WO2014171442A1 - 太陽電池用カバーガラス及び該太陽電池用カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法 - Google Patents

太陽電池用カバーガラス及び該太陽電池用カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法 Download PDF

Info

Publication number
WO2014171442A1
WO2014171442A1 PCT/JP2014/060686 JP2014060686W WO2014171442A1 WO 2014171442 A1 WO2014171442 A1 WO 2014171442A1 JP 2014060686 W JP2014060686 W JP 2014060686W WO 2014171442 A1 WO2014171442 A1 WO 2014171442A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
transparent protective
solar cell
cover glass
weight
Prior art date
Application number
PCT/JP2014/060686
Other languages
English (en)
French (fr)
Inventor
功 岡村
Original Assignee
フューチャーイヴテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フューチャーイヴテクノロジー株式会社 filed Critical フューチャーイヴテクノロジー株式会社
Priority to CN201480029996.7A priority Critical patent/CN105247687B/zh
Publication of WO2014171442A1 publication Critical patent/WO2014171442A1/ja
Priority to US14/882,831 priority patent/US20160035923A1/en
Priority to US16/136,460 priority patent/US20190019910A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a cover glass for a solar cell whose surface is covered with a transparent protective film, a solar cell module provided with the cover glass, a coating liquid for forming a transparent protective film, and a method for forming the transparent protective film.
  • FIG. 1 shows an example of a module used in a general photovoltaic power generation system.
  • a solar cell cover glass (hereinafter simply referred to as “cover glass”) is used as a member for protecting a power generation element such as internal silicon. Is used).
  • cover glass In order to improve the conversion efficiency of the solar cell, a large amount of sunlight must be taken up by the solar cell, so that the cover glass is required to have high transparency and low reflection performance.
  • Such solar cell cover glass includes not only optical properties such as transparency but also weather resistance (UV light resistance, moisture resistance, heat resistance, etc.), mechanical properties (tensile strength, elongation, tear strength, etc.) ), Adhesive integration compatibility with the sealing resin layer, and the like.
  • the main factor which determines the service life of a solar cell module is the lifetime of the cover glass for solar cells. This is because the cover glass for solar cells is constantly exposed to wind and rain, and deteriorates due to accumulation of chemical reactions such as carbonization by oxidation and decomposition of deposits such as yellow sand, ash, dust, and dust.
  • the cover glass for solar cells is constantly exposed to wind and rain, and deteriorates due to accumulation of chemical reactions such as carbonization by oxidation and decomposition of deposits such as yellow sand, ash, dust, and dust.
  • alkali metal elements such as sodium and alkaline earth metal elements such as calcium
  • so-called “glass surface turbidity” may occur in which an acidic gas such as sulfur dioxide or sulfurous acid reacts to cause the glass surface to become cloudy.
  • Patent Document 2 discloses a cover glass having a fluororesin coat layer on the surface of a glass substrate.
  • Patent Document 3 a treatment liquid containing an organic silicon compound (A), a binder resin (B) thermally decomposed at 40 to 270 ° C., and an organic solvent (C) is applied to the surface of a transparent glass substrate.
  • a cover glass for a solar cell which is dried and fired at 400 to 800 ° C.
  • Patent Document 4 discloses a solar cell cover glass covered with a low reflection film containing silicon oxide (SiO 2 ) and niobium oxide (Nb 2 O 5 ) formed by sputtering.
  • the cover glass disclosed in Patent Document 2 has a problem in durability when it is used outdoors for a long period of time because the coat layer formed on the surface is made of an organic resin.
  • the cover glass disclosed in Patent Document 3 requires a high temperature of 400 ° C. or higher in order to densify the coating layer formed on the surface thereof, and thus has a transmittance due to thermal deterioration of the glass substrate. In some cases, it may decrease or the reaction between the glass substrate and the coating layer may become a problem.
  • niobium oxide which is a constituent component of the low reflection film, has a transmission wavelength from near ultraviolet to visible light from near ultraviolet, and is suitable as a component of the low reflection film.
  • the film forming method is based on the sputtering method, an expensive apparatus such as a vacuum facility is required, which increases the cost.
  • the above conventional cover glass cannot solve the problem of surface turbidity of the glass that occurs when used in an environment that is normally exposed to water.
  • cover glass in order to avoid the problem of surface turbidity of the cover glass, calcium and sodium free glass that does not contain the alkali metal element and alkaline earth metal element that cause it can be used as the cover glass. Since such glass is expensive, the cost of the entire solar cell module increases.
  • a transparent plastic substrate such as polycarbonate (PC) or polymethyl methacrylate (PMMA) can be used as the cover glass substrate instead of the glass substrate, but the stability corresponding to the years of use of the solar cell module is improved. It would be hard to secure it.
  • the object of the present invention is to provide a solar cell panel that is coated with a transparent protective film that is excellent in transparency and is less likely to cause “glass surface turbidity” due to reaction with components contained in a glass substrate even when used for a long time. It is providing the solar cell module provided with the cover glass and this cover glass. Another object of the present invention is to provide a coating solution capable of providing the transparent protective film and a method for forming the transparent protective film.
  • the present inventor coated alkali metal elements such as sodium and calcium and alkaline earth metal elements by covering the glass substrate with a transparent protective film containing zinc telluride. It has been found that even when an inexpensive glass substrate is used, it is difficult for surface turbidity of the glass to occur, and the present invention has been achieved.
  • the present invention relates to the following inventions.
  • a solar cell cover glass having a glass substrate and a transparent protective film containing zinc telluride covering the surface of the glass substrate.
  • the transparent protective film is a transparent protective film in which zinc telluride is bonded with a silica-based binder.
  • the transparent protective film is a transparent protective film containing titanium oxide.
  • ⁇ 5> The solar cell cover glass according to any one of ⁇ 1> to ⁇ 4>, wherein the glass substrate is a glass substrate containing any element belonging to an alkali metal element and an alkaline earth metal element.
  • a solar cell module comprising the solar cell cover glass according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> A coating solution for forming a transparent protective film containing zinc telluride and having a pH of 9 or more.
  • ⁇ 8> The coating liquid for forming a transparent protective film according to ⁇ 7>, wherein 0.1 to 20% by weight of zinc telluride is included relative to 100% by weight of the total weight of the coating liquid.
  • Any one of ⁇ 7> to ⁇ 10>, further including iodine: 0.1 to 10% by weight and silver compound: 0.1 to 10% by weight with respect to a total weight of 100% by weight of the coating solution The coating liquid as described.
  • ⁇ 12> The coating solution according to any one of ⁇ 7> to ⁇ 11>, wherein the solvent is a mixed solvent of ethanol: 20 to 40% by weight and water: 40 to 80% by weight.
  • the coating liquid according to any one of ⁇ 7> to ⁇ 12> is applied to a glass substrate surface, and the applied coating liquid is cured.
  • a cover glass for a solar cell that is coated with a transparent protective film that suppresses deterioration of a glass substrate and modulates light incident from the outside in a visible light band.
  • the solar cell module provided with the cover glass for solar cells has a longer life because the power generation efficiency is improved and the deterioration of the cover glass is suppressed.
  • the cover glass for solar cells of this invention is a cover glass for solar cells which has a glass substrate and the transparent protective film containing the zinc telluride which coat
  • the solar cell cover glass is a protective member for protecting solar cells in the solar cell module as shown in FIG.
  • the cover glass for solar cells of the present invention (hereinafter sometimes simply referred to as “the cover glass of the present invention”) has a structure in which the surface of a glass substrate is covered with a transparent protective film.
  • the transparent protective film is formed only on one side of the glass substrate, but it can be formed on both sides.
  • the cover glass of the present invention will be described in detail.
  • the glass substrate As a glass substrate, the glass substrate generally used with the cover glass for solar cells can be used. Such a glass substrate has a transmittance suitable for transmission of sunlight. Specific examples of the glass constituting the glass substrate include soda lime silicate glass, aluminosilicate glass, barium borosilicate glass, and borosilicate glass. These may contain alkali metal elements such as potassium (K) and sodium (Na) and alkaline earth metal elements such as calcium (Ca) and magnesium (Mg) as long as they are usually contained in glass production.
  • the glass constituting the glass substrate may be a functional glass such as colored glass or laminated glass.
  • the cover glass of the present invention has an alkali metal element due to the presence of a transparent protective film described later. Occurrence of “glass surface turbidity” due to the reaction between the alkaline earth metal element and an acidic gas such as CO 2 in the air is suppressed. Therefore, even when the glass substrate contains an alkali metal or alkaline earth metal, deterioration due to white turbidity of the glass is particularly difficult to occur. Therefore, in the cover glass of the present invention, a glass substrate containing an alkali metal element or an alkaline earth metal element can also be suitably used.
  • the thickness of the glass substrate is appropriately determined in consideration of the mechanical strength required for the cover glass and sunlight transmittance. Moreover, the magnitude
  • the transparent protective film (Transparent protective film)
  • the transparent protective film contains zinc telluride (ZnTe) as an essential component and covers the glass substrate. is there.
  • the transparent protective film of the present invention has excellent permeability to sunlight, and can suppress the deterioration of the glass substrate (particularly the surface turbidity of the glass).
  • zinc telluride when zinc telluride is not included, the suppression effect of the surface turbidity of glass is not recognized.
  • zinc telluride improves the power generation efficiency because it can modulate the ultraviolet rays of incident sunlight into light in the visible light band around 600 nm.
  • the transparent protective film of the present invention By forming the transparent protective film of the present invention on the surface of the glass substrate, the reason why the occurrence of white turbidity of the glass is suppressed is not completely clear at this stage, but zinc telluride, which is a conductive oxide, It acts on the free electrons of glass, which is an insulator, and causes surface turbidity of the glass caused by the reaction between alkali metal elements such as sodium and calcium, or alkaline earth metal elements contained in the glass, and an acidic gas such as CO 2. It is presumed to be suppressed.
  • the particle size of zinc telluride is determined within a range where the effects of the present invention can be obtained, and is in the range of 0.1 to 500 ⁇ m.
  • the transparent protective film of the present invention is preferably a transparent protective film in which zinc telluride is bound with a silica-based binder.
  • the transparent protective film of the present invention may be formed only of zinc telluride, but usually contains a binder in order to increase mechanical strength.
  • the binder one having a high light transmittance is selected, and either an inorganic binder or an organic binder can be selected.
  • a silica-based binder having high light transmittance, high durability against light, and high mechanical strength is preferably used.
  • the ratio of zinc telluride and silica-based binder in the transparent protective film is determined within a range that does not impair the effects of the present invention.
  • the silica-based binder is 10 to 500 wt. Part.
  • the cover glass of the present invention can be expected to have an effect of heat ray reflection by having a transparent protective film. Because of this effect, it is possible to avoid the panel temperature from becoming high, and thus it is possible to suppress a decrease in power generation efficiency due to overheating of the solar cell module.
  • the transparent protective film of the present invention preferably further contains titanium oxide. Titanium oxide can be used in any crystal form of either anatase or rutile. Usually, the surface of the cover glass for solar cells used outdoors is deposited with yellow sand, ash, dust, dust, etc., resulting in a decrease in the transmittance of sunlight or the oxidation or decomposition of the deposit. Degradation of the glass may occur due to chemical reactions such as carbonization. When the transparent protective film of the present invention contains titanium oxide, the above-mentioned deposits can be removed by the photocatalytic effect of titanium oxide, and the reduction of light transmittance and the deterioration of the glass caused by the deposits are suppressed. Can do.
  • titanium oxide has the effect
  • the content of titanium oxide in the transparent protective film may be in a range in which the transparent protective film exhibits photocatalytic properties. If the content of titanium oxide is too large, the strength of the transparent protective film may be insufficient, or the above-mentioned effect due to zinc telluride may be weakened.
  • the content is 40% by weight or less.
  • wavelength converting substances may be included within a range not impairing the effects of the present invention.
  • the transparent protective film of the present invention preferably contains silver ions (Ag + ).
  • the action of visible light can be enhanced by silver ions.
  • the thickness of the transparent protective film is not particularly limited as long as it does not impair the effect of the present invention of preventing glass surface turbidity, but is preferably 20 to 1200 nm in order to make the wavelength conversion effect effective.
  • the thickness of a transparent protective film can be measured with a film thickness measuring device (for example, Fermatix F20 system).
  • the transparent protective film of the present invention may be produced by any method as long as the desired action is exhibited, and is a dry film forming method such as a vapor deposition method and a sputtering method, or a wet film forming method in which a coating solution is applied to form a film. Any of the methods may be used. On the other hand, since the dry film forming method requires expensive equipment such as a vacuum apparatus, a wet film forming method capable of forming a film at low cost is preferable.
  • Coating liquid for transparent protective film a coating liquid for transparent protective film suitable for the transparent protective film of the present invention by a wet film forming method (hereinafter sometimes referred to as “coating liquid of the present invention” or simply “coating liquid”) will be described. .
  • the coating solution for transparent protective film of the present invention contains zinc telluride and has a pH of 9 or more.
  • the content of zinc telluride in the coating solution is preferably 0.1 to 20% by weight relative to 100% by weight of the total weight of the coating solution.
  • the coating property to the glass substrate is good, and a uniform transparent protective film can be formed on the glass substrate surface by a single coating.
  • the solvent of the coating liquid of the present invention is an aqueous solvent having a pH of 9 or higher.
  • the aqueous solvent refers to a solvent in which 40% by weight or more of all the solvents is water. If the pH of the solvent of the coating solution is less than 9, the coating properties are lowered and a uniform film cannot be formed.
  • the solvent of the coating solution is preferably a mixed solvent of ethanol: 20 to 40% by weight and water: 40 to 80% by weight.
  • the coating liquid of the present invention preferably contains a binder component.
  • the binder component By including the binder component, the strength of the transparent protective film to be formed can be increased, and the adhesion to the glass substrate can be increased.
  • the binder either an inorganic binder or an organic binder having high light transmittance can be selected.
  • a silica-based binder that has high light transmittance, high light durability, and high mechanical strength is preferably used.
  • a suitable ratio of the silica-based binder with respect to 100% by weight of the total weight of the coating solution is 0.1 to 20% by weight in terms of SiO 2 .
  • the coating liquid of the present invention has a total coating weight of 100 in addition to the above components (zinc telluride, binder, solvent) in order to enhance the wavelength conversion property of the formed transparent protective film and impart photocatalytic properties. It is preferable to contain 0.1 to 20% by weight of titanium oxide with respect to weight%.
  • the coating liquid of the present invention may further contain iodine: 0.1 to 10% by weight and silver compound: 0.1 to 10% by weight. preferable.
  • iodine 0.1 to 10% by weight
  • silver compound 0.1 to 10% by weight. preferable.
  • As a silver compound what is necessary is just to ionize, and a preferable example is silver chloride (AgCl).
  • components other than the above components may be blended within a range not impairing the effects of the present invention.
  • examples of such components include additives that improve liquid properties such as surfactants.
  • the coating liquid of the present invention can be produced by mixing its constituent components.
  • the order of mixing is also arbitrary, and any two components or three or more components among the components of the coating solution may be blended in advance, and then the remaining components may be mixed, or all may be mixed at once. .
  • the transparent protective film of the present invention can be suitably produced by applying the coating liquid of the present invention to the glass substrate surface and curing the applied coating liquid.
  • the details of the glass substrate to be applied are as described above.
  • the method for applying the coating solution onto the surface of the glass substrate is not particularly limited, and a coating method in a conventionally known wet film forming method can be employed.
  • Specific examples of the coating method include spin coating, slit die coating, spray coating, dip coating, roll coating, screen printing, capillary coating, and bar coater.
  • the thickness of the coating solution can be controlled by adjusting the coating amount and the concentration of each component in the coating solution.
  • the transparent protective film of this invention can be manufactured suitably by hardening the coating liquid apply
  • the method for curing the coating solution is not limited as long as the formed transparent protective film has sufficient light permeability and mechanical strength, but is usually performed by heat treatment.
  • the heating atmosphere is not particularly limited, but is usually an air atmosphere.
  • a suitable heating temperature is usually about 10 to 100 ° C.
  • the heating time is a time for the transparent protective film to be sufficiently cured, and is appropriately determined in consideration of the composition of the coating liquid, the thickness of the transparent protective film to be formed, and the like.
  • covered the surface with the transparent protective film can be used as the cover glass for solar cells of this invention.
  • the transparent protective film formed with the coating liquid of this invention can also be used as a transparent protective film in other uses, such as automobile glass, a lighting fixture, and a liquid crystal display element besides the cover glass for solar cells. .
  • the solar cell module of the present invention comprises the above-described solar cell cover glass of the present invention, and constituent elements other than the cover glass can be the same as those of conventionally known solar cell modules, and are not particularly limited. .
  • a solar cell module having a configuration as shown in FIG. 1 can be exemplified, and wiring electrodes, extraction electrodes and the like may be included as components other than these. .
  • the cell part material in the solar cell module is not particularly limited.
  • a silicon-based material such as single crystal silicon, polycrystalline silicon, or amorphous silicon, or a CIS compound having a p-type semiconductor light absorption layer and a pn heterojunction Semiconductor material etc. are mentioned.
  • the composition of the transparent protective film of the present invention is determined in consideration of the absorption wavelength of the selected cell part material.
  • composition of the used reagent and the glass substrate is as follows.
  • “reagent” ⁇ Zinc telluride (II) powder (High-Purity Chemical Laboratory, Inc.) ⁇ Titanium oxide (IV) (rutile type) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • “Glass substrate” composition) SiO 2 : 70 to 72% by weight Na 2 O: 13 to 15% by weight CaO: 8-12% by weight
  • Example 1 Preparation of coating solution Coating solution 1 according to Example 1 was prepared by the following procedure. First, sodium hydroxide was added to pure water to prepare a pH of 12.5. Next, 2 g of zinc telluride powder was added to 370 mL of water adjusted to pH 12.5 and mixed well until uniform to obtain Solution A. A solution B was obtained by adding 4 g of titanium oxide powder to 390 mL of pure water and mixing well until uniform. To 270 mL of ethanol, 1 g of silver chloride and 4 g of iodine were added and mixed well until uniform to obtain solution C. A solution A and a solution B were added to 275 mL of the solution C, and mixed well until uniform, thereby preparing a coating solution 1. The composition of the obtained coating liquid 1 is as follows.
  • Zinc telluride 0.2% by weight Titanium oxide: 0.4% by weight Silver chloride: 0.1% by weight, Ethanol: 35% by weight, Water: 60% by weight
  • the transparent protective film was formed on the glass substrate in the following procedure.
  • the glass substrate 600 ⁇ 900 mm, thickness: 3 mm
  • the film thickness of the transparent protective film measured by a film thickness measuring device (F20 system manufactured by Filmetrics) was 60 nm.
  • the power generation efficiency was 107% when the solar cell cover glass of Example 1 was arranged so as to cover the light receiving surface of the silicon solar cell and the power generation efficiency was evaluated.
  • the power generation efficiency is a relative value when the power generation efficiency of a transparent glass substrate (comparative example) on which a transparent protective film is not formed is 100%.
  • Example 2 (1) Preparation of coating solution 2 and coating solution 1: 1000 g and ceramic resin: 2000 g were mixed to obtain coating solution 2.
  • the ceramic resin contains silica as a binder component.
  • a cover glass for a solar cell panel which is excellent in transparency and hardly causes surface turbidity of the glass due to a reaction with a component contained in the glass substrate. Moreover, the said cover glass is excellent in surface antifouling property, and can also prevent the temperature rise of a panel. Therefore, even if it is used for a long period of time, a decrease in power generation efficiency due to the cover glass can be avoided, which is industrially promising.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 透明性に優れるとともに長期使用しても、ガラス基板に含まれる成分との反応による「ガラスの表面白濁」が発生しづらい、太陽電池パネル用カバーガラスを提供する。ガラス基板と、前記ガラス基板の表面を被覆するテルル化亜鉛を含む透明保護膜と、を有する太陽電池用カバーガラス。太陽電池用カバーガラスにおいて、特に前記透明保護膜が、テルル化亜鉛をシリカ系バインダーで結合した透明保護膜であることが好ましい。このような透明保護膜は透明性に優れると共に、含有されるテルル化亜鉛の作用により、下地であるガラス基板のガラスの表面白濁が生じにくい。

Description

太陽電池用カバーガラス及び該太陽電池用カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法
 本発明は、透明保護膜で表面を被覆した太陽電池用カバーガラス及び該カバーガラスを備えた太陽電池モジュール、並びに透明保護膜形成用塗布液及び透明保護膜の形成方法に関する。
 太陽電池モジュールとして、通常、太陽電池セルをバックシートとカバーガラスの間に入れ、封止樹脂材で封止した構造のものが採用されている。図1に一般的な太陽光発電システムに使用されるモジュールの例を示す。図1に示されるように太陽電池モジュールは通常、野外で使用されるため、内部のシリコン等の発電素子を保護するための部材として、太陽電池用カバーガラス(以下、単に「カバーガラス」と記載する場合がある。)が用いられている。太陽電池の変換効率を向上させるためには、太陽電池セルにより多くの太陽光が取り込まれなければならないので、カバーガラスには高い透明性および低反射性能が要求される。
 このような太陽電池用カバーガラスに要求される特性として、透明性などの光学特性のみならず、耐候性(耐UV光、耐湿、耐熱等)、機械的特性(引張強度、伸び、引裂き強度等)、封止樹脂層との接着一体化適合性などが挙げられる。
 ところで、太陽電池モジュールの耐用年数を決める主要な要因として、太陽電池用カバーガラスの寿命が挙げられる。これは、太陽電池用カバーガラスは、常時、風雨にさらされ、黄砂、灰、塵、ごみなどの付着物の酸化、分解による炭化などの化学反応の積み重ねによる劣化がおこるためである。
 また、カバーガラス表面で水分の濡れと乾燥が繰り返されると、ナトリウム等のアルカリ金属元素やカルシウム等のアルカリ土類金属元素に由来する成分がガラスから溶出し、溶出した成分と空気中の二酸化炭素や亜硫酸ガスなどの酸性ガスが反応してガラスの表面が白濁する、いわゆる「ガラスの表面白濁」が生じることがある。
 ガラスの表面白濁が生じると、カバーガラスの透過率が低下し、太陽電池モジュールの発電効率が低下する問題があった。
 一方、太陽電池用カバーガラスにおける光反射に起因する太陽電池の効率低下を抑制し、集光効率を向上するために、表面を低反射膜で被覆した太陽電池用カバーガラスがこれまでに提案されている。例えば、特許文献2にはガラス基板表面にフッ素樹脂コート層を有するカバーガラスが開示されている。
 また、特許文献3には、透明ガラス基板の表面に、有機珪素化合物(A)、40~270℃で熱分解するバインダー樹脂(B)および有機溶剤(C)を配合した処理液を塗布して乾燥し、得られた塗布膜付きのガラス基板を400~800℃で焼成し、焼成後の被膜の気孔率が15~25%になるように構成した太陽電池用カバーガラスが開示されている。また、特許文献4にはスパッタリング法で形成された酸化ケイ素(SiO2)と酸化ニオブ(Nb25)を含む低反射膜で被覆された太陽電池用カバーガラスが開示されている。
特開2001-358346号公報 特開2010-199143号公報 特開2004-292194号公報 特開2008-260654号公報
 しかしながら、特許文献2で開示されたカバーガラスは、その表面に形成されるコート層が有機樹脂からなるため、長期間野外で使用される場合の耐久性に問題がある。
 また、特許文献3で開示されたカバーガラスは、その表面に形成されるコート層を緻密化させるために、400℃以上の高温を必要とするため、ガラス基板の熱劣化のため、透過率が低下したり、ガラス基板とコート層との反応が問題になる場合がある。
 また、特許文献4で開示されたカバーガラスでは、該低反射膜の構成成分である酸化ニオブは、近紫外よりの可視光から赤外までを透過波長に持ち、低反射膜の成分として適しているものの、アルカリに対する耐性が低く、ガラス基板に含まれるナトリウム、カルシウム等と反応するおそれがある。また、スパッタリング法による製膜方法であるため、真空設備などの高価な装置を必要とし、コスト高になるという問題もある。
 また、上記従来のカバーガラスは、常態的に水にさらされる環境で使用される場合に発生するガラスの表面白濁の問題を解決できるものではなかった。
 さらに、カバーガラスの表面白濁の問題を回避するために、その原因となるアルカリ金属元素やアルカリ土類金属元素を含まない、カルシウム、ナトリウムフリーのガラスをカバーガラスとして使用することもできるが、このようなガラスは高価であるため、太陽電池モジュール全体としてのコスト高となる。
 また、カバーガラスの基板として、ガラス基板に代えて、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等の透明プラスチック基板を使用することもできるが、太陽電池モジュールの使用年数に対応する安定性を確保できるといい難い。
 かかる状況下、本発明の目的は、透明性に優れるとともに長期使用しても、ガラス基板に含まれる成分との反応による「ガラスの表面白濁」が発生しづらい透明保護膜で被覆した太陽電池パネル用カバーガラス及び該カバーガラスを備えた太陽電池モジュールを提供することである。また、本発明の他の目的は、上記透明保護膜を与えることができる塗布液、及び透明保護膜の形成方法を提供することである。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、ガラス基板をテルル化亜鉛を含む透明保護膜で被覆することにより、ナトリウムやカルシウム等のアルカリ金属元素やアルカリ土類金属元素を含む安価なガラス基板を使用しても、ガラスの表面白濁が発生しにくくなることを見出し、本発明に至った。
 すなわち、本発明は、以下の発明に係るものである。
 <1> ガラス基板と、前記ガラス基板の表面を被覆するテルル化亜鉛を含む透明保護膜と、を有する太陽電池用カバーガラス。
 <2> 前記透明保護膜が、テルル化亜鉛をシリカ系バインダーで結合した透明保護膜である前記<1>に記載の太陽電池用カバーガラス。
 <3> 前記透明保護膜が、酸化チタンを含む透明保護膜である前記<1>又は<2>に記載の太陽電池用カバーガラス。
 <4> 前記透明保護膜の厚みが、20~1200nmである前記<1>から<3>のいずれかに記載の太陽電池用カバーガラス。
 <5> 前記ガラス基板が、アルカリ金属元素及びアルカリ土類金属元素に属するいずれかの元素を含むガラス基板である前記<1>から<4>のいずれかに記載の太陽電池用カバーガラス。
 <6> 前記<1>から<5>のいずれかに記載の太陽電池用カバーガラスを備えてなる太陽電池モジュール。
 <7> テルル化亜鉛を含み、かつ、pH9以上である透明保護膜形成用塗布液。
 <8> 塗布液の全重量100重量%に対して、テルル化亜鉛を0.1~20重量%含む前記<7>に透明保護膜形成用塗布液。
 <9> 塗布液の全重量100重量%に対して、さらにシリカ系バインダーを、SiO2換算で0.1~20重量%含む前記<7>又は<8>に透明保護膜形成用塗布液。
 <10> 塗布液の全重量100重量%に対して、さらに酸化チタン:0.1~20重量%を含む前記<7>から<9>のいずれかに記載の塗布液。
 <11> 塗布液の全重量100重量%に対して、さらにヨウ素:0.1~10重量%及び銀化合物:0.1~10重量%を含む前記<7>から<10>のいずれかに記載の塗布液。
 <12> 前記溶媒が、エタノール:20~40重量%及び水:40~80重量%の混合溶媒である前記<7>から<11>のいずれかに記載の塗布液。
 <13> 前記<7>から<12>のいずれかに記載の塗布液を、ガラス基板表面に塗布し、塗布された塗布液を硬化させる透明保護膜の製造方法。
 本発明によれば、ガラス基板の劣化を抑制すると共に、外部から入射される光を可視光帯域の変調する作用を有する透明保護膜によって被覆された太陽電池用カバーガラスが提供される。該太陽電池用カバーガラスを備えた太陽電池モジュールは、発電効率が向上すると共にカバーガラスの劣化が抑制されるため耐久年数がより長期になる。
太陽電池モジュールの構造を示す断面模式図である。 本発明の太陽電池用カバーガラスの構造を示す断面模式図である。
 以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
<1.太陽電池用カバーガラス>
 本発明の太陽電池用カバーガラスは、ガラス基板と、前記ガラス基板の表面を被覆するテルル化亜鉛を含む透明保護膜と、を有する太陽電池用カバーガラスである。すなわち、本発明の太陽電池用カバーガラスは、テルル化亜鉛を含む透明保護膜でガラス基板の表面が被覆されている。
 太陽電池用カバーガラスは、図1に示すように太陽電池モジュールにおける、太陽電池セルを保護するための保護部材である。図2に示すように本発明の太陽電池用カバーガラス(以下、単に「本発明のカバーガラス」と称す場合がある。)は、ガラス基板の表面を透明保護膜で被覆した構造を有する。なお、図2ではガラス基板の片面のみに透明保護膜が形成されているが、両面に形成することもできる。
 以下、本発明のカバーガラスについて、詳細に説明する。
(ガラス基板)
 ガラス基板としては、太陽電池用カバーガラスで一般的に使用されるガラス基板を使用することができる。このようなガラス基板は、太陽光が透過に適した透過率を有する。
 ガラス基板を構成するガラスとして具体的には、ソーダライムシリケートガラス、アルミノ珪酸ガラス、バリウム硼珪酸ガラス、硼珪酸ガラス等が挙げられる。これらは、通常ガラス製造に含有される範囲でカリウム(K)、ナトリウム(Na)等のアルカリ金属元素、カルシウム(Ca)、マグネシウム(Mg)等のアルカリ土類金属元素を含んでいてもよい。また、ガラス基板を構成するガラスは、着色ガラス、合せガラス等の機能性ガラスであってもよい。
 なお、ガラス基板として、実質的にアルカリ金属元素やアルカリ土類金属元素を含まないガラス基板を使用してもよいが、本発明のカバーガラスは、後述する透明保護膜の存在により、アルカリ金属元素やアルカリ土類金属元素と空気中のCO等の酸性ガスとの反応に起因する「ガラスの表面白濁」の発生が抑制される。そのため、ガラス基板としてアルカリ金属、アルカリ土類金属を含むガラス基板である場合であっても特にガラスの表面白濁による劣化が起こりづらい。そのため、本発明のカバーガラスにおいては、アルカリ金属元素やアルカリ土類金属元素を含むガラス基板も好適に使用できる。
 ガラス基板の厚みは、カバーガラスとして必要とする機械的強度と、太陽光の透過性を考慮して適宜決定される。また、ガラス基板の大きさ(面積)は、対象となる太陽電池モジュールに対応するように適宜決定される。
(透明保護膜)
 本発明のカバーガラスにおいて、透明保護膜(以下、「本発明の透明保護膜」と記載する場合がある。)は、テルル化亜鉛(ZnTe)を必須成分として含み、ガラス基板を被覆するものである。
 本発明の透明保護膜は、太陽光に対する優れた透過性を有し、ガラス基板の劣化(特にガラスの表面白濁)を抑制することができる。なお、テルル化亜鉛を含まない場合には、ガラスの表面白濁の抑制効果が認められない。
 また、テルル化亜鉛を含むことで、入射される太陽光の紫外線を600nm近辺の可視光帯域の光に変調することができるため、発電効率が向上する。
 本発明の透明保護膜をガラス基板の表面に形成することによって、ガラスの表面白濁の発生が抑制される理由について現段階で完全に明らかではないが、導電性酸化物であるテルル化亜鉛が、絶縁体であるガラスの自由電子に作用し、ガラスに含まれるナトリウムやカルシウム等のアルカリ金属元素や、アルカリ土類金属元素と、CO等の酸性ガスとの反応に起因するガラスの表面白濁を抑制しているものと推測される。
 テルル化亜鉛の粒径は、本発明の効果を得ることができる範囲で決定され、0.1~500μmの範囲である。
 本発明の透明保護膜は、テルル化亜鉛をシリカ系バインダーで結合した透明保護膜であることが好ましい。
 本発明の透明保護膜は、テルル化亜鉛のみで形成されてもよいが、機械的強度を高めるために通常バインダーが含まれる。バインダーとしては、光透過性が高いものが選択され、無機系バインダー、有機系バインダーのいずれも選択できる。
 特に、光透過性が高く、かつ、光に対する耐久性が高く、さらに機械的強度が高いシリカ系バインダーが好ましく使用される。
 透明保護膜におけるテルル化亜鉛とシリカ系バインダーの割合は、本発明の効果を損なわない範囲で決定され、通常、テルル化亜鉛100重量部に対し、シリカ系バインダーが酸化ケイ素換算で10~500重量部である。
 また、本発明のカバーガラスは、透明保護膜を有することによって、熱線反射の効果も期待できる。この効果により、パネルの温度は高温になることを回避できるため、太陽電池モジュールの過熱による発電効率の低下も抑制できる。
 本発明の透明保護膜は、さらに酸化チタンを含んでいることが好ましい。酸化チタンは、アナターゼ、ルチルいずれの結晶形のものも使用できる。
 通常、屋外で使用される太陽電池用カバーガラスの表面には、黄砂、灰、塵、ごみなどが付着して付着物となり、太陽光の透過率が低下したり、付着物の酸化、分解による炭化などの化学反応によってガラスの劣化がおこることがある。
 本発明の透明保護膜が酸化チタンを含む場合には、酸化チタンの光触媒効果によって上記付着物を除去することができ、光透過率の低下や、付着物に起因するガラスの劣化を抑制することができる。なお、本明細書において、光照射に起因する酸化チタンの超親水化も光触媒効果に含まれるものとし、該超親水化によって水(雨水含む)による洗浄で容易に表面の汚れを取り除くことができる。
 また、酸化チタンは、紫外線を可視光帯域へ変調する作用があるため、本発明の透明保護膜が酸化チタンを含むと、より発電効率を高めることができる。
 透明保護膜における酸化チタンの含有量は、透明保護膜が光触媒性を発現する範囲であればよい。
 酸化チタンの含有量が大きすぎると透明保護膜の強度が不足したり、テルル化亜鉛に起因する上述の効果が弱くなる場合があるため、通常、透明保護膜の全重量に対し、1重量%以上40重量%以下である。
 また、紫外線を可視光帯域へ変調させるために、本発明の効果を損なわない範囲で、他の従来公知の波長変換物質を含んでいてもよい。
 また、本発明の透明保護膜は、銀イオン(Ag+)を含むことが好ましい。銀イオンにより、可視光の作用を増強させることができる。
 透明保護膜の厚みは、ガラスの表面白濁防止という本発明の効果を損なわない限り特に限定はないが、波長変換効果を有効足らしめるため、好ましくは20~1200nmである。なお、透明保護膜の厚みは、膜厚測定器(例えば、フェルメトリックス社F20システム)によって測定することができる。
<2.透明保護膜の形成方法>
 本発明の透明保護膜は、目的とする作用が発現するならば、製造方法はいかなる方法でもよく、蒸着法およびスパッタ法等の乾式製膜法、塗布液を塗布して製膜する湿式製膜法のいずれでもよい。一方で、乾式製膜方法は真空装置など高価な設備を必要とするため、低コストで製膜できる湿式製膜法が好ましい。
(透明保護膜用塗布液)
 以下、湿式製膜法による本発明の透明保護膜に適した、透明保護膜用塗布液(以下、「本発明の塗布液」又は単に「塗布液」と記載する場合がある。)について説明する。
 本発明の透明保護膜用塗布液は、テルル化亜鉛を含み、かつ、pH9以上である。塗布液中のテルル化亜鉛の含有量は、塗布液の全重量100重量%に対して、0.1~20重量%であることが好ましい。
 このような組成であれば、ガラス基板への塗布性がよく、1回の塗布でガラス基板表面に均一な透明保護膜を形成することができる。なお、透明保護膜をより厚くするために複数回塗布してもよい。
 本発明の塗布液の溶媒は、pH9以上の水系溶媒である。ここで、水系溶媒とは、全溶媒のうち、40重量%以上が水である溶媒をいう。塗布液の溶媒のpHが9より小さいと、塗膜性が低下して、均一な膜が形成できなくなる。
 塗布性を高め、高品質な膜が形成されるため、塗布液の溶媒が、エタノール:20~40重量%及び水:40~80重量%の混合溶媒であることが好ましい。
 本発明の塗布液は、バインダー成分を含むことが好ましい。バインダー成分を含むことによって、形成される透明保護膜の強度を高め、また、ガラス基板との接着性を高めることができる。
 バインダーとしては、光透過性が高い無機系バインダー、有機系バインダーのいずれも選択できる。特に光透過性が高く、かつ、光に対する耐久性が高く、さらに機械的強度が高いシリカ系バインダーが好ましく使用される。
 塗布液の全重量100重量%に対する、シリカ系バインダーの好適な割合は、SiO2換算で0.1~20重量%である。
 さらに、本発明の塗布液は、形成される透明保護膜の波長変換性を高め、光触媒性を付与するために上記成分(テルル化亜鉛、バインダー、溶媒)に加えて、塗布液の全重量100重量%に対して、0.1~20重量%の酸化チタンを含むことが好ましい。
 また、透明保護膜の波長変換性を高める効果が期待されるため、本発明の塗布液は、さらにヨウ素:0.1~10重量%及び銀化合物:0.1~10重量%を含むことが好ましい。銀化合物としては、イオン化するものであればよく、好ましい一例として塩化銀(AgCl)が挙げられる。
 本発明の塗布液には、本発明の効果を損なわない範囲で、上記成分以外の成分を配合してもよい。そのような成分としては、界面活性剤等の液性を改善させる添加剤等が挙げられる。
 本発明の塗布液は、その構成成分を混合することで製造することができる。混合順序も任意であり、塗布液の構成成分のうち、何れか2成分又は3成分以上を予め配合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。
 本発明の塗布液を、ガラス基板表面に塗布し、塗布された塗布液を硬化させることにより、本発明の透明保護膜を好適に製造することができる。なお、塗布対象となるガラス基板の詳細は上述の通りである。
 塗布液をガラス基板表面に塗布する方法は特に制限なく、従来公知の湿式製膜法におけるコーティング方法を採用することができる。コーティング方法として具体的には、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、キャピラリーコート法、バーコーター法等が挙げられる。塗布液の厚さは塗布量、各成分の塗布液中の濃度を調節することによって制御することができる。
 ガラス基板表面に塗布された塗布液を硬化させることにより、本発明の透明保護膜を好適に製造することができる。
 塗布液の硬化方法は、形成される透明保護膜が、十分な光透過性と機械的強度を有する限り制限はないが、通常、加熱処理することによって行われる。加熱雰囲気は特に制限はないが、通常、大気雰囲気である。
 本発明の塗布液は、比較的低温での加熱でも硬化させることができるため、好適な加熱温度は、通常、10~100℃程度である。
 加熱時間は、透明保護膜が十分に硬化する時間であり、塗布液の組成や形成される透明保護膜の厚みなどを考慮して適宜決定される。
 このようにして、透明保護膜で表面を被覆したガラス基板は、本発明の太陽電池用カバーガラスとして用いることができる。
 また、本発明の塗布液により形成される透明保護膜は、太陽電池用カバーガラス以外にも、自動車ガラス、照明器具、液晶表示素子等の他の用途での透明保護膜として使用することもできる。
<3.太陽電池モジュール>
 本発明の太陽電池モジュールは、上記本発明の太陽電池用カバーガラスを備えてなり、カバーガラス以外の構成要素は、従来公知の太陽電池モジュールと同様のものを使用することができ、特に限定されない。具体的には、図1に示すような構成の太陽電池モジュールを例示でき、これら以外の構成要素として、配線電極や取り出し電極等を含んでいてもよい。。
 なお、太陽電池モジュールにおけるセル部材料は特に限定されず、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系材料や、p形半導体の光吸収層とpnヘテロ接合を有するCIS系化合物半導体材料等が挙げられる。選択されるセル部材料の吸収波長を考慮し、本発明の透明保護膜の組成が決定される。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
 使用した試薬、ガラス基板の組成は次の通りである。
「試薬」
・テルル化亜鉛(II)粉末(株式会社高純度化学研究所)
・酸化チタン(IV)(ルチル型)(和光純薬工業株式会社製)

「ガラス基板」
(組成)
 SiO2:70~72重量%
 Na2O:13~15重量%
 CaO:8~12重量%
 MgO:1~4重量%
 Al23:1~2重量%
 Fe23:0.07~0.15重量%
「実施例1」
(1)塗布液の調製
 実施例1に係る塗布液1は以下の手順で作製した。
 まず、純水に水酸化ナトリウムを加え、pH12.5になるように調製した。次いで、pH12.5に調製した水370mLに対し、テルル化亜鉛粉末2gを添加して、均一になるまで十分に混合し、溶液Aを得た。
 純水390mLに対し、酸化チタン粉末4gを添加し、均一になるまで十分に混合して溶液Bを得た。
 エタノール270mLに対し、塩化銀1g、ヨウ素4gを添加し、均一になるまで十分に混合して溶液Cを得た。
 溶液C275mLに対し、溶液A及び溶液Bをそれぞれ添加し、均一になるまで十分に混合して、塗布液1を調製した。
 得られた塗布液1の組成は、以下の通りである。
  テルル化亜鉛:0.2重量%、
  酸化チタン:0.4重量%、
  塩化銀:0.1重量%、
  エタノール:35重量%、
  水:60重量%
(2)太陽電池用カバーガラスの製造
 ガラス基板への透明保護膜の製膜は、以下の手順で行った。
 ガラス基板(600×900mm、厚み:3mm)に、塗布液1を塗工し、乾燥することにより、ガラス基板表面を透明保護膜で被覆した、実施例1の太陽電池用カバーガラスを得た。
 膜厚測定器(フィルメトリックス社製F20システム)により測定した透明保護膜の膜厚は、60nmであった。
(3)評価
 実施例1の太陽電池用カバーガラスを、シリコン太陽電池の受光面を被覆するように配置して、発電効率を評価したところ、発電効率は107%であった。
 発電効率は、透明保護膜を形成していない透明ガラス基板(比較例)の発電効率を100%としたときの相対値である。
「実施例2」
(1)塗布液2の調製
・塗布液1:1000g、セラミック系樹脂:2000gを混合して塗布液2を得た。セラミック系樹脂にはバインダー成分としてのシリカが含まれる。
(2)太陽電池用カバーガラスの製造
 塗布液1に代えて、塗布液2を使用し、ガラス基板表面を透明保護膜で被覆した、実施例2の太陽電池用カバーガラスを得た。
(3)評価
 実施例1の太陽電池用カバーガラスに代えて、実施例2の太陽電池用カバーガラスを使用した以外は、実施例1と同様にして発電効率を評価したところ、発電効率は107%であった。
 本発明によれば、透明性に優れるとともに、ガラス基板に含まれる成分との反応によるガラスの表面白濁が発生しづらい、太陽電池パネル用カバーガラスを提供される。また、当該カバーガラスは、表面防汚性に優れ、かつ、パネルの温度上昇を防ぐこともできる。そのため、長期間使用しても、カバーガラスに起因する発電効率の低下を回避することができ、工業的に有望である。

Claims (13)

  1.  ガラス基板と、前記ガラス基板の表面を被覆するテルル化亜鉛を含む透明保護膜と、を有する太陽電池用カバーガラス。
  2.  前記透明保護膜が、テルル化亜鉛をシリカ系バインダーで結合した透明保護膜である請求項1に記載の太陽電池用カバーガラス。
  3.  前記透明保護膜が、酸化チタンを含む透明保護膜である請求項1又は2に記載の太陽電池用カバーガラス。
  4.  前記透明保護膜の厚みが、20~1200nmである請求項1から3のいずれかに記載の太陽電池用カバーガラス。
  5.  前記ガラス基板が、アルカリ金属元素及びアルカリ土類金属元素に属するいずれかの元素を含むガラス基板である請求項1から4のいずれかに記載の太陽電池用カバーガラス。
  6.  請求項1から5のいずれかに記載の太陽電池用カバーガラスを備えてなる太陽電池モジュール。
  7.  テルル化亜鉛を含み、かつ、pH9以上である透明保護膜形成用塗布液。
  8.  塗布液の全重量100重量%に対して、テルル化亜鉛を0.1~20重量%含む請求項7に透明保護膜形成用塗布液。
  9.  塗布液の全重量100重量%に対して、さらにシリカ系バインダーを、SiO2換算で0.1~20重量%含む請求項7又は8に透明保護膜形成用塗布液。
  10.  塗布液の全重量100重量%に対して、さらに酸化チタン:0.1~20重量%を含む請求項7から9のいずれかに記載の塗布液。
  11.  塗布液の全重量100重量%に対して、さらにヨウ素:0.1~10重量%及び銀化合物:0.1~10重量%を含む請求項7から10のいずれかに記載の塗布液。
  12.  前記溶媒が、エタノール:20~40重量%及び水:40~80重量%の混合溶媒である請求項7から11のいずれかに記載の塗布液。
  13.  請求項7から12のいずれかに記載の塗布液を、ガラス基板表面に塗布し、塗布された塗布液を硬化させる透明保護膜の製造方法。
PCT/JP2014/060686 2013-04-15 2014-04-15 太陽電池用カバーガラス及び該太陽電池用カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法 WO2014171442A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480029996.7A CN105247687B (zh) 2013-04-15 2014-04-15 用于太阳能电池的盖玻片、具有用于太阳能电池的盖玻片的太阳能电池组件、用于形成透明膜的涂布液和用于形成透明保护膜的方法
US14/882,831 US20160035923A1 (en) 2013-04-15 2015-10-14 Cover glass for solar cell, solar cell module provided with cover glass for solar cell, coating liquid for forming transparent film, and method for forming transparent protective film
US16/136,460 US20190019910A1 (en) 2013-04-15 2018-09-20 Cover glass for solar cell, solar cell module provided with cover glass for solar cell, and transparent protective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085123A JP6196061B2 (ja) 2013-04-15 2013-04-15 透明保護膜で表面を被覆した太陽電池用カバーガラス及び該カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法
JP2013-085123 2013-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/882,831 Continuation US20160035923A1 (en) 2013-04-15 2015-10-14 Cover glass for solar cell, solar cell module provided with cover glass for solar cell, coating liquid for forming transparent film, and method for forming transparent protective film

Publications (1)

Publication Number Publication Date
WO2014171442A1 true WO2014171442A1 (ja) 2014-10-23

Family

ID=51731381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060686 WO2014171442A1 (ja) 2013-04-15 2014-04-15 太陽電池用カバーガラス及び該太陽電池用カバーガラスを備えた太陽電池モジュール並びに透明保護膜形成用塗布液及び透明保護膜の形成方法

Country Status (4)

Country Link
US (2) US20160035923A1 (ja)
JP (1) JP6196061B2 (ja)
CN (1) CN105247687B (ja)
WO (1) WO2014171442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727178A (zh) * 2018-02-16 2020-09-29 Agc株式会社 玻璃盖片和内嵌式液晶显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949462B2 (ja) * 2016-07-26 2021-10-13 東芝テック株式会社 可動式アンテナ及び検品装置
KR102533983B1 (ko) * 2021-01-20 2023-05-17 한밭대학교 산학협력단 Bipv용 컬러유리 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105155A (ja) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd 半導体超微粒子の分散方法及び半導体超微粒子分散液の製造方法
JP2006272037A (ja) * 2005-03-28 2006-10-12 Nisshin Steel Co Ltd 可視光励起型光触媒活性が付与された塗装金属板及びその製造方法
JP2009035727A (ja) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd 発光材料、発光素子、発光装置及び電子機器、並びに発光材料の作製方法
WO2011155614A1 (ja) * 2010-06-11 2011-12-15 旭硝子株式会社 透光性積層体およびそれを用いた太陽電池モジュール
JP2012054284A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd 波長変換組成物及び波長変換組成物からなる層を備えた光起電装置。

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202363A (ja) * 1999-01-19 2000-07-25 Jsr Corp 塗膜の形成方法およびそれより得られる硬化体
WO2005042437A2 (en) * 2003-09-30 2005-05-12 Schott Ag Antimicrobial glass and glass ceramic surfaces and their production
ES2547416T3 (es) * 2009-03-11 2015-10-06 Asahi Kasei E-Materials Corporation Composición de recubrimiento, película de recubrimiento, laminado y procedimiento para la producción del laminado
CN102097507B (zh) * 2009-12-15 2013-03-20 比亚迪股份有限公司 玻璃及其制备方法
WO2012047867A2 (en) * 2010-10-06 2012-04-12 3M Innovative Properties Company Coatings for optical components of solar energy systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105155A (ja) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd 半導体超微粒子の分散方法及び半導体超微粒子分散液の製造方法
JP2006272037A (ja) * 2005-03-28 2006-10-12 Nisshin Steel Co Ltd 可視光励起型光触媒活性が付与された塗装金属板及びその製造方法
JP2009035727A (ja) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd 発光材料、発光素子、発光装置及び電子機器、並びに発光材料の作製方法
WO2011155614A1 (ja) * 2010-06-11 2011-12-15 旭硝子株式会社 透光性積層体およびそれを用いた太陽電池モジュール
JP2012054284A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd 波長変換組成物及び波長変換組成物からなる層を備えた光起電装置。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727178A (zh) * 2018-02-16 2020-09-29 Agc株式会社 玻璃盖片和内嵌式液晶显示装置
CN111727178B (zh) * 2018-02-16 2023-08-22 Agc株式会社 玻璃盖片和内嵌式液晶显示装置

Also Published As

Publication number Publication date
CN105247687A (zh) 2016-01-13
JP6196061B2 (ja) 2017-09-13
JP2014207384A (ja) 2014-10-30
US20190019910A1 (en) 2019-01-17
CN105247687B (zh) 2018-02-09
US20160035923A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
CN110002767B (zh) 一种用于光伏玻璃的高透光率疏水涂膜的制备方法
JP2012521014A (ja) 光学コーティング
US20100130348A1 (en) Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
CN106470948A (zh) 复合纳米材料和微米材料、它们的膜和其制备方法及用途
CN102054878B (zh) 一种高阻隔耐紫外老化型太阳电池背膜及其加工工艺
US20190019910A1 (en) Cover glass for solar cell, solar cell module provided with cover glass for solar cell, and transparent protective film
US10232350B2 (en) Photocatalyst functional film and method for producing the same
TW201304153A (zh) 複合玻璃板
WO2008096876A1 (ja) 太陽電池モジュール、結晶シリコン系太陽電池用カバーガラスおよび薄膜系太陽電池用ガラス基板
JP2003218379A (ja) 太陽電池
KR20140061842A (ko) 반사방지 효과, 초친수 작용 및 UV-Cut 특성을 갖는 수계 광촉매 제조 및 이를 적용한 유리제품
CN1817812A (zh) 一种自清洁玻璃的制备方法
JP6103642B2 (ja) シラス構造体およびシラス構造体の製造方法
JP2008307526A (ja) 光触媒塗装体およびそのための光触媒コーティング液
AU2014279389B2 (en) Coating liquid for suppressing deterioration of solar cell, thin film of same, and method for suppressing deterioration of solar cell
KR101307015B1 (ko) 고투과 열차폐 조성물을 이용한 태양전지용 커버 글라스 도막 구조
US9238725B2 (en) Infrared reflective film, infrared reflective paint and infrared reflective body
JP5921267B2 (ja) 色素増感太陽電池
KR20220163654A (ko) 반사 효율이 향상된 지면 코팅재 및 이의 제조방법
CN101560343B (zh) 一种热反射隔热无机材料及其制备方法和应用
CN106630670B (zh) 一种有序双层膜微球壳结构玻璃及其制造方法
WO2017047366A1 (ja) 太陽電池用ガラス基板及び太陽電池
JP2010150768A (ja) 建材
JP6261099B2 (ja) シラス構造体の製造方法
KR100406814B1 (ko) 광여기적 친수성막과 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785476

Country of ref document: EP

Kind code of ref document: A1