WO2014112596A1 - 車体前部構造 - Google Patents

車体前部構造 Download PDF

Info

Publication number
WO2014112596A1
WO2014112596A1 PCT/JP2014/050839 JP2014050839W WO2014112596A1 WO 2014112596 A1 WO2014112596 A1 WO 2014112596A1 JP 2014050839 W JP2014050839 W JP 2014050839W WO 2014112596 A1 WO2014112596 A1 WO 2014112596A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
width direction
vehicle width
spacer
stopper
Prior art date
Application number
PCT/JP2014/050839
Other languages
English (en)
French (fr)
Inventor
康洋 原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201480003807.9A priority Critical patent/CN104903154B/zh
Priority to DE112014000472.3T priority patent/DE112014000472B4/de
Priority to US14/652,337 priority patent/US9555754B2/en
Publication of WO2014112596A1 publication Critical patent/WO2014112596A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R2019/247Fastening of bumpers' side ends

Definitions

  • the present invention relates to a vehicle body front structure.
  • It has a second projecting portion provided on the back side of the bumper beam and a first projecting portion extending from the side surface of the side frame to the outside in the vehicle width direction, and the first projecting portion when the pole collides with the outside of the side frame.
  • a structure is known in which the installation part and the second projecting part interfere with each other (see, for example, JP-A-2008-213739).
  • An object of the present invention is to obtain a vehicle body front structure that can efficiently transmit a load caused by a micro-lap collision to a skeleton member.
  • the vehicle body front structure includes a pair of skeleton members that are elongated in the vehicle front-rear direction and are arranged in parallel in the vehicle width direction, and the front end side in the vehicle front-rear direction is an energy absorption unit,
  • a bumper skeleton having a length extending in the width direction and extending between front ends of the pair of skeleton members in the vehicle front-rear direction and extending outward in the vehicle width direction with respect to the skeleton members; and
  • a first portion extending toward the skeleton member in the vehicle front-rear direction and the vehicle width direction in a plan view from a fixed front end portion in the vehicle front-rear direction, and bent inward in the vehicle width direction from the first portion and in the vehicle width direction
  • a spacer member having a wall portion facing the outside in the vehicle width direction of the skeleton member and a second portion facing the wall portion.
  • the collision load input to the overhang portion of the bumper skeleton portion is transmitted to the skeleton member via the spacer member.
  • the inner end portion in the vehicle width direction of the second portion faces the outer surface in the vehicle width direction of the skeleton member (hereinafter referred to as “outer surface”). Slide against the outer surface of the.
  • a spacer member transmits a load to the specific site
  • the spacer member is bent inward in the vehicle width direction from the rear end side of the first portion to form the second portion, an inward load (lateral) in the vehicle width direction on a specific part of the skeleton member is formed. Force) High collision transmission efficiency. For this reason, the specific part to which the load is transmitted is likely to be a starting point of the skeleton member, and the load can be efficiently transmitted to the broken skeleton member and the vehicle-mounted product that interferes with the skeleton member.
  • the load due to the minute lap collision can be efficiently transmitted to the skeleton member.
  • the rear end portion in the vehicle front-rear direction in the second portion of the spacer member has an acute angle shape in which the dimension in the vehicle width direction is gradually reduced toward the rear in the vehicle front-rear direction in plan view. It is good also as a structure.
  • the rear end portion having an acute angle shape in plan view in the spacer member breaks into the skeleton member while biting into the skeleton member. That is, the spacer member is more efficient at the specific part of the skeleton member in a state in which the positional deviation with respect to the specific part is prevented or effectively suppressed as compared with the configuration in which the rear end of the spacer member is not an acute angle shape. A load can be transmitted.
  • the spacer member further includes a rear stopper that restricts relative displacement of the skeleton member to the rear side in the vehicle front-rear direction beyond the energy absorption stroke by the energy absorption unit. It is also good.
  • the spacer member when the energy absorbing portion of the skeleton member is deformed to the energy absorption limit, the spacer member interferes with the rear stopper, and further sliding with respect to the skeleton member is effectively limited by the stopper. Thereby, the rear end part which forms the acute angle shape of the spacer member is likely to bite into a specific portion which is an appropriate position (a target position for folding) in the skeleton member.
  • a vehicle body front structure includes a pair of skeleton members that are elongated in the vehicle front-rear direction and are arranged in parallel in the vehicle width direction, and the front end side in the vehicle front-rear direction is an energy absorption unit,
  • a bumper skeleton having a length extending in the width direction and spanning between front ends in the vehicle front-rear direction of the pair of skeleton members, and having a projecting portion protruding outward in the vehicle width direction with respect to the skeleton members, and a front end in the vehicle front-rear direction
  • the rear end side of the vehicle front-rear direction is opposed to the wall portion facing the vehicle width direction outer side of the skeleton member, and the shape of the rear end portion of the vehicle front-rear direction in plan view is the vehicle.
  • the collision load input to the overhang portion of the bumper skeleton portion is transmitted to the skeleton member via the spacer member.
  • the inner end portion in the vehicle width direction of the second portion faces the outer surface in the vehicle width direction of the skeleton member (hereinafter referred to as “outer surface”). Slide against the outer surface of the.
  • the spacer member interferes with the rear stopper, and further sliding with respect to the skeleton member is restricted. Thereby, the collision load via the spacer member is efficiently transmitted to the skeleton member as a load (lateral force) in the width direction.
  • the above-mentioned acute angle portion bites into the skeleton member in a state in which the sliding of the spacer member with respect to the skeleton member is limited. Folding occurs. That is, the folding of the skeleton member is promoted as compared with a configuration in which the rear end of the spacer member is not an acute angle shape.
  • the load due to the minute lap collision can be efficiently transmitted to the skeleton member.
  • the rear stopper may be configured such that the dimension in the vehicle width direction is larger than the dimension in the vehicle width direction at the rear end of the spacer member in the vehicle front-rear direction.
  • the rear stopper extends forward in the vehicle front-rear direction from the vehicle width direction outer end side, and restricts relative displacement of the rear end portion of the spacer member in the vehicle front-rear direction to the vehicle width direction outer side. It is good also as a structure further provided with the horizontal stopper to do.
  • the spacer member can be prevented or more effectively prevented from moving backward over the stopper.
  • the rear stopper may have a guide shape that guides the rear end portion of the spacer member in the vehicle front-rear direction to the skeleton member side.
  • the guide shape guides the rear end of the spacer member toward the skeleton member, the biting of the rear end portion of the spacer member into the skeleton member is promoted.
  • the rear end of the skeleton member does not hit the skeleton member, it contributes to the promotion of the folding of the skeleton member.
  • the rear stopper protrudes outward in the vehicle width direction from the front end in the vehicle front-rear direction of the base portion fixed to the wall portion of the skeleton member, and connects the rear stopper and the base portion. It is good also as a structure currently supported by the connection wall.
  • the rear stopper transmits the load from the spacer member to the skeleton member while interfering with the rear end of the spacer member in the stopper body. Since this stopper main body is supported by the connecting wall from the rear and the vehicle width direction inside, the load from the spacer member can be transmitted to the skeleton member more efficiently.
  • the vehicle body front structure according to the present invention has an excellent effect of being able to efficiently transmit the load due to the minute lap collision to the skeleton member.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. It is a figure which shows the behavior at the time of the micro lap collision in the vehicle body front part structure which concerns on 1st Embodiment, Comprising: It is a top view which shows the movement limitation start state of the spacer member by a stopper. It is a figure which shows the behavior at the time of the micro lap collision in the vehicle body front part structure which concerns on 1st Embodiment, Comprising: It is a top view which shows the folding start state of a front side member.
  • a vehicle body front structure 10 according to an embodiment of the present invention will be described with reference to the drawings.
  • the vehicle body front structure 10 is basically symmetric (left-right symmetric) with respect to the center line in the vehicle width direction of the vehicle body to which the vehicle body is applied. The description of the structure on the other side (right side) will be omitted.
  • an arrow FR, an arrow UP, and an arrow LH that are appropriately described in the drawings respectively indicate the front direction, the upward direction, and the left direction of the automobile to which the vehicle body front structure 10 is applied.
  • FIG. 1 is a plan view showing a main part of the vehicle body front structure 10.
  • the vehicle body front structure 10 includes a skeleton member 12 that is elongated in the front-rear direction.
  • a pair of left and right skeleton members 12 are provided, and the pair of skeleton members 12 are arranged in parallel in the vehicle width direction (the right side skeleton member 12 is not shown).
  • Each skeleton member 12 includes a front side member 14 and a crash box 16 provided at the front end of the front side member 14 as main parts. Although illustration is omitted, the rear portion of the front side member 14 reaches the lower floor of the passenger compartment via the lower side of the dash panel.
  • Each front side member 14 has a closed cross-sectional structure in a cross-sectional view orthogonal to the longitudinal (front-rear) direction (not shown).
  • each crash box 16 has a closed cross-sectional structure in a cross-sectional view orthogonal to the longitudinal (front-rear) direction.
  • Each crush box 16 is coupled to a flange 14F formed at the front end of the corresponding front side member 14 by fastening with bolts and nuts at a flange 16F formed at the rear end thereof.
  • the flanges 14F and 16F protrude from the front side member 14 and the crash box 16 in the vertical direction and the vehicle width direction outside.
  • Each crash box 16 is configured to be more easily compressed and deformed (collapsed) than the front side member 14 with respect to a load in the front-rear direction. Therefore, when each frame member 12 receives a load from a bumper reinforcement 18 described later, the crash box 16 is first compressed and deformed.
  • the crash box 16 in this embodiment is an energy absorption part of the skeleton member 12, and corresponds to the energy absorption part of the present invention.
  • the space between the front ends of the left and right crash boxes 16 is bridged by a bumper reinforcement 18 as a bumper skeleton.
  • the bumper reinforcement 18 is a skeleton member that is long in the vehicle width direction, and has a closed cross-sectional structure in a cross-sectional view orthogonal to the longitudinal direction. Further, both end portions of the bumper reinforcement 18 in the longitudinal direction are extended portions 20 that protrude to the outside in the vehicle width direction with respect to the skeleton member 12.
  • the bumper reinforcement 18 includes a reinforcement main body 22 as a bumper skeleton main body and an extension 24 constituting the overhang portion 20 as main parts.
  • the reinforcement main body 22 is formed as a closed section structure by extrusion molding of aluminum or aluminum alloy.
  • the cross-sectional shape of the reinforcement main body 22 is a shape in which three rectangular frames are stacked vertically.
  • the extension 24 is formed in a cylindrical shape, and is coupled to the reinforcement main body 22 in a state where the extension 24 covers both ends of the reinforcement main body 22 in the longitudinal direction.
  • the extension 24 is fastened to the crash box 16 and the reinforcement main body 22 at the inner side in the vehicle width direction, and is fastened to the slide spacer 30 and the reinforcement main body 22 to be described later. ing.
  • the extension 24 protrudes outward in the vehicle width direction from the outer end 22A of the reinforcement body 22 in the vehicle width direction. Therefore, the extension 24 can be regarded as an extension member that extends the bumper reinforcement 18 in the vehicle width direction relative to the reinforcement main body 22.
  • the extension 24 constitutes a part of the overhanging portion 20 together with the longitudinal end portion of the reinforcement main body 22.
  • each extension 24 is made of steel. That is, each extension 24 is made of a material having a higher strength (yield value) than the material (aluminum or the like) constituting the reinforcement body 22. Furthermore, in this embodiment, the extension 24 is formed in a cylindrical shape (as a closed cross-sectional structure) as described above by joining the front panel 24F and the rear panel 24R.
  • a power unit 26 is disposed between the left and right front side members 14.
  • the power unit 26 is elastically supported by the suspension member 28 via the mount member 25.
  • the suspension member 28 is attached to the front-rear direction intermediate portion of the front side member 14 at the attachment portion 28J.
  • the vehicle body front structure 10 having the basic structure described above includes a slide spacer 30 as a spacer member.
  • the slide spacer 30 is disposed so as to occupy the space between the overhanging portion 20 of the bumper reinforcement 18 and the skeleton member 12.
  • the slide spacer 30 is provided on the overhanging portion 20, and converts the rearward load input to the overhanging portion 20 into an inward load in the vehicle width direction and in the vicinity of the front end of the front side member 14. It functions as a load transmission member that transmits to the.
  • the inward load in the vehicle width direction converted by the slide spacer 30 may be referred to as “lateral force”.
  • the slide spacer 30 has a higher bending strength / compression (buckling) strength than the bending strength of the front side member 14.
  • the slide spacer 30 is configured to transmit the lateral force to the power unit 26 by causing the front side member 14 to be deformed by the lateral force with almost no compression or bending of itself. This will be specifically described below.
  • the slide spacer 30 includes a spacer main body 32, a fixed portion 34 fixed to the overhanging portion 20, and a slide plate 36 that faces the side surface of the front side member 14 with a gap C therebetween. .
  • the spacer main body 32, the fixed portion 34, and the slide plate 36 are integrally configured (integrated).
  • the spacer body 32 includes a first inclined portion 32A that is inclined in a plan view so that the rear end side is closer to the front side member 14 than the front end side, and the front side member 14 side (vehicle side) from the rear end of the first inclined portion 32A. And a second inclined portion 32B bent inward in the width direction.
  • the first inclined portion 32A is inclined by an inclination angle ⁇ 1 with respect to the front-rear direction so as to extend toward the front side member 14 in both the front-rear direction and the vehicle width direction in plan view.
  • the inclination angle ⁇ 2 with respect to the front-rear direction is larger than the inclination angle ⁇ 1 of the first inclined portion 32A ( ⁇ 2> ⁇ 1), and the rear end side is closer to the front side member 14 than the front end side. It may be considered as a shape with a high degree of approach.
  • the boundary between the first inclined portion 32A and the second inclined portion 32B has a smooth curved shape.
  • the front end of the first inclined portion 32A is joined to the fixed portion 34.
  • the rear end of the second inclined portion 32B is joined to the slide plate 36 facing the outer wall 14S as the wall portion facing the outer side in the vehicle width direction of the front side member 14 as described above.
  • the rear-end part of the 2nd inclination part 32B is made into the acute angle (refer angle ⁇ 2 of FIG. 1) by planar view, the dimension of a vehicle width direction is gradually reduced toward back.
  • the rear end portion of the second inclined portion 32B is an acute angle corresponding to the angle formed by the second inclined portion 32B having the inclination angle as described above and the outer wall 14S (the inclination angle ⁇ 2 described above). It is made into a shape.
  • the spacer main body 32 has a shape in which the first inclined portion 32A and the second inclined portion 32B are connected so as to form an obtuse angle in plan view.
  • the first inclined portion 32A extends to the rear of the flanges 14F and 16F of the skeleton member 12, and the spacer body 32 as a whole is bent (curved) so as to go around the flanges 14F and 16F. Can be caught.
  • the spacer body 32 has a closed cross-sectional shape as shown in FIG.
  • the spacer main body 32 has a substantially rectangular closed cross-sectional shape by joining an inner panel 38 and an outer panel 40 each having a substantially “U” -shaped cross-sectional shape opening to the other side.
  • the inner panel 38 and the outer panel 40 are joined together by arc welding of the top walls 38T, 40T and the bottom walls 38B, 40B, which are stacked one above the other along the longitudinal direction of the slide spacer 30. ing.
  • the inner panel 38 and the outer panel 40 are joined by arc welding continuously or intermittently over substantially the entire length of the spacer body 32. This arc welding site is shown as AW1 in FIG.
  • each reinforcing member 42 has a substantially “L” shape in a cross-sectional view orthogonal to the longitudinal direction of the slide spacer 30, and is joined to the inner panel 38 and the outer panel 40 by arc welding.
  • each reinforcing member 42 is provided over substantially the entire length of the portion to be reinforced of the spacer body 32, and the inner panel 38, by arc welding, continuously or intermittently over the entire length. It is joined to the outer panel 40.
  • the slide spacer 30 has a higher bending strength and compression (buckling) strength than the bending strength of the front side member 14 as described above.
  • the fixed portion 34 is provided at the front end of the first inclined portion 32 ⁇ / b> A in the spacer main body 32, and forms a coupling site for holding the slide spacer 30 to the protruding portion 20.
  • the fixed portion 34 is configured to include a main body bonding portion 34H bonded to the spacer main body 32 and a flange 34F fixed to the overhanging portion 20.
  • the main body joining portion 34H has a cylindrical shape that is fitted to the front end of the first inclined portion 32A from the outside, and is joined to the spacer main body 32 by a fastener, a welding structure, or the like (not shown) in the fitted state.
  • the flange 34F projects to both sides in the vehicle width direction with respect to the main body joint 34H, and is fastened to the projecting portion 20 by a fastener 44 including a bolt 44B and a nut 44N at the projecting portion.
  • the fasteners 44 are fastened at a total of four locations spaced apart in the vehicle width direction and up and down.
  • the fastener 44 inside the vehicle width direction fastens the reinforcement body 22 and the extension 24 together with the flange 34F, and the fastener 44 inside the vehicle width direction fastens only the extension 24 to the flange 34F.
  • the slide spacer 30 is fixed (held) to the overhanging portion 20 of the bumper reinforcement 18 by the fixed portion 34 described above.
  • the portion including the fixed portion 34 and the first inclined portion 32A of the spacer main body 32 corresponds to the first portion of the spacer member in the present invention.
  • the slide plate 36 is formed in a plate shape facing inward in the vehicle width direction.
  • the rear end of the second inclined portion 32B of the spacer body 32 is joined to the slide plate 36 by arc welding, spot welding, or the like.
  • the slide plate 36 closes the rear end (opening end) of the second inclined portion 32B and protrudes forward and backward with respect to the rear end of the second inclined portion 32B.
  • the slide plate 36 has a length L so as to transmit a load transmitted from the overhanging portion of the bumper reinforcement 18 through the spacer body 32 to a wide surface of the outer side wall 14S of the front side member 14. Specifically, the slide plate 36 slides with respect to the outer wall 14S while transmitting the load from the overhanging portion 20 to the outer wall 14S during the compression process of the crash box 16 (local deformation in the outer wall 14S).
  • the length L is set so that no occurrence occurs.
  • the rear end of the slide plate 36 is a bent portion 36F that is bent outward in the vehicle width direction.
  • the dimension along the vehicle width direction of the bent portion 36F is defined as b.
  • the gap C described above is formed between the inside of the slide plate 36 in the vehicle width direction, that is, the outer wall 14S.
  • the slide plate 36, that is, the slide spacer 30 is not restrained with respect to the front side member 14.
  • the slide spacer 30 is configured to slide along the outer wall 14S of the front side member 14 as the crash box 16 is compressed and deformed. That is, the configuration in which the slide plate 36 faces the front side member 14 in an unconstrained state includes the above-described length L of the slide plate 36 and the configuration in which the spacer main body 32 wraps around the flanges 14F and 16F of the skeleton member 12, Is configured.
  • the portion including the slide plate 36 and the second inclined portion 32B of the spacer main body 32 corresponds to the second portion of the spacer member in the present invention.
  • the vehicle body front structure 10 includes a stopper 46 that restricts the backward movement of the slide spacer 30.
  • the stopper 46 is provided on the front side member 14, and restricts sliding beyond the required range of the slide spacer 30 with respect to the outer wall 14 ⁇ / b> S of the front side member 14. This will be specifically described below.
  • the stopper 46 includes a base portion 46B fixed to the outer wall 14S, a rear stopper 46R extending outward in the vehicle width direction in plan view from the base portion 46B, and a lateral stopper 46S extending forward from the outer end in the vehicle width direction of the rear stopper 46R.
  • the base 46B is fixed to a portion located on the side of the power unit 26 in the outer wall 14S by a fastener 48 including a bolt 48B and a nut 48N.
  • the base 46B is fixed to the outer wall 14S with fasteners 48 at a plurality of locations separated in the vertical direction.
  • the rear stopper 46R extends outward from the front end of the base 46B in the vehicle width direction in plan view. Thereby, the stopper 46 is opened forward without the space 48 between the outer wall 14 ⁇ / b> S and the lateral stopper 46 ⁇ / b> S being occupied by the fastener 48.
  • the opening width a of the space S is larger than the dimension b of the bent portion 36F of the slide plate 36 that constitutes the slide spacer 30.
  • the stopper 46 slides further backward on the slide spacer 30 when the rear end of the slide spacer 30 that has entered the space S while sliding on the surface of the outer wall 14S contacts the rear stopper 46R. It comes to restrict.
  • the rear stopper 46R is slightly inclined with respect to the vehicle width direction so that the inner end is located behind the outer end in the vehicle width direction.
  • This inclined shape can be regarded as a guide shape that contacts the rear stopper 46R and guides the rear end of the slide spacer 30 toward the outer wall 14S.
  • the stroke until the rear end of the slide spacer 30 comes into contact with the rear stopper 46 ⁇ / b> R is equal to the energy absorption stroke of the crash box 16. Therefore, when the crash box 16 is compressed and deformed to the energy absorption limit, the rear end of the slide spacer 30 comes into contact with the rear stopper 46R, and further slide of the slide spacer 30 is restricted.
  • the lateral stopper 46S is configured to prevent the rear end of the slide spacer 30 that has entered the space S from moving outward in the vehicle width direction, that is, the sliding restriction state due to the rear stopper 46R is eliminated.
  • a micro lap collision which is a collision of a collision body (barrier Br) colliding with the front side member 14 on the outer side in the vehicle width direction
  • carrier Br a collision body colliding with the front side member 14 on the outer side in the vehicle width direction
  • the bumper reinforcement 18 is supported from behind by the slide spacer 30 and the front side member 14 in the overhanging portion 20, and the breakage at the fixing portion to the crash box 16 is prevented or effectively suppressed. For this reason, the other part of the load input to the overhang portion 20 is transmitted to the crash-side crash box 16, and the crash box 16 is compressed and deformed as shown in FIG. 3A. Thereby, the initial energy absorption of the minute lap collision is achieved.
  • the slide spacer 30 transmits a load to the front side member 14 while sliding on the slide plate 36 (moving backward while contacting) with respect to the front side member 14.
  • the front side member 14 whose load receiving portion moves rearward as the compression amount of the crash box 16 increases increases the function of guiding the slide spacer 30 rearward without breaking.
  • the collision load (see arrow F1) that is continuously input to the overhanging portion 20 is a lateral force that is an inward load in the vehicle width direction converted by the slide spacer 30 at a specific portion of the front side member 14. (Refer to arrow F2) (second load transmission mode).
  • the front side member 14 is folded inward in the vehicle width direction.
  • the front side member 14 interferes with the power unit 26 as shown in FIG. 3C.
  • the load from the slide spacer 30 is transmitted to the power unit 26 (such as a structure in the engine compartment) via the front side member 14.
  • the collision load input to the overhanging portion 20 in this way is transmitted to the rear of the vehicle body or the anti-collision side via the power unit 26 and its support structure (load Fx in the front-rear direction, load Fy in the vehicle width direction ( Is transmitted to each part of the vehicle body).
  • load Fx in the front-rear direction, load Fy in the vehicle width direction Is transmitted to each part of the vehicle body.
  • transformation of the collision side edge part of the vehicle body by a micro lap collision is prevented or effectively suppressed.
  • the collision load is input to the overhanging portion 20. It is eliminated or alleviated. This also prevents or effectively suppresses local large deformation at the collision side end of the vehicle body.
  • the slide spacer 30 has a bent (curved) shape in which the inclination angle ⁇ 2 of the second inclined portion 32B is larger than the inclination angle ⁇ 1 of the first inclined portion 32A. For this reason, the slide spacer 30 has a higher transmission efficiency of the lateral force to the front side member 14 than the comparative example provided with the spacer main body having a constant inclination angle ⁇ 1.
  • the load due to the minute lap collision can be efficiently transmitted to the front side member 14.
  • this bent shape allows the front and rear length of the slide spacer 30 to be kept short.
  • the slide spacer 30 is prevented from interfering with the vehicle body (for example, wheel house) or other mounted parts due to the slide of the slide spacer 30 within the range of the energy absorption stroke of the crash box 16.
  • the vehicle body has a higher degree of freedom in designing the vehicle body as compared with the comparative example provided with the slide spacer having a constant inclination angle ⁇ 1 (long in the longitudinal direction).
  • the rear end of the slide spacer 30 forms an acute angle shape in plan view. For this reason, the slide spacer 30 causes the front side member 14 to be bent while its rear end portion bites into the front side member 14. As a result, the slide spacer 30 is effectively suppressed from being displaced (sliding) with respect to the front side member 14, and the lateral force is intensively transmitted to a specific part of the front side member 14, thereby The folding of the side member 14 is promoted.
  • the rear end of the slide spacer 30 interferes with the rear stopper 46R of the stopper 46.
  • the slide spacer 30 maintains the slide with respect to the front side member 14 in a form that widens the angle formed with the protruding portion 20. There is. The maintenance of such a slide can be a cause of hindering the front side member 14 from being bent at an appropriate position.
  • the stopper 46 prevents or effectively suppresses and restricts the slide spacer 30 from sliding on the front side member 14 in a form that widens the angle formed with the protruding portion 20. .
  • the front side member 14 can be effectively folded in place, contributing to the above-described load distribution to the vehicle body and efficient transmission of the load to the power unit 26.
  • the vehicle body front structure 10 can efficiently transmit the load due to the minute lap collision to the skeleton member.
  • the stopper 46 has a dimension a in the vehicle width direction (more precisely, an opening width of the space S formed by the outer wall 14S) larger than a dimension b of the bent portion 36F forming the rear end of the slide spacer 30. For this reason, the slide spacer 30 that has slid (moved while being in contact with the outer wall 14S) is prevented or effectively prevented from moving over the stopper 46 and moving backward.
  • the opening width a of the space S is larger than the dimension b of the bent portion 36F, when the rear end of the slide spacer 30 enters the space S, the slide spacer 30 moves over the stopper 46 and moves backward. Is prevented or effectively deterred. That is, the lateral stopper 46S that defines the space S with the outer wall 14S suppresses the displacement of the slide spacer 30 in the vehicle width direction with respect to the front side member 14. Thereby, the effect of restricting the sliding of the slide spacer 30 by the stopper 46 can be achieved with high accuracy compared to the configuration without the lateral stopper 46S.
  • the rear stopper 46R of the stopper 46 has a guide shape that is slightly inclined with respect to the vehicle width direction so that the inner end is located rearward of the outer end in the vehicle width direction. Since the guide shape guides the rear end of the slide spacer 30 toward the outer wall 14S, the front side member 14 in a state in which the rear end of the slide spacer 30 hits is folded. Thereby, compared with the structure which the stopper 46 does not have a guide shape, it contributes to promotion of the folding of the front side member 14 in the appropriate place.
  • the bumper reinforcement 18 in the vehicle body front structure 10 is configured by connecting extensions 24 made of a material having higher strength than the material constituting the reinforcement main body 22 to both ends of the reinforcement main body 22.
  • the extension 24 is provided in a range from the portion fixed to the crash box 16 to the bumper reinforcement 18, that is, the tip of the overhang portion 20. For this reason, compared with the case where the bumper reinforcement 18 is formed of an aluminum extrusion molded product over the entire length, bending deformation (folding) and cross-sectional crushing of the overhang portion 20 due to micro lap collision are less likely to occur. Thereby, the collision load can be efficiently transmitted from the overhanging portion 20 to the front side member 14 via the slide spacer 30.
  • FIG. 4 shows a plan view of the main part of the vehicle body front part structure 60.
  • the vehicle body front structure 60 is configured in the same manner as the vehicle body front structure 10 according to the first embodiment, except that the structure of the slide spacer 62 as a spacer member is different from that of the slide spacer 30.
  • the extension 24 shown in FIG. 4 is different in shape from the extension 24 shown in the first embodiment, but the basic configuration and function are the same as those of the extension 24 shown in the first embodiment.
  • the vehicle body front structure 60 will be specifically described.
  • the slide spacer 62 includes a spacer main body 64 fixed to the extension 24 and a slider portion 65 provided at the rear end of the spacer main body 64 and facing the outer wall 14S of the front side member 14 as main parts.
  • the spacer main body 64 has a closed cross-sectional structure in which the inner panel 66 and the outer panel 68 are joined to each other in a cross-sectional view orthogonal to the longitudinal direction (not shown).
  • the outer panel 68 has a hat shape that opens inward in the vehicle width direction in a cross-sectional view, and has an upper and lower flange 68F. Further, a front flange 68FF and a rear flange 68FR project from the front edge and rear edge of the outer panel 68.
  • a rear wall 68R that closes the closed cross section of the spacer body 64 is formed on the rear end side of the outer panel 68.
  • the rear wall 68R has an acute angle ⁇ with the rear flange 68FR (a slide plate 65A described later) in plan view.
  • the inner panel 66 has a hat shape that opens outward in the vehicle width direction in a cross-sectional view, and has an upper and lower flange 66F.
  • the inner panel 66 gradually decreases in the vehicle width direction dimension (cross-sectional depth) toward the rear, and its rear end is a flat rear flange 68FR. Further, a front flange 66FF projects from the front edge of the inner panel 66.
  • the inner panel 66 and the outer panel 68 constitute a spacer main body 64 having a closed cross-section structure by joining the upper and lower flanges 66F and 68F by welding.
  • the inner panel 66 and the outer panel 68 are separated from each other at the front end portion in the vehicle width direction. That is, the spacer body 64 is formed in a “y” shape as shown in FIG.
  • the spacer main body 64 is joined to the back surface of the rear panel 24R constituting the extension 24 by welding in the front flanges 66FF and 68FF described above.
  • the slider portion 65 includes a slide plate 65A that faces the outer wall 14S of the front side member 14 with a gap C therebetween, and a protrusion 65B that protrudes from the slide plate 65A and fits into the rear end of the spacer body 64. It is configured as.
  • the protruding portion 65B is fitted in the rear flange 66FR of the inner panel 66 and the inner edge of the outer panel 68 in the vehicle width direction by welding or the like while being fitted in the rear end of the spacer body 64.
  • the slide spacer 62 described above has a bent shape as a whole in a plan view such that the rear part is bent inward in the vehicle width direction (to the outer wall 14S side) with respect to the front part.
  • a portion formed in a “y” shape in a plan view formed by the front portion of the outer panel 68 and the inner panel 66 corresponds to the first portion of the spacer member in the present invention.
  • a portion formed by bending the rear portion of the outer panel 68 and the slider portion 65 (projecting portion 65B thereof) from the rear end of the portion corresponding to the first portion is the second spacer member according to the present invention. It corresponds to the part.
  • the thickness t of the overlapping portion of the rear flange 68FR of the outer panel 68 and the slide plate 65A of the slider portion 65 is smaller than the opening width a of the space S of the stopper 46.
  • the vehicle body front structure 60 configured as described above can basically obtain the same effect by the same operation as that of the vehicle body front structure 10 according to the first embodiment. Further, since the spacer main body 64 of the slide spacer 62 has a “y” shape, the load input to the wide range of the overhanging portion 20 in the vehicle width direction can be transmitted to the front side member 14.
  • the spacer main body 64 has a “y” shape
  • the present invention is not limited to this.
  • an inner panel and an outer panel may be joined to the front end.
  • the load input to the wide range in the vehicle width direction of the overhanging portion 20 can be transmitted to the front side member 14. .
  • the stopper 70 is configured by forming a connecting wall 70 ⁇ / b> C connecting the base 46 ⁇ / b> B and the rear stopper 46 ⁇ / b> R on the stopper 46.
  • the connecting wall 70 ⁇ / b> C is formed in a triangular shape having the base 46 ⁇ / b> B and the rear stopper 46 ⁇ / b> R as two sides in plan view.
  • the connecting wall 70 ⁇ / b> C may be configured by joining different members by welding or the like, or may be integrally formed when the stopper 46 is processed (pressed). In the latter configuration, a pair of connecting walls 70C that connect the base 46B and the rear stopper 46R at the upper and lower ends of the stopper 46 are formed.
  • the stopper 46 has the lateral stopper 46S
  • the present invention is not limited to this.
  • a stopper without the lateral stopper 46S may be adopted.
  • the stopper 46 is provided on the front side member 14
  • the present invention is not limited to this.
  • the stopper (function) may be configured by (the shape of) the suspension tower itself.
  • the present invention is not limited to the configuration provided with the stopper in the configuration in which the slide spacer has a bent (curved) shape having the first portion and the second portion as described above in a plan view.
  • the planar view shape of the slide spacer is not limited to the bent shape.
  • the present invention is not limited to this.
  • the configuration according to the present invention may be adopted only on one side in the vehicle width direction.
  • the example in which the bumper reinforcement 18 having the extension 24 is provided is shown, but the present invention is not limited to this.
  • a configuration including a bumper reinforcement that does not have the extension 24 may be used.
  • the material of the extension is not limited to the configuration having higher strength (high elasticity) than the material of the bumper reinforcement.
  • the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 微小ラップ衝突による荷重を効率良く骨格部材に伝達することができる車体前部構造を得る。 車体前部構造(10)は、車両前後方向に長手とされると共に車幅方向に並列され前端側がエネルギ吸収部(16)とされた一対の骨格部材(12)と、車幅方向に長手とされて一対の骨格部材(12)の前端間を架け渡し、骨格部材に対し車幅方向外側に張り出した張出部(20)を有するバンパ骨格部(18)と、張出部(20)に固定された前端部から平面視で車両前後方向及び車幅方向において骨格部材(12)に向けて延びる第1部分(32A)と、該第1部分(32A)から車幅方向内向きに曲げられると共に車幅方向の内端部において骨格部材(12)の車幅方向外側を向く壁部(14S)と対向する第2部分(32Bとを有するスペーサ部材(30)と、を備えている。

Description

車体前部構造
 本発明は、車体前部構造に関する。
 バンパビームの背面側に設けられた第2突設部と、サイドフレーム側面から車幅方向外側に延びる第1突設部とを有し、サイドフレームの外側へのポールの衝突の際に第1突設部と第2突設部とを干渉させる構造が知られている(例えば、特開2008-213739参照)。
 ところで、車体の前後方向に延びる骨格部材に対する車幅方向外側への衝突形態である微小ラップ衝突において、衝突荷重を効率良く骨格部材に伝達するとの観点からは、改善の余地がある。
 本発明は、微小ラップ衝突による荷重を効率良く骨格部材に伝達することができる車体前部構造を得ることが目的である。
 本発明の第1の態様に係る車体前部構造は、 車両前後方向に長手とされると共に車幅方向に並列され、車両前後方向の前端側がエネルギ吸収部とされた一対の骨格部材と、車幅方向に長手とされて前記一対の骨格部材における車両前後方向の前端間を架け渡し、前記骨格部材に対し車幅方向外側に張り出した張出部を有するバンパ骨格部と、前記張出部に固定された車両前後方向の前端部から平面視で車両前後方向及び車幅方向において前記骨格部材に向けて延びる第1部分と、該第1部分から車幅方向内向きに曲げられると共に車幅方向の内端部において前記骨格部材の車幅方向外側を向く壁部と対向する第2部分とを有するスペーサ部材と、を備えている。
 上記の態様によれば、バンパ骨格部の張出部に入力された衝突荷重は、スペーサ部材を介して骨格部材に伝達される。スペーサ部材は、第2部分の車幅方向内端部が骨格部材の車幅方向外向きの面(以下、「外面」という)と対向しているので、エネルギ吸収部材の変形に伴って骨格部材の外面に対しスライドする。そして、スペーサ部材は、エネルギ吸収部材によるエネルギ吸収後は、骨格部材の特定部位に荷重を伝達する。
 ここで、スペーサ部材は、第1部分の後端側から車幅方向内向きに曲げられて第2部分が形成されているので、骨格部材の特定部位への車幅方向内向きの荷重(横力)衝突の伝達効率が高い。このため、該荷重が伝達される特定部位が骨格部材の折れの起点となりやすく、折れた骨格部材、及び該骨格部材に干渉する車両搭載品に効率良く荷重を伝えることができる。
 このように、上記態様の車体前部構造では、微小ラップ衝突による荷重を効率良く骨格部材に伝達することができる。
 上記の態様において、前記スペーサ部材の第2部分における車両前後方向の後端部は、平面視で車両前後方向の後方に向けて車幅方向の寸法が徐減された鋭角形状を成している、構成としても良い。
 上記の態様によれば、スペーサ部材における平面視で鋭角形状を成す後端部が、骨格部材に食い込みつつ該骨格部材に折れを生じさせる。すなわち、スペーサ部材は、スペーサ部材の後端が鋭角形状ではない構成と比較して、上記した特定部位に対する位置ずれが防止又は効果的に抑制された状態で、該骨格部材の特定部位に効率良く荷重を伝達することができる。
 上記の態様において、前記スペーサ部材が、前記エネルギ吸収部によるエネルギ吸収ストロークを超えて前記骨格部材に対して車両前後方向の後側へ相対変位することを制限する後ストッパをさらに備えている、構成としても良い。
 上記の態様によれば、骨格部材のエネルギ吸収部によるエネルギ吸収限まで変形すると、スペーサ部材が後ストッパに干渉し、それ以上の骨格部材に対するスライドがストッパによって効果的に制限される。これにより、スペーサ部材の鋭角形状を成す後端部が骨格部材における適所(折れきっかけの狙いの位置)である特定部位に食い込みやすい。
 本発明の第2の態様に係る車体前部構造は、車両前後方向に長手とされると共に車幅方向に並列され、車両前後方向の前端側がエネルギ吸収部とされた一対の骨格部材と、車幅方向に長手とされて前記一対の骨格部材における車両前後方向の前端間を架け渡し、前記骨格部材に対し車幅方向外側に張り出した張出部を有するバンパ骨格部と、車両前後方向の前端側が前記張出部に固定されると共に、車両前後方向の後端側が前記骨格部材における車幅方向外側を向く壁部と対向され、かつ車両前後方向の後端部における平面視での形状が車両前後方向の後方に向けて車幅方向の寸法が徐減された鋭角形状とされたスペーサ部材と、前記スペーサ部材が、前記エネルギ吸収部によるエネルギ吸収ストロークを超えて前記骨格部材に対して車両前後方向の後側へ相対変位することを制限する後ストッパと、を備えている。
 上記の態様によれば、バンパ骨格部の張出部に入力された衝突荷重は、スペーサ部材を介して骨格部材に伝達される。スペーサ部材は、第2部分の車幅方向内端部が骨格部材の車幅方向外向きの面(以下、「外面」という)と対向しているので、エネルギ吸収部材の変形に伴って骨格部材の外面に対しスライドする。
 ここで、エネルギ吸収部材によるエネルギ吸収後、スペーサ部材は、後ストッパに干渉し、それ以上の骨格部材に対するスライドが制限される。これにより、スペーサ部材を介した衝突荷重が骨格部材に対し幅方向の荷重(横力)として効率良く伝達される。また、スペーサ部材の後端が平面視で鋭角形状を成しているため、骨格部材に対するスペーサ部材のスライドが制限された状態で、上記鋭角形状部分が骨格部材に食い込むようにして、骨格部材に折れが生じる。すなわち、スペーサ部材の後端が鋭角形状ではない構成と比較して、骨格部材の折れが促進される。
 このように、上記態様の車体前部構造では、微小ラップ衝突による荷重を効率良く骨格部材に伝達することができる。
 上記の態様において、前記後ストッパの車幅方向の寸法は、前記スペーサ部材の車両前後方向の後端における車幅方向の寸法よりも大とされている、構成としても良い。
 上記の態様によれば、スペーサ部材がストッパを乗り越えて後方に移動することが防止又は効果的に抑止される。
 上記の態様において、前記後ストッパの車幅方向外端側から車両前後方向の前方に延び、前記スペーサ部材の第2部分における車両前後方向の後端部の車幅方向外側への相対変位を制限する横ストッパをさらに備えている、構成としても良い。
 上記の態様によれば、スペーサ部材がストッパを乗り越えて後方に移動することが防止又は一層効果的に抑止される。
 上記の態様において、前記後ストッパは、前記スペーサ部材における車両前後方向の後端部を前記骨格部材側にガイドするガイド形状を有する、構成としても良い。
 上記の態様によれば、ガイド形状がスペーサ部材の後端を骨格部材側に案内するため、該スペーサ部材の後端部の骨格部材への食い込みが促進される。これにより、骨格部材の後端が骨格部材に当たらない場合と比較して、骨格部材の折れ促進に寄与する。
 上記の態様において、前記後ストッパは、前記骨格部材の前記壁部に固定された基部における車両前後方向の前端から車幅方向外向きに張り出されると共に、該後ストッパと前記基部とを連結する連結壁にて支持されている、構成としても良い。
 上記の態様によれば、後ストッパは、ストッパ本体においてスペーサ部材の後端に干渉しつつ、スペーサ部材からの荷重を骨格部材に伝達する。このストッパ本体は、連結壁によって後方及び車幅方向内側から支持されるので、スペーサ部材からの荷重を一層効率良く骨格部材に伝達することができる。
 以上説明したように本発明に係る車体前部構造は、微小ラップ衝突による荷重を効率良く骨格部材に伝達することができるという優れた効果を有する。
第1の実施形態に係る車体前部構造の要部を示す平面図である。 図1の2-2線に沿った断面図である。 第1の実施形態に係る車体前部構造における微小ラップ衝突時の挙動を示す図であって、ストッパによるスペーサ部材の移動制限開始状態を示す平面図である。 第1の実施形態に係る車体前部構造における微小ラップ衝突時の挙動を示す図であって、フロントサイドメンバの折れ開始状態を示す平面図である。 第1の実施形態に係る車体前部構造における微小ラップ衝突時の挙動を示す図であって、フロントサイドメンバとパワーユニットとの干渉状態を示す平面図である。 第2の実施形態に係る車体前部構造の要部を示す平面図である。 変形例に係るストッパを示す平面図である。
 本発明の実施形態に係る車体前部構造10について図面に基づいて説明する。なお、車体前部構造10は、基本的に適用される自動車車体の車幅方向の中心線に対し対称(左右対称)に構成されるので、以下、車幅方向の一方側(左側)の構造について説明し、他方側(右側)の構造の説明は省略することとする。また、各図に適宜記す矢印FR、矢印UP、及び矢印LHは、それぞれ車体前部構造10が適用された自動車の前方向、上方向、及び左方向を示している。以下、単に前後、上下、左右の方向を用いて説明する場合は、特に断りのない限り、車両前後方向の前後、車両上下方向の上下、前方向を向いた場合の左右を示すものとする。
[自動車の一般構成]
 図1には、車体前部構造10の要部が平面図にて示されている。この図に示される如く、車体前部構造10は、前後方向に長手とされた骨格部材12を備えている。骨格部材12は左右一対設けられており、一対の骨格部材12車幅方向に並列されている(右側の骨格部材12については図示省略)。各骨格部材12は、フロントサイドメンバ14と、フロントサイドメンバ14の前端に設けられたクラッシュボックス16とを主要部として構成されている。図示は省略するが、フロントサイドメンバ14の後部は、ダッシュパネルの下側を経由して車室のフロア下まで至っている。
 各フロントサイドメンバ14は、長手(前後)方向に直交する断面視で閉断面構造を成している(図示省略)。同様に各クラッシュボックス16は、長手(前後)方向に直交する断面視で閉断面構造を成している。各クラッシュボックス16は、その後端に形成されたフランジ16Fにおいて、対応するフロントサイドメンバ14の前端に形成されたフランジ14Fにボルト・ナットによる締結にて結合されている。この実施形態における各フランジ14F、16Fは、フロントサイドメンバ14、クラッシュボックス16に対して、上下及び車幅方向外側に張り出されている。
 そして、各クラッシュボックス16は、前後方向の荷重に対してフロントサイドメンバ14よりも圧縮変形(圧壊)されやすい構成とされている。したがって、各骨格部材12は、後述するバンパリインフォースメント18からの荷重を受けると、先ずクラッシュボックス16が圧縮変形されるようになっている。この実施形態におけるクラッシュボックス16は、骨格部材12のエネルギ吸収部であり、本発明のエネルギ吸収部に相当する。
 左右のクラッシュボックス16の前端間は、バンパ骨格部としてのバンパリインフォースメント18にて架け渡されている。バンパリインフォースメント18は、車幅方向に長手の骨格部材とされており、該長手方向に直交する断面視で閉断面構造を成している。また、バンパリインフォースメント18の長手方向の両端部は、それぞれ骨格部材12に対する車幅方向外側まで張り出した張出部20とされている。この実施形態では、バンパリインフォースメント18は、バンパ骨格本体としてのリインフォース本体22と、張出部20を構成するエクステンション24とを主要部として構成されている。
 図示は省略するが、リインフォース本体22は、アルミニウム又はアルミニウム合金の押し出し成型等によって閉断面構造として形成されている。この実施形態では、リインフォース本体22の断面形状は、矩形枠を3つ上下に積み重ねた形状とされている。
 エクステンション24は、筒状に形成されており、リインフォース本体22の長手方向両端部に被せられた状態で該リインフォース本体22に結合されている。この実施形態では、エクステンション24は、その車幅方向内側部分がクラッシュボックス16とリインフォース本体22に共締めされると共に、その車幅方向内側部分が後述するスライドスペーサ30とリインフォース本体22に共締めされている。
 この状態でエクステンション24は、リインフォース本体22の車幅方向外端22Aよりも車幅方向外側に張り出されている。したがって、エクステンション24は、バンパリインフォースメント18をリインフォース本体22よりも車幅方向に延長する延長部材として捉えることができる。そして、エクステンション24は、リインフォース本体22の長手方向端部と共に張出部20の一部を構成している。
 また、エクステンション24は、鋼材より構成されている。すなわち、各エクステンション24は、リインフォース本体22を構成する材料(アルミニウム等)よりも強度(降伏値)の高い材料にて構成されている。さらに、この実施形態では、エクステンション24は、フロントパネル24Fとリヤパネル24Rとの接合によって、上記の通り筒状に(閉断面構造として)形成されている。
 また、車体前部構造10では、左右のフロントサイドメンバ14間にパワーユニット26が配置されている。この実施形態では、パワーユニット26は、マウント部材25を介してサスペンションメンバ28に弾性的に支持されている。なお、サスペンションメンバ28は、被取付部28Jにおいてフロントサイドメンバ14の前後方向中間部に取り付けられている。
[スライドスペーサ]
 以上説明した基本構造を有する車体前部構造10は、スペーサ部材としてのスライドスペーサ30を備えている。スライドスペーサ30は、バンパリインフォースメント18の張出部20と骨格部材12との間の空間を占有するように配置されている。この実施形態では、スライドスペーサ30は、張出部20に設けられ、該張出部20に入力された後向きの荷重を、車幅方向内向きの荷重に変換してフロントサイドメンバ14の前端近傍に伝達する荷重伝達部材として機能するようになっている。
 以下の説明においてスライドスペーサ30が変換した車幅方向内向きの荷重について、「横力」という場合がある。そして、この実施形態では、スライドスペーサ30は、フロントサイドメンバ14の曲げ強度と比較して、高い曲げ強度・圧縮(座屈)強度を有する構成とされている。このため、スライドスペーサ30は、自らの圧縮、曲げをほとんど生じることなく、横力によってフロントサイドメンバ14を変形させて該横力をパワーユニット26に伝達する構成とされている。以下、具体的に説明する。
 スライドスペーサ30は、スペーサ本体32と、張出部20に固定される被固定部34と、フロントサイドメンバ14の側面に隙間Cを空けて対向するスライド板36とを主要部として構成されている。この実施形態のスライドスペーサ30は、スペーサ本体32と被固定部34とスライド板36とが、一体的に構成(一体化)されている。
 (スペーサ本体)
 スペーサ本体32は、後端側が前端側よりもフロントサイドメンバ14に近づくように平面視で傾斜された第1傾斜部32Aと、該第1傾斜部32Aの後端からフロントサイドメンバ14側(車幅方向内向き)に曲げられた第2傾斜部32Bとを有する。第1傾斜部32Aは、平面視で前後方向及び車幅方向の双方においてフロントサイドメンバ14向けて延びるように、前後方向に対し傾斜角α1だけ傾斜されている。一方、第2傾斜部32Bは、前後方向に対する傾斜角α2が第1傾斜部32Aの傾斜角α1よりも大(α2>α1)とされており、後端側が前端側よりもフロントサイドメンバ14に近づく度合いが大きい形状と捉えても良い。この実施形態では、第1傾斜部32Aと第2傾斜部32Bとの境界は滑らかな湾曲形状とされている。
 第1傾斜部32Aの前端は、被固定部34に接合されている。一方、第2傾斜部32Bの後端は、上記の通りフロントサイドメンバ14における車幅方向外側を向く壁部としての外側壁14Sと対向するスライド板36に接合されている。そして、第2傾斜部32Bの後端部は、後方に向けて車幅方向の寸法が徐減されて、平面視で鋭角(図1の角α2参照)とされている。具体的には、第2傾斜部32Bの後端部は、上記した如き傾斜角とされた第2傾斜部32Bと外側壁14Sとで成す角の角度(上記した傾斜角α2)に相当する鋭角形状とされている。
 以上により、スペーサ本体32は、全体として第1傾斜部32Aと第2傾斜部32Bとが平面視で鈍角を成すように繋がった形状を成している。この実施形態では、第1傾斜部32Aは、骨格部材12のフランジ14F、16Fの後方まで延びており、スペーサ本体32は全体としてフランジ14F、16Fを回り込むように屈曲(湾曲)されている形状とも捉えることができる。
 また、スペーサ本体32は、図2に示される如き閉断面形状を成している。具体的には、スペーサ本体32は、それぞれ相手方側に開口する略「コ」字状の断面形状を有するインナパネル38とアウタパネル40との接合によって、略矩形の閉断面形状を成している。インナパネル38とアウタパネル40とは、上下に重ね合わされた互いの天壁38T、40T同士、及び底壁38B、40B同士が、それぞれスライドスペーサ30の長手方向に沿ってアーク溶接されることで接合されている。この実施形態では、インナパネル38とアウタパネル40とは、スペーサ本体32の略全長に亘って連続的又は断続的にアーク溶接にて接合されている。このアーク溶接部位は、図2においてAW1として示されている。
 また、スペーサ本体32は、閉断面内の四隅にそれぞれ設けられた補強部材42によって、曲げ及び圧縮に対し補強されている。各補強部材42は、スライドスペーサ30の長手方向に直交する断面視で略「L」字状を成しており、アーク溶接にてインナパネル38、アウタパネル40に接合されている。
 具体的には、インナパネル38側では、上側の補強部材42が天壁38Tと側壁38Sとに接合され、下側の補強部材42が底壁38Bと側壁38Sとに接合されている。また、アウタパネル40側では、上側の補強部材42が天壁40Tと側壁40Sとに接合され、下側の補強部材42が底壁40Bと側壁40Sとに接合されている。これらの接合に用いられたアーク溶接部位は、図2においてAW2として示されている。また、図示は省略するが、各補強部材42は、スペーサ本体32の被補強部分の略全長に亘って設けられ、略全長に亘って連続的又は断続的に、アーク溶接にてインナパネル38、アウタパネル40に接合されている。
 以上説明した構成によって、スライドスペーサ30は、上記の通りフロントサイドメンバ14の曲げ強度と比較して、高い曲げ強度・圧縮(座屈)強度を有する構成とされている。
 (被固定部)
 図1に示される如く、被固定部34は、スペーサ本体32における第1傾斜部32Aの前端に設けられてスライドスペーサ30における張出部20への保持のための結合部位を成している。この被固定部34は、スペーサ本体32に接合された本体接合部34Hと、張出部20に固定されるフランジ34Fとを有して構成されている。
 本体接合部34Hは、第1傾斜部32Aの前端に外側から嵌合される筒状を成しており、該嵌合状態で図示しない締結具や溶接構造等によってスペーサ本体32に接合されている。フランジ34Fは、本体接合部34Hに対し車幅方向両側に張り出しており、該張出部分においてボルト44B及びナット44Nを含む締結具44にて、張出部20に締結により固定されている。
 この実施形態では、車幅方向及び上下に離間した計4箇所において締結具44により締結されている。なお、車幅方向内側の締結具44は、リインフォース本体22及びエクステンション24をフランジ34Fに共締めしており、車幅方向内側の締結具44は、エクステンション24のみをフランジ34Fに締結している。
 以上説明した被固定部34によって、スライドスペーサ30は、バンパリインフォースメント18の張出部20に固定(保持)されている。この被固定部34及びスペーサ本体32の第1傾斜部32Aを含む部分が、本発明におけるスペーサ部材の第1部分に相当する。
 (スライド板)
 図1に示される如く、スライド板36は、車幅方向内側を向く板状に形成されている。このスライド板36には、スペーサ本体32における第2傾斜部32Bの後端がアーク溶接やスポット溶接等によって接合されている。この接合状態で、スライド板36は、第2傾斜部32Bの後端(開口端)を塞ぐと共に、該第2傾斜部32Bの後端に対し前後に張り出している。
 このスライド板36における隙間Cを挟んで外側壁14Sと対向する部分の前後方向に沿った長さをLとする。スライド板36は、バンパリインフォースメント18の張出部からスペーサ本体32を介して伝わる荷重を、フロントサイドメンバ14の外側壁14Sの広い面に対し伝えるように、長さLが設定されている。具体的には、スライド板36は、クラッシュボックス16の圧縮過程で、張出部20からの荷重を外側壁14Sに伝えつつ、該外側壁14Sに対しスライドする(外側壁14Sに局所的な変形が生じない)ように長さLが設定されている。
 また、スライド板36の後端は、車幅方向外向きに折り曲げられた折り曲げ部36Fとされている。折り曲げ部36Fの車幅方向に沿った寸法をbとする。一方、スライド板36の車幅方向内側すなわち外側壁14Sとの間には、上記した隙間Cが形成されている。この実施形態では、スライド板36すなわちスライドスペーサ30は、フロントサイドメンバ14に対し非拘束とされている。
 以上により、スライドスペーサ30は、クラッシュボックス16の圧縮変形に伴って、フロントサイドメンバ14の外側壁14Sに沿ってスライドする構成されている。すなわち、スライド板36がフロントサイドメンバ14に非拘束状態で対向する構成は、上記したスライド板36の長さL、スペーサ本体32が骨格部材12のフランジ14F、16Fを回り込む構成と共に、スライド許容構造を構成している。
 このスライド板36及びスペーサ本体32の第2傾斜部32Bを含む部分が、本発明におけるスペーサ部材の第2部分に相当する。
[ストッパ]
 また、車体前部構造10は、スライドスペーサ30の後方への移動を制限するストッパ46を備えている。この実施形態では、ストッパ46は、フロントサイドメンバ14に設けられており、該フロントサイドメンバ14の外側壁14Sに対するスライドスペーサ30の所要範囲を超えるスライドを制限するようになっている。以下、具体的に説明する。
 ストッパ46は、外側壁14Sに固定された基部46Bと、該基部46Bから平面視で車幅方向外側に延びる後ストッパ46Rと、該後ストッパ46Rの車幅方向外端から前方に延びる横ストッパ46Sとが、板材の曲げ加工によって一体に形成されている。基部46Bは、ボルト48B及びナット48Nを含む締結具48にて、外側壁14Sにおけるパワーユニット26の側方に位置する部分に固定されている。この実施形態では、基部46Bは、上下方向に離れた複数個所で締結具48にて外側壁14Sに固定されている。
 後ストッパ46Rは、基部46Bの前端から平面視で車幅方向外側に延びている。これにより、ストッパ46は、外側壁14Sと横ストッパ46Sとの間の空間Sが、締結具48に占有されることなく前向きに開口している。この空間Sの開口幅aは、スライドスペーサ30を構成するスライド板36の折り曲げ部36Fの寸法bよりも大とされている。これにより、ストッパ46は、外側壁14Sの表面をスライドしつつ空間Sに進入してきたスライドスペーサ30の後端が後ストッパ46Rに当接することで、スライドスペーサ30のそれ以上の後方へのスライドを制限するようになっている。
 また、後ストッパ46Rは、車幅方向の外端よりも内端が後方に位置するように、車幅方向に対し若干傾斜されている。この傾斜形状は、後ストッパ46Rに当接してスライドスペーサ30の後端を外側壁14S側にガイドするガイド形状と捉えることができる。そして、スライドスペーサ30の後端が後ストッパ46Rに当接するまでのストロークは、クラッシュボックス16のエネルギ吸収ストロークと同等とされている。したがって、クラッシュボックス16がエネルギ吸収限度まで圧縮変形されると、スライドスペーサ30の後端が後ストッパ46Rに当接し、該スライドスペーサ30のそれ以上のスライドが制限されるようになっている。
 横ストッパ46Sは、空間Sに進入してきたスライドスペーサ30の後端が車幅方向外側に移動すること、すなわち後ストッパ46Rによるスライド制限状態が解消されることを抑止する構成とされている。
[作用]
 次に、第1の実施形態の作用を説明する。
 上記構成の車体前部構造10が適用された自動車に、フロントサイドメンバ14に対する車幅方向外側に衝突体(バリヤBr)が衝突する形態の衝突である微小ラップ衝突が生じた場合の作用について、図3を参照しつつ説明することとする。図示例は、左側のフロントサイドメンバ14の車幅方向外側にバリヤBrが衝突した場合を示す。
 上記構成の車体前部構造10が適用された自動車に、微小ラップ衝突が生じると、張出部20には後向きの衝突荷重が入力される。この衝突荷重によって張出部20(バンパリインフォースメント18)に曲げが生じると、スライドスペーサ30のスライド板36がフロントサイドメンバ14の外側壁14Sに当接する。これにより、張出部20に入力された荷重の一部は、スライドスペーサ30を介してフロントサイドメンバ14に伝達される(第1の荷重伝達態様)。
 すなわち、バンパリインフォースメント18は、張出部20においてスライドスペーサ30及びフロントサイドメンバ14によって後方から支持され、クラッシュボックス16への固定部位での折れが防止又は効果的に抑制される。このため、張出部20に入力された荷重の他の一部は、衝突側のクラッシュボックス16に伝達され、図3Aに示される如くクラッシュボックス16が圧縮変形される。これにより、微小ラップ衝突の初期のエネルギ吸収が果たされる。
 クラッシュボックス16が圧縮変形される過程では、スライドスペーサ30はフロントサイドメンバ14に対しスライド板36においてスライド(接触しながら後方へ移動)しつつ、該フロントサイドメンバ14に荷重を伝達する。クラッシュボックス16の圧縮量の増加と共に荷重受け部位が後方に移動するフロントサイドメンバ14は、折れることなくスライドスペーサ30を後方にガイドする機能も果たす。
 そして、クラッシュボックス16がエネルギ吸収限度まで圧縮変形されると、図3Aに示される如くストッパ46によってスライドスペーサ30のフロントサイドメンバ14に対するスライドが制限される。このため、張出部20に入力され続けている衝突荷重(矢印F1参照)は、フロントサイドメンバ14の特定部位に、スライドスペーサ30にて変換された車幅方向内向きの荷重である横力(矢印F2参照)として入力される(第2の荷重伝達態様)。
 これにより、図3Bに示される如く、フロントサイドメンバ14が車幅方向内向きに折れる。フロントサイドメンバ14の折れが進行すると、図3Cに示される如く、フロントサイドメンバ14は、パワーユニット26に干渉する。これにより、スライドスペーサ30からの荷重がフロントサイドメンバ14を介してパワーユニット26(エンジンコンパートメント内の構造物等)に伝達される。
 このようにして張出部20に入力された衝突荷重は、パワーユニット26及びその支持構造等を介して車体後方や反衝突側に伝達される(前後方向の荷重Fx、車幅方向の荷重Fy(横力)として車体各部に伝達される)。これにより、微小ラップ衝突による車体の衝突側端部の局所的な大変形が防止又は効果的に抑制される。さらに、自動車における質量集中部(の1つ)であるパワーユニット26に入力された横力(慣性力)によって、自動車自体が反衝突側へ移動されると、張出部20への衝突荷重の入力自体が解消又は緩和される。これによっても、車体の衝突側端部の局所的な大変形が防止又は効果的に抑制される。
 ここで、スライドスペーサ30は、第2傾斜部32Bの傾斜角α2が第1傾斜部32Aの傾斜角α1よりも大である屈曲(湾曲)形状を成している。このため、スライドスペーサ30は、傾斜角がα1一定のスペーサ本体を備えた比較例と比較して、フロントサイドメンバ14への横力の伝達効率が高い。
 このように、第1の実施形態に係る車体前部構造10では、微小ラップ衝突による荷重を効率良くフロントサイドメンバ14に伝達することができる。
 また、この屈曲形状によって、スライドスペーサ30の前後長が短く抑えられる。これにより、クラッシュボックス16のエネルギ吸収ストロークの範囲内でのスライドスペーサ30のスライドによって、該スライドスペーサ30が車体(例えばホイールハウス)や他の搭載部品と干渉すること抑制される。換言すれば、傾斜角がα1一定(前後長が長い)スライドスペーサを備えた比較例と比較して、車体の設計自由度が高い。
 さらに、車体前部構造10では、スライドスペーサ30の後端が平面視で鋭角形状を成している。このため、スライドスペーサ30は、その後端部をフロントサイドメンバ14に食い込ませつつ、該フロントサイドメンバ14に折れを生じさせる。これにより、スライドスペーサ30は、フロントサイドメンバ14に対し位置ずれする(滑る)ことが効果的に抑制され、該フロントサイドメンバ14の特定部位に集中的に横力を伝達することで、該フロントサイドメンバ14の折れを促進する。
 しかも、車体前部構造10では、クラッシュボックス16がエネルギ吸収限度まで圧縮変形されると、スライドスペーサ30の後端がストッパ46の後ストッパ46Rに干渉する。例えばストッパ46を備えない比較例では、クラッシュボックスがエネルギ吸収限度まで圧縮変形された後に、スライドスペーサ30が張出部20との成す角を広げる如き形態でフロントサイドメンバ14に対するスライドを維持する懸念がある。このようなスライドの維持は、フロントサイドメンバ14の適所での折れを阻害する原因となり得る。
 これに対して車体前部構造10では、ストッパ46によって、スライドスペーサ30が張出部20との成す角を広げる如き形態でフロントサイドメンバ14に対するスライドすることが防止又は効果的に抑制制限される。これにより、フロントサイドメンバ14を適所で効果的に折ることができ、上記した車体への荷重分散やパワーユニット26への効率良く荷重を伝達することに寄与する。
 これによっても、車体前部構造10では、微小ラップ衝突による荷重を効率良く骨格部材に伝達することができる。
 また、ストッパ46は、その車幅方向の寸法a(正確には外側壁14Sとで形成する空間Sの開口幅)がスライドスペーサ30の後端を成す折り曲げ部36Fの寸法bよりも大きい。このため、外側壁14Sに対しスライド(接触しつつ移動)してきたスライドスペーサ30が、ストッパ46を乗り越えて後方に移動することが防止又は効果的に抑止される。
 特に、空間Sの開口幅aが折り曲げ部36Fの寸法bよりも大きいため、この空間Sにスライドスペーサ30の後端が入り込むことで、該スライドスペーサ30がストッパ46を乗り越えて後方に移動することが防止又は効果的に抑止される。すなわち、外側壁14Sとで空間Sを規定する横ストッパ46Sが、スライドスペーサ30のフロントサイドメンバ14に対する車幅方向の位置ずれを抑制する。これにより、横ストッパ46Sを有しない構成と比較して高い確度で、ストッパ46によるスライドスペーサ30のスライドの制限効果が奏される。
 さらに、ストッパ46の後ストッパ46Rは、車幅方向の外端よりも内端が後方に位置するように車幅方向に対し若干傾斜されたガイド形状を有する。このガイド形状がスライドスペーサ30の後端を外側壁14S側にガイドするため、該スライドスペーサ30の後端が当たった状態のフロントサイドメンバ14が折れることとなる。これにより、ストッパ46がガイド形状を有しない構成と比較して、フロントサイドメンバ14の適所での折れの促進に寄与する。
 またさらに、車体前部構造10におけるバンパリインフォースメント18は、リインフォース本体22の両端に、該リインフォース本体22を構成する材料よりも高強度の材料より成るエクステンション24をそれぞれ結合して構成されている。そして、エクステンション24は、クラッシュボックス16への固定部位からバンパリインフォースメント18すなわち張出部20の先端まで至る範囲に設けられている。このため、バンパリインフォースメント18を全長に亘りアルミ押出成形品にて構成した場合と比較して、微小ラップ衝突による張出部20の曲げ変形(折れ)や断面潰れが生じにくい。これにより、張出部20からスライドスペーサ30を介して衝突荷重を効率良くフロントサイドメンバ14に伝達することができる。
<第2の実施形態>
 次いで、第2の実施形態について、図4に基づいて説明する。なお、第1の実施形態の構成と基本的に同様の構成については、第1の実施形態の構成と同一の符号を付して、その説明、図示を省略する場合がある。
 図4には、車体前部構造60の要部が平面図にて示されている。車体前部構造60は、スペーサ部材としてのスライドスペーサ62の構造がスライドスペーサ30とは異なる点を除いて、第1の実施形態に係る車体前部構造10と同様に構成されている。なお、図4に示すエクステンション24は、第1の実施形態で示したエクステンション24と形状が異なるが、基本的な構成、機能は第1の実施形態で示したエクステンション24と同様である。以下、車体前部構造60について具体的に説明する。
 スライドスペーサ62は、エクステンション24に固定されるスペーサ本体64と、スペーサ本体64の後端に設けられてフロントサイドメンバ14の外側壁14Sと対向するスライダ部65とを主要部として構成されている。スペーサ本体64は、インナパネル66とアウタパネル68との接合により長手方向に直交する断面視で閉断面とされた閉断面構造とされている(図示省略)。
 アウタパネル68は、断面視で車幅方向内向きに開口するハット形状を成しており、上下フランジ68Fを有する。また、アウタパネル68の前縁、後縁からは前フランジ68FF、後フランジ68FRが張り出されている。なお、アウタパネル68の後端側には、スペーサ本体64の閉断面を閉じる後壁68Rが形成されている。後壁68Rは、平面視で後フランジ68FR(後述するスライド板65A)との成す角βが鋭角とされている。
 一方、インナパネル66は、断面視で車幅方向外向きに開口するハット形状を成しており、上下フランジ66Fを有する。このインナパネル66は、後方に向けて徐々に車幅方向寸法(断面の深さ)が小さくなっており、その後端は平板状の後フランジ68FRとされている。また、インナパネル66の前縁からは前フランジ66FFが張り出されている。
 インナパネル66とアウタパネル68とは、互いの上下フランジ66F、68Fが溶接にて接合されることで、閉断面構造のスペーサ本体64を構成している。この実施形態では、インナパネル66とアウタパネル68とは、前端部は車幅方向に離間しており非接合とされている。すなわち、スペーサ本体64は、図19に示される如く「y」字状に形成されている。このスペーサ本体64は、上記した前フランジ66FF、68FFにおいて、エクステンション24を構成するリヤパネル24Rの背面に溶接にて接合されている。
 スライダ部65は、フロントサイドメンバ14の外側壁14Sと隙間Cを空けて対向するスライド板65Aと、スライド板65Aから突出されてスペーサ本体64の後端内に嵌り込む突出部65Bとを主要部として構成されている。突出部65Bは、スペーサ本体64の後端内に嵌り込んだ状態で、インナパネル66の後フランジ66FR、アウタパネル68の車幅方向内向きの開口縁部が溶接等にて接合されている。
 以上説明したスライドスペーサ62は、平面視にて全体として、後部が前部に対し車幅方向内向きに(外側壁14S側に)曲げられた如き屈曲形状を成している。この実施形態では、アウタパネル68の前部とインナパネル66とで構成する平面視「y」字状に形成された部分が、本発明におけるスペーサ部材の第1部分に相当する。また、該アウタパネル68の後部とスライダ部65(の突出部65B)とで、上記第1部分に相当する部分の後端から曲げられた如く形成された部分が、本発明におけるスペーサ部材の第2部分に相当する。
 また、スライドスペーサ62は、アウタパネル68の後フランジ68FRと、スライダ部65のスライド板65Aとの重ね合わせ部分の厚みtが、ストッパ46の空間Sの開口幅aよりも小とされている。
[作用]
 上記構成の車体前部構造60は、基本的に第1の実施形態に係る車体前部構造10と同様の作用によって同様の効果を得ることができる。また、スライドスペーサ62のスペーサ本体64が「y」字状を成しているため、張出部20の車幅方向の広い範囲に入力された荷重をフロントサイドメンバ14に伝達することができる。
 なお、第2の実施形態では、スペーサ本体64が「y」字状を成す例を示したが、これに限られるものではない。例えば、インナパネルとアウタパネルとを前端に至るまで接合した構成としても良い。この場合も、後端側よりも前端側の幅が広くなるテーパ形状とすることで、張出部20の車幅方向の広い範囲に入力された荷重をフロントサイドメンバ14に伝達することができる。
[ストッパの変形例]
 第1、第2の実施形態では、ストッパ46を備えた例を示したが、本発明はこれに限定されない。例えば、ストッパ46に代えて、図5に示される如きストッパ70を備えた構成としても良い。
 ストッパ70は、ストッパ46に、基部46Bと後ストッパ46Rとを繋ぐ連結壁70Cを形成することで構成されている。この実施形態では、連結壁70Cは、平面視で基部46Bと後ストッパ46Rとを2辺とする三角形状に形成されている。この連結壁70Cは、別部材を溶接等にて接合して構成しても良く、ストッパ46の加工(プレス)の際に一体に形成しても良い。後者の構成としては、基部46Bと後ストッパ46Rとをストッパ46の上下端で繋ぐ一対の連結壁70Cが形成されることとなる。
 また、第1、第2の実施形態では、ストッパ46が横ストッパ46Sを有する例を示したが、本発明はこれに限定されない。例えば、ストッパ46に代えて、横ストッパ46Sを有しないストッパを採用しても良い。
 さらに、第1、第2の実施形態では、ストッパ46がフロントサイドメンバ14に設けられた例を示したが、本発明はこれに限定されない。例えば、サスペンションタワーやスタビライザブラケット等、車体を構成する他の部分にストッパを設けても良い。また例えば、サスペンションタワー自体(の形状)によってストッパ(機能)を構成しても良い。
 またさらに、本発明は、スライドスペーサが平面視で上記した如き第1部分及び第2部分を有する屈曲(湾曲)形状を成す構成においては、ストッパを備えた構成に限定されることはない。逆に、スライドスペーサのスライドを制限するストッパを有する構成においては、該スライドスペーサの平面視形状が上記屈曲形状に限定されることはない。
 また、第1、第2の実施形態では、車体前部構造が車幅方向中心線に対し対称に構成されている例を示したが、本発明はこれに限定されない。例えば、車幅方向の一方側にのみ、本発明に係る構成を採用しても良い。
 さらに、第1、第2の実施形態では、エクステンション24を有するバンパリインフォースメント18を備えた例を示したが、本発明はこれに限定されない。例えば、エクステンション24を有しないバンパリインフォースメントを備えた構成としても良い。また、エクステンションを備える構成において、該エクステンションの材質がバンパリインフォースメントの材質よりも高強度(高弾性)である構成に限定されることはない。
 また、第1、第2の実施形態では、フロントサイドメンバ14とクラッシュボックス16とが結合されて成る骨格部材12を備えた例を示したが、本発明はこれに限定されない。例えば、クラッシュボックスを有せず、前端側が他の部分よりも圧縮強度の低いエネルギ吸収部とされたフロントサイドメンバを備えた構成としても良い。
 その他、本発明は、その要旨を逸脱しない範囲で各種変更して実施可能であることは言うまでもない。
  10      車体前部構造
  12      骨格部材
  14      フロントサイドメンバ(骨格部材)
  16      クラッシュボックス(骨格部材のエネルギ吸収部)
  18      バンパリインフォースメント(バンパ骨格部)
  20      張出部
  30      スライドスペーサ(スペーサ部材)
  32A    第1傾斜部(第1部分)
  32B    第2傾斜部(第2部分)
  34      被固定部(第1部分)
  36      スライド板(第2部分)
  46      ストッパ
  46R    後ストッパ
  46S    横ストッパ
  60      車体前部構造
  62      スライドスペーサ(スペーサ部材)
  70      ストッパ
  70C    連結壁

Claims (8)

  1.  車両前後方向に長手とされると共に車幅方向に並列され、車両前後方向の前端側がエネルギ吸収部とされた一対の骨格部材と、
     車幅方向に長手とされて前記一対の骨格部材における車両前後方向の前端間を架け渡し、前記骨格部材に対し車幅方向外側に張り出した張出部を有するバンパ骨格部と、
     前記張出部に固定された車両前後方向の前端部から平面視で車両前後方向及び車幅方向において前記骨格部材に向けて延びる第1部分と、該第1部分から車幅方向内向きに曲げられると共に車幅方向の内端部において前記骨格部材の車幅方向外側を向く壁部と対向する第2部分とを有するスペーサ部材と、
     を備えた車体前部構造。
  2.  前記スペーサ部材の第2部分における車両前後方向の後端部は、平面視で車両前後方向の後方に向けて車幅方向の寸法が徐減された鋭角形状を成している請求項1記載の車体前部構造。
  3.  前記スペーサ部材が、前記エネルギ吸収部によるエネルギ吸収ストロークを超えて前記骨格部材に対して車両前後方向の後側へ相対変位することを制限する後ストッパをさらに備えた請求項2記載の車体前部構造。
  4.  車両前後方向に長手とされると共に車幅方向に並列され、車両前後方向の前端側がエネルギ吸収部とされた一対の骨格部材と、
     車幅方向に長手とされて前記一対の骨格部材における車両前後方向の前端間を架け渡し、前記骨格部材に対し車幅方向外側に張り出した張出部を有するバンパ骨格部と、
     車両前後方向の前端側が前記張出部に固定されると共に、車両前後方向の後端側が前記骨格部材における車幅方向外側を向く壁部と対向され、かつ車両前後方向の後端部における平面視での形状が車両前後方向の後方に向けて車幅方向の寸法が徐減された鋭角形状とされたスペーサ部材と、
     前記スペーサ部材が、前記エネルギ吸収部によるエネルギ吸収ストロークを超えて前記骨格部材に対して車両前後方向の後側へ相対変位することを制限する後ストッパと、
     を備えた車体前部構造。
  5.  前記後ストッパの車幅方向の寸法は、前記スペーサ部材の車両前後方向の後端における車幅方向の寸法よりも大とされている請求項3又は請求項4記載の車体前部構造。
  6.  前記後ストッパの車幅方向外端側から車両前後方向の前方に延び、前記スペーサ部材の第2部分における車両前後方向の後端部の車幅方向外側への相対変位を制限する横ストッパをさらに備えた請求項5記載の車体前部構造。
  7.  前記後ストッパは、前記スペーサ部材における車両前後方向の後端部を前記骨格部材側にガイドするガイド形状を有する請求項3~請求項6の何れか1項記載の車体前部構造。
  8.  前記後ストッパは、前記骨格部材の前記壁部に固定された基部における車両前後方向の前端から車幅方向外向きに張り出されると共に、該後ストッパと前記基部とを連結する連結壁にて支持されている請求項3~請求項7の何れか1項記載の車体前部構造。
PCT/JP2014/050839 2013-01-18 2014-01-17 車体前部構造 WO2014112596A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480003807.9A CN104903154B (zh) 2013-01-18 2014-01-17 车身前部结构
DE112014000472.3T DE112014000472B4 (de) 2013-01-18 2014-01-17 Struktur eines vorderen Fahrzeugkarosserieabschnitts
US14/652,337 US9555754B2 (en) 2013-01-18 2014-01-17 Vehicle body front portion structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013007137A JP5761214B2 (ja) 2013-01-18 2013-01-18 車体前部構造
JP2013-007137 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014112596A1 true WO2014112596A1 (ja) 2014-07-24

Family

ID=51209685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050839 WO2014112596A1 (ja) 2013-01-18 2014-01-17 車体前部構造

Country Status (5)

Country Link
US (1) US9555754B2 (ja)
JP (1) JP5761214B2 (ja)
CN (1) CN104903154B (ja)
DE (1) DE112014000472B4 (ja)
WO (1) WO2014112596A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2987705A1 (en) * 2014-08-21 2016-02-24 Volvo Car Corporation A vehicle front body structure for small overlap mitigation
DE102014216478A1 (de) * 2014-08-20 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Karosserieanordnung für ein Kraftfahrzeug, die insbesondere für eine Kollision mit geringer Überdeckung ausgebildet ist
WO2016046582A1 (en) * 2014-09-22 2016-03-31 Arcelormittal Bumper-reinforcing system for motor vehicle
CN105501161A (zh) * 2014-10-10 2016-04-20 丰田自动车株式会社 车辆前部结构
US9771106B2 (en) 2013-08-09 2017-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle body front structure
US10661833B2 (en) 2018-06-29 2020-05-26 Nissan North America, Inc. Vehicle body structure

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918830A (zh) 2012-12-07 2015-09-16 丰田自动车株式会社 车身端部结构
JP5761214B2 (ja) * 2013-01-18 2015-08-12 トヨタ自動車株式会社 車体前部構造
JP5895909B2 (ja) * 2013-09-04 2016-03-30 トヨタ自動車株式会社 車両前部構造
US9421865B2 (en) * 2014-04-04 2016-08-23 Fca Italy S.P.A. Motor vehicle provided with a powertrain unit and a safety device for moving the powertrain unit sideways during an impact
JP6052310B2 (ja) * 2015-02-03 2016-12-27 マツダ株式会社 自動車の車体構造
ITUB20150146A1 (it) * 2015-05-13 2016-11-13 Fca Italy Spa Struttura d'estremita' di una scocca di autoveicolo
DE102015211544A1 (de) * 2015-06-23 2016-12-29 Bayerische Motoren Werke Aktiengesellschaft Abstützeinrichtung für einen Vorderwagen eines Personenkraftfahrzeugs
US9457746B1 (en) * 2015-11-09 2016-10-04 Ford Global Technologies, Llc Energy absorbing system for vehicular impacts
DE102016201008B4 (de) * 2016-01-25 2019-05-16 Ford Global Technologies, Llc Stoßfängereinheit für ein Kraftfahrzeug
US9840282B2 (en) * 2016-04-12 2017-12-12 Ford Global Technologies, Llc Collision counter measure structure attached to a sub-frame including a leg that contacts a frame rail
EP3290304B1 (en) * 2016-09-06 2019-07-24 FCA Italy S.p.A. Motor vehicle provided with a powertrain unit and a safety device for moving the powertrain unit sideways during an impact
DE102016012183B4 (de) * 2016-10-12 2018-08-23 Audi Ag Crashstruktur für ein Fahrzeug
US11299117B2 (en) * 2017-04-03 2022-04-12 City University Of Hong Kong Energy absorbing device
JP6471782B1 (ja) * 2017-08-23 2019-02-20 マツダ株式会社 車体構造
KR101977529B1 (ko) * 2018-01-17 2019-08-28 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 횡 방향 움직임의 증가를 위한 크로스 부재를 포함하는 전기 자동차
JP6922754B2 (ja) * 2018-01-22 2021-08-18 トヨタ自動車株式会社 車両前部構造
JP6703559B2 (ja) * 2018-03-29 2020-06-03 株式会社Subaru 車両の前部車体構造
JP6581686B1 (ja) * 2018-03-30 2019-09-25 株式会社Uacj バンパー構造体
JP6672387B2 (ja) * 2018-06-27 2020-03-25 本田技研工業株式会社 車体前部構造
JP7035908B2 (ja) * 2018-08-29 2022-03-15 トヨタ自動車株式会社 車両前部構造
JP7053421B2 (ja) * 2018-09-17 2022-04-12 本田技研工業株式会社 車体構造
DE102018129724B4 (de) * 2018-11-26 2022-08-04 Benteler Automobiltechnik Gmbh Fahrzeugbauteil für ein Fahrzeug
JP7124728B2 (ja) * 2019-01-25 2022-08-24 トヨタ自動車株式会社 車両構造
JP7166734B2 (ja) 2019-01-30 2022-11-08 株式会社本田電子技研 自動ドア用センサーの取付装置
KR102663542B1 (ko) * 2019-05-07 2024-05-03 현대자동차주식회사 차량의 프런트엔드모듈 프레임
US11511812B2 (en) 2020-09-28 2022-11-29 Nissan North America, Inc. Vehicle front end assembly
US11511811B2 (en) 2020-09-28 2022-11-29 Nissan North America, Inc. Vehicle front end assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297066U (ja) * 1985-12-10 1987-06-20
JP2009248603A (ja) * 2008-04-01 2009-10-29 Nissan Motor Co Ltd バンパの取付構造
JP2011051473A (ja) * 2009-09-02 2011-03-17 Toyoda Iron Works Co Ltd 車両用衝撃吸収部材

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051664U (ja) * 1991-06-27 1993-01-14 富士重工業株式会社 車両用シヤーシフレーム構造
JPH08164869A (ja) * 1994-12-15 1996-06-25 Fuji Heavy Ind Ltd 車両の前部フレーム構造
JP3289629B2 (ja) 1997-01-27 2002-06-10 三菱自動車工業株式会社 車体の前部構造
JP2000052898A (ja) 1998-08-05 2000-02-22 Nippon Light Metal Co Ltd バンパー構造
US6318775B1 (en) 1999-06-21 2001-11-20 Shape Corporation Composite bumper construction
JP3765238B2 (ja) 2001-02-27 2006-04-12 日産自動車株式会社 車体前部構造
JP3632649B2 (ja) 2001-11-14 2005-03-23 日産自動車株式会社 車体前部構造
JP3687604B2 (ja) 2001-12-19 2005-08-24 日産自動車株式会社 車体前部構造
JP3632666B2 (ja) 2002-02-01 2005-03-23 日産自動車株式会社 車体前部構造
JP4122887B2 (ja) 2002-08-05 2008-07-23 日産自動車株式会社 車体前部構造
JP4449404B2 (ja) 2003-10-17 2010-04-14 トヨタ自動車株式会社 車両の前部車体構造
JP2006175988A (ja) * 2004-12-22 2006-07-06 Mazda Motor Corp 車体前部構造
JP2006224728A (ja) 2005-02-15 2006-08-31 Toyota Motor Corp フレーム付き車のバンパリインフォースメント構造
JP4222391B2 (ja) 2006-07-28 2009-02-12 トヨタ自動車株式会社 エネルギー吸収構造体の取付構造
JP2008213739A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp バンパ構造、及び車両の前部構造並びに車両の後部構造
JP2008222037A (ja) 2007-03-13 2008-09-25 Mitsubishi Motors Corp 車両の衝撃吸収構造
US8256831B2 (en) * 2008-10-02 2012-09-04 Honda Motor Co., Ltd. Structure for vehicle body front portion
JP2010132018A (ja) 2008-12-02 2010-06-17 Toyota Motor Corp 車体前部構造
JP5776885B2 (ja) 2011-04-25 2015-09-09 マツダ株式会社 車両の車体前部構造
JP5728312B2 (ja) * 2011-07-07 2015-06-03 本田技研工業株式会社 車両のバンパー装置
JP5821601B2 (ja) 2011-12-13 2015-11-24 トヨタ自動車株式会社 車体前部構造
JP2013169866A (ja) * 2012-02-20 2013-09-02 Toyota Motor Corp 車体前部構造
JP2013172132A (ja) 2012-02-23 2013-09-02 Seiko Epson Corp 配線基板のパターン形成方法
JP5544388B2 (ja) 2012-03-29 2014-07-09 富士重工業株式会社 車体前部構造
US9156417B2 (en) 2012-04-19 2015-10-13 Toyota Jidosha Kabushiki Kaisha Structure for front part of vehicle body
JP5966575B2 (ja) * 2012-05-02 2016-08-10 トヨタ自動車株式会社 車両前部構造
US8544589B1 (en) * 2012-05-04 2013-10-01 Ford Global Technologies, Llc Apparatus for deflecting a vehicle away from an object during an offset frontal impact
EP2851272B1 (en) 2012-05-18 2016-10-05 Nissan Motor Co., Ltd. Structure for front part of vehicle body
JP2013248898A (ja) * 2012-05-30 2013-12-12 Honda Motor Co Ltd 車体前部構造
KR101316876B1 (ko) * 2012-07-03 2013-10-08 기아자동차주식회사 차량용 범퍼 어셈블리
US8807632B2 (en) * 2012-10-02 2014-08-19 Toyota Motor Engineering & Manufacturing North America, Inc. Small overlap frontal impact countermeasure
US20140091585A1 (en) * 2012-10-02 2014-04-03 Toyota Motor Engineering & Manufacturing North America, Inc. Small overlap frontal impact counter-measure
DE102012221193B4 (de) * 2012-11-20 2023-03-16 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeugkarosserie, die für eine Kollision mit geringer Überdeckung ausgelegt ist
JP5692210B2 (ja) * 2012-12-07 2015-04-01 トヨタ自動車株式会社 車体前部構造
JP5880417B2 (ja) * 2012-12-07 2016-03-09 トヨタ自動車株式会社 車体端部構造
CN104918830A (zh) * 2012-12-07 2015-09-16 丰田自动车株式会社 车身端部结构
JP5761214B2 (ja) * 2013-01-18 2015-08-12 トヨタ自動車株式会社 車体前部構造
JP5687723B2 (ja) * 2013-02-15 2015-03-18 トヨタ自動車株式会社 車体前部構造及び荷重受け部材
JP6048318B2 (ja) * 2013-06-05 2016-12-21 トヨタ自動車株式会社 車体前部構造
JP5907121B2 (ja) * 2013-06-11 2016-04-20 トヨタ自動車株式会社 車体前部構造
US9126550B2 (en) * 2013-07-17 2015-09-08 Ford Global Technologies, Llc Sliding deflector assembly
US8991903B1 (en) * 2013-10-04 2015-03-31 Ford Global Technologies, Llc Deflector-catcher for small overlap vehicle impacts
US9193318B2 (en) * 2013-10-14 2015-11-24 Ford Global Technologies, Llc Stepped dual tube deflector
GB2519810A (en) * 2013-10-31 2015-05-06 Gm Global Tech Operations Inc Vehicle front structure
US9376143B2 (en) * 2013-11-21 2016-06-28 Ford Global Technologies, Llc Deflector with frame rail follower and guide on deflector end
US9102358B2 (en) * 2013-11-22 2015-08-11 GM Global Technology Operations LLC Vehicle with lateral load transferring member attached to frame rail
US9421927B2 (en) * 2014-03-27 2016-08-23 GM Global Technology Operations LLC Vehicle load transfer apparatus
KR101588752B1 (ko) * 2014-05-23 2016-01-26 현대자동차 주식회사 스몰 오버랩 충돌대응 차체보강구조

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297066U (ja) * 1985-12-10 1987-06-20
JP2009248603A (ja) * 2008-04-01 2009-10-29 Nissan Motor Co Ltd バンパの取付構造
JP2011051473A (ja) * 2009-09-02 2011-03-17 Toyoda Iron Works Co Ltd 車両用衝撃吸収部材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771106B2 (en) 2013-08-09 2017-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle body front structure
DE102014216478A1 (de) * 2014-08-20 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Karosserieanordnung für ein Kraftfahrzeug, die insbesondere für eine Kollision mit geringer Überdeckung ausgebildet ist
EP2987705A1 (en) * 2014-08-21 2016-02-24 Volvo Car Corporation A vehicle front body structure for small overlap mitigation
WO2016046582A1 (en) * 2014-09-22 2016-03-31 Arcelormittal Bumper-reinforcing system for motor vehicle
WO2016046619A1 (en) 2014-09-22 2016-03-31 Arcelormittal Bumper-reinforcing system for motor vehicle
CN107074175A (zh) * 2014-09-22 2017-08-18 安赛乐米塔尔公司 用于机动车辆的保险杠加强***
JP2017535469A (ja) * 2014-09-22 2017-11-30 アルセロールミタル 自動車用のバンパー補強システム
RU2661301C1 (ru) * 2014-09-22 2018-07-13 Арселормиттал Усиленный бампер автомобиля
US10214169B2 (en) 2014-09-22 2019-02-26 Arcelormittal Bumper-reinforcing system for motor vehicle
CN107074175B (zh) * 2014-09-22 2019-06-14 安赛乐米塔尔公司 用于机动车辆的保险杠加强***
CN105501161A (zh) * 2014-10-10 2016-04-20 丰田自动车株式会社 车辆前部结构
US10661833B2 (en) 2018-06-29 2020-05-26 Nissan North America, Inc. Vehicle body structure

Also Published As

Publication number Publication date
JP2014136537A (ja) 2014-07-28
CN104903154B (zh) 2017-10-24
CN104903154A (zh) 2015-09-09
US20150329144A1 (en) 2015-11-19
DE112014000472B4 (de) 2019-10-02
DE112014000472T5 (de) 2015-09-24
JP5761214B2 (ja) 2015-08-12
US9555754B2 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
WO2014112596A1 (ja) 車体前部構造
US9663147B2 (en) Vehicle body front structure of a vehicle
US9242675B2 (en) Automobile vehicle-body front structure
JP6048318B2 (ja) 車体前部構造
US10160494B2 (en) Vehicle body front section structure
US9004576B2 (en) Vehicle front structure
JP5979084B2 (ja) 車体前部構造
US9676353B2 (en) Vehicle body end section structure
JP5867599B2 (ja) 車体前部構造
JP5924308B2 (ja) 車体前部構造
US20150251613A1 (en) Front structure of vehicle body
US20150298634A1 (en) Vehicle body end section structure
WO2014156065A1 (ja) バンパ結合構造体及びクラッシュボックス
CN111483420B (zh) 车辆的结构
JP5987805B2 (ja) 車両前部構造
JP4856740B2 (ja) 車体前部構造
US10266208B2 (en) Front vehicle body reinforcing structure
JP5807663B2 (ja) 車体前部構造
JP6024808B2 (ja) 自動車の車体前部構造
JP5804003B2 (ja) 車体前部構造
JP2020175752A (ja) 車体前部構造
JP2007001408A (ja) 車両用フード構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000472

Country of ref document: DE

Ref document number: 1120140004723

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740834

Country of ref document: EP

Kind code of ref document: A1