WO2014142133A1 - 導電性重合体含有分散液の製造方法 - Google Patents

導電性重合体含有分散液の製造方法 Download PDF

Info

Publication number
WO2014142133A1
WO2014142133A1 PCT/JP2014/056372 JP2014056372W WO2014142133A1 WO 2014142133 A1 WO2014142133 A1 WO 2014142133A1 JP 2014056372 W JP2014056372 W JP 2014056372W WO 2014142133 A1 WO2014142133 A1 WO 2014142133A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
dispersion
group
monomer
producing
Prior art date
Application number
PCT/JP2014/056372
Other languages
English (en)
French (fr)
Inventor
泰之 田川
村田 直樹
元章 荒木
大久保 隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/770,196 priority Critical patent/US10563071B2/en
Priority to EP14763721.9A priority patent/EP2975074A4/en
Priority to JP2015505497A priority patent/JP6271507B2/ja
Priority to KR1020157024533A priority patent/KR101774304B1/ko
Priority to CN201480013272.3A priority patent/CN105143302B/zh
Publication of WO2014142133A1 publication Critical patent/WO2014142133A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/77Post-treatment grafting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/962Applications coating of particles coating of organic particles

Definitions

  • the present invention is capable of producing a conductive polymer-containing dispersion having excellent conductivity without becoming high viscosity during polymerization, and a method for producing a conductive polymer-containing dispersion having excellent productivity and conductivity.
  • the present invention relates to a conductive polymer-containing dispersion.
  • a polymer is used.
  • conjugated conductive polymers include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene, poly (p-phenylene-vinylene), polyacene, polythiophene vinylene, and the like.
  • a technique of doping a conjugated conductive polymer using a polyanion such as polystyrene sulfonic acid as a counter anion of the conjugated conductive polymer is known.
  • PEDOT-PSS using 3,4-ethylenedioxythiophene (EDOT) as the conjugated conductive polymer monomer and polystyrene sulfonic acid (PSS) as the counter anion is excellent in transparency and stability, and is conductive. It is known that it is an aqueous dispersion of a conductive polymer having good properties.
  • Patent Document 1 or Patent Document 2 discloses a method for producing a conductive composition characterized by oxidative polymerization of a monomer for obtaining a conjugated conductive polymer in the presence of a polyanion, and a polyanion;
  • a method for producing a conductive composition is disclosed in which a monomer for obtaining a conjugated conductive polymer is oxidatively polymerized in the presence of an organic sulfonic acid.
  • Patent Document 3 discloses a conductive method comprising polymerizing the monomer by irradiating ultrasonic waves to an aqueous or non-aqueous dispersion or solution containing a polyanion and a monomer for obtaining a conjugated conductive polymer.
  • a method for producing a polymer composition is described.
  • the conductive polymer easily aggregates in the dispersion medium, and the dispersion containing the conductive polymer may become highly viscous during the reaction.
  • High viscosity dispersions are inconvenient for industrial handling.
  • a dispersion containing a conductive polymer having a high viscosity requires a large amount of energy for liquid feeding during mass production, and the pressure resistance of the apparatus is required.
  • a high-viscosity dispersion can be reduced in viscosity using a disperser, but productivity will be reduced.
  • An object of the present invention is to provide a method for producing a dispersion containing a conductive polymer having a low viscosity during synthesis, excellent productivity and excellent conductivity, and a conductive polymer-containing dispersion.
  • the present inventors have found that the above problem can be solved by a method of producing a conductive polymer-containing dispersion using seed particles protected by a polyanion as a protective colloid. That is, the present invention relates to the following 1 to 13.
  • Conductivity characterized by having a polymerization step of polymerizing the monomer in a dispersion medium containing a monomer for obtaining a conjugated conductive polymer and seed particles protected with a polyanion as a protective colloid
  • a method for producing a polymer-containing dispersion 2.
  • 3. The method for producing a conductive polymer-containing dispersion liquid according to 1 or 2, wherein the seed particles have a d50 particle diameter of 0.005 to 10 ⁇ m. 4).
  • the method for producing a conductive polymer-containing dispersion according to any one of 1 to 4 wherein the conjugated conductive polymer to be produced is subjected to a dispersion treatment in the course of the polymerization step. 6).
  • the monomer for obtaining the conjugated conductive polymer is at least selected from pyrrole which may have a substituent, aniline which may have a substituent, and thiophene which may have a substituent. 7.
  • 9. The conductive polymer-containing dispersion according to any one of 1 to 6 and 8, wherein the monomer for obtaining the conjugated conductive polymer contains a compound represented by the following formula (I): Manufacturing method.
  • R 1 and R 2 each independently represents a hydrogen atom, a hydroxyl group, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon number. 1 to 18 alkoxy group or an optionally substituted alkylthio group having 1 to 18 carbon atoms, or a substituent in which R 1 and R 2 are bonded to each other to form a ring
  • a sulfur atom-containing heterocycle having 2 to 10 carbon atoms which may have a group, or a sulfur atom and oxygen atom-containing heterocycle having 2 to 10 carbon atoms which may have a substituent is shown.
  • a dispersion of seed particles protected with a polyanion is added over a period of 0.1 to 2 times the intermediate time until the polymerization of the monomer is completed. 5.
  • the amount of the dispersion of seed particles, which are added in the course of polymerization and protected colloidally with polyanions is 10 to 90% by mass of the total amount of the dispersion medium, according to any one of 4, 13, and 15 above.
  • a dispersion liquid containing a conductive polymer composed of a conjugated conductive polymer excellent in conductivity and seed particles protected by a polyanion as a protective colloid is converted into a dispersion liquid during polymerization. It can be produced with excellent productivity without increasing the viscosity.
  • the conductive polymer containing dispersion liquid excellent in electroconductivity manufactured by the said manufacturing method can be provided.
  • the method for producing a conductive polymer-containing dispersion according to the present invention includes a monomer for obtaining a conjugated conductive polymer, and seed particles protected with a polyanion as a protective colloid. It has the process of superposing
  • the conductive polymer-containing dispersion liquid of the present invention is a conductive polymer-containing dispersion liquid in which a conductive polymer comprising a conjugated conductive polymer and seed particles protected by a polyanion is dispersed in a dispersion medium. It is.
  • the conductive polymer is a particulate polymer in which the polyanion is coordinated on the surface of the seed particle so as to be a protective colloid, and the polyanion on the surface of the seed particle is doped into the conjugated conductive polymer.
  • the conjugated conductive polymer is not particularly limited as long as the main chain is an organic polymer having a ⁇ -conjugated system.
  • Examples of the conjugated conductive polymer include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof.
  • polypyrroles, polythiophenes and polyanilines are preferable, and polythiophenes are more preferable.
  • a conjugated conductive polymer having a substituent such as an alkyl group, a carboxyl group, a sulfonic acid group, an alkoxyl group, a hydroxyl group, or a cyano group is preferable in that high conductivity can be obtained.
  • preferred conjugated conductive polymers include polypyrroles such as polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propyl). Pyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4) -Dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole) , Poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butene Shipiroru), poly (3-hexyloxy-pyrrole), poly (3-methyl-4-he
  • Polythiophenes include polythiophene, poly (3-methylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3- Dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene) ), Poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3- Butoxythiophene), poly (3-hexyloxythiophene), poly (3 Heptyloxythiophene), poly (3-
  • polyanilines examples include polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-aniline sulfonic acid), and poly (3-aniline sulfonic acid).
  • polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene) and poly (3,4-ethylenedioxythiophene) have high conductivity.
  • poly (3,4-ethylenedioxythiophene) [commonly known as PEDOT] is more preferable because it has higher conductivity and excellent heat resistance.
  • the conjugated conductive polymer can be used alone or in combination of two or more.
  • the monomer for obtaining the conjugated conductive polymer is at least selected from pyrrole which may have a substituent, aniline which may have a substituent, and thiophene which may have a substituent.
  • substituent include an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and an alkylthio having 1 to 18 carbon atoms.
  • the alkyl group, aryl group, heteroaryl group, alkoxy group and alkylthio group may be substituted with a carboxyl group, a hydroxyl group, a halogen atom or a cyano group. Two or more substituents may be condensed to form a ring.
  • the monomer examples include pyrrole, N-methylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3 -Dodecylpyrrole, 3,4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutyl Pyrrole, 3-hydroxypyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole;
  • a compound represented by the following formula (I) is preferably included, and a compound represented by the following formula (II) may be included. More preferably, 3,4-ethylenedioxythiophene is further included.
  • R 1 and R 2 are each independently a hydrogen atom, a hydroxyl group, an optionally substituted alkyl group having 1 to 18 carbon atoms, or an optionally substituted carbon number. 1 to 18 alkoxy group or an optionally substituted alkylthio group having 1 to 18 carbon atoms, or a substituent in which R 1 and R 2 are bonded to each other to form a ring
  • a sulfur atom-containing heterocycle having 2 to 10 carbon atoms which may have a group, or a sulfur atom and oxygen atom-containing heterocycle having 2 to 10 carbon atoms which may have a substituent is shown.
  • substituents examples include an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and an alkylthio having 1 to 18 carbon atoms.
  • the alkyl group, aryl group, heteroaryl group, alkoxy group and alkylthio group may be substituted with a carboxyl group, a hydroxyl group, a halogen atom or a cyano group.
  • Two or more substituents may be condensed to form a ring.
  • Examples of the oxygen atom-containing heterocycle include an oxirane ring, an oxetane ring, a furan ring, a hydrofuran ring, a pyran ring, a pyrone ring, a dioxane ring, and a trioxane ring.
  • Examples of the sulfur atom-containing heterocycle include thiirane ring, thietane ring, thiophene ring, thiane ring, thiopyran ring, thiopyrylium ring, benzothiopyran ring, dithiane ring, dithiolane ring, and trithiane ring.
  • Examples of the sulfur atom and oxygen atom-containing heterocycle include an oxathiolane ring and an oxathian ring.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent, or R 3 and R 4 are mutually An oxygen atom-containing heterocycle having 3 to 6 carbon atoms which may have a substituent, which is bonded to form a ring.
  • R 3 and R 4 are preferably a C 3-6 oxygen atom-containing heterocyclic ring which may have a substituent, in which R 3 and R 4 are bonded to each other to form a ring.
  • oxygen atom containing heterocyclic ring a dioxane ring, a trioxane ring, etc. are mentioned, Preferably it is a dioxane ring.
  • substituents examples include an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 10 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and an alkylthio having 1 to 18 carbon atoms.
  • the alkyl group, aryl group, heteroaryl group, alkoxy group and alkylthio group may be substituted with a carboxyl group, a hydroxyl group, a halogen atom or a cyano group.
  • Two or more substituents may be condensed to form a ring.
  • the seed particles used in the present invention are not limited as long as they are protective colloids by a polyanion in a dispersion medium.
  • polymer particles or copolymer particles obtained by polymerizing an ethylenically unsaturated monomer are used. Is mentioned.
  • the particle diameter d50 (50% median diameter on a volume basis) dispersed in the seed particle dispersion medium is preferably 0.005 to 10 ⁇ m, more preferably 0.02 to 2 ⁇ m, The thickness is preferably 0.05 to 1 ⁇ m.
  • the particle size distribution of the seed particles can be measured using a Microtrac UPA type particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
  • any monomer having at least one polymerizable vinyl group may be used.
  • (meth) acrylic acid esters having a linear, branched or cyclic alkyl chain For example, methyl methacrylate and t-butyl methacrylate
  • aromatic vinyl compounds such as styrene and ⁇ -methyl styrene
  • heterocyclic vinyl compounds such as vinyl pyrrolidone
  • hydroxyalkyl (meth) acrylates dialkylaminoalkyl (meth) acrylates
  • Vinyl esters such as vinyl acetate and vinyl alkanoate, monoolefins (ethylene, propylene, butylene, isobutylene, etc.), conjugated diolefins (butadiene, isoprene, chloroprene, etc.), ⁇ , ⁇ -unsaturated mono or Dicarboxylic acid (acrylic acid, methacrylate) Acid, crotonic acid, it
  • epoxy group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as glycidyl (meth) acrylate, hydrolyzable alkoxysilyl group-containing ⁇ such as vinyltriethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane , ⁇ -ethylenically unsaturated compounds, polyfunctional vinyl compounds (ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, divinylbenzene, diallyl phthalate, etc.) Introduced into a polymer or copolymer and crosslinked with each other, or crosslinked in combination with an ethylenically unsaturated compound component having an active hydrogen group, or a carbonyl group-containing ⁇ , ⁇ -ethylenically unsaturated compound ( (Especially those containing keto groups) It may be introduced into a polymer or copolymer
  • the water resistance, moisture resistance, and heat resistance of the conductive polymer can be improved.
  • the proportion of the crosslinkable monomer introduced is preferably 50% or less, more preferably 35% or less, and even more preferably 25% or less with respect to the polymer or copolymer.
  • the polyanion used in the present invention is a polymer having an anionic group.
  • the anionic group include a group composed of sulfonic acid or a salt thereof, a group composed of phosphoric acid or a salt thereof, a monosubstituted phosphate group, a group composed of a carboxylic acid or a salt thereof, a monosubstituted sulfate group.
  • a strongly acidic group is preferable, a group consisting of sulfonic acid or a salt thereof, a group consisting of phosphoric acid or a salt thereof is more preferable, and a group consisting of sulfonic acid or a salt thereof is more preferable.
  • the anionic group may be directly bonded to the polymer main chain or may be bonded to the side chain.
  • the anionic group is preferably bonded to the end of the side chain.
  • the polyanion may have a substituent other than the anionic group.
  • substituents include alkyl group, hydroxy group, alkoxy group, phenol group, cyano group, phenyl group, hydroxyphenyl group, ester group, halogeno group, alkenyl group, imide group, amide group, amino group, oxycarbonyl group, A carbonyl group etc. are mentioned. Among these, an alkyl group, a hydroxy group, a cyano group, a phenol group, and an oxycarbonyl group are preferable, and an alkyl group, a hydroxy group, and a cyano group are more preferable.
  • the substituent may be directly bonded to the polymer main chain or may be bonded to the side chain. When the substituent is bonded to the side chain, the substituent is preferably bonded to the end of the side chain in order to perform each function of the substituent.
  • the alkyl group that can be substituted in the polyanion can be expected to increase the solubility and dispersibility in the dispersion medium, the compatibility with the conjugated conductive polymer, the dispersibility, and the like.
  • the alkyl group include a chain alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, and a dodecyl group; a cyclopropyl group, Examples thereof include cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group.
  • the hydroxy group that can be substituted in the polyanion facilitates the formation of hydrogen bonds with other hydrogen atoms, and has high solubility in dispersion media, high compatibility with conjugated conductive polymers, dispersibility, and adhesion. Can be expected.
  • the hydroxy group is preferably bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the polymer main chain.
  • the cyano group and hydroxyphenyl group that can be substituted in the polyanion can be expected to have an effect of increasing the compatibility with the conjugated conductive polymer, the solubility in the dispersion medium, and the heat resistance.
  • the cyano group is bonded directly to the polymer main chain, bonded to the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the polymer main chain, or terminal of the alkenyl group having 2 to 7 carbon atoms bonded to the polymer main chain. Those bonded to are preferred.
  • the oxycarbonyl group that can be substituted in the polyanion is preferably an alkyloxycarbonyl group, an aryloxycarbonyl group, or an alkyloxycarbonyl group or an aryloxycarbonyl group having another functional group directly bonded to the polymer main chain.
  • the polymer main chain of the polyanion is not particularly limited.
  • examples of the polymer main chain include polyalkylene, polyimide, polyamide, and polyester. Of these, polyalkylene is preferable from the viewpoint of synthesis and availability.
  • Polyalkylene is a polymer composed of repeating units of ethylenically unsaturated monomers.
  • the polyalkylene may have a carbon-carbon double bond in the main chain.
  • Examples of polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, poly (3,3,3-trifluoropropylene), polyacrylonitrile, polyacrylate, polymethacrylate, polystyrene, polybutadiene, poly And isoprene.
  • polyimides examples include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2,2,3,3-tetracarboxydiphenyl ether dianhydride, 2,2- [4,4 Examples include those obtained by polycondensation reaction of acid anhydrides such as' -di (dicarboxyphenyloxy) phenyl] propane dianhydride and diamines such as oxydianiline, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine. .
  • polyamide examples include polyamide 6, polyamide 6,6, polyamide 6,10 and the like.
  • polyester examples include polyethylene terephthalate and polybutylene terephthalate.
  • polystyrene sulfonic acid examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, and poly (2-acrylamide). -2-methylpropanesulfonic acid), polyisoprenesulfonic acid and the like. These may be homopolymers or two or more types of copolymers.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable, and polystyrene sulfonic acid [commonly known as PSS] is more preferable.
  • PSS polystyrene sulfonic acid
  • Polyanions especially polymers with sulfonic acid groups, can mitigate the thermal decomposition of conjugated conductive polymers and improve the dispersibility of the monomers in the dispersion medium to obtain conjugated conductive polymers. And function as a dopant for the conjugated conductive polymer.
  • the polyanion used in the present invention has a weight average molecular weight of preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and still more preferably 10,000 to 300,000. .
  • weight average molecular weight is within this range, the solubility of the polyanion in the dispersion medium and the compatibility between the polyanion and the conjugated conductive polymer are improved.
  • a weight average molecular weight is measured as a polystyrene conversion molecular weight using gel permeation chromatography.
  • the polyanion may have the above properties selected from commercially available products, or may be obtained by synthesis by a known method. Examples of the method for synthesizing a polyanion include the method described in Houben-Weyl, “Methoden-derorganischen-Chemle”, Vol. Can be mentioned.
  • the total amount of polyanions used is determined by the anionic group in the polyanion being conjugated.
  • the amount is preferably 0.25 to 30 mol, more preferably 0.8 to 25 mol, and still more preferably 1 to 20 mol with respect to 1 mol of the monomer for obtaining the conductive polymer.
  • the amount of polyanion used in 100 parts by mass of the conjugated conductive polymer in the production method of the present invention is preferably 10 to 30,000 parts by mass, more preferably 50 to 25,000 parts by mass, and still more preferably. 100 to 20,000 parts by mass.
  • the usage-amount of the polyanion with respect to the conjugated system conductive polymer in the manufacturing method of this invention can be increased.
  • the seed particles are those that are protectively colloided with a polyanion in a dispersion medium, and the dispersion of the protective colloidalized seed particles dispersed in the dispersion medium can be produced as a resin emulsion.
  • the polymerization reaction of the resin emulsion is a radical polymerization reaction, and is performed by any one of a batch type, a semi-continuous type, and a continuous type using an atmospheric pressure reactor or a pressure resistant reactor. Further, from the viewpoint of reaction stability during polymerization and uniformity of the polymer, the ethylenically unsaturated monomer and the polyanion are dissolved, emulsified or dispersed in a dispersion medium in advance, respectively, and the polyanion-containing liquid is mixed with the ethylenically unsaturated monomer. It is preferable to polymerize by adding a saturated monomer solution continuously or intermittently.
  • the reaction temperature is usually 10 to 100 ° C., but 30 to 90 ° C. is common.
  • the reaction time is not particularly limited, and may be appropriately adjusted according to the amount of each component used, the type of polymerization initiator, the reaction temperature, and the like.
  • polyanion which is a protective colloid, contributes to the stability of the emulsion particles. It may be added. What is necessary is just to adjust suitably the kind and usage-amount of an emulsifier and an aliphatic amine according to various conditions including the usage-amount of a polyanion, and a composition of an ethylenically unsaturated monomer.
  • emulsifiers used in such radical polymerization reactions include alkyl sulfate esters, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyalkylene alkyl phosphates.
  • Nonionic surfactants such as anionic emulsifiers such as esters, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenol ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, and the like.
  • Aliphatic amines include primary amines such as octylamine, laurylamine, myristylamine, stearylamine and oleylamine, secondary amines such as dioctylamine, dilaurylamine, distearylamine and dioleylamine, N, N-dimethyllauryl Amines, N, N-dimethylmyristylamine, N, N-dimethylpalmitylamine, N, N-dimethylstearylamine, N.N. And tertiary amines such as N-dimethylbehenylamine, N, N-dimethyloleylamine, N-methyldidecylamine and N-methyldioleylamine. You may use an emulsifier and an aliphatic amine individually by 1 type or in combination of 2 or more types.
  • a water-soluble polymer such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl pyrrolidone and the like may be used in combination as long as the properties of the obtained conductive polymer are not impaired.
  • the dispersion medium is an aqueous medium, and includes water or a mixed solvent of water and a water-soluble solvent.
  • the proportion of the water-soluble solvent in the mixed solvent is preferably 0 to 30% by mass. When the proportion of the water-soluble solvent exceeds 30% by mass, the polymerization stability of the synthetic resin emulsion tends to be remarkably lowered.
  • the water-soluble solvent include alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, glycols such as ethylene glycol and propylene glycol, ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, and the like. .
  • polymerization initiator used in radical polymerization known and conventional ones can be used.
  • the polymerization initiator include inorganic peroxides such as hydrogen peroxide, persulfuric acid, ammonium persulfate, potassium persulfate, and sodium persulfate, organic peroxides such as benzoyl peroxide and t-butyl hydroperoxide, Examples include azo compounds such as 2,2′-azobisisobutyronitrile and 4,4′-azobis (4-cyanovaleric acid).
  • these polymerization initiators may be combined with sodium sulfoxylate formaldehyde, ascorbic acids, sulfites, tartaric acid or salts thereof, iron (II) sulfate, or the like for redox polymerization.
  • chain transfer agents such as alcohol and mercaptans, as needed.
  • the amount of the ethylenically unsaturated monomer used is preferably 10 to 100 parts by weight, more preferably 20 to 90 parts by weight, with respect to 100 parts by weight of the polyanion used in the production of the protective colloidal seed particles.
  • the amount is preferably 10 to 60 parts by mass.
  • the proportion of the conductive polymer containing the seed particles protected by the polyanion in the conjugated conductive polymer is reduced. It becomes difficult to obtain the thickening suppression effect at the time. If it exceeds 100 parts by mass, the stability of the protective colloidal seed particles may be reduced.
  • the production method of the present invention is characterized by a step of polymerizing a monomer for obtaining a conjugated conductive polymer.
  • the polymerization step is carried out in a dispersion medium containing a monomer for obtaining a conjugated conductive polymer and seed particles that are made into a protective colloid with a polyanion.
  • the maximum value of the viscosity of the dispersion during polymerization is preferably 5000 mPa ⁇ s or less, more preferably 4500 mPa ⁇ s or less, and further preferably 4000 mPa ⁇ s or less.
  • the maximum value of the viscosity of the dispersion during polymerization is 5000 mPa ⁇ s or less, industrial handling becomes easy, and energy required for liquid feeding during mass production can be reduced.
  • the viscosity of the dispersion during the polymerization was measured with a B-type viscometer at 25 ° C. It is the value measured using the rotor of 2.
  • a dispersion (resin emulsion) of a seed particle protected by colloid with the monomer, polyanion, and if necessary Additives are added to the dispersion medium to obtain a dispersion containing the monomer and protective colloidal seed particles (hereinafter sometimes simply referred to as a monomer liquid).
  • the monomer solution may be prepared by a stirring device capable of emulsification and dispersion using shearing force or cavitation.
  • the stirring device examples include an ultrahigh pressure homogenizer, a high pressure homogenizer, a low pressure homogenizer, a homomixer, a high shear mixer, a disper, a ball mill, an ultrasonic device, and a supercritical device. It may be a static fluid mixer that does not have a drive unit such as Lamond Nanomixer (registered trademark). It is preferable to prepare the monomer solution by ultrasonic irradiation.
  • the ultrasonic irradiation energy is not particularly limited as long as a uniform monomer liquid can be obtained.
  • the ultrasonic irradiation is preferably performed at a power consumption of 5 to 500 W / L (liter) and an irradiation time of 0.1 to 2 hours / L (liter).
  • the monomer liquid may be prepared by a powerful emulsification / dispersion device such as a high shear mixer (for example, Magic Lab, Claremix, Milder, Cavitron, etc.) instead of or together with the ultrasonic irradiation. Good.
  • a powerful emulsification / dispersion device such as a high shear mixer (for example, Magic Lab, Claremix, Milder, Cavitron, etc.) instead of or together with the ultrasonic irradiation. Good.
  • a dispersion containing a monomer for obtaining a conjugated conductive polymer before the start of polymerization and seed particles protected by a polyanion as a protective colloid contains a conjugated conductive polymer formed during the polymerization.
  • a polyanion can be further contained in addition to the dispersion liquid of the protective colloidal seed particles. The polyanion can be added to the monomer solution and dissolved, emulsified or dispersed in the monomer solution.
  • the amount before the initiation of the polymerization is 5 to 99 mass of the total amount of the polyanion used excluding the protective colloid of the seed particles. % Is preferable, 10 to 90% by mass is more preferable, and 20 to 80% by mass is further preferable.
  • the dispersion medium used for monomer polymerization is not particularly limited as long as it can disperse a conductive polymer composed of a conjugated conductive polymer and seed particles protected by a polyanion as a protective colloid, The same type as that used for the seed particle dispersion is preferred.
  • dispersion medium examples include water; amides such as N-vinylpyrrolidone, hexamethylphosphortriamide, N-vinylformamide, and N-vinylacetamide; phenols such as cresol, phenol, and xylenol; dipropylene glycol, 1,3 -Polyhydric alcohols such as butylene glycol, 1,4-butylene glycol, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol Carbonate compounds such as ethylene carbonate and propylene carbonate; dioxane, diethyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether 3-methyl-2-heterocyclic compounds such as oxazolidinone; ether
  • the amount of the dispersion medium used is preferably 10 to 100,000 parts by mass with respect to a total of 100 parts by mass of the monomer for obtaining the conjugated conductive polymer and the seed particles protected by the polyanion as a protective colloid.
  • the amount is preferably 100 to 50,000 parts by mass, and more preferably 300 to 20,000 parts by mass. If the amount of the dispersion medium used is too small, the viscosity of the dispersion tends to increase. If the amount of the dispersion medium used is too large, it takes time to remove the dispersion medium from the dispersion liquid, and the production efficiency of articles such as a film using the dispersion liquid of the present invention tends to be reduced.
  • persulfuric acid and persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate; metal halides such as boron trifluoride; ferric chloride, ferric sulfate and cupric chloride Transition metal compounds such as: metal oxides such as silver oxide and cesium oxide; peroxides such as hydrogen peroxide and ozone; organic peroxides such as benzoyl peroxide; oxygen and the like.
  • persulfuric acid and persulfate are preferable, and persulfate is more preferable.
  • the said oxidizing agent can be used individually by 1 type or in combination of 2 or more types.
  • the polymerization temperature in the polymerization of the monomer is usually 0 to 100 ° C., preferably 5 to 80 ° C., more preferably 10 to 60 ° C., and further preferably 15 to 40 ° C.
  • the temperature during the polymerization is within the above range, the polymerization can be performed at an appropriate reaction rate, the increase in the viscosity during the polymerization can be suppressed, and the production of the dispersion containing the conductive polymer can be stably performed. It can be carried out in an economical time, and the conductivity of the obtained conductive polymer tends to be high.
  • polymerization can be managed by using a well-known heater and a cooler. Moreover, you may superpose
  • the method for producing a conductive polymer-containing dispersion of the present invention it is preferable to further include dispersing the produced conjugated conductive polymer in the course of the polymerization step.
  • This dispersion treatment may be performed by a stirring device capable of emulsification and dispersion using shearing force or cavitation.
  • the stirring device include an ultrahigh pressure homogenizer, a high pressure homogenizer, a low pressure homogenizer, a homomixer, a high shear mixer, a disper, a ball mill, an ultrasonic device, and a supercritical device. It may be a static fluid mixer that does not have a drive unit such as Lamond Nanomixer (registered trademark).
  • This dispersion treatment is preferably performed by ultrasonic irradiation.
  • the ultrasonic irradiation energy is not particularly limited as long as aggregation of the conjugated conductive polymer can be suppressed.
  • the ultrasonic irradiation is preferably performed at a power consumption of 5 to 500 W / L until the end of the reaction.
  • the amount of the protective colloidal seed particle dispersion added during the polymerization is preferably 10 to 90% by mass, more preferably 20 to 70% by mass, based on the total amount of the protective colloidal seed particle dispersion used. .
  • the monomer is polymerized in a dispersion medium containing a monomer for obtaining a conjugated conductive polymer and seed particles protected by a polyanion. This is the time between the start and the end.
  • a dispersion medium containing a monomer for obtaining a conjugated conductive polymer and seed particles protected by a polyanion.
  • the course of the monomer polymerization step is from the addition of the oxidizing agent to the dispersion medium until the polymerization of the monomer is completed. It is time in the middle.
  • the completion of the polymerization is when the residual ratio of the monomer for obtaining the conjugated conductive polymer is 10% or less.
  • a dispersion of seed particles protected with a polyanion may be added over a predetermined time. Since the dispersion liquid containing the seed particles and the monomer is gradually increasing with time, when the viscosity of the dispersion liquid containing the seed particles and the monomer is low, the added seed The addition amount of the particle dispersion liquid is small, and when the viscosity of the dispersion liquid containing the seed particles and polymerizing the monomer is increased, the addition amount of the seed particle dispersion liquid is increased. Thereby, the viscosity of the dispersion liquid in which the monomer containing the seed particles is being polymerized can be appropriately reduced.
  • the time taken to add the seed particle dispersion is preferably 0.01 to 4 times, more preferably 0.1 to 2 times the intermediate time until the polymerization of the monomer is completed. More preferably, the time is 0.25 to 1.5 times.
  • the seed particle dispersion may be added continuously or intermittently. Further, the addition of the seed particle dispersion may be started at the start of the polymerization, or may be started after a predetermined time has elapsed from the start of the polymerization. Further, when the viscosity of the dispersion during polymerization becomes 1.1 times or more of the reaction start time, addition of the seed particle dispersion may be started.
  • the addition rate of the seed particle dispersion may be constant.
  • a dispersion of seed particles may be added dropwise to a dispersion containing the monomer that is being polymerized.
  • the seed particle dispersion added during the monomer polymerization step can be added while being uniformly dispersed in the dispersion medium during polymerization.
  • the addition rate of the seed particle dispersion may vary depending on the viscosity of the dispersion during polymerization.
  • the average addition rate of adding a dispersion of seed particles protected by colloid with a polyanion is preferably 10 to 200 g / hr, more preferably 20 to 100 g of monomer. -100 g / hr, more preferably 40-80 g / hr.
  • the seed particles of the dispersion added during the monomer polymerization step may be different from the seed particles of the dispersion medium to be added. This makes it possible to select seed particles that can effectively reduce the viscosity of the dispersion medium during polymerization when added in the course of the monomer polymerization step.
  • the polyanion used in order to make a seed particle into protective colloid in the middle of the polymerization process of a monomer may be further added.
  • the amount is preferably 5 to 90% by mass, more preferably 20 to 70% by mass, based on the total amount of polyanions used.
  • an additive can be added to the monomer liquid used in the production method of the present invention or the conductive polymer-containing dispersion liquid obtained by the production method of the present invention.
  • the additive is not particularly limited as long as it can be mixed with the conjugated conductive polymer and the seed particles protected by colloid with a polyanion.
  • the additives include water-soluble polymer compounds, water-dispersible compounds, alkaline compounds, surfactants, antifoaming agents, coupling agents, antioxidants, electrical conductivity improvers, and the like.
  • An agent can be used individually by 1 type or in combination of 2 or more types.
  • the water-soluble polymer compound is a water-soluble polymer having a cationic group or a nonionic group in the main chain or side chain of the polymer.
  • Specific examples of the water-soluble polymer compound include, for example, polyoxyalkylene, water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacryl, water-soluble polyacrylamide, polyvinyl alcohol, polyacrylic acid and the like. Is mentioned. Of these, polyoxyalkylene is preferred.
  • polyoxyalkylene examples include diethylene glycol, triethylene glycol, oligopolyethylene glycol, triethylene glycol monochlorohydrin, diethylene glycol monochlorohydrin, oligoethylene glycol monochlorohydrin, triethylene glycol monobromohydrin, diethylene glycol monobromhydrin, Oligoethylene glycol monobromohydrin, polyethylene glycol, glycidyl ethers, polyethylene glycol glycidyl ethers, polyethylene oxide, triethylene glycol / dimethyl ether, tetraethylene glycol / dimethyl ether, diethylene glycol / dimethyl ether, diethylene glycol / diethyl ether / diethylene glycol Dibutyl ether, dipropylene glycol, tripropylene glycol, polypropylene glycol, polypropylene dioxide, polyoxyethylene alkyl ethers, polyoxyethylene glycerol fatty acid esters, polyoxyethylene fatty acid amides.
  • a water-dispersible compound is a compound in which a part of a low hydrophilic compound is substituted with a highly hydrophilic functional group, or a compound having a highly hydrophilic functional group adsorbed around a low hydrophilic compound (For example, emulsion etc.), which is dispersed without being precipitated in water.
  • Specific examples include polyesters, polyurethanes, acrylic resins, silicone resins, and emulsions of these polymers.
  • the water-soluble polymer compound and the water-dispersible compound can be used alone or in combination of two or more. When a water-soluble polymer compound and a water-dispersible compound are added, the viscosity of the dispersion containing the conductive polymer can be adjusted, and the coating performance can be improved.
  • the amount of the water-soluble polymer compound and the water-dispersible compound is preferably 1 to 4000 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the conjugated conductive polymer and the seed particles protected with a polyanion. Is 20 to 2000 parts by mass, more preferably 50 to 500 parts by mass.
  • An alkaline compound may be added to the dispersion containing the conductive polymer. Corrosion resistance can be imparted to the article to which the dispersion has been applied by adding an alkaline compound, and the pH of the conductive polymer-containing dispersion can be adjusted.
  • the pH is preferably 3 to 13 in order to prevent corrosion of metals and metal oxides used in the solid electrolytic capacitor. More preferably, it is adjusted to pH 4-9, more preferably pH 5-7. If the pH is 3 or more, there is no possibility that corrosion will proceed due to the valve metal used such as aluminum. Further, if the pH is 13 or less, there is no possibility that the polyanion doped in the conductive polymer is dedoped.
  • alkaline compound known inorganic alkaline compounds and organic alkaline compounds can be used.
  • the inorganic alkaline compound include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like.
  • the organic alkaline compound include aromatic amines, aliphatic amines, and alkali metal alkoxides.
  • nitrogen-containing heteroaryl ring compounds are preferred.
  • the nitrogen-containing heteroaryl ring compound is a nitrogen-containing heterocyclic compound that exhibits aromaticity.
  • the nitrogen atom contained in the heterocycle has a conjugated relationship with other atoms.
  • the nitrogen-containing heteroaryl ring compound include pyridines, imidazoles, pyrimidines, pyrazines, and triazines. Of these, pyridines, imidazoles, and pyrimidines are preferable from the viewpoint of solvent solubility and the like.
  • aliphatic amine examples include ethylamine, n-octylamine, diethylamine, diisobutylamine, methylethylamine, trimethylamine, triethylamine, allylamine, 2-ethylaminoethanol, 2,2′-iminodiethanol, N-ethylethylenediamine and the like. It is done.
  • alkali metal alkoxide examples include sodium alkoxide such as sodium methoxide and sodium ethoxide, potassium alkoxide, calcium alkoxide and the like.
  • Surfactants include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates; cationic surfactants such as amine salts and quaternary ammonium salts; carboxybetaines and aminocarboxylic acids Examples include amphoteric surfactants such as salts and imidazolium betaines; nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, ethylene glycol fatty acid esters, and polyoxyethylene fatty acid amides.
  • Examples of the antifoaming agent include silicone resin, polydimethylsiloxane, and silicone resin.
  • examples of the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, saccharides, vitamins and the like.
  • the electrical conductivity improver is not particularly limited as long as it increases the electrical conductivity of the dispersion containing the conductive polymer.
  • Examples of the electrical conductivity improver include compounds containing an ether bond such as tetrahydrofuran; compounds containing a lactone group such as ⁇ -butyrolactone and ⁇ -valerolactone; caprolactam, N-methylcaprolactam, N, N-dimethylacetamide, N -Compounds containing amide or lactam groups such as methylacetamide, N, N-dimethylformamide, N-methylformamide, N-methylformanilide, N-methylpyrrolidone, N-octylpyrrolidone, pyrrolidone; tetramethylenesulfone, dimethylsulfoxide, etc.
  • Sulfone compounds or sulfoxide compounds comprising sugars or saccharide derivatives such as sucrose, glucose, fructose and lactose; sugar alcohols such as sorbitol and mannitol; imides such as succinimide and maleimide
  • a furan derivative such as 2-furancarboxylic acid or 3-furancarboxylic acid
  • a dialcohol or polyalcohol such as ethylene glycol, propylene glycol, glycerin, diethylene glycol, or triethylene glycol;
  • tetrahydrofuran, N-methylformamide, N-methylpyrrolidone, ethylene glycol, propylene glycol, glycerin, dimethyl sulfoxide, and sorbitol are preferable from the viewpoint of improving electrical conductivity, and ethylene glycol, propylene glycol, and glycerin are more preferable.
  • An electrical conductivity improver can be used individually by 1 type or in combination of 2 or more types.
  • the polyanion is coordinated on the surface of the seed particle, whereby the particle size of the conductive polymer can be controlled, and the thickening during polymerization can be suppressed, and the conductive polymer-containing dispersion liquid Productivity will be excellent.
  • the conjugated conductive polymer can be coordinated to the polyanion which is a dopant in the conductive polymer, and conductivity is exhibited while having transparency.
  • the dispersion medium is removed to impart a function such as conductivity to the article.
  • the attachment means include application, spraying, and immersion.
  • Solid content concentration The solid content concentration in the dispersion was measured by weighing about 2 g of the dispersion obtained in each example into a sample container, and allowed to stand in a dryer at 105 ° C for 1 hour, and then in the sample container. The mass of the sample was measured, and the mass after drying relative to the mass before drying, that is, [mass after drying / mass before drying] was calculated as the solid content concentration.
  • Viscosity The viscosity of the dispersion during the polymerization is a B-type viscometer at 25 ° C. Measurements were made using two rotors.
  • Example 1 Method for producing seed particles protected with polyanion as colloid
  • stirring 1000 g of a 22 mass% aqueous solution of sodium polystyrene sulfonate (trade name Polynus PS-5, weight average molecular weight: about 120,000, manufactured by Tosoh Organic Chemical Co., Ltd.) in a nitrogen atmosphere, the temperature was raised to 80 ° C.
  • the ion exchange resin After adding 1500 ml of cation exchange resin and 1500 ml of anion exchange resin to the obtained reaction liquid and stirring for 12 hours, the ion exchange resin is separated by filtration, and a dispersion of seed particles protected by colloid with polyanion (polystyrene emulsion) Got.
  • the d50 particle diameter of the seed particles in the obtained polystyrene emulsion was 0.46 ⁇ m.
  • NaPS sodium peroxodisulfate
  • a cation exchange resin and 300 ml of an anion exchange resin are added to the obtained reaction solution, and the reaction solution is stirred for 12 hours, thereby converting unreacted monomers, an oxidizing agent and an oxidation catalyst into an ion exchange resin. Adsorbed.
  • the ion exchange resin is separated by filtration and contains a conductive polymer composed of seed particles (polystyrene emulsion) protected with polystyrene sulfonic acid and poly (3,4-ethylenedioxythiophene) doped with the polystyrene sulfonic acid. A dispersion was obtained.
  • Example 1 The physical properties of the dispersion liquid obtained in Example 1 were measured by the above-described method. As a result, the solid content concentration was 4.2% by mass, the pH was 1.9, and the conductivity was 93 S / cm.
  • Example 2 In the production of seed particles, sodium polystyrene sulfonate (Tosoh Organic Chemical Co., Ltd., manufactured by Tosoh Organic Chemical Co., Ltd., trade name Polynus PS-5, weight average molecular weight: about 120,000) instead of 22% by mass aqueous solution
  • a conductive polymer-containing dispersion was obtained in the same manner as in Example 1, except that the product name Polynas PS-1, manufactured by Co., Ltd., molecular weight: about 10,000 to about 30,000 was used.
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.15 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 2 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 95 S / cm.
  • Example 3 A conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that the amount of the 2.5 mass% potassium persulfate aqueous solution was changed from 40 g to 20 g in the production of seed particles.
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.95 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 3 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 90 S / cm.
  • Example 4 In the production of the dispersion, instead of adding 36.05 g of an iron (III) p-toluenesulfonate hexahydrate 2 mass% aqueous solution (FePTs), 10.10 g of an iron sulfate (FeSO 4 ) 2 mass% aqueous solution was added. Except for the above, a conductive polymer-containing dispersion was obtained in the same manner as in Example 1.
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.46 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 4 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 93 S / cm.
  • Example 5 In the production of the dispersion, instead of reacting the mixture while stirring with a stirring blade and ultrasonic irradiation for 4 hours, the mixture was reacted for 4 hours using a dispersion crusher (trade name: Magic Lab, manufactured by IKA). A conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that the reaction was conducted while being dispersed.
  • a dispersion crusher trade name: Magic Lab, manufactured by IKA
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.46 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 5 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 85 S / cm.
  • Example 6 In the production of the dispersion, instead of adding 8.57 g of 3,4-ethylenedioxythiophene (EDOT), 7.71 g of 3,4-ethylenedioxythiophene (EDOT) and 0.86 g of pyrrole (1H-pyrrole) were added.
  • EDOT 3,4-ethylenedioxythiophene
  • pyrrole 1,4-ethylenedioxythiophene
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.46 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 6 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 87 S / cm.
  • Example 7 In the preparation of seed particles, ammonium persulfate (APS) is added instead of adding potassium persulfate, and in the preparation of dispersion, ammonium persulfate (APS) is added instead of 18.0 g of sodium peroxodisulfate (NaPS). A conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that 0 g was added.
  • APS ammonium persulfate
  • NaPS sodium peroxodisulfate
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.46 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 7 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 93 S / cm.
  • Example 8 In the production of seed particles, a conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that the amount of styrene added was changed from 135 g to 150 g and divinylbenzene (DBV) was not added.
  • DBV divinylbenzene
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.60 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 8 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 94 S / cm.
  • Example 9 In the production of seed particles, a conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that 135 g of styrene and 150 g of dimethybenzene (DVB) were added instead of 150 g of methyl methacrylate (MMA). .
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.38 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 9 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 90 S / cm.
  • Example 10 In the production of seed particles, a conductive polymer-containing dispersion was prepared in the same manner as in Example 1 except that 135 g of styrene and 15 g of divinylbenzene (DBV) were added instead of 150 g of t-butyl methacrylate (t-BMA). A liquid was obtained.
  • DBV divinylbenzene
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.72 ⁇ m. Moreover, when each physical property of the dispersion liquid obtained in Example 10 was measured by the above-mentioned method, solid content concentration was 4.2 mass%, pH was 1.9, and electrical conductivity was 90 S / cm.
  • Example 11 In the production of seed particles, a conductive polymer-containing dispersion was obtained in the same manner as in Example 1, except that 67.5 g of styrene and 67.5 g of methyl methacrylate were added instead of adding 135 g of styrene.
  • the d50 particle size of the seed particles in the polystyrene emulsion was 0.50 ⁇ m. Moreover, when the physical properties of the dispersion liquid obtained in Example 11 were measured by the above-described methods, the solid content concentration was 4.2% by mass, the pH was 1.9, and the conductivity was 92 S / cm.
  • Example 12 In the production of the dispersion, a conductive polymer-containing dispersion was obtained in the same manner as in Example 1 except that stirring with a stirring blade and ultrasonic irradiation were not performed for 4 hours.
  • the d50 particle diameter of the seed particles in the polystyrene emulsion was 0.46 ⁇ m. Further, the physical properties of the dispersion obtained in Example 12 were measured by the above-described method. As a result, the solid content concentration was 4.2% by mass, the pH was 1.9, and the conductivity was 83 S / cm.
  • a cation exchange resin and 300 ml of an anion exchange resin are added to the obtained reaction solution, and the reaction solution is stirred for 12 hours, thereby converting unreacted monomers, an oxidizing agent and an oxidation catalyst into an ion exchange resin. Adsorbed.
  • the ion exchange resin was separated by filtration to obtain a dispersion containing poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid doped therein.
  • the physical properties of the dispersion obtained in Comparative Example 1 were measured by the above-described method.
  • the solid content concentration was 3.0% by mass, the pH was 1.9, and the conductivity was 102 S / cm.
  • the physical properties of the dispersion obtained in Comparative Example 2 were measured by the above-described method.
  • the solid content concentration was 3.0% by mass, the pH was 1.9, and the conductivity was 92 S / cm.
  • Comparative Example 3 A conductive polymer-containing dispersion was obtained in the same manner as in Comparative Example 1 except that stirring with a stirring blade and ultrasonic irradiation were not performed for 4 hours.
  • Table 1 shows the conditions of the method for producing seed particles protected in colloid with polyanions in Examples 1 to 12.
  • Table 2 shows the conditions for the production methods of the conductive polymer-containing dispersions containing seed particles that were protected colloidally with polyanions in Examples 1 to 12.
  • Table 3 shows the conditions of the method for producing the conductive polymer-containing dispersion containing the seed particles protected by colloid with polyanions in Comparative Examples 1 to 4.
  • Table 4 shows the viscosity at each time during the reaction of the conductive polymers of Examples 1 to 12 and Comparative Examples 1 to 3. The viscosity of Comparative Example 4 could not be measured.
  • the conductive polymer-containing dispersion can contain the colloidal seed particles, so that the viscosity during the conductive polymer reaction can be greatly reduced, and the conductivity is practical. It can be seen that the material has sufficient conductivity. Moreover, the dispersion liquid containing the conductive polymer reactant of appropriate viscosity could be obtained in a short time. In Comparative Examples 1 to 3, it can be seen that the viscosity during the reaction of the conductive polymer is very large, and is inferior to the Examples in terms of productivity.
  • the method for producing a conductive polymer-containing dispersion of the present invention uses a conductive polymer-containing dispersion because a dispersion containing a conductive polymer having excellent conductivity can be produced with excellent productivity. Useful for manufacturing electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で、上記単量体を重合する工程を有することを特徴とする導電性重合体含有分散液の製造方法および上記製造方法で得られる導電性重合体含有分散液である。

Description

導電性重合体含有分散液の製造方法
 本発明は、重合中に高粘度になることなく、導電性に優れた導電性重合体含有分散液を製造することができる、生産性に優れた導電性重合体含有分散液の製造方法および導電性重合体含有分散液に関する。
 導電性塗料、帯電防止剤、電磁波遮蔽材料、固体電解質、透明導電性材料、電池材料、コンデンサ材料、センサ材料、導電性接着剤、電子写真材料、感光部材、転写部材等に、共役系導電性重合体が用いられている。
 共役系導電性重合体としては、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリ(p-フェニレン-ビニレン)、ポリアセン、ポリチオフェンビニレン等が知られている。また、共役系導電性重合体の対アニオンとしてポリスチレンスルホン酸等のポリアニオンを用い、共役系導電性重合体をドープする技術が知られている。
 また、共役系導電性重合体モノマーに3,4-エチレンジオキシチオフェン(EDOT)を用い、対アニオンとしてポリスチレンスルホン酸(PSS)を用いたPEDOT-PSSは、透明性および安定性に優れ、導電性が良好である導電性重合体の水分散液であることが知られている。
 例えば、特許文献1又は特許文献2には、ポリアニオンの存在下に共役系導電性重合体を得るための単量体を酸化重合することを特徴とする導電性組成物の製造方法、およびポリアニオンと有機スルホン酸の存在下に共役系導電性重合体を得るための単量体を酸化重合することを特徴とする導電性組成物の製造方法が開示されている。また、特許文献3には、ポリアニオンと共役系導電性重合体を得るためのモノマーとを含む水系もしくは非水系の分散液又は溶液に超音波を照射して前記モノマーを重合することを含む導電性重合体組成物の製造方法が記載されている。
特開2005-76016号公報 特開平7-90060号公報 特表2011-510141号公報
 ところで、導電性重合体は分散媒中で凝集しやすく、導電性重合体を含む分散液は反応時に高粘度になることがある。高粘度の分散液は工業的な取扱いが不便である。高粘度の導電性重合体を含む分散液は、大量生産時に送液に多くのエネルギーが必要となり、装置の耐圧化が必要となる。高粘度の分散液は分散機を用いて低粘度化することができるが、生産性が落ちることとなる。
 本発明は、合成中の粘度が低く、生産性に優れ、かつ導電性に優れた導電性重合体を含む分散液の製造方法および導電性重合体含有分散液を提供することを課題とする。
 本発明者らは、鋭意研究を重ねた結果、ポリアニオンにより保護コロイド化されたシード粒子を用いて導電性重合体含有分散液を製造する方法により、上記課題を解決し得ることを見出した。
 すなわち、本発明は下記1~13に関する。
1. 共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で、上記単量体を重合する重合工程を有することを特徴とする導電性重合体含有分散液の製造方法。
2. 前記シード粒子が、エチレン性不飽和単量体を重合して得られる重合体又は共重合体である、前記1に記載の導電性重合体含有分散液の製造方法。
3. 前記シード粒子のd50粒子径が、0.005~10μmである、前記1又は2に記載の導電性重合体含有分散液の製造方法。
4. 前記重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液をさらに添加する、前記1~3のいずれかに記載の導電性重合体含有分散液の製造方法。
5. 前記重合工程の途上で、生成する共役系導電性重合体を分散処理する、前記1~4のいずれかに記載の導電性重合体含有分散液の製造方法。
6. 前記分散処理を超音波照射によって行う、前記5に記載の導電性重合体含有分散液の製造方法。
7. 前記共役系導電性重合体を得るための単量体が、置換基を有してもよいピロール、置換基を有してもよいアニリン、および置換基を有してもよいチオフェンから選ばれる少なくとも1つである、前記1~6のいずれかに記載の導電性重合体含有分散液の製造方法。
8. 前記重合工程の途上で、生成する共役系導電性重合体を超音波照射により分散処理する、前記1に記載の導電性重合体含有分散液の製造方法。
9. 前記共役系導電性重合体を得るための単量体が、下記式(I)で表される化合物を含むものである、前記1~6および前記8のいずれかに記載の導電性重合体含有分散液の製造方法。
Figure JPOXMLDOC01-appb-C000002
〔式(I)中、R1およびR2は、各々独立に、水素原子、水酸基、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を示し、又は、R1とR2とが互いに結合して環を形成した、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を示す。〕
10. 前記ポリアニオンがスルホン酸基を有するポリマーである、前記1~9のいずれかに記載の導電性重合体含有分散液の製造方法。
11. 前記ポリアニオン中のアニオン基が、前記共役系導電性重合体を得るための単量体1モルに対し、0.25~30モルである、前記1~10のいずれかに記載の導電性重合体含有分散液の製造方法。
12. 前記分散媒が水を含み、
 前記重合が、ペルオキソ二硫酸およびその塩から選ばれる少なくとも一つの酸化剤を用いて行われる、前記1~11のいずれかに記載の導電性重合体含有分散液の製造方法。
13. 前記重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液を、単量体の重合が完了するまでの間の途中の時間の0.1~2倍の時間をかけて添加する前記4に記載の導電性重合体含有分散液の製造方法。
14. 前記重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液を滴下により添加する前記4又は前記13に記載の導電性重合体含有分散液の製造方法。
15. 前記重合途上に添加する、ポリアニオンにより保護コロイド化されたシード粒子の分散液の量は、前記分散媒の総量の10~90質量%である、前記4、前記13および前記15のいずれかに記載の導電性重合体含有分散液の製造方法。
16.前記量体を重合している分散媒の粘度の最大値は5000mPa・s以下である、前記1~15のいずれかに記載の導電性重合体含有分散液の製造方法。
17. 前記1~16のいずれかに記載の製造方法で得られる導電性重合体含有分散液。
18. エチレングリコール、プロピレングリコールおよびグリセリンから選ばれる少なくとも1つの電気伝導率向上剤をさらに含む、前記17に記載の導電性重合体含有分散液。
 本発明の製造方法によれば、導電性に優れた、共役系導電性重合体とポリアニオンにより保護コロイド化されたシード粒子とからなる導電性重合体を含む分散液を、重合中に分散液の粘度が上昇することなく、優れた生産性で製造することができる。
 また本発明によれば、上記製造方法により製造される、導電性に優れた導電性重合体含有分散液を提供することができる。
 本発明の導電性重合体含有分散液の製造方法は、共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で、上記単量体を重合する工程を有することを特徴とする。
[導電性重合体含有分散液]
 本発明の導電性重合体含有分散液は、共役系導電性重合体とポリアニオンにより保護コロイド化されたシード粒子とからなる導電性重合体が、分散媒中に分散した導電性重合体含有分散液である。
 上記導電性重合体は、シード粒子の表面にポリアニオンが保護コロイドとなるように配位し、シード粒子表面のポリアニオンが共役系導電性重合体にドープした粒子状の重合体である。
 シード粒子にドーパントであるポリアニオンを配位させることで、低粘度の分散液とすることができる。さらにシード粒子表面にポリアニオンが配位することで、ポリアニオンと共役系導電性重合体との再配位が可能となり導電性が発現される。
[共役系導電性重合体]
(共役系導電性重合体)
 共役系導電性重合体は、主鎖がπ共役系で構成されている有機高分子であれば特に限定されない。共役系導電性重合体としては、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの共重合体等が挙げられる。これらの中でも、ポリピロール類、ポリチオフェン類およびポリアニリン類が好ましく、ポリチオフェン類がより好ましい。また、共役系導電性重合体は、アルキル基、カルボキシル基、スルホン酸基、アルコキシル基、ヒドロキシル基、シアノ基等の置換基を有するものが高い導電性が得られる点で好ましい。
 好ましい共役系導電性重合体の具体例としては、ポリピロール類として、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)およびポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられ;
 ポリチオフェン類として、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブチレンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)およびポリ(3,4-エチレンオキシチアチオフェン)等が挙げられ;
 ポリアニリン類として、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)およびポリ(3-アニリンスルホン酸)等が挙げられる。
 これらの中でも、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)およびポリ(3,4-エチレンジオキシチオフェン)が、導電性が高い点から好ましい。特に、ポリ(3,4-エチレンジオキシチオフェン)〔通称PEDOT〕は、導電性がより高い上に、耐熱性に優れる点からより好ましい。
 共役系導電性重合体は、1種単独で又は2種以上を組み合わせて用いることができる。
(単量体)
 共役系導電性重合体を得るための単量体としては、置換基を有してもよいピロール、置換基を有してもよいアニリン、および置換基を有してもよいチオフェンから選ばれる少なくとも1つが好ましく用いられる。置換基としては例えば、炭素数1~18のアルキル基、炭素数6~10のアリール基、炭素数5~10のヘテロアリール基、炭素数1~18のアルコキシ基、炭素数1~18のアルキルチオ基、カルボキシル基、ヒドロキシル基、ハロゲン原子およびシアノ基が挙げられる。なお、上記アルキル基、アリール基、ヘテロアリール基、アルコキシ基およびアルキルチオ基は、カルボキシル基、水酸基、ハロゲン原子又はシアノ基で置換されていてもよい。また2つ以上の置換基が縮合して環を形成していてもよい。
 上記単量体の具体例としては、ピロール、N-メチルピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール;
 チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブチレンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、3,4-エチレンオキシチアチオフェン;
 アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。
 共役系導電性重合体を得るための単量体は、1種単独で又は2種以上を組み合わせて用いることができる。
 上記の中でも共役系導電性重合体を得るための単量体として、下記式(I)で表される化合物が含まれることが好ましく、下記式(II)で表される化合物が含まれることがより好ましく、3,4-エチレンジオキシチオフェンが含まれることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記式(I)中、R1およびR2は、各々独立に、水素原子、水酸基、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を示し、又は、R1とR2とが互いに結合して環を形成した、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を示す。置換基としては例えば、炭素数1~18のアルキル基、炭素数6~10のアリール基、炭素数5~10のヘテロアリール基、炭素数1~18のアルコキシ基、炭素数1~18のアルキルチオ基、カルボキシル基、ヒドロキシル基、ハロゲン原子およびシアノ基が挙げられる。なお、上記アルキル基、アリール基、ヘテロアリール基、アルコキシ基およびアルキルチオ基は、カルボキシル基、水酸基、ハロゲン原子又はシアノ基で置換されていてもよい。また2つ以上の置換基が縮合して環を形成していてもよい。
 上記酸素原子含有複素環としては、オキシラン環、オキセタン環、フラン環、ヒドロフラン環、ピラン環、ピロン環、ジオキサン環、トリオキサン環等が挙げられる。
 上記イオウ原子含有複素環としては、チイラン環、チエタン環、チオフェン環、チアン環、チオピラン環、チオピリリウム環、ベンゾチオピラン環、ジチアン環、ジチオラン環、トリチアン環等が挙げられる。
 上記イオウ原子および酸素原子含有複素環としては、オキサチオラン環、オキサチアン環等が挙げられる。
 上記式(II)中、R3およびR4は、各々独立に、水素原子又は置換基を有してもよい炭素数1~4のアルキル基を示し、又は、R3とR4とが互いに結合して環を形成した、置換基を有してもよい炭素数3~6の酸素原子含有複素環を示す。
 R3およびR4は、好ましくはR3とR4とが互いに結合して環を形成した、置換基を有してもよい炭素数3~6の酸素原子含有複素環である。上記酸素原子含有複素環としては、ジオキサン環、トリオキサン環等が挙げられ、好ましくはジオキサン環である。置換基としては例えば、炭素数1~18のアルキル基、炭素数6~10のアリール基、炭素数5~10のヘテロアリール基、炭素数1~18のアルコキシ基、炭素数1~18のアルキルチオ基、カルボキシル基、ヒドロキシル基、ハロゲン原子およびシアノ基が挙げられる。なお、上記アルキル基、アリール基、ヘテロアリール基、アルコキシ基およびアルキルチオ基は、カルボキシル基、水酸基、ハロゲン原子又はシアノ基で置換されていてもよい。また2つ以上の置換基が縮合して環を形成していてもよい。
[保護コロイド化されたシード粒子]
(シード粒子)
 本発明に用いるシード粒子は、分散媒体中でポリアニオンによって保護コロイド化されるものであればよく、好ましい例として、エチレン性不飽和単量体を重合して得られる重合体又は共重合体の粒子が挙げられる。シード粒子の分散媒体中に分散している粒径のd50(体積基準での50%メジアン径)は、0.005~10μmであることが好ましく、より好ましくは0.02~2μmであり、さらに好ましくは0.05~1μmである。シード粒子の粒子径分布は、日機装(株)製、マイクロトラックUPA型粒度分布測定装置にて測定できる。
 エチレン性不飽和単量体としては、少なくとも1個の重合可能なビニル基を有するものであればよく、例えば、直鎖状、分岐状又は環状のアルキル鎖を有する(メタ)アクリル酸エステル類(例えば、メチルメタクリレートおよびt-ブチルメタアクリレート等)、スチレン、α-メチルスチレン等の芳香族ビニル化合物、ビニルピロリドン等の複素環式ビニル化合物、ヒドロキシアルキル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレート、酢酸ビニルやアルカン酸ビニルに代表されるビニルエステル類、モノオレフィン類(エチレン、プロピレン、ブチレン、イソブチレン等)、共役ジオレフィン類(ブタジエン、イソプレン、クロロプレン等)、α,β-不飽和モノあるいはジカルボン酸(アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等)、アクリロニトリル等のシアン化ビニル化合物、アクロレインやダイアセトンアクリルアミド等のカルボニル基含有エチレン性不飽和単量体が挙げられる。これらのエチレン性不飽和単量体は、1種単独又は2種以上を組み合わせて使用してもよい。また芳香族ビニル化合物の中でも、スチレンを用いることが好ましい。
 また、必要に応じて、グリシジル(メタ)アクリレート等のエポキシ基含有α,β-エチレン性不飽和化合物、ビニルトリエトキシシランやγ-メタクリロキシプロピルトリメトキシシラン等の加水分解性アルコキシシリル基含有α,β-エチレン性不飽和化合物、多官能ビニル化合物(エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート等)等の架橋性モノマーを重合体又は共重合体に導入し、それ自身同士を架橋させるか、もしくは活性水素基を持つエチレン性不飽和化合物成分と組み合わせて架橋させる、又はカルボニル基含有α,β-エチレン性不飽和化合物(特にケト基含有のものに限る)等の架橋性モノマーを重合体又は共重合体に導入し、ポリヒドラジン化合物(特に2つ以上のヒドラジド基を有する化合物;シュウ酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリアクリル酸ヒドラジド等)と組み合わせて架橋させてもよい。このように重合体又は共重合体に架橋性モノマーを導入することで、導電性重合体の耐水、耐湿、耐熱性を向上させることができる。上記架橋性モノマーの導入させる割合は、重合体又は共重合体に対して、好ましくは50%以下であり、より好ましくは35%以下であり、さらに好ましくは25%以下である。
(ポリアニオン)
 本発明に用いられるポリアニオンは、アニオン性基を有するポリマーである。アニオン性基としては、スルホン酸又はその塩からなる基、リン酸又はその塩からなる基、一置換リン酸エステル基、カルボン酸又はその塩からなる基、一置換硫酸エステル基等が挙げられる。これらのうち、強酸性基が好ましく、スルホン酸又はその塩からなる基、リン酸又はその塩からなる基がより好ましく、スルホン酸又はその塩からなる基がさらに好ましい。アニオン性基はポリマー主鎖に直接結合していてもよいし、側鎖に結合していてもよい。側鎖にアニオン性基が結合している場合、ドープ効果をより顕著に果たすので、アニオン性基は側鎖の末端に結合していることが好ましい。
 ポリアニオンは、アニオン性基以外の置換基を有してもよい。該置換基としては、アルキル基、ヒドロキシ基、アルコキシ基、フェノール基、シアノ基、フェニル基、ヒドロキシフェニル基、エステル基、ハロゲノ基、アルケニル基、イミド基、アミド基、アミノ基、オキシカルボニル基、カルボニル基等が挙げられる。これらの中でアルキル基、ヒドロキシ基、シアノ基、フェノール基、オキシカルボニル基が好ましく、アルキル基、ヒドロキシ基、シアノ基がより好ましい。当該置換基はポリマー主鎖に直接結合していてもよいし、側鎖に結合していてもよい。側鎖に当該置換基が結合している場合、当該置換基のそれぞれの作用を果たすために、置換基は側鎖の末端に結合していることが好ましい。
 ポリアニオン中に置換し得るアルキル基は、分散媒への溶解性および分散性、共役系導電性重合体との相溶性および分散性等を高くする作用が期待できる。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等の鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。分散媒への溶解性、共役系導電性重合体への分散性、立体障害等を考慮すると、炭素数1~12のアルキル基がより好ましい。
 ポリアニオン中に置換し得るヒドロキシ基は、他の水素原子等との水素結合を形成しやすくし、分散媒への溶解性、共役系導電性重合体との相溶性、分散性、接着性を高くする作用が期待できる。ヒドロキシ基は、ポリマー主鎖に結合した炭素数1~6のアルキル基の末端に結合したものが好ましい。
 ポリアニオン中に置換し得るシアノ基およびヒドロキシフェニル基は、共役系導電性重合体との相溶性、分散媒への溶解性、耐熱性を高くする作用が期待できる。シアノ基は、ポリマー主鎖に直接結合したもの、ポリマー主鎖に結合した炭素数1~7のアルキル基の末端に結合したもの、ポリマー主鎖に結合した炭素数2~7のアルケニル基の末端に結合したものが好ましい。
 ポリアニオン中に置換し得るオキシカルボニル基は、ポリマー主鎖に直接結合した、アルキルオキシカルボニル基、アリールオキシカルボニル基、他の官能基を介在してなるアルキルオキシカルボニル基又はアリールオキシカルボニル基が好ましい。
 ポリアニオンのポリマー主鎖は、特に制限されない。ポリマー主鎖としては、例えば、ポリアルキレン、ポリイミド、ポリアミド、ポリエステル等が挙げられる。これらのうち、合成や入手し易さの観点から、ポリアルキレンが好ましい。
 ポリアルキレンは、エチレン性不飽和単量体の繰り返し単位で構成されるポリマーである。ポリアルキレンは主鎖に炭素-炭素二重結合を有してもよい。ポリアルキレンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリ(3,3,3-トリフルオロプロピレン)、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレート、ポリスチレン、ポリブタジエン、ポリイソプレン等が挙げられる。
 ポリイミドとしては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2,3,3-テトラカルボキシジフェニルエーテル二無水物、2,2-[4,4’-ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の酸無水物とオキシジアニリン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとの重縮合反応で得られるものが挙げられる。
 ポリアミドとしては、ポリアミド6、ポリアミド6,6、ポリアミド6,10等が挙げられる。
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
 ポリアニオンとして好適に用いられるスルホン酸基を有するポリマーの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸等が挙げられる。これらは単独重合体であってもよいし、2種以上の共重合体であってもよい。これらのうち、導電性付与の点から、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましく、ポリスチレンスルホン酸〔通称PSS〕がより好ましい。
 ポリアニオン、特にスルホン酸基を有するポリマーは、共役系導電性重合体の熱分解を緩和することができ、共役系導電性重合体を得るための単量体の分散媒中での分散性を向上させ、さらに共役系導電性重合体のドーパントとして機能する。
 本発明に用いられるポリアニオンは、その重量平均分子量が好ましくは1,000~1,000,000、より好ましくは5,000~500,000であり、さらに好ましくは10,000~300,000である。重量平均分子量がこの範囲にあると、ポリアニオンの分散媒への溶解性、ポリアニオンと共役系導電性重合体との相溶性が良好となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、ポリスチレン換算分子量として測定する。
 ポリアニオンは市販品の中から選ばれる上記特性を有するものであってもよいし、又は公知の方法によって合成して得られるものであってもよい。ポリアニオンの合成法としては、例えば、Houben-Weyl, "Methoden derorganischen Chemle" Vol. E20, Makromolekulare Stoffe, No. 2 (1987) p1141 に記載の方法、および特許文献1~3等に記載の方法等が挙げられる。
 シード粒子の保護コロイド化に使用されるものと、重合開始前に予め仕込んでおくもの又は重合途上で添加するものとを合わせた、ポリアニオンの総使用量は、ポリアニオン中のアニオン性基が、共役系導電性重合体を得るための単量体1モルに対して、好ましくは0.25~30モル、より好ましくは0.8~25モル、さらに好ましくは1~20モルとなる量である。
 また、本発明の製造方法における共役系導電性重合体100質量部に対するポリアニオンの使用量は、好ましくは10~30,000質量部、より好ましくは50~25,000質量部であり、さらに好ましくは100~20,000質量部である。
 ポリアニオンの使用量が多すぎると導電性重合体の導電性が低下する傾向があり、ポリアニオンの使用量が少なすぎると導電性重合体の分散媒中での分散性が低下する傾向がある。なお、エレクトロルミネッセント装置の正孔注入層に使用される場合は、発光効率を向上させるために、本発明の製造方法における共役系導電性重合体に対するポリアニオンの使用量を増やすことができる。
(保護コロイド化されたシード粒子の製造)
 シード粒子は、分散媒体中でポリアニオンによって保護コロイド化されるものであり、分散媒中に分散した保護コロイド化されたシード粒子の分散液は、樹脂エマルジョンとして製造することができる。
 樹脂エマルジョンの重合反応は、ラジカル重合反応であり、常圧反応器又は耐圧反応器を用い、バッチ式、半連続式、連続式のいずれかの方法で行われる。また、重合時の反応安定性や重合体の均一性の点から、エチレン性不飽和単量体およびポリアニオンを、それぞれ分散媒体中に予め溶解、乳化又は分散させ、該ポリアニオン含有液にエチレン性不飽和単量体溶液を連続的又は断続的に添加して重合させることが好ましい。
 反応温度は、通常、10~100℃で行われるが、30~90℃が一般的である。反応時間は、特に制限されることはなく、各成分の使用量、重合開始剤の種類および反応温度等に応じて適宜調整すればよい。
 ラジカル重合する際、保護コロイドであるポリアニオンがエマルジョン粒子の安定性に寄与するが、必要に応じてアニオン性乳化剤、ノニオン性乳化剤および反応性乳化剤等の乳化剤や、脂肪族アミン等を重合系内に添加してもよい。乳化剤、脂肪族アミンの種類や使用量は、ポリアニオンの使用量、エチレン性不飽和単量体の組成をはじめとした種々の条件に応じて適宜調節すればよい。
 このようなラジカル重合反応に使用する乳化剤としては、例えば、アルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルフォン酸塩、ポリオキシアルキレンアルキル硫酸塩、ポリオキシアルキレンアルキルリン酸エステル等のアニオン性乳化剤、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル等のノニオン系界面活性剤が挙げられる。
 脂肪族アミンとしては、オクチルアミン、ラウリルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン等の1級アミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン等の2級アミン、N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン、N,N-ジメチルパルミチルアミン、N,N-ジメチルステアリルアミン、N.N-ジメチルベヘニルアミン、N,N-ジメチルオレイルアミン、N-メチルジデシルアミン、N-メチルジオレイルアミン等の3級アミン等が挙げられる。
 乳化剤および脂肪族アミンは、1種単独又は2種以上を組み合わせて使用してもよい。
 また、得られる導電性重合体の特性を損なわない範囲で、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン等の水溶性高分子を併用してもよい。
 分散媒体は水性媒体であり、水、又は水と水溶性溶媒の混合溶媒が挙げられる。混合溶媒中での水溶性溶媒の割合は0~30質量%が好ましい。水溶性溶媒の割合が30質量%を超えると、合成樹脂エマルジョンの重合安定性を著しく低下させる傾向にある。水溶性溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン等のケトン類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のエーテル類等が挙げられる。
 ラジカル重合に際して使用される重合開始剤としては、公知慣用のものを使用することができる。重合開始剤は、例えば、過酸化水素、過硫酸、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物類、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物類、2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物類が挙げられる。また、必要に応じて、これらの重合開始剤をナトリウムスルホキシレートホルムアルデヒド、アスコルビン酸類、亜硫酸塩類、酒石酸又はその塩類、硫酸鉄(II)等と組み合わせてレドックス重合としてもよい。また、必要に応じて、アルコール類、メルカプタン類等の連鎖移動剤を使用してもよい。
 また、保護コロイド化されたシード粒子の製造におけるポリアニオンの使用量100質量部に対するエチレン性不飽和単量体の使用量は、好ましくは10~100質量部、より好ましくは20~90質量部、さらに好ましくは10~60質量部である。エチレン性不飽和単量体の上記使用量が10質量部未満であると、共役系導電性重合体に占めるポリアニオンによって保護コロイド化されたシード粒子を含む導電性重合体の割合が小さくなり、重合時の増粘抑制効果が得られにくくなる。100質量部を超えると、保護コロイド化されたシード粒子の安定性が低下するおそれがある。
[導電性重合体含有分散液の製造方法]
 本発明の製造方法は、共役系導電性重合体を得るための単量体を重合する工程を特徴とする。上記重合工程は、共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で行われる。
(重合中の分散液の粘度)
 重合中の分散液の粘度の最大値は、好ましくは5000mPa・s以下であり、より好ましくは4500mPa・s以下であり、さらに好ましくは4000mPa・s以下である。重合中の分散液の粘度の最大値が5000mPa・s以下であると、工業的な取扱いが容易になり、大量生産時に送液に要するエネルギーを低減できる。なお、重合中の分散液の粘度は、25℃においてB型粘度計で、No.2のローターを用いて測定した値である。
(単量体液)
 共役系導電性重合体を得るための単量体を分散媒中で重合するためには、該単量体、ポリアニオンにより保護コロイド化されたシード粒子の分散液(樹脂エマルジョン)および必要に応じて添加剤を分散媒に添加し、単量体と保護コロイド化されたシード粒子とを含む分散液(以下、単に単量体液と称すことがある)を得る。
 上記単量体液は、せん断力もしくはキャビテーションを用いた乳化・分散可能な撹拌装置によって調製してもよい。前記撹拌装置として、超高圧ホモジナイザー、高圧ホモジナイザー、低圧ホモジナイザー、ホモミキサー、ハイシェアミキサー、ディスパー、ボールミル、超音波装置、超臨界装置があげられる。ラモンドナノミキサー(商標登録)のような駆動部を持たない静止型流体混合器であってもよい。超音波照射による上記単量体液の調製が好ましい。超音波照射エネルギーは、均一な単量体液が得られるのであれば、特に限定されない。超音波照射は、消費電力5~500W/L(リットル)で、照射時間0.1~2時間/L(リットル)行うことが好ましい。なお、超音波照射の代わりに、又は超音波照射とともに、ハイシェアミキサー等(例えば、マジックラボ、クレアミックス、マイルダー、キャビトロン等)の強力な乳化・分散装置によって単量体液の調製を行ってもよい。
 また、重合開始前の共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散液中には、重合の途上に生成する共役系導電性重合体の凝集を抑える観点から、上記保護コロイド化されたシード粒子の分散液に加え、さらにポリアニオンを含有させることができる。
 上記ポリアニオンは単量体液に添加し、溶解、乳化又は分散させることによって、単量体液に含有させることができる。単量体液に、保護コロイド化されたシード粒子の分散液以外にポリアニオンを含有させる場合、その重合開始前における量は、使用するポリアニオンの、シード粒子の保護コロイドを除いた総量の5~99質量%が好ましく、10~90質量%がより好ましく、20~80質量%がさらに好ましい。
(分散媒)
 単量体の重合に用いられる分散媒は、共役系導電性重合体とポリアニオンにより保護コロイド化されたシード粒子とからなる導電性重合体を分散させることができるものであれば特に限定されないが、シード粒子の分散液に用いたのと同じ種類のものが好ましい。
 分散媒として、例えば、水;N-ビニルピロリドン、ヘキサメチルホスホルトリアミド、N-ビニルホルムアミド、N-ビニルアセトアミド等のアミド類;クレゾール、フェノール、キシレノール等のフェノール類;ジプロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ジグリセリン、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール等の多価アルコール類;エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物;ジオキサン、ジエチルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等のエーテル類;3-メチル-2-オキサゾリジノン等の複素環化合物;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類等が挙げられる。
 これら溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。これらのうち、水を1~99質量%含む分散媒を用いることが好ましく、水を50~99質量%含むことがより好ましく、水を単独で用いることがさらに好ましい。
 分散媒の使用量は、共役系導電性重合体を得るための単量体とポリアニオンにより保護コロイド化されたシード粒子の総計100質量部に対して、好ましくは10~100,000質量部、より好ましくは100~50,000質量部であり、さらに好ましくは300~20,000質量部である。分散媒の使用量が少なすぎると分散液の粘度が高くなる傾向がある。分散媒の使用量が多すぎると、分散液から分散媒を除去するための操作に時間を要する等して本発明の分散液を用いた膜等の物品の生産効率が低下する傾向がある。
(酸化剤)
 上記単量体の重合において、例えば、ポリピロール類やポリチオフェン類を共役系導電性重合体として含む分散液を製造する場合、酸化剤の存在下に所定の温度にすることによって重合が開始される。
 酸化剤としては、過硫酸、および、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩;三フッ化ホウ素等の金属ハロゲン化合物;塩化第二鉄、硫酸第二鉄、塩化第二銅等の遷移金属化合物;酸化銀、酸化セシウム等の金属酸化物;過酸化水素、オゾン等の過酸化物;過酸化ベンゾイル等の有機過酸化物;酸素等が挙げられる。これらのうち過硫酸および過硫酸塩が好ましく、過硫酸塩がより好ましい。上記酸化剤は、1種単独で又は2種以上を組み合わせて用いることができる。
(重合温度)
 上記単量体の重合における重合時の温度は通常、0~100℃であり、好ましくは5~80℃であり、より好ましくは10~60℃であり、さらに好ましくは15~40℃である。
 重合時の温度を上記範囲内にすると、適度な反応速度で重合を行うことができ、重合中の粘度の上昇を抑えることができ、導電性重合体を含む分散液の製造を安定的に且つ経済的な時間で行うことができ、且つ得られる導電性重合体の導電率が高くなる傾向がある。重合時の温度は、公知のヒータやクーラを用いることにより管理することができる。また必要に応じ、上記範囲内で温度を変化させながら重合を行ってもよい。
(分散処理)
 本発明の導電性重合体含有分散液の製造方法においては、重合工程の途上に、生成する共役系導電性重合体を分散処理することをさらに含むことが好ましい。
 この分散処理は、せん断力もしくはキャビテーションを用いた乳化・分散可能な撹拌装置によって行ってもよい。上記撹拌装置として、超高圧ホモジナイザー、高圧ホモジナイザー、低圧ホモジナイザー、ホモミキサー、ハイシェアミキサー、ディスパー、ボールミル、超音波装置、超臨界装置があげられる。ラモンドナノミキサー(商標登録)のような駆動部を持たない静止型流体混合器であってもよい。この分散処理は、超音波照射によって行うことが好ましい。この分散処理によって、長い主鎖を有する共役系導電性重合体の凝集を抑制することができる。超音波照射エネルギーは、共役系導電性重合体の凝集を抑制することができる限り、特に限定されない。超音波照射は、消費電力5~500W/Lで、反応終了時まで行うことが好ましい。
(シード粒子の分散液の添加)
 また、単量体の重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液をさらに添加することが好ましい。重合工程の途上で、所定量の保護コロイド化されたシード粒子の分散液の一部をさらに添加することで、重合時の反応液の増粘を抑制でき撹拌混合効率の向上や製造装置への負荷を低減することができる。
 重合途上に添加する保護コロイド化されたシード粒子の分散液の量は、使用する保護コロイド化されたシード粒子の分散液の総量の10~90質量%が好ましく、20~70質量%がより好ましい。
 単量体の重合工程の途上とは、共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で、上記単量体が重合を開始してから終了するまでの間の途中の時間である。例えば、上記分散媒に酸化剤を重合開始剤として添加する場合、単量体の重合工程の途上とは、上記分散媒に酸化剤を添加してから、単量体の重合が完了するまでの間の途中の時間である。重合の完了とは共役系導電性重合体を得るための単量体の残存率が10%以下になるときとする。
 単量体の重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液を、所定時間かけて添加してもよい。シード粒子を含む、単量体を重合中の分散液は、時間の経過とともに徐々に大きくなるので、シード粒子を含む、単量体を重合中の分散液の粘度が低いときは、添加したシード粒子の分散液の添加量は少なく、シード粒子を含む、単量体を重合中の分散液の粘度が大きくなったとき、シード粒子の分散液の添加量は多くなる。これにより、シード粒子を含む、単量体を重合中の分散液の粘度を適切に低下させることができる。シード粒子の分散液の添加にかける時間は、好ましくは単量体の重合が完了するまでの間の途中の時間の0.01~4倍の時間であり、より好ましくは0.1~2倍の時間であり、さらに好ましくは0.25~1.5倍の時間である。また、シード粒子の分散液の添加は連続的に行ってもよいし、間欠的に行ってもよい。さらに、シード粒子の分散液の添加は、重合の開始とともに始めてもよいし、重合の開始から所定時間経過後から始めてもよい。また、重合中の分散液の粘度が反応開始時点に対して1.1倍値以上なったら、シード粒子の分散液の添加を始めてもよい。これにより、シード粒子を含む、単量体を重合中の分散液の粘度が高くなるときにシード粒子の分散液を添加するので、シード粒子を含む、単量体を重合中の分散液の粘度を効果的に低下させることができる。
 シード粒子の分散液の添加速度は一定でもよい。また、重合中のシード粒子の分散媒に、シード粒子の分散液を徐々に添加してシード粒子を含む、単量体を重合中の分散液の粘度を適切に低下させるために、シード粒子を含む、単量体を重合中の分散液に、シード粒子の分散液を滴下してもよい。これにより、単量体の重合工程の途上に添加するシード粒子の分散液を重合中の分散媒に均一に分散させながら添加することができる。さらに、シード粒子の分散液の添加速度は、重合中の分散液の粘度に応じて変わるようにしてもよい。これにより、重合中の分散液の粘度が高くなるとき、シード粒子の分散液の添加速度を大きくできるので、添加する対象の分散液の粘度を効果的に低下させることができる。
 単量体の重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液を添加する平均添加速度は、単量体100g当たり、好ましくは10~200g/hrであり、より好ましくは20~100g/hrであり、さらに好ましくは40~80g/hrである。
 単量体の重合工程の途上に添加する分散液のシード粒子は、添加する対象の分散媒のシード粒子と異なるものであってもよい。これにより、単量体の重合工程の途上に添加すると効果的に重合中の分散媒の粘度を低減させることができるシード粒子を選択することができる。
(ポリアニオンの添加)
 また、単量体の重合工程の途上に、シード粒子を保護コロイド化するために用いるポリアニオンをさらに添加してもよい。重合工程の途上で、所定量のポリアニオンの一部をさらに添加することで重合時の反応液の増粘を抑制でき撹拌混合効率の向上や製造装置への負荷を低減することができる。
 重合途上にポリアニオンを添加する場合、その量は、使用するポリアニオンの総量の5~90質量%が好ましく、20~70質量%がより好ましい。
(添加剤)
 本発明の製造方法に用いられる単量体液又は本発明の製造方法によって得られる導電性重合体含有分散液に、必要に応じて添加剤を添加することができる。
 上記添加剤は、共役系導電性重合体およびポリアニオンにより保護コロイド化されたシード粒子と混合しうるものであれば特に制限されない。上記添加剤としては、例えば、水溶性高分子化合物、水分散性化合物、アルカリ性化合物、界面活性剤、消泡剤、カップリング剤、酸化防止剤、電気伝導率向上剤等が挙げられ、これら添加剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 水溶性高分子化合物は、高分子の主鎖又は側鎖にカチオン性基やノニオン性基を有する水溶性ポリマーである。水溶性高分子化合物の具体例としては、例えば、ポリオキシアルキレン、水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミド、水溶性ポリアクリル、水溶性ポリアクリルアミド、ポリビニルアルコール、ポリアクリル酸等が挙げられる。これらのうち、ポリオキシアルキレンが好ましい。
 ポリオキシアルキレンの具体例としては、ジエチレングリコール、トリエチレングリコール、オリゴポリエチレングリコール、トリエチレングリコールモノクロルヒドリン、ジエチレングリコールモノクロルヒドリン、オリゴエチレングリコールモノクロルヒドリン、トリエチレングリコールモノブロムヒドリン、ジエチレングリコールモノブロムヒドリン、オリゴエチレングリコールモノブロムヒドリン、ポリエチレングリコール、グリシジルエーテル類、ポリエチレングリコールグリシジルエーテル類、ポリエチレンオキシド、トリエチレングリコール・ジメチルエーテル、テトラエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジエチルエーテル・ジエチレングリコール・ジブチルエーテル、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリプロピレンジオキシド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等が挙げられる。
 水分散性化合物は、親水性の低い化合物の一部が親水性の高い官能基で置換されたもの、あるいは、親水性の低い化合物の周囲に親水性の高い官能基を有する化合物が吸着したもの(例えばエマルジョン等)であって、水中で沈殿せずに分散するものが挙げられる。具体例としては、ポリエステル、ポリウレタン、アクリル樹脂、シリコーン樹脂、およびこれらポリマーのエマルジョン等が挙げられる。
 水溶性高分子化合物および水分散性化合物は、1種単独で又は2種以上を組み合わせて用いることができる。水溶性高分子化合物および水分散性化合物を添加すると導電性重合体を含む分散液の粘度調節ができたり、塗装性能を向上させたりすることができる。
 水溶性高分子化合物および水分散性化合物の量は、共役系導電性重合体とポリアニオンにより保護コロイド化されたシード粒子との合計100質量部に対して、好ましくは1~4000質量部、より好ましくは20~2000質量部であり、さらに好ましくは50~500質量部である。
 導電性重合体を含む分散液に、アルカリ性化合物を添加してもよい。アルカリ性化合物の添加によって分散液を適用した物品に耐腐食性を付与することでき、また導電性重合体含有分散液のpHを調整することができる。例えば、固体電解コンデンサに使用される金属および金属酸化物の腐食を防止するために、pHを3~13にすることが好ましく。より好ましくはpH4~9さらに好ましくはpH5~7に調整される。pHが3以上であれば、アルミニウム等の使用する弁金属によって腐食が進行するおそれがなくなる。また、pH13以下であれば、導電性重合体においてドープしているポリアニオンの脱ドープが起こるおそれがなくなる。
 アルカリ性化合物として、公知の無機アルカリ性化合物や有機アルカリ性化合物を使用できる。無機アルカリ性化合物としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等が挙げられる。有機アルカリ性化合物として、芳香族アミン、脂肪族アミン、アルカリ金属アルコキシド等が挙げられる。
 芳香族アミンのうち、窒素含有ヘテロアリール環化合物が好ましい。窒素含有ヘテロアリール環化合物は芳香族性を示す窒素含有ヘテロ環化合物である。芳香族アミンにおいては、ヘテロ環に含まれる窒素原子が他の原子と共役関係を持つ。
 窒素含有ヘテロアリール環化合物としては、ピリジン類、イミダゾール類、ピリミジン類、ピラジン類、トリアジン類等が挙げられる。これらのうち、溶媒溶解性等の観点から、ピリジン類、イミダゾール類、ピリミジン類が好ましい。
 脂肪族アミンとしては、例えば、エチルアミン、n-オクチルアミン、ジエチルアミン、ジイソブチルアミン、メチルエチルアミン、トリメチルアミン、トリエチルアミン、アリルアミン、2-エチルアミノエタノール、2,2’-イミノジエタノール、N-エチルエチレンジアミン等が挙げられる。
 アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド、ナトリウムエトキシド等のナトリウムアルコキシド、カリウムアルコキシド、カルシウムアルコキシド等が挙げられる。
 界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、燐酸エステル塩等の陰イオン界面活性剤;アミン塩、4級アンモニウム塩等の陽イオン界面活性剤;カルボキシベタイン、アミノカルボン酸塩、イミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等の非イオン界面活性剤等が挙げられる。
 消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンレジン等が挙げられる。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、りん系酸化防止剤、硫黄系酸化防止剤、糖類、ビタミン類等が挙げられる。
 電気伝導率向上剤は、導電性重合体を含む分散液の電気伝導率を増大させるものであれば特に制限されない。電気伝導率向上剤としては、例えば、テトラヒドロフラン等のエーテル結合を含む化合物;γ-ブチロラクトン、γ-バレロラクトン等のラクトン基を含む化合物;カプロラクタム、N-メチルカプロラクタム、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、N-メチルホルムアニリド、N-メチルピロリドン、N-オクチルピロリドン、ピロリドン等のアミド若しくはラクタム基を含む化合物;テトラメチレンスルホン、ジメチルスルホキシド等のスルホン化合物若しくはスルホキシド化合物;スクロース、グルコース、フルクトース、ラクトース等の糖類又は糖類誘導体;ソルビトール、マンニトール等の糖アルコール類;スクシンイミド、マレイミド等のイミド類;2-フランカルボン酸、3-フランカルボン酸等のフラン誘導体;エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール等のジアルコール若しくはポリアルコール等が挙げられる。これらのうち、電気伝導率向上の観点から、テトラヒドロフラン、N-メチルホルムアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、グリセリン、ジメチルスルホキシド、ソルビトールが好ましく、中でもエチレングリコール、プロピレングリコール、およびグリセリンがより好ましい。電気伝導率向上剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 本発明の製造方法によれば、シード粒子表面にポリアニオンが配位することで、導電性重合体の粒径が制御でき、重合時の増粘を抑制することができ導電性重合体含有分散液の生産性が優れたものとなる。また、導電性重合体においてドーパントであるポリアニオンへの共役系導電性重合体の配位が可能となり、透明性を有しつつ導電性が発現される。
 また、本発明の製造方法によって得られる分散液を物品に付着させた後、分散媒を除去することによって物品に導電性等の機能を付与することができる。付着手段としては、塗布、噴霧、浸漬等が挙げられる。本発明の製造方法によって得られる分散液から分散媒を除去することによって、導電性重合体の膜等の成形品を得ることができる。分散媒の除去方法として、室温乾燥、熱風乾燥、遠赤外線照射乾燥等の公知の手法を用いることができる。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 また、実施例および比較例における各物性の測定は次のとおりおこなった。
(1)固形分濃度
 分散液中の固形分濃度は、各例で得られた分散液を試料容器におよそ2g秤量し、105℃の乾燥機中に1時間静置した後、試料容器中の試料の質量を測定し、乾燥前の質量に対する乾燥後の質量、すなわち〔乾燥後質量/乾燥前質量〕を固形分濃度として算出した。
(2)粘度
 重合中の分散液の粘度は、25℃においてB型粘度計で、No.2のローターを用いて測定した。
(3)pH
 各例で得られた分散液のpHは、25℃においてpHメーター(東亜ディーケーケー(株)製、型式HM-30G)を用いて測定した
(4)電導度
 各例で得られた分散液100gを撹拌しながら、該分散液にアンモニア水を添加した。次いで、エチレングリコール10gを添加し、pH4.5の変性分散液を得た。JIS K 7194に準じて、pH調整された分散液をガラス板上に流涎し、100℃にて熱風乾燥させて厚さ10μmの膜を形成させた。該膜の導電率をロレスタ(三菱化学(株)製)により測定した。
(5)シード粒子の粒径
 日機装(株)製マイクロトラックUPA型粒度分布測定装置により測定した。
[実施例1]
(ポリアニオンによって保護コロイド化されたシード粒子の製造方法)
 ポリスチレンスルホン酸ナトリウム(東ソー有機化学(株)製、商品名ポリナスPS-5、重量平均分子量:約120,000)22質量%水溶液1000gを窒素雰囲気化で撹拌しながら、80℃に昇温した。この溶液に、過硫酸カリウム2gを添加し、一方、スチレン135gとジビニルベンゼン(DVB)15gとポリスチレンスルホン酸ナトリウム(同上)22質量%水溶液500gからなる単量体乳化物および2.5質量%の過硫酸カリウム水溶液40gを、それぞれ、2時間、2.5時間かけて滴下した。滴下終了後2時間80℃を維持した後に室温まで冷却した。得られた反応液に陽イオン交換樹脂1500mlおよび陰イオン交換樹脂1500mlを添加し、12時間撹拌したのち、イオン交換樹脂をろ別して、ポリアニオンによって保護コロイド化されたシード粒子の分散液(ポリスチレンエマルジョン)を得た。得られたポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。
(ポリアニオンによって保護コロイド化されたシード粒子を含む導電性重合体含有分散液の製造方法)
 イオン交換水579.94g、上記ポリスチレンエマルジョン(不揮発分28.0質量%)71.15gおよびp-トルエンスルホン酸鉄(III)6水和物(FePTs)2質量%水溶液36.05gを27℃にて混ぜ合わせた。この溶液に27℃にて超音波を照射しながら3,4-エチレンジオキシチオフェン(EDOT)8.57gを添加し混ぜ合わせた。
 得られた混合液に27℃にて撹拌翼による撹拌と超音波照射とをしながらペルオキソ二硫酸ナトリウム(NaPS)18.0gを添加して重合反応を開始させた。次いで、予め仕込んだものと同じポリスチレンエマルジョン47.8g、イオン交換水237.9gを混合し、4時間かけて滴下した。その後、27℃にて4時間撹拌翼による撹拌と超音波照射とをしながら反応させた。
 反応終了後、得られた反応液に陽イオン交換樹脂300mlおよび陰イオン交換樹脂300mlを添加して、反応液を12時間撹拌することによって、未反応モノマー、酸化剤および酸化触媒をイオン交換樹脂に吸着させた。該イオン交換樹脂をろ別して、ポリスチレンスルホン酸によって保護コロイド化されたシード粒子(ポリスチレンエマルジョン)および上記ポリスチレンスルホン酸によりドーピングされたポリ(3,4-エチレンジオキシチオフェン)からなる導電性重合体含有分散液を得た。
 実施例1で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が93S/cmであった。
[実施例2]
 シード粒子の製造で、ポリスチレンスルホン酸ナトリウム(東ソー有機化学(株)製、商品名ポリナスPS-5、重量平均分子量:約120,000)22質量%水溶液の代わりにポリスチレンスルホン酸ナトリウム(東ソー有機化学(株)製、商品名ポリナスPS-1、分子量:約10,000~約30,000)を使用した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.15μmであった。また、実施例2で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が95S/cmであった。
[実施例3]
 シード粒子の製造で、2.5質量%の過硫酸カリウム水溶液の添加量を40gから20gに変更した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.95μmであった。また、実施例3で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が90S/cmであった。
[実施例4]
 分散液の製造で、p-トルエンスルホン酸鉄(III)6水和物2質量%水溶液(FePTs)を36.05g添加する代わりに硫酸鉄(FeSO4)2質量%水溶液を10.10g添加した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。また、実施例4で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が93S/cmであった。
[実施例5]
 分散液の製造で、4時間撹拌翼による撹拌と超音波照射とを実施しながら混合液を反応させる代わりに分散粉砕機(IKA社製、商品名マジックラボ)を使用して混合液を4時間分散させながら反応させた以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。また、実施例5で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が85S/cmであった。
[実施例6]
 分散液の製造で、3,4-エチレンジオキシチオフェン(EDOT)8.57g添加する代わりに3,4-エチレンジオキシチオフェン(EDOT)7.71gおよびピロール(1H-ピロール)0.86g添加し、撹拌翼による撹拌と超音波照射とを実施する時間を4時間から3時間に変更した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。また、実施例6で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が87S/cmであった。
[実施例7]
 シード粒子の製造で、過硫酸カリウムを添加する代わりに過硫酸アンモニウム(APS)を添加し、分散液の製造で、ペルオキソ二硫酸ナトリウム(NaPS)18.0g添加する代わりに過硫酸アンモニウム(APS)17.0g添加した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。また、実施例7で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が93S/cmであった。
[実施例8]
 シード粒子の製造で、スチレンの添加量を135gから150gに変更し、ジビニルベンゼン(DBV)を添加しなかった以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.60μmであった。また、実施例8で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が94S/cmであった。
[実施例9]
 シード粒子の製造で、スチレンを135gおよびジビニルベンゼン(DVB)15g添加する代わりにメチルメタアクリレート(MMA)150g添加した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.38μmであった。また、実施例9で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が90S/cmであった。
[実施例10]
 シード粒子の製造で、スチレンを135gおよびジビニルベンゼン(DBV)15g添加する代わりにt-ブチルメタアクリレート(t-BMA)150g添加した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.72μmであった。また、実施例10で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が90S/cmであった。
[実施例11]
 シード粒子の製造で、スチレンを135g添加する代わりにスチレンを67.5gおよびメチルメタアクリレートを67.5g添加した以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.50μmであった。また、実施例11で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が92S/cmであった。
[実施例12]
 分散液の製造で、4時間撹拌翼による撹拌と超音波照射とを実施しなかった以外は実施例1と同様な方法で、導電性重合体含有分散液を得た。
 ポリスチレンエマルジョン中の、シード粒子のd50粒子径は0.46μmであった。また、実施例12で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が4.2質量%、pHが1.9、電導度が83S/cmであった。
[比較例1]
 イオン交換水593.24g、ポリスチレンスルホン酸(東ソー有機化学(株)製、商品名ポリナスPS-50、重量平均分子量:約230,000)22質量%水溶液58.44gおよびp-トルエンスルホン酸鉄(III)6水和物2質量%水溶液36.05gを27℃にて混ぜ合わせた。この溶液に27℃にて超音波を照射しながら3,4-エチレンジオキシチオフェン8.57gを添加し混ぜ合わせた。
 得られた混合液に27℃にて撹拌翼による撹拌と超音波照射とをしながらペルオキソ二硫酸ナトリウム18.0gを添加して重合反応を開始させた。次いで、予め仕込んだものと同じポリスチレンスルホン酸水溶液39.0g、イオン交換水246.8gを混合し、4時間かけて滴下した。その後、27℃にて4時間撹拌翼による撹拌と超音波照射とをしながら反応させた。
 反応終了後、得られた反応液に陽イオン交換樹脂300mlおよび陰イオン交換樹脂300mlを添加して、反応液を12時間撹拌することによって、未反応モノマー、酸化剤および酸化触媒をイオン交換樹脂に吸着させた。該イオン交換樹脂をろ別して、ポリ(3,4-エチレンジオキシチオフェン)とそれにドープされたポリスチレンスルホン酸を含む分散液を得た。
 比較例1で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が3.0質量%、pHが1.9、電導度が102S/cmであった。
[比較例2]
 3,4-エチレンジオキシチオフェン(EDOT)8.57g添加する代わりに3,4-エチレンジオキシチオフェン(EDOT)7.71gおよびピロール(1H-ピロール)0.86g添加し、撹拌翼による撹拌と超音波照射とを実施する時間を4時間から3時間に変更した以外は比較例1と同様な方法で、導電性重合体含有分散液を得た。
 比較例2で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が3.0質量%、pHが1.9、電導度が92S/cmであった。
[比較例3]
 4時間撹拌翼による撹拌と超音波照射とを実施しなかった以外は比較例1と同様な方法で、導電性重合体含有分散液を得た。
 比較例3で得られた分散液の各物性を上述の方法により測定したところ、固形分濃度が3.0質量%、pHが1.9、電導度が86S/cmであった。
[比較例4]
 3,4-エチレンジオキシチオフェン(EDOT)の添加量を8.57gから12.00gに変更し、p-トルエンスルホン酸鉄(III)6水和物(FePTs)2質量%水溶液の添加量を36.05gから50.48gに変更し、ペルオキソ二硫酸ナトリウム(NaPS)の添加量を18.0gから25.2gに変更し、4時間撹拌翼による撹拌と超音波照射とを実施しなかった以外は比較例1と同様な方法で、導電性重合体含有分散液を製造しようと試みたが、反応液が増粘したため、分散液は得られなかった。
 実施例1~12における、ポリアニオンによって保護コロイド化されたシード粒子の製造方法の条件を表1に示した。
Figure JPOXMLDOC01-appb-T000004
 実施例1~12における、ポリアニオンによって保護コロイド化されたシード粒子を含む導電性重合体含有分散液の製造方法の条件を表2に示した。
Figure JPOXMLDOC01-appb-T000005
 比較例1~4における、ポリアニオンによって保護コロイド化されたシード粒子を含む導電性重合体含有分散液の製造方法の条件を表3に示した。
Figure JPOXMLDOC01-appb-T000006
 また、上述の実施例1~12および比較例1~3の導電性重合体反応時の各時間における粘度を表4に示した。なお、比較例4の粘度は測定できなかった。
Figure JPOXMLDOC01-appb-T000007
 実施例1~12から、導電性重合体含有分散液は、保護コロイド化されたシード粒子を含むことにより、導電性重合体反応時の粘度を大きく低下させることができ、かつ電導度から実用性を十分満たす導電性を有することがわかる。また、適正粘度の導電性重合体反応物を含む分散液を短時間で得ることができた。
 比較例1~3では導電性重合体反応時の粘度が非常に大きくなり、生産性の面で実施例よりも劣ることが分かる。
 本発明の導電性重合体含有分散液の製造方法は、導電性に優れた導電性重合体を含む分散液を優れた生産性で製造することができることから、導電性重合体含有分散液を用いる電子部品の製造に有用である。

Claims (14)

  1.  共役系導電性重合体を得るための単量体と、ポリアニオンにより保護コロイド化されたシード粒子とを含む分散媒中で、上記単量体を重合する重合工程を有することを特徴とする導電性重合体含有分散液の製造方法。
  2.  前記シード粒子が、エチレン性不飽和単量体を重合して得られる重合体又は共重合体である、請求項1に記載の導電性重合体含有分散液の製造方法。
  3.  前記シード粒子のd50粒子径が、0.005~10μmである、請求項1又は2に記載の導電性重合体含有分散液の製造方法。
  4.  前記重合工程の途上に、ポリアニオンにより保護コロイド化されたシード粒子の分散液をさらに添加する、請求項1~3のいずれかに記載の導電性重合体含有分散液の製造方法。
  5.  前記重合工程の途上で、生成する共役系導電性重合体を分散処理する、請求項1~4のいずれかに記載の導電性重合体含有分散液の製造方法。
  6.  前記分散処理を超音波照射によって行う、請求項5に記載の導電性重合体含有分散液の製造方法。
  7.  前記共役系導電性重合体を得るための単量体が、置換基を有してもよいピロール、置換基を有してもよいアニリン、および置換基を有してもよいチオフェンから選ばれる少なくとも1つである、請求項1~6のいずれかに記載の導電性重合体含有分散液の製造方法。
  8.  前記重合工程の途上で、生成する共役系導電性重合体を超音波照射により分散処理する、請求項1に記載の導電性重合体含有分散液の製造方法。
  9.  前記共役系導電性重合体を得るための単量体が、下記式(I)で表される化合物を含むものである、請求項1~6および8のいずれかに記載の導電性重合体含有分散液の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、R1およびR2は、各々独立に、水素原子、水酸基、置換基を有してもよい炭素数1~18のアルキル基、置換基を有してもよい炭素数1~18のアルコキシ基、若しくは置換基を有してもよい炭素数1~18のアルキルチオ基を示し、又は、R1とR2とが互いに結合して環を形成した、置換基を有してもよい炭素数3~10の脂環、置換基を有してもよい炭素数6~10の芳香環、置換基を有してもよい炭素数2~10の酸素原子含有複素環、置換基を有してもよい炭素数2~10のイオウ原子含有複素環、若しくは置換基を有してもよい炭素数2~10のイオウ原子および酸素原子含有複素環を示す。〕
  10.  前記ポリアニオンがスルホン酸基を有するポリマーである、請求項1~9のいずれかに記載の導電性重合体含有分散液の製造方法。
  11.  前記ポリアニオン中のアニオン基が、前記共役系導電性重合体を得るための単量体1モルに対し、0.25~30モルである、請求項1~10のいずれかに記載の導電性重合体含有分散液の製造方法。
  12.  前記分散媒が水を含み、
     前記重合が、ペルオキソ二硫酸およびその塩から選ばれる少なくとも一つの酸化剤を用いて行われる、請求項1~11のいずれかに記載の導電性重合体含有分散液の製造方法。
  13.  請求項1~12のいずれかに記載の製造方法で得られる導電性重合体含有分散液。
  14.  エチレングリコール、プロピレングリコールおよびグリセリンから選ばれる少なくとも1つの電気伝導率向上剤をさらに含む、請求項13に記載の導電性重合体含有分散液。
PCT/JP2014/056372 2013-03-11 2014-03-11 導電性重合体含有分散液の製造方法 WO2014142133A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/770,196 US10563071B2 (en) 2013-03-11 2014-03-11 Method for producing conductive polymer-containing dispersion
EP14763721.9A EP2975074A4 (en) 2013-03-11 2014-03-11 PROCESS FOR PRODUCING A CONDUCTIVE DISPERSION CONTAINING A POLYMER
JP2015505497A JP6271507B2 (ja) 2013-03-11 2014-03-11 導電性重合体含有分散液の製造方法
KR1020157024533A KR101774304B1 (ko) 2013-03-11 2014-03-11 도전성 중합체 함유 분산액의 제조 방법
CN201480013272.3A CN105143302B (zh) 2013-03-11 2014-03-11 含有导电性聚合物的分散液的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/056680 WO2014141367A1 (ja) 2013-03-11 2013-03-11 導電性重合体含有分散液の製造方法
JPPCT/JP2013/056680 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014142133A1 true WO2014142133A1 (ja) 2014-09-18

Family

ID=51536069

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/056680 WO2014141367A1 (ja) 2013-03-11 2013-03-11 導電性重合体含有分散液の製造方法
PCT/JP2014/056372 WO2014142133A1 (ja) 2013-03-11 2014-03-11 導電性重合体含有分散液の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056680 WO2014141367A1 (ja) 2013-03-11 2013-03-11 導電性重合体含有分散液の製造方法

Country Status (6)

Country Link
US (1) US10563071B2 (ja)
EP (1) EP2975074A4 (ja)
JP (1) JP6271507B2 (ja)
KR (1) KR101774304B1 (ja)
CN (1) CN105143302B (ja)
WO (2) WO2014141367A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162502A (ja) * 2014-02-26 2015-09-07 トヨタ紡織株式会社 有機無機ハイブリッド膜の製造方法、有機無機ハイブリッド膜
JP2017200995A (ja) * 2016-04-28 2017-11-09 昭和電工株式会社 導電膜の製造方法
JP2020186379A (ja) * 2019-05-08 2020-11-19 三菱ケミカル株式会社 導電性組成物、導電体及び積層体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101183B1 (ko) * 2015-12-28 2020-04-16 쇼와 덴코 가부시키가이샤 도전성 중합체 함유 분산액의 제조 방법
CN107236086B (zh) * 2017-07-26 2023-07-21 扬州升阳电子有限公司 一种导电聚合分散液及高电压固态电容导电聚合物乳液
US11591480B2 (en) * 2017-08-31 2023-02-28 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
TWI661436B (zh) * 2017-12-15 2019-06-01 鈺邦科技股份有限公司 印刷型導電複合漿料、電容器及其製造方法
JP7238793B2 (ja) 2017-12-25 2023-03-14 株式会社レゾナック 固体電解コンデンサ製造用分散液組成物及び固体電解コンデンサの製造方法
CN114068890B (zh) * 2020-08-07 2023-12-08 华为技术有限公司 复合金属负极及其制备方法、二次电池以及终端

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293970A (ja) * 1991-03-25 1992-10-19 Mitsubishi Rayon Co Ltd セラミックス−導電性高分子複合微粒子及びその製法
JPH0693190A (ja) * 1992-09-09 1994-04-05 Ryuichi Yamamoto 導電性高分子材料ラテックスとその製造法及び利用法
JPH0790060A (ja) 1990-02-08 1995-04-04 Bayer Ag 新規ポリチオフエン分散体及びその製造方法
JP2002356654A (ja) * 2001-05-16 2002-12-13 Rohm & Haas Co ポリアニリンコーティング組成物
JP2004189796A (ja) * 2002-12-09 2004-07-08 Toyo Ink Mfg Co Ltd 導電性粒子
JP2004241132A (ja) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd 導電性微粒子、導電性樹脂エマルジョンとその製造方法並びに導電性塗料組成物、導電性シート体。
JP2005076016A (ja) 2003-09-03 2005-03-24 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
JP2007297500A (ja) * 2006-04-28 2007-11-15 Achilles Corp 導電性高分子微粒子分散体及びそれを用いる導電性塗料
WO2008114810A1 (ja) * 2007-03-20 2008-09-25 University Of Yamanashi 高分子フィルム又は繊維の変形方法及び高分子アクチュエータ
JP2011510141A (ja) 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 導電性ポリマーの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507413A1 (de) 1994-05-06 1995-11-09 Bayer Ag Leitfähige Beschichtungen
ATE287929T1 (de) 1994-05-06 2005-02-15 Bayer Ag Leitfähige beschichtungen hergestellt aus mischungen enthaltend polythiophen und lösemittel
US6593399B1 (en) * 1999-06-04 2003-07-15 Rohm And Haas Company Preparing conductive polymers in the presence of emulsion latexes
US7371336B2 (en) 2002-09-24 2008-05-13 E.I. Du Pont Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
AU2003279014A1 (en) 2002-09-24 2004-04-19 E.I. Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
TW200624461A (en) 2004-10-13 2006-07-16 Tokyo Inst Tech The manufacturing method of conductive polymer
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
TWI404090B (zh) 2006-02-21 2013-08-01 Shinetsu Polymer Co 電容器及電容器之製造方法
KR100919272B1 (ko) * 2007-07-18 2009-09-30 한남대학교 산학협력단 나노구조체 전도성 고분자 볼 및 그 제조방법
WO2009112382A1 (en) * 2008-03-14 2009-09-17 Basf Se Redispersible functional particles
CN101284927B (zh) * 2008-06-02 2010-07-07 南京大学 聚苯乙烯/聚3,4-乙撑二氧噻吩导电高分子复合粒子的制备方法
BR112012014888A2 (pt) * 2009-12-16 2019-09-24 University Of New Hampshire polimerização em emulsão de ésteres de ácido itacônico
EP2336255A1 (en) * 2009-12-17 2011-06-22 Basf Se Organic electronics with improved stability and performance
KR101848523B1 (ko) * 2010-05-11 2018-04-12 닛산 가가쿠 고교 가부시키 가이샤 공액 중합체의 도핑 및 장치
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790060A (ja) 1990-02-08 1995-04-04 Bayer Ag 新規ポリチオフエン分散体及びその製造方法
JPH04293970A (ja) * 1991-03-25 1992-10-19 Mitsubishi Rayon Co Ltd セラミックス−導電性高分子複合微粒子及びその製法
JPH0693190A (ja) * 1992-09-09 1994-04-05 Ryuichi Yamamoto 導電性高分子材料ラテックスとその製造法及び利用法
JP2002356654A (ja) * 2001-05-16 2002-12-13 Rohm & Haas Co ポリアニリンコーティング組成物
JP2004189796A (ja) * 2002-12-09 2004-07-08 Toyo Ink Mfg Co Ltd 導電性粒子
JP2004241132A (ja) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd 導電性微粒子、導電性樹脂エマルジョンとその製造方法並びに導電性塗料組成物、導電性シート体。
JP2005076016A (ja) 2003-09-03 2005-03-24 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
JP2007297500A (ja) * 2006-04-28 2007-11-15 Achilles Corp 導電性高分子微粒子分散体及びそれを用いる導電性塗料
WO2008114810A1 (ja) * 2007-03-20 2008-09-25 University Of Yamanashi 高分子フィルム又は繊維の変形方法及び高分子アクチュエータ
JP2011510141A (ja) 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 導電性ポリマーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975074A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162502A (ja) * 2014-02-26 2015-09-07 トヨタ紡織株式会社 有機無機ハイブリッド膜の製造方法、有機無機ハイブリッド膜
JP2017200995A (ja) * 2016-04-28 2017-11-09 昭和電工株式会社 導電膜の製造方法
JP2020186379A (ja) * 2019-05-08 2020-11-19 三菱ケミカル株式会社 導電性組成物、導電体及び積層体
JP7435221B2 (ja) 2019-05-08 2024-02-21 三菱ケミカル株式会社 導電性組成物、導電体及び積層体

Also Published As

Publication number Publication date
KR101774304B1 (ko) 2017-09-04
EP2975074A1 (en) 2016-01-20
CN105143302A (zh) 2015-12-09
US20160024315A1 (en) 2016-01-28
JPWO2014142133A1 (ja) 2017-02-16
CN105143302B (zh) 2017-06-23
WO2014141367A1 (ja) 2014-09-18
US10563071B2 (en) 2020-02-18
KR20150119049A (ko) 2015-10-23
EP2975074A4 (en) 2016-09-07
JP6271507B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6271507B2 (ja) 導電性重合体含有分散液の製造方法
JP6539913B2 (ja) 固体電解コンデンサの製造方法
JP6573287B2 (ja) 導電性重合体含有分散液の製造方法
JP7298475B2 (ja) 固体電解コンデンサの製造方法
CN111527574B (zh) 固体电解电容器制造用分散液组合物和固体电解电容器的制造方法
JP6408459B2 (ja) 固体電解コンデンサおよびその製造方法
JP6291419B2 (ja) 導電性重合体組成物を含む分散液の製造方法および導電性重合体組成物を含む分散液
JP2019179855A (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
CN111937106B (zh) 固体电解电容器的制造方法、和含有共轭系导电性聚合物的分散液的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013272.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505497

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014763721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14770196

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157024533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE