WO2015014100A1 - 光学成像装置 - Google Patents

光学成像装置 Download PDF

Info

Publication number
WO2015014100A1
WO2015014100A1 PCT/CN2014/000726 CN2014000726W WO2015014100A1 WO 2015014100 A1 WO2015014100 A1 WO 2015014100A1 CN 2014000726 W CN2014000726 W CN 2014000726W WO 2015014100 A1 WO2015014100 A1 WO 2015014100A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical imaging
imaging device
housing
optical element
Prior art date
Application number
PCT/CN2014/000726
Other languages
English (en)
French (fr)
Inventor
熊全宾
何羽立
Original Assignee
矽创电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矽创电子股份有限公司 filed Critical 矽创电子股份有限公司
Publication of WO2015014100A1 publication Critical patent/WO2015014100A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements

Definitions

  • the present invention relates to an image forming apparatus, and more particularly to an optical image forming apparatus. Background technique
  • Various display devices for vehicles have been developed, for example: driving recorders, satellite navigation, head-up displays, etc., in which head-up displays have been widely used.
  • the image displayed is projected on the windshield of the left front or right front of the instrument panel.
  • the user mostly looks at the road ahead.
  • the user wants to view the image displayed by the head-up display while driving, the user needs to move his or her line of sight to the front or right front windshield of the instrument panel seat.
  • the focus of the user's eyes is constantly changing, and the user's attention cannot always be concentrated in the road ahead, which may easily lead to traffic accidents.
  • the present invention provides an optical imaging apparatus in which a user views a display image that is located directly in front and is visually enlarged by the optical imaging apparatus of the present invention, so that the user does not need to change the focal length of the eye during driving, and The occurrence of traffic accidents is avoided, and the optical imaging apparatus of the present invention is small in size, can replace a display element of a larger size, and can control the volume of the optical imaging apparatus.
  • the optical component configuration of the present invention can increase the size of the display element while controlling the volume of the optical imaging device.
  • the HUD driving force for vehicles should be oriented towards providing diversified display information.
  • the size of the internal display unit needs to be increased.
  • the method of a single optical component needs to be set longer, but this will be limited by the space of the instrument panel.
  • the size creates a technical bottleneck.
  • the present invention solves the aforementioned problems by first reducing the display image by the first element and then amplifying the second optical element to shorten the overall optical imaging path of the display element to the second optical element.
  • An optical imaging apparatus includes: a housing; a first optical component disposed in the housing; a second optical component disposed in the housing and located in the first optical On the imaging path of the component; and a display element that is disposed twice as large as the first optical component Outside the focal length, and imaged within the focal length of the second optical component to produce a visually magnified and equivalently located display image at a distance.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the first optical element and the second optical element are each a convex lens.
  • the first optical element is a convex lens
  • the second optical element is a concave mirror
  • the optical imaging device further includes: a transparent cover disposed on an opening of the housing and located at the visually magnified and equivalently located at a distant transmission path of the display image, wherein at least one of the transparent covers The surface has a film layer.
  • optical imaging device further comprising: a transparent curved cover disposed on an opening of the housing and located on the transmission path of the display image which is visually enlarged and equivalently located at a distance.
  • optical imaging device further comprising: at least one reflective component disposed between the display component and the first optical component and between the first optical component and the second optical component, and located at the display component Display the image's delivery path.
  • the width of the second optical element is greater than the pitch of the eyes of a user.
  • the optical imaging device of the foregoing wherein the housing is disposed in a dashboard seat of a vehicle, the housing being disposed along a curvature of a windshield of the automobile.
  • the display element adjusts the size of the display image according to the distance from a user to the windshield.
  • the display element adjusts the position of the display image in accordance with the amount of shift of the display image which is visually enlarged and equivalently located at a distance.
  • the optical imaging device further includes: an outer casing having two pivoting holes on two sides thereof, the two pivoting shafts of the housing are pivotally connected to the two pivoting holes; and an angle adjusting mechanism disposed on the outer Inside the outer casing, and corresponding to the casing, the angle adjusting mechanism pushes the casing, and the casing rotates relative to the outer casing.
  • the angle adjustment mechanism includes: a driving component disposed in the outer casing; and a pushing component disposed on the driving component, the one end of the pushing component being coupled to the housing, the driving The component drives the pusher element, the pusher element pushing the housing, the housing rotating relative to the outer casing.
  • the optical imaging device of the foregoing further comprising: a sensing element disposed on an outer side of the housing and sensing an ambient brightness or color of an exterior of the optical imaging device, the display element being in accordance with an environment external to the optical imaging device The brightness or color adjusts the brightness of a backlight module of the display element or adjusts the color of a display image displayed by the display element.
  • the optical imaging device of the foregoing further comprising: a light sensing module disposed outside the housing The side has a sensing end, and the sensing end and the center line of the second optical component are both inclined at an angle with respect to a horizontal plane, and the sensing end is oriented in the same direction as the second optical component.
  • the optical sensing module is connected to the housing, and when the housing rotates, the housing simultaneously drives the optical sensing module to rotate, and the sensing end and the center line of the second optical component Both are inclined at an angle relative to the horizontal plane, and the sensing end is automatically oriented in the same direction as the second optical element.
  • the optical imaging device of the foregoing further comprising: a light shielding member disposed corresponding to the second optical component; wherein the light sensing module senses that the amount of exposure of the external sunlight to the optical imaging device exceeds a threshold value, the light perception The measuring module transmits a control signal to the light blocking member, and the light blocking member shields the second optical component according to the control signal.
  • the light shielding member is a shade, a display glass or a single glass.
  • the optical imaging apparatus of the present invention has at least the following advantages and advantageous effects:
  • the optical imaging device of the present invention can first reduce the display image displayed by the display element by the first optical component, and then enlarge the display image reduced by the first optical component by the second optical component, so that the optical imaging device generates amplification and is equivalent.
  • the focal length of the display image located in the far distance is located at a distance, so that the user can see the enlarged display image without changing the focal length of the eye when viewing the distance.
  • the size of the display element of the optical imaging device of the present invention may be increased, and the volume of the optical imaging device may be controlled.
  • the size of the display element is greater than or equal to 1.8 inches, and the display element is to the second optical element.
  • the total length of the optical path is less than or equal to 50 cm.
  • the optical imaging apparatus of the present invention uses at least two optical elements to shorten the distance of the display element to at least two optical elements, thereby shortening the volume of the optical imaging apparatus.
  • the second optical element of the optical imaging device of the present invention has a width greater than the distance between the eyes of the user, allowing the user's eyes to simultaneously view the enlarged display image.
  • the first optical element and the second optical element are designed to be rectangular to reduce the volume of the optical imaging device.
  • the optical imaging apparatus of the present invention is applicable to a vehicle which is disposed along an orphan of the windshield such that the center line of the optical imaging apparatus is inclined with respect to a center line of the user's direct view, thereby effectively avoiding the optical imaging apparatus. Displays the condition in which the image is distorted.
  • the optical imaging apparatus of the present invention can adjust the angle of the second optical element of the optical imaging apparatus relative to the windshield by an angle adjustment mechanism depending on the height of the user, thereby allowing the user to view the complete enlarged display image.
  • the optical imaging apparatus of the present invention can adjust the size of the area of the display image of the display element according to the distance from the user to the windshield, and thereby view the complete enlarged display image.
  • the optical imaging apparatus of the present invention can adjust the position of the display image of the display element according to the offset of the displayed image, and thereby view the complete enlarged display image.
  • the display element of the optical imaging apparatus of the present invention uses an LED backlight module to produce a high brightness display image.
  • the optical imaging device of the present invention further includes a sensing component, the sensing component senses ambient brightness and brightness, and the display component adjusts brightness and color of the LED backlight module according to ambient brightness and color, thereby making the display image generated by the optical imaging device clear Presentation.
  • the LED backlight module of the display element of the optical imaging device of the present invention uses a ceramic substrate as a circuit board, and heat dissipating fins are disposed on one side of the LED backlight module to dissipate heat from the LED backlight module that generates high temperature.
  • the optical imaging device of the present invention has a light sensing module that senses the amount of illumination of the sunlight to the optical imaging device through the light sensing module, and if it exceeds the threshold value, adjusts the angle of the housing or covers the light shielding member to the optical
  • the second optical component of the imaging device is configured to reduce the amount of illumination that the sunlight illuminates to the optical imaging module or block sunlight from passing directly through the second optical component to the optical imaging module, thereby preventing thermal damage to components of the optical imaging module.
  • the light sensing module can be coupled to the housing of the optical imaging device such that the light sensing module rotates as the housing rotates and automatically causes the sensing end of the light sensing module to face the second optical element in the same direction.
  • Figure 1 is a cross-sectional view showing an optical imaging apparatus according to a first embodiment of the present invention.
  • Fig. 2 is a schematic view showing the imaging of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 3 is another schematic imaging view of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 4 is a further schematic view showing the imaging of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 5A is a schematic view of an optical element of a first embodiment of the present invention.
  • Fig. 5B is a schematic view of an optical element of a second embodiment of the present invention.
  • Fig. 6 is a view showing a state of use of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 7A is a schematic view of the optical imaging apparatus of the first embodiment of the present invention with respect to the windshield.
  • Fig. 7B is another schematic view of the optical imaging apparatus of the first embodiment of the present invention with respect to the windshield.
  • Fig. 8 is a view showing another use state of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 9A is a view showing an adjustment of the display image area of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 9B is another schematic view showing the adjustment of the display image area of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 10 is a view showing the adjustment of the optical imaging apparatus of the first embodiment of the present invention and showing the position of the image.
  • Fig. 11 is a schematic diagram of a backlight module of a display element of the optical imaging apparatus of the first embodiment of the present invention.
  • Figure 12 is a sensing schematic view of a sensing element of the optical imaging apparatus of the first embodiment of the present invention.
  • Figure 13 is an enlarged view of a region A of Figure 6 of the present invention.
  • Figure 14 is a schematic diagram of a light sensing module of an optical imaging apparatus according to a third embodiment of the present invention.
  • Fig. 15 is a view showing a state of use of the light sensing module of the optical imaging apparatus of the first embodiment of the present invention.
  • Fig. 16A is a view showing a state of use of a light blocking member of an optical imaging apparatus according to a fourth embodiment of the present invention.
  • Fig. 16B is another view showing the use of the light blocking member of the optical imaging apparatus of the fourth embodiment of the invention.
  • Fig. 17A is a view showing a state of use of a light blocking member of an optical imaging apparatus according to a fifth embodiment of the present invention.
  • Fig. 17B is another view showing the use of the light blocking member of the optical imaging apparatus of the fifth embodiment of the invention.
  • Fig. 18 is a view showing a state of use of a light shielding member of an optical imaging apparatus according to a sixth embodiment of the present invention.
  • Figure 19 is a schematic view of an optical imaging apparatus according to a seventh embodiment of the present invention.
  • Figure 20 is a cross-sectional view showing an optical imaging apparatus of an optical imaging apparatus according to an eighth embodiment of the present invention.
  • Figure 21 is a cross-sectional view showing an optical imaging apparatus of an optical imaging apparatus according to a ninth embodiment of the present invention.
  • Figure 22 is a schematic view showing the imaging of an optical imaging apparatus according to a ninth embodiment of the present invention.
  • Optical imaging device 10 Housing
  • first side wall 102b second side wall
  • pivot axis 110 display component
  • LED backlight module 1104 ceramic substrate
  • heat dissipating component 111 reflective component
  • Transparent cover 1161 film layer
  • Light sensing module 151 sensing end 152: Cylinder 153: Light sensing element
  • Notch 42 Windshield
  • sampling point f focal length
  • P1 viewing area
  • P2 viewing area
  • FIG. 1 and FIG. 2 are respectively a cross-sectional view and an imaging diagram of an optical imaging apparatus according to a first embodiment of the present invention.
  • the optical imaging apparatus 1 of the present embodiment has a housing. 10, a display element 110, a first optical element 113a and a second optical element 113b, the second optical element 113b is disposed in the housing 10, and is located in the opening 100, the first optical element 113a is disposed in the housing 10, And corresponding to the second optical element 113b, that is, the second optical element 113b is located on the imaging path of the first optical element 113a, wherein the first optical element 113a and the second optical element 113b are both convex lenses.
  • the display element 110 is disposed in the housing 10 and is located outside the double focal length of the first optical component 113a.
  • the display image 1101 displayed by the display component 110 generates a reduced display image 1101a through the first optical component 113a, and is imaged.
  • the final reduced display image 1101a is visually magnified by the second optical element 113b and is equivalent to the remotely displayed image 110 ⁇ , such that the user can pass the optical imaging device 1 of the present embodiment.
  • a display image 110 ⁇ that is visually magnified and equivalently located far away is seen.
  • the focal length of the first optical element 113a and the focal length of the second optical element 113b may be the same, for example: the focal length of the first optical element 113a and the second optical element 113b is 10 cm, and the distance between the display element 110 and the first optical element 113a It is 20 cm or more.
  • the focal length of the first optical element 113a and the focal length of the second optical element 113b may also be different, for example: the first optical element 113a
  • the focal length is half of the focal length of the second optical element 113b, so the focal length of the second optical element 113b is 20 cm, and the double focal length of the first optical element 113a is 20 cm, so that the first optical element 113a having the same focal length is used.
  • the second optical element 113b can further shorten the overall distance from the display element 110 to the second optical element 113b, thereby reducing the volume of the optical imaging device 1.
  • the optical imaging device 1 of the present embodiment first reduces and enlarges the display image 1101 displayed by the display element 110. Therefore, the size of the display element 110 of the optical imaging device 1 of the present embodiment can be increased and controlled.
  • the volume of the optical imaging device 1, preferably, the size of the display element 110 is greater than or equal to 1.8 inches, and the overall optical path of the display element 110 to the second optical element 113b is less than or equal to 50 cm.
  • At least one reflective component 111 may be disposed between the display component 110 and the first optical component 113a of the present embodiment.
  • the at least one reflective component 111 is located on the transmission path of the display image 1101 displayed by the display component 110.
  • the path of the display image 110 displayed by the display element 110 to the first optical element 113a is straight, but the display element 110 and the first optical of the embodiment
  • the element 113a is provided with at least one reflective element 111, and the path for transmitting the display image 1101 displayed by the display element 110 to the first optical element 113a is bent to shorten the depth of the optical imaging device 1 and to reduce the optical imaging device 1 volume.
  • FIG. 3 is another schematic diagram of the imaging of the optical imaging apparatus according to the first embodiment of the present invention.
  • a user 2 passes through at least two optical elements 113a from the outside of the optical imaging apparatus 1
  • the reduced display image 1101a generated by the display element 110 via the first optical element 113a is located within the focal length f of the second optical element 113b (as shown in FIG. 2).
  • the user 2 can see the display image 110 ⁇ (virtual image) which is visually enlarged and equivalently located at a distance, and the distance between the display image 110 ⁇ which is enlarged and equivalently located at a distance and the user 2 is greater than 2 meters (the light is passed through)
  • the windshield reflection as shown in Figure 2, is omitted, so that the user 2 can view the distant object 3 or the scene, and can simultaneously view the display image 1101 which is enlarged and equivalent to the far side, and is enlarged and equivalent to the remote display image 1101.
  • the content of can be the information of the remote object 3 or the scene or other reference information, so that the user 2 does not need to change the focal length of his eye, in the distance to watch Objects 3 or scenes can be viewed at the same time as visually magnified and equivalent to the remote display image 110 ⁇ .
  • FIG. 4 is a schematic diagram of still another imaging of the optical imaging apparatus according to the first embodiment of the present invention
  • FIGS. 5A and 5B are respectively a first embodiment of the present invention and A schematic view of a second optical component of the optical imaging device of the second embodiment; in the figure, in order to allow the eyes 2 of the user 2 to simultaneously see the complete enlarged and remotely displayed image 110 ⁇ , the second optical component of the present embodiment
  • the width of 113b is larger than the distance d of the two eyes 21 of the user 2 (the first optical element 113a is omitted in FIG. 4), but the distance d between the eyes 21 of the general user 2 is between 60 and 70 mm.
  • the first optical element 113a and the second optical element The preferred width w of 1 13b can be greater than 70 colors. Since each eye 21 is viewed by the second optical element 113b to produce a viewing area P1, P2, the viewing areas P1, P2 of the two eyes 21 have an overlapping viewing area R, and the display image 1 10 ⁇ produced by the optical imaging device 1 is located at two The eye 21 is viewed in the overlapping viewing area R viewed by the second optical element 1 13b, so that the eyes 21 of the user 2 can simultaneously view the display image 1101 (virtual image) which is enlarged and equivalently located far away.
  • the first optical element 1 13a and the second optical element 1 13b of the present embodiment may be rectangular (as shown in FIG. 5A and FIG. 5B), respectively, so that the volume of the optical imaging apparatus 1 is effectively reduced.
  • FIG. 6 is a view showing a state of use of the optical imaging apparatus according to the first embodiment of the present invention.
  • the housing 10 is located in the instrument panel mount 41.
  • the surface of the instrument panel mount 41 has a notch 41 1 , and the notch 41 1 corresponds to the second optical component 1 13b.
  • the second optical component 1 13b corresponds to a reflective film 422 on the windshield 42.
  • the reflective film 422 is located on the transmission path of the display image 1 101 which is enlarged and equivalently located in the far side, wherein the reflective film 422 can also be a dark film. Or replace the coated glass display area.
  • FIG. 7A and 7B are respectively schematic views of the optical imaging device according to the first embodiment of the present invention with respect to the windshield; in the figure, the windshield 42 has a curved surface. 421, the orphan plane 421 has a curvature.
  • the housing 10 of the optical imaging apparatus 1 of the present embodiment is disposed along the curved surface 421 of the windshield 42 to prevent the user 2 from seeing the distorted display image 1 101.
  • the optical imaging device 1 When the driver's seat 43 is located on the left side of the automobile 4, the optical imaging device 1 is disposed in the instrument panel seat 41 in front of the driver's seat 43 at this time, the casing 10 is disposed along the curved surface 421 of the windshield 42 for the housing 10
  • the center line C1 is inclined to the right by an angle with respect to the center line C2 of the driver's seat 43 of the automobile 4, in other words, the center line C1 of the casing 10 is inclined to the right side of the user 2 with respect to the center line of the direct view of the user 2.
  • the angle depends on the curvature of the orphan plane 421; when the driver's seat 43 is located on the right side of the car 4, the optical imaging device 1 is disposed in the instrument panel seat 41 in front of the driver's seat 43, the center line G1 of the casing 10 is opposite to The center line C2 of the driver's seat 43 is inclined to the left by an angle such that the optical imaging device 1 can be disposed along the curvature of the curved surface 421 of the windshield 42.
  • the angle at which the center line C1 of the casing 10 is inclined to the right or left with respect to the center line C2 of the driver's seat 43 of the automobile 4 is determined according to the curvature of the orphan 421 of the windshield 42, and is further exemplified herein.
  • the angle at which the line G1 is inclined to the right or left with respect to the center line C2 of the driver's seat 43 of the automobile 4 is about 5 degrees.
  • the display component 1 10 when the optical imaging device 1 starts operating, the display component 1 10 generates a display image 1 101, and the display image 1 101 passes through the reflective component 1 11 . It is passed to the first optical element 1 13a and produces a reduced display image 1 101 a (as shown in Figure 2). Then the reduced display image 1 101 a is imaged on the second optical element 1 13b Within one focal length, and by the second optical element 113b, a display image 1 10 ⁇ which is enlarged and equivalently located far away is generated.
  • the display image 1 10 ⁇ which is enlarged and equivalently located far away is transmitted to the reflective film 422, and the reflective film 422 is reflected and enlarged and is equivalent to the remote display image 1 10 ⁇ to the eyes of the user 2, at which time the user 2 will see the enlargement and Equivalent to the remote display image 1 101, (virtual image), so that when the user 2 is driving the car 4, the user 2's line of sight is focused on a distant road condition, and the display image 1 101 can also be viewed. If the focal length of the eye 21 is not changed during driving, the display image 1 10 ⁇ which is enlarged and equivalent to the far side can be viewed, and the information of the current car 4 is obtained by zooming in and displaying the display image 110 ⁇ at a distance. (Example: speed, fuel quantity, speed, temperature, etc.).
  • FIG. 8 is another use state diagram of the optical imaging apparatus according to the first embodiment of the present invention.
  • each user 2 has a different foot length or arm length, and thus sits in the driver's seat.
  • the distance between the user 2 of the 43 and the windshield 42 is also different, so that each user 2 can see the complete enlarged and equivalently located image 1 101 ' in the far distance, according to the user 2 and the windshield 42
  • the distance between the display images 1 101 of the display element 1 10 of the present embodiment is adjusted until the user 2 sees that the image 1 10 ⁇ is completely displayed.
  • the adjustment of the area of the display image 1 101 is adjusted by the built-in processor of the display component 110. Referring to FIG. 9A and FIG. 9B, FIG.
  • FIG. 9A and FIG. 9B are schematic diagrams showing the adjustment display image area of the optical imaging apparatus according to the first embodiment of the present invention.
  • the display element 1 10 of the embodiment has a In the display area 1102, the display image 1101 is located in the display area 1102, and the area thereof may be less than or equal to the area of the display area 1 102.
  • the area adjustment of the display image 1 101 of the display element 1 10 is through the built-in processor of the display element 1 10 and The adjustment is made according to the distance between the user 2 and the windshield 42.
  • the display element 110 is enlarged in accordance with the distance between the user 2 and the windshield 42.
  • the area of the image 1 101 is displayed; otherwise, when the distance between the user 2 and the windshield 42 is increased (ie, the distance between the user 2 and the second optical element 113b is increased), according to the user 2 and the windshield 42
  • the area of the display image 1101 is reduced by the distance.
  • the center of both surfaces of the second optical element 1 13b of the present embodiment may be caused by an error in the manufacturing process, that is, the centers of the two surfaces of the second optical element 1 13b are not on the same straight line, thus causing the optical imaging device 1 to generate The magnified and equivalent display image 1 10 ⁇ in the distance produces an offset, causing the user 2 to be unable to view the full magnification and equivalent to the remote display image 1 101, .
  • the center of both surfaces of the second optical element 1 13b of the present embodiment may be caused by an error in the manufacturing process, that is, the centers of the two surfaces of the second optical element 1 13b are not on the same straight line, thus causing the optical imaging device 1 to generate The magnified and equivalent display image 1 10 ⁇ in the distance produces an offset, causing the user 2 to be unable to view the full magnification and equivalent to the remote display image 1 101, .
  • FIG. 10 is a schematic diagram of the position of the adjusted display image of the optical imaging apparatus according to the first embodiment of the present invention; the user 2 according to the offset of the enlarged display image 110 ⁇ (such as X and Y)
  • the offset of the direction) adjusts the position of the display image 1 101 of the display element 1 10 in the display area 1102, so that the display image 1 10 that is enlarged and equivalently located in the far side is completely presented.
  • the position adjustment of the display image 1 101 is also based on the built-in processor of the display component 1 10
  • the offset of the large and equivalent display image 1 10 ⁇ is adjusted.
  • the optical imaging device 1 of the present embodiment includes an outer casing 12 and an angle adjusting mechanism 13 .
  • the outer casing 12 is pivotally connected to the casing 10 , and each side of the casing 10 has a
  • the pivoting shaft 103 has two pivoting holes 121 corresponding to the two pivoting shafts 103.
  • the two pivoting shafts 103 of the housing 10 are pivotally connected to the two pivoting holes 121 of the outer casing 12 to be sleeved on the housing.
  • the outer side of 10 is such that the housing 10 is rotatable relative to the outer casing 12.
  • the angle adjusting mechanism 13 is disposed in the outer casing 12 and corresponding to the casing 10, and the angle adjusting mechanism 13 pushes the casing 10 to rotate the casing 10 relative to the outer casing 12, thereby adjusting the second optical component 113b relative to the windshield 42. Angle. Therefore, the user 2 can adjust the angle of the second optical element 1 13b relative to the windshield 42 by the angle adjusting mechanism 13 according to the length of the body until the user 2 sees the display image 1 10 ⁇ which is completely enlarged and equivalent to the far distance. .
  • the angle adjusting mechanism 13 of the present embodiment includes a driving component 131 and a pushing component 132.
  • the pushing component 132 is disposed on the driving component 131.
  • the driving component 131 is disposed in the outer casing 12. The one end of the pushing component 132 is connected to the housing 10.
  • the driving element 131 drives the pushing element 132 to advance toward the housing 10
  • the housing 10 is pushed to rotate the housing 10 relative to the outer housing 12, thereby adjusting the angle of the second optical element 113b relative to the windshield 42. Therefore, when the user 2 wants to adjust the angle of the second optical element 1 13b with respect to the windshield 42, the driving element 131 can be activated.
  • the driving component 131 can be a motor, and the pushing component 132 can be a screw.
  • the angle adjusting mechanism 13 can be of other types, and details are not described herein.
  • FIG. 11 is a schematic diagram of a backlight module of a display element of the optical imaging apparatus according to the first embodiment of the present invention.
  • the component 1 10 uses the display element 110 having high brightness, so the backlight module of the display element 1 10 of the present embodiment uses the LED backlight module 1 103, such that the LED backlight module 1 103 can provide a high-brightness display image 1 101,
  • the enlarged display image produced by the optical imaging apparatus 1 of the present embodiment can be clearly viewed by the user.
  • the optical imaging device 1 of the present embodiment further includes a sensing component 14 (such as a CMOS sensor).
  • the sensing component 14 is disposed in the automobile 4, such as in front of the steering wheel, and the sensing component 14 can be disposed on the optical imaging device 1.
  • the brightness of the external environment is sensed, and the display component 1 10 adjusts the brightness of the LED backlight module 1103 according to the ambient brightness and color (as shown in FIG. 11) and adjusts the color of the display image displayed by the display component 1 10, thereby generating clear Display image 1101. Further, how the sensing element 14 senses the ambient brightness is further described. Referring to FIG. 12, FIG. 12, FIG.
  • the measuring component 14 captures the external environment of the optical imaging device 1 and generates an image 5, and then takes a plurality of sampling points 51 on the image 5, and calculates an average value of the brightness values of the sampling points 51, and then displays the component 1 10 adjusts the brightness of the LED backlight module 1103 according to the average value.
  • the above description uses the image 5 to calculate the ambient brightness, and adjusts the light-emitting diode according to the ambient brightness.
  • the brightness of the backlight module 1103. how to adjust the color of the display image displayed by the display component 1 10 according to the environment color of the image 5, which mainly determines the environment color according to the image 5, and then adjusts the color of the display image according to the comparison between the color of the display image and the environment color. , that is, the contrast color of the displayed image and the ambient chromaticity are changed. For example, at night, if the environment color of the captured image 5 is black or dark, then the display element 1 10 can be adjusted. The display image is a bright color. On the other hand, when there is a white car in the daytime or in front of the image, and the environment color of the image 5 thus captured is white or bright, the display element 110 can be adjusted to make the display image dark.
  • the LED backlight module 1 103 is prone to high temperature, so the LED backlight of this embodiment is used.
  • a circuit board of the module 1 103 uses a ceramic substrate 1 104, and a heat dissipating component 1 105 (such as a heat dissipating fin) is added to the rear end of the ceramic substrate 1 104 to discharge the heat generated by the LED backlight module 1 103 to Externally, the temperature of the photodiode backlight module 1103 is further lowered.
  • the optical imaging device 1 of the present embodiment further includes a light sensing module 15 disposed on the outer side of the housing 10 and located in the instrument panel seat 41 of the automobile 4, Referring to FIG. 13, FIG. 13 is an enlarged view of the area A of FIG. 6 of the present invention.
  • the light sensing module 15 has a sensing end 151, and the center line C3 of the second optical element 113b is opposite to a horizontal plane H.
  • the center line C4 of the light sensing module 15 is also inclined by a first angle a1 with respect to a horizontal plane H, such that the second optical element 1 13b of the optical imaging device 1 and the sensing end 151 of the light sensing module 15
  • the exposed surface of the dashboard seat 41 faces in the same direction.
  • the light sensing module 15 of the present embodiment includes a hollow cylinder 152 and a light sensing component 153.
  • the light sensing component 153 is disposed in the cylinder 152 and located at the bottom of the cylinder 152.
  • the upper side of the light sensing element 153 is referred to as a sensing end 151.
  • the light sensing module 15 has other forms. Please refer to FIG. 14.
  • FIG. 14 is a schematic diagram of a light sensing module of the optical imaging device according to the third embodiment of the present invention; the hollow cylinder may also be replaced by two thin plates 154.
  • One of the thin plates 154 has a hole 1541, and the light sensing element 153 is disposed on the other thin plate 154 corresponding to the hole; or the arrangement of the cylindrical body 151 may be omitted directly.
  • FIG. 15 is a view showing a state of use of a light sensing module of an optical imaging apparatus according to a first embodiment of the present invention; in the figure, at least two optical elements 113a, 1 13b and light of the optical imaging apparatus 1
  • the light sensing elements 153 of the sensing module 15 face in the same direction, and the sunlight L outside the automobile 4 is the same as the illumination angle of the second optical element 113b and the light sensing element 153 of the light sensing module 15.
  • the sunlight L outside the automobile 4 passes vertically through the second optical element 1 13b
  • the sunlight L also vertically illuminates the light sensing element 153 of the light sensing module 15 because the sunlight L passes vertically through the second optical element.
  • the transmission path of the sunlight L along the display image 1101 is concentrated on the display element 1 10, causing the display element 1 10 to overheat, and the sunlight L received by the light sensing element 153 at this time
  • the amount of radiation will exceed a threshold value, that is, the amount of exposure of the sunlight L to the optical imaging device 1 in the housing 10 will be exceeded, and a first control signal is transmitted to the angle adjustment mechanism 13, the angle adjustment mechanism 13 receives the first control signal and adjusts the angle of the housing 10 in accordance with the first control signal.
  • the angle of the second optical element 1 13b with respect to the sunlight L is changed, thereby changing the angle of the second optical element 1 13b with respect to the windshield 42, even if the second of the optical imaging device 1
  • the optical element 1 13b and the sensing end 151 of the light sensing module 15 are not oriented in the same direction, so that the sunlight L outside the automobile 4 does not vertically pass through the second optical element 113b, and does not concentrate along the transmission path of the display image.
  • the display element 1 avoids thermal damage to components within the optical imaging device 1.
  • the light sensing component 153 After the angle adjustment of the housing 10, when the sensing of the light sensing component 153 is less than the threshold value, the light sensing component 153 generates a second control signal and transmits a second control signal to the angle adjusting mechanism 13, and the angle adjusting mechanism 13 is The second control signal adjusts the angle of the housing 10 to restore the housing 10 to the original state even if the second optical component 113b of the optical imaging device 1 and the sensing end 151 of the light sensing module 15 face in the same direction (as shown in FIG. 6). Show).
  • FIGS. 16A and 16B are views showing a state of use of a light shielding member of an optical imaging apparatus according to a fourth embodiment of the present invention.
  • the above embodiment is used to adjust the casing by the angle adjusting mechanism 13.
  • the angle of the body 10 is such that the external sunlight L does not vertically pass through the second optical element 113b and enters the optical imaging device 1 along the transmission path of the display image to avoid thermal damage in the optical imaging device 1.
  • the optical imaging device 1 of the present embodiment does not need to adjust the angle of the housing 10, and can prevent the external sunlight L from vertically passing through the second optical element 113b and entering the optical imaging device 1 along the transmission path of the display image.
  • the light sensing module 15 of the example controls the switch or color change of a light blocking member 16 corresponding to the second optical element 1 13b.
  • the light blocking member 16 of the present embodiment is located above the second optical element 1 13b.
  • the light shielding member 16 of the embodiment is a blackout curtain.
  • the light shielding member 16 When the optical imaging device 1 is normally used, the light shielding member 16 is in a closed state, that is, the second optical element 1 13b is not shielded, so that the external sunlight L can pass through the second optical element. 113b is irradiated into the optical imaging device 1; when the optical imaging device 1 is not in normal use, the light shielding member 16 is in an activated state, that is, the second optical element 1 13b is shielded to block the external sunlight L from penetrating the second optical element 1 13b. Enters the optical imaging device 1.
  • the light blocking member 16 of the present embodiment is disposed in the opening 100 of the casing 10 and above the second optical element 1 13b to shield the second optical element 1 13b.
  • the light shielding member 16 of the embodiment can also be disposed on the instrument panel holder 41 and located above the second optical component 113b.
  • the light shielding member 16 only needs to be disposed corresponding to the second optical component 1 13b, that is, the second optical component 1 can be shielded. 13b and blocks or reduces the purpose of sunlight L entering the optical imaging device 1.
  • the light sensing element 153 senses the amount of exposure of the sunlight L to the optical imaging device 1 (ie, the amount of exposure of the sunlight L received by the light sensing element 153) exceeds the threshold value, that is, the external sunlight L directly passes through the first
  • the optical element 1 13b enters the optical imaging device 1
  • the light sensing element 153 generates And transmitting the first control signal to the light shielding member 16, the light shielding member 16 is activated according to the first control signal, so that the light shielding member 16 is in an activated state to shield the second optical component 1 13b, that is, blocking the external sunlight L into the second optical component 1 13b (as shown in Figure 16A).
  • the light sensing element 153 senses that the amount of illumination of the optical imaging device 1 by the sunlight L (ie, the amount of exposure of the sunlight L received by the light sensing element 153) is less than the threshold value, it also indicates that the sunlight L is not vertical. Passing through the second optical element 1 13b, at this time, the light sensing element 153 generates a second control signal and transmits a second control signal to the light blocking member 16, and the light blocking member 16 is turned off according to the second control signal, even if the light blocking member 16 is turned off. Further, the external sunlight L can pass through the second optical element 1 13b, so that the optical imaging apparatus 1 can be normally used (as shown in Fig. 16B).
  • FIG. 17A and 17B, FIG. 17A and FIG. 17B are views showing a state of use of a light shielding member of an optical imaging apparatus according to a fifth embodiment of the present invention.
  • the shade member 16 of the present embodiment is a display glass instead of a shade, wherein the display glass is filled with liquid crystal between the two glasses, and the liquid crystal is controlled to change the display glass to a transparent state, a translucent state or a black state.
  • the light blocking member 16 is controlled by the light sensing element 153 of the light sensing module 15 when the light sensing element 153 senses the amount of illumination of the optical imaging device 1 by the sunlight L (ie, the sunlight L received by the light sensing element 153)
  • the irradiation amount does not exceed the threshold value, that is, the sunlight L does not directly pass through the second optical element 1 13b vertically
  • the light shielding member 16 is in a transparent state, and the light shielding member 16 does not shield the second optical element 1 13b, so that the external sunlight L can enter the optical imaging device 1 through the second optical element 1 13b, so that the optical imaging device 1 can be used normally, as shown in Fig. 17B.
  • the light shielding member 16 When the light sensing element 153 senses that the amount of illumination of the optical imaging device 1 by the sunlight L (ie, the amount of illumination of the sunlight L received by the light sensing element 153) exceeds a threshold value, that is, the sunlight L directly passes through the first The second optical element 113b, at this time, the light shielding member 16 may be selected to be in a translucent state or a black state. As shown in FIG. 17A, when the light shielding member 16 is in a translucent state, the external sunlight L may be reduced to enter through the second optical element 1 13b.
  • the light shielding member 16 of the embodiment can also be disposed in the casing 10 and located below the second optical component 1 13b. The light shielding member 16 only needs to be disposed corresponding to the second optical component 1 13b, and can also block or reduce external sunlight.
  • the fourth embodiment to the sixth embodiment described above both adjust the angle of the housing 10 or activate the light shielding member 16 to shield the second optical element 113b when the amount of exposure of the sunlight L to the optical imaging device 1 exceeds the threshold value during driving by the user. Further, when the automobile 4 is not in use, the angle of the casing 10 may be adjusted or the light shielding member 16 may be actuated to shield the second optical member 113b to protect the optical imaging device 1 from thermal damage of components in the optical imaging device 1.
  • the light sensing module 15 of the above embodiment is disposed on the outer side of the housing 10 and is separated from the housing 10. Please refer to FIG. 19 at the same time. FIG.
  • the light sensing module 15 can also be directly connected to the housing 10.
  • the housing 10 is rotated according to the distance from the user to the windshield 42, the light sensing module 15 can also adjust the light sensing simultaneously with the rotation of the housing 10.
  • the sensing end 151 of the module 15 faces the same direction as the second optical element 1 13b to accurately sense the amount of illumination of the optical imaging device by the sunlight L.
  • FIG. 20 is a cross-sectional view showing an optical imaging apparatus according to an eighth embodiment of the present invention.
  • the first optical element 1 13a and the second optical element 113b of the optical imaging apparatus 1 of the present embodiment are The first optical element 113a is disposed on one side of the second optical element 113b, that is, the second optical element 1 13b is not directly located on the imaging path of the first optical element 1 13a.
  • a reflective element 11 is disposed between the first optical element 1 13a and the second optical element 1 13b.
  • the reflective element 115 is located on the imaging path of the first optical element 1 13a to make the imaging path of the first optical element 1 13a.
  • the first optical element 1 13a and the second optical element 1 13b of the embodiment are arranged in such a manner that the imaging path of the first optical element 1 13a and the imaging path of the second optical element 1 13b are mutually staggered to affect the final amplification. Displays the display quality of the image.
  • FIG. 21 and FIG. 22 are respectively a cross-sectional view and an imaging diagram of an optical imaging apparatus according to a ninth embodiment of the present invention.
  • the second optical of the optical imaging apparatus 1 of the present embodiment is shown.
  • the element 1 13b uses a concave mirror and is disposed within the housing 10 and adjacent to the opening 100 of the housing 10.
  • the display image 1 101 displayed by the display element 1 10 generates a reduced display image 1 101 a through the first optical element 1 13a, and the reduced display image 1 101 a is imaged within the focal length of the second optical element 1 13 and passes through
  • the two optical elements 113b produce a display image 1 10 ⁇ which is visually magnified and equivalently located far away, so that the user can see the enlarged display image 1 101 located at a distance from the optical imaging device 1 .
  • the opening 100 of the casing 10 may be provided with a transparent cover 1 16.
  • the upper and lower surfaces of the transparent cover 1 16 may be respectively coated with a film layer 1161 to compensate for the distortion of the display image 1101 which is enlarged and equivalently located at a distance.
  • the coating layer 1 161 may be selected on one surface of the transparent cover 116; or the transparent cover 116 may be replaced by a transparent curved cover to compensate for the distortion of the display image 1 10 ⁇ which is enlarged and equivalently located in the distance, and will not be described herein. .
  • the shape of the second optical component in the first embodiment, the housing is disposed along the curvature of the windshield, adjusting the angle of the housing according to the height of the driver's seat or adjusting the area of the displayed image, according to the magnification and equivalent Adjusting the position of the display image, adjusting the position of the display module, adjusting the brightness of the backlight module according to the ambient brightness sensed by the sensing element, and adjusting the sunlight to the optical imaging device according to the light sensing module
  • the technical characteristics of adjusting the angle of the housing and adjusting the angle of the housing or controlling the light shielding member to shield the optical imaging device can be used for the optical imaging devices of the eighth embodiment and the ninth embodiment, and will not be described herein.
  • the present invention relates to an optical imaging apparatus comprising: a housing, a display element, a first optical component, and a second optical component, the display component, the first optical component, and the second An optical component is disposed in the housing, the display component is located outside the double focal length of the first optical component, the first optical component reduces a display image displayed by the display component, and is doubled in the second optical component Within the focal length, the second optical component magnifies the display image that is reduced by the first optical component to produce a visually magnified and equivalently located display image so that the user can view the magnification and equivalently located through the optical imaging device.
  • the optical imaging device of the present invention shortens the overall optical imaging path of the display element to the second optical element by using the first optical element and the second optical element, thereby reducing the volume of the optical imaging device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Studio Devices (AREA)
  • Instrument Panels (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种光学成像装置(1),该光学成像装置(1)包括:一壳体(10)、一显示元件(110)、一第一光学元件(113a)及一第二光学元件(113b),该显示元件(110)、该第一光学元件(113a)及该第二光学元件(113b)设置于该壳体(10)内,该显示元件(110)位于该第一光学元件(113a)的二倍焦距外,该第一光学元件(113a)缩小该显示元件(110)所显示的一显示影像,并成像于该第二光学元件(113b)的一倍焦距内,该第二光学元件(113b)放大经该第一光学元件(113a)缩小的显示影像,以产生视觉上放大并等效位于远处的显示影像;所述光学成像装置(1)因使用该第一光学元件(113a)及该第二光学元件(113b),缩短了显示元件(110)到该第二光学元件(113b)的整体光学成像路径,从而缩小了光学成像装置(1)的体积。

Description

光学成像装置 技术领域
本发明涉及一种成像装置, 特别是涉及一种光学成像装置。 背景技术
各种用于交通工具上的显示装置已相继地被研发, 例如: 行车记录器、 卫星导航、 抬头显示器(head up d i sp l ay, HUD)等, 其中抬头显示器已被 广泛地使用。 然而, 以抬头显示器为例, 其所显示的影像多投射在仪表板 座左前方或右前方的挡风玻璃。 使用者在驾驶过程中大多注视正前方的路 况, 当使用者在驾驶过程中欲观看抬头显示器所显示的影像时, 使用者需 将其视线移至仪表板座的前方或右前方的挡风玻璃, 导致使用者的眼睛的 焦距不断改变, 使用者的注意力无法一直集中在正前方的路况, 容易导致 交通意外的发生。
有鉴于上述问题, 本发明提供一种光学成像装置, 使用者通过本发明 的光学成像装置观看位于正前方且视觉上放大的显示影像, 如此使用者在 驾驶过程中无须改变其眼睛的焦距, 而避免交通意外的发生, 而且本发明 的光学成像装置的体积较小, 可以更换较大尺寸的显示元件, 并可控制光 学成像装置的体积。 发明内容
本发明的目的在于, 提供一种光学成像装置, 其可通过一第一光学元 件先缩小一显示元件所显示的一显示影像, 然后通过一第二光学元件放大 经第一光学元件縮小的显示影像, 让使用者观看远方时不用改变眼睛的焦 距也可同时看到放大的显示影像, 本发明的光学元件配置可增加显示元件 的尺寸, 同时可控制光学成像装置的体积。
未来车用 HUD驱势应朝向提供多样化显示信息发展, 其内部的显示单 元尺寸需要加大, 单一光学元件的作法, 其焦距需要设定的更长, 但此举 会受限于仪表板空间大小而产生一技术瓶颈。 本发明通过第一^学元件先 将显示影像缩小, 再经第二光学元件放大, 缩短显示元件到第二光学元件 的整体光学成像路径, 即可解决前述问题。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种光学成像装置, 其包括: 一壳体; 一第一光学元件, 其 设置于该壳体内; 一第二光学元件, 其设置于该壳体内, 并位于该第一光 学元件的成像路径上; 以及一显示元件, 其设置于该第一光学元件的两倍 焦距之外, 并成像于该第二光学元件的焦距内, 以产生视觉上放大并等效 位于远处的显示影像。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的光学成像装置, 其中该第一光学元件及该第二光学元件分别为 一凸透镜。
前述的光学成像装置, 其中该第一光学元件为一凸透镜, 该第二光学 元件为一凹面镜。
前述的光学成像装置, 还包括: 一透明盖, 其设置于该壳体的一开口, 并位于该视觉上放大并等效位于远处的显示影像的传递路径上, 其中该透 明盖的至少一表面具有一膜层。
前述的光学成像装置, 还包括: 一透明曲面盖, 其设置于该壳体的一 开口, 并位于该视觉上放大并等效位于远处的显示影像的传递路径上。
前述的光学成像装置, 还包括: 至少一反射元件, 其设置于该显示元 件与该第一光学元件之间或该第一光学元件与该第二光学元件之间, 并位 于该显示元件所显示的显示影像的传递路径上。
前述的光学成像装置, 其中该第二光学元件的宽度大于一使用者的两 眼的间距。
前述的光学成像装置, 其中该壳体设置于一汽车的一仪表板座内, 该 壳体沿着该汽车的一挡风玻璃的曲率设置。
前述的光学成像装置, 其中该显示元件是依据一使用者至该挡风玻璃 的距离调整显示影像的面积大小。
前述的光学成像装置, 其中该显示元件是依据视觉上放大并等效位于 远处的显示影像的偏移量调整显示影像的位置。
前述的光学成像装置, 还包括: 一外壳体, 其两侧分别具有二枢接孔, 该壳体的二枢接轴枢接于该二枢接孔; 以及一角度调整机构, 其设置于该 外壳体内, 并对应该壳体, 该角度调整机构推动该壳体, 该壳体相对该外 壳体转动。
前述的光学成像装置, 其中该角度调整机构包括: 一驱动元件, 其设 置于该外壳体内; 以及一推动元件, 其设置于该驱动元件, 该推动元件的 一端氏接于该壳体, 该驱动元件驱动该推动元件, 该推动元件推动该壳体, 该壳体相对该外壳体转动。
前述的光学成像装置, 还包括: 一感测元件, 其设置于该壳体的外侧, 并感测该光学成像装置的外部的环境亮度或色彩, 该显示元件依据该光学 成像装置的外部的环境亮度或色彩调整该显示元件的一背光模块的亮度或 调整该显示元件所显示的一显示影像的色彩。
前述的光学成像装置, 还包括: 一光感测模块, 其设置于该壳体的外 侧, 并具有一感测端, 该感测端及该第二光学元件的中心线均相对一水平 面倾斜一角度, 且使该感测端与该第二光学元件朝向同一方向。
前述的光学成像装置, 其中该光学感测模块连接该壳体, 该壳体转动 时, 该壳体同时带动该光学感测模块转动, 并使该感测端及该第二光学元 件的中心线均相对该水平面倾斜该角度, 且使该感测端自动地与该第二光 学元件朝向同一方向。
前述的光学成像装置, 还包括: 一遮光件, 其对应该第二光学元件设 置; 其中该光感测模块感测外部太阳光对该光学成像装置的的照射量超过 一门槛值, 该光感测模块传送一控制信号至该遮光件, 该遮光件依据该控 制信号遮蔽该第二光学元件。
前述的光学成像装置, 其中该遮光件为一遮光帘、 一显示玻璃或一单 向玻璃。
本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案, 本发明光学成像装置至少具有下列优点及有益效果:
1.本发明的光学成像装置可通过第一光学元件先缩小显示元件所显示 的显示影像, 然后通过第二光学元件放大第一光学元件所缩小的显示影像, 使光学成像装置产生放大并等效位于远方的显示影像的焦距位于远处, 让 使用者观看远方时不用改变眼睛的焦距也可同时看到放大的显示影像。 同 时本发明的光学成像装置的显示元件的尺寸可增大, 并可控制光学成像装 置的体积, 较佳的, 显示元件的尺寸大于或等于 1. 8 英寸, 且显示元件至 第二光学元件的光学路径总长度小于或等于 50厘米。
2. 本发明的光学成像装置使用至少二个光学元件, 以缩短显示元件到 至少二光学元件的距离, 进而缩短光学成像装置的体积。
3.本发明的光学成像装置的第二光学元件的宽度大于使用者的两眼的 间距, 让使用者的双眼可同时观看到放大的显示影像。 其中第一光学元件 及第二光学元件设计成矩形, 以减少光学成像装置的体积。
4.本发明的光学成像装置可应用于交通工具, 其沿着挡风玻璃的孤面 设置, 使光学成像装置的中心线相对于使用者的直视的中心线倾斜, 有效 避免光学成像装置的显示影像发生失真的状况。
5.本发明的光学成像装置可依据使用者的高度不同而利用角度调整机 构调整光学成像装置的第二光学元件相对于挡风玻璃的角度, 进而让使用 者观看完整的放大的显示影像。
6.本发明的光学成像装置可依据使用者至挡风玻璃的距离不同而调整 显示元件的显示影像的面积的大小, 进而观看完整的放大的显示影像。
7.本发明的光学成像装置可依据显示影像的偏移量调整显示元件的显 示影像的位置, 进而观看完整的放大的显示影像。 8.本发明的光学成像装置的显示元件使用发光二极管背光模块, 以产 生高亮度的显示影像。 本发明的光学成像装置还包括感测元件, 感测元件 感测环境亮度及亮度, 显示元件依据环境亮度及色彩调整发光二极管背光 模块的亮度及色彩, 进而使光学成像装置所产生的显示影像清楚的呈现。
9.本发明的光学成像装置的显示元件的发光二极管背光模块使用陶瓷 基板为电路板, 并在发光二极管背光模块的一侧设置散热鳍片, 以对产生 高温的发光二极管背光模块进行散热。
10.本发明的光学成像装置具有光感测模块, 通过光感测模块感测太阳 光照射至光学成像装置的照射量, 若其超过门槛值, 则调整壳体的角度或 覆盖遮光件于光学成像装置的第二光学元件, 以减少太阳光照射至光学成 像模块的照射量或阻隔太阳光直接穿过第二光学元件照射至光学成像模 块, 进而避免光学成像模块的元件产生热损坏。 光感测模块可与光学成像 装置的壳体相连, 如此可随着壳体转动而带动光感测模块转动, 并自动地 使光感測模块的感测端与第二光学元件朝向同一方向。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1是本发明的第一实施例的光学成像装置的剖面图。
图 2是本发明的第一实施例的光学成像装置的成像示意图。
图 3是本发明的第一实施例的光学成像装置的另一成像示意图。
图 4是本发明的第一实施例的光学成像装置的再一成像示意图。
图 5A是本发明的第一实施例的光学元件的示意图。
图 5B是本发明的第二实施例的光学元件的示意图。
图 6是本发明的第一实施例的光学成像装置的使用状态图。
图 7A 是本发明的第一实施例的光学成像装置相对于挡风玻璃的示意 图。
图 7B是本发明的第一实施例的光学成像装置相对于挡风玻璃的另一示 意图。
图 8是本发明的第一实施例的光学成像装置的另一使用状态图。
图 9A是本发明的第一实施例的光学成像装置的调整显示影像面积的示 意图。
图 9B是本发明的第一实施例的光学成像装置的调整显示影像面积的另 一示意图。 图 10是本发明的第一实施例的光学成像装置的调整並示影像位置的示 意图。
图 11是本发明的第一实施例的光学成像装置的显示元件的背光模块的 示意图。
图 12 是本发明的第一实施例的光学成像装置的感测元件的感测示意 图。
图 13是本发明的图 6的 A区域的放大图。
图 14是本发明的第三实施例的光学成像装置的光感测模块的示意图。 图 15是本发明的第一实施例的光学成像装置的光感测模块的使用状态 图。
图 16A是本发明的第四实施例的光学成像装置的遮光件的使用状态图。 图 16B是本发明的第四实施例的光学成像装置的遮光件的另一使用状 态图。
图 17A是本发明的第五实施例的光学成像装置的遮光件的使用状态图。 图 17B是本发明的第五实施例的光学成像装置的遮光件的另一使用状 态图。
图 18是本发明的第六实施例的光学成像装置的遮光件的使用状态图。 图 19是本发明的第七实施例的光学成像装置的示意图。
图 20 是本发明的第八实施例的光学成像装置的光学成像装置的剖面 图。
图 21 是本发明的第九实施例的光学成像装置的光学成像装置的剖面 图。
图 22是本发明的第九实施例的光学成像装置的成像示意图。
1: 光学成像装置 10: 壳体
100: 开口 101: 底部
102a :第一侧壁 102b :第二侧壁
103: 枢接轴 110: 显示元件
1101 、 1101a、 1101, :显示影像 1102 :显示区域
1103 :发光二极管背光模块 1104 :陶瓷基板
1105 :散热元件 111: 反射元件
113a :第一光学元件 113b :第二光学元件
116: 透明盖 1161 :膜层
12: 外壳体 121: 枢接孔
13: 角度调整机构 131: 驱动元件
132: 推动元件 14: 感测元件
15: 光感测模块 151: 感测端 152: 圆柱体 153: 光感测元件
154: 薄板 1541 :孔洞
16: 遮光件 2: 使用者
21: 眼 3: 物件
4: 汽车 41: 仪表板座
411: 缺口 42: 挡风玻璃
421: 狐面 422: 反射膜
43: 驾驶座 5: 影像
51: 取样点 f: 焦距
d: 间距 w: 宽度
P1: 观看区域 P2: 观看区域
R: 重叠观看区域 C1、 G2、 G3、 C4:
H: 水平面 L: 太阳光
P: 可观看区域 a1: 第一角度 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的光学成像装置其具体 实施方式、 结构、 特征及其功效, 详细说明如后。
请参阅图 1及图 2所示, 图 1及图 2分别是本发明的第一实施例的光学成 像装置的剖面图及成像示意图; 图中, 本实施例的光学成像装置 1 具有一 壳体 10、 一显示元件 110、 一第一光学元件 113a及一第二光学元件 113b, 第二光学元件 113b设置于壳体 10内,并位于开口 100,第一光学元件 113a 设置于壳体 10内,并与第二光学元件 113b对应设置,即第二光学元件 113b 位于第一光学元件 113a的成像路径上, 其中第一光学元件 113a及第二光 学元件 113b均为凸透镜。 显示元件 110设置于壳体 10内, 并位于第一光 学元件 113a的两倍焦距外, 如此显示元件 110所显示的显示影像 1101 通 过第一光学元件 113a产生一缩小的显示影像 1101a, 并成像于第二光学元 件 113b的一倍焦距内,最后缩小的显示影像 1101a通过第二光学元件 113b 产生视觉上放大并等效位于远方的显示影像 110Γ , 如此使用者通过本实 施例的光学成像装置 1 可看到视觉上放大并等效位于远方的显示影像 110Γ 。
其中, 第一光学元件 113a的焦距与第二光学元件 113b的焦距可相同, 例如: 第一光学元件 113a及第二光学元件 113b的焦距为 10厘米, 显示元 件 110至第一光学元件 113a的距离为 20厘米以上。当然第一光学元件 113a 的焦距与第二光学元件 113b的焦距也可不相同,例如: 第一光学元件 113a 的焦距为第二光学元件 113b的焦距的一半, 所以第二光学元件 113b的焦 距为 20厘米, 第一光学元件 113a的两倍焦距为 20厘米, 如此较使用具有 相同焦距的第一光学元件 113a及第二光学元件 113b更能缩短显示元件 110 到第二光学元件 113b的整体距离, 进而缩小光学成像装置 1的体积。 综上 所述, 本实施例的光学成像装置 1 是先将显示元件 110所显示的显示影像 1101缩小再放大, 因此本实施例的光学成像装置 1 的显示元件 110尺寸可 增大, 同时可以控制光学成像装置 1 的体积, 较佳的, 显示元件 110的尺 寸大于或等于 1.8英寸, 且显示元件 110至第二光学元件 113b的整体光学 路径小于或等于 50厘米。
当然本实施例的显示元件 110与第一光学元件 113a之间也可设置至少 一反射元件 111,至少一反射元件 111位于显示元件 110所显示的显示影像 1101的传递路径上,若显示元件 110与第一光学元件 113a之间未设置至少 一反射元件 111 时, 显示元件 110所显示的显示影像 110传递至第一光学 元件 113a的路径为直线的, 然而本实施例的显示元件 110与第一光学元件 113a设有至少一反射元件 111, 使显示元件 110所显示的显示影像 1101传 递至第一光学元件 113a的路径为弯折的, 以缩短光学成像装置 1 的深度, 更缩小光学成像装置 1的体积。
请同时参阅图 3所示, 图 3是本发明的第一实施例的光学成像装置的 另一成像示意图; 图中, 当一使用者 2从光学成像装置 1 的外侧通过至少 二光学元件 113a、 113b观视显示元件 110所显示的显示影像 1101 时, 因 显示元件 110经第一光学元件 113a所产生的缩小的显示影像 1101a位于第 二光学元件 113b的焦距 f 内(如图 2所示), 因此使用者 2可看到视觉上放 大并等效位于远处的显示影像 110Γ (虚像), 而放大并等效位于远处的显 示影像 110Γ 与使用者 2间的距离是大于 2米(光线经挡风玻璃反射, 图 2 省略未绘), 让使用者 2观看远方物件 3或景物, 可同时观看到放大并等效 位于远方的显示影像 1101, , 而且放大并等效位于远方的显示影像 1101, 的内容可为远方物件 3或景物的信息或其他参考信息, 如此让使用者 2不 用改变其眼睛的焦距, 在观看远方物件 3 或景物的同时可观看视觉上放大 并等效位于远方的显示影像 110Γ 的参考信息。
再请同时参阅图 4、 图 5A及图 5B所示, 图 4是本发明的第一实施例的 光学成像装置的再一成像示意图, 图 5A及图 5B分别是本发明的第一实施 例及第二实施例的光学成像装置的第二光学元件的示意图; 图中, 为了让 使用者 2的双眼 21能同时看到完整的放大并位于远方的显示影像 110Γ , 本实施例的第二光学元件 113b的宽度分别大于使用者 2的两眼 21 的间距 d (在图 4中省略第一光学元件 113a未绘出), 然而一般使用者 2的两眼 21 的间距 d介于 60画与 70mm之间, 所以第一光学元件 113a及第二光学元件 1 13b的较佳宽度 w可以为大于 70画。由于每一眼 21通过第二光学元件 113b 观看可产生一观看区域 P1、 P2, 两眼 21 的观看区域 P1、 P2具有一重叠观 看区域 R, 而光学成像装置 1所产生的显示影像 1 10Γ位于两眼 21 通过第 二光学元件 1 13b观看的重叠观视区域 R内, 如此使用者 2的双眼 21 可同 时观看到放大并等效位于远方的显示影像 1101, (虛像)。 另外, 本实施例 的第一光学元件 1 13a及第二光学元件 1 13b可分别为矩形(如 5A及图 5B所 示), 如此有效缩小光学成像装置 1的体积。
请同时参阅图 6所示, 图 6是本发明的第一实施例的光学成像装置的 使用状态图; 图中, 当本实施例的光学成像装置 1 装载于一汽车 4的一仪 表板座 41 时, 壳体 10位于仪表板座 41 内, 仪表板座 41 的表面具有一缺 口 41 1, 缺口 41 1对应第二光学元件 1 13b。 其中第二光学元件 1 13b对应挡 风玻璃 42上的一反射膜 422, 反射膜 422位于放大并等效位于远方的显示 影像 1 101, 的传递路径上, 其中反射膜 422也可由或一暗色膜或为镀膜玻 璃显示区替代。
再请同时参阅图 7A及图 7B所示, 图 7A及图 7B分别是本发明的第一 实施例的光学成像装置相对于挡风玻璃的示意图; 图中, 然挡风玻璃 42具 有一弧面 421, 孤面 421 具有一曲率, 本实施例的光学成像装置 1 的壳体 10沿着挡风玻璃 42的弧面 421设置,以避免使用者 2看到失真的显示影像 1 101,。 当驾驶座 43位于汽车 4的左侧时, 光学成像装置 1设置于驾驶座 43前方的仪表板座 41 中, 此时壳体 10沿着挡风玻璃 42的弧面 421设置, 壳体 10的中心线 C1相对于汽车 4的驾驶座 43的中心线 C2往右倾斜一角 度, 换句话说, 壳体 10的中心线 C1相对使用者 2的直视的中心线往使用 者 2的右侧倾斜角度, 角度依据孤面 421的曲率而定; 当驾驶座 43位于汽 车 4的右侧时, 光学成像装置 1设置于驾驶座 43前方的仪表板座 41 中, 壳体 10的中心线 G1相对于驾驶座 43的中心线 C2往左倾斜一角度, 如此 使光学成像装置 1可沿着挡风玻璃 42的弧面 421的曲率设置。
上述说明壳体 10的中心线 C1相对汽车 4的驾驶座 43的中心线 C2往 右或左倾斜的角度是依据挡风玻璃 42的孤面 421的曲率而定, 在此进一步 举例说明, 当使用者 2的眼睛 21 至光学成像装置 1 的距离(包含挡风玻璃 反射距离)约 1米, 挡风玻璃 42的弧面 421的半径为 1500mm的状况下, 光 学成像装置 1的壳体 10的中心线 G1相对于汽车 4的驾驶座 43的中心线 C2 向右或向左倾斜的角度约 5度。
请再参阅图 6所示,光学成像装置 1装载于汽车 4的仪表板座 41之后, 光学成像装置 1开始运作时, 显示元件 1 10产生显示影像 1 101, 显示影像 1 101通过反射元件 1 11传递到第一光学元件 1 13a, 并产生缩小的显示影像 1 101 a (如图 2所示)。然后缩小的显示影像 1 101 a成像于第二光学元件 1 13b 的一倍焦距内, 并通过第二光学元件 113b产生放大并等效位于远方的显示 影像 1 10Γ 。 最后放大并等效位于远方的显示影像 1 10Γ 传递至反射膜 422,反射膜 422反射放大并等效位于远方的显示影像 1 10Γ 至使用者 2的 眼睛,此时使用者 2会看到放大并等效位于远处的显示影像 1 101, (虚像), 如此使用者 2在驾驶汽车 4时, 使用者 2的视线聚焦于远处的路况, 同时 也可观看显示影像 1 101, , 也表示使用者 2在驾驶过程中不用改变其眼睛 21的焦距, 即可观看放大并等效位于远处的显示影像 1 10Γ , 并通过放大 并等效位于远处的显示影像 110Γ 得知目前汽车 4的信息(例如:车速、 油 量、 转速、 温度等)。
请同时参阅图 8所示, 图 8是本发明的第一实施例的光学成像装置的 另一使用状态图; 图中, 每一使用者 2 的脚长或手臂长不同, 因此坐在驾 驶座 43的使用者 2至挡风玻璃 42的距离也不同, 为了使每一使用者 2可 看到完整的放大并等效位于远方的显示影像 1 101 ',可依据使用者 2与挡风 玻璃 42间的距离调整本实施例的显示元件 1 10的显示影像 1 101 的面积大 小, 直到使用者 2观看到完整地显示影像 1 10Γ 为止。 其中显示影像 1 101 的面积的调整是通过显示元件 110 的内建处理器进行调整。 请同时参阅图 9A及图 9B所示,图 9A及图 9B分别是本发明的第一实施例的光学成像装置 的调整显示影像面积的示意图; 图中, 本实施例的显示元件 1 10具有一显 示区域 1102, 显示影像 1101位于显示区域 1102内, 其面积可小于或等于 显示区域 1 102的面积, 显示元件 1 10的显示影像 1 101 的面积调整是通过 显示元件 1 10的内建处理器并依据使用者 2至挡风玻璃 42的距离不同进行 调整。
当使用者 2与挡风玻璃 42间的距离缩短(即使用者 2与第二光学元件 1 13b间的距离缩短)时, 依据使用者 2与挡风玻璃 42间的距离而扩大显示 元件 110的显示影像 1 101 的面积; 反之, 当使用者 2与挡风玻璃 42间的 距离增加(即使用者 2与第二光学元件 113b间的距离增加)时, 依据使用者 2与挡风玻璃 42间的距离而缩小显示影像 1101的面积。
然而本实施例的第二光学元件 1 13b的两表面的中心可能因制作过程中 产生误差, 即第二光学元件 1 13b的两表面的中心并非位于同一直线上, 如 此使光学成像装置 1所产生的放大并等效位于远方的显示影像 1 10Γ 产生 偏移, 导致使用者 2 无法观看完整的放大并等效位于远方的显示影像 1 101, 。 此时, 请参阅图 10所示, 图 10是本发明的第一实施例的光学成 像装置的调整显示影像位置的示意图;使用者 2依据放大的显示影像 110Γ 的偏移量(如 X及 Y方向的偏移量)调整显示元件 1 10的显示影像 1 101于显 示区域 1102的位置,使放大并等效位于远方的显示影像 1 10Γ 完整的呈现。 上述显示影像 1 101的位置调整也是通过显示元件 1 10的内建处理器依据放 大并等效位于远方的显示影像 1 10Γ 的偏移量进行调整。
请再参阅图 1 及图 6所示, 本实施例的光学成像装置 1 包含一外壳体 12及一角度调整机构 13, 外壳体 12枢接于壳体 10, 壳体 10的两侧分别具 有一枢接轴 103, 外壳体 12具有对应二枢接轴 103的二枢接孔 121, 壳体 10的二枢接轴 103枢接于外壳体 12的二枢接孔 121, 以套设于壳体 10的 外侧, 并使壳体 10可相对外壳体 12转动。 角度调整机构 13设置于外壳体 12内, 并对应壳体 10, 角度调整机构 13推动壳体 10, 使壳体 10相对于外 壳体 12转动, 进而调整第二光学元件 113b相对于挡风玻璃 42的角度。 所 以使用者 2可依据其身长通过角度调整机构 13调整第二光学元件 1 13b相 对于挡风玻璃 42的角度, 直到使用者 2观看到完整地放大并等效位于远处 的显示影像 1 10Γ 为止。
本实施例的角度调整机构 13包括一驱动元件 131 及一推动元件 132, 推动元件 132设置于驱动元件 131, 驱动元件 131设置于外壳体 12内, 推 动元件 132的一端 4氏接于壳体 10, 当驱动元件 131驱动推动元件 132往壳 体 10前进时, 以推动壳体 10, 使壳体 10相对于外壳体 12转动, 进而调整 第二光学元件 113b相对于挡风玻璃 42的角度。 所以使用者 2欲调整第二 光学元件 1 13b相对于挡风玻璃 42的角度时, 只要启动驱动元件 131 即可。 上述驱动元件 131 可为一马达, 推动元件 132可为一螺杆, 当然角度调整 机构 13可为其他型态, 在此不再赘述。
请再参阅图 6所示, 并请同时参阅图 1 1所示, 图 1 1是本发明的第一 实施例的光学成像装置的显示元件的背光模块的示意图; 图中, 本实施例 的显示元件 1 10使用具有高亮度的显示元件 110,所以本实施例的显示元件 1 10 的背光模块是使用发光二极管背光模块 1 103, 如此发光二极管背光模 块 1 103可提供高亮度的显示影像 1 101,如此本实施例的光学成像装置 1所 产生的放大的显示影像可清晰地让使用者观看。
本实施例的光学成像装置 1还包括一感测元件 14 (如: CMOS感测器), 感测元件 14设置于汽车 4内, 例如方向盘的前方, 感测元件 14可对光学 成像装置 1 的外部环境的亮度进行感测, 显示元件 1 10依据环境亮度及色 彩调整发光二极管背光模块 1103的亮度(如图 1 1所示)及调整显示元件 1 10 所显示的显示影像的色彩, 进而产生清楚的显示影像 1101。 在此更进一步 说明感测元件 14如何感测环境亮度, 请同时参阅图 12所示, 图 12是本发 明的第一实施例的光学成像装置的感测元件的感测示意图; 图中, 感测元 件 14对光学成像装置 1 的外部环境进行拍摄, 并产生一影像 5, 然后在影 像 5上取多个取样点 51 , 并计算该些取样点 51的亮度值的平均值, 然后显 示元件 1 10依据平均值调整发光二极管背光模块 1103的亮度。
上述说明利用影像 5 计算出环境亮度, 并依据环境亮度调整发光二极 管背光模块 1103的亮度。 在下面说明如何依据影像 5的环境色彩调整显示 元件 1 10所显示的显示影像的色彩, 其主要依据影像 5判断出环境色彩,然 后依据显示影像的色彩与环境色彩的比对调整显示影像的色彩, 即进行显 示影像的颜色与环境色度的反差色改变, 举例来说, 在晚上的时候, 若是 撷取到的影像 5的环境色彩是黑色或暗色系, 那么可以调整显示元件 1 10, 让显示影像为亮色系。 反之, 在白天的时候或是前方有白色车子, 如此撷 取到的影像 5的环境色彩为白色或亮色系, 那么可以调整显示元件 110, 让 显示影像为暗色系。
请再参阅图 1 1所示, 又因本实施例的光学成像装置 1的显示元件 1 10 使用发光二极管背光模块 1 103, 发光二极管背光模块 1 103容易产生高温, 所以本实施例的发光二极管背光模块 1 103的一电路板使用陶瓷基板 1 104, 并在陶瓷基板 1 104的后端增设一散热元件 1 105 (如:散热鳍片), 以将发光 二极管背光模块 1 103所产生的热排出至外部, 进而降低光二极管背光模块 1103的温度。
请再参阅图 6所示, 本实施例的光学成像装置 1 还包括一光感测模块 15,光感测模块 15设置于壳体 10的外側,并位于汽车 4的仪表板座 41 内, 请同时参阅图 13所示, 图 13是本发明的图 6的 A区域的放大图; 图中,光 感测模块 15具有一感测端 151, 第二光学元件 113b的中心线 C3相对一水 平面 H倾斜一第一角度 a1, 光感测模块 15的中心线 C4也相对一水平面 H 倾斜第一角度 a1,如此光学成像装置 1的第二光学元件 1 13b与光感测模块 15的感测端 151棵露于仪表板座 41的表面, 并朝向同一方向。
本实施例的光感测模块 15 包括中空的一圆柱体 152 及一光感测元件 153, 光感测元件 153设置于圆柱体 152内, 并位于圆柱体 152的底部。 光 感测元件 153的上方称为感测端 151。 当然光感测模块 15也有其他形态, 请参阅图 14所示, 图 14是本发明的第三实施例的光学成像装置的光感测 模块的示意图; 中空的圆柱体也可由二薄板 154取代, 其中一薄板 154具 有孔洞 1541, 光感測元件 153对应孔洞设置于另一薄板 154上; 或者直接 省略圆柱体 151的设置也可。
请参阅图 15所示, 图 15是本发明的第一实施例的光学成像装置的光 感测模块的使用状态图; 图中, 因光学成像装置 1的至少二光学元件 113a、 1 13b与光感测模块 15的光感测元件 153朝向同一方向,汽车 4外部的太阳 光 L相对第二光学元件 113b及光感测模块 15的光感测元件 153的照射角 度相同。 当汽车 4外部的太阳光 L垂直穿过第二光学元件 1 13b时, 太阳光 L也会垂直照射于光感测模块 15的光感测元件 153, 因太阳光 L垂直穿过 第二光学元件 113b,太阳光 L沿显示影像 1101的传递路径集中于显示元件 1 10, 导致显示元件 1 10过热, 此时光感测元件 153所接受的太阳光 L的照 射量将超过一门槛值, 即感测到太阳光 L对壳体 10内的光学成像装置 1的 照射量将超过一门槛值,并传送一第一控制信号至角度调整机构 13,角度调 整机构 13接收第一控制信号并依据第一控制信号调整壳体 10的角度。 当 壳体 10转动一角度时, 改变了第二光学元件 1 13b相对于太阳光 L的角度, 进而改变第二光学元件 1 13b相对于挡风玻璃 42的角度, 即使光学成像装 置 1的第二光学元件 1 13b与光感测模块 15的感测端 151未朝向同一方向, 使汽车 4外部的太阳光 L不会垂直穿过第二光学元件 113b, 也不会沿着显 示影像的传递路径集中于显示元件 1 10,进而避免光学成像装置 1 内的元件 产生热损坏。
壳体 10经角度调整后, 当光感测元件 153的感测量小于门槛值时, 光 感测元件 153 产生一第二控制信号并传送第二控制信号至角度调整机构 13, 角度调整机构 13依据第二控制信号调整壳体 10的角度, 使壳体 10恢 复成原始状态,即使光学成像装置 1的第二光学元件 113b与光感测模块 15 的感测端 151朝向同一方向(如图 6所示)。
请参阅图 16A及图 16B所示, 图 16A及图 16B分别是本发明的第四实 施例的光学成像装置的遮光件的使用状态图; 图中, 上述实施例是利用角 度调整机构 13调整壳体 10的角度, 使外部太阳光 L不会垂直穿过第二光 学元件 113b而沿着显示影像的传递路径进入光学成像装置 1 内, 以避免光 学成像装置 1 内产生热损害。 然而本实施例的光学成像装置 1 不须调整壳 体 10的角度, 也可避免外部太阳光 L垂直穿过第二光学元件 113b而沿着 显示影像的传递路径进入光学成像装置 1 内, 本实施例的光感测模块 15是 控制对应第二光学元件 1 13b设置的一遮光件 16的开关或颜色变化, 本实 施例的遮光件 16位于第二光学元件 1 13b的上方。
本实施例的遮光件 16为一遮光帘, 当光学成像装置 1正常使用时, 遮 光件 16为关闭状态, 即不遮蔽第二光学元件 1 13b, 使外部太阳光 L可穿过 第二光学元件 113b照射至光学成像装置 1 内; 当光学成像装置 1无法正常 使用时, 遮光件 16为启动状态, 即遮蔽第二光学元件 1 13b, 以阻隔外部太 阳光 L穿透第二光学元件 1 13b而进入光学成像装置 1 内。 本实施例的遮光 件 16是设置于壳体 10的开口 100, 并位于第二光学元件 1 13b的上方, 以 遮蔽第二光学元件 1 13b。 当然本实施例的遮光件 16也可设置于仪表板座 41 , 并位于第二光学元件 113b的上方, 遮光件 16仅要对应第二光学元件 1 13b设置,即达到可遮蔽第二光学元件 1 13b并阻隔或减少太阳光 L进入光 学成像装置 1的目的。
当光感测元件 153感测太阳光 L对光学成像装置 1的照射量(即光感测 元件 153所接受的太阳光 L的照射量)超过门槛值, 即外部太阳光 L直接垂 直穿过第二光学元件 1 13b而进入光学成像装置 1时, 光感测元件 153产生 并传送第一控制信号至遮光件 16, 遮光件 16依据第一控制信号启动, 使遮 光件 16为启动状态, 以遮蔽第二光学元件 1 13b, 即阻隔外部太阳光 L进入 第二光学元件 1 13b (如图 16A所示)。 之后, 当光感测元件 153感测太阳光 L对光学成像装置 1的照射量(即光感测元件 153所接受的太阳光 L的照射 量)小于门槛值时, 也表示太阳光 L未垂直穿过第二光学元件 1 13b, 此时, 光感测元件 153产生第二控制信号并传送第二控制信号至遮光件 16, 遮光 件 16依据第二控制信号关闭, 即使遮光件 16为关闭状态, 进而使外部太 阳光 L可穿过第二光学元件 1 13b, 而使光学成像装置 1 可正常使用(如图 16B所示)。
另外, 请参阅图 17A及图 17B所示, 图 17A及图 17B分别是本发明的 第五实施例的光学成像装置的遮光件的使用状态图; 图中, 上述实施例的 遮光件 16为遮光帘, 而本实施例的遮光件 16是一显示玻璃替代遮光帘,其 中显示玻璃是于二玻璃之间灌注液晶, 控制液晶而改变显示玻璃为透明状 态、半透明状态或黑色状态。遮光件 16受光感测模块 15的光感測元件 153 的控制, 当光感测元件 153感测太阳光 L对光学成像装置 1的照射量(即光 感测元件 153所接受的太阳光 L的照射量)未超过门槛值时, 即太阳光 L未 直接垂直穿过第二光学元件 1 13b, 此时遮光件 16为透明状态, 遮光件 16 不遮蔽第二光学元件 1 13b,使外部太阳光 L可穿过第二光学元件 1 13b而进 入光学成像装置 1, 如此光学成像装置 1可正常使用, 如图 17B所示。
当光感测元件 153感测太阳光 L对光学成像装置 1的照射量(即光感测 元件 153所接受的太阳光 L的照射量)超过门槛值时, 即太阳光 L直接垂直 穿过第二光学元件 113b, 此时遮光件 16可选择为半透明状态或黑色状态, 如图 17A所示, 当遮光件 16为半透明状态时, 可减少外部太阳光 L通过第 二光学元件 1 13b进入光学成像装置 1的照射量, 以减少太阳光 L进入光学 成像装置 1所产生的热损害; 当遮光件 16为黑色状态时, 可遮蔽第二光学 元件 113b, 以阻隔外部太阳光 L进入光学成像装置 1 内。 本实施例的遮光 件 16也可设置于壳体 10内, 并位于第二光学元件 1 13b的下方, 遮光件 16 仅要对应第二光学元件 1 13b设置, 也可达到阻隔或减少外部太阳光 L进入 光学成像装置 1 内, 如图 18及图 19所示, 图 18是本发明的第六实施例的 光学成像装置的遮光件的使用状态图; 本实施例的遮光件 16也可由一单向 玻璃替代。
上述第四实施例至第六实施例均于使用者驾驶过程中太阳光 L对光学 成像装置 1 的照射量超过门槛值时, 调整壳体 10的角度或启动遮光件 16 遮蔽第二光学元件 113b, 另外当汽车 4未使用时, 也可调整壳体 10的角度 或启动遮光件 16遮蔽第二光学元件 113b, 以保护光学成像装置 1, 避免光 学成像装置 1 内的元件产生热损害。 上述实施例的光感测模块 15均设置于壳体 10的外侧, 并与壳体 10分 离, 请同时参阅图 19所示, 图 19是本发明的第七实施例的光学成像装置 的示意图; 当然光感测模块 15也可直接与壳体 10相连, 当壳体 10依据使 用者至挡风玻璃 42的距离转动时, 光感测模块 15也可同时随壳体 10转动 而调整光感测模块 15的感测端 151与第二光学元件 1 13b朝向同一方向,以 准确感测太阳光 L对光学成像装置的照射量。
请参阅图 20所示, 图 20是本发明的第八实施例的光学成像装置的剖 面图; 图中, 本实施例的光学成像装置 1的第一光学元件 1 13a及第二光学 元件 113b并未对应设置, 第一光学元件 113a设置于第二光学元件 113b的 一侧, 即第二光学元件 1 13b未直接位于第一光学元件 1 13a的成像路径上。 而第一光学元件 1 13a与第二光学元件 1 13b之间设有一反射元件 1 1 1,反射 元件 115位于第一光学元件 1 13a的成像路径上, 以使第一光学元件 1 13a 的成像路径呈弯折状, 进而使第二光学元件 1 13b位于第一光学元件 113a 的成像路径上。 本实施例的第一光学元件 1 13a及第二光学元件 1 13b的摆 放方式可避免第一光学元件 1 13a的成像路径及第二光学元件 1 13b的成像 路径相互交错而影响最后的放大的显示影像的显示品质。
请参阅图 21及图 22所示, 图 21及图 22分別是本发明的第九实施例 的光学成像装置的剖面图及成像示意图; 图中, 本实施例的光学成像装置 1 的第二光学元件 1 13b使用凹面镜, 并设置于壳体 10内, 且邻近壳体 10的 开口 100。显示元件 1 10所显示的显示影像 1 101通过第一光学元件 1 13a产 生一缩小的显示影像 1 101 a, 缩小的显示影像 1 101 a 成像于第二光学元件 1 13 的焦距内,并通过第二光学元件 113b产生视觉上一放大并等效位于远 方的显示影像 1 10Γ , 如此使用者通过光学成像装置 1可看到放大并等效 位于远方的显示影像 1 101, 。其中壳体 10的开口 100可设置一透明盖 1 16, 透明盖 1 16的上下表面可分别涂布一膜层 1161, 以补偿放大并等效位于远 方的显示影像 1101, 的扭曲。 当然也可以选择透明盖 116的一表面上涂布 膜层 1 161 ; 或者将透明盖 116置换为透明曲面盖, 来补偿放大并等效位于 远方的显示影像 1 10Γ 的扭曲, 在此不再赘述。
其中, 第一实施例中第二光学元件的形状、 壳体沿着挡风玻璃的曲率 设置、 依据使用者于驾驶座的高度调整壳体的角度或调整显示影像的面积、 依据放大并等效位于远方的显示影像的偏移量而调整显示影像的位置、 背 光模块的结构、 依据感测元件所感测的环境亮度调整背光模块的亮度、 依 据光感测模块所感测的太阳光对光学成像装置的照射量而调整壳体的角度 或控制遮光件遮蔽光学成像装置等技术特征均可用于第八实施例及第九实 施例的光学成像装置, 在此不再赘述。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。 工业应用性
本发明是有关于一种光学成像装置,该光学成像装置包括: 一壳体、 一 显示元件、 一第一光学元件及一第二光学元件, 该显示元件、 该第一光学 元件及该第二光学元件设置于该壳体内, 该显示元件位于该第一光学元件 的二倍焦距外, 该第一光学元件缩小该显示元件所显示的一显示影像, 并 成像于该第二光学元件的一倍焦距内, 该第二光学元件放大经该第一光学 元件缩小的显示影像, 以产生视觉上放大并等效位于远处的显示影像,如此 使用者可通过光学成像装置观看到放大并等效位于远处的显示影像,本发 明的光学成像装置因使用该第一光学元件及该第二光学元件, 缩短该显示 元件到该第二光学元件的整体光学成像路径, 达到缩小光学成像装置的体 积。

Claims

权 利 要 求
1、 一种光学成像装置, 其特征在于其包括:
一壳体;
一第一光学元件, 其设置于该壳体内;
一第二光学元件, 其设置于该壳体内, 并位于该第一光学元件的成像 路径上; 以及
一显示元件, 其设置于该第一光学元件的两倍焦距外, 并成像于该第 二光学元件的焦距内, 以产生视觉上放大并等效位于远处的显示影像。
2、 根据权利要求 1所述的光学成像装置, 其特征在于其中该第一光学 元件及该第二光学元件分別为一凸透镜。
3、 根据权利要求 1所述的光学成像装置, 其特征在于其中该第一光学 元件为一凸透镜, 该第二光学元件为一凹面镜。
4、 根据权利要求 3所述的光学成像装置, 其特征在于其还包括: 一透明盖, 其设置于该壳体的一开口, 并位于该视觉上放大并等效位 于远处的显示影像的传递路径上, 其中该透明盖的至少一表面具有一膜层。
5、 根据权利要求 3所述的光学成像装置, 其特征在于其还包括: 一透明曲面盖, 其设置于该壳体的一开口, 并位于该视觉上放大并等 效位于远处的显示影像的传递路径上。
6、 根据权利要求 1所述的光学成像装置, 其特征在于其还包括: 至少一反射元件, 其设置于该显示元件与该第一光学元件之间或该第 一光学元件与该第二光学元件之间, 并位于该显示元件所显示的显示影像 的传递路径上。
7、 根据权利要求 1所述的光学成像装置, 其特征在于其中该第二光学 元件的宽度大于一使用者的两眼的间距。
8、 根据权利要求 1所述的光学成像装置, 其特征在于其中该壳体设置 于一汽车的一仪表板座内, 该壳体沿着该汽车的一挡风玻璃的曲率设置。
9、 根据权利要求 1所述的光学成像装置, 其特征在于其中该显示元件 是依据一使用者至该挡风玻璃的距离调整显示影像的面积大小。
10、 根据权利要求 1 所述的光学成像装置, 其特征在于其中该显示元 件是依据视觉上放大并等效位于远处的显示影像的偏移量调整显示影像的 位置。
1 1、 根据权利要求 1所述的光学成像装置, 其特征在于其还包括: 一外壳体, 其两侧分别具有二枢接孔, 该壳体的二枢接轴枢接于该二 区接孔; 以及
一角度调整机构, 其设置于该外壳体内, 并对应该壳体, 该角度调整 机构推动该壳体, 该壳体相对该外壳体转动。
12、 根据权利要求 11所述的光学成像装置, 其特征在于其中该角度调 整机构包括:
一驱动元件, 其设置于该外壳体内; 以及
一推动元件, 其设置于该驱动元件, 该推动元件的一端抵接于该壳体, 该驱动元件驱动该推动元件, 该推动元件推动该壳体, 该壳体相对该外壳 体转动。
13、 根据权利要求 1 1所述的光学成像装置, 其特征在于其还包括: 一感测元件, 其设置于该壳体的外侧, 并感测该光学成像装置的外部 的环境亮度或色彩, 该显示元件依据该光学成像装置的外部的环境亮度或 色彩调整该显示元件的一背光模块的亮度或调整该显示元件所显示的一显 示影像的色彩。
14、 根据权利要求 1所述的光学成像装置, 其特征在于其还包括: 一光感测模块, 其设置于该壳体的外侧, 并具有一感测端, 该感测端 及该第二光学元件的中心线均相对一水平面倾斜一角度, 且使该感测端与 该第二光学元件朝向同一方向。
15、 根据权利要求 14所述的光学成像装置, 其特征在于其中该光学感 测模块连接该壳体, 该壳体转动时, 该壳体同时带动该光学感测模块转动, 并使该感测端及该第二光学元件的中心线均相对该水平面倾斜该角度, 且 使该感测端自动地与该第二光学元件朝向同一方向。
16、 根据权利要求 15所述的光学成像装置, 其特征在于其还包括: 一遮光件, 其对应该第二光学元件设置;
其中该光感测模块感测外部太阳光对该光学成像装置的的照射量超过 一门槛值, 该光感测模块传送一控制信号至该遮光件, 该遮光件依据该控 制信号遮蔽该第二光学元件。
17、 根据权利要求 16所述的光学成像装置, 其特征在于其中该遮光件 为一遮光帘、 一显示玻璃或一单向玻璃。
PCT/CN2014/000726 2013-08-01 2014-07-30 光学成像装置 WO2015014100A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361861028P 2013-08-01 2013-08-01
US61/861,028 2013-08-01
US201361890934P 2013-10-15 2013-10-15
US61/890,934 2013-10-15
US201361918068P 2013-12-19 2013-12-19
US61/918,068 2013-12-19
US201461946968P 2014-03-03 2014-03-03
US61/946,968 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015014100A1 true WO2015014100A1 (zh) 2015-02-05

Family

ID=51851798

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/000727 WO2015014101A1 (zh) 2013-08-01 2014-07-30 光学成像装置
PCT/CN2014/000726 WO2015014100A1 (zh) 2013-08-01 2014-07-30 光学成像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000727 WO2015014101A1 (zh) 2013-08-01 2014-07-30 光学成像装置

Country Status (2)

Country Link
CN (6) CN104142576A (zh)
WO (2) WO2015014101A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048662A1 (de) * 2018-09-05 2020-03-12 Robert Bosch Gmbh Abbildungsvorrichtung
US20210202278A1 (en) * 2019-12-26 2021-07-01 Disco Corporation Laser processing apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142576A (zh) * 2013-08-01 2014-11-12 矽创电子股份有限公司 光学成像装置
CN105954873A (zh) * 2015-03-09 2016-09-21 矽创电子股份有限公司 光学成像装置
CN104965241B (zh) * 2015-07-17 2017-10-24 樊强 一种变色投影镜片及具有该镜片的抬头显示器
CN105093507A (zh) * 2015-07-22 2015-11-25 熊全宾 显示屏放大装置
FR3039655B1 (fr) * 2015-07-27 2018-08-17 Valeo Comfort And Driving Assistance Afficheur tete-haute compact
TWI566231B (zh) * 2015-10-30 2017-01-11 宏碁股份有限公司 電子裝置及其螢幕顏色校正系統
CN111458875A (zh) * 2015-12-14 2020-07-28 矽创电子股份有限公司 光学成像装置
JP6402278B2 (ja) * 2016-02-22 2018-10-10 富士フイルム株式会社 投写型表示装置
CN108107575A (zh) * 2016-11-25 2018-06-01 矽创电子股份有限公司 光学成像装置
JP2018194820A (ja) * 2017-05-16 2018-12-06 株式会社リコー 虚像形成装置及び移動体
CN107436492A (zh) * 2017-07-31 2017-12-05 方良 一种头戴式2d显示设备及显示方法
CN110001538A (zh) * 2018-01-05 2019-07-12 英属开曼群岛商麦迪创科技股份有限公司 载具剧场设备
JP2020067461A (ja) * 2018-10-19 2020-04-30 本田技研工業株式会社 表示装置
CN110161693A (zh) 2019-05-06 2019-08-23 苏州佳世达光电有限公司 成像***
CN110275301A (zh) * 2019-05-15 2019-09-24 苏州佳世达光电有限公司 成像***
CN112684603B (zh) * 2019-10-17 2023-03-28 杭州海康威视数字技术股份有限公司 智能眼镜
CN113125449B (zh) * 2021-04-20 2022-10-18 江苏善果缘智能科技有限公司 一种集成式产品表面检测用的扫描装置及其组装方法
CN114924419A (zh) * 2022-06-15 2022-08-19 业成科技(成都)有限公司 角度调整装置、抬头显示器及交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169213A1 (en) * 2002-03-07 2003-09-11 Spero Yechezkal Evan Enhanced vision for driving
CN1800905A (zh) * 2005-01-03 2006-07-12 福特环球技术公司 车辆防眩目***
CN1953191A (zh) * 2005-10-21 2007-04-25 C.R.F.阿西安尼顾问公司 安装在机动车上帮助驱动和/或自动启动该机动车上所设置***的光学传感器装置
CN101166289A (zh) * 2006-10-17 2008-04-23 精工爱普生株式会社 抬头显示***
US20090237803A1 (en) * 2008-03-21 2009-09-24 Kabushiki Kaisha Toshiba Display device, display method and head-up display
CN102431502A (zh) * 2010-09-22 2012-05-02 株式会社东芝 车载显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119147A (ja) * 1997-10-14 1999-04-30 Asahi Optical Co Ltd ヘッドアップディスプレイ
US6043937A (en) * 1999-03-11 2000-03-28 Delphi Technologies, Inc. Head up display system using a diffusing image plane
JP2010188811A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 車両用情報提示装置
JP2010208580A (ja) * 2009-03-12 2010-09-24 Honda Motor Co Ltd ヘッドアップディスプレイ装置
CN102466882A (zh) * 2010-11-18 2012-05-23 华创车电技术中心股份有限公司 具有抬头及仪表显示功能的车用显示模块
DE102011014145A1 (de) * 2010-12-23 2012-06-28 Continental Automotive Gmbh Head-up-Display für ein Kraftfahrzeug
CN103048786B (zh) * 2011-10-17 2015-07-01 财团法人车辆研究测试中心 多光路抬头显像装置
US9372343B2 (en) * 2012-01-12 2016-06-21 Htc Corporation Head-up display, vehicle and controlling method of head-up display
CN102745084A (zh) * 2012-07-04 2012-10-24 浙江工业大学 多信息显示的车用抬头显示装置
CN104142576A (zh) * 2013-08-01 2014-11-12 矽创电子股份有限公司 光学成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169213A1 (en) * 2002-03-07 2003-09-11 Spero Yechezkal Evan Enhanced vision for driving
CN1800905A (zh) * 2005-01-03 2006-07-12 福特环球技术公司 车辆防眩目***
CN1953191A (zh) * 2005-10-21 2007-04-25 C.R.F.阿西安尼顾问公司 安装在机动车上帮助驱动和/或自动启动该机动车上所设置***的光学传感器装置
CN101166289A (zh) * 2006-10-17 2008-04-23 精工爱普生株式会社 抬头显示***
US20090237803A1 (en) * 2008-03-21 2009-09-24 Kabushiki Kaisha Toshiba Display device, display method and head-up display
CN102431502A (zh) * 2010-09-22 2012-05-02 株式会社东芝 车载显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048662A1 (de) * 2018-09-05 2020-03-12 Robert Bosch Gmbh Abbildungsvorrichtung
US20210202278A1 (en) * 2019-12-26 2021-07-01 Disco Corporation Laser processing apparatus

Also Published As

Publication number Publication date
CN204256267U (zh) 2015-04-08
WO2015014101A1 (zh) 2015-02-05
CN104142577B (zh) 2016-09-07
CN104142577A (zh) 2014-11-12
CN204009231U (zh) 2014-12-10
CN204256268U (zh) 2015-04-08
CN204009232U (zh) 2014-12-10
CN104142576A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2015014100A1 (zh) 光学成像装置
JP4895324B2 (ja) ヘッドアップディスプレイ装置
JP3727078B2 (ja) 表示装置
JP4973921B2 (ja) ヘッドアップディスプレイ装置
JP6437532B2 (ja) グレア防止スクリーンを備えるデータ表示眼鏡
US11235706B2 (en) Display system
JP2008155720A (ja) ヘッドアップディスプレイ装置
JP4941070B2 (ja) 車両用表示装置
JP2010256867A (ja) ヘッドアップディスプレイ及び画像表示方法
JP2005500568A (ja) 昼/夜モードヘッドアップディスプレイを用いる情報表示方法及び装置
JP2009288388A (ja) 表示装置
JP2018205446A (ja) 表示システム、電子ミラーシステム及びそれを備える移動体
WO2013084592A1 (ja) 表示システム、自動車
JP2008257021A (ja) 表示装置
JP6172512B2 (ja) 死角補助装置
TW201723585A (zh) 抬頭顯示裝置
JP2008003355A (ja) 表示装置
JP6941799B2 (ja) 表示システム
JP7230750B2 (ja) 表示装置
JP2015020669A (ja) 死角補助装置
JP2023533991A (ja) 凸レンズ/凹面鏡に基づくヘッドブラインドゾーン透視仮想表示装置及び方法
JP3785461B2 (ja) ヘッドアップディスプレイ方式
JP6697747B2 (ja) 表示システム、電子ミラーシステム及び移動体
US20230400685A1 (en) Head Up Display Device
WO2024004297A1 (ja) ヘッドアップディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832633

Country of ref document: EP

Kind code of ref document: A1