-(2-hydroxyethylamino)naphthalen-2-yl)-3-oxoprop-1-enyl)-3-methoxybenzaldehyde)의 합성을 수행하였다. 상기 단계 2-3으로부터 수득한 화합물 14(70 mg, 0.167 mmol)를 출발물질로 하고, 상기 합성예 1의 단계 1-5와 동일한 방법으로 합성을 수행함으로써 화합물 3(52 mg, 83%)을 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.32(1H, s), 8.33(1H, s), 8.25(1H, d), 8.00(1H, d), 7.69(1H, d), 7.63-7.56(2H, m), 7.51-7.36(1H, m), 7.16(1H, d), 6.91(1H, d), 6.81(1H, s), 4.50(1H, br), 3.95-3.87(5H, m), 3.43(2H, t), 2.02(1H, br). 13C NMR(CDCl3, 75MHz, 293K):δ 192.1, 189.0, 158.8, 148.5, 138.3, 136.4, 135.4, 131.7, 131.5, 131.3, 130.9, 130.3, 128.4, 126.6, 126.4, 125.5, 121.4, 119.0, 115.7, 104.2, 61.2, 56.3, 45.8. HRMS (FAB): m/z calcd for C23H21NO4: 375.1471, found 375.1469.
[합성예 3]
화합물 4의 합성 및 구조 분석
본 발명자들은 하기 반응식 3에 나타낸 경로에 따라 화학식 4의 화합물 4를 합성하였다.
[반응식 3]
Figure PCTKR2014001589-appb-I000009
단계 3-1: 2-(1,3-다이옥스란-2-일)벤즈알데하이드 (2-(1,3-dioxolan-2-yl)benzalde hyde)의 합성
반응식 3의 화합물 16인 2-(1,3-다이옥스란-2-일)벤즈알데하이드 (2-(1,3-dioxolan-2-yl)benzaldehyde)를 합성하기 위해, 합성 출발 물질인 화합물 15(1.0 g, 5.4 mmol)를 Toluene(20 mL)에 녹였다. 그리고 ethylene glycol(0.5 mL, 8.1 mmol)과 p-toluenesulfonic acid monohydrate(102 mg, 0.54 mmol)를 넣어준 후 24 시간 동안 Dean-Stark 장비 설치 하에 reflux 반응을 수행하였다. 24시간 후 반용 용기를 상온으로 낮추고, 포화된 KOH-EtOH 용액을 5 mL 넣어준 다음 30분 상온에서 교반하고 50 mL의 물을 넣어준 혼합물을 EtOAc(50 mL)을 통해 유기층 추출하였다. 얻어진 유기층은 Na2SO4(5 g)로 유기층 내 잔존하는 물을 건조하고, 흡기기를 이용하여 농축했다. 그리고 실리카겔을 이용한 컬럼 크로마토그래피 (직경 3 cm, 높이 15 cm) 분리(전개 액: 5% EtOAc/Hexane) 방법으로 화합물 15-1(1.1 mg, 89%)을 얻었다. 1H NMR (CDCl3, 300MHz, 293K):δ 7.62-7.55 (2H, m), 7.31(1H, dt), 7.18(1H, dt), 6.11(1H, s), 4.02-4.17(4H, m). 13C NMR(CDCl3, 75MHz, 293K):δ 136.9, 133.2, 130.8, 128.1, 127.6, 123.2, 102.8, 65.7.
상기에서 합성한 화합물 15-1(230 mg, 1.0 mmol)을 THF 5 mL에 녹이고, 드라이 아이스-아세톤을 이용하여 온도를 -78℃로 낮춘 다음 n-BuLi(1.6 M in hexane, 0.94 mL, 1.5 mmol)을 첨가하여 동일한 온도에서 1시간 교반했다. 1시간 후 DMF (117 μL, 1.5 mmol)를 넣어주고, 0℃로 온도를 서서히 바꿔주어 0℃에서 1시간 교반한 후 포화된 NH4Cl 용액을 2 mL 넣어 반응을 종결시켰다. 이어서 10 mL의 H2O와 10 mL의 EtOAc를 통해 추출과정을 수행하였다. 추출을 통해 얻어진 유기층은 Na2SO4(5 g)로 유기층 내 잔존하는 물을 건조시키고, 흡기기를 이용하여 농축함으로써 옅은 노란색의 액체 화합물 16(147 mg, 82%)를 얻었으며, 별도의 분리과정 없이 다음 반응에 사용했다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.42(1H, s), 7.94(1H, dd), 7.73(1H, dd), 7.6(1H, dt), 7.54(1H, dd), 6.42(1H, s), 4.17-4.12(4H, m). 13C NMR(CDCl3, 75MHz, 293K):δ 192.0, 139.3, 134.7, 133.8, 130.4, 129.7, 127.2, 101.3, 65.6.
단계 3-2: (이)-3-(2-(1,3-다이옥스란-2-일)페닐)-1-(6-(2-하이드로에틸아미노)나프탈렌-2-일)프로프-2-엔-1-원) ((E)-3-(2-(1,3-dioxolan-2-yl)phenyl)-1-(6-(2-hydroxyethylamino)naphthalen-2-yl)prop-2-en-1-one)의 합성
반응식 3의 화합물 17인 (이)-3-(2-(1,3-다이옥스란-2-일)페닐)-1-(6-(2-하이드로에틸아미노)나프탈렌-2-일)프로프-2-엔-1-원) ((E)-3-(2-(1,3-dioxolan-2-yl)phenyl)-1-(6-(2-hydroxyethylamino)naphthalen-2-yl)prop-2-en-1-one)의 합성을 수행하였다. 합성 출발 물질인 상기 단계 3-1로부터 수득한 화합물 16(117 mg, 0.654 mmol)과 상기 합성예 1의 단계 1-1로부터 수득한 화합물 6(50mg, 0.218 mmol)을 이용하여, 합성예 1의 단계 1-4와 동일한 방법으로 합성을 수행함으로써 화합물 17(61 mg, 72%)을 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 8.39(1H, s), 8.27(1H, d), 8.00(1H, dd), 7.77-7.80(1H, m), 7.72(1H, d), 7.56-7.68(3H, m), 7.43-7.46(2H, m), 6.93(1H, dd), 6.83(1H, d), 6.09(1H, s), 4.50(1H, br), 4.18-4.22(2H, m), 4.05-4.10(2H, m), 3.91-3.96(2H, m), 3.44(2H, br), 1.80(1H, t). 13C NMR(CDCl3, 75MHz, 293K):δ 189.8, 148.4, 141.0, 138.1, 136.6, 134.9, 132.0, 131.2, 130.7, 130.0, 129.6, 127.3, 127.2, 126.5, 125.6, 124.9, 118.9, 104.3, 102.2, 65.7, 61.3, 45.8.
단계 3-3: (이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)벤즈알데하이드 ((E)-2-(3-(6-(2-hydroxyethylamino)naphthalen-2-yl)-3-oxoprop-1-enyl)benzaldehyde)의 합성
마지막으로, 반응식 3의 화합물 4인 (이)-2-(3-(6-(2-하이드록시에틸아미노)나프탈렌-2-일)-3-옥소프로프-1-에닐)벤즈알데하이드 ((E)-2-(3-(6-(2-hydroxyethylamino)naphthalen-2-yl)-3-oxoprop-1-enyl)benzaldehyde)의 합성을 수행하였다. 상기 단계 3-2로부터 수득한 화합물 17(61 mg, 0.156 mmol)을 출발물질로 이용하여, 합성예 1의 단계 1-5와 동일한 방법으로 합성을 수행함으로써 화합물 4(42 mg, 78%)를 수득하였다. 1H NMR (CDCl3, 300MHz, 293K):δ 10.4(1H, s), 8.55(1H, d), 8.43(1H, s), 8.01(1H, dd), 7.92(1H, dd), 7.81-7.77(2H, m), 7.68-7.65(2H, m), 7.58(1H, dd), 7.50(1H, d), 6.95(1H, dd), 6.85(1H, d), 4.51(1H, br), 3.94(2H, t), 3.45(2H, t), 1.71(1H, br). 13C NMR(CDCl3, 75MHz, 293K):δ 191.7, 189.4, 148.3, 140.0, 138.1, 137.9, 134.3, 133.9, 131.7, 131.4, 131.1, 130.8, 129.8, 128.2, 127.7, 126.4, 126.2, 125.4, 118.8, 104.1, 61.1, 45.6. HRMS (FAB): m/z calcd for C22H19NO3: 345.1365, found 345.1365.
[실시예 1]
황화수소와 화합물 2의 반응에 의한 형광 변화 확인
화합물 2와 황화수소의 반응에 따른 형광켜짐 현상 메커니즘은 도 1a에 나타낸 바와 같으며, 화합물 2의 알파-베타 불포화카르보닐 작용기는 황화수소와 결합하여 링 형태의 화학반응이 유발된다. 화학반응으로 생성된 결과물은 강한 형광을 띄게 되며, 375nm의 여기파장(excitation wavelength)에서 510nm의 형광 방출파장(fluorescence emission wavelength)을 보인다.
이에, 황화수소에 의한 화합물 2의 형광 변화를 관찰하기 위해, 완충용액(pH 7.4, 10 mM HEPES buffer)에서 화합물 2의 형광 그래프를 측정하였다. 형광 스펙트럼 (fluorescence spectra) 분석에는 PTI 사의 Photon Technical International Fluorescence System을 사용하였는데, 각 기기에 화합물 2를 넣어주는 cell은 1 cm 두께의 standard quartz cell을 이용하였다. 먼저, 화합물 2 (10 μM)에 황화수소를 0 ~ 50 μM 의 농도로 각각 처리하고 5분 후 형광 그래프를 확인하였다.
그 결과, 도 1b에 나타낸 바와 같이, 황화수소의 농도가 증가함에 따라 형광을 띄는 반응 결과물의 양이 증가하여 형광 세기가 증가하는 것을 확인할 수 있다(세로축: 형광세기, 가로축: 파장). 내부 그래프는 방출 파장 중 510nm에서의 형광세기를 값으로 표시한 것이며, 황화수소의 농도에 따라 선형으로 그 형광 값이 제공됨을 알 수 있다.
[실시예 2]
화합물 2와 황화수소의 시간에 따른 형광 변화 관찰
황화수소에 의한 화합물 2의 시간에 따른 형광 변화를 관찰하기 위해, 화합물 2 (10 μM)에 황화수소를 100 μM 처리하고 (실시예 1과 동일한 완충용액 사용), 시간에 따른 형광 그래프를 확인하였으며, 375nm의 여기파장(excitation wavelength)을 사용하고, 510nm의 형광 방출파장(fluorescence emission wavelength)을 확인하였다.
그 결과, 도 2에 나타낸 바와 같이, 화합물 2는 5분 내에 형광 최대치에 근접하며, 약 10분 뒤 형광 방출이 포화되는 것을 알 수 있다(세로축: 형광세기, 가로축: 파장). 내부 그래프는 방출 파장 중 510nm에서의 형광세기를 값으로 표시한 것이다.
[실시예 3]
황화수소 및 생물학적 황화물과의 반응에 따른 화합물 2의 형광 변화 관찰
황화수소 및 생물학적 황화물 조건에서 화합물 2의 황화수소 선택성을 확인하기 위해, 생물학적 황화물 조건(Na2S (100 μM, H2S와 동일물질), 글루타티온(GSH, Glutathion, 10 mM), 시스테인(Cys, 200 μM), 호모시스테인(Hcy, 50 μM))에서 화합물 2 (10 μM)의 형광변화를 관찰하였으며(실시예 1과 동일한 완충용액 사용), 375nm의 여기파장(excitation wavelength)을 사용하였고, 510 nm의 형광 방출파장(fluorescence emission wavelength)을 확인하였다.
그 결과, 도 3에 나타낸 바와 같이, 30분 후 Na2S(H2S와 동일)와 유일하게 반응하여 충분한 형광 켜짐 현상(fluorescence turn-on)을 보이는 것을 확인할 수 있었다(세로축: 형광세기, 가로축: 파장).
상기로부터, 화합물 2는 다양한 생물학적 황화물 조건에서도 선택적으로 H2S만 감지할 수 있다는 것을 알 수 있다.
[실시예 4]
다양한 종류의 생물학적 물질과의 반응에 따른 화합물 2의 형광 변화 관찰
다양한 종류의 생물학적 물질과 화합물 2의 반응에 따른 형광변화를 관찰하기 위해, 화합물 2(10 μM)과 생물학적 활성 물질(아미노산 (amino acid, Ala, Glu, Lys, Met), 리포익산 (Lipoic acid), 음이온 (NO2-, SO4 2-, S2O3 2-, SCN-, I-), 활성산소 (H2O2))를 반응시키고 형광변화를 관찰하였다. 실험에 사용된 완충용액(buffer)은 실시예 1과 동일하며, 각각의 생물학적 활성 물질의 농도는 100 μM로 하였다. 각각의 생물학적 활성 물질을 첨가하고 약 30분 후, 375nm의 여기파장(excitation wavelength)을 사용하고, 510nm의 형광 방출파장(fluorescence emission wavelength)을 확인하였다.
그 결과, 도 4에 나타낸 바와 같이, 오직 황화수소(H2S)에만 반응하여 선택적으로 형광 켜짐 현상을 나타내는 것을 확인할 수 있었다(세로축: 형광세기, 가로축: 생물학적 활성 물질의 종류).
[실시예 5]
형광 변화를 통한 화합물 2의 황화수소에 대한 민감도 분석
형광변화를 바탕으로 화합물 2의 황화수소에 대한 민감도를 관찰하기 위해, 화합물 2 (10 μM)에 Na2S (H2S와 동일)의 양을 낮추어 그 민감도를 확인하였다. 실험에 사용된 완충용액(buffer)은 실시예 1과 동일하며, 50 nM의 Na2S를 넣어주었고, 375nm의 여기파장(excitation wavelength)을 사용하였으며, 510nm의 형광 방출파장(fluorescence emission wavelength)을 확인하였다.
그 결과, Na2S 첨가 약 5분 뒤 신호대비-잡음비(signal to noise)가 3이 넘는 형광 켜짐이 관찰되었으며, 도 5에 나타낸 바와 같이, 50 nM의 낮은 농도에서도 화합물 2의 형광 관측이 가능하다는 것을 알 수 있었다(세로축: 형광세기, 가로축: 파장).
[실시예 6]
다양한 산성도 조건에서 화합물 2의 황화수소에 대한 형광 변화
다양한 산성도(pH) 조건에서 화합물 2의 황화수소에 대한 형광변화를 관찰하기 위해, 화합물 2 (10 μM)이 다양한 산성도 조건 (pH 5 ~ 9)에서 H2S와 결합할 때 어떠한 형광변화를 보이는 지 알아보았으며, 즉, 각 pH 5, 6, 7, 8, 9의 조건에서 H2S를 100 μM씩 처리하고, 5분 뒤 형광세기를 측정하였다. 이때, 375nm의 여기파장(excitation wavelength)을 사용하였으며, 510nm의 형광 방출파장(fluorescence emission wavelength)을 확인하였다.
그 결과, 도 6에 나타낸 바와 같이, 중성 pH에서 가장 강한 형광 증가를 보였으며, 산성 pH에서는 그 증가가 상대적으로 약하다는 것을 확인할 수 있었다(세로축: 형광세기, 가로축: pH).
[실시예 7]
화합물 2 처리에 따른 일광자 및 이광자 형광 현미경을 이용한 세포 영상화
일광자 및 이광자 형광 현미경을 이용한 세포 영상화를 통해 화합물 2 처리에 따른 형광변화를 관찰하기 위하여, 화합물 2(10 μM)를 HeLa 세포(자궁암세포, human cervical carcinoma cell)에 처리하여 그 형광변화를 관찰하였다. HeLa 세포는 10%의 fetal bovine serum(hyclone)과 penicillin-streptomycin(Hyclone)을 포함하는 Dulbecco's Modified Eagles Medium(DMEM, Hyclone)에서 5% 의 이산화탄소와 37℃의 주위 온도로 배양되었고, 약 20,000 세포/cm2 이 되도록 배양한 후, 실험에 사용하였다. 사용된 일광자 형광 현미경은 Carl Ziess 사의 LSM710 confocal microscope이고, 이광자 형광 현미경은 Coherent 사의 Ti-sapphire laser를 가지는 Chameleon Ultra 모델이다. 이광자 형광 현미경에 사용된 렌즈는 Olympus 사의 XLUMPLFNM, NA 1.0 모델이고, 이광자 형광 현미경에 사용된 파장과 laser power는 각각 880 nm, 15 mW이다.
구성된 실험의 set는 다음과 같다: (1) 아무것도 처리하지 않은 대조군(control) set; (2) 화합물 2(Cpd 2)의 프로브(10 μM)만 처리하고 30분 배양한 set; (3) GSH(300 μM) 선처리(pre-treatment)하여 30분 배양한 후, 화합물 2(Cpd 2)의 프로브(10 μM)를 처리하고 추가로 30분 더 배양한 set; (4) Cys(300 μM)을 선처리하여 30분 배양한 후, 화합물 2(Cpd 2)의 프로브(10 μM)를 처리하고 추가로 30분 더 배양한 set; (5) Na2S(300 μM)을 선처리하여 30분 배양한 후, 화합물 2(Cpd 2)의 프로브(10 μM)를 처리하고 추가로 30분 더 배양한 set; (6) PMA(50 μM, phorbol 12-myristate 13-acetate)를 선처리하여 30분 배양한 후, 화합물 2(Cpd 2)의 프로브(10 μM)를 처리하고 추가로 30분 더 배양한 set.
관찰 결과는 도 7에 나타낸 바와 같으며, 일광자 형광 현미경 결과는 도 7a의 상단 이미지이고, 이광자 형광 현미경의 결과는 도 7a의 하단 이미지이다. 또한, 일광자 형광 현미경의 scale bar는 60 μm를 나타내며, 이광자 형광 현미경의 scale bar는 30 μm를 나타낸다. (1)번 set는 화합물 2가 처리되지 않았으므로, 일광자 형광 현미경에서는 아무런 영상이 얻어지지 않았으며, 이광자 형광 현미경에서는 옅은 자가형광 (auto-fluorescence)이 관찰되었다. (2)번 set의 경우, 화합물 2가 세포 내 H2S를 감지하여 형광 증가를 보였다. (3) ~ (4)번 set의 경우, 선처리된 GSH, Cys이 세포내 H2S의 양을 증가시켜, 화합물 2만 처리된 (2)번 set 보다 강한 형광 변화를 나타냈다. (5)번 set의 경우, H2S가 선처리 되어있기 때문에 (2) ~ (4)번 set 보다 강한 형광 영상을 나타냈다. (6)번 set의 경우, PMA가 세포 내 황화수소(H2S)의 양을 감소시켜, 형광증가가 관찰되지 않았다. 각 set에 대한 형광세기 평균값을 도 7b 및 도 7c에 나타내었다(세로축: 형광세기, 가로축: set).
상기 결과로부터, 화합물 2가 세포에 쉽게 들어가며, 세포 내 황화수소와 반응해 형광변화를 일으킨다는 것을 알 수 있다.
[실시예 8]
화합물 2 처리에 따른 이광자 형광 현미경을 이용한 조직 영상화 - 쥐
이광자 형광 현미경을 이용하여 화합물 2 처리에 따른 쥐의 각 장기별 조직 영상화를 수행하였다. 즉, 쥐의 각 장기 (뇌, 신장, 간, 비장, 폐)에 존재하는 황화수소(H2S)의 분포를 화합물 2를 통해 확인하였으며, 이를 위해, 화합물 2를 살아있는 쥐의 복강에 주사한 후 장기를 적출한 (1')번 set 및 쥐의 각 장기를 적출하여 화합물 2의 용액에 적셔 둔 (2')번 set를 구성하여 준비하였다. 실험에 사용된 쥐는 C57BL6 type (SAMTAKO corp) 으로 5주령이다. 보다 상세하게, (1')번 set의 경우, 10 mM의 화합물 2 용액을 20 μL 취하여 280 μL의 PBS (100 mM, pH 7.4) 완충용액에 희석해 복강주사하는 방법으로 총 5일간 1일 2회 주입한 다음 5일 후 각 장기를 적출하였다. 적출된 장기는 5분간 드라이아이스에 담가 얼린 후 망치로 잘게 부수고, 16 μm 두께로 section machine(Cryostat machine, Leica, CM3000 model)을 이용해 잘랐다. 잘라진 각 장기별 조직을 OCT complex (10% w/w polyvinyl alcohol, 25% w/w polyethylene glycol, 85.5% w/w inactive species)에 놓고 고정시킨 다음 각 조직을 specimen block (Paul Marienfeld GMbH & Co.)에 올리고, 4% PFA(paraformaldehyde)를 처리해 10분간 보관하였다. 이어서 PBS 완충용액으로 3차례 씻어주고, mount solution (Gel Mount, BIOMEDA)으로 표면을 덮어 줌으로써 준비된 샘플을 실시예 7과 동일한 이광자 형광 현미경을 이용해 영상화 실험을 수행하였다. 단, 이때 이광자 형광 현미경의 여기파장 및 레이저 파워는 각각 880 nm, 40 mW으로 하였다. 또한, (2')번 set의 경우, 먼저 쥐의 각 장기를 적출하여 화합물 2 용액 (10 μM)에 10분간 담갔다가 건져내어 위의 (1')번 set와 동일한 방법으로 샘플을 준비하고 영상화 실험을 수행하였다.
쥐의 조직 영상화 결과는 도 8에 나타낸 바와 같다. 도 8a는 대조군으로서 화합물 2가 처리되지 않은 각 장기 조직의 이광자 형광 영상으로 아주 작은 자가형광(auto-fluorescence) 값을 보인다. 도 8b는 (1')번 set에 대한 결과로 뇌, 신장, 간, 비장, 폐에서 각각 신호가 증가한 것을 관찰할 수 있었다. 살아있는 상태에서 화합물 2를 복강주사 하였기 때문에, 각 장기에 화합물 2가 전체적으로 퍼져나간 것을 알 수 있으며, 특히 뇌에도 들어가 뇌 속에 존재하는 황화수소를 감지하는 것을 알 수 있다. 도 8c는 (b')번 set에 대한 결과로 뇌, 간, 폐에서 강한 형광변화를 볼 수 있으며, 각 장기별 황화수소의 분포 정도를 확인할 수 있다. 도 8a, 8b, 8c에서 scale bar는 30 μm를 뜻하며, 도 8d는 각 장기별 형광세기 평균값을 도식한 것으로서 세로축은 각 조직에서의 형광세기를, 가로축은 각 장기를 나타낸다.
[실시예 9]
화합물 2 처리에 따른 이광자 형광 현미경을 이용한 조직 영상화 - 물고기
이광자 형광 현미경을 이용하여 화합물 2 처리에 따른 제브라피쉬 (Zebrafish)의 각 장기별 조직 영상화를 수행하였다. 즉, 제브라피쉬를 화합물 2가 들어있는 환경에서 배양한 후 각 장기를 적출하여 물고기 내부의 황화수소(H2S) 분포를 확인하는 실험을 수행하였다. 6개월령의 제브라피쉬를 사용하였으며, 실험은 총 2개의 set로 구성되었다. (1")번 set는 제브라피쉬를 화합물 2가 100 μM 농도로 포함되어 있는 E3 media (15 mM NaCl, 0.5 mM KCl, 1 mM MgSO4, 1 mM CaCl2, 0.15 mM KH2PO4, 0.05 mM Na2HPO4, 0.7 mM NaHCO3, pH 7.4)에서 사육하고, 약 20분간 27℃에 배양한 후 건져내어 깨끗한 E3 media로 여러 차례 씻어준 다음 각 장기 (뇌, 부레, 눈, 아가미, 심장, 비장, 간, 신장 등 9개 장기)를 적출하여 실시예 7과 동일한 이광자 형광 현미경으로 관찰한 것으로, 각 장기의 고정은 7% methyl cellulose를 이용하여 수행하였다. 단, 이때 이광자 형광 현미경의 여기파장 및 레이저 파워는 각각 880 nm, 40~60 mW으로 하였다. (2")번 set는 상기 (1")번 set에서 화합물 2와 함께 배양된 제브라피쉬를 E3 media로 여러 차례 씻어준 후 황화수소 용액에 추가로 배양하는 과정을 수행하는 과정으로 구성되었다. 이때 황화수소는 200 μM의 농도였으며, 약 20분간 배양한 후, (1")번 set와 동일한 과정을 통해 영상화를 수행하였다.
제브라피쉬의 조직 영상화 결과는 도 9에 나타낸 바와 같다. 도 9a는 (1")번 set에 대한 결과이고, 도 9b는 (2")번 set에 대한 결과이며, 도 9c는 (1")번 set와 (2")번 set룰 각 장기별로 형광을 비교한 결과로서, 각 장기별 황화수소의 분포 및 외부 황화수소에 대한 각 장기별 변화를 관찰할 수 있었다. 도 9a, 9b, 9c에서 scale bar는 50 μm를 뜻하며, 도 9d, 도 9e, 도 9f는 각각 도 9a, 도 9b, 도 9c에서의 장기별 형광세기를 그래프화한 것으로, 세로축은 형광세기를 나타내고, 가로축은 각 장기를 나타낸다.
상기로부터, 살아있는 생명체 내부에의 황화수소 분포와 더불어 외부 황화수소 처리 조건에서 어떠한 장기에 황화수소가 더 집중되어 분포하게 되는지 알 수 있다.
[실시예 10]
화합물 2의 세포 독성 확인
본 발명에 따른 화합물 2의 세포독성을 확인하기 위해, MTT 방법으로 HeLa 세포 (자궁암세포)에서 세포독성 실험을 수행하였다. 즉, 실시예 7과 동일한 방법으로 준비한 HeLa 세포에 화합물 2를 각 농도별 (0 ~ 100 μM)로 처리하였다. 그리고 세포독성 확인을 위해, 5 mg/mL 농도의 MTT(3-(4,5-dimethldiazol-2-yl)-2, 5-diphenyltetrazolium bromide)를 25 μL씩 첨가하였다. 약 2시간을 37℃에서 배양한 후, 100 μL의 solubilizing solution(50% dimethylformamide, 20% SDS, pH 7.4)을 넣어주고, 37℃에서 24시간 배양한 다음 570 nm에서 흡광도를 측정하였다.
그 결과, 도 10에 나타낸 바와 같이, 100 μM 까지 95% 이상의 세포생존율을 나타내는 것으로 나타나 아세토니트릴을 처리한 대조군과 유사한 것을 알 수 있었다.
따라서 화합물 2는 세포에 대해 독성을 나타내지 않음을 알 수 있다.
[실시예 11]
화합물 2와 황화수소 간의 선택적 반응에 대한 양자화학 계산
화합물 2의 황화수소에 대한 선택적 반응을 규명하기 위하여 양자화학 계산을 수행하였다. 화합물 2의 경우, 황화수소와 반응하여 분자 내 고리화 반응(intramolecular cyclization)이 일어나게 된다(상기 실시예 1, 도 1a 참조). 이러한 고리화 반응의 핵심은 황화수소와 결합하는 화합물 2의 에논(enone) 작용기의 베타 탄소(β-carbon) 전자친화도(electrophilicity)와 관계가 있다. 계산을 통해 얻어지는 베타 탄소에 대한 전자친화도가 높을수록 그 값이 점점 작아지므로('음'의 값으로 작아짐), 황화수소가 아닌 다른 황화물과도 쉽게 반응 할 수 있음을 뜻하는 것이고, 베타 탄소에 대한 전자친화도가 낮을수록 그 값이 점점 커지므로('양'의 값으로 커짐) 황화수소와 선택적으로 반응할 수 있음을 의미한다. 양자화학 계산의 편이성을 위해 2-하이드록시에틸아미노 (2-hydroxyethylamino) 작용기를 제거하고 계산을 수행하였으며, 베타 탄소의 전자친화도에 영향을 줄 수 있는 요소인 전자주개 작용기의 영향을 확인하기 위해 오쏘(ortho), 파라(para) 위치에 메톡시(methoxy) 작용기를 도입하여 그 영향을 확인하였다. 아무런 작용기가 도입되지 않은 것을 P1`, 오쏘 위치에 두 개의 메톡시 작용기가 도입된 것을 P2`, 그리고 오쏘-파라 위치에 모두 메톡시 작용기가 도입된 것을 P3`라 명명하였다. 양자화학 계산은 B3LYP 수준의 밀도함수 이론(DFT, density functional theory)을 바탕으로 수행되었으며, 전체적인 시스템은 Spartan'08 program package를 이용하였다.
계산 결과, 전자친화도는 계산 값이 음의 값으로 갈수록 친화도가 높음을 뜻하므로, 도 11에 나타낸 바와 같이, 메톡시 작용기가 도입됨에 따라 에논(enone)의 베타 탄소에 대한 전자친화도가 감소하는 것을 확인할 수 있었다.
따라서 본 발명의 화학식 2와 같이 오쏘-파라 위치 모두에 메톡시 작용기가 도입될 경우 특히 높은 황화수소에 대한 선택성을 제공해 줄 것임을 예상할 수 있다.
[실시예 12]
황화수소와 화합물 2, 3, 4의 반응에 의한 형광 변화 확인
양자화학 계산 결과를 증명하기 위해, 황화수소 및 생물학적 황화물 조건에서 화합물 2, 3, 4의 황화수소에 대한 선택성을 확인하였다. 즉, 생물학적 황화물 조건(Na2S (100 uM, H2S와 동일물질), 글루타치온 (GSH, Glutathion, 10 mM), 시스테인 (Cys, 200 μM), 호모시스테인 (Hcy, 50 μM))에서 화합물 2, 3, 4(10 μM)의 형광변화를 관찰하였는데, 실험에 사용된 완충용액(buffer)는 상기 실시예 1과 동일하며, 375nm의 여기파장(excitation wavelength)을 사용하였고, 510nm의 형광 방출파장(fluorescence emission wavelength)을 확인함으로써 수행되었다.
상기 실시예 3 및 도 3에서 확인한 바와 같이, 화합물 2는 황화수소에 대한 높은 선택성을 보인 것에 반해, 도 12a에 나타낸 바와 같이, 전자주개(electron donor) 작용기가 오쏘 위치에 하나 도입된 화합물 3은 화합물 2에 비해 상대적으로 낮은 황화수소 선택성을 보이는 것으로 나타났고, 도 12b에 나타낸 바와 같이, 전자주개 작용기가 전혀 도입되지 않은 화합물 4는 생물학적 황화물 조건에서 황화수소 선택성을 나타내지 못하는 것을 확인할 수 있었다(세로축: 형광세기, 가로축: 시간).
따라서 상기 실시예 11에서 수행한 양자화학 계산 결과와 동일하게, 전자주개 작용기가 황화수소에 대한 선택성에 영향을 미침을 알 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.
본 발명의 형광 프로브는 작은 유기 분자로서 선택적으로 황화수소 (Hydrogen sulfide)와 결합할 때 높은 선택성과 민감도로 형광 신호를 제공할 수 있어, 종래 개발된 형광 프로브들의 문제점인 낮은 기질 선택성, 낮은 민감도, 느린 감응 속도 등의 문제점을 극복하였을 뿐만 아니라 생체 내 존재하는 황화수소의 분포를 이광자 형광 현미경을 통해 높은 해상도와 밝은 영상으로 관찰할 수 있다.

Claims (6)

  1. 하기 화학식 1로 표시되는 일광자 및/또는 이광자 형광 프로브:
    [화학식 1]
    Figure PCTKR2014001589-appb-I000010
    상기 화학식 1에서,
    R1은 수소, 알킬, 또는 치환된 C1-3 알킬이고,
    R2는 수소, 알킬, 또는 치환된 C1-3 알킬이고,
    R3는 수소, 알킬, 또는 치환된 C1-3 알킬이고,
    R4는 수소 또는 알킬이고,
    R5는 CHO 또는 COCF3이다.
  2. 제1항에 있어서,
    상기 프로브는 황화수소와 결합하여 형광을 나타내는 것을 특징으로 하는, 형광 프로브.
  3. (a) 제1항의 형광 프로브를 세포에 주입하는 단계;
    (b) 주입된 형광 프로브가 세포 내 황화수소와 반응하여 형광을 나타내는 단계; 및
    (c) 상기 형광을 일광자 또는 이광자 형광 현미경으로 관측하는 단계를 포함하는 세포 내 황화수소의 영상화 방법.
  4. 하기 반응식 1에 나타낸 바와 같이,
    1) 화학식 5의 화합물을 팔라듐 촉매 하에서 헥(Heck) 반응시키고, 2-아미노에탄올과 부크워드(Bucherer) 반응시켜 화학식 6의 화합물을 제조하는 단계;
    2) 화학식 7의 화합물을 산 촉매 하에서 에스터화 반응시킨 다음 순차적으로 브로모화 반응 및 환원-산화 반응시켜 화학식 8의 화합물을 제조하는 단계;
    3) 상기에서 제조한 화학식 8의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시킨 다음 리튬-포밀화 반응시켜 화학식 9의 화합물을 제조하는 단계;
    4) 상기에서 제조한 화학식 6의 화합물과 화학식 9의 화합물을 알돌 축합 반응시켜 화학식 10의 화합물을 제조하는 단계; 및
    5) 상기에서 제조한 화학식 10의 화합물을 산성 조건으로 반응시켜 화학식 2의 화합물을 제조하는 단계를 포함하는, 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법.
    [반응식 1]
    Figure PCTKR2014001589-appb-I000011
  5. 하기 반응식 2에 나타낸 바와 같이,
    1') 화학식 11의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시켜 화학식 12의 화합물을 제조하는 단계;
    2') 상기에서 제조한 화학식 12의 화합물을 리튬-포밀화 반응시켜 화학식 13의 화합물을 제조하는 단계;
    3') 상기에서 제조한 화학식 13의 화합물과 제4항의 1)단계에서 제조한 화학식 6의 화합물을 알돌 축합 반응시켜 화학식 14의 화합물을 제조하는 단계; 및
    4') 상기에서 제조한 화학식 14의 화합물을 산성 조건으로 반응시켜 화학식 3의 화합물을 제조하는 단계를 포함하는, 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법.
    [반응식 2]
    Figure PCTKR2014001589-appb-I000012
  6. 하기 반응식 3에 나타낸 바와 같이,
    1") 화학식 15의 화합물을 아세탈 작용기 보호 (acetal protection) 반응시킨 다음 리튬-포밀화 반응 시켜 화학식 16의 화합물을 제조하는 단계;
    2") 상기에서 제조한 화학식 16의 화합물과 제4항의 1)단계에서 제조한 화학식 6의 화합물을 알돌 축합 반응시켜 화학식 17의 화합물을 제조하는 단계; 및
    3") 상기에서 제조한 화학식 17의 화합물을 산성 조건으로 반응시켜 화학식 4의 화합물을 제조하는 단계를 포함하는, 황화수소 감지용 일광자 및/또는 이광자 형광 프로브의 제조방법.
    [반응식 3]
    Figure PCTKR2014001589-appb-I000013
PCT/KR2014/001589 2013-11-18 2014-02-26 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법 WO2015072627A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/037,168 US20160274123A1 (en) 2013-11-18 2014-02-26 One-Photon and/or Two-Photon Fluorescent Probe for Sensing Hydrogen Sulfide, Imaging Method of Hydrogen Sulfide Using Same, and Manufacturing Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0140017 2013-11-18
KR1020130140017A KR101481921B1 (ko) 2013-11-18 2013-11-18 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2015072627A1 true WO2015072627A1 (ko) 2015-05-21

Family

ID=52588855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001589 WO2015072627A1 (ko) 2013-11-18 2014-02-26 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20160274123A1 (ko)
KR (1) KR101481921B1 (ko)
WO (1) WO2015072627A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038763A (zh) * 2015-06-04 2015-11-11 济南大学 一种识别溶酶体内硫化氢的荧光探针及其应用
CN113444099A (zh) * 2020-03-24 2021-09-28 浙江大学城市学院 一种反应型硫化氢荧光探针及其制备与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422667B (zh) * 2017-08-23 2021-10-08 北京工商大学 一种萘甲腈类硫化氢荧光探针
CN109422738A (zh) * 2017-08-24 2019-03-05 北京工商大学 一种香豆素类硫化氢荧光探针
WO2019231503A1 (en) * 2018-06-01 2019-12-05 University Of Oregon Compounds for thiol-triggered cos and/or h2s release and methods of making and using the same
CN110669043A (zh) * 2019-10-12 2020-01-10 南宁师范大学 识别半胱氨酸和同型半胱氨酸、谷胱甘肽和硫化氢的荧光探针及其制备方法
CN112876425B (zh) * 2021-02-06 2022-05-06 许昌学院 一种硫化氢荧光探针及其制备方法和应用
CN114410293B (zh) * 2022-01-11 2024-03-19 苏州大学 一种高灵敏度硫化氢响应型纳米探针及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094603A1 (en) * 2011-01-06 2012-07-12 Georgia State University Research Foundation, Inc. Chemosensors for hydrogen sulfide
CN103160274A (zh) * 2012-11-30 2013-06-19 山东师范大学 一种检测细胞内硫化氢的荧光探针及其制备方法和应用
CN103173212A (zh) * 2013-03-01 2013-06-26 浙江大学 一种检测生物硫化氢的荧光探针及其制备与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011022502A1 (en) * 2009-08-18 2011-02-24 Georgetown University Boronic acid compositions and methods related to cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094603A1 (en) * 2011-01-06 2012-07-12 Georgia State University Research Foundation, Inc. Chemosensors for hydrogen sulfide
CN103160274A (zh) * 2012-11-30 2013-06-19 山东师范大学 一种检测细胞内硫化氢的荧光探针及其制备方法和应用
CN103173212A (zh) * 2013-03-01 2013-06-26 浙江大学 一种检测生物硫化氢的荧光探针及其制备与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAE, SUNG KEUN: "Two-Photon Fluorescent Probes for Ratiometric Detection of Mitochondrial Hydrogen Sulfide in Living Tissues", MASTER'S THESIS, February 2013 (2013-02-01), GRADUATE SCHOOL OF AJOU UNIVERSITY *
LIU ET AL.: "Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe", ANGEW. CHEM , INT. ED., 2011, pages 10327 - 10329 *
XUAN ET AL.: "Fluorescent Probes for the Detection of Hydrogen Sulfide in Biological Systems", ANGEW. CHEM , INT. ED., 2012, pages 2282 - 2284 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038763A (zh) * 2015-06-04 2015-11-11 济南大学 一种识别溶酶体内硫化氢的荧光探针及其应用
CN113444099A (zh) * 2020-03-24 2021-09-28 浙江大学城市学院 一种反应型硫化氢荧光探针及其制备与应用
CN113444099B (zh) * 2020-03-24 2022-06-21 浙江大学城市学院 一种反应型硫化氢荧光探针及其制备与应用

Also Published As

Publication number Publication date
US20160274123A1 (en) 2016-09-22
KR101481921B1 (ko) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2015072627A1 (ko) 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법
WO2013172544A1 (ko) 새로운 이광자 흡수 형광체 및 이를 이용한 기질 감지 방법
Feula et al. Synthesis of azetidines and pyrrolidines via iodocyclisation of homoallyl amines and exploration of activity in a zebrafish embryo assay
JP2598819B2 (ja) 新規なcc‐1065同族体
US9714260B2 (en) Asymmetrical Si rhodamine and rhodol synthesis
WO2018052243A1 (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
EP2440544B1 (en) Hedgehog pathway antagonists and therapeutic applications thereof
CN106317112B (zh) 四嗪类化合物及其制备方法、应用
CN113402514B (zh) 一种有机染料化合物及其制备方法和应用
WO2014181960A2 (ko) 타이로신 인산화효소를 감지하는 형광 프로브 및 이의 용도
Lusic et al. A new photocaging group for aromatic N-heterocycles
WO2019039888A1 (ko) 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법
WO2018062811A1 (ko) 포름알데히드 검출 또는 농도 측정용 프로브, 이를 이용한 세포 또는 조직 내 포름알데히드의 이광자 비율 기준 형광 영상화 및 농도 측정
KR20200074128A (ko) 벤조티오펜-2-일 보로네이트의 제조 방법
KR20210150527A (ko) 알파-카르복스아미드 피롤리딘 유도체 제조 방법
FR2945535A1 (fr) Compose anticancereux et composition pharmaceutique le contenant
da Costa et al. Synthesis of methyl (±)-3, 5-bis (substitutedmethyl) pyrrolidine-2-carboxylates: a convenient approach to proline-mimetics
Watzke et al. First Synthesis of Bi‐and Tricyclic α, β‐Unsaturated δ‐Oxacaprolactams from Cyclic Imines via Ring‐Closing Metathesis
EP4269388A1 (en) Dipyrromethene-1-one compound and preparation method therefor
WO2019045522A1 (ko) 아미노-실라-파이로닌 화합물 기반 일광자 또는 이광자 흡수 형광체 및 이의 용도
JPH1087592A (ja) 一酸化窒素発生剤
KR20180115992A (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
CA1313872C (fr) Acetamides derives de la dihydro-2,3 phenyl-3 benzofurannone-2, leurs procedes de preparation et les compositions pharmaceutiques qui les contiennent
SAIGA et al. Synthesis of 1, 2, 3, 4-tetrahydro-β-carboline derivatives as hepatoprotective agents. IV. Positional isomers of 1, 2, 3, 4-tetrahydro-2-methylthiothiocarbonyl-β-carboline-3-carboxylic acid and its 1-alkylated derivatives
Boulosa et al. Reactions of 5 (4H)-oxazolones with Wittig-Horner reagents: Novel synthesis of dioxopyrrolidinephosphonates and phosphonoalkanoates with anticipated schistosomicidal activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862399

Country of ref document: EP

Kind code of ref document: A1