WO2014175413A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2014175413A1
WO2014175413A1 PCT/JP2014/061664 JP2014061664W WO2014175413A1 WO 2014175413 A1 WO2014175413 A1 WO 2014175413A1 JP 2014061664 W JP2014061664 W JP 2014061664W WO 2014175413 A1 WO2014175413 A1 WO 2014175413A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
model pattern
image
matching
model
Prior art date
Application number
PCT/JP2014/061664
Other languages
English (en)
French (fr)
Inventor
佳孝 藤沢
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/783,291 priority Critical patent/US9710904B2/en
Priority to EP14787947.2A priority patent/EP2990758B1/en
Priority to CN201480036306.0A priority patent/CN105339755B/zh
Publication of WO2014175413A1 publication Critical patent/WO2014175413A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/757Matching configurations of points or features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention is an inspection apparatus capable of preventing a defective product from being determined to be a defective product when the image obtained by photographing the appearance of the inspection object is subjected to image processing to inspect a molding defect. About.
  • Patent Document 1 An inspection apparatus that determines the quality of an inspection target is known (Patent Document 1).
  • Patent Document 1 an inspection apparatus that determines the quality of an inspection target.
  • Patent Document 1 there is a product in which the degree of coincidence between the image pattern to be inspected and the model pattern is poor in spite of being a non-defective product in the inspection, and in the inspection of such a product, it is a defective product despite being a good product. May be determined.
  • the tire before inspection is temporarily placed in a predetermined place, so it is affected by the influence of sagging rubber or overlapping belts.
  • the side surface of the tire may be deformed. Since the degree of matching of the model pattern with the image pattern of the character string molded on the side surface of the tire that has undergone shape deformation in this way deteriorates, it is a good product with the character string correctly molded on the side surface There is a possibility that it is determined that the character string is not correctly molded on the side surface.
  • the present invention provides an inspection apparatus capable of preventing a defective product from being determined to be a non-defective product when the image obtained by photographing the inspection object is subjected to image processing to inspect a molding defect.
  • the purpose is to provide.
  • a model pattern positioning unit that pattern-matches a model pattern on an image obtained by photographing the appearance of the inspection target and positions the model pattern at a position having the highest degree of coincidence
  • a model pattern A model pattern sub-element dividing unit that divides each sub-element into a plurality of sub-elements so as to have an overlapping area, and a position when each of the sub-elements divided by the model pattern sub-element dividing unit is positioned on the image
  • a shape recognition means for recognizing the shape corresponding to the model pattern from the above image by performing pattern matching around the position within a predetermined range and positioning each position at the highest degree of coincidence.
  • FIG. 1 is a schematic configuration diagram of a tire 2 inspection device 1 for carrying out one embodiment of the present invention.
  • the inspection device 1 according to the first embodiment is placed on a side surface 3 of a tire 2 that is temporarily placed in a predetermined place before inspection after manufacturing and the shape of the side surface 3 may be deformed, for example.
  • An inspection target image acquisition device 5 and a pattern matching device 6 are provided.
  • the inspection target image acquisition device 5 is configured by, for example, a device that acquires an image of the entire character string 4 by a light cutting method, a laser device 7 that irradiates the character string 4 with laser light, and a character string that is irradiated with the laser light. And an image of the side surface 3 of the tire 2 including the character string 4 formed on the side surface 3 of the tire 2.
  • the pattern matching device 6 includes an image pattern generation unit 11, a model pattern storage unit 12 that stores a model pattern M of the character string 4, and a matching unit 13.
  • the image pattern generation means 11 obtains the shape data of the character string 4 from the image acquired by the inspection target image acquisition device 5 and also determines the image pattern from the feature points of the shape data necessary for shape recognition of each character of the character string 4 R is generated.
  • the matching unit 13 pattern matches the model pattern M indicated by the dotted line on the image pattern R indicated by the solid line on the image, and positions the model pattern M at the position where the matching degree is the highest.
  • Model pattern positioning means 15 for performing the processing model pattern partial element dividing means 16 for dividing the model pattern M into a plurality of partial elements M1 to M4 so as to have overlapping regions D as shown in FIG.
  • Each of the subelements M1 to M4 divided by the pattern subelement dividing means 16 is subjected to pattern matching within a predetermined range around the position with reference to the position when the model pattern M is positioned on the image.
  • a recognition means 17 Each of the means 11, 13 and 15 to 17 is realized by a computer and a program for causing the computer to execute processing procedures of the means 11, 13 and 15 to 17 described later.
  • the model pattern positioning means 15 performs pattern matching by moving the model pattern M of the entire character string 4 on a pixel basis on the image acquired by the inspection target image acquisition device 5, and in the image on which the model pattern M is superimposed.
  • the degree of coincidence with the image pattern R is calculated, and the model pattern M is positioned at a position where the degree of coincidence between the model pattern M and the image pattern R is the highest.
  • the model pattern M is positioned on the image with the center of gravity of the model pattern M as a reference position, for example. That is, the image pattern R having a high degree of coincidence with the model pattern M is searched from the image, and the model pattern M is arranged on the image.
  • the model pattern sub-element dividing means 16 divides the model pattern M into a plurality of uniform-sized sub-elements M1 to M4 so as to have overlapping regions D as shown in FIGS. 2 (a) and 2 (b). .
  • the overlapping region D is set so that, for example, the adjacent partial elements M1 to M4 overlap each other by a predetermined pixel.
  • the shape recognition unit 17 includes a partial element deformation unit 18 and a partial element positioning unit 19.
  • the partial element deforming means 18 performs predetermined deformation on the partial elements M1 to M4. Specifically, as shown in FIG. 3A, the subelements M1 to M4 are subjected to enlargement / reduction deformation, rotation deformation, shear deformation, and a combination of these deformations at a predetermined ratio.
  • the partial element positioning unit 19 performs pattern matching on the image pattern R while deforming the partial elements M1 to M4 by the partial element deformation unit 18 as shown in FIG.
  • the model pattern M is positioned with respect to the image pattern R while the above-described deformation of each of the partial elements M1 to M4 is repeated by the partial element deformation means 18 until a shape having the highest degree of matching is obtained.
  • the degree of coincidence is calculated by changing the position within the predetermined range in units of pixels with reference to the positions of the subelements M1 to M4.
  • the shape recognizing unit 17 further performs pattern matching on each of the partial elements M1 to M4 with respect to the image pattern R, and positions each of the partial elements M1 to M4 on the image pattern R, whereby the image pattern R Is a shape corresponding to the model pattern M.
  • the model pattern positioning means 15 positions the model pattern M on the image at the position of the image pattern R having the highest degree of coincidence with the model pattern M from the image.
  • the partial elements M1 to M4 of the model pattern M divided by the model pattern partial element dividing means 16 are individually deformed by the partial element deforming means 18 and the respective partial elements M1 to M4 are deformed by scaling, shear deformation, rotation, etc. And, by combining these, pattern matching is performed within a predetermined search range with reference to the position where the model pattern M is positioned.
  • the partial elements M1 to M4 are arranged on the image pattern R in the shape of the partial elements M1 to M4 when the degree of coincidence with the image pattern R is the highest, and recognized as a part of the character corresponding to the model pattern M. .
  • the character “A” of the character string 4 of the model pattern M indicated by the dotted line positioned on the image by the model pattern positioning means 15 is “A” of the image pattern R indicated by the solid line. ”.
  • the partial element positioning unit 19 performs the character “A”.
  • the partial element M1 of “A” of the model pattern M and the model pattern are calculated while calculating the degree of coincidence of the partial elements M1 partially constituting “” and further deforming the partial element M1 by the partial element deformation means 18.
  • the degree of coincidence with the image pattern R at the image position where the M partial element M1 is superimposed is calculated, and the image pattern R having the highest degree of coincidence with the partial element M1 of the model pattern M is determined as the model pattern M. It is recognized as a character element corresponding to the subelement M1. By executing this similarly for the partial elements M2 to M4, the image pattern R (character) corresponding to the model pattern M is recognized.
  • Embodiment 2 In the first embodiment, the model pattern partial element dividing unit 16 has been described as dividing the model pattern M into 2 ⁇ 2 partial elements as shown in FIG. 2A. As shown in FIG. 4, the pattern divided into 3 ⁇ 3 subelements N1 to N9 is further pattern-matched to the image pattern R so as not to overlap the dividing boundary when divided by 2 ⁇ 2. Also good. That is, the model pattern subelement dividing unit 16 in the second embodiment divides the model pattern M into subelements M1 to M4 and N1 to N9 having different sizes, and each time the model pattern M is divided into different sizes. The shape recognition unit 17 recognizes the shape corresponding to the model pattern M.
  • the shape recognized by the size of 2 ⁇ 2 and the shape recognized by 3 ⁇ 3 are superimposed, and the shape recognition means 17 recognizes the superimposed portion as a shape corresponding to the model pattern M. Just do it.
  • the model pattern M can be made to correspond more accurately to the image pattern R by recognizing the shape by combining the subelements having different sizes.
  • the model pattern subelement dividing unit 16 executes the division of the model pattern M a plurality of times, and the positions of the division boundaries of the subelements M1 to M4 and the subelements N1 to N9 divided at each time are displaced. In this way, by changing the number of divisions each time, it is possible to improve the probability of matching any of the subelements divided at different sizes with the image.
  • the division is performed each time so that the division boundaries do not overlap. It is important to shift the position of the division boundary of the subelement. By shifting the position of the dividing boundary, the divided elements of the model pattern M are supplemented with the divided elements of other sizes. Therefore, the partial elements are arranged in the image pattern R by the partial element positioning unit 19. Sometimes, the subelements divided in other sizes are located, so that the subelements can always be arranged in the entire image pattern R.
  • the model pattern M can be made to correspond to the image pattern R, a side portion that is a non-defective product is generated due to a lack of a portion where the model pattern M is not arranged or a matching with the image pattern R. 3, it is possible to more accurately prevent a false matching in which it is determined that the character string 4 is a defective product that is not correctly molded.
  • the model pattern M divided in different sizes as in the second embodiment is matched with the image pattern R, only the portion where the sub-elements having different sizes overlap, for example, only the portion overlapping two or more pixels is image pattern.
  • R it is possible to execute a more accurate inspection by determining from the image pattern R whether the character string 4 is a defective product that is not correctly molded or a non-defective product that is correctly molded.
  • the number of divisions of the model pattern M shown in the first embodiment and the second embodiment is an example, and may be changed as appropriate.
  • the inspection of the three-dimensional character string 4 formed on the side surface 3 of the tire 2 is taken as an example, but the inspection object of the present invention may be a pattern formed on the product surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 本発明は、検査対象を撮影して取得した画像を画像処理して成型不良を検査するときに、良品であるのにもかかわらず不良品と判定されてしまうことを防止可能な検査装置を提供するために、検査対象を撮影した画像上にモデルパターンMをパターンマッチングして一致度が最も高い位置にモデルパターンMを位置決めするモデルパターン位置決め手段15と、モデルパターンMを互いに重複領域Dを有するように複数の部分要素に分割するモデルパターン部分要素分割手段16と、モデルパターン部分要素分割手段16により分割された各部分要素を、画像上においてモデルパターンMが位置決めされたときの位置を基準として、この位置の周囲を決められた範囲内でパターンマッチングして、一致度が最も高い位置にそれぞれ位置決めしてモデルパターンMに対応する形状を上記画像から認識する形状認識手段17を備えるようにした。

Description

検査装置
 本発明は、検査対象の外観を撮影して取得した画像を画像処理して成型不良を検査するときに、良品であるのにもかかわらず不良品と判定してしまうことを防止可能な検査装置に関する。
 製品に成型された文字等の検査対象の良品データをモデルパターンとして記憶しておき、製品に成型された文字等の検査対象を撮像して得た画像パターンとモデルパターンとの一致度を算出して、検査対象の良否を判定する検査装置が知られている(特許文献1)。
 しかしながら、検査において、良品であるにも拘らず、検査対象の画像パターンとモデルパターンとの一致度が悪くなる製品があり、このような製品の検査においては良品であるのにもかかわらず不良品と判定されてしまう場合がある。例えば、タイヤの側面に凹凸に成型された検査対象の文字列の成型状態の良否を検査する場合、検査前のタイヤは所定場所に仮置きされるため、ゴムのダレやベルト重なり等の影響によってタイヤの側面が形状変形する場合がある。このように形状変形を起こしたタイヤの側面に成型された文字列の画像パターンに対するモデルパターンの一致度が悪くなってしまうので、側面に文字列が正しく成型されている良品であるにもかかわらず側面に文字列が正しく成型されていない不良品であると判定されてしまう可能性がある。
特開2006-275952号公報
 そこで本発明は、検査対象を撮影して取得した画像を画像処理して成型不良を検査するときに、良品であるのにもかかわらず不良品と判定されてしまうことを防止可能な検査装置を提供することを目的とする。
 上記課題を解決するための検査装置の構成として、検査対象の外観を撮影した画像上にモデルパターンをパターンマッチングして一致度が最も高い位置にモデルパターンを位置決めするモデルパターン位置決め手段と、モデルパターンを互いに重複領域を有するように複数の部分要素に分割するモデルパターン部分要素分割手段と、モデルパターン部分要素分割手段により分割された各部分要素を、画像上においてモデルパターンが位置決めされたときの位置を基準として、この位置の周囲を決められた範囲内でパターンマッチングして、一致度が最も高い位置にそれぞれ位置決めしてモデルパターンに対応する形状を上記画像から認識する形状認識手段を備えることにより、検査対象が良品であるにもかかわらず変形した状態で画像に撮影されていても、モデルパターンを分割した部分要素を画像に対して正確にパターンマッチングさせることができる。したがって、モデルパターンが画像にマッチングしないために、検査対象が良品であるのにもかかわらず不良品と判定されてしまうことを防止できる。
検査装置のブロック構成を示す概略構成図である。 画像パターンとモデルパターンとの関係及びモデルパターンの分割を示す図である。 画像パターンに部分要素をマッチングさせたときの図である。 モデルパターンの分割の他の形態を示す図である。
実施形態1
 図1は、本発明の一実施形態を実行するためのタイヤ2の検査装置1の概略構成図である。図1に示すように、実施形態1に係る検査装置1は、例えば、製造後検査前に所定場所に仮置きされ、側面3の形状が変形している可能性のあるタイヤ2の側面3に凹凸状に成型された検査対象としての文字列4を構成する各文字の成型の良否を検査する装置であって、インフレートされていない状態のタイヤ2の側面3の文字列4の画像を取得する検査対象画像取得装置5とパターンマッチング装置6とを備える。
 検査対象画像取得装置5は、例えば、光切断法により文字列4全体の画像を取得する装置により構成され、文字列4にレーザー光を照射するレーザー装置7と、レーザー光が照射された文字列4を撮像するカメラ8とを備え、タイヤ2の側面3に成型された文字列4を含むタイヤ2の側面3の画像を取得する。
 パターンマッチング装置6は、画像パターン生成手段11と、文字列4のモデルパターンMを記憶するモデルパターン記憶部12と、マッチング手段13とを備える。
 画像パターン生成手段11は、検査対象画像取得装置5により取得された画像から文字列4の形状データを求めるとともに、文字列4の各文字の形状認識に必要な形状データの特徴点等から画像パターンRを生成する。
 マッチング手段13は、図2(a)に示すように、画像上の実線で示す画像パターンR上に、点線で示すモデルパターンMをパターンマッチングして一致度が最も高い位置にモデルパターンMを位置決めするモデルパターン位置決め手段15と、図2(b)に示すように、モデルパターンMを互いに重複領域Dを有するように複数の部分要素M1乃至M4に分割するモデルパターン部分要素分割手段16と、モデルパターン部分要素分割手段16により分割された各部分要素M1乃至M4を、画像上においてモデルパターンMが位置決めされたときの位置を基準として、この位置の周囲を決められた範囲内でパターンマッチングして、一致度が最も高い位置にそれぞれ位置決めしてモデルパターンMに対応する形状を上記画像から認識する形状認識手段17を備える。
 上記各手段11,13及び15乃至17は、コンピュータと当該コンピュータに後述する各手段11,13及び15乃至17の処理手順を実行させるためのプログラムとにより実現される。
 モデルパターン位置決め手段15は、検査対象画像取得装置5により取得した画像上において文字列4全体のモデルパターンMを画素単位で移動させてパターンマッチングを実行し、モデルパターンMが重ねられている画像における画像パターンRとの一致度を算出し、モデルパターンMと画像パターンRとの一致度が最も高い位置にモデルパターンMを位置決めする。
 このモデルパターンMは、例えば、モデルパターンMの重心を基準位置として画像上に位置決めされる。すなわち、画像からモデルパターンMと一致度が高い画像パターンRを探索し、画像上にモデルパターンMを配置する。
 モデルパターン部分要素分割手段16は、図2(a),(b)に示すように、モデルパターンMを互いに重複領域Dを有するように複数の均一な大きさの部分要素M1乃至M4に分割する。重複領域Dは、例えば、隣接する部分要素M1乃至M4同士に所定画素分の重なりが生じるように設定される。このように、分割した部分要素M1乃至M4同士に重複領域Dを設けておくことで、部分要素M1乃至M4を画像パターンRにマッチングさせたときに、部分要素M1乃至M4同士間に隙間が生じることを防止できる。つまり、部分要素M1乃至M4同士間に隙間が生じてしまうと不良として検出されることになってしまうが、重複領域Dを設定することでこれを防止できる。
 形状認識手段17は、部分要素変形手段18と、部分要素位置決め手段19とを備える。
 部分要素変形手段18は、上記部分要素M1乃至M4に対して所定の変形を実行する。具体的には、図3(a)に示すように、各部分要素M1乃至M4を所定の割合で拡大縮小変形、回転変形、せん断変形、さらにこれらの変形を組み合わせた変形を実行する。
 部分要素位置決め手段19は、図3(b)に示すように、上記部分要素変形手段18により各部分要素M1乃至M4を変形させながら画像パターンRに対してパターンマッチングを実行する。このパターンマッチングにおいては、一致度が最も高い形状が得られるまで、部分要素変形手段18により各部分要素M1乃至M4に対する上記すべての変形を繰り返しながら、モデルパターンMが画像パターンRに対して位置決めされたときの各部分要素M1乃至M4の位置を基準として、所定範囲内を画素単位で位置を変化させて一致度が計算される。続いて、形状認識手段17は、各部分要素M1乃至M4をさらに画像パターンRに対してパターンマッチングを実行して、画像パターンRに各部分要素M1乃至M4をそれぞれ位置決めすることで、画像パターンRがモデルパターンMに対応する形状であるか否かを認識する。このように、部分要素M1乃至M4を変形させながら画像パターンRに対してパターンマッチングを実行することで、より精度良く部分要素M1乃至M4を画像パターンRに対してマッチングさせることができる。つまり、検査対象に対してより精度良く部分要素をマッチングさせることができる。
 マッチング手段13の動作を説明する。
 モデルパターン位置決め手段15が、画像からモデルパターンMとの一致度が最も高い画像パターンRの位置にモデルパターンMを画像上に位置決めする。
 次に、モデルパターン部分要素分割手段16により分割されたモデルパターンMの部分要素M1乃至M4を部分要素変形手段18により各部分要素M1乃至M4を個別に拡大縮小、せん断変形、回転などの形状変形及びこれらを組み合わせながら、上記モデルパターンMが位置決めされた位置を基準にして所定の探索範囲でパターンマッチングする。そして、画像パターンRに最も一致度が高いときの部分要素M1乃至M4の形状で画像パターンR上に部分要素M1乃至M4を配置して、モデルパターンMと対応する文字の一部分であると認識する。
 例えば、図2(a)に示すように、モデルパターン位置決め手段15によって画像上に位置決めされた点線で示すモデルパターンMの文字列4の「A」の文字が実線で示す画像パターンRの「A」に位置決めされたとする。
 この場合、部分要素位置決め手段19が、モデルパターンMの文字列4の「A」を当該「A」の重心位置から探索範囲内を画素単位で移動させる毎に部分要素位置決め手段19で文字「A」を部分的に構成する部分要素M1の一致度を計算し、さらに、部分要素変形手段18により部分要素M1を変形させながら、このモデルパターンMの「A」の部分要素M1と、当該モデルパターンMの部分要素M1が重ねられている画像位置の画像パターンRとの一致度を算出し、モデルパターンMの部分要素M1と一致度が最も高い画像位置及び形状の画像パターンRをモデルパターンMの部分要素M1と対応する文字要素であると認識する。これを部分要素M2乃至M4についても同様に実行することで、モデルパターンMに対応する画像パターンR(文字)として認識する。
 以上により、タイヤ2の側面3が形状変形している場合であっても、モデルパターン部分要素分割手段16により分割された部分要素M1乃至M4と画像パターンRとの位置合わせ精度を向上させて一致度を高くすることにより、画像パターンRに対してモデルパターンMを正確にマッチングさせることが可能となり、側面3に文字列4が正しく成型されていて使用時において良品となるのにもかかわらず、モデルパターンMが画像パターンRにマッチングしないことで、側面3に文字列4が正しく成型されていない不良品であると判定されてしまう誤マッチングを防止できる。
実施形態2
 上記実施形態1では、モデルパターン部分要素分割手段16により、図2(a)に示すように、モデルパターンMを2×2の部分要素に分割するものとして説明したが、上記分割数に加え、図4に示すように、2×2で分割したときの分割境界と重ならないように、さらに3×3の部分要素N1乃至N9に分割したものを画像パターンRに対してパターンマッチングさせるようにしても良い。すなわち、本実施形態2におけるモデルパターン部分要素分割手段16は、モデルパターンMを異なる大きさの部分要素M1乃至M4、及びN1乃至N9に分割し、異なる大きさでモデルパターンMを分割する毎に形状認識手段17によりモデルパターンMに対応する形状を認識させる。この場合、2×2の大きさで認識された形状と、3×3で認識された形状とを重畳させて、この重畳した部分をモデルパターンMに対応する形状として形状認識手段17に認識させれば良い。このように、異なる大きさの部分要素を組み合わせて形状を認識させることで、画像パターンRに対してモデルパターンMをより正確に対応させることができるので、良品となるのにもかかわらず側面3に文字列4が正しく成型されていない不良品であると判定されてしまう誤マッチングをより効果的に防止できる。
 つまり、モデルパターン部分要素分割手段16は、モデルパターンMの分割を複数回実行し、各回で分割された部分要素M1乃至M4、及び部分要素N1乃至N9のそれぞれの分割境界の位置が位置ずれするように、各回毎に分割数を変更することで、異なる大きさで分割された部分要素のいずれかを画像にマッチングさせる確率を向上させることができる。
 このように、異なる大きさの部分要素M1乃至M4、及び部分要素N1乃至N9を用いてモデルパターンMを分割する場合には、分割したときの分割境界が重ならないように、各回で分割された部分要素の分割境界の位置を位置ずれさせることが肝要である。分割境界の位置を位置ずれさせることにより、モデルパターンMの分割された境界に他の大きさで分割された部分要素が補われるため、部分要素位置決め手段19により部分要素を画像パターンRに配置したときに、他の大きさで分割された部分要素が位置することになって、必ず画像パターンR全体に部分要素を配置させることができる。つまり、モデルパターンMを画像パターンRに対応させることが可能となるので、モデルパターンMが配置されない欠落部分が生じたり、画像パターンRにマッチングしないなどの理由により、良品であるにもかかわらず側面3に文字列4が正しく成型されていない不良品であると判定されてしまう誤マッチングをより精度良く防止できる。
 実施形態2のように異なる大きさで分割されたモデルパターンMを画像パターンRにマッチングさせた場合、大きさの異なる部分要素同士が重畳する部分のみ、例えば、2画素以上重なる部分のみを画像パターンRとすることで、この画像パターンRから文字列4が正しく成型されていない不良品か正しく成型された良品かを判定することでより精度の良い検査を実行できる。
 なお、上記実施形態1及び実施形態2で示したモデルパターンMの分割数は、一例であって、適宜変更しても良い。
 上記では、タイヤ2の側面3に形成された立体文字列4の検査を例にしたが、本発明の検査対象は、製品表面に形成された模様のようなものであってもよい。
1 検査装置、5 検査対象画像取得装置、6 パターンマッチング装置、
11 画像パターン生成手段、12 モデルパターン記憶部、
13 マッチング手段、15 モデルパターン位置決め手段、
16 モデルパターン部分要素分割手段、17 形状認識手段、
18 部分要素変形手段、19 部分要素位置決め手段。
 

Claims (3)

  1.  検査対象の外観を撮影して取得した画像に対して当該検査対象の良品データであるモデルパターンをマッチングさせて検査対象の良否を判定する検査装置において、
    前記画像上に前記モデルパターンをパターンマッチングして一致度が最も高い位置にモデルパターンを位置決めするモデルパターン位置決め手段と、
    互いに重複領域を有するように前記モデルパターンを複数の部分要素に分割するモデルパターン部分要素分割手段と、
    前記モデルパターン部分要素分割手段により分割された前記各部分要素を、前記画像上において当該モデルパターンが位置決めされたときの位置を基準として、この位置の周囲を決められた範囲内でパターンマッチングして、一致度が最も高い位置にそれぞれ位置決めしてモデルパターンに対応する形状を前記画像から認識する形状認識手段を備えることを特徴とする検査装置。
  2.  前記モデルパターン部分要素分割手段は、前記モデルパターンの分割を複数回実行し、各回で分割された部分要素の分割境界の位置が位置ずれするように、各回毎に分割数を変更することを特徴とする請求項1記載の検査装置。
  3.  前記形状認識手段は、前記部分要素に対して拡大縮小変形、回転変形、せん断変形を含む所定の変形を実行させる部分要素変形手段を備え、
    部分要素の変形を繰り返しながら前記画像にパターンマッチングを実行して、一致度が最も高い形状まで変形を繰り返すことを特徴とする請求項1又は請求項2記載の検査装置。
     
PCT/JP2014/061664 2013-04-25 2014-04-25 検査装置 WO2014175413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/783,291 US9710904B2 (en) 2013-04-25 2014-04-25 Tire appearance inspection apparatus
EP14787947.2A EP2990758B1 (en) 2013-04-25 2014-04-25 Inspection device
CN201480036306.0A CN105339755B (zh) 2013-04-25 2014-04-25 检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092438A JP6126450B2 (ja) 2013-04-25 2013-04-25 検査装置
JP2013-092438 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175413A1 true WO2014175413A1 (ja) 2014-10-30

Family

ID=51791978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061664 WO2014175413A1 (ja) 2013-04-25 2014-04-25 検査装置

Country Status (5)

Country Link
US (1) US9710904B2 (ja)
EP (1) EP2990758B1 (ja)
JP (1) JP6126450B2 (ja)
CN (1) CN105339755B (ja)
WO (1) WO2014175413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387477B1 (ja) * 2017-06-23 2018-09-05 株式会社Rist 検査装置、検査方法及び検査プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775132B2 (ja) * 2013-11-01 2015-09-09 株式会社ブリヂストン タイヤの検査装置
US10451408B2 (en) * 2014-04-07 2019-10-22 The Yokohama Rubber Co., Ltd. Method and device for inspecting engravings in tire mold
JP6536230B2 (ja) * 2015-07-06 2019-07-03 横浜ゴム株式会社 タイヤ形状解析装置、タイヤ形状解析方法
US10108856B2 (en) 2016-05-13 2018-10-23 Abbyy Development Llc Data entry from series of images of a patterned document
JP2019105610A (ja) * 2017-12-14 2019-06-27 株式会社エヌテック 歪み画像検査装置および歪み画像検査方法
CN108896545B (zh) * 2018-05-09 2021-07-13 歌尔光学科技有限公司 涂胶检测方法、装置及计算机可读存储介质
JP7263983B2 (ja) * 2019-08-30 2023-04-25 富士通株式会社 撮影漏れ検出装置、及び、撮影漏れ検出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318555A (ja) * 1996-05-30 1997-12-12 Fuji Facom Corp 外観検査方法
JP2005331274A (ja) * 2004-05-18 2005-12-02 Bridgestone Corp タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
JP2006275952A (ja) 2005-03-30 2006-10-12 Toshiba Corp パターン評価方法、パターン位置合わせ方法およびプログラム
JP2011509398A (ja) * 2007-12-19 2011-03-24 ソシエテ ド テクノロジー ミシュラン タイヤ表面を検査するために使用できるようにするようタイヤ表面の3次元画像を処理する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073952A (en) * 1988-09-07 1991-12-17 Sigmax Kabushiki Kaisha Pattern recognition device
JP3918854B2 (ja) * 2004-09-06 2007-05-23 オムロン株式会社 基板検査方法および基板検査装置
US8131107B2 (en) * 2008-05-12 2012-03-06 General Electric Company Method and system for identifying defects in NDT image data
JP5114302B2 (ja) * 2008-06-12 2013-01-09 株式会社日立ハイテクノロジーズ パターン検査方法,パターン検査装置及びパターン処理装置
JP5558081B2 (ja) 2009-11-24 2014-07-23 株式会社エヌテック 画像形成状態検査方法、画像形成状態検査装置及び画像形成状態検査用プログラム
US8977035B2 (en) * 2012-06-13 2015-03-10 Applied Materials Israel, Ltd. System, method and computer program product for detection of defects within inspection images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318555A (ja) * 1996-05-30 1997-12-12 Fuji Facom Corp 外観検査方法
JP2005331274A (ja) * 2004-05-18 2005-12-02 Bridgestone Corp タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
JP2006275952A (ja) 2005-03-30 2006-10-12 Toshiba Corp パターン評価方法、パターン位置合わせ方法およびプログラム
JP2011509398A (ja) * 2007-12-19 2011-03-24 ソシエテ ド テクノロジー ミシュラン タイヤ表面を検査するために使用できるようにするようタイヤ表面の3次元画像を処理する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990758A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387477B1 (ja) * 2017-06-23 2018-09-05 株式会社Rist 検査装置、検査方法及び検査プログラム

Also Published As

Publication number Publication date
CN105339755A (zh) 2016-02-17
JP2014215163A (ja) 2014-11-17
US20160086320A1 (en) 2016-03-24
EP2990758B1 (en) 2018-09-19
EP2990758A4 (en) 2016-06-29
JP6126450B2 (ja) 2017-05-10
EP2990758A1 (en) 2016-03-02
US9710904B2 (en) 2017-07-18
CN105339755B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6126450B2 (ja) 検査装置
US8452072B2 (en) Method and apparatus for inspecting tire shape
JP4679073B2 (ja) タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
WO2011070750A1 (ja) タイヤ形状検査方法、及びタイヤ形状検査装置
US9230318B2 (en) Analysis of the digital image of the external surface of a tyre and processing of false measurement points
JP6922539B2 (ja) 表面欠陥判定方法および表面欠陥検査装置
US20140283591A1 (en) Tire shape inspection method and tire shape inspection apparatus
US20180197285A1 (en) Optimised method for analysing the conformity of the surface of a tire
US20160263952A1 (en) Tire inspection apparatus
WO2019022170A1 (ja) 欠陥検査方法及び欠陥検査装置
KR20120089541A (ko) 웨이퍼 정합 방법 및 시스템
US20170030709A1 (en) Method and Device for Inspecting Engravings in Tire Mold
JP2010268009A5 (ja)
JP7058170B2 (ja) タイヤ金型サイドプレートの検査方法
JP2009188239A (ja) パターン評価方法、プログラムおよび半導体装置の製造方法
JP6191623B2 (ja) 画像生成装置、欠陥検査装置および欠陥検査方法
JP2015078960A (ja) 外観検査装置および外観検査方法
JP6276661B2 (ja) 画像処理装置
JP6597469B2 (ja) 欠陥検査装置
JP5567951B2 (ja) タイヤのマスター画像生成方法及びマスター画像生成装置
JP2013234862A (ja) 検査方法及び検査装置
WO2024122102A1 (ja) タイヤ無線タグ位置検査方法、タイヤ無線タグ位置検査装置、及びタイヤ無線タグ位置検査プログラム
JP6177099B2 (ja) 外観検査装置
JP2016001165A (ja) タイヤの外観検査方法
JP6155038B2 (ja) 外観検査装置および外観検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036306.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14783291

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014787947

Country of ref document: EP