WO2014045613A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2014045613A1
WO2014045613A1 PCT/JP2013/057227 JP2013057227W WO2014045613A1 WO 2014045613 A1 WO2014045613 A1 WO 2014045613A1 JP 2013057227 W JP2013057227 W JP 2013057227W WO 2014045613 A1 WO2014045613 A1 WO 2014045613A1
Authority
WO
WIPO (PCT)
Prior art keywords
assist
engine
speed
motor
control
Prior art date
Application number
PCT/JP2013/057227
Other languages
English (en)
French (fr)
Inventor
松崎優之
藤本義知
河野通太
林繁樹
新海敦
西啓四郎
向井寿生
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012210088A external-priority patent/JP2014065348A/ja
Priority claimed from JP2012210087A external-priority patent/JP2014065347A/ja
Priority claimed from JP2012210089A external-priority patent/JP5921998B2/ja
Priority claimed from JP2012215235A external-priority patent/JP6066649B2/ja
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to US14/342,854 priority Critical patent/US9776615B2/en
Priority to KR1020167026782A priority patent/KR101811975B1/ko
Priority to CN201380011171.8A priority patent/CN104125904B/zh
Priority to KR1020147022489A priority patent/KR101662645B1/ko
Priority to EP13839482.0A priority patent/EP2899082B1/en
Publication of WO2014045613A1 publication Critical patent/WO2014045613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/103Infinitely variable gearings of fluid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/28Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/423Control of power take-off clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/919Stepped shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle equipped with an internal combustion engine.
  • the vehicle In a hybrid work vehicle in which the motor generator assists the internal combustion engine, the vehicle is driven by power from the internal combustion engine, and when a large load is generated in the internal combustion engine, the motor generator is operated as a motor. Vehicle travel is assisted by the output power. The motor generator is also operated as a generator to charge the battery.
  • a hybrid power unit including an electric motor that torque assists an internal combustion engine when starting and accelerating a vehicle the state of charge of a battery can be detected and supplied from the electric motor to the internal combustion engine based on the detected state of charge
  • An auxiliary torque amount (assist amount) is calculated, and the amount of fuel applied to the internal combustion engine and the load ratio of the motor are changed from the auxiliary torque amount.
  • the vehicle In a general hybrid vehicle in which the motor generator assists the internal combustion engine, the vehicle is driven by the power from the internal combustion engine, and the driving conditions (vehicle speed, accelerator pedal operation amount (accelerator opening)), internal combustion engine operation
  • the motor generator is operated as a motor in accordance with the state, the traveling road surface condition, the gear position, the remaining battery level, etc., and the vehicle traveling is assisted with the power output from the motor generator.
  • the motor generator can also be operated as a generator, and can be charged by supplying power to the battery.
  • the generated torque of the motor generator is controlled, and the vehicle driving torque required by the driver (target vehicle driving torque, for example, based on the driver's accelerator pedal operation, etc.)
  • the torque to be borne by the motor generator can be generated in accordance with the burden ratio between the internal combustion engine and the motor generator (the burden ratio is determined based on traveling conditions). It is configured.
  • the battery charging state is detected, and the auxiliary that can be supplied from the electric motor to the internal combustion engine based on the detected charging state
  • a torque amount (assist amount) is calculated, and the amount of fuel applied to the internal combustion engine and the load ratio of the electric motor are changed from the auxiliary torque amount.
  • Patent Document 3 describes a mobile agricultural machine that is provided with a speed change actuator that operates a continuously variable speed change mechanism, and that controls the travel speed (vehicle speed) in a stepless manner.
  • This mobile agricultural machine is provided with a rotation sensor for detecting and adjusting the engine rotation and an accelerator actuator, and by operating each of the actuators so as to achieve a predetermined traveling speed, the gear ratio of the continuously variable transmission mechanism and the engine rotation are correlated. (Coordinated) control. It is intended to run the engine economically with a low fuel consumption rate during light load travel, and to drive the engine at a high output with high output during high load travel.
  • the engine speed can be reduced while the vehicle speed is kept constant, the fuel consumption rate becomes low, which is advantageous in terms of energy saving (hereinafter abbreviated as energy saving).
  • energy saving energy saving
  • the possibility of engine stall increases, which causes the inconvenience that running becomes unstable.
  • the engine torque margin varies depending on the traveling state of the vehicle, for example, road conditions and work conditions. Obviously, the engine torque margin is small when the vehicle is traveling on a large slope or traveling on a muddy road. Although such a situation can be grasped by the driver, a shift operation system that can link such a situation of the driver to the energy saving driving as described above is prepared in the vehicle according to Patent Document 3. Not.
  • Patent Document 4 discloses a vehicle that realizes a speed change operation that makes use of the remaining driver's sense of engine for energy-saving driving.
  • an engine speed reduction command for reducing the engine speed set in the engine control unit by a predetermined amount based on an operation command sent by the driver's operation is given to the engine control unit, and the vehicle speed is reduced.
  • a gear ratio change command for requesting the gear change control unit to change the gear ratio that compensates for a decrease in the engine speed due to the engine speed reduction command is given. Therefore, in this known vehicle, when the driver feels that the engine torque is sufficient and he wants to reduce the engine speed for the purpose of energy-saving operation, etc., the engine speed is reduced by operating the operating device.
  • a number reduction command can be given to the engine control unit.
  • the speed change ratio corresponding to the engine rotational speed that is reduced thereby is changed, and the vehicle speed is maintained.
  • the operation of lowering the engine speed can be realized by operating the operating device while maintaining the vehicle speed.
  • the engine torque will not be sufficient, and a slight increase in engine load will cause the vehicle to become unstable and may cause engine stall. It is necessary to restore the number based on it.
  • the person is not an expert, there is a disadvantage that the operation of lowering and increasing the engine speed is repeated.
  • Patent Document 3 describes a mobile farm machine that includes a speed change actuator that operates a continuously variable speed change mechanism, and that continuously changes the traveling speed (work vehicle speed) by controlling the actuator.
  • This mobile agricultural machine is provided with a rotation sensor for detecting and adjusting the engine rotation and an accelerator actuator, and by operating each of the actuators so as to achieve a predetermined traveling speed, the gear ratio of the continuously variable transmission mechanism and the engine rotation are correlated. (Coordinated) control. It is intended to run the engine economically with a low fuel consumption rate during light load travel, and to drive the engine at a high output with high output during high load travel.
  • the engine speed can be reduced while the work vehicle speed is kept constant, the fuel consumption rate is lowered, which is advantageous from the viewpoint of energy saving (hereinafter abbreviated as energy saving).
  • energy saving energy saving
  • the possibility of engine stall increases, which causes the inconvenience that running becomes unstable.
  • the rotational speed of the hydraulic pump driven by the power from the engine is also low, and as a result, the hydraulic oil supply amount of the hydraulic pump is reduced.
  • Patent Document 4 discloses a work vehicle that realizes a shift operation that makes use of the remaining driver's sense of engine for energy-saving driving.
  • a rotation speed reduction command for reducing the engine speed set in the engine control unit by a predetermined amount based on an operation command sent by the driver's operation is given to the engine control unit, and the work vehicle
  • a gear ratio change command for requesting the gear change control unit to change the gear ratio that compensates for a decrease in the engine speed due to the speed reduction command is given. Therefore, in this known work vehicle, when the driver feels that the engine torque is sufficient and he wants to reduce the engine speed for the purpose of energy saving operation, the engine speed is decreased by a predetermined amount by operating the operating device.
  • An engine speed reduction command can be given to the engine control unit.
  • the gear ratio is changed so as to meet the engine speed that is reduced thereby, and the work vehicle speed is maintained.
  • the operation of lowering the engine speed can be realized with the work vehicle speed unchanged by simply operating the operating device during the work vehicle cruise.
  • the engine torque will not be able to afford, and a slight increase in engine load will make the work vehicle run unstable and may cause engine stall. It will be necessary to return to the original engine speed.
  • the person is not an expert, there is a disadvantage that the operation of lowering and increasing the engine speed is repeated.
  • JP 2012-162248 A paragraph number [0020-0022], FIGS. 1 and 2)
  • the hybrid vehicle dealt with in Patent Document 1 and Patent Document 2 is a normal vehicle such as a passenger car.
  • the necessity of torque assist for an internal combustion engine is determined by the amount of depression of an accelerator pedal operated by a driver.
  • the torque assist process is controlled as such.
  • an internal combustion engine that supplies driving force to the traveling device and the work device via a power transmission shaft, and a motor generator that assists the internal combustion engine by outputting power to the power transmission shaft are provided.
  • the hybrid vehicle dealt with in Patent Document 1 and Patent Document 2 is a normal vehicle such as a passenger car, and generally needs torque assist for the internal combustion engine only by the depression amount of an accelerator pedal operated by a driver. Therefore, in Patent Document 1 and Patent Document 2, the torque assist process is controlled as such.
  • an internal combustion engine that supplies driving force to the traveling device and the work device via a power transmission shaft, and a motor generator that assists the internal combustion engine by outputting power to the power transmission shaft are provided.
  • a hybrid work vehicle such as a tractor, since the large work load received by the work device reaches the power transmission shaft and eventually the internal combustion engine, the assist technology disclosed in Patent Document 1 and Patent Document 2 should be used as it is.
  • I can't In particular, in the case of a work vehicle such as a tractor equipped with a tillage device that performs ground work as a work device, the work load is applied to the internal combustion engine. However, if such a work load is always taken over by the assistance of the motor generator, the amount of charge of the battery will be lost in a short time. Therefore, mounting a battery with a large capacity must be avoided from the viewpoint of energy saving.
  • a hybrid work vehicle includes an internal combustion engine that supplies driving force to a traveling device and a work device via a power transmission unit, a transmission device provided in the power transmission unit, and a gear ratio of the transmission device.
  • a speed change control unit that performs the motor assisting control that assists the internal combustion engine by outputting power from the motor generator to the power transmission means;
  • a battery that receives charging power from the motor generator and supplies driving power to the motor generator, a load information generation unit that generates load information indicating an increase in rotational load received by the internal combustion engine, and a means for eliminating the increase in rotational load
  • the motor assist control is performed through the shift control unit. Adjusting a speed ratio and a assist control determination unit to execute with priority the machine assist control for assisting the internal combustion engine by (usually increasing the gear ratio).
  • two measures are prepared in order to eliminate the increase in rotational load generated in the internal combustion engine.
  • One measure is motor assist that assists the internal combustion engine by driving the motor generator and outputting power from the motor generator to the power transmission means.
  • Another measure is mechanical assist that assists the internal combustion engine by adjusting the transmission gear ratio of the transmission of the power transmission means through the transmission control unit.
  • the assist control determination unit performs the motor assist control in preference to the machine assist control, so that smooth working traveling using the working device is realized with the internal combustion engine having a small output while avoiding the battery rising.
  • a motor assist characteristic calculation unit that calculates a motor assist characteristic for the motor assist control based on the load information, and a gear ratio for the machine assist control.
  • motor assist is effective against sudden increases in load, continuing motor assist for a long time must be avoided from the viewpoint of battery consumption. It is important to move to assist. For this reason, it is important to prescribe not only the assist amount but also the assist time for the motor assist characteristic that determines the assist drive behavior of the motor generator. Thereby, it can adapt only to sudden load increase, and it is avoided that a battery is consumed wastefully.
  • the motor assist characteristic reduces the initial motor assist characteristic region in which the assist amount is maintained for a predetermined time and the assist amount to zero over time. It consists of a final motor assist characteristic region. Thereby, the assist can be finished smoothly.
  • the initial motor assist characteristic region has a time interval of 1.5 seconds to 2.5 seconds, and the final motor assist characteristic region is 1.5 seconds to 2.5 seconds. It is proposed to have a time interval of seconds. It is advantageous to map some motor assist characteristics calculated under such conditions so that they can be selected according to load and work type.
  • an assist control prohibition determination unit that prohibits execution of the next assist control for a predetermined time after the assist control is executed. Yes.
  • motor assist control is executed first, and then machine assist control is executed.
  • the assist control is performed only by motor assist control.
  • the machine assist control is also finished in a short period.
  • motor assist control is executed again.
  • the motor assist control is repeated in a short period of time, and battery consumption increases.
  • Such short-term repetition of the motor assist can be suppressed by appropriately setting the prohibition period in the motor assist control by the assist control prohibition determination unit.
  • a function for forcibly prohibiting the assist of the internal combustion engine by the motor generator when the charge amount of the battery is determined to be less than a predetermined value is provided. Can do.
  • the load information generation unit when the internal combustion engine is driven by a common rail system, the load information generation unit generates the load information using common rail control information as the input parameter.
  • the control unit that executes the common rail control estimates the load torque from internal combustion engine data such as fuel injection timing, fuel injection amount, engine speed, and vehicle data such as vehicle speed, and maintains a predetermined engine speed.
  • it has a function of calculating and executing a fuel injection timing and a fuel injection amount necessary for maintaining a predetermined torque. Therefore, sudden decrease detection or estimation of the engine speed is performed using the common rail control information related to the common rail control.
  • the motor assist characteristic is determined based on the load information generated in this way.
  • the load information generation unit may be configured to generate the load information using the rotational speed behavior of the internal combustion engine as an input parameter. Specifically, a change in rotational speed and a change in rotational speed per predetermined time are calculated from measurement data obtained by measuring the rotational speed of the output shaft and power transmission shaft of the internal combustion engine, which can be acquired relatively easily. . From this calculation result, load information is generated by calculating or estimating the increase or decrease of the load using a map or the like, and is used for determining the motor assist characteristics.
  • Solution means corresponding to the problem [2] are as follows.
  • a high work load occurs suddenly, that is, for a very short time (several seconds) during traveling work or when starting a slope, and otherwise the average work load is high. Therefore, the present invention is based on the knowledge that even if this sudden high load can be cleared, there is no problem even with an internal combustion engine having a relatively small output. Therefore, the hybrid work vehicle according to the present invention assists the internal combustion engine by supplying driving force to the traveling device and the work device via the power transmission means and outputting power to the transmission means.
  • a motor generator a battery that receives charging power from the motor generator and that supplies driving power to the motor generator, a load information generation unit that generates load information representing a sudden increase in rotational load received by the internal combustion engine, An assist characteristic determining unit that determines an assist characteristic that defines an assist amount and an assist time in assist control for assisting the internal combustion engine using the motor generator against a sudden increase in rotational load, based on the load information; Motor control for controlling the motor generator based on the assist characteristics And a unit.
  • the motor generator when a sudden high load occurs, the motor generator is assisted and driven based on the assist characteristics set in advance to cope with the sudden load increase.
  • the engine can be protected from a sudden drop in speed and engine stall due to such a high load. Since the motor generator has a quick response, it can reliably cope with a sudden load increase.
  • the assist characteristic that determines the assist drive behavior of the motor generator defines not only the assist amount but also the assist time, so it can be adapted only to sudden load increases, which can waste battery consumption. Absent.
  • an assist control prohibition determination unit that prohibits execution of the next assist control for a predetermined time after the assist control is executed. Yes. Thereby, it is avoided that the assist control is continuously executed when the continuous load is generated and the battery is rapidly consumed. Further, as an additional function of the assist control prohibition determination unit, a function for forcibly prohibiting the assist of the internal combustion engine by the motor generator when the charge amount of the battery is determined to be less than a predetermined value is provided. Can do.
  • the assist by the motor generator is limited to when an unexpected load is generated, but a high rotational load may continue to some extent depending on the work contents. Sudden drop in rotation (rotation drop) and engine stall of the internal combustion engine should be avoided. However, if the assist time by the motor generator is increased, the battery will be consumed more.
  • the power transmission means includes a transmission capable of adjusting a transmission ratio through a transmission control unit, and the transmission control.
  • the unit includes a load following speed ratio control unit that executes load following speed ratio control for changing the speed ratio so as to reduce an increase in load of the internal combustion engine due to the rotational load, and the load following speed ratio control Is executed selectively with the assist control, or at least partially executed with the assist control.
  • the load on the internal combustion engine can be reduced at least partially by changing the gear ratio, so that the burden on the battery is reduced.
  • the assist control is executed prior to the load following gear ratio control
  • the sudden load increase is dealt with by the assist by the motor generator, and the rotation reduction of the internal combustion engine accompanying the subsequent load increase is performed. Can be dealt with by adjusting (usually increasing) the gear ratio.
  • the assist characteristic includes an initial assist characteristic region that maintains a constant assist amount for a predetermined time and an end assist that decreases the assist amount to zero over time. And a characteristic area. Thereby, the assist can be finished smoothly.
  • the initial assist characteristic region has a time interval of 1.5 seconds to 2.5 seconds, and the final assist characteristic region is 1.5 seconds to 2.5 seconds. It is proposed to have a time interval. It is convenient to map some assist characteristics calculated under such conditions so that they can be selected according to the load and the work type.
  • mapping of assist characteristics is a mapping of a function having the ratio of the reference assist amount and the elapsed time as variables, and represents the assist characteristics. At that time, a plurality of selectable items are prepared depending on the load amount obtained from the load information, and the assist amount is calculated by multiplying the ratio derived from the selected map by the reference assist amount. As a result, it becomes easy to select and use an optimum one from a number of assist characteristics.
  • the load information generation unit when the internal combustion engine is driven by a common rail system, the load information generation unit generates the load information using common rail control information as the input parameter.
  • the control unit that executes the common rail control estimates the load torque from internal combustion engine data such as fuel injection timing, fuel injection amount, engine speed, and vehicle data such as vehicle speed, and maintains a predetermined engine speed.
  • it has a function of calculating and executing a fuel injection timing and a fuel injection amount necessary for maintaining a predetermined torque. Therefore, sudden decrease detection or estimation of the engine speed is performed using the common rail control information related to the common rail control.
  • the assist characteristic is determined based on the load information generated in this way.
  • the load information generation unit may be configured to generate the load information using the rotational speed behavior of the internal combustion engine as an input parameter. Specifically, a change in rotational speed and a change in rotational speed per predetermined time are calculated from measurement data obtained by measuring the rotational speed of the output shaft and power transmission shaft of the internal combustion engine, which can be acquired relatively easily. . From this calculation result, load information is generated by calculating or estimating the load increase / decrease using a map or the like, and used to determine assist characteristics.
  • a hybrid vehicle includes an engine that supplies driving force to a traveling device via power transmission means, an engine control unit that sets an engine speed of the engine, a transmission provided in the power transmission means, A shift control unit that adjusts the transmission ratio of the transmission, a motor (electric motor) unit that assists the engine by outputting power to the power transmission means, and load information that represents an increase in rotational load received by the engine
  • a load information generation unit that generates power
  • a motor control unit that performs assist control to output power from the motor unit to the power transmission unit based on the load information
  • a battery that supplies drive power to the motor unit
  • An operating device for sending an operation command by the operation of the engine, and the engine based on the operation command
  • a rotational speed reduction command for reducing the engine rotational speed set in the control unit by a predetermined amount is given to the engine control unit, and in order to maintain the vehicle speed, the reduction of the engine rotational speed due to the rotational speed reduction command is compensate
  • the load information generation unit when the rotational load of the engine increases due to some factor, the load information generation unit generates load information indicating an increase in the rotational load. Based on this load information, power is transmitted from the motor unit to the power transmission means. Is output by the motor control unit. As a result, engine speed reduction and engine stall are avoided. In particular, since the motor generator has a quick response, it can reliably cope with a sudden load increase.
  • the assist control is performed with respect to an increase in rotational load that occurs after the rotation speed reduction command is given to the engine control unit.
  • the motor unit is configured as a motor generator, and the battery can receive charging power from the motor generator. That is, when the motor assist is unnecessary, the motor unit is driven as a generator as necessary, and the battery is charged to suppress the battery exhaustion.
  • an assist characteristic determining unit that determines an assist characteristic that defines an assist amount and an assist time in the assist control based on the load information is provided. Performs assist control by the motor unit based on the assist characteristics.
  • the motor generator when a sudden high load occurs, the motor generator is assisted and driven based on the assist characteristic set in advance to cope with the sudden load increase, so that the sudden load due to the high load is abrupt.
  • the engine can be protected from rotation reduction and engine stall. Since the assist characteristic that determines the assist drive behavior of the motor generator defines not only the assist amount but also the assist time, it can be adapted only to a sudden load increase, and the battery is not consumed unnecessarily.
  • the assist characteristic includes an initial assist characteristic region that maintains a constant assist amount for a predetermined time and an end assist that decreases the assist amount to zero over time. And a characteristic area. Thereby, the assist can be finished smoothly.
  • the tilling work is a ground work traveling such as a front loader work, and a predictable sudden load increase occurs.
  • the time for such a sudden load increase can be examined experimentally and empirically. Therefore, it is preferable to determine the assist characteristics in advance based on the statistical evaluation of such survey results.
  • the initial assist characteristic region has a time interval of 1.5 seconds to 2.5 seconds, and the final assist characteristic region is 1.5 seconds to 2.5 seconds. It is proposed to have a time interval. It is convenient to map some assist characteristics calculated under such conditions so that they can be selected according to the load and the work type.
  • the hybrid vehicle energy is not saved by charging the battery using a regenerative brake as in a general hybrid vehicle, but the engine is assisted by assisting the motor generator when a sudden load occurs.
  • the aim is to improve fuel efficiency by downsizing. For this reason, since a small battery is mounted, attention must be paid to running out of battery leading to engine stop.
  • execution of the next assist control is prohibited for a predetermined time. Thereby, it is avoided that the assist control is continuously executed when the continuous load is generated and the battery is rapidly consumed.
  • a load determination unit that determines whether the engine load exceeds a predetermined level based on the load information is provided, and the assist control is prohibited during the prohibition period.
  • a return operation command for canceling a decrease in the engine speed and a change in the compensation gear ratio based on the operation command is output.
  • the operating device is provided with a function that enables sending of a return operation command for canceling a decrease in engine speed and a change in the compensation gear ratio based on the operation command.
  • the engine speed once lowered can be restored to the original state by a simple operation. It is preferable to notify the driver of the prohibition period of the assist control with a lamp or the like.
  • a work vehicle according to the present invention is provided in a prime mover unit including at least an engine that supplies power to a traveling device via power transmission means, an engine control unit that sets an engine speed of the engine, and the power transmission means.
  • a transmission a transmission control unit that adjusts the transmission ratio of the transmission, a hydraulic pump in which the amount of hydraulic oil supplied varies depending on the number of revolutions of power supplied from the prime mover unit, and an operation supplied from the hydraulic pump
  • the engine An engine speed increase command generating unit for giving an engine speed increase command for increasing the engine speed set in the control unit to the engine control unit; and an engine speed by the engine speed increase command for maintaining a work vehicle speed.
  • a gear ratio change command generation unit that gives a gear ratio change command for changing the gear ratio so as to cancel the increase in the number to the gear change control unit.
  • the hydraulic oil supply amount falls below the hydraulic oil amount required for the hydraulic drive device, resulting in a shortage of hydraulic oil. If it is considered, the engine speed is increased, the hydraulic pump speed is increased, and the hydraulic oil supply amount is increased. Further, since the gear ratio is changed so as to offset such an increase in engine speed, sudden acceleration of the work vehicle is avoided. In constant speed work and constant speed running (cruising), it is advantageous to adjust the gear ratio so that the increase in engine speed is almost completely offset, since the vehicle speed does not substantially change. Of course, when avoiding only sudden acceleration of the work vehicle due to an increase in the engine speed, the gear ratio adjustment does not have to correspond strictly to the increase in the engine speed, but only to avoid sudden acceleration. Good.
  • the amount of hydraulic oil required by the hydraulic drive device operated by the driver, such as during work travel, can be estimated from the operation behavior with respect to the corresponding operation tool. Accordingly, in one preferred embodiment of the present invention, the required hydraulic oil amount is calculated based on an operation input of the hydraulic operating tool included in the operation information.
  • the work vehicle according to the present invention is configured as a hybrid work vehicle equipped with an engine and a motor unit that assists the engine from the viewpoint of saving energy by operating at a lower engine speed as much as possible. It is also effective for environmental measures.
  • an engine speed return command for canceling the engine speed increase command is issued to the engine control unit.
  • a gear ratio change command for changing the gear ratio so as to cancel the decrease in the engine speed due to the engine speed return command in order to maintain the work vehicle speed.
  • the transmission includes a continuously variable transmission, and the engine speed increase command and the engine speed return command are directed to the continuously variable transmission. It is configured.
  • the transmission includes a multi-stage transmission including a road driving gear and a work gear, and is switched to the road driving gear. The engine speed increase by the engine speed increase command is prohibited.
  • 1 is a basic configuration diagram of a power system in a hybrid work vehicle according to a first embodiment of the present invention. It is a schematic diagram which shows the flow of the data in a torque assist process.
  • 1 is a perspective view of a general-purpose tractor that is one embodiment of a hybrid work vehicle according to a first embodiment of the present invention. It is a functional block diagram which shows typically the power system of a tractor. It is a functional block diagram of a power control system. It is a functional block diagram of a power management unit. It is sectional drawing of the motor generator with which the tractor was equipped. It is a schematic diagram which shows selection of the drive mode based on charge amount and an engine load factor (load amount).
  • 1 is a perspective view of a general-purpose tractor that is one embodiment of a hybrid work vehicle according to the present invention. It is a functional block diagram which shows typically the power system of a tractor. It is a functional block diagram of a power control system. It is a functional block diagram of a power management unit. It is sectional drawing of the motor generator with which the tractor was equipped. It is a schematic diagram which shows the basic flow of the power control at the time of the energy saving driving
  • FIG. 3 is a power system diagram including a hydraulic operation system of a tractor.
  • FIG. 2 is a power system diagram schematically showing a power train of a tractor. It is sectional drawing of the motor generator with which the tractor was equipped. It is a hydraulic circuit diagram which shows typically the relationship between the hydraulic pump with which the tractor was equipped, and hydraulic drive equipment. It is a functional block diagram of an assist control unit. It is a functional block diagram of a hydraulic pressure management unit. It is a functional block diagram of an energy saving speed change module.
  • This hybrid work vehicle includes an internal combustion engine E and a motor generator 4 as drive sources, and travels by using a work device 9 mounted on the vehicle body while traveling by a travel device 2 composed of wheels and crawlers.
  • the power transmission means 1 that is a power train that transmits power from the drive source includes a main clutch 31 that turns power transmission from the drive source on and off, a PTO shaft 90 that transmits power to the work device 9, and the traveling device 2.
  • a power transmission shaft 30 for transmitting power to the transmission and a transmission 10 are included.
  • the transmission 10 is preferably configured as a continuously variable transmission, and its transmission ratio is adjusted by the transmission control unit 8.
  • the PTO shaft 90 is provided with a PTO clutch 91 that turns power transmission on and off.
  • the motor generator 4 generates rotational power using the battery B as an electric power supply source and causes the hybrid work vehicle to travel in cooperation with the internal combustion engine E.
  • the motor generator 4 can function as a generator that supplies electric power to the battery B in a situation where the vehicle is decelerating or in a situation where the vehicle is running on a downhill inertia.
  • the rotation control of the internal combustion engine E is performed by the engine control unit 6 via an engine control device 60 such as an electronic governor mechanism or a common rail mechanism.
  • the drive control of the motor generator 4 is performed by the motor control unit 7 via the inverter unit 70.
  • the engine control unit 6 is a computer unit for controlling the fuel injection amount of the internal combustion engine E and has a constant speed control function for controlling the engine control device 60 so as to maintain the rotation speed of the internal combustion engine E constant.
  • the motor control unit 7 is also a computer unit, and gives a control signal to the inverter unit 70 in order to control the rotation speed and torque of the motor generator 4.
  • the motor control unit 7 includes an assist drive mode for outputting power to the power transmission shaft 30 and a charge drive mode for outputting charging power to the battery B as drive modes for the motor generator 4. Further, it is advantageous to have a zero torque drive mode that does not affect the power transmission shaft 30.
  • the inverter unit 70 converts the DC voltage of the battery B into an AC voltage and supplies it to the motor generator 4.
  • the inverter unit 70 applies the DC voltage to the battery B. It also functions as a rectifier and a voltage regulator for supplying. That is, the battery B operates in a discharge process for supplying electric power to the motor generator 4 via the inverter unit 70, and is charged by the electric power generated by the motor generator 4 when the motor generator 4 operates as a generator. Works with the charging process.
  • the power management unit 5 manages motor assist control in which the motor generator 4 assists the internal combustion engine E by giving control commands to the engine control unit 6 and the motor control unit 7. Further, the power management unit 5 requests the shift control unit 8 to perform mechanical assist control for reducing the rotational load applied to the internal combustion engine E by adjusting the gear ratio of the transmission 10 instead of the assist control by the motor generator 4.
  • the power management unit 5 includes an assist control determination unit 50, a load information generation unit 51, a motor assist characteristic calculation unit 52, a battery management unit 54, and an operation mode selection unit 55.
  • the operation itself of the internal combustion engine E in the constant speed control mode is well known. At that time, depending on the working condition of the working device 9 and the ground condition where the traveling device 2 is grounded, a sudden load is applied to the power transmission shaft 30, and as a result, a situation where the rotational speed of the internal combustion engine E is reduced occurs.
  • Various problems arise For example, due to delays in constant speed control by the engine control device 60, insufficient output of the internal combustion engine E itself, etc., the rotational speed of the internal combustion engine E decreases (decrease in vehicle speed). In extreme cases, the internal combustion engine E stops ( Engine stall). In order to avoid this, a load applied to the power transmission shaft 30, and consequently a rotational load applied to the internal combustion engine E, is detected, and motor assist control or machine assist control is executed to at least partially cancel the load. Is done.
  • the load information generation unit 51 determines load information indicating the rotational load received by the internal combustion engine E or the power transmission shaft 30 based on engine control information given from the engine control unit 6 or input parameters extracted from information detected by various sensors. It has a function to generate.
  • the input parameters used by the load information generation unit 51 include the rotational speed (rotational speed) of the internal combustion engine E, the rotational speed (rotational speed) of the power transmission shaft 30, the engine torque calculated by the engine control unit 6, and the power transmission.
  • the torque of the shaft 30, the vehicle speed, and the working state of the working device 9 (cultivation depth, traction force, acting force on the loader, etc.) can be mentioned, but the input parameters actually used are the sensors installed in the work vehicle. Dependent.
  • the load information generation unit 51 may generate load information indicating a sudden increase in rotational load based on a differential value or a difference value of the rotational load with time in order to detect a sudden increase in rotational load.
  • load information indicating an increase in rotational load that triggers assist control may be generated simply by threshold determination.
  • the assist control determination unit 50 When it is determined from the load information generated by the load information generation unit 51 that the increase in rotational load that cannot be ignored is generated in the internal combustion engine E, the assist control determination unit 50 performs the internal combustion by motor assist control or mechanical assist control. The assist of the engine E is determined. At this time, motor assist control with excellent responsiveness is executed prior to machine assist control. However, in order to reduce the consumption of the battery B as much as possible, the execution time of the motor assist control is limited to a short time. Further, in order to avoid running out of the battery, the assist control determining unit 50 includes a motor assist control prohibition determining unit 53 that forcibly stops the motor assist control when the charge amount of the battery B becomes a predetermined value or less. The motor assist control prohibition determination unit 53 prohibits re-execution of the motor assist control for a predetermined period in order to prevent the motor assist control from being repeatedly executed in a short period.
  • the motor generator 4 is driven only for a short time in the motor assist control so that the internal combustion engine E can cope with the sudden load increase.
  • the motor assist characteristic calculation unit 52 functions for proper execution of the motor assist control. To do. Based on the load information generated by the load information generation unit 51, the motor assist characteristic calculation unit 52 defines the assist amount and the assist time in the assist control in order to execute the assist control of the internal combustion engine E using the motor generator 4. Determine the motor assist characteristics.
  • the motor control unit 7 controls the motor generator 4 via the inverter unit 70 based on the motor assist characteristic determined by the motor assist characteristic calculation unit 52.
  • the battery management unit 54 calculates the charge amount of the battery B. At that time, if the battery B is configured as an intelligent battery unit including a computer, the amount of charge of the battery is calculated based on the battery information from the battery B. If not, the signal from the battery state detection sensor is calculated. The charge amount of the battery B is calculated based on the battery information from the vehicle state detection unit S that has received this.
  • the machine assist control is a control in which the shift control unit 8 adjusts the gear ratio of the transmission 10 in response to a request from the assist control determination unit 50 to suppress an excessive rotational load of the internal combustion engine E. Therefore, the target gear ratio used in the machine assist control is calculated based on the current gear ratio and the rotational load applied to the internal combustion engine E.
  • the shift control unit 8 is provided with a machine assist speed ratio calculation unit 80.
  • the operation mode selection unit 55 takes out the rotational power of a certain number of rotations from the PTO shaft 90 and uses the work device 9 for use in the work or when the work vehicle travels at a predetermined speed (cruising travel).
  • a constant speed control mode is set to keep the rotation speed used for the constant.
  • the engine control unit 6 controls the engine control device 60 so as to maintain the rotational speed of the internal combustion engine E at the set predetermined value.
  • the engine control unit 6 sends an engine control signal based on the set value set by the accelerator setting device to the engine control device 60.
  • the fuel injection amount and the like are adjusted based on the engine control signal, and the internal combustion engine E is driven. Since the fluctuation of the rotational speed of the internal combustion engine E is caused by the fluctuation of external factors, that is, load fluctuation such as traveling load and work load, the fuel injection is performed so that the unexpected fluctuation of the rotational speed and engine stall do not occur due to the load fluctuation amount. Adjust the amount and increase the torque.
  • the assist control determination unit 50 first executes motor assist control, and the motor control unit 7 sends an assist signal to the inverter unit 70 to drive the motor generator 4 to assist the internal combustion engine E. After that, if an excessive load continues, the machine assist control is executed instead of the motor assist control, and the transmission 10 is adjusted to the speed ratio set by the machine assist speed ratio calculating unit 80. Assist the internal combustion engine E.
  • the load information generation unit 51 generates load information including the load amount based on the vehicle state information sent from the vehicle state detection unit S or the engine state information sent from the engine control device 60, and assist control is performed.
  • the data is sent to the determination unit 50, the motor assist characteristic calculation unit 52, and further to the machine assist speed ratio calculation unit 80.
  • the battery management unit 54 calculates the amount of charge (generally referred to as SOC) based on the charging information from the battery B, and uses the battery information including this amount of charge as the assist control determination unit 50 and the motor assist characteristic calculation unit. 52.
  • the motor assist characteristic calculation unit 52 determines an appropriate motor assist characteristic: W (t) based on the load amount: L read from the load information and the charge amount: SC read from the battery information.
  • the motor control unit 7 When the motor assist characteristics are determined, the motor control unit 7 generates an assist control signal based on the motor assist characteristics, drives the motor generator 4 through the inverter unit 70, and increases the load generated on the power transmission shaft 30. To compensate. Since the torque response of the electric motor is fast, even if a sudden increase in traveling load or work load occurs, a decrease in the rotational speed is avoided thereby.
  • the motor control unit 7 can cause the motor generator 4 to function as a generator and charge the battery B by sending a power generation command to the inverter unit 70. Further, the motor control unit 7 sends a zero torque control signal to the inverter unit 70 so that the motor generator 4 performs zero torque drive.
  • the machine assist speed ratio calculation unit 80 manages the load information from the load information generation unit 51 and the current status managed by the shift control unit 8. Based on the speed ratio, a target speed ratio (machine assist speed ratio) in the machine assist control is calculated. When the machine assist speed ratio is calculated, a speed change control signal is output to the transmission 10 so that the speed ratio is realized.
  • This mechanical assist control is executed after short-term assist control is completed based on the motor assist characteristics in order to cope with an increase in the load generated in the internal combustion engine E. That is, unless the assist control is prohibited by the motor assist control prohibition determination unit 53, the motor assist control is executed prior to the machine assist control.
  • the next motor assist control is prohibited by the motor assist control prohibition determination unit 53 for a predetermined time after the end of the motor assist control.
  • the hybrid work vehicle is a well-known form of general-purpose tractor as shown in FIG.
  • This tractor power system is shown schematically in FIG.
  • the tractor vehicle body includes an internal combustion engine E, a motor generator 4, a hydraulically driven main clutch 31, a transmission 10, a driving unit 20, a pair of left and right front wheels 2a and a rear wheel 2b as a traveling device 2.
  • a tilling device as a work device 9 is mounted on the rear part of the vehicle body by an elevating mechanism.
  • the lifting mechanism is operated by a hydraulic cylinder.
  • the internal combustion engine E of this tractor is a diesel engine (hereinafter abbreviated as “engine E”) whose rotation is controlled by a common rail system.
  • the transmission 10 includes a hydraulic mechanical continuously variable transmission (hereinafter abbreviated as HMT) 12, a forward / reverse switching device 13, a gear transmission 14 that performs a multi-stage shift, and a differential mechanism 15.
  • HMT hydraulic mechanical continuously variable transmission
  • the drive wheel (front wheel 2a and / or rear wheel 2b or both) 2 is finally rotated through the power transmission shaft 30.
  • Each of the forward / reverse switching device 13 and the gear transmission 14 is provided with a hydraulically driven transmission clutch 10a.
  • the tilling device 9 mounted on the tractor can receive the rotational power through the PTO shaft 90 that constitutes a part of the power transmission shaft 30 that transmits the rotational power of the engine E and the motor generator 4.
  • the rotor is driven to rotate at a predetermined tilling depth.
  • the HMT 12 includes a hydrostatic transmission mechanism 12A including a swash plate 12a type variable discharge hydraulic pump that receives power from the engine E and the motor generator 4, and a hydraulic motor that rotates by hydraulic pressure from the hydraulic pump and outputs power. And the planetary gear mechanism 12B.
  • the planetary gear mechanism 12B is configured to receive the power from the engine E and the motor generator 4 and the power from the hydraulic motor as inputs, and to supply the speed change output to the power transmission shaft 30 at the subsequent stage.
  • the hydrostatic transmission mechanism 12A power from the engine E and the motor generator 4 is input to the pump shaft, whereby pressure oil is supplied from the hydraulic pump to the hydraulic motor, and the hydraulic motor is rotated by the hydraulic pressure from the hydraulic pump. Driven to rotate the motor shaft. The rotation of the hydraulic motor is transmitted to the planetary gear mechanism 12B through the motor shaft.
  • the hydrostatic transmission mechanism 12A changes the angle of the swash plate 12a by displacing a cylinder interlocked with the swash plate 12a of the hydraulic pump, so that the forward rotation state, the reverse rotation state, and the forward rotation state
  • a hydraulic motor that changes the rotational speed of the hydraulic pump steplessly, whether it is shifted to a neutral state located during the reverse rotation state, and shifted to the normal rotation state or the reverse rotation state.
  • the rotation speed (number of rotations per hour) is changed steplessly.
  • the rotational speed of the power output from the hydraulic motor to the planetary gear mechanism 12B is changed steplessly.
  • the hydrostatic transmission mechanism 12A stops the rotation of the hydraulic motor by the hydraulic pump when the swash plate 12a is positioned in the neutral state, and consequently stops the output from the hydraulic motor to the planetary gear mechanism 12B.
  • the planetary gear mechanism 12B meshes with the sun gear, the three planetary gears arranged at regular intervals around the sun gear, the carrier that rotatably supports each planetary gear, and the three planetary gears.
  • a ring gear and an output shaft (one of the power transmission shafts 30) connected to the forward / reverse switching device 13 are provided.
  • the carrier forms a gear portion that meshes with an output gear attached to the power transmission shaft 30 on the engine E side on the outer periphery, and is supported by the boss portion of the sun gear so as to be relatively rotatable.
  • the HMT 12 changes the power transmission to the front wheels 2a and / or the rear wheels 2b that are drive wheels steplessly by changing the angle of the swash plate 12a of the hydrostatic transmission mechanism 12A. can do.
  • the control of the swash plate 12a is realized by hydraulic control of a hydraulic control unit 8a that operates based on a control command from the transmission control unit 8.
  • a hydraulic pump P is provided as a hydraulic source for the hydraulic actuators such as the hydraulically driven cylinder, the main clutch 31 and the transmission clutch 10a described above.
  • the hydraulic pump P may employ a mechanical pump that receives rotational power from the power transmission shaft 30 or an electric pump that receives rotational power from an electric motor. In the case of an electric pump, the electric motor is controlled by the hydraulic control unit 8a.
  • the speed change control unit 8 is constructed with various control functions for performing a speed change operation (speed ratio adjustment operation) with respect to the speed change device 10, and the function particularly related to the present invention is to increase the load on the internal combustion engine E. It is a function that executes machine assist control to change the gear ratio so as to reduce the noise.
  • a machine assist speed ratio calculating unit 80 that calculates a machine assist speed ratio for machine assist is constructed.
  • An example of a simple construction method of the machine assist speed ratio calculation unit 80 is schematically shown in FIG. 5, but the target speed ratio (machine assist speed ratio) in the machine assist is obtained by inputting the load amount and the current speed ratio. It is to create a map to derive.
  • the load amount: L1 included in the load information generated by the load information generation unit 51, the current transmission ratio: R1 held by the transmission control unit 8 itself, and the function for deriving the machine assist transmission ratio: r as a variable: r G (L1, R1) is mapped.
  • the speed change control unit 8 gives a speed change control signal for changing the speed change ratio of the transmission 10 to the machine assist speed change ratio calculated by the machine assist speed change ratio calculation unit 80 to the hydraulic control unit 8a.
  • the transmission control unit 8 is a hydraulic control signal that changes the angle of the swash plate 12 a of the HMT 12 in order to realize the transmission ratio calculated by the mechanical assist transmission ratio calculation unit 80. To the hydraulic control unit 8a.
  • Control of the motor generator 4 in this power system that is, torque assist for the engine E is performed by the power management unit 5.
  • the power management unit 5 uses the configuration described with reference to FIGS. 1 and 2. is doing.
  • the power management unit 5, the engine control unit 6, and the vehicle state detection unit S are also connected to each other via an in-vehicle LAN so that data transmission is possible.
  • the vehicle state detection unit S inputs signals from various sensors arranged in the tractor and operation input signals indicating the state of an operating device (clutch pedal or brake pedal) operated by the driver, and if necessary Then, signal conversion and evaluation calculation are performed, and the obtained signals and data are sent to the in-vehicle LAN.
  • a work device control unit 99 for operating the tilling device 9 is also connected to the hydraulic control unit 8a.
  • the motor assist characteristic calculation unit 52 is provided with an assist map storage unit 52a.
  • the assist map storage unit 52a has a function of creating and storing a plurality of motor assist characteristic maps M obtained by mapping motor assist characteristics in advance, or creating and setting an appropriate motor assist characteristic map M as necessary.
  • this motor assist characteristic can be represented by a graph that determines the amount of assist over time.
  • the horizontal axis is time
  • the vertical axis is assist gain.
  • the assist gain is a ratio to the maximum assist amount (motor torque) calculated according to the load amount read from the load information, and takes a numerical value between 0% and 100%.
  • the motor assist characteristic in this embodiment includes an initial motor assist characteristic area S for maintaining a constant assist amount for a predetermined time and an end motor assist characteristic area E for decreasing the assist amount to zero over time.
  • the time interval t1 of the initial motor assist characteristic region S is 1.5 to 2.5 seconds, preferably 2 seconds
  • the time interval t2 of the final motor assist characteristic region E is 1.5 to 2.5 seconds, preferably Is 2 seconds.
  • the assist gain in the initial motor assist characteristic region S is constant at 100%, and the final motor assist characteristic region E is linear.
  • an arbitrary shape can be adopted for the decreasing tendency. It is also possible to employ a non-linear graph in both the initial motor assist characteristic region S and the final motor assist characteristic region E.
  • the motor assist characteristic calculation unit 52 determines an optimal motor assist characteristic map M from the load amount read from the load information and the charge amount read from the battery information.
  • various types of motors are used in which the assist gain in the initial motor assist characteristic region S ranges from about 10% to less than 100% and the final motor assist characteristic region E is a decreasing function. Assist characteristics are described. That is, the assist amount actually generated by the motor generator 4 varies each time depending on the load amount and / or the charge amount.
  • the motor assist control based on the assist characteristic is prohibited by the motor assist control prohibition determination unit 53 from repeating in a short period.
  • the repetition prohibition time of the motor assist control may be changed according to the charge amount of the battery B, or may be determined in advance according to the capacity of the battery B. Further, it may be varied depending on the work. In any case, it is set so as not to cause a rapid decrease in the battery charge amount.
  • a motor housing 40 that houses the motor generator 4 and the main clutch 31 is provided on the rear side of the engine E.
  • the motor generator 4 has both a function of a three-phase AC generator that generates electric power by the driving force of the engine E and a function of a three-phase AC motor that rotates by electric power supplied from the outside. Therefore, the inverter unit 70 converts the DC power from the battery B into three-phase AC power and supplies it to the motor generator 4.
  • the inverter unit 70 converts the three-phase alternating current generated by the motor generator 4 into a direct current, boosts it, and supplies it to the battery B.
  • the engine E, the motor generator 4 and the main clutch 31 are provided in this order, and the motor housing 40 is connected to the rear end plate 40a connected to the rear portion of the engine E, whereby the motor The motor generator 4 and the main clutch 31 are accommodated in the housing 40.
  • the motor generator 4 includes a rotor 42 having a permanent magnet 41 on the outer periphery, and a stator 43 disposed at a position surrounding the rotor 42.
  • the stator 43 is formed on a plurality of teeth portions (not shown) of the stator core. It has a structure in which a coil is wound.
  • a rotor 42 of the motor generator 4 is arranged coaxially with the rotational shaft X of the output shaft Ex.
  • the base plate 31a of the main clutch 31 is disposed on the opposite surface, and the output shaft Ex, the rotor 42, and the base plate 31a of the main clutch 31 are screw-connected.
  • the base plate 31a also has a function as a flywheel, as described above, the motor generator 4 partially executes the inertial force function that the flywheel has performed, and thus is lighter than the conventional one.
  • the motor housing 40 has a structure in which the front housing 40A and the rear housing 40B are detachably connected.
  • the stator 43 is provided on the inner surface of the front housing 40A.
  • the front housing 40A is connected to the rear end plate 40a, and then the rotor 42 is connected to the rear end of the output shaft Ex.
  • the main clutch 31 includes a clutch disk 31c, a pressure plate 31d, and a diaphragm spring 31e disposed in a clutch cover 31b connected to the rear surface of the base plate 31a, and a power transmission shaft that transmits the driving force from the clutch disk 31c. 30 and a clutch shaft 30a as one component, and is operated by a clutch pedal (not shown).
  • the clutch shaft 30a is supported so as to be rotatable about the rotational axis X with respect to the rear housing 40B, and the clutch disk 31c is capable of transmitting torque to the clutch shaft 30a by a spline structure, and is connected to the rotational axis X.
  • the diaphragm spring 31e has a configuration in which an urging force in the clutch engagement direction is applied to the clutch disc 31c via the pressure plate 31d.
  • the power of the clutch shaft 30a is transmitted to an intermediate transmission shaft 30b as one component of the power transmission shaft 30 that serves as an input shaft of the transmission 10 through a gear transmission mechanism.
  • the capacity of the battery B mounted on the tractor is limited, and a considerable amount of power is required for torque assist during work travel. Therefore, if assist control is repeated during work, the battery B The amount of charge will soon disappear. In order to avoid this, the assist by the motor generator 4 is executed only for a short time in consideration of the charge amount of the battery B, and if the charge amount of the battery B becomes less than a predetermined value, the motor assist control needs to be stopped. Become.
  • the load information (engine load factor, rotation speed reduction amount) included in the load information generated by the load information generation unit 51 and the battery information sent from the battery management unit 54 are included.
  • the motor assist control prohibition determination unit 53 determines whether the assist control is permitted or prohibited.
  • An example of the determination map used at that time is shown in FIG. What can be understood from this determination map is that, in principle, the assist control is not performed unless the charge amount is sufficient.
  • an assist determination line is set where the amount of charge is approximately 80%, and torque assist is not performed below that to avoid the battery B from rising.
  • the engine load factor is close to 100%, there is a possibility of engine stall. Therefore, assist control is permitted even when the charge amount is 80% or less.
  • the assist determination line is inclined from 90% to 100% of the engine load factor, that is, when the engine load factor is a predetermined amount (about 90% or more in this case), the charge amount is lower as the engine load factor is higher. But assist control is allowed. When the engine load factor is 100%, the assist control is permitted even when the charge amount is about 30%.
  • the assist determination line has a band shape, and the region above the upper boundary line of the assist determination line is an assist drive region, and assist control is permitted. A region below the lower boundary line of the assist determination line is a charge drive region.
  • the assist determination zone surrounded by the upper boundary line and the lower boundary line of the assist determination line is a buffer area where neither assist control nor charging is performed. In this embodiment, zero torque drive control is performed on this buffer area. The zero-torque drive range. Assist control is prohibited in the charge drive region and the zero torque drive region.
  • the engine speed or the transmission shaft speed is used to detect the load acting on the engine E.
  • the load detection sensor is provided directly on the work device 9 to detect this load.
  • a signal may be used to determine whether assist control is necessary.
  • the engine E and the motor generator 4 are directly connected, and the main clutch 31 is then attached and power is transmitted to the power transmission shaft 30, but instead, the engine E The main clutch 31 may be mounted between the motor generator 4 and the motor generator 4.
  • the continuously variable transmission using the HMT 12 is adopted for the transmission 10, but a multi-stage transmission using a multi-stage gear transmission may be adopted.
  • motor assist characteristics individual motor assist characteristics optimized for the type of the work device 9 and the usage pattern thereof may be created in advance and appropriately selected.
  • a work device type detection unit for detecting the type of the work device 9 mounted on the work vehicle or a manual work device type setting unit is provided, and motor assist is performed using the type of the work device 9 actually mounted and used as an auxiliary parameter.
  • the characteristic calculation unit 52 is provided.
  • the motor assist characteristic calculation part 52 can determine a suitable motor assist characteristic with the working work apparatus kind.
  • the machine assist control is started after the motor assist control is finished. However, the motor assist control and the machine assist control are simultaneously executed at a predetermined assist ratio during the motor assist control. May be.
  • the present invention includes a control method in which the assist of the motor assist control is supplemented by the assist of the machine assist control when the battery charge amount is small.
  • the fact that the motor assist control has priority over the machine assist control includes the mixed assist control in which the motor assist control is the main and the machine assist control is the subordinate.
  • This hybrid work vehicle includes an internal combustion engine E and a motor generator 204 as drive sources, and travels using a work device 209 mounted on the vehicle body while traveling by a travel device 202 constituted by wheels and crawlers.
  • the power transmission means 201 which is a power train that transmits power from the drive source, includes a main clutch 231 that turns power transmission from the drive source on and off, a PTO shaft 290 that transmits power to the work device 209, and a traveling device 202.
  • a power transmission shaft 230 that transmits power to the transmission and a transmission 210 are included.
  • the PTO shaft 290 is provided with a PTO clutch 291 that turns power transmission on and off.
  • the motor generator 204 generates rotational power by using the battery B as an electric power supply source and causes the hybrid work vehicle to travel in cooperation with the internal combustion engine E. However, the motor generator 204 is driven by the internal combustion engine E or in the hybrid work.
  • the motor generator 204 can function as a generator that supplies power to the battery B under a situation where the vehicle is decelerating or under an inertia traveling downhill.
  • Rotational control of the internal combustion engine E is performed by the engine control unit 206 via an engine control device 260 such as an electronic governor mechanism or a common rail mechanism.
  • the drive control of the motor generator 204 is performed by the motor control unit 207 via the inverter unit 270.
  • the engine control unit 206 is a computer unit for controlling the fuel injection amount of the internal combustion engine E and has a constant speed control function for controlling the engine control device 260 so as to maintain the rotation speed of the internal combustion engine E constant.
  • the motor control unit 207 is also a computer unit, and gives a control signal to the inverter unit 270 in order to control the rotation speed and torque of the motor generator 204.
  • the motor control unit 207 includes an assist drive mode for outputting power to the power transmission shaft 230 and a charge drive mode for outputting charging power to the battery B as drive modes for the motor generator 204. Further, it is advantageous to have a zero torque drive mode that does not affect the power transmission shaft 230.
  • the inverter unit 270 converts the DC voltage of the battery B into an AC voltage and supplies the AC voltage to the motor generator 204.
  • the inverter B 270 It also functions as a rectifier and a voltage regulator for supplying. That is, battery B operates in a discharge process that supplies power to motor generator 204 via inverter unit 270, and is charged by the power generated by motor generator 204 when motor generator 204 operates as a generator. Works with the charging process.
  • the power management unit 205 manages assist control in which the motor generator 204 assists the internal combustion engine E by giving control commands to the engine control unit 206 and the motor control unit 207.
  • the power management unit 205 includes a load information generation unit 251, an assist characteristic determination unit 252, an assist control prohibition determination unit 253, a battery management unit 254, and an operation mode selection unit 255.
  • the load applied to the power transmission shaft 230, and consequently the rotational load applied to the internal combustion engine E, is detected, and the motor generator 204 is driven for a short time to at least partially cancel the load.
  • Assist control for assisting the internal combustion engine E is executed so that the internal combustion engine E can cope with a sudden load increase.
  • the load information generation unit 251 and the assist characteristic determination unit 252 function.
  • the load information generation unit 251 generates load information indicating a rotational load received by the internal combustion engine E or the power transmission shaft 230 based on engine control information given from the engine control unit 206 or input parameters extracted from information detected by various sensors. It has a function to generate.
  • the input parameters used in the load information generation unit 251 include the rotational speed (rotational speed) of the internal combustion engine E, the rotational speed (rotational speed) of the power transmission shaft 230, the engine torque calculated by the engine control unit 206, and power transmission.
  • the torque of the shaft 230, the vehicle speed, and the working state of the working device 209 (cultivation depth, tractive force, acting force on the loader, etc.) can be mentioned.
  • the actually used input parameters are determined by the sensors installed in the working vehicle.
  • the load information generation unit 251 generates load information indicating the sudden increase in the rotational load based on the differential value or the difference value of the rotational load with time in order to detect the sudden increase in the rotational load.
  • load information indicating an increase in rotational load that triggers assist control may be generated simply by threshold determination.
  • the assist characteristic determination unit 252 Based on the load information generated by the load information generation unit 251, the assist characteristic determination unit 252 defines the assist amount and the assist time in the assist control so as to execute the assist control of the internal combustion engine E using the motor generator 204. Determine assist characteristics.
  • the motor control unit 207 controls the motor generator 204 via the inverter unit 270 based on the assist characteristic determined by the assist characteristic determination unit 252.
  • the assist control prohibition determination unit 253 is based on the assist control information from the assist characteristic determination unit 252 for a predetermined time after the assist control is executed. Execution of the next assist control is prohibited.
  • Battery management unit 254 calculates the charge amount of battery B. At that time, if the battery B is configured as an intelligent battery unit including a computer, the amount of charge of the battery is calculated based on the battery information from the battery B. If not, the signal from the battery state detection sensor is calculated. The charge amount of the battery B is calculated based on the battery information from the vehicle state detection unit S that has received the command.
  • the assist control prohibition determination unit 253 also has a function of prohibiting the assist of the internal combustion engine E by the motor generator 204 to prevent the battery from running out if the charge amount of the battery B becomes less than a predetermined value based on the battery information.
  • the operation mode selection unit 255 is used when working using the working device 209 that takes out rotational power of a constant rotational speed from the PTO shaft 290 and uses it for work, or when running the work vehicle at a predetermined speed (cruising running).
  • the constant speed control mode is maintained to keep the rotation speed constant.
  • the engine control unit 206 controls the engine control device 260 so as to maintain the rotational speed of the internal combustion engine E at the set predetermined value.
  • the basic flow of information in assist control by the motor generator 204 is shown in FIG.
  • the engine control unit 206 sends an engine control signal based on the set value set by the accelerator setting device to the engine control device 260.
  • the fuel injection amount and the like are adjusted based on the engine control signal, and the internal combustion engine E is driven. Since the fluctuation of the rotational speed of the internal combustion engine E is caused by the fluctuation of external factors, that is, load fluctuation such as traveling load and work load, the fuel injection is performed so that the unexpected fluctuation of the rotational speed and engine stall do not occur due to the load fluctuation amount. Adjust the amount and increase the torque.
  • the motor control unit 207 sends an assist signal to the inverter unit 270 and uses the motor generator 204 to assist the internal combustion engine E when the load increases.
  • the load information generation unit 251 generates load information including a load amount based on the vehicle state information sent from the vehicle state detection unit S or the engine state information sent from the engine control device 260, and assist characteristics.
  • the data is sent to the determination unit 252.
  • the battery management unit 254 calculates a charge amount (generally called SOC) based on the charge information from the battery B, and uses the battery information including this charge amount as an assist characteristic determination unit 252 and an assist control prohibition determination unit. Send to 253.
  • SOC charge amount
  • the assist characteristic determination unit 252 determines an appropriate assist characteristic: W (t) based on the load amount L read from the load information and the charge amount SC read from the battery information.
  • the motor control unit 207 When the assist characteristic is determined, the motor control unit 207 generates an assist control signal based on the assist characteristic and drives and controls the motor generator 204 through the inverter unit 270 to compensate for an increase in load generated on the power transmission shaft 230. To do. Since the torque response of the electric motor is fast, even if a sudden increase in traveling load or work load occurs, a decrease in the rotational speed is avoided thereby. When the load increase continues or when the charge amount of the battery B is not enough, it is dealt with by adjusting the gear ratio in the transmission 210 described later.
  • the motor control unit 207 can cause the motor generator 204 to function as a generator and charge the battery B by sending a power generation command to the inverter unit 270. Further, the motor control unit 207 sends a zero torque control signal to the inverter unit 270, so that the motor generator 204 performs zero torque drive.
  • the transmission control unit 208 includes a load following speed ratio control unit 280 that executes load following speed ratio control for changing the speed ratio so as to reduce an increase in load in the internal combustion engine E.
  • the load following speed ratio control is executed after a short time of assist control based on the assist characteristics in order to cope with an increase in the load generated in the internal combustion engine E. That is, as long as the assist control prohibition determination unit 253 prohibits the assist control, the assist control is executed prior to the load following speed ratio control.
  • the assist control prohibition determination unit 253 prohibits the next assist control for a predetermined time after the end of the assist control.
  • the hybrid work vehicle is a well-known general-purpose tractor as shown in FIG.
  • the power system of this tractor is schematically shown in FIG.
  • the tractor vehicle body includes an internal combustion engine E, a motor generator 204, a hydraulically driven main clutch 231, a transmission 210, a driving unit 220, a pair of left and right front wheels 202a and a rear wheel 202b as a traveling device 202, and the like.
  • a tilling device as a working device 209 is mounted on the rear part of the vehicle body by a lifting mechanism.
  • the lifting mechanism is operated by a hydraulic cylinder.
  • the internal combustion engine E of this tractor is a diesel engine (hereinafter abbreviated as “engine E”) whose rotation is controlled by a common rail system.
  • Control equipment is provided.
  • the transmission 210 includes a hydraulic mechanical type continuously variable transmission (hereinafter abbreviated as HMT) 212, a forward / reverse switching device 213, a gear transmission 214 that performs a multi-stage shift, and a differential mechanism 215.
  • HMT hydraulic mechanical type continuously variable transmission
  • the drive wheel (front wheel 202a and / or rear wheel 202b or both) 202 is finally rotated through the power transmission shaft 230.
  • Each of the forward / reverse switching device 213 and the gear transmission 214 is provided with a hydraulically driven transmission clutch 210a.
  • the tilling device 209 mounted on the tractor can receive the rotational power via the PTO shaft 290 that constitutes a part of the power transmission shaft 230 that transmits the rotational power of the engine E and the motor generator 204, thereby receiving the rotational power.
  • the rotor is driven to rotate at a predetermined tilling depth.
  • the HMT 212 includes a swash plate 212a type variable discharge hydraulic pump that receives power from the engine E and the motor generator 204, and a hydrostatic transmission mechanism 212A that includes a hydraulic motor that rotates by hydraulic pressure from the hydraulic pump and outputs power. And a planetary gear mechanism 212B.
  • the planetary gear mechanism 212B is configured to receive the power from the engine E and the motor generator 204 and the power from the hydraulic motor as inputs, and supply the shift output to the power transmission shaft 230 at the subsequent stage.
  • the hydrostatic transmission mechanism 212A power from the engine E and the motor generator 204 is input to the pump shaft, whereby pressure oil is supplied from the hydraulic pump to the hydraulic motor, and the hydraulic motor is rotated by the hydraulic pressure from the hydraulic pump. Driven to rotate the motor shaft. The rotation of the hydraulic motor is transmitted to the planetary gear mechanism 212B through the motor shaft.
  • the hydrostatic transmission mechanism 212A changes the angle of the swash plate 212a by displacing a cylinder that is linked to the swash plate 212a of the hydraulic pump, so that the forward rotation state, the reverse rotation state, and the forward rotation state are changed.
  • the rotation speed (number of rotations per hour) is changed steplessly.
  • the rotational speed of the power output from the hydraulic motor to the planetary gear mechanism 212B is changed steplessly.
  • the hydrostatic transmission mechanism 212A stops the rotation of the hydraulic motor by the hydraulic pump when the swash plate 212a is positioned in a neutral state, and consequently stops the output from the hydraulic motor to the planetary gear mechanism 212B.
  • the planetary gear mechanism 212B meshes with the sun gear, the three planetary gears arranged at regular intervals around the sun gear, the carrier that rotatably supports each planetary gear, and the three planetary gears.
  • a ring gear and an output shaft (one of the power transmission shafts 230) connected to the forward / reverse switching device 213 are provided.
  • the carrier forms a gear portion meshing with an output gear attached to the power transmission shaft 230 on the engine E side on the outer periphery, and is supported by the boss portion of the sun gear so as to be relatively rotatable.
  • the HMT 212 changes the angle of the swash plate 212a of the hydrostatic transmission mechanism 212A to change the power transmission to the front wheels 202a and / or the rear wheels 202b, which are driving wheels, in a stepless manner. can do.
  • This control of the swash plate 212a is realized by hydraulic control of a hydraulic control unit 208a that operates based on a control command from the transmission control unit 208.
  • a hydraulic pump P is provided as a hydraulic source of a hydraulic actuator such as the above-described hydraulically driven cylinder, the main clutch 231 and the transmission clutch 210a.
  • the hydraulic pump P may employ a mechanical pump that receives rotational power from the power transmission shaft 230, or an electric pump that receives rotational power from an electric motor. In the case of an electric pump, the electric motor is controlled by a hydraulic control unit 208a.
  • the speed change control unit 208 is constructed with various control functions for performing speed change operations on the speed change device 210, and the function particularly related to the present invention is to change the speed so as to reduce the increase in load in the internal combustion engine E. This is a function for executing load following speed ratio control for changing the ratio.
  • the function is constructed by the load following speed ratio control unit 280.
  • the load following speed ratio control unit 280 changes the speed ratio by changing the angle of the swash plate 212 a of the HMT 212.
  • Control of the motor generator 204 in this power system is performed by the power management unit 205.
  • the power management unit 205 uses the configuration described with reference to FIGS. is doing.
  • the power management unit 205, the engine control unit 206, and the vehicle state detection unit S are also connected to each other via an in-vehicle LAN so that data transmission is possible.
  • the vehicle state detection unit S inputs signals from various sensors arranged in the tractor and operation input signals indicating the state of an operating device (clutch pedal or brake pedal) operated by the driver, and if necessary Then, signal conversion and evaluation calculation are performed, and the obtained signals and data are sent to the in-vehicle LAN.
  • a shift control unit 208 for shifting operation in the transmission 210 and a work device control unit 299 for operating the tilling device 209 are connected to the hydraulic control unit 208a.
  • the transmission control unit 208 and the work device control unit 299 are also connected to the in-vehicle LAN, and data can be exchanged with other units.
  • the assist characteristic determining unit 252 is provided with an assist characteristic map storage unit 252a.
  • the assist characteristic map storage unit 252a has a function of creating and storing in advance a plurality of assist characteristic maps M in which assist characteristics are mapped, or creating and setting an appropriate assist characteristic map M as necessary.
  • this assist characteristic can be represented by a graph that determines the amount of assist over time.
  • the horizontal axis is time
  • the vertical axis is assist gain.
  • the assist gain is a ratio to the maximum assist amount (motor torque) calculated according to the load amount read from the load information, and takes a numerical value between 0% and 100%.
  • the assist characteristic in this embodiment includes an initial assist characteristic area S that maintains a constant assist amount for a predetermined time and an end assist characteristic area E that reduces the assist amount to zero over time.
  • the time interval t1 of the initial assist characteristic region S is 1.5 to 2.5 seconds, preferably 2 seconds
  • the time interval t2 of the final assist characteristic region E is 1.5 to 2.5 seconds, preferably 2 Seconds.
  • the assist gain in the initial assist characteristic region S is constant at 100%, and the final assist characteristic region E is linear.
  • an arbitrary shape can be adopted for the decreasing tendency.
  • the assist characteristic determination unit 252 determines an optimum assist characteristic map M from the load amount read from the load information and the charge amount read from the battery information.
  • various assist characteristics are described such that the assist gain in the initial assist characteristic region S ranges from about 10% to less than 100%, and the final assist characteristic region E is a decreasing function. Has been. That is, the assist amount actually generated by the motor generator 204 varies each time depending on the load amount and / or the charge amount. Note that continuous execution of assist control based on the assist characteristics is prohibited by the assist control prohibition determination unit 253.
  • the execution interval of the assist control may be changed according to the charge amount of the battery B, or may be determined in advance according to the capacity of the battery B. Further, it may be varied depending on the work. In any case, it is set so as not to cause a rapid decrease in the battery charge amount.
  • a motor housing 240 that houses the motor generator 204 and the main clutch 231 is provided on the rear side of the engine E.
  • the motor generator 204 has both a function of a three-phase AC generator that generates electric power by the driving force of the engine E and a function of a three-phase AC motor that rotates by electric power supplied from the outside. Therefore, inverter unit 270 converts the DC power from battery B into three-phase AC power and supplies it to motor generator 204. Inverter unit 270 converts the three-phase alternating current generated by motor generator 204 into a direct current, boosts it, and supplies it to battery B.
  • the engine E, the motor generator 204, and the main clutch 231 are provided in this order, and the motor housing 240 is connected to the rear end plate 240a connected to the rear portion of the engine E.
  • a motor generator 204 and a main clutch 231 are accommodated in the housing 240.
  • the motor generator 204 includes a rotor 242 provided with a permanent magnet 241 on the outer periphery and a stator 243 disposed at a position surrounding the rotor 242.
  • the stator 243 is formed on a plurality of teeth portions (not shown) of the stator core. It has a structure in which a coil is wound.
  • a rotor 242 of the motor generator 204 is arranged coaxially with the rotational axis X of the output shaft Ex, and the output shaft Ex of the rotor 242
  • the base plate 231a of the main clutch 231 is disposed on the opposite side to the output shaft Ex, and the output shaft Ex, the rotor 242, and the base plate 231a of the main clutch 231 are screw-connected.
  • the base plate 231a also has a function as a flywheel, as described above, the motor generator 204 partially executes the inertial force function that the flywheel has performed, and thus is lighter than the conventional one.
  • the motor housing 240 has a structure in which the front housing 240A and the rear housing 240B are detachably connected.
  • the motor housing 204 is provided with the stator 243 on the inner surface of the front housing 240A.
  • the front housing 240A is connected to the rear end plate 240a, and then the rotor 242 is connected to the rear end of the output shaft Ex.
  • the main clutch 231 includes a clutch disk 231c, a pressure plate 231d, and a diaphragm spring 231e inside a clutch cover 231b that is connected to the rear surface of the base plate 231a, and a power transmission shaft that transmits the driving force from the clutch disk 231c.
  • a clutch shaft 230a as one component, and is operated by a clutch pedal (not shown).
  • the clutch shaft 230a is supported so as to be rotatable about the rotational axis X with respect to the rear housing 240B, and the clutch disk 231c is capable of transmitting torque to the clutch shaft 230a by a spline structure, and is connected to the rotational axis X.
  • the diaphragm spring 231e has a configuration in which an urging force in the clutch engagement direction is applied to the clutch disk 231c via the pressure plate 231d. Further, the power of the clutch shaft 230a is transmitted to an intermediate transmission shaft 230b as one component of the power transmission shaft 230 that serves as an input shaft of the transmission 210 through a gear transmission mechanism.
  • the drive control of the engine E and the motor generator 204 is performed by the power management unit 205 as described with reference to FIG.
  • the engine control unit 206 includes a signal from the accelerator pedal sensor, an engine rotation signal, a fuel pressure signal in the common rail, and an intake pressure signal at the intake portion. Etc. are acquired and control which determines the operation timing of an injector is performed. From such a configuration, the engine control unit 206 can also calculate the load factor (engine load factor) of the engine E. The engine load factor can be used by the load information generation unit 251 for assist control.
  • the load information generation unit 251 can also use fluctuations in the rotational speed (rotational speed) of the power transmission shaft 230 in order to detect an increase in rotational load received by the engine.
  • the rotational speed sensor S 1 that detects the rotational speed of the power transmission shaft 230 is inserted into a hole that penetrates the wall surface of the motor housing 240, and the sensing unit at the lower end is used as the main clutch 231. It is located near the outer peripheral surface of the base plate 231a. That is, the rotation speed sensor S1 is configured as a pickup type that counts the rotation of the base plate 231a from the change in magnetic flux density.
  • an optical sensor may be employed as the rotational speed sensor S1, or a configuration for detecting the rotational speed of the power transmission shaft 230 may be employed.
  • the capacity of the battery B mounted on the tractor is limited, and a considerable amount of power is required for torque assist during work travel. Therefore, if assist control is repeated during work, the battery B The amount of charge will soon disappear. In order to avoid this, it is necessary to execute the assist by the motor generator 204 while considering the charge amount of the battery B.
  • the load information (engine load factor, rotation speed reduction amount) included in the load information generated by the load information generation unit 251 and the battery information sent from the battery management unit 254 are included.
  • the assist control prohibition determination unit 253 determines whether the assist control is permitted or prohibited.
  • An example of the determination map used at that time is shown in FIG. What can be understood from this determination map is that, in principle, the assist control is not performed unless the charge amount is sufficient.
  • an assist determination line is set where the amount of charge is about 80%, and torque assist is not performed below that to avoid the battery B from going up. However, if the engine load factor is close to 100%, there is a possibility of engine stall.
  • assist control is permitted even when the charge amount is 80% or less.
  • the assist determination line is inclined from 90% to 100% of the engine load factor, that is, when the engine load factor is a predetermined amount (about 90% or more in this case), the charge amount is lower as the engine load factor is higher. But assist control is allowed.
  • assist control is permitted even when the charge amount is about 30%.
  • the assist determination line has a band shape, and the region above the upper boundary line of the assist determination line is an assist drive region, and assist control is permitted. A region below the lower boundary line of the assist determination line is a charge drive region.
  • the assist determination band surrounded by the upper boundary line and the lower boundary line of the assist determination line is a buffer area where neither assist control nor charging is performed.
  • zero torque drive control is performed on this buffer area.
  • the engine speed or the transmission shaft speed is used to detect the load acting on the engine E.
  • a load detection sensor is provided directly on the work device 209 to detect this load.
  • a signal may be used to determine whether assist control is necessary.
  • the engine E and the motor generator 204 are directly connected, and then the main clutch 231 is mounted and the power is transmitted to the power transmission shaft 230. Instead, the engine E The main clutch 231 may be mounted between the motor generator 204 and the motor generator 204.
  • the continuously variable transmission using the HMT 212 is adopted for the transmission 210, but a multi-stage transmission using a multi-stage gear transmission may be adopted.
  • assist characteristics individual assist characteristics optimized for the type of the work device 209 and the usage form thereof may be created in advance and appropriately selected.
  • a work device type detection unit for detecting the type of the work device 209 mounted on the work vehicle or a manual work device type setting unit is provided, and the assist characteristic is set with the type of the work device 209 actually mounted and used as an auxiliary parameter.
  • the determination unit 252 is given to the determination unit 252.
  • the assist characteristic determination unit 252 can determine an appropriate assist characteristic depending on the type of work apparatus used.
  • the electric assist by the motor assist control and the mechanical assist by the load following speed ratio control are selectively executed, but the electric assist by the motor assist control and the mechanical assist by the load following speed ratio control are performed. May be executed simultaneously at a predetermined assist ratio.
  • a mixture that decreases the assist ratio of motor assist control and increases the assist ratio of load following speed ratio control. Control is preferred.
  • FIG. 16 shows a vehicle speed (hereinafter simply referred to as a vehicle speed) by lowering the engine speed and changing the gear ratio with a driver's voluntary operation input (in this case, an operation of an engine speed reduction button 390 as an energy saving button) as a trigger.
  • a driver's voluntary operation input in this case, an operation of an engine speed reduction button 390 as an energy saving button
  • the engine speed reduction button 390 (hereinafter simply referred to as a down button). )Press.
  • ⁇ 200 which means that the rotational speed is reduced by 200 rpm, is drawn on the button operation surface, but this numerical value is only an example.
  • the rotation speed reduction command is a command for requesting the engine control unit 305A to set the energy saving engine rotation speed that has been decreased by a predetermined engine rotation speed set in advance based on the current engine rotation speed.
  • the gear ratio change command is a gear ratio for maintaining the current vehicle speed by compensating for the decrease in the vehicle speed caused by the decrease in the engine speed performed for the energy saving operation on the basis of the current gear ratio in the transmission 310. That is, this is a command for requesting the speed change control unit 320 so that the speed change device 310 generates a compensated speed change ratio.
  • the energy saving process for outputting the rotation speed reduction command and the gear ratio change command can be performed a plurality of times. In other words, every time the driver presses the engine speed reduction button 390, the engine speed reduction command and the gear ratio change command are output, and the engine speed that gradually decreases is generated. To prevent the vehicle speed from changing substantially.
  • FIG. 16 also shows the assist control flow of the motor unit 304 with respect to the engine E in order to cope with the sudden increase in engine load (rotational load) that occurred during the energy saving operation in which the engine speed is reduced to the limit.
  • the motor unit 304 since the motor unit 304 is configured as a motor generator that also functions as a generator for charging a battery, the motor unit 304 is hereinafter referred to as a motor generator 304.
  • a sudden increase in rotational load that occurs during energy-saving operation leads to a decrease in the rotational speed of the engine E, that is, a decrease in the vehicle speed, and further to an engine stall.
  • the engine E is frequently operated in the constant speed control mode, and at that time, an abrupt load is applied to the power transmission means depending on the work situation and the grounding ground condition.
  • an abrupt load is applied to the power transmission means depending on the work situation and the grounding ground condition.
  • a situation in which the rotational speed of the engine E is reduced occurs.
  • a decrease in engine speed leads to a decrease in vehicle speed and insufficient driving force of the working device.
  • the rotational load applied to the engine E and the power transmission means for transmitting the engine power is detected, the motor generator 304 is driven for a short time to at least partially compensate for the load, and the engine E is assisted. Is done. This is the assist control of the motor generator 304 for the engine E.
  • the load information generation unit 381 and the assist control module 306 function for this assist control.
  • the load information generation unit 381 detects the load information indicating the rotational load received by the power transmission means constituted by the engine E or the power transmission shaft and the transmission 310 by the engine control information given from the engine control unit 305A or by various sensors. It has a function of generating based on input parameters extracted from information.
  • the input parameters used in the load information generation unit 381 include the rotation speed (rotation speed) of the engine E, the rotation speed (rotation speed) of the power transmission means, the engine torque calculated by the engine control unit 305A, and the power transmission means.
  • the torque, the vehicle speed, and the working state of the working device 309 (cultivation depth, traction force, acting force on the loader, etc.) can be mentioned, but the actually used input parameters depend on the sensors equipped on the work vehicle. Since there is a high possibility that a rotation detection sensor and a vehicle speed sensor for the power transmission shaft are provided as standard, it is convenient to use the rotation speed fluctuation value or the vehicle speed fluctuation value of the power transmission means as the input parameter.
  • These input parameters are sent through a vehicle state detection unit that processes signals from various sensors.
  • the load information generation unit 381 may generate load information indicating a sudden increase in rotational load based on a differential value or a difference value of the rotational load with time in order to detect a sudden increase in rotational load. However, load information indicating an increase in rotational load that triggers assist control may be generated simply by threshold determination.
  • the assist control module 306 determines whether or not to execute assist control for the engine E using the motor generator 304 based on the load information generated by the load information generation unit 381. For example, when the battery charge amount is equal to or less than a predetermined value, the assist control is stopped or the assist control is performed with a partial assist amount. Further, after the assist control is executed, execution of the next assist control is prohibited for a predetermined time. Furthermore, the assist control module 306 determines assist characteristics that define the assist amount and assist time in the assist control based on the load information generated by the load information generating unit 381. Further, the assist control module 306 outputs an assist control signal to the motor control unit 305B based on the determined assist characteristic. The motor control unit 305B outputs a motor control signal based on the assist control signal and controls the motor generator 304.
  • FIG. 16 also shows the flow of control of return processing performed for that purpose.
  • the driver's voluntary operation input in this case, the operation of the engine speed lowering return button 391 as an energy saving button
  • the speed ratio is changed to maintain the vehicle speed (hereinafter simply referred to as vehicle speed).
  • an engine speed lowering return button (hereinafter simply referred to as a return button) 391 is pressed.
  • a return button 391 which means that the rotational speed is returned (increased) by 200 rpm, is drawn on the button operation surface, but this numerical value is only an example.
  • a return operation signal as a return operation command is output to the energy saving transmission module 307.
  • the energy saving transmission module 307 generates a new rotation speed reduction command and a gear ratio change command using the return operation command as a trigger.
  • the rotational speed reduction command here means a reduction from the engine rotational speed that has become the reference engine rotational speed in the first energy saving process, and is substantially a command to increase the current engine rotational speed.
  • the engine control unit 305A sends an engine control signal based on the setting value set by the accelerator setting device to the engine control device 350.
  • the fuel injection amount and the like are adjusted based on the engine control signal, and the engine E is driven. Since the engine speed changes due to external factors, that is, load fluctuations such as travel load and work load, the fuel injection amount prevents the load fluctuation from causing an unexpected decrease in engine speed or engine stall. Adjust torque etc. to increase torque. However, since the rated output of the engine E is adjusted to the maximum torque required in normal work, if an unexpected sudden increase in load occurs, the rotational speed decreases, and in the worst case, the engine stalls. In order to avoid this, the motor control unit 305B sends an assist signal to the inverter unit 351, and uses the motor generator 304 to assist the engine E when the load increases.
  • the load information generation unit 381 generates load information including a load amount based on the vehicle state information sent from the vehicle state detection unit 309 or the engine state information sent from the engine control device 350, and assist characteristics.
  • the data is sent to the determination unit 361.
  • the battery management unit 354 calculates a charge amount (generally referred to as SOC) based on the charge information from the battery B, and sends battery information including this charge amount to the assist control module 306.
  • the assist control module 306 includes an assist characteristic determination unit 361 and an assist control determination unit 362 as two functional blocks.
  • the assist characteristic determination unit 361 determines an appropriate assist characteristic: W (t) based on the load amount L read from the load information and the charge amount SC read from the battery information.
  • the motor control unit 305B When the assist characteristic is determined, the motor control unit 305B generates an assist control signal based on the assist characteristic, drives and controls the motor generator 304 through the inverter unit 351, and increases the load generated in the engine E or the power transmission means. To compensate. Since the torque response of the electric motor is fast, even if a sudden increase in traveling load or work load occurs, a decrease in the rotational speed is avoided thereby. When the load increase continues or when the charge amount of the battery B does not have a margin, this is dealt with by adjusting the speed ratio in the energy saving speed change module 307.
  • the motor control unit 305B can cause the motor generator 304 to function as a generator and charge the battery B by sending a power generation command to the inverter unit 351. Further, the motor control unit 305B sends a zero torque control signal to the inverter unit 351, so that the motor generator 304 performs zero torque drive.
  • the hybrid vehicle is a well-known general-purpose tractor as shown in FIGS.
  • the power system of this tractor is schematically shown in FIG.
  • the tractor vehicle body includes an engine E, a motor generator 304, a hydraulically driven main clutch 331, a transmission 310, a driving unit 303, a pair of left and right front wheels 302a and a rear wheel 302b as a traveling device 302, and the like.
  • a tilling device as a working device W is mounted on the rear part of the vehicle body by an elevating mechanism.
  • the lifting mechanism is operated by a hydraulic cylinder.
  • the engine E of this tractor is a diesel engine that is rotationally controlled by a common rail method, and includes a common rail control device as the engine control device 350.
  • the transmission 310 includes a hydraulic mechanical continuously variable transmission (hereinafter abbreviated as HMT) 312, a forward / reverse switching device 313, a gear transmission 314 that performs a multiple-stage shift, and a differential mechanism 315.
  • HMT hydraulic mechanical continuously variable transmission
  • the driving wheel (front wheel 302a and / or rear wheel 302b) 302 is finally rotated through the power transmission shaft 330.
  • Each of the forward / reverse switching device 313 and the gear transmission 314 is provided with a hydraulically driven transmission clutch 310a.
  • the cultivator W mounted on the tractor can receive the rotational power via the PTO shaft W1 that constitutes a part of the power transmission shaft 330 that transmits the rotational power of the engine E and the motor generator 304.
  • the rotor is driven to rotate at a predetermined tilling depth.
  • the HMT 312 includes a hydrostatic transmission mechanism 312A including a swash plate type variable discharge hydraulic pump that receives power from the engine E and the motor generator 304, and a hydraulic motor that rotates by hydraulic pressure from the hydraulic pump and outputs power. And a gear mechanism 312B.
  • the planetary gear mechanism 312B is configured to receive the power from the engine E and the motor generator 304 and the power from the hydraulic motor as inputs, and to supply the speed change output to the power transmission shaft 330 at the subsequent stage.
  • the hydrostatic transmission mechanism 312A the power from the engine E and the motor generator 304 is input to the pump shaft, whereby pressure oil is supplied from the hydraulic pump to the hydraulic motor, and the hydraulic motor is rotated by the hydraulic pressure from the hydraulic pump. Driven to rotate the motor shaft. The rotation of the hydraulic motor is transmitted to the planetary gear mechanism 312B through the motor shaft.
  • the hydrostatic transmission mechanism 312A changes the angle of the swash plate 312a by displacing the cylinder linked to the swash plate 312a of the hydraulic pump, so that the forward rotation state, the reverse rotation state, and the forward rotation state are changed.
  • the rotation speed (number of rotations per hour) is changed steplessly.
  • the rotational speed of the power output from the hydraulic motor to the planetary gear mechanism 312B is changed steplessly.
  • the hydrostatic transmission mechanism 312A stops the rotation of the hydraulic motor by the hydraulic pump when the swash plate 312a is positioned in a neutral state, and consequently stops the output from the hydraulic motor to the planetary gear mechanism 312B.
  • the planetary gear mechanism 312B meshes with the sun gear, the three planetary gears arranged at regular intervals around the sun gear, the carrier that rotatably supports each planetary gear, and the three planetary gears.
  • a ring gear and an output shaft (one of the power transmission shafts 330) connected to the forward / reverse switching device 313 are provided.
  • the carrier forms on the outer periphery a gear portion that meshes with an output gear attached to the power transmission shaft 330 on the engine E side, and is supported by the boss portion of the sun gear so as to be relatively rotatable.
  • the HMT 312 changes the angle of the swash plate 312a of the hydrostatic transmission mechanism 312A, thereby changing the power transmission to the front wheels 302a and / or the rear wheels 302b, which are driving wheels, in a stepless manner. can do.
  • the control of the swash plate 312a is realized by hydraulic control of a hydraulic control unit 322 that operates based on a control command from the transmission control unit 320.
  • a hydraulic pump P is provided as a hydraulic source for the hydraulic actuators such as the hydraulically driven cylinder, the main clutch 331, and the transmission clutch 310a described above.
  • the hydraulic pump P may employ a mechanical pump that receives rotational power from the power transmission shaft 330 or an electric pump that receives rotational power from an electric motor. In the case of an electric pump, the electric motor is controlled by a hydraulic control unit 322.
  • the shift control unit 320 has various control functions for performing a shift operation on the transmission 310 based on a shift operation command from the shift operating tool or a gear ratio adjustment command from the energy saving shift module 307.
  • the function related to the present invention is to adjust the gear ratio by changing the angle of the swash plate 312a of the HMT 312 based on a command from the energy saving transmission module 307.
  • the shift control can be performed by both an operation signal input by human operation and a mechanically generated operation signal input.
  • the shift pedal 325 functioning as a shift operation tool for human input has a driving operation area. It is placed on the right floor. The shift pedal 325 can be held at an arbitrary position for traveling at a constant vehicle speed.
  • an engine speed reduction button 390 and an engine speed return button 391 as operating devices for sending an operation command by a driver's operation to adjust the engine speed.
  • a shift lever 327 are provided.
  • the engine speed reduction button 390 and the engine speed return button 391 are provided together with the display 339 on the side panel covering the upper part of the rear wheel fender, as shown in FIG. It may be provided on the left side panel, the steering handle or the front panel in front of the handle.
  • the control of the motor generator 304 in this power system that is, the assist control for the engine E is performed by the assist control module 306.
  • the assist control module 306 uses the configuration described with reference to FIG.
  • the load information generation unit 381 and the battery management unit 382 described above are built in the power management module 308.
  • the engine control unit 305A, the motor control unit 305B, the assist control module 306, the energy saving transmission module 307, the power management module 308, the vehicle state detection unit 309, the transmission control unit 320, and work for operating the work device W are performed.
  • Various control units called ECUs such as the device control unit 321 are connected to each other by an in-vehicle LAN so as to be able to transmit data.
  • ECUs such as the device control unit 321 are connected to each other by an in-vehicle LAN so as to be able to transmit data.
  • the vehicle state detection unit 309 inputs signals from various sensors arranged in the tractor and operation input signals indicating the state of the operation device operated by the driver, and performs signal conversion and evaluation calculation as necessary.
  • the obtained signals and data are sent to the in-vehicle LAN.
  • the sensor particularly related to the present invention generates, as a detection signal, a shift operation amount (here, a swing angle) generated by depressing the engine speed reduction button 390, the engine speed return button 391, and the speed change pedal 325 described above.
  • a pedal sensor 392 that detects the operation position of the shift lever 327 and generates an operation signal
  • a rotation speed sensor 394 that detects the rotation speed of the engine output shaft Ex.
  • a configuration in which various sensors and buttons are directly connected to each control unit without using the vehicle state detection unit 9 may be adopted.
  • the engine control unit 305A is a core function unit for electronically controlling the engine E. According to the operation state of the engine E estimated by an external operation input signal, an internal sensor signal, and the like, Various types of engine control such as control based on a preset program, such as constant rotation speed control and constant torque control, are performed.
  • the transmission control unit 320 controls the hydraulic control elements of the transmission 310 described above via the hydraulic control unit 322 based on an external operation input signal, an internal sensor signal, etc., sets the transmission ratio of the transmission 310, and the tractor At a desired speed.
  • the display control unit 338 generates a control signal for displaying various notification information on the display 339 made of liquid crystal or the like provided in the driving operation area.
  • the display 339 is adjacent to a switch panel comprising an engine speed reduction button 390 and an engine speed return button 391 on the side panel in the hand (right side) area of the driver's seat.
  • a vehicle speedometer a tachometer or the like
  • various information such as vehicle operation is displayed on the display 339, and the following display events can be cited as related to the present invention.
  • the engine speed reduction amount is displayed during the execution of the engine speed reduction process or the engine speed reduction process described with reference to FIG.
  • a lighting display is performed to indicate that the engine speed reduction process or the engine speed reduction process is being performed.
  • the charge amount of the battery B is shown.
  • the energy saving speed change module 307 is a control module that realizes a temporary engine speed reduction process.
  • the important functions of the energy saving transmission module 307 are the following two. (1) In this embodiment, an operation that is configured by an engine speed reduction button (hereinafter abbreviated button) 390 and an engine speed return button (hereinafter abbreviated as a return button) 391 and that is operated by the driver. Based on the operation command sent from the device, the engine control unit 305A is provided with a rotation speed reduction command that is set in the engine control unit 305A to reduce the engine rotation speed for constant rotation speed control by a predetermined amount.
  • an engine speed reduction button hereinafter abbreviated button
  • an engine speed return button hereinafter abbreviated as a return button
  • a change in the gear ratio is made to the transmission control unit 320 so as to compensate for a decrease in the engine speed caused by the rotation speed reduction command based on the operation of the lowering button 390.
  • An operating device is provided that gives a required gear ratio change command.
  • the return operation command is transmitted by operating the return button 391.
  • the engine speed decreases by 200 rpm from the set speed: N0 set for constant speed traveling control, and the return button 391. Is operated once, the decrease in the engine speed and the change in the compensation gear ratio due to the previous lowering button operation are canceled, and the state before the previous lowering button operation is restored.
  • the number of times the engine speed is reduced by the lowering button 390 is preferably limited to a predetermined number.
  • a predetermined number For example, in this embodiment, it is possible to limit the engine speed reduction to 800 rpm by setting the limit number to 4 times.
  • this limit number is preferably set to an arbitrary number.
  • the energy saving transmission module 307 is constructed by a computer capable of exchanging data with the assist control module 306, the power management module 308, etc., and its function is mainly created by a computer program. As shown in FIG. 21, in the energy saving speed change module 307, in order to realize the above functions, a rotation speed reduction command generation unit 371, a gear ratio change command generation unit 372, a lowering processing history memory 373, a load determination unit 374, a forced return A control unit 375 is included.
  • Rotational speed reduction command generation unit 371 generates a rotational speed reduction command for reducing the current engine rotational speed by 200 rpm based on an operation command by the driver pressing down button 390, and sends it to engine control unit 305A.
  • the gear ratio change command generation unit 372 obtains a change value of the gear ratio that compensates for the decrease so that the decrease in the engine speed due to the rotation speed decrease command is not accompanied by a decrease in the vehicle speed.
  • a transmission ratio change command based on the above is generated, and this transmission ratio change command is sent to the transmission control unit 320.
  • the engine control unit 308 controls the rotational speed of the engine E with the basic engine rotational speed set according to the operation position of the accelerator lever 332 as a control target.
  • This rotational speed reduction command decreases the basic engine rotational speed.
  • a 200 rpm decrease from the basic engine speed is commanded by the first rotation speed reduction command
  • a 200 rpm, that is, a 400 rpm decrease from the basic engine rotation speed is commanded by the second rotation speed decrease command.
  • the decrease in the vehicle speed due to the decrease in the engine speed is compensated by the gear ratio change command from the gear ratio change command generator 372 each time.
  • a return operation command is given to the energy saving transmission module 307, and the rotation speed reduction command generation unit 371 determines the cumulative number of rotation speed reduction commands set at the present time.
  • a return command for canceling one step is sent to the engine control unit 308.
  • the engine speed reduction command is only set once, the engine speed decrease for one time is canceled, and the target engine speed of the engine E in the engine control unit 308 is the original basic engine speed. Number. If the speed reduction command is set twice, the engine speed reduction for one time is canceled, and the target speed of the engine E in the engine control unit 308 is reduced by 200 rpm from the basic engine speed. Number.
  • the rotation speed reduction command is not generated.
  • the return button 391 only performs cancellation processing for the rotation speed reduction command.
  • the increase in the vehicle speed due to the correction is caused by the gear ratio change command from the gear ratio change command generation unit 372. Compensated and the vehicle speed is kept constant.
  • a reduction process history memory 373 is provided.
  • a memory structure such as a stack memory is suitable for the lowering processing history memory 373.
  • a rotation speed reduction command is generated, information on the rotation speed reduction is written (push) to the lowering processing history memory 373, and a return command is generated. Then, the last written information on the rotational speed reduction is read and erased (popped).
  • a memory structure such as a history memory that records the rotation speed reduction command and the return operation command in time series may be adopted.
  • the load determination unit 374 has a function of determining whether or not the engine load exceeds a predetermined level. When an engine load exceeding the predetermined level is determined, a decrease in the target engine rotation speed set by the rotation speed decrease command is determined. And a return command for canceling the change in the compensation gear ratio. For example, when the engine load exceeding a predetermined level is determined in the prohibition period in which the assist control by the assist control module 306 is prohibited, the load determination unit 374 reduces the engine speed and changes the compensation gear ratio that are performed previously. Outputs a return operation command to cancel.
  • the forcible return control unit 375 forcibly outputs a return operation command when a preset cancel condition other than the engine load is satisfied, and decreases the engine speed set in the engine control unit 305A. And the change of the compensation gear ratio applied to the shift control unit 320 is canceled.
  • This cancellation condition detects a situation in which constant speed travel is not required, such as when the vehicle travels from a work travel mode that requires constant speed travel to a general road travel mode that requires traveling while adjusting the vehicle speed. This is a typical condition. Also, when the vehicle operation is terminated with the engine key turned off, it is preferable to forcibly cancel the decrease in engine speed.
  • the engine speed is artificially changed, but at that time, the engine speed reduction command is also taken over. Thereby, even if the accelerator operating device is frequently operated, the energy saving operation can be maintained.
  • the speed change ratio of the transmission 310 is artificially changed by the speed change pedal 325 which is a speed change operation device. However, even at that time, the engine speed change due to the change in the speed change ratio, the subsequent decrease in the speed and the rotation speed
  • the compensation gear ratio is set in accordance with the decrease in the number.
  • FIG. 22 shows an assist control module 306 that appropriately drives and assists the motor generator 304 when the rotational load received by the engine E suddenly increases when the engine speed is lowered to perform energy saving operation.
  • an assist characteristic determination unit 361 and an assist control determination unit 362 are provided.
  • the assist characteristic determination unit 361 is provided with an assist characteristic map storage unit 351a.
  • the assist characteristic map storage unit 361a has a function of creating and storing a plurality of assist characteristic maps M in which assist characteristics are mapped in advance, or creating and setting an appropriate assist characteristic map M as necessary.
  • this assist characteristic can be represented by a graph that determines the amount of assist over time.
  • the horizontal axis is time
  • the vertical axis is assist gain.
  • the assist gain is a ratio to the maximum assist amount (motor torque) calculated according to the load amount read from the load information, and takes a numerical value between 0% and 100%. That is, by multiplying the maximum assist amount by the assist gain obtained from the assist characteristic map M, the assist amount actually assisted by the motor generator 304 is obtained.
  • the assist characteristic in this embodiment includes an initial assist characteristic area S that maintains a constant assist amount for a predetermined time and an end assist characteristic area E that reduces the assist amount to zero over time.
  • the time interval t1 of the initial assist characteristic region S is 1.5 to 2.5 seconds, preferably 2 seconds
  • the time interval t2 of the final assist characteristic region E is 1.5 to 2.5 seconds, preferably 2 Seconds.
  • the assist gain in the initial assist characteristic region S is constant at 100%, and the final assist characteristic region E is linear.
  • an arbitrary shape can be adopted for the decreasing tendency. It is also possible to employ a non-linear graph in both the initial assist characteristic region S and the final assist characteristic region E.
  • the assist characteristic determination unit 361 determines an optimum assist characteristic map M from the load amount read from the load information and the charge amount read from the battery information.
  • various assist characteristics are described such that the assist gain in the initial assist characteristic region S ranges from about 10% to less than 100%, and the final assist characteristic region E is a decreasing function. Has been.
  • the amount of assistance actually generated by the motor generator 304 varies each time depending on the load amount and / or the charge amount.
  • continuous execution of assist control based on the assist characteristics is prohibited by the assist control determination unit 362.
  • the execution interval of the assist control may be changed according to the charge amount of the battery B, or may be determined in advance according to the capacity of the battery B. Further, it may be varied depending on the work. In any case, it is set so as not to cause a rapid decrease in the battery charge amount.
  • the power management module 308 includes the load information generation unit 381, the battery management unit 382, and the operation mode selection unit 383 described above.
  • the battery management unit 382 calculates a charge amount based on the charge information from the battery B, and outputs battery information including the charge amount.
  • the operation mode selection unit 383 is used when working with the working device W that takes out rotational power of a fixed rotational speed from the PTO shaft W0 and uses it for work, or when the work vehicle travels at a predetermined speed (cruising travel).
  • the constant speed control mode is set to keep the rotation speed constant.
  • the engine control unit 305A controls the engine control device 350 so as to maintain the rotation speed of the engine E at a set predetermined value.
  • a motor housing 340 that houses a motor generator 304 and a main clutch 331 is provided on the rear side of the engine E.
  • the motor generator 304 has both the function of a three-phase AC generator that generates electric power by the driving force of the engine E and the function of a three-phase AC motor that rotates by electric power supplied from the outside. Therefore, inverter unit 370 converts the DC power from battery B into three-phase AC power and supplies it to motor generator 304.
  • the inverter unit 370 converts the three-phase alternating current generated by the motor generator 304 into a direct current, boosts it, and supplies it to the battery B.
  • the engine E, the motor generator 304, and the main clutch 331 are provided in this order, and the motor housing 340 is connected to the rear end plate 340a connected to the rear portion of the engine E, whereby the motor A motor generator 304 and a main clutch 331 are accommodated in the housing 340.
  • the motor generator 304 includes a rotor 342 provided with a permanent magnet 341 on the outer periphery, and a stator 343 disposed at a position surrounding the rotor 342.
  • the stator 343 is provided on a plurality of teeth portions (not shown) of the stator core. It has a structure in which a coil is wound.
  • the rotor 342 of the motor generator 304 is arranged coaxially with the rotation shaft core X of the output shaft Ex, and the output shaft Ex of the rotor 342 is arranged.
  • the base plate 331a of the main clutch 331 is disposed on the opposite surface, and the output shaft Ex, the rotor 342, and the base plate 331a of the main clutch 331 are screw-connected.
  • the base plate 331a also has a function as a flywheel, as described above, the motor generator 304 partially performs the inertial force function that the flywheel has performed, and thus is lighter than the conventional one.
  • the motor housing 340 has a structure in which the front housing 340A and the rear housing 340B are detachably connected.
  • the motor housing 304 is provided with a stator 343 on the inner surface of the front housing 340A.
  • the front housing 340A is connected to the rear end plate 340a, and then the rotor 342 is connected to the rear end of the output shaft Ex.
  • the main clutch 331 includes a clutch disk 331c, a pressure plate 331d, and a diaphragm spring 331e arranged in a clutch cover 331b connected to the rear surface of the base plate 331a, and a power transmission shaft to which a driving force from the clutch disk 331c is transmitted.
  • a clutch shaft 330a as one component of 330 is provided and operated by a clutch pedal (not shown).
  • the clutch shaft 330a is supported so as to be rotatable about the rotation axis X with respect to the rear housing 340B, and the clutch disk 331c is capable of transmitting torque to the clutch shaft 330a by a spline structure and is also connected to the rotation axis X.
  • the diaphragm spring 331e has a configuration in which an urging force in the clutch engagement direction is applied to the clutch disk 331c via the pressure plate 331d. Further, the power of the clutch shaft 330a is transmitted to an intermediate transmission shaft 330b as one component of the power transmission shaft 330, which serves as an input shaft of the transmission 310 through a gear transmission mechanism.
  • the capacity of the battery B mounted on the tractor is limited, and a considerable amount of power is required for torque assist during work travel. Therefore, if assist control is repeated during work, the battery B The amount of charge will soon disappear. In order to avoid this, it is necessary to execute the assist by the motor generator 304 while considering the charge amount of the battery B.
  • the load information (engine load factor, rotation speed reduction amount) included in the load information generated by the load information generation unit 381 and the battery information sent from the battery management unit 382 are included.
  • the assist control determination unit 352 determines whether the assist control is permitted or prohibited.
  • An example of the determination map used at that time is shown in FIG. What can be understood from this determination map is that, in principle, the assist control is not performed unless the charge amount is sufficient.
  • an assist determination line is set where the amount of charge is about 80%, and torque assist is not performed below that to avoid the battery B from going up. However, if the engine load factor is close to 100%, there is a possibility of engine stall.
  • assist control is permitted even when the charge amount is 80% or less.
  • the assist determination line is inclined from 90% to 100% of the engine load factor, that is, when the engine load factor is a predetermined amount (about 90% or more in this case), the charge amount is lower as the engine load factor is higher. But assist control is allowed.
  • assist control is permitted even when the charge amount is about 30%.
  • the assist determination line has a band shape, and the region above the upper boundary line of the assist determination line is an assist drive region, and assist control is permitted. A region below the lower boundary line of the assist determination line is a charge drive region.
  • the assist determination band surrounded by the upper boundary line and the lower boundary line of the assist determination line is a buffer area where neither assist control nor charging is performed.
  • zero torque drive control is performed on this buffer area.
  • the energy saving speed change process includes an engine speed reduction process with a gear ratio adjustment and a motor assist process.
  • the driver feels that the engine E has room during work traveling at a constant vehicle speed
  • the driver operates the down button 390 to perform energy-saving operation with reduced engine speed (# 00), so that Processing starts.
  • a speed ratio changing process (# 04) for adjusting the speed ratio that cancels the reduction in the rotational speed. ) And are executed.
  • this routine it is checked whether or not the lowering button 390 has been operated (# 10). If operated (# 10 ON branch), the routine returns to step # 02 and the speed reduction process and the gear ratio changing process are performed again. Executed. If the lowering button 390 is not operated (# 10 OFF branch), the process returns to step # 06 to check the rotational load of the engine E.
  • step # 06 If it is determined in the load check in step # 06 that the engine E is subjected to a rotational load of a predetermined value or more (a large load branch in # 06), it is first checked whether motor assist using the motor generator 304 is possible. (# 12). If motor assist is possible (branch # 12), the motor assist process as described above is executed, and motor assist according to the load amount is performed (# 14). Then, returning to step # 06, the rotational load is checked.
  • step # 06 When the return button 391 is not operated (OFF branch of # 20), the process returns to step # 06 and the rotational load is checked.
  • the return button 391 is operated (# 20 ON branch), as described above, in order to eliminate the decrease in the rotation speed due to the previous lowering button 390, the rotation speed increasing process (# 22) and the gear ratio changing process (#) 24) is performed, and the process returns to step # 06.
  • step # 16 If it is determined in step # 16 that there is an excessive load (Yes branch in # 16), since this is an emergency situation, a forced return process for forcibly returning the reduction in the rotational speed by the lowering button 390 is performed (# 26). Therefore, the forced return process includes a rotation speed increasing process and a gear ratio changing process. Note that this energy saving shift process is for easy understanding of the present invention, and in fact, interrupt processes based on various operations frequently occur, so control does not flow as in the flowchart of the figure.
  • the engine speed or the transmission shaft speed is used to detect the load acting on the engine E.
  • a load detection sensor is provided directly on the work device W to detect this load.
  • a signal may be used to determine whether assist control is necessary.
  • the engine E and the motor generator 304 are directly connected, and then the main clutch 331 is attached and power is transmitted to the power transmission shaft 330. Instead, the engine E A main clutch 331 may be mounted between the motor generator 304 and the motor generator 304.
  • the continuously variable transmission using the HMT 312 is adopted for the transmission 310, but a multi-stage transmission using a multi-stage gear transmission may be adopted.
  • assist characteristics individual assist characteristics optimized for the type of the work device W and the usage pattern thereof may be created in advance and appropriately selected.
  • a work device type detection unit for detecting the type of the work device W mounted on the work vehicle or a manual work device type setting unit is provided, and the assist characteristics using the type of the work device W actually mounted and used as an auxiliary parameter. This is given to the determination unit 361.
  • the assist characteristic determination unit 361 can determine an appropriate assist characteristic depending on the type of work apparatus used.
  • This work vehicle is equipped with a prime mover unit 401 that transmits power to wheels 402 as a traveling device via power transmission means including a transmission shaft, a transmission gear, and the like.
  • the prime mover unit 401 includes an engine E that is an internal combustion engine.
  • the power transmission means includes a transmission 410 that shifts the rotational power output from the prime mover unit 401.
  • a hydraulic pump P is provided in which the amount of hydraulic oil supplied varies depending on the rotational speed of the power output from the prime mover unit.
  • a work device W is mounted on a work vehicle so as to be movable up and down by a lift cylinder as an example of a hydraulic drive device HD driven by hydraulic oil supplied from a hydraulic pump P. Power can be supplied to the work device W via a PTO (power take-off) shaft W1 branched from the output shaft Ex of the prime mover unit 401.
  • a hydraulic operating tool T for operating the hydraulic drive device HD is provided.
  • an engine control unit 405A that controls the engine E at a set engine speed
  • a transmission control unit 403 that adjusts the transmission ratio of the transmission 410
  • a hydraulic pressure management unit 405 are provided.
  • a required hydraulic oil amount calculation function is a function for calculating the required hydraulic oil amount required by the hydraulic drive device HD based on operation information for the hydraulic drive device HD.
  • the engine speed increase command generation function increases the engine speed set by the engine control unit 405A when it is determined that the hydraulic oil supply device HD is insufficiently supplied based on the calculated required hydraulic oil amount.
  • the gear ratio change command generation function sets the gear ratio so as to offset the increase in engine speed due to the engine speed increase command in order to maintain the work vehicle speed (work vehicle traveling speed, hereinafter referred to as vehicle speed).
  • vehicle speed work vehicle traveling speed
  • the engine E when operating a work vehicle W such as a front loader device or a tillage device while driving the work vehicle at a constant vehicle speed, the engine E is driven at the lowest possible engine speed in order to save energy.
  • the drive rotational speed of the hydraulic pump P depends on the engine rotational speed, if the engine rotational speed decreases, the drive rotational speed of the hydraulic pump P decreases, and as a result, the amount of hydraulic oil supplied from the hydraulic pump P increases. descend. It is good if the hydraulic drive device HD is not operating or does not require a large amount of hydraulic oil even if it is operating.
  • the required amount of hydraulic oil required by the hydraulic drive device HD that operates the work device is estimated based on an operation input of the operation tool T that operates the hydraulic drive device HD, which is an example of operation information. Can do.
  • the required amount of hydraulic oil required by the target hydraulic drive device HD is calculated from the operation information related to the operation input. Further, when the calculated required hydraulic oil amount cannot be supplied by the hydraulic pump P at the current engine speed, the engine speed is increased so that the hydraulic pump P can supply the required hydraulic oil amount.
  • the gear ratio is adjusted (usually increased) so that at least the acceleration of the work vehicle is negligible so as to offset the increase in the engine speed.
  • the operation information is sequentially checked, and when the shortage of hydraulic oil supply is resolved even if the engine speed is decreased, a rotation speed return command for canceling the engine speed increase command is given to the engine control unit 405A. .
  • This rotational speed return command may be divided into a plurality of commands for eliminating the preceding increase in engine rotational speed step by step.
  • a gear ratio change command for changing the gear ratio so as to cancel the decrease in the engine speed due to the engine speed return command is given to the gear change control unit 403.
  • FIG. 26 is a perspective view thereof
  • FIG. 27 is a bird's-eye view of a tractor operation area.
  • This tractor includes a vehicle body supported by a pair of left and right front wheels 402a and a rear wheel 402b.
  • a prime mover unit 401 is disposed at the front of the vehicle body, and a steering area is disposed at the center thereof.
  • a tilling device is mounted as a working device W by a lifting mechanism.
  • This lifting mechanism is only schematically shown in FIG. 28, but is operated by a hydraulic cylinder 101 which is one of the hydraulic drive devices HD.
  • a driver's seat 420 and a steering wheel 421 are disposed in front of the driver's seat 420.
  • Operation levers and operation buttons operated by a driver seated on the driver's seat 420 are arranged around the steering wheel 421 and on both sides of the driver's seat 420.
  • a meter panel 427a and a flat display 427b are also arranged in the control area.
  • the front wheel 402a as a steered wheel is operated by the steering wheel 421 via the hydraulic power steering device PS.
  • This hydraulic power steering device PS adjusts hydraulic oil supplied from a hydraulic source according to the steering amount of the steering wheel 421, and hydraulically controls the power steering cylinder 102 as the hydraulic drive device HD to steer the front wheels 402a. Therefore, the steering wheel 421 functions as the hydraulic operating tool T in the present invention. For example, when the steering wheel 421 is rapidly operated with a large steering amount, a large amount of hydraulic oil is supplied to the power steering cylinder 102, and quick steering is realized.
  • This tractor is a hybrid vehicle in which an engine E and a motor unit 404 are included in a prime mover unit 401, as is apparent from the power system diagrams schematically shown in FIGS.
  • the engine E here is a diesel engine whose rotation is controlled by a common rail method, and includes a common rail control device as the engine control device 405a.
  • the motor unit 404 here is a motor generator 404 that also functions as a generator for charging the battery B.
  • a motor housing 440 that houses a motor generator 404 and a main clutch 431 is provided on the rear side of the engine E.
  • the motor generator 404 has both the function of a three-phase AC generator that generates power using the driving force of the engine E and the function of a three-phase AC motor that rotates by electric power supplied from the outside. Therefore, inverter unit 470 converts the DC power from battery B into three-phase AC power and supplies it to motor generator 404. Inverter unit 470 converts the three-phase alternating current generated by motor generator 404 into a direct current, boosts it, and supplies it to battery B.
  • the engine E, the motor generator 404, and the main clutch 431 are provided in this order, and the motor housing 440 is connected to the rear end plate 440a connected to the rear portion of the engine E, whereby the motor A motor generator 404 and a main clutch 431 are accommodated in the housing 440.
  • the motor generator 404 includes a rotor 442 provided with a permanent magnet 441 on the outer periphery and a stator 443 disposed at a position surrounding the rotor 442.
  • the stator 443 is provided on a plurality of teeth portions (not shown) of the stator core. It has a structure in which a coil is wound.
  • a rotor 442 of the motor generator 404 is arranged coaxially with the rotational axis X of the output shaft Ex, and the output shaft Ex of the rotor 442 is disposed.
  • the base plate 431a of the main clutch 431 is disposed on the opposite surface, and the output shaft Ex, the rotor 442, and the base plate 431a of the main clutch 431 are screwed together.
  • the base plate 431a also has a function as a flywheel, as described above, the motor generator 404 partially executes the inertial force function that the flywheel has performed, and thus is lighter than the conventional one.
  • the motor housing 440 has a structure in which the front housing 440A and the rear housing 440B are detachably connected.
  • the motor housing 404 is provided with a stator 443 on the inner surface of the front housing 440A.
  • the front housing 440A is connected to the rear end plate 440a, and then the rotor 442 is connected to the rear end of the output shaft Ex.
  • the main clutch 431 includes a clutch disk 431c, a pressure plate 431d, and a diaphragm spring 431e disposed in a clutch cover 431b coupled to the rear surface of the base plate 431a, and a power transmission shaft to which driving force from the clutch disk 431c is transmitted.
  • a clutch shaft 430a as one component of 430 is provided and operated by a clutch pedal (not shown).
  • the clutch shaft 430a is supported so as to be rotatable about the rotational axis X with respect to the rear housing 440B, and the clutch disk 431c is capable of transmitting torque to the clutch shaft 430a by a spline structure, and is connected to the rotational axis X.
  • the diaphragm spring 431e has a configuration in which an urging force in the clutch engagement direction is applied to the clutch disc 431c via the pressure plate 431d. Further, the power of the clutch shaft 430a is transmitted to an intermediate transmission shaft 430b as one component of the power transmission shaft 430 that serves as an input shaft of the transmission 410 through a gear transmission mechanism.
  • the transmission 410 includes a hydraulic mechanical continuously variable transmission (hereinafter abbreviated as HMT) 412, a forward / reverse switching device 413, and a multi-stage transmission (here, a high speed for road traveling).
  • Gear transmission 414 and differential mechanism 415 that perform gears and low-speed gears for work traveling), and the power is finally transmitted through power transmission shaft 430 to drive wheels (front wheels 402a and / or rear wheels 402b) 402. Rotate.
  • Each of the forward / reverse switching device 413 and the gear transmission 414 is provided with a hydraulically driven transmission clutch 410a.
  • the cultivator W mounted on the tractor can receive the rotational power via the PTO shaft W1 that constitutes a part of the power transmission shaft 430 that transmits the rotational power of the engine E and the motor generator 404.
  • the rotor is driven to rotate at a predetermined tilling depth.
  • the HMT 412 includes a hydrostatic transmission mechanism 412A including a swash plate type variable discharge hydraulic pump that receives power from the engine E and the motor generator 404, and a hydraulic motor that rotates by hydraulic pressure from the hydraulic pump to output power, and a planetary gear. And a gear mechanism 412B.
  • the planetary gear mechanism 412B is configured to receive the power from the engine E and the motor generator 404 and the power from the hydraulic motor as inputs, and to supply the shift output to the power transmission shaft 430 at the subsequent stage.
  • the hydrostatic transmission mechanism 412A power from the engine E and the motor generator 404 is input to the pump shaft, whereby pressure oil is supplied from the hydraulic pump to the hydraulic motor, and the hydraulic motor is rotated by the hydraulic pressure from the hydraulic pump. Driven to rotate the motor shaft. The rotation of the hydraulic motor is transmitted to the planetary gear mechanism 412B through the motor shaft.
  • the hydrostatic transmission mechanism 412A changes the angle of the swash plate 412a by displacing a cylinder linked to the swash plate 412a of the hydraulic pump, so that the forward rotation state, the reverse rotation state, and the forward rotation state are changed.
  • the rotation speed (number of rotations per hour) is changed steplessly.
  • the rotational speed of the power output from the hydraulic motor to the planetary gear mechanism 412B is changed steplessly.
  • the hydrostatic transmission mechanism 412A stops the rotation of the hydraulic motor by the hydraulic pump when the swash plate 412a is positioned in a neutral state, and consequently stops the output from the hydraulic motor to the planetary gear mechanism 412B.
  • the planetary gear mechanism 412B meshes with a sun gear, three planetary gears that are distributed at equal intervals around the sun gear, a carrier that rotatably supports each planetary gear, and the three planetary gears.
  • a ring gear and an output shaft (one of the power transmission shafts 430) connected to the forward / reverse switching device 413 are provided.
  • the carrier forms a gear portion that meshes with the output gear attached to the power transmission shaft 430 on the engine E side on the outer periphery, and is supported by the boss portion of the sun gear so as to be relatively rotatable.
  • the HMT 412 changes the power transmission to the front wheels 402a and / or the rear wheels 402b, which are driving wheels, by changing the angle of the swash plate 412a of the hydrostatic transmission mechanism 412A. can do.
  • the control of the swash plate 412a is realized by hydraulic control of a hydraulic control unit 408 that operates based on a control command from the transmission control unit 403.
  • a hydraulic pump P is provided as a hydraulic source of the hydraulic drive device HD in the present invention.
  • the hydraulic pump P is a mechanical pump that receives rotational power from a power transmission shaft 430 located between the prime mover unit 1 and the transmission 410, and the pump shaft rotational speed depends on the engine rotational speed. That is, the hydraulic oil supply amount of the hydraulic pump P depends on the engine speed.
  • the hydraulic drive device HD to which the hydraulic oil is supplied from the hydraulic pump P via a hydraulic control unit 408 including a hydraulic control valve or the like is an elevator cylinder 101, as long as it is shown in FIGS. These are the power steering cylinder 102 and the transmission clutch 411 of the transmission 410.
  • the hydraulic operating tool T for the lifting cylinder 101 is a lifting lever 422, and the hydraulic operating tool T for the power steering cylinder 102 is a steering wheel 421.
  • various hydraulic cylinders and hydraulic motors are further provided, so that the number of hydraulic drive devices HD to which hydraulic oil is supplied by the hydraulic pump P increases.
  • the elevating cylinder 101 and the power steering cylinder 102 are merely examples of the hydraulic drive device HD to which hydraulic oil is supplied by the hydraulic pump P.
  • FIG. 31 is a hydraulic circuit diagram schematically showing the relationship between the hydraulic pump P, the hydraulic drive device HD, and the hydraulic operating tool T described above.
  • the hydraulic circuit includes a hydraulic circuit 480 of a hydrostatic transmission mechanism 412A constituting the HMT 412, a hydraulic circuit 480 of an elevating cylinder (hydraulic drive device HD) 101 that raises and lowers a tilling device (working device) W, and a hydraulic power steering device PS.
  • the power steering hydraulic circuit 482 is shown, other hydraulic circuits such as the main clutch 431 and the transmission clutch 410a are omitted.
  • the hydraulic circuit 480 of the hydrostatic transmission mechanism 412A includes a swash plate control type hydraulic pump 481a and a charge pump 481b that are driven by the power of the engine E and the motor generator 404 as hydraulic supply sources.
  • the rotational speed of the hydraulic motor rotated by the hydraulic oil supplied from the hydraulic pump 481a in the normal rotation and reverse rotation is changed by adjusting the swash plate angle of the hydraulic pump by the swash plate adjusting mechanism including the swash plate control valve. That is, the hydraulic circuit 480 of the hydrostatic transmission mechanism 412A has its own hydraulic pump 481a and is not directly supplied with hydraulic oil by the hydraulic pump P.
  • a hydraulic pump P is connected to the hydraulic circuit 481 and the power steering hydraulic circuit 482 of the elevating cylinder 101 as a hydraulic supply source.
  • the required amount of hydraulic oil in the hydraulic circuit 481 is determined by the operation behavior of the elevating lever 422 that is the hydraulic operating tool T.
  • the operation behavior of the lift lever 422 is detected by a lift lever sensor 492.
  • the required hydraulic oil amount in the power steering hydraulic circuit 482 is determined by the operation behavior of the steering wheel 421 that is the hydraulic operating tool T.
  • the operation behavior of the steering wheel 421 is detected by a steering sensor 491.
  • the elevating lever sensor 492 and the steering sensor 491 are connected to the vehicle state detection unit 409, and after necessary signal processing is performed by the vehicle state detection unit 409, they are transferred to the necessary functional units.
  • each sensor may be directly connected to the functional unit without using the vehicle state detection unit 409.
  • a shift lever sensor 493 that detects the operation position of the shift lever 423 is also connected to the vehicle state detection unit 409.
  • the hydraulic pressure management unit 405 determines whether or not the required hydraulic oil amount in the hydraulic circuit 481 and the power steering hydraulic circuit 482 of the lifting cylinder 101 can be supplied by the hydraulic pump P.
  • the hydraulic pressure management unit 405 avoids the shortage of hydraulic oil supply by increasing the engine speed when the shortage of hydraulic oil supply occurs.
  • the electronic control system of this tractor includes an engine control unit 405A, a motor control unit 405B, an assist control unit 406, a hydraulic pressure management unit 405, a vehicle state detection unit 409, a shift control.
  • a unit 403, a work device control unit W0 for operating the tilling device (work device) W, and the like are included.
  • These various control units called ECUs are connected by an in-vehicle LAN so as to be able to transmit data.
  • the engine control unit 405A is a core functional unit for electronically controlling the engine E. According to the operating state of the engine E estimated by an external operation input signal, an internal sensor signal, and the like, Various types of engine control such as control based on a preset program, such as constant rotation speed control and constant torque control, are performed.
  • the shift control unit 403 has a control function for performing a shift operation on the transmission 410 based on a shift operation command from a shift operating tool such as the shift pedal 426 or a gear ratio change command from the hydraulic pressure management unit 405. . Further, the transmission control unit 403 is to change the transmission ratio by displacing the angle of the swash plate 412a of the HMT 412 based on the transmission ratio increase command or the transmission ratio change command from the hydraulic pressure management unit 405.
  • the shift control can be performed by both an operation signal input by an artificial operation and a mechanically generated operation signal input.
  • a speed change pedal 426 that functions as an artificial speed change operation tool for changing the vehicle speed is held by a position holding mechanism 426a at an arbitrary position for traveling at a constant vehicle speed.
  • the operation position of the shift pedal 426 is detected by a pedal sensor 490.
  • the pedal sensor 490 is also connected to the vehicle state detection unit 409.
  • Control of the motor generator 404 that is, assist control for the engine E is performed by the assist control unit 406.
  • this assist control is used to cope with a sudden increase in engine load (rotational load) that occurs during energy-saving operation in which the engine speed is reduced to the limit.
  • a sudden increase in rotational load that occurs during energy-saving operation leads to a decrease in the rotational speed of the engine E, that is, a decrease in the vehicle speed, and further to an engine stall.
  • the engine E is frequently operated in the constant speed control mode, and at that time, an abrupt load is applied to the power transmission means depending on the work situation and the grounding ground condition.
  • the assist control unit 406 For this assist control, the assist control unit 406 generates load information indicating a rotational load received by the engine E based on engine control information given from the engine control unit 405A or input parameters extracted from information detected by various sensors. It has a function to generate.
  • the input parameters used for generating the load information are calculated by the rotation speed (rotation speed) of the engine E, the rotation speed (rotation speed) of the power transmission shaft 430 constituting the transmission 410, and the engine control unit 405A.
  • a rotation detection sensor and a vehicle speed sensor for the power transmission shaft 430 are provided as standard, it is convenient to use a rotational speed fluctuation value or a vehicle speed fluctuation value of the power transmission shaft 430 as an input parameter.
  • These input parameters are sent through a vehicle state detection module unit 409 that processes signals from various sensors.
  • a vehicle state detection module unit 409 that processes signals from various sensors.
  • information indicating the sudden increase in rotational load based on the differential value or difference value of the rotational load with time may be used as the load information.
  • load information that indicates an increase in rotational load that triggers assist control simply by threshold determination may be used as load information.
  • the assist control unit 406 determines whether to execute assist control for the engine E using the motor generator 404 based on the load information. For example, when the battery charge amount is equal to or less than a predetermined value, the assist control is stopped or the assist control is performed with a partial assist amount. Further, after the assist control is executed, execution of the next assist control is prohibited for a predetermined time. Further, the assist control unit 406 determines an assist characteristic that defines an assist amount and an assist time in the assist control based on the load information. Further, the assist control unit 406 outputs an assist control signal to the motor control unit 405B based on the determined assist characteristic.
  • the motor control unit 405B outputs a motor control signal to the inverter unit 405b based on the assist control signal to control the motor generator 404.
  • the motor control unit 405B can cause the motor generator 404 to function as a generator and charge the battery B by sending a power generation command to the inverter unit 405b. Further, the motor control unit 405B sends a zero torque control signal to the inverter unit 405b, so that the motor generator 404 performs zero torque drive.
  • the assist control unit 406 includes the battery management unit 460, a load information generation unit 461 that generates load information, and an assist characteristic determination unit 462 including an assist characteristic map storage unit 462a.
  • An assist control determination unit 463 is constructed.
  • the battery management unit 460 calculates the charge amount based on the charge information from the battery B, and outputs battery information including this charge amount.
  • the assist characteristic determination unit 463 determines an appropriate assist characteristic: W (t) based on the load amount L read from the load information and the charge amount SC read from the battery information.
  • the motor control unit 405B When the assist characteristic is determined, the motor control unit 405B generates an assist control signal based on the assist characteristic, drives and controls the motor generator 404 through the inverter unit 405b, and increases the load generated in the engine E or the power transmission means. To compensate.
  • the assist characteristic map storage unit 462a has a function of creating and storing in advance a plurality of assist characteristic maps M obtained by mapping the assist characteristics as described above, or creating and setting an appropriate assist characteristic map M as necessary.
  • this assist characteristic can be represented by a graph that determines the amount of assist over time.
  • the horizontal axis is time
  • the vertical axis is assist gain.
  • the assist gain is a ratio to the maximum assist amount (motor torque) calculated according to the load amount read from the load information, and takes a numerical value between 0% and 100%. That is, by multiplying the maximum assist amount by the assist gain obtained from the assist characteristic map M, the assist amount that is actually assisted by the motor generator 404 is obtained.
  • the assist characteristic in this embodiment includes an initial assist characteristic area S that maintains a constant assist amount for a predetermined time and an end assist characteristic area E that reduces the assist amount to zero over time.
  • the time interval t1 of the initial assist characteristic region S is 1.5 to 2.5 seconds, preferably 2 seconds
  • the time interval t2 of the final assist characteristic region E is 1.5 to 2.5 seconds, preferably 2 Seconds.
  • the assist gain in the initial assist characteristic region S is constant at 100%, and the final assist characteristic region E is linear.
  • an arbitrary shape can be adopted for the decreasing tendency. It is also possible to employ a non-linear graph in both the initial assist characteristic region S and the final assist characteristic region E.
  • the assist characteristic determination unit 462 determines an optimal assist characteristic map M from the load amount read from the load information and the charge amount read from the battery information.
  • various assist characteristics are described such that the assist gain in the initial assist characteristic region S ranges from about 10% to less than 100%, and the final assist characteristic region E is a decreasing function.
  • the assist amount actually generated by the motor generator 404 varies each time depending on the load amount and / or the charge amount.
  • the execution interval of the assist control that is, the prohibition time may be changed according to the charge amount of the battery B, or may be determined in advance according to the capacity of the battery B. Further, it may be varied depending on the work. In any case, it is set so as not to cause a rapid decrease in the battery charge amount.
  • the hydraulic pressure management unit 405 in this embodiment has the function of the hydraulic pressure management unit 405 described with reference to FIG. Therefore, as shown in FIG. 33, the hydraulic pressure management unit 405 includes a required hydraulic oil amount calculation unit 451, a rotation speed increase command generation unit 452, a gear ratio change command generation unit 453, and a rotation speed return command generation unit 454. ing.
  • the required hydraulic oil amount calculation unit 451 requires the power steering cylinder 102 and the lift cylinder 101 based on the operation information sent from the vehicle state detection unit 409 and indicating the operation behavior of the steering wheel 421 and the operation behavior of the lift lever 422. Calculate the required amount of hydraulic fluid.
  • the rotational speed increase command generation unit 452 increases the engine rotational speed when it is determined that the hydraulic oil supply to the power steering cylinder 102 or the lift cylinder 101 is insufficient based on the required hydraulic oil amount calculated by the required hydraulic oil amount calculation unit 451.
  • the engine speed increase command is a command for increasing the engine speed relative to the current engine speed set in the engine control unit 405A.
  • the value of the rotational speed to be increased may be a predetermined value, for example, 200 rpm, or may be the rotational speed obtained by calculation or mapping each time.
  • the engine speed increase command thus generated is given to the engine control unit 5A, so that the engine speed of the engine E increases.
  • the engine speed increase command generation unit 454 increases the engine speed previously performed.
  • a rotation speed return command for canceling the command is generated.
  • a rotational speed return command may be generated so as to reduce the increase in engine rotational speed by the engine rotational speed increase command that has been performed previously and reduce it in multiple steps. In any case, when the engine speed increase command is given to the engine control unit 405A, the speed of the engine E decreases.
  • the gear ratio change command generation unit 453 shifts a gear ratio change command for changing the gear ratio so as to offset the increase in the engine speed due to the engine speed increase command in order to maintain the vehicle speed of the tractor so as to avoid sudden acceleration.
  • This is given to the control unit 403.
  • the transmission control unit 403 adjusts the swash plate 412a of the hydraulic pump of the hydrostatic transmission mechanism 412A via the hydraulic control unit 408 to increase the gear ratio and increase the vehicle speed as the engine speed increases.
  • the gear ratio change command generation unit 453 gives to the gear change control unit 403 a gear ratio change command for changing the gear ratio so as to cancel the reduction of the engine speed due to the engine speed return command.
  • the transmission control unit 403 adjusts the swash plate 412a via the hydraulic control unit 408 to reduce the transmission ratio and avoid a decrease in vehicle speed due to a decrease in engine speed.
  • the hydraulic oil supply amount control function by the hydraulic pressure management unit 405 is used during work travel and is not necessary in principle during road travel. For this reason, it is convenient to limit the hydraulic oil supply amount control function by the hydraulic pressure management unit 405 when traveling on the road.
  • the operation position of the shift lever 423 for switching the shift stage of the gear transmission 414 having the road drive shift stage and the work shift stage is used. That is, it is detected from the signal of the shift lever sensor 493 that the gear transmission 414 has been switched to the road driving gear stage, and at that time, an increase in the engine speed due to the engine speed increase command is prohibited.
  • the above-described shift control unit 403 includes a temporary engine speed reduction process and an engine speed return process that cancels the engine speed reduction process based on a driver's operation for energy saving operation.
  • An energy saving speed change module 407 to be realized is constructed.
  • the engine speed reduction process and the engine speed return process are similar to the engine speed increase process by the engine speed increase command and the engine speed reduction process by the engine speed return command described above. There are advantages that can be done.
  • the energy saving speed change module 407 includes a rotation speed reduction command generation unit 471, a gear ratio change command generation unit 472, a lowering processing history memory 473, a load determination unit 474, a forced return.
  • a control unit 475 is included.
  • Rotational speed reduction command generation unit 471 generates a rotational speed reduction command for reducing the current engine rotational speed by 200 rpm based on an operation command by the driver pressing down button 424, and sends it to engine control unit 405A.
  • the gear ratio change command generation unit 472 obtains a change value of the gear ratio that compensates for the decrease so that the decrease in the engine speed due to the rotation speed decrease command is not accompanied by a decrease in the vehicle speed.
  • a gear ratio change command based on the above is generated, and this gear ratio change command is sent to the hydraulic control unit 408.
  • the engine control unit 405A controls the rotational speed of the engine E with the basic engine rotational speed set according to the operation position of the accelerator lever 432 as a control target.
  • This rotational speed reduction command decreases the basic engine rotational speed.
  • a 200 rpm decrease from the basic engine speed is commanded by the first rotation speed reduction command
  • a 200 rpm, that is, a 400 rpm decrease from the basic engine rotation speed is commanded by the second rotation speed decrease command.
  • the decrease in the vehicle speed due to the decrease in the engine speed is compensated by the gear ratio change command from the gear ratio change command generator 472 each time.
  • a return operation command is given to the energy saving speed change module 407, and the rotation speed reduction command generation unit 471 sets the accumulated number of rotation speed reduction commands set at the present time.
  • a return command for canceling one step is sent to the engine control unit 405A.
  • the engine speed reduction command is only set once, the engine speed decrease for one time is canceled, and the target engine speed of the engine E in the engine control unit 405A is the original basic engine speed. Number. If the engine speed reduction command is set twice, the engine speed decrease for one time is canceled, and the target engine speed of the engine E in the engine control unit 405A is reduced by 200 rpm from the basic engine engine speed. Number.
  • the rotation speed reduction command is not generated.
  • the return button 425 only performs a cancellation process for the rotation speed reduction command.
  • the increase in the vehicle speed accompanying the correction is caused by the gear ratio change command from the gear ratio change command generation unit 472. Compensated and the vehicle speed is kept constant.
  • a reduction processing history memory 473 is provided.
  • a memory structure such as a stack memory is suitable for the lowering processing history memory 473.
  • a rotation speed reduction command is generated, information on the rotation speed reduction is written (push) in the lowering processing history memory 473, and a return command is generated. Then, the last written information on the rotational speed reduction is read and erased (popped).
  • a memory structure such as a history memory that records the rotation speed reduction command and the return operation command in time series may be adopted.
  • the load determination unit 474 has a function of determining whether or not the engine load has exceeded a predetermined level. When it is determined that the engine load exceeds the predetermined level, a decrease in the target engine rotation speed set by the rotation speed decrease command is determined. And a return command for canceling the change in the compensation gear ratio. For example, when the engine load exceeding a predetermined level is determined in the prohibition period in which the assist control by the assist control unit 406 is prohibited, the load determination unit 474 lowers the engine speed and changes the compensation gear ratio performed previously. Outputs a return operation command to cancel.
  • the forcible return control unit 475 forcibly outputs a return operation command when a predetermined cancellation condition set in advance other than the engine load is satisfied, and decreases the engine speed set in the engine control unit 405A. And the change of the compensation gear ratio applied to the shift control unit 403 is canceled.
  • This cancellation condition detects a situation in which constant speed travel is not required, such as when the vehicle travels from a work travel mode that requires constant speed travel to a general road travel mode that requires traveling while adjusting the vehicle speed. This is a typical condition. Also, when the vehicle operation is terminated with the engine key turned off, it is preferable to forcibly cancel the decrease in engine speed.
  • the engine speed is artificially changed, but at that time, the engine speed reduction command is also taken over. Thereby, even if the accelerator operating device is frequently operated, the energy saving operation can be maintained.
  • the speed change ratio of the transmission 410 is also artificially changed by the speed change pedal 426 which is a speed change operation device. Even at this time, the engine speed change due to the change of the speed change ratio, the subsequent decrease in the speed and the rotation speed
  • the compensation gear ratio is set in accordance with the decrease in the number.
  • the prime mover unit 401 is configured as a hybrid type including the engine E and the motor generator 404, but only the engine E may be used.
  • the continuously variable transmission using the HMT 412 is adopted for the transmission 410, but a multi-stage transmission using a multi-stage gear transmission may be adopted.
  • the present invention is applicable to various vehicles equipped with an internal combustion engine.
  • vehicles include agricultural work vehicles such as riding rice transplanters, lawn mowers, and combiners, and civil engineering work vehicles such as front rosa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 バッテリの上がりを回避しながらも、出力の小さな内燃機関で作業装置を用いたスムーズな作業走行が可能となるハイブリッド作業車の提供。 ハイブリッド作業車が、動力伝達手段1を介して走行装置2と作業装置9とに駆動力を供給する内燃機関E、バッテリBによって駆動するモータジェネレータ4と、前記内燃機関Eが受ける回転負荷の増大を表す負荷情報を生成する負荷情報生成部51と、前記回転負荷の増大を解消するために、モータアシスト制御を、変速装置10の変速比を下げることによって内燃機関をアシストする機械アシスト制御に優先して実行させるアシスト制御決定部50とを備えている。

Description

車両
 本発明は、内燃機関を備えた車両に関する。

[1]モータジェネレータが内燃機関をアシストするハイブリッド作業車では、内燃機関からの動力で車両を走行させるとともに、内燃機関に大きな負荷が生じた時に、モータジェネレータをモータとして動作させ、このモータジェネレータから出力される動力によって車両走行がアシストされる。また、このモータジェネレータはジェネレータとしても動作させることでバッテリを充電する。
 例えば、特許文献1による、車両の発進、加速時に内燃機関をトルクアシストする電動機を備えたハイブリッド動力装置では、バッテリの充電状態を検出し、検出した充電状態に基づいて電動機から内燃機関に供給可能な補助トルク量(アシスト量)を算出し、この補助トルク量から内燃機関に与える燃料量と電動機の負担割合とを変化させる。これにより、充電率が小さくなれば電動機への給電を停止することでバッテリの上がりを防止している。
 また、特許文献2によるハイブリッド動力装置では、内燃機関に対するモータジェネレータのアシストパターン(エンジン回転数とトルクの関係)が異なる2つの制御マップを用意しておき、バッテリ充電容量の状態(SOC)、車速、変速機の状態、内燃機関の温度などの状態情報により制御マップを切り替えてアシスト制御が行われる。これにより、小馬力の内燃機関を用いながらも良好な運転性を実現しようとしている。
[2]モータジェネレータが内燃機関をアシストする一般的なハイブリッド車では、内燃機関からの動力で車両を走行させるとともに、走行条件(車速、アクセルペダルの操作量(アクセル開度)、内燃機関の運転状態、走行路面状況、変速段位置、バッテリ残量など)に応じてモータジェネレータをモータとして動作させ、このモータジェネレータから出力される動力で車両走行をアシストする。また、このモータジェネレータはジェネレータとしても動作させることができ、バッテリに給電して充電することも可能である。このモータジェネレータが、モータとして動作されている際には、モータジェネレータの発生トルクを制御して、運転者により要求される車両駆動トルク(目標車両駆動トルク、例えば運転者のアクセルペダル操作等に基づいて求められる)に対する内燃機関とモータジェネレータの負担割合(当該負担割合は走行条件等に基づいて定められる)に応じて、モータジェネレータが負担すべきトルク(アシストトルク)を発生させることができるように構成されている。
 特許文献1による、車両の発進、加速時に内燃機関をトルクアシストする電動機を備えたハイブリッド動力装置では、バッテリの充電状態を検出し、検出した充電状態に基づいて電動機から内燃機関に供給可能な補助トルク量(アシスト量)を算出し、この補助トルク量から内燃機関に与える燃料量と電動機の負担割合とを変化させる。これにより、充電率が小さくなれば電動機への給電を停止してバッテリの上がりを防止している。
 また、特許文献2によるハイブリッド動力装置では、内燃機関に対するモータジェネレータのアシストパターン(エンジン回転数とトルクの関係)が異なる2つの制御マップを用意しておき、バッテリ充電容量の状態(SOC)、車速、変速機の状態、内燃機関の温度などの状態情報により制御マップを切り替えてアシスト制御が行われる。これにより、小馬力の内燃機関を用いながらも良好な運転性を維持している。
[3]上記のような車両では、エンジン制御ユニットと変速制御ユニットとを協調制御することにより、低いエンジン回転数においても高いエンジン回転数においても車両速度を一定値に維持することが可能となる。例えば、特許文献3には、無段変速機構を作動させる変速アクチュエータを設け、これを制御することにより走行速度(車両速度)を無段階に変更する移動農機が記載されている。この移動農機では、エンジン回転の検出及び調節を行う回転センサ並びにアクセルアクチュエータが設けられ、所定の走行速度になるように前記各アクチュエータを作動させることで無段変速機構の変速比並びにエンジン回転が相関的(協調的)に制御されている。そして、軽負荷走行時にはエンジンを燃料消費率が低い回転にして経済的に走行させると共に、高負荷走行時にはエンジンを高出力にして所定速度を保って走行させることを意図している。
 車両速度を一定のままエンジン回転数を下げることができると、燃料消費率が低くなり、省エネルギー(以下省エネと略称する)の点から好都合である。しかしながら、エンジントルクに余裕がなくなると、エンジンストールの可能性が高くなり、走行が不安定となる不都合が生じる。エンジントルクの余裕は、車両の走行状態、例えば、道路状況や作業状況によって異なってくる。傾斜の大きな登坂走行や泥道走行では、当然エンジントルクの余裕は小さくなる。このような状況は運転者が把握することができるが、そのような運転者の状況把握を上述したような省エネ運転に結びつけることができるような変速操作系が特許文献3による車両には用意されていない。
 エンジンの余力の運転者感覚を省エネ運転に生かせるような変速操作を実現する車両が特許文献4に開示されている。この車両では、運転者の操作により送出された操作指令に基づいてエンジン制御ユニットで設定されているエンジン回転数を所定量だけ低減させる回転数低下指令がエンジン制御ユニットに与えられるとともに、車両速度を維持するために当該回転数低下指令によるエンジン回転数の低下を補償する変速比の変更を変速制御ユニットに要求する変速比変更指令が与えられる。従って、この公知の車両では、運転者がエンジントルクに余裕があると感じ、省エネ運転等の目的でエンジン回転数を下げたいときには操作器を操作することで、所定量だけエンジン回転数を下げる回転数低下指令をエンジン制御ユニットに与えることができる。しかもこれにより低下するエンジン回転数に見合うだけの変速比が変更され車両速度は維持される。つまり、車両巡航中に、操作器を操作するだけで、車両速度はそのままで、エンジン回転数を下げる運転が実現する。しかしながら、車両速度を維持しながらエンジン回転数を下げ過ぎるとエンジントルクに余裕がなくなり、わずかなエンジン負荷の増大で車両走行が不安定になり、エンジンストールの恐れが生じるので、一旦下げたエンジン回転数を元に復帰させる必要が生じる。特に、熟練者でない場合、エンジン回転数の下げ操作と上げ操作が繰り返されるという不都合が生じる。
[4]上記のような作業車では、エンジン制御ユニットと変速制御ユニットとを協調制御することにより、低いエンジン回転数においても高いエンジン回転数においても作業車速度を一定値に維持することが可能となる。例えば、特許文献3には、無段変速機構を作動させる変速アクチュエータを設け、該アクチュエータ制御により走行速度(作業車速度)を無段階に変更する移動農機が記載されている。この移動農機では、エンジン回転の検出及び調節を行う回転センサ並びにアクセルアクチュエータが設けられ、所定の走行速度になるように前記各アクチュエータを作動させることで無段変速機構の変速比並びにエンジン回転が相関的(協調的)に制御されている。そして、軽負荷走行時にはエンジンを燃料消費率が低い回転にして経済的に走行させると共に、高負荷走行時にはエンジンを高出力にして所定速度を保って走行させることを意図している。
 作業車速度を一定のままエンジン回転数を下げることができると、燃料消費率が低くなり、省エネルギー(以下省エネと略称する)の点から好都合である。しかしながら、エンジントルクに余裕がなくなると、エンジンストールの可能性が高くなり、走行が不安定となる不都合が生じる。また、エンジン回転数が低い場合、エンジンからの動力によって駆動している油圧ポンプの回転数も低いものとなり、その結果油圧ポンプの作動油供給量が減少する。
 エンジンの余力の運転者感覚を省エネ運転に生かせるような変速操作を実現する作業車が特許文献4に開示されている。この作業車では、運転者の操作により送出された操作指令に基づいてエンジン制御ユニットで設定されているエンジン回転数を所定量だけ低減させる回転数低下指令がエンジン制御ユニットに与えられるとともに、作業車速度を維持するために当該回転数低下指令によるエンジン回転数の低下を補償する変速比の変更を変速制御ユニットに要求する変速比変更指令が与えられる。従って、この公知の作業車では、運転者がエンジントルクに余裕があると感じ、省エネ運転等の目的でエンジン回転数を下げたいときには操作器を操作することで、所定量だけエンジン回転数を下げる回転数低下指令をエンジン制御ユニットに与えることができる。しかもこれにより低下するエンジン回転数に見合うだけの変速比が変更され作業車速度は維持される。つまり、作業車巡航中に、操作器を操作するだけで、作業車速度はそのままで、エンジン回転数を下げる運転が実現する。しかしながら、作業車速度を維持しながらエンジン回転数を下げ過ぎるとエンジントルクに余裕がなくなり、わずかなエンジン負荷の増大で作業車走行が不安定になり、エンジンストールの恐れが生じるので、一旦下げたエンジン回転数を元に復帰させる必要が生じる。特に、熟練者でない場合、エンジン回転数の下げ操作と上げ操作が繰り返されるという不都合が生じる。また、走行状態などからエンジンに余力があるかどうかは熟練した運転者であれば把握することができるとしても、油圧駆動機器への作動油供給までは考慮していない。そのため、エンジン回転数の低下により、十分な作動油供給量が確保できずに、油圧駆動機器を用いた作業がスムーズに行なわれなくなるという可能性がでてくる。

特開平4-325736号公報(段落番号〔0006-0021〕、図1、図2) 特開2002-252904号公報(段落番号〔0001-0026〕、図1、図2 特開平5‐338474号公報(段落番号〔0004〕、図10) 特開2012-162248号公報(段落番号〔0020-0022〕、図1、図2)
[1]背景技術[1]に対応する課題は以下の通りである。
 特許文献1や特許文献2で取り扱われているハイブリッド車両は乗用車などの通常の車両であり、一般的には運転者によって操作されるアクセルペダルの踏み込み量などで、内燃機関に対するトルクアシストの必要性を判定することができ、特許文献1や特許文献2ではトルクアシストプロセスはそのように制御されている。これに対して、動力伝達軸を介して走行装置と作業装置とに駆動力を供給する内燃機関と、前記動力伝達軸に動力を出力することで前記内燃機関をアシストするモータジェネレータとを備えた、トラクタなどのハイブリッド作業車では、作業装置が受ける大きな作業負荷が動力伝達軸に、結果的には内燃機関に及ぶので、特許文献1や特許文献2で開示されたアシスト技術をそのまま流用することができない。

 特に、作業装置として対地作業を行う耕耘装置等を装備したトラクタのような作業車の場合、作業負荷が回転負荷として内燃機関にかかる。しかながら、そのような作業負荷を常にモータジェネレータによるアシストで肩代わりしていると、短時間のうちにバッテリの充電量がなくなってしまう。そのために大きな容量のバッテリを搭載することは、省エネルギの観点からも避けなければならない。

 上記実情に鑑み、バッテリの上がりを回避しながらも、出力の小さな内燃機関で作業装置を用いたスムーズな作業走行が可能となるハイブリッド作業車が要望されている。
[2]背景技術[2]に対応する課題は以下の通りである。
 特許文献1や特許文献2で取り扱われているハイブリッド車両は乗用車などの通常の車両であり、一般的には運転者によって操作されるアクセルペダルの踏み込み量だけで、内燃機関に対するトルクアシストの必要性を判定することができるので、特許文献1や特許文献2ではトルクアシストプロセスはそのように制御されている。これに対して、動力伝達軸を介して走行装置と作業装置とに駆動力を供給する内燃機関と、前記動力伝達軸に動力を出力することで前記内燃機関をアシストするモータジェネレータとを備えた、トラクタなどのハイブリッド作業車では、作業装置が受ける大きな作業負荷が動力伝達軸に、結果的には内燃機関に及ぶので、特許文献1や特許文献2で開示されたアシスト技術をそのまま流用することができない。

 特に、作業装置として対地作業を行う耕耘装置等を装備したトラクタのような作業車両の場合、作業負荷が内燃機関にかかることになる。しかながら、そのような作業負荷を常にモータジェネレータによるアシストで肩代わりしていると、短時間のうちにバッテリの充電量がなくなってしまう。そのために大きな容量のバッテリを搭載することは、省エネルギの観点からも避けなければならない。

 上記実情に鑑み、バッテリの上がりを回避しながらも、出力の小さな内燃機関で作業装置を用いたスムーズな作業走行が可能となるハイブリッド作業車が要望されている。
[3]背景技術[3]に対応する課題は以下の通りである。
 上記実情に鑑み、エンジン回転数をエンジンストールが生じないぎりぎりまで下げながらも、不意に生じるエンジン負荷の増大に対して簡単に対処できる省エネ運転が実現する車両が要望されている。
[4]背景技術[4]に対応する課題は以下の通りである。
 上記実情に鑑み、省エネ運転のためにエンジン回転数をできるだけ下げながらも、油圧駆動機器に対する作動油供給量が適切なものとなる技術が要望されている。
[1]課題[1]に対応する解決手段は以下の通りである。
 本発明によるハイブリッド作業車は、動力伝達手段を介して走行装置と作業装置とに駆動力を供給する内燃機関と、前記動力伝達手段に設けられた変速装置と、前記変速装置の変速比を調整する変速制御ユニットと、前記動力伝達手段に接続されたモータジェネレータと、前記モータジェネレータから前記動力伝達手段に動力を出力することで前記内燃機関をアシストするモータアシスト制御を行うモータ制御ユニットと、前記モータジェネレータによって充電電力を受けるとともに前記モータジェネレータに駆動電力を与えるバッテリと、前記内燃機関が受ける回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、前記回転負荷の増大を解消するために、前記モータアシスト制御を、前記変速制御ユニットを通じて前記変速装置の変速比を調整する(通常は変速比を大きくする)ことによって前記内燃機関をアシストする機械アシスト制御に優先して実行させるアシスト制御決定部とを備えている。

 本発明による上記構成によるハイブリッド作業車では、内燃機関に生じた回転負荷の増大を解消するために2つの方策が用意されている。1つの方策は、モータジェネレータを駆動してモータジェネレータから動力伝達手段に動力を出力することで内燃機関をアシストするモータアシストである。もう1つの方策は、変速制御ユニットを通じて動力伝達手段の変速装置の変速比を調整ことによって内燃機関をアシストする機械アシストである。本発明者の知見によれば、作業装置を用いて作業する作業車の場合、走行作業時や坂道発進時においては突発的にすなわち極めて短時間(数秒程度)だけ突出して高い作業負荷が生じ、それ以外では平均的な作業負荷が続く。突発的な高負荷の発生に対しては、応答性に優れたモータアシストが好適であり、持続する負荷に対してはバッテリ消費がない機械アシストが好適である。従って、負荷の増大が生じた際、先にモータアシストを実行し、さらに負荷の増大が続いている場合には、モータアシストに代えて機械アシストを実行することが適切である。このようにアシスト制御決定部が機械アシスト制御に優先してモータアシスト制御することで、バッテリの上がりを回避しながらも、出力の小さな内燃機関で作業装置を用いたスムーズな作業走行が実現する。

 内燃機関に対してより効果的なアシストを行なうためには、内燃機関にかかっている回転負荷の増大に応じて適切な量のアシストを行う必要がある。このため、本発明の好適な実施形態の1つでは、前記モータアシスト制御のためのモータアシスト特性を前記負荷情報に基づいて算定するモータアシスト特性算定部と、前記機械アシスト制御のための変速比を算定する機械アシスト変速比算定部が備えられている。

 モータアシストは、突発的な負荷増大に対して有効であるが、長時間のモータアシストの続行はバッテリ消費の観点から避けなければならないので、持続する負荷増大時には所定の短時間の経過後に、機械アシストへ移行することが重要である。このため、モータジェネレータのアシスト駆動挙動を決めるモータアシスト特性にはアシスト量だけでなくそのアシスト時間も規定しておくことが重要である。これにより、突発的な負荷増大だけに適応させることができ、無駄にバッテリを消費することが回避される。

 モータジェネレータによるアシストは、原則的には突発的な負荷増大を対象とした場合、短時間のアシスト過程の終了時に急激にアシストを停止すると搭乗者に違和感を与えることになる。この問題を抑制するため、本発明の好適な実施形態の1つでは、前記モータアシスト特性が、所定時間一定のアシスト量を維持する初期モータアシスト特性領域とアシスト量を零まで経時的に減少させる終期モータアシスト特性領域とから構成されている。これによりアシストがスムーズに終了することができる。

 走行しながらの耕耘作業などの対地作業では、作業装置が土壌などに突っ込む際や不意に硬い物質に遭遇した際に突発的な負荷増大が生じる。そのような突発的な負荷増大の時間は実験的かつ経験的に調べることができる。従って、そのような調査結果の統計的な評価に基づいてモータアシスト特性を予め決めておくことが好ましい。本発明の好適な実施形態の1つとして、前記初期モータアシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期モータアシスト特性領域が1.5秒から2.5秒の時間間隔を有することが提案される。そのような条件の下で算定された、いくつかのモータアシスト特性はマップ化し、負荷量や作業種で選択できるようにすると好都合である。

 本発明によるハイブリッド作業車では、一般的なハイブリッド車のように回生ブレーキを利用してバッテリを充電することで省エネルギを図るのではなく、突発的な負荷発生時にモータジェネレータでアシストすることで内燃機関を小型化して燃費を改善することを目的にしている。このため、小型のバッテリが搭載されるので、内燃機関の停止を導くバッテリ切れに注意を払わなければならない。この目的のために、本発明の好適な実施形態の1つでは、前記アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行を禁止するアシスト制御禁止決定部が備えられている。内燃機関に回転負荷の増大が検知されると、まずモータアシスト制御が実行され、その後に機械アシスト制御が実行されるが、回転負荷の増大が短期間の場合、アシスト制御がモータアシスト制御だけで終了するか、機械アシスト制御も短期間で終了することなる。そして、その後に再び内燃機関に回転負荷の増大が検知されると、またモータアシスト制御が実行される。このようなケースでは、モータアシスト制御が短期間で繰り返されることになり、バッテリの消費が激しくなる。このようなモータアシストの短期的な繰り返しは、アシスト制御禁止決定部によるモータアシスト制御に禁止期間を適切に設定することにより、抑制することができる。さらには、このアシスト制御禁止決定部の付加的な機能として、前記バッテリの充電量が所定未満と判定された場合には前記モータジェネレータによる前記内燃機関のアシストを強制的に禁止する機能を備えることができる。

 内燃機関がコモンレール方式で駆動されている場合の、本発明の具体的で好適な実施形態の1つでは、前記負荷情報生成部は、コモンレール制御情報を前記入力パラメータとして前記負荷情報を生成する。つまり、コモンレール制御を実行する制御部は、燃料噴射時期、燃料噴射量、機関回転数などの内燃機関データや、車速などの車両データから、負荷トルクを推定して、所定の機関回転数の維持や所定トルクの維持のために必要な燃料噴射時期や燃料噴射量を算定し、これを実行する機能を有する。従って、これらのコモンレール制御に関するコモンレール制御情報を利用して、機関回転数の突発的な低下検知または推定がおこなわれる。このようにして生成された負荷情報に基づいてモータアシスト特性が決定される。

 本発明の別な実施形態の一つとして、前記内燃機関の回転数挙動を入力パラメータとして前記負荷情報を生成するように、負荷情報生成部を構成してもよい。具体的には、比較的に容易に取得可能な、内燃機関の出力軸や動力伝達軸の回転数を測定した測定データから、所定時間当たりの回転数の変化や回転速度の変化が演算される。この演算結果からマップ等を用いて負荷の増減を算定または推定して負荷情報が生成され、モータアシスト特性の決定に利用される。
[2]課題[2]に対応する解決手段は以下の通りである。
 作業装置を用いて作業する作業車の場合、走行作業時や坂道発進時においては突発的にすなわち極めて短時間(数秒程度)だけ突出して高い作業負荷が生じ、それ以外では平均的な作業負荷が続くことから、本発明は、この突発的な高負荷をクリアできれば比較的小さな出力の内燃機関でも不都合がないという知見に基づいている。

 このことから、本発明によるハイブリッド作業車は、動力伝達手段を介して走行装置と作業装置とに駆動力を供給する内燃機関と、前記伝達手段に動力を出力することで前記内燃機関をアシストするモータジェネレータと、前記モータジェネレータによって充電電力を受けるとともに前記モータジェネレータに駆動電力を与えるバッテリと、前記内燃機関が受ける突発的な回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、前記突発的な回転負荷の増大に対して前記モータジェネレータを用いて前記内燃機関をアシストするアシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を前記負荷情報に基づいて決定するアシスト特性決定部と、前記モータジェネレータを前記アシスト特性に基づいて制御するモータ制御ユニットとを備えている。

 本発明による上記構成による作業車では、突発的な高い負荷が生じたときには、予め突発的な負荷増大に対処するために設定されているアシスト特性に基づいてモータジェネレータをアシスト駆動させることで、内燃機関をそのような高い負荷による急激な回転低下やエンジンストールから守ることができる。モータジェネレータは素早い応答性をもつことから突発的な負荷増大に確実に対処することができる。また、モータジェネレータのアシスト駆動挙動を決めるアシスト特性にはアシスト量だけでなくそのアシスト時間も規定されているので、突発的な負荷増大だけに適応させることができ、無駄にバッテリを消費することがない。

 本発明によるハイブリッド作業車では、一般的なハイブリッド車のように回生ブレーキを利用してバッテリを充電することで省エネルギを図るのではなく、突発的な負荷発生時にモータジェネレータでアシストすることで内燃機関を小型化して燃費を改善することを目的にしている。このため、小型のバッテリが搭載されるので、内燃機関の停止を導くバッテリ切れに注意を払わなければならない。この目的のために、本発明の好適な実施形態の1つでは、前記アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行を禁止するアシスト制御禁止決定部が備えられている。これにより、持続的な負荷の発生時にアシスト制御が連続的に実行されバッテリが急速に消費されてしまうことが回避される。さらには、このアシスト制御禁止決定部の付加的な機能として、前記バッテリの充電量が所定未満と判定された場合には前記モータジェネレータによる前記内燃機関のアシストを強制的に禁止する機能を備えることができる。

 上述したように、本発明によるハイブリッド作業車では、モータジェネレータによるアシストは突発的な負荷発生時に限定されているが、作業内容によっては、高い回転負荷がある程度継続することがある。内燃機関の急激な回転低下(回転ドロップ)やエンストは避けるべきである。しかしながら、モータジェネレータによるアシスト時間を長くするとバッテリの消耗が大きくなってしまう。このような問題を解決するため、本発明の好適な実施形態の1つでは、前記動力伝達手段には変速制御ユニットを通じて変速比の調整が可能な変速装置が含まれており、かつ前記変速制御ユニットには前記回転負荷による前記内燃機関の負荷増大を軽減するように前記変速比を変更する負荷追従変速比制御を実行する負荷追従変速比制御部が含まれており、前記負荷追従変速比制御は前記アシスト制御と選択的に実行されるか、あるいは少なくとも部分的に前記アシスト制御と混在して実行される。これにより、少なくとも部分的には内燃機関にかかる負荷を変速比を変えることで低減させることができるので、バッテリの負担も少なくなる。特に好ましくは、前記アシスト制御が前記負荷追従変速比制御に先立って実行される構成を採用すると、突発的な負荷増大はモータジェネレータによるアシストで対処し、それに続く負荷増大に伴う内燃機関の回転低下は変速比を調整(通常は大きくする)することで対処することができる。

 モータジェネレータによるアシストは、原則的には突発的な負荷増大を対象としているので、短時間のアシスト過程の終了時に急激にアシストを停止すると搭乗者に違和感を与えることになる。この問題を抑制するため、本発明の好適な実施形態の1つでは、前記アシスト特性が、所定時間一定のアシスト量を維持する初期アシスト特性領域とアシスト量を零まで経時的に減少させる終期アシスト特性領域とから構成されている。これによりアシストがスムーズに終了することができる。

 走行しながらの耕耘作業などの対地作業では、作業装置が土壌などに突っ込む際や不意に硬い物質に遭遇した際に突発的な負荷増大が生じる。そのような突発的な負荷増大の時間は実験的かつ経験的に調べることができる。従って、そのような調査結果の統計的な評価に基づいてアシスト特性を予め決めておくことが好ましい。本発明の好適な実施形態の1つとして、前記初期アシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期アシスト特性領域が1.5秒から2.5秒の時間間隔を有することが提案される。そのような条件の下で算定された、いくつかのアシスト特性はマップ化し、負荷量や作業種で選択できるようにすると好都合である。アシスト特性のマップ化の具体的例の1つは、基準アシスト量に対する比率と経過時間とを変数とする関数をマップ化したもので、前記アシスト特性を表すことである。その際、負荷情報から得られる負荷量によって選択可能に複数用意されており、選択したマップから導出された比率に前記基準アシスト量を乗じることでアシスト量が算定される。これにより、多数のアシスト特性の中から最適なものを選択して使用することが簡単となる。

 内燃機関がコモンレール方式で駆動されている場合の、本発明の具体的で好適な実施形態の1つでは、前記負荷情報生成部は、コモンレール制御情報を前記入力パラメータとして前記負荷情報を生成する。つまり、コモンレール制御を実行する制御部は、燃料噴射時期、燃料噴射量、機関回転数などの内燃機関データや、車速などの車両データから、負荷トルクを推定して、所定の機関回転数の維持や所定トルクの維持のために必要な燃料噴射時期や燃料噴射量を算定し、これを実行する機能を有する。従って、これらのコモンレール制御に関するコモンレール制御情報を利用して、機関回転数の突発的な低下検知または推定がおこなわれる。このようにして生成された負荷情報に基づいてアシスト特性が決定される。

 本発明の別な実施形態の一つとして、前記内燃機関の回転数挙動を入力パラメータとして前記負荷情報を生成するように、負荷情報生成部を構成してもよい。具体的には、比較的に容易に取得可能な、内燃機関の出力軸や動力伝達軸の回転数を測定した測定データから、所定時間当たりの回転数の変化や回転速度の変化が演算される。この演算結果からマップ等を用いて負荷の増減を算定または推定して負荷情報が生成され、アシスト特性の決定に利用される。
[3]課題[3]に対応する解決手段は以下の通りである。
 本発明によるハイブリッド車両は、動力伝達手段を介して走行装置に駆動力を供給するエンジンと、前記エンジンのエンジン回転数を設定するエンジン制御ユニットと、前記動力伝達手段に設けられた変速装置と、前記変速装置の変速比を調整する変速制御ユニットと、前記動力伝達手段に動力を出力することで前記エンジンをアシストするモータ(電動モータ)ユニットと、前記エンジンが受ける回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、前記負荷情報に基づいて前記モータユニットから前記動力伝達手段に動力を出力するアシスト制御を行うモータ制御ユニットと、前記モータユニットに駆動電力を与えるバッテリと、運転者の操作により操作指令を送出する操作器が備えられ、前記操作指令に基づいて前記エンジン制御ユニットで設定されているエンジン回転数を所定量だけ低減させる回転数低下指令を前記エンジン制御ユニットに与えるとともに、車両速度を維持するために当該回転数低下指令によるエンジン回転数の低下を補償するように変速比の変更を前記変速制御ユニットに要求する変速比変更指令を与える変速モジュールを備えた、いわゆるハイブリッド車両である。

 この構成によれば、運転者がエンジントルクに余裕があると感じ、省エネ運転等の目的でエンジン回転数を下げるときには、操作器、例えばボタンやレバーを操作することにより、予め設定されている所定量だけエンジン回転数を下げる回転数低下指令がエンジン制御ユニットに与えられる。同時に、低下するエンジン回転数に見合うだけの変速比を変更して車両速度を維持するように変速制御ユニットに変速比変更指令が与えられる。これにより、一定車速での車両巡航中にあるいは作業走行中に、操作器を操作するだけで、車両速度はそのままで、エンジン回転数を下げる運転操作が簡単に実現する。さらに、何らかの要因でエンジンの回転負荷が増大した場合には、負荷情報生成部が回転負荷の増大を表す負荷情報を生成するので、この負荷情報に基づいて、モータユニットから前記動力伝達手段に動力を出力するアシスト制御がモータ制御ユニットによって実行される。その結果、エンジンの回転低下やエンジンストールが回避される。特に、モータジェネレータは素早い応答性をもつことから突発的な負荷増大に対して確実に対処することができる。

 モータユニットによるエンジンのアシストはバッテリの消費が少なくない。このため、アシスト制御の実行は適切に行なう必要がある。省エネ運転のためにエンジン回転数を下げた場合は、突発的な負荷の増大に対してエンジンストールの可能性が高くなり、アシスト制御の好適な時期である。このため、本発明の好適な実施形態の1つでは、前記回転数低下指令が前記エンジン制御ユニットに与えられた後に発生する回転負荷の増大に対して、前記アシスト制御が行われる。

 過大なエンジン負荷をモータユニットの駆動によるモータアシストで対処する場合、モータアシストの時間が長くなるとバッテリ消費量が問題となる。このため、本発明の好適な実施形態の1つでは、前記モータユニットはモータジェネレータとして構成され、前記バッテリは前記モータジェネレータから充電電力を受けることができる。つまり、モータアシストが不必要な場合には、必要に応じてモータユニットをジェネレータとして駆動し、バッテリを充電することにより、バッテリ切れを抑制することができる。

 車両の坂道発進時において、あるいは車両が作業装置を用いて作業する作業車の場合では通常の走行作業時においても、突発的にすなわち極めて短時間だけ突出して高いエンジン負荷の増大が生じ、このような突発的な負荷増大をクリアできれば、比較的小さな出力のエンジンを利用することができる。このことから、本発明の好適な実施形態の1つでは、前記アシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を前記負荷情報に基づいて決定するアシスト特性決定部が備えられ、モータ制御ユニットは前記アシスト特性に基づいて前記モータユニットによるアシスト制御を行う。この構成によれば、突発的な高い負荷が生じたときには、予め突発的な負荷増大に対処するために設定されているアシスト特性に基づいてモータジェネレータをアシスト駆動させることで、高負荷による急激な回転低下やエンジンストールからエンジンを守ることができる。モータジェネレータのアシスト駆動挙動を決めるアシスト特性にはアシスト量だけでなくそのアシスト時間も規定されているので、突発的な負荷増大だけに適応させることができ、無駄にバッテリを消費することがない。

 モータジェネレータによるアシストは、原則的には突発的な負荷増大を対象としているので、短時間のアシスト過程の終了時に急激にアシストを停止すると搭乗者に違和感を与えることになる。この問題を抑制するため、本発明の好適な実施形態の1つでは、前記アシスト特性が、所定時間一定のアシスト量を維持する初期アシスト特性領域とアシスト量を零まで経時的に減少させる終期アシスト特性領域とから構成されている。これによりアシストがスムーズに終了することができる。

 特殊な走行、例えば、車両がオフロード車両とすれば岩場走行、車両が作業車両とすれば耕耘作業はフロントローダ作業などの対地作業走行の場合、予測可能な突発的な負荷増大が生じる。しかしながら、そのような突発的な負荷増大の時間は実験的かつ経験的に調べることができる。従って、そのような調査結果の統計的な評価に基づいてアシスト特性を予め決めておくことが好ましい。本発明の好適な実施形態の1つとして、前記初期アシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期アシスト特性領域が1.5秒から2.5秒の時間間隔を有することが提案される。そのような条件の下で算定された、いくつかのアシスト特性はマップ化し、負荷量や作業種で選択できるようにすると好都合である。

 本発明によるハイブリッド車両では、一般的なハイブリッド車両のように回生ブレーキを利用してバッテリを充電することで省エネルギを図るのではなく、突発的な負荷発生時にモータジェネレータでアシストすることでエンジンを小型化して燃費を改善することを目的にしている。このため、小型のバッテリが搭載されるので、エンジンの停止を導くバッテリ切れに注意を払わなければならない。この目的のために、本発明の好適な実施形態の1つでは、前記アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行が禁止される。これにより、持続的な負荷の発生時にアシスト制御が連続的に実行されバッテリが急速に消費されてしまうことが回避される。さらに、前記バッテリの充電量が所定未満と判定された場合には前記モータジェネレータによる前記エンジンのアシストを強制的に禁止する機能を備えることも好適である。

 そのようなアシスト制御の禁止期間の間に、再びエンジン負荷が上昇するとエンジントルクに余裕がなくなり、車両走行が不安定になり、エンジンストールの恐れが生じる。これを回避するために、本発明の好適な実施形態の1つでは、前記負荷情報に基づいてエンジン負荷が所定レベルを超えたかどうかを判定する負荷判定部が備えられ、アシスト制御の禁止期間において前記所定レベルを越えるエンジン負荷が判定された場合、前記操作指令に基づくエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令が出力される。この構成では、アシスト制御の禁止期間中にエンジン負荷の増大が生じた場合は、強制的にエンジン回転数を増加させ、エンジントルクを増大させることができる。

 また、そのようなアシスト制御の禁止期間中のエンジン回転数の増加を運転者にゆだねることも可能である。つまり、前記操作器に、前記操作指令に基づくエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令の送出が可能となる機能を与える。この構成によれば、アシスト制御の禁止期間の間に運転者が車両走行の不安定さを感じた場合、一旦下げたエンジン回転数を簡単な操作で元に復帰させることができる。アシスト制御の禁止期間はランプなどで運転者に報知することが好ましい。

 本発明のその他の特徴、作用及び効果は、以下の図面を用いた本発明の説明によって明らかにされる。
[4]課題[4]に対応する解決手段は以下の通りである。
 本発明による作業車は、動力伝達手段を介して走行装置に動力を供給する、少なくともエンジンを含む原動機ユニットと、前記エンジンのエンジン回転数を設定するエンジン制御ユニットと、前記動力伝達手段に設けられた変速装置と、前記変速装置の変速比を調整する変速制御ユニットと、前記原動機ユニットから供給される動力の回転数によって作動油供給量が変化する油圧ポンプと、前記油圧ポンプから供給される作動油によって駆動する油圧駆動機器と、前記油圧駆動機器を操作する油圧操作具と、前記油圧駆動機器に対する操作情報に基づいて前記油圧駆動機器が必要とする必要作動油量を算定する必要作動油量算定部と、前記必要作動油量に基づいて前記油圧駆動機器に対する作動油供給不足が判定された場合に、前記エンジン制御ユニットで設定されているエンジン回転数を増加させるエンジン回転数増加指令を前記エンジン制御ユニットに与える回転数増加指令生成部と、作業車速度を維持するために前記エンジン回転数増加指令によるエンジン回転数の増加を相殺するように変速比を変更させる変速比変更指令を前記変速制御ユニットに与える変速比変更指令生成部と、を備えている。

 この構成によれば、省エネ運転のためにエンジン回転数をできるだけ下げて作業を行っている際に、作動油供給量が油圧駆動機器に必要とされる作動油量を下回って作動油不足が生じるとみなされた場合には、エンジン回転数が増加され、油圧ポンプの回転数を上げて、その作動油供給量を増大させる。さらに、そのようなエンジン回転数の増加を相殺するように変速比が変更されるので、作業車の急加速が回避される。定速作業や定速走行(クルージング)においては、エンジン回転数の増加をほぼ完全に相殺するように変速比を調整すれば、車速が実質的に変化しないので、好都合である。もちろん、エンジン回転数の増加による作業車の急加速だけを回避する場合には、変速比の調整をエンジン回転数の増加に厳密に対応させなくともよく、急加速を回避する程度にするだけでもよい。

 作業走行時などで、運転者によって操作される油圧駆動機器が必要とする作動油量は、対応する操作具に対する操作挙動によって推定することができる。従って、本発明の好適な実施形態の1つでは、前記操作情報に含まれている前記油圧操作具の操作入力に基づいて前記必要作動油量が算定される。

 上述したように、エンジン回転数をできるだけ下げて運転することで省エネを図るという観点から、本発明による作業車が、エンジンとこのエンジンをアシストするモータユニットとを搭載したハイブリッド作業車として構成されると、環境対策にも有効となる。

 本発明の好適な実施形態の1つでは、エンジン回転数を低下させても前記作動油供給不足が解消される場合に、前記エンジン回転数増加指令を取り消すエンジン回転数戻し指令が前記エンジン制御ユニットに与えられ、かつ作業車速度を維持するために前記エンジン回転数戻し指令によるエンジン回転数の減少を相殺するように変速比を変更させる変速比変更指令が前記変速制御ユニットに与えられる。この構成では、多量の作動油を必要とする時間は短いが、それが頻繁に生じるような作業に対して、作動油の供給量を増加させるためのエンジン回転数の増加処理と、エンジン回転数を元に戻すためのエンジン回転数の減少処理が自動的に行われるので、省エネ運転を行いながらも、運転者は作業走行操作に集中することができる。

 油圧駆動機器に対する作動油供給量は、油圧駆動機器の種類や油圧作業の種類によって異なり、その要求される作動油供給量もそれぞれ微妙に異なる。その結果、エンジン回転数の調整幅及び変速比の調整幅も細かな段階、可能ならば無段階で行なうことが好ましい。このため、本発明の好適な実施形態の1つでは、前記変速装置は無段変速装置を含み、前記エンジン回転数増加指令及び前記エンジン回転数戻し指令は前記無段変速装置を対象とするように構成されている。

 油圧駆動機器に対する作動油供給量を増加させるような事象は、実質的には低速の作業走行においてのみ生じる。従って、作業車が作業走行状態であるときにのみ、上述したエンジン回転数の調整とそれに伴う変速比の調整を行なうようにすることが好ましい。そのため、本発明の好適な実施形態の1つでは、前記変速装置は道路走行用変速段と作業用変速段とを備えた多段変速装置を含み、前記道路走行用変速段に切り換えられている場合、前記エンジン回転数増加指令によるエンジン回転数の増加が禁止されるように構成されている。

本発明の第一実施形態によるハイブリッド作業車における動力システムの基本構成図である。 トルクアシストプロセスにおけるデータの流れを示す模式図である。 本発明の第一実施形態によるハイブリッド作業車の1つの実施形態である汎用トラクタの斜視図である。 トラクタの動力システムを模式的に示す機能ブロック図である。 動力制御系の機能ブロック図である。 動力管理ユニットの機能ブロック図である。 トラクタに装備されたモータジェネレータの断面図である。 充電量とエンジン負荷率(負荷量)とに基づく駆動モードの選択を示す模式図である。 本発明の第二実施形態によるハイブリッド作業車における動力システムの基本構成図である。 トルクアシストプロセスにおけるデータの流れを示す模式図である。 本発明によるハイブリッド作業車の1つの実施形態である汎用トラクタの斜視図である。 トラクタの動力システムを模式的に示す機能ブロック図である。 動力制御系の機能ブロック図である。 動力管理ユニットの機能ブロック図である。 トラクタに装備されたモータジェネレータの断面図である。 本発明の第三実施形態によるハイブリッド車両の省エネ運転時における動力制御の基本的な流れを示す模式図である。 アシスト制御における基本的な流れを示す模式図である。 本発明の第三実施形態による変速制御システムを搭載したトラクタの斜視図である。 トラクタの運転部に備えられた各種操作器を含む運転席の俯瞰図である。 トラクタの動力システムを模式的に示す機能ブロック図である。 省エネ変速モジュールの機能ブロック図である。 アシスト制御モジュールの機能ブロック図である。 トラクタに装備されたモータジェネレータの断面図である。 省エネ運転時におけるエンジン回転数低下処理とモータアシスト処理の基本的な流れの一例を示すフローチャートである。 本発明の第四実施形態による作業車の基本的な構成を説明する模式図である。 本発明の第四実施形態による作業車の具体的な実施形態の1つであるトラクタの斜視図である。 トラクタの操縦エリアの鳥瞰図である。 トラクタの油圧操作系を含む動力系統図である。 トラクタのパワートレインを模式化した動力系統図である。 トラクタに装備されたモータジェネレータの断面図である。 トラクタに装備された油圧ポンプと油圧駆動機器との関係を模式的に示す油圧回路図である。 アシスト制御ユニットの機能ブロック図である。 油圧管理ユニットの機能ブロック図である。 省エネ変速モジュールの機能ブロック図である。
〔第1実施形態〕
 以下、本発明の第1実施形態によるハイブリッド作業車の具体的な実施の形態を説明する前に、図1を用いて本発明で採用されている動力システムの基本構成を説明する。

 このハイブリッド作業車は、駆動源として、内燃機関E及びモータジェネレータ4を備え、車輪やクローラによって構成される走行装置2によって走行しながら、車体に装着された作業装置9を用いて走行作業を行う。駆動源からの動力を伝達するパワートレインである動力伝達手段1には、駆動源からの動力の伝達を入り切りする主クラッチ31と、作業装置9に動力を伝達するPTO軸90と、走行装置2に動力を伝達する動力伝達軸30と、変速装置10が含まれている。変速装置10は、好ましくは無段変速装置として構成され、変速制御ユニット8によってその変速比が調整される。なお、PTO軸90には動力伝達を入り切りするPTOクラッチ91が介装されている。

 モータジェネレータ4は、バッテリBを電力供給源として回転動力を生み出し、内燃機関Eと協働してハイブリッド作業車を走行させるものであるが、内燃機関Eによって駆動される状況下やハイブリッド作業車が減速している状況下、あるいは下り坂を慣性走行している状況下などにおいては、このモータジェネレータ4はバッテリBに電力を供給する発電機として機能することができる。

 内燃機関Eの回転制御は、電子ガバナ機構やコモンレール機構などのエンジン制御機器60を介してエンジン制御ユニット6によって行われる。モータジェネレータ4の駆動制御は、インバータ部70を介してモータ制御ユニット7によって行われる。エンジン制御ユニット6は、内燃機関Eの燃料噴射量などを制御するためのコンピュータユニットであり、内燃機関Eの回転数を一定に維持するようにエンジン制御機器60を制御する定速制御機能を有する。モータ制御ユニット7も同様にコンピュータユニットであり、モータジェネレータ4の回転数やトルクを制御するためにインバータ部70に制御信号を与える。また、モータ制御ユニット7は、モータジェネレータ4に対する駆動モードとして、動力伝達軸30に動力を出力するアシスト駆動モードと、バッテリBに充電電力を出力する充電駆動モードとを備えている。さらに、動力伝達軸30に対して影響を与えないゼロトルク駆動モードもあれば好都合である。

 インバータ部70は、よく知られているように、バッテリBの直流電圧を交流電圧に変換してモータジェネレータ4に供給し、モータジェネレータ4が発電機として動作する際には、バッテリBに直流電圧を供給するための整流器および電圧調整装置としての機能も果たす。つまり、バッテリBは、モータジェネレータ4にインバータ部70を介して電力を供給する放電プロセスで動作するとともに、モータジェネレータ4が発電機として動作する際にはモータジェネレータ4が発電する電力によって充電される充電プロセスで動作する。

 動力管理ユニット5は、エンジン制御ユニット6とモータ制御ユニット7に制御指令を与えることで、モータジェネレータ4が内燃機関Eに対してアシストするモータアシスト制御を管理する。さらに動力管理ユニット5は、モータジェネレータ4によるアシスト制御に代えて変速装置10の変速比を調整することで内燃機関Eにかかる回転負荷を低減する機械アシスト制御を変速制御ユニット8に要求する。動力管理ユニット5は、アシスト制御決定部50、負荷情報生成部51と、モータアシスト特性算定部52と、バッテリ管理部54と、運転モード選択部55を含んでいる。

 定速制御モードにおける内燃機関Eの運転自体はよく知られている。その際、作業装置9の作業状況や走行装置2が接地している地面状況によって、急激な負荷が動力伝達軸30にかかり、結果的に内燃機関Eの回転数を低下させる事態が生じと、種々の問題が生じる。例えば、エンジン制御機器60による定速制御の遅れや、内燃機関E自体の出力不足などが原因で、内燃機関Eの回転数の低下(車速の低下)、極端な場合は内燃機関Eの停止(エンジンストール)が生じる。これを回避するために、動力伝達軸30にかかる負荷、結果的には内燃機関Eにかかる回転負荷を検知し、その負荷を少なくとも部分的に相殺すべく、モータアシスト制御または機械アシスト制御が実行される。

 負荷情報生成部51は、内燃機関Eないしは動力伝達軸30が受ける回転負荷を示す負荷情報を、エンジン制御ユニット6から与えられるエンジン制御情報または、各種センサによる検出情報から取り出される入力パラメータに基づいて生成する機能を有する。負荷情報生成部51で利用される入力パラメータとしては、内燃機関Eの回転数(回転速度)、動力伝達軸30の回転数(回転速度)、エンジン制御ユニット6によって算定されたエンジントルク、動力伝達軸30のトルク、車速、作業装置9の作業状態(耕耘深さ、牽引力、ローダーへの作用力など)が挙げられるが、実際に利用される入力パラメータは、作業車に装備されているセンサに依存する。動力伝達軸30の回転検出センサや車速センサは標準装備されている可能性が高いので、入力パラメータとして、動力伝達軸30の回転速度変動値や車速変動値を用いると好都合である。これらの入力パラメータは各種センサからの信号を処理する車両状態検出ユニットSを通じて送られてくる。負荷情報生成部51は、突発的な回転負荷の増大を検知するために、経時的な回転負荷の微分値または差分値に基づいて突発的な回転負荷の増大を示す負荷情報を生成してもよいが、単にしきい値判定だけでアシスト制御のトリガーとなる回転負荷の増大を示す負荷情報を生成してもよい。

 アシスト制御決定部50は、負荷情報生成部51で生成された負荷情報から、内燃機関Eに無視できない回転負荷の増大が生じていることが判定されると、モータアシスト制御または機械アシスト制御による内燃機関Eのアシストを決定する。その際、応答性に優れたモータアシスト制御を機械アシスト制御に優先して実行させる。但し、バッテリBの消費をできるだけ少なくするため、モータアシスト制御の実行時間は短時間に限定されている。さらに、バッテリ切れを避けるために、バッテリBの充電量が所定値以下になれば強制的にモータアシスト制御を中止させるモータアシスト制御禁止決定部53がアシスト制御決定部50に含まれている。また、このモータアシスト制御禁止決定部53は、モータアシスト制御が短期間の間で繰り返し実行されることを避けるために、モータアシスト制御の再実行を所定期間だけ禁止する。

 内燃機関Eが突発的な負荷増大に対処できるように、モータアシスト制御においてモータジェネレータ4を短時間だけ駆動させるが、このモータアシスト制御の適切な実行のために、モータアシスト特性算定部52が機能する。モータアシスト特性算定部52は、負荷情報生成部51によって生成された負荷情報に基づいて、モータジェネレータ4を用いた内燃機関Eのアシスト制御を実行すべく、アシスト制御におけるアシスト量とアシスト時間を規定するモータアシスト特性を決定する。モータ制御ユニット7は、モータアシスト特性算定部52で決定されたモータアシスト特性に基づいてインバータ部70を介してモータジェネレータ4を制御する。
 バッテリ管理部54はバッテリBの充電量を算定する。その際、バッテリBがコンピュータを備えたインテリジェントなバッテリユニットとして構成されていれば、バッテリBからのバッテリ情報に基づいてバッテリの充電量を算定し、そうでない場合は、バッテリ状態検出センサからの信号を受けた車両状態検出ユニットSからのバッテリ情報に基づいてバッテリBの充電量を算定する。

 機械アシスト制御は、アシスト制御決定部50からの要求に応じて変速制御ユニット8が変速装置10の変速比を調整して内燃機関Eの過剰な回転負荷を抑制する制御である。従って、機械アシスト制御で用いられる目標となる変速比は、現状の変速比と、内燃機関Eにかかっている回転負荷によって算定されることになる。この目的のために変速制御ユニット8に、機械アシスト変速比算定部80が備えられている。

 なお、運転モード選択部55は、PTO軸90から一定回転数の回転動力を取り出して作業に利用する作業装置9を用いた作業の際や、作業車を所定速度で走行(クルージング走行)させる際に用いられる回転数を一定に維持する定速制御モードを設定する。この定速制御モードが設定されると、エンジン制御ユニット6は内燃機関Eの回転数を設定された所定値に維持するようにエンジン制御機器60を制御する。

 モータアシスト制御及び機械アシスト制御における情報の基本的な流れが図2に示されている。まず、エンジン制御ユニット6は、エンジン制御機器60にアクセル設定デバイスで設定された設定値に基づくエンジン制御信号を送っている。このエンジン制御信号に基づいて燃料噴射量等が調整され、内燃機関Eが駆動される。内燃機関Eの回転数の変動は外部因子の変動、つまり走行負荷や作業負荷などの負荷変動によって生じるので、その負荷変動量によって回転数の不測の低下やエンジンストールが生じないように、燃料噴射量等を調整して、トルクを大きくする。しかしながら、内燃機関Eの定格出力は通常作業で要求される最大のトルクに合わせているので、不測の突発的な負荷増大が生じた場合、回転数の低下、最悪の場合エンジンストールに至ってしまう。これを避けるために、アシスト制御決定部50が、まずはモータアシスト制御を実行させて、モータ制御ユニット7がインバータ部70にアシスト信号を送り、モータジェネレータ4を駆動して内燃機関Eをアシストする。その後、過剰な負荷が持続している場合には、モータアシスト制御に代えて機械アシスト制御を実行させて、機械アシスト変速比算定部80によって設定された変速比に変速装置10を調整して、内燃機関Eをアシストする。

 負荷情報生成部51は、車両状態検出ユニットSから送られてくる車両状態情報あるいは、エンジン制御機器60から送られてくるエンジン状態情報に基づいて負荷量を含む負荷情報を生成して、アシスト制御決定部50とモータアシスト特性算定部52、さらには機械アシスト変速比算定部80に送る。バッテリ管理部54は、バッテリBからの充電情報に基づいて、充電量(一般にSOCと呼ばれている)を算定し、この充電量を含むバッテリ情報をアシスト制御決定部50及びモータアシスト特性算定部52に送る。

 モータアシスト特性算定部52は、負荷情報から読み出した負荷量:Lと、バッテリ情報から読み出した充電量:SCに基づいて、適切なモータアシスト特性:W(t)を決定する。このモータアシスト特性は、W(t)=Γ〔L,SC〕といった一般式から導出されるものである。つまり、モータアシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。実際には、複数のモータアシスト特性をマップ化して格納しておき、負荷量:Lと充電量:SCとから最適なモータアシスト特性を選択する構成が好適である。

 モータアシスト特性が決定されると、モータ制御ユニット7がこのモータアシスト特性に基づいてアシスト制御信号を生成し、インバータ部70を通じてモータジェネレータ4を駆動制御し、動力伝達軸30に生じた負荷の増大を補償する。電気モータのトルク応答性は早いので、突発的な走行負荷や作業負荷の増大が発生しても、それにより回転数の低下が回避される。

 なお、モータ制御ユニット7は、アシスト制御以外に、発電指令をインバータ部70に送ることで、モータジェネレータ4をジェネレータとして機能させ、バッテリBを充電することができる。また、モータ制御ユニット7がゼロトルク制御信号をインバータ部70に送ることで、モータジェネレータ4はゼロトルク駆動を行う。

 変速制御ユニット8がアシスト制御決定部50から機械アシストの要求を受けると、機械アシスト変速比算定部80によって、負荷情報生成部51からの負荷情報と、変速制御ユニット8で管理している現状の変速比とに基づいて機械アシスト制御における目標となる変速比(機械アシスト変速比)が算定される。機械アシスト変速比が算定されると、その変速比が実現するように変速装置10に対して変速制御信号が出力される。この機械アシスト制御は、内燃機関Eに生じている負荷の増大に対処するために、モータアシスト特性に基づいて短時間のアシスト制御が終了後に実行される。つまり、モータアシスト制御禁止決定部53によってアシスト制御が禁止されていない限りにおいて、モータアシスト制御はこの機械アシスト制御に先立って実行される。これにより、応答性がアシスト制御に較べて遅い機械アシスト制御が、頻繁に生じる突発的な負荷増大に応答して発生するハンチング現象が抑制される。但し、短期間でのモータアシスト制御の繰り返しを避けるために、モータアシスト制御の終了後の所定時間、次のモータアシスト制御はモータアシスト制御禁止決定部53によって禁止される。

 次に、本発明の第1実施形態の具体的な実施形態を説明する。この実施形態では、ハイブリッド作業車は、図3に示すような、よく知られた形態の汎用トラクタである。このトラクタの動力システムは、図4に模式化して示されている。トラクタ車体には、内燃機関E、モータジェネレータ4、油圧駆動式の主クラッチ31、変速装置10、運転部20、及び、走行装置2としての左右一対の前輪2aと後輪2bなどが備えられている。さらに車体の後部に作業装置9として耕耘装置が昇降機構によって装着されている。昇降機構は油圧シリンダによって動作する。

 図4と図5に模式的に示されているように、このトラクタの内燃機関Eはコモンレール方式で回転制御されるディーゼルエンジン(以下、エンジンEと略称する)であり、エンジン制御機器60としてコモンレール制御機器を備えている。変速装置10は、油圧機械式の無段変速装置(以下、HMTと略称する)12と前後進切換装置13と複数段の変速を行うギヤ変速装置14、ディファレンシャル機構15とを含み、その動力は動力伝達軸30を通じて、最終的に駆動車輪(前輪2aまたは後輪2bあるいはその両方)2を回転させる。前後進切換装置13とギヤ変速装置14のそれぞれには油圧駆動式の変速クラッチ10aが備えられている。さらに、このエンジンE及びモータジェネレータ4の回転動力を伝達する動力伝達軸30の一部を構成するPTO軸90を経てトラクタに装備された耕耘装置9は回転動力を受けることができ、これにより耕耘ロータが所定の耕耘深さで回転駆動する。

 HMT12は、エンジンE及びモータジェネレータ4からの動力を受ける斜板12a式可変吐出型油圧ポンプと当該油圧ポンプからの油圧によって回転して動力を出力する油圧モータとからなる静油圧式変速機構12Aと、遊星歯車機構12Bとから構成されている。遊星歯車機構12Bは、エンジンE及びモータジェネレータ4からの動力と油圧モータからの動力とを入力として、その変速出力を後段の動力伝達軸30に供給するように構成されている。

 この静油圧式変速機構12Aでは、エンジンE及びモータジェネレータ4からの動力がポンプ軸に入力されることにより、油圧ポンプから油圧モータに圧油が供給され、油圧モータが油圧ポンプからの油圧によって回転駆動されてモータ軸を回転させる。油圧モータの回転はモータ軸を通じて遊星歯車機構12Bに伝達される。静油圧式変速機構12Aは、油圧ポンプの斜板12aに連動されているシリンダを変位させることにより、この斜板12aの角度変更が行なわれ、正回転状態、逆回転状態、及び正回転状態と逆回転状態の間に位置する中立状態に変速され、かつ正回転状態に変速された場合においても逆回転状態に変速された場合においても、油圧ポンプの回転速度を無段階に変更して油圧モータの回転速度(時間当たり回転数)を無段階に変更する。その結果、油圧モータから遊星歯車機構12Bに出力する動力の回転速度を無段階に変更する。静油圧式変速機構12Aは、斜板12aが中立状態に位置されることで、油圧ポンプによる油圧モータの回転を停止、結果的には油圧モータから遊星歯車機構12Bに対する出力を停止する。

 遊星歯車機構12Bは、サンギヤと、当該サンギヤの周囲に等間隔で分散して配置された3個の遊星ギヤと、各遊星ギヤを回転自在に支持するキャリヤと、3個の遊星ギヤに噛合うリングギヤと、前後進切換装置13に連結している出力軸(動力伝達軸30の1つ)とを備えている。なお、この実施形態では、キャリヤは外周にエンジンE側の動力伝達軸30に取り付けられた出力ギヤと噛み合うギヤ部を形成しているとともに、サンギヤのボス部に相対回転自在に支持されている。

 上述した構成により、このHMT12は、静油圧式変速機構12Aの斜板12aの角度を変更することにより、駆動車輪である前輪2aまたは後輪2bあるいはその両方への動力伝達を、無段階で変速することができる。この斜板12aの制御は、変速制御ユニット8からの制御指令に基づいて動作する油圧制御ユニット8aの油圧制御によって実現する。また、上述した油圧駆動式のシリンダや主クラッチ31や変速クラッチ10aなどの油圧アクチュエータの油圧源としての油圧ポンプPが備えられている。この油圧ポンプPは動力伝達軸30から回転動力を受ける機械式ポンプを採用してもよいし、電動モータから回転動力を受ける電動式ポンプを採用してもよい。電動式ポンプの場合、その電動モータは油圧制御ユニット8aによって制御される。

 変速制御ユニット8には、変速装置10に対する変速操作(変速比調整操作)を行うための種々の制御機能が構築されているが、特に本発明に関係する機能は、内燃機関Eにおける負荷の増大を軽減するように変速比を変更する機械アシスト制御を実行する機能であり。ここでは、この機能を実現するために、機械アシストのための機械アシスト変速比を算定する機械アシスト変速比算定部80が構築されている。機械アシスト変速比算定部80の簡単な構築方法の一例は、図5で模式的に示されているが、負荷量と現変速比を入力として機械アシストにおける目標変速比(機械アシスト変速比)を導出するマップを作成することである。つまり、負荷情報生成部51で生成される負荷情報に含まれる負荷量:L1と変速制御ユニット8が自ら保持している現変速比:R1と変数として機械アシスト変速比:rを導く関数:r=G(L1,R1)をマップ化する。

 変速制御ユニット8は、変速装置10の変速比を機械アシスト変速比算定部80で算定された機械アシスト変速比に変更する変速制御信号を油圧制御ユニット8aに与える。具体的には、図5に示すように、変速制御ユニット8は、機械アシスト変速比算定部80によって算定された変速比を実現するために、HMT12の斜板12aの角度を変更する油圧制御信号を油圧制御ユニット8aに送る。

 この動力システムにおけるモータジェネレータ4の制御、つまりエンジンEに対するトルクアシストは、動力管理ユニット5によって行われるが、ここでは、この動力管理ユニット5は、図1と図2を用いて説明した構成を流用している。動力管理ユニット5、エンジン制御ユニット6、車両状態検出ユニットSも、それぞれ車載LANによってデータ伝送可能に接続されている。

 車両状態検出ユニットSは、トラクタに配備されている種々のセンサからの信号や、運転者によって操作される操作器(クラッチペダルやブレーキペダル)の状態を示す操作入力信号を入力し、必要に応じて信号変換や評価演算を行い、得られた信号やデータを車載LANに送り出す。

 油圧制御ユニット8aに制御指令を与える上部の電子デバイスとして、耕耘装置9の操作のための作業装置制御ユニット99も油圧制御ユニット8aと接続されている。

 図6に示すように、このモータアシスト特性算定部52には、アシストマップ格納部52aが設けられている。このアシストマップ格納部52aは、モータアシスト特性をマップ化したモータアシスト特性マップMを予め複数作成して格納するか、あるいは必要に応じて適正なモータアシスト特性マップMを作成して設定する機能を有する。模式的に図示されているように、このモータアシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。図6の例では、横軸が時間で、縦軸がアシストゲインである。アシストゲインは、負荷情報から読み出した負荷量に応じて算定される最大アシスト量(モータトルク)に対する比率であり、0%から100%の間の数値をとる。つまり、最大アシスト量にこのモータアシスト特性マップMから得られたアシストゲインを乗算することで、実際にモータジェネレータ4によってアシストされるアシスト量が求められる。この実施形態でのモータアシスト特性は、所定時間一定のアシスト量を維持する初期モータアシスト特性領域Sとアシスト量を零まで経時的に減少させる終期モータアシスト特性領域Eとからなる。初期モータアシスト特性領域Sの時間間隔t1が1.5秒から2.5秒、好ましくは2秒であり、終期モータアシスト特性領域Eの時間間隔t2が1.5秒から2.5秒、好ましくは2秒である。図示されたモータアシスト特性マップMでは、初期モータアシスト特性領域Sにおけるアシストゲインは100%で一定であり、終期モータアシスト特性領域Eは線形である。もちろん、その減少傾向は、任意の形状を採用することができる。また、初期モータアシスト特性領域Sと終期モータアシスト特性領域Eの両方の領域において非線形なグラフを採用することも可能である。

 モータアシスト特性算定部52は、負荷情報から読み出した負荷量とバッテリ情報から読み出した充電量とから最適なモータアシスト特性マップMを決定する。その他のモータアシスト特性マップMでは、初期モータアシスト特性領域Sにおけるアシストゲインは10%程度から100%未満の範囲の値をとり、終期モータアシスト特性領域Eは減少関数となるような、種々のモータアシスト特性が記述されている。つまり、実際にモータジェネレータ4によって生み出されるアシスト量は、負荷量または充電量あるいはそれら両方によってその都度変動する。

 なお、このアシスト特性に基づくモータアシスト制御の短期間での繰り返しは、モータアシスト制御禁止決定部53によって禁止される。このモータアシスト制御の繰り返し禁止時間は、バッテリBの充電量によって変更してもよいし、バッテリBの容量によって予め決めておいても良い。また、作業によって可変されてもよい。いずれにせよ、バッテリ充電量の急激な低下をもたらさないように設定される。

 図7に示すように、エンジンEの後面側にモータジェネレータ4と主クラッチ31とを収容するモータハウジング40が備えられている。モータジェネレータ4は、エンジンEの駆動力により発電を行う三相交流発電機の機能と、外部から供給される電力により回転作動する三相交流モータの機能とを併せ持つ。従って、インバータ部70がバッテリBからの直流電力を三相交流電力に変換してモータジェネレータ4に供給する。また、インバータ部70は、モータジェネレータ4で発電された三相交流電流を直流電流に変換し昇圧してバッテリBに供給する。

 図7から明らかなように、エンジンEとモータジェネレータ4と主クラッチ31とが、この順序で備えられ、エンジンEの後部に連結したリヤエンドプレート40aに対してモータハウジング40が連結し、これによりモータハウジング40にモータジェネレータ4と主クラッチ31とが収容されている。

 モータジェネレータ4は、永久磁石41を外周に備えたロータ42と、このロータ42を取り囲む位置に配置されたステータ43とで構成され、ステータ43は、ステータコアの複数のティース部(図示せず)にコイルを巻回した構造を有している。エンジンEの出力軸Ex(クランク軸)の軸端に対向して、この出力軸Exの回転軸芯Xと同軸芯で、モータジェネレータ4のロータ42が配置され、このロータ42のうち出力軸Exと反対側の面に主クラッチ31のベースプレート31aが配置され、出力軸Exとロータ42と主クラッチ31のベースプレート31aとがねじ連結されている。このベースプレート31aはフライホイールとしての機能も有するが、上述したように、モータジェネレータ4は、フライホイールが果たしていた慣性力機能を部分的に実行するので、従来に比べ軽量化されている。

 モータハウジング40は、前部ハウジング40Aと後部ハウジング40Bとを分離可能に連結した構造を有しており、モータジェネレータ4を組み立てる際には、前部ハウジング40Aの内面にステータ43を備えた状態で、この前部ハウジング40Aをリヤエンドプレート40aに連結し、次に、出力軸Exの後端にロータ42が連結される。

 主クラッチ31は、ベースプレート31aの後面に連結するクラッチカバー31bの内部にクラッチディスク31cと、プレッシャプレート31dと、ダイヤフラムバネ31eとを配置し、クラッチディスク31cからの駆動力が伝えられる、動力伝達軸30の1つの構成要素としてのクラッチ軸30aとを備えており、図示されていないクラッチペダルによって操作される。

 クラッチ軸30aは、後部ハウジング40Bに対して回転軸芯Xを中心にして回転自在に支持され、クラッチディスク31cは、スプライン構造によりクラッチ軸30aに対してトルク伝動自在、かつ、回転軸芯Xに沿って変位自在に支持され、ダイヤフラムバネ31eは、プレッシャプレート31dを介してクラッチ入り方向への付勢力をクラッチディスク31cに作用させる構成を有している。また、クラッチ軸30aの動力は、ギヤ伝動機構を介して変速装置10の入力軸となる、動力伝達軸30の1つの構成要素としての中間伝動軸30bに伝えられる。

 トラクタに搭載されているバッテリBの容量は限定されたものであり、作業走行中のトルクアシストには、かなりの電力消費が要求されることから、作業中にアシスト制御が繰り返されると、バッテリBの充電量がすぐになくなってしまう。これを回避するために、モータジェネレータ4によるアシストはバッテリBの充電量を考慮しながら短時間だけ実行し、バッテリBの充電量が所定未満となれば、モータアシスト制御は中止することが必要となる。

 このため、この実施形態では、負荷情報生成部51によって生成された負荷情報に含まれている負荷量(エンジン負荷率、回転数低下量)と、バッテリ管理部54から送られてくるバッテリ情報に含まれている充電量とに基づいて、モータアシスト制御禁止決定部53が、アシスト制御の許可と禁止を判定する。その際に用いられる判定マップの一例が図8に示されている。この判定マップから理解できることは、原則的には充電量が十分でない限りアシスト制御は行われないようにしている。例えば、充電量が80%程度のところをアシスト判定ラインとし、それ以下ではトルクアシストを行わず、バッテリBが上がってしまうことを避けようしている。しかしながら、エンジン負荷率が100%に近くなれば、エンジンストールの可能性が出てくるので、充電量が80%以下でもアシスト制御を許可する。その際に、エンジン負荷率が90%から100%にかけてアシスト判定ラインを傾斜させて、つまりエンジン負荷率が所定量(ここでは約90%以上)において、エンジン負荷率が高いほど充電量が低い状態でもアシスト制御が許可される。エンジン負荷率が100%では、充電量が30%程度でもアシスト制御が許可される。この判定マップでは、アシスト判定ラインは帯状となっており、アシスト判定ラインの上側境界線より上の領域は、アシスト駆動領域であり、アシスト制御が許可される。アシスト判定ラインの下側境界線より下の領域は充電駆動領域である。さらに、アシスト判定ラインの上側境界線と下側境界線とに囲まれたアシスト判定帯は、アシスト制御も充電も行わないバッファ領域であり、この実施形態では、このバッファ領域をゼロトルク駆動制御が行われるゼロトルク駆動領域としている。充電駆動領域とゼロトルク駆動領域では、アシスト制御は禁止される。

〔第1実施形態の別実施形態〕
(1)上述した実施形態では、エンジンEに作用する負荷を検出するためにエンジン回転数ないしは伝動軸回転数を利用していたが、作業装置9に直接負荷検出センサを設けて、この負荷検出信号を用いて、アシスト制御の要否を判定してもよい。

(2)上記実施形態では、エンジンEとモータジェネレータ4とが直結されており、その後に主クラッチ31が装着され、動力伝達軸30に動力が伝達されていたが、これに代えて、エンジンEとモータジェネレータ4との間に主クラッチ31を装着してもよい。

(3)上記実施形態では、変速装置10にHMT12を用いた無段変速が採用されていたが、多段ギヤ式変速装置を用いた多段変速を採用してもよい。

(4)モータアシスト特性として、作業装置9のタイプおよびその使用形態にそれぞれ最適化された個別のモータアシスト特性を予め作成して、それを適切に選択するようにしてもよい。例えば、作業車に装着される作業装置9の種別を検知する作業装置種別検知部あるいは手動の作業装置種別設定部を設け、実際に装着され利用される作業装置9の種別を補助パラメータとしてモータアシスト特性算定部52に与える。これにより、モータアシスト特性算定部52は、使用作業装置種により適切なモータアシスト特性を決定することができる。

(5)上述した実施形態では、モータアシスト制御が終了してから機械アシスト制御が開始していたが、モータアシスト制御の途中でモータアシスト制御と機械アシスト制御とを所定のアシスト割合で同時に実行させてもよい。特に、モータアシスト制御から機械アシスト制御への移行時において、モータアシスト制御のアシスト割合を減少させていくとともに機械アシスト制御のアシスト割合を増加させていく混合制御も好適である。また、バッテリ充電量が少ない場合では、モータアシスト制御のアシストを機械アシスト制御のアシストで補うような制御方法も本発明に含まれるものである。つまり、モータアシスト制御が機械アシスト制御に優先するということは、モータアシスト制御が主で機械アシスト制御が従となる混合アシスト制御も含まれるのである。
〔第2実施形態〕 以下、本発明の第2実施形態によるハイブリッド作業車の具体的な実施の形態を説明する前に、図9を用いて本発明で採用されている動力システムの基本構成を説明する。
 このハイブリッド作業車は、駆動源として、内燃機関E及びモータジェネレータ204を備え、車輪やクローラによって構成される走行装置202によって走行しながら、車体に装着された作業装置209を用いて走行作業を行う。駆動源からの動力を伝達するパワートレインである動力伝達手段201には、駆動源からの動力の伝達を入り切りする主クラッチ231と、作業装置209に動力を伝達するPTO軸290と、走行装置202に動力を伝達する動力伝達軸230と、変速装置210が含まれている。なお、PTO軸290には動力伝達を入り切りするPTOクラッチ291が介装されている。
 モータジェネレータ204は、バッテリBを電力供給源として回転動力を生み出し、内燃機関Eと協働してハイブリッド作業車を走行させるものであるが、内燃機関Eによって駆動される状況下、あるいは、ハイブリッド作業車が減速している状況下、あるいは下り坂を慣性走行している状況下においては、このモータジェネレータ204はバッテリBに電力を供給する発電機として機能することができる。
 内燃機関Eの回転制御は、電子ガバナ機構やコモンレール機構などのエンジン制御機器260を介してエンジン制御ユニット206によって行われる。モータジェネレータ204の駆動制御は、インバータ部270を介してモータ制御ユニット207によって行われる。エンジン制御ユニット206は、内燃機関Eの燃料噴射量などを制御するためのコンピュータユニットであり、内燃機関Eの回転数を一定に維持するようにエンジン制御機器260を制御する定速制御機能を有する。モータ制御ユニット207も同様にコンピュータユニットであり、モータジェネレータ204の回転数やトルクを制御するためにインバータ部270に制御信号を与える。また、モータ制御ユニット207は、モータジェネレータ204に対する駆動モードとして、動力伝達軸230に動力を出力するアシスト駆動モードと、バッテリBに充電電力を出力する充電駆動モードとを備えている。さらに、動力伝達軸230に対して影響を与えないゼロトルク駆動モードもあれば好都合である。
 インバータ部270は、よく知られているように、バッテリBの直流電圧を交流電圧に変換してモータジェネレータ204に供給し、モータジェネレータ204が発電機として動作する際には、バッテリBに直流電圧を供給するための整流器および電圧調整装置としての機能も果たす。つまり、バッテリBは、モータジェネレータ204にインバータ部270を介して電力を供給する放電プロセスで動作するとともに、モータジェネレータ204が発電機として動作する際にはモータジェネレータ204が発電する電力によって充電される充電プロセスで動作する。
 動力管理ユニット205は、エンジン制御ユニット206とモータ制御ユニット207に制御指令を与えることで、モータジェネレータ204が内燃機関Eに対してアシストするアシスト制御を管理するものである。動力管理ユニット205は、負荷情報生成部251と、アシスト特性決定部252と、アシスト制御禁止決定部253、バッテリ管理部254と、運転モード選択部255とを含んでいる。
 定速制御モードでの内燃機関Eの運転自体はよく知られているが、作業装置209の作業状況や走行装置202が接地している地面状況によって、急激な負荷が動力伝達軸230にかかり、結果的に内燃機関Eの回転数を低下させる事態が生じる。その際、エンジン制御機器260による定速制御の遅れや、内燃機関E自体の出力不足などが原因で、内燃機関Eの回転数の低下(車速の低下)、極端な場合は内燃機関Eの停止(エンジンストール)が生じる。これを回避するために、動力伝達軸230にかかる負荷、結果的には内燃機関Eにかかる回転負荷を検知し、その負荷を少なくとも部分的に相殺すべくモータジェネレータ204が短時間だけ駆動され、内燃機関Eが突発的な負荷増大に対処できるように、内燃機関Eをアシストするアシスト制御が実行される。このアシスト制御のために、負荷情報生成部251と、アシスト特性決定部252とが機能する。
 負荷情報生成部251は、内燃機関Eないしは動力伝達軸230が受ける回転負荷を示す負荷情報を、エンジン制御ユニット206から与えられるエンジン制御情報または、各種センサによる検出情報から取り出される入力パラメータに基づいて生成する機能を有する。負荷情報生成部251で利用される入力パラメータとしては、内燃機関Eの回転数(回転速度)、動力伝達軸230の回転数(回転速度)、エンジン制御ユニット206によって算定されたエンジントルク、動力伝達軸230のトルク、車速、作業装置209の作業状態(耕耘深さ、牽引力、ローダーへの作用力など)が挙げられるが、実際に利用される入力パラメータは、作業車に装備されているセンサに依存する。動力伝達軸230の回転検出センサや車速センサは標準装備されている可能性が高いので、入力パラメータとして、動力伝達軸230の回転速度変動値や車速変動値を用いると好都合である。これらの入力パラメータは各種センサからの信号を処理する車両状態検出ユニットSを通じて送られてくる。負荷情報生成部251は、突発的な回転負荷の増大を検知するために、経時的な回転負荷の微分値または差分値に基づいて突発的な回転負荷の増大を示す負荷情報を生成してもよいが、単にしきい値判定だけでアシスト制御のトリガーとなる回転負荷の増大を示す負荷情報を生成してもよい。
 アシスト特性決定部252は、負荷情報生成部251によって生成された負荷情報に基づいて、モータジェネレータ204を用いた内燃機関Eのアシスト制御を実行すべく、アシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を決定する。モータ制御ユニット207は、アシスト特性決定部252で決定されたアシスト特性に基づいてインバータ部270を介してモータジェネレータ204を制御する。アシスト制御が連続的に実行されることを防止するために、アシスト制御禁止決定部253は、アシスト特性決定部252からのアシスト制御情報に基づき、アシスト制御が実行された後の所定時間の間、次のアシスト制御の実行を禁止する。
 バッテリ管理部254はバッテリBの充電量を算定する。その際、バッテリBがコンピュータを備えたインテリジェントなバッテリユニットとして構成されていれば、バッテリBからのバッテリ情報に基づいてバッテリの充電量を算定し、そうでない場合は、バッテリ状態検出センサからの信号を受けた車両状態検出ユニットSからのバッテリ情報に基づいてバッテリBの充電量を算定する。アシスト制御禁止決定部253は、バッテリ情報に基づいて、バッテリBの充電量が所定値未満となれば、バッテリ切れを防ぐために、モータジェネレータ204による内燃機関Eのアシストを禁止する機能も有する。
 運転モード選択部255は、PTO軸290から一定回転数の回転動力を取り出して作業に利用する作業装置209を用いた作業の際や、作業車を所定速度で走行(クルージング走行)させる際に用いられる回転数を一定に維持する定速制御モードを設定する。この定速制御モードが設定されると、エンジン制御ユニット206は内燃機関Eの回転数を設定された所定値に維持するようにエンジン制御機器260を制御する。
 モータジェネレータ204によるアシスト制御における情報の基本的な流れが図10に示されている。まず、エンジン制御ユニット206は、エンジン制御機器260にアクセル設定デバイスで設定された設定値に基づくエンジン制御信号を送っている。このエンジン制御信号に基づいて燃料噴射量等が調整され、内燃機関Eが駆動される。内燃機関Eの回転数の変動は外部因子の変動、つまり走行負荷や作業負荷などの負荷変動によって生じるので、その負荷変動量によって回転数の不測の低下やエンジンストールが生じないように、燃料噴射量等を調整して、トルクを大きくする。しかしながら、内燃機関Eの定格出力は通常作業で要求される最大のトルクに合わせているので、不測の突発的な負荷増大が生じた場合、回転数の低下、最悪の場合エンジンストールに至ってしまう。これを避けるために、モータ制御ユニット207がインバータ部270にアシスト信号を送り、モータジェネレータ204を用いて、負荷増大時に内燃機関Eをアシストする。
 負荷情報生成部251は、車両状態検出ユニットSから送られてくる車両状態情報あるいは、エンジン制御機器260から送られてくるエンジン状態情報に基づいて負荷量を含む負荷情報を生成して、アシスト特性決定部252に送る。バッテリ管理部254は、バッテリBからの充電情報に基づいて、充電量(一般にSOCと呼ばれている)を算定し、この充電量を含むバッテリ情報をアシスト特性決定部252及びアシスト制御禁止決定部253に送る。
 アシスト特性決定部252は、負荷情報から読み出した負荷量:Lと、バッテリ情報から読み出した充電量:SCに基づいて、適切なアシスト特性:W(t)を決定する。このアシスト特性は、W(t)=Γ〔L,SC〕といった一般式から導出されるものである。つまり、アシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。実際には、複数のアシスト特性をマップ化して格納しておき、負荷量:Lと充電量:SCとから最適なアシスト特性を選択する構成が好適である。
 アシスト特性が決定されると、モータ制御ユニット207がこのアシスト特性に基づいてアシスト制御信号を生成し、インバータ部270を通じてモータジェネレータ204を駆動制御し、動力伝達軸230に生じた負荷の増大を補償する。電気モータのトルク応答性は早いので、突発的な走行負荷や作業負荷の増大が発生しても、それにより回転数の低下が回避される。負荷増大が持続した場合やバッテリBの充電量に余裕がない場合には、後述する変速装置210における変速比の調整で対処することになる。
 なお、モータ制御ユニット207は、アシスト制御以外に、発電指令をインバータ部270に送ることで、モータジェネレータ204をジェネレータとして機能させ、バッテリBを充電することができる。また、モータ制御ユニット207がゼロトルク制御信号をインバータ部270に送ることで、モータジェネレータ204はゼロトルク駆動を行う。
 変速制御ユニット208には、内燃機関Eにおける負荷の増大を軽減するように変速比を変更する負荷追従変速比制御を実行する負荷追従変速比制御部280が含まれている。この負荷追従変速比制御は、内燃機関Eに生じている負荷の増大に対処するために、アシスト特性に基づいて短時間のアシスト制御が終了後に実行される。つまり、アシスト制御禁止決定部253によってアシスト制御が禁止されていない限りにおいて、アシスト制御はこの負荷追従変速比制御に先立って実行される。これにより、応答性がアシスト制御に較べて遅い負荷追従変速比制御が、頻繁に生じる突発的な負荷増大に応答して発生するハンチング現象を避けることができる。但し、連続したアシスト制御を避けるために、負荷増大が持続している場合には、アシスト制御の終了後の所定時間、次のアシスト制御はアシスト制御禁止決定部253によって禁止される。
 次に、本発明の第2実施形態の具体的な実施形態を説明する。この実施形態では、ハイブリッド作業車は、図11に示すような、よく知られた形態の汎用トラクタである。このトラクタの動力システムは、図12に模式化して示されている。トラクタ車体には、内燃機関E、モータジェネレータ204、油圧駆動式の主クラッチ231、変速装置210、運転部220、及び、走行装置202としての左右一対の前輪202aと後輪202bなどが備えられている。さらに車体の後部に作業装置209として耕耘装置が昇降機構によって装着されている。昇降機構は油圧シリンダによって動作する。
 図12と図13に模式的に示されているように、このトラクタの内燃機関Eはコモンレール方式で回転制御されるディーゼルエンジン(以下、エンジンEと略称する)であり、エンジン制御機器260としてコモンレール制御機器を備えている。変速装置210は、油圧機械式の無段変速装置(以下、HMTと略称する)212と前後進切換装置213と複数段の変速を行うギヤ変速装置214、ディファレンシャル機構215とを含み、その動力は動力伝達軸230を通じて、最終的に駆動車輪(前輪202aまたは後輪202bあるいはその両方)202を回転させる。前後進切換装置213とギヤ変速装置214のそれぞれには油圧駆動式の変速クラッチ210aが備えられている。さらに、このエンジンE及びモータジェネレータ204の回転動力を伝達する動力伝達軸230の一部を構成するPTO軸290を経てトラクタに装備された耕耘装置209は回転動力を受けることができ、これにより耕耘ロータが所定の耕耘深さで回転駆動する。
 HMT212は、エンジンE及びモータジェネレータ204からの動力を受ける斜板212a式可変吐出型油圧ポンプと当該油圧ポンプからの油圧によって回転して動力を出力する油圧モータとからなる静油圧式変速機構212Aと、遊星歯車機構212Bとから構成されている。遊星歯車機構212Bは、エンジンE及びモータジェネレータ204からの動力と油圧モータからの動力とを入力として、その変速出力を後段の動力伝達軸230に供給するように構成されている。
 この静油圧式変速機構212Aでは、エンジンE及びモータジェネレータ204からの動力がポンプ軸に入力されることにより、油圧ポンプから油圧モータに圧油が供給され、油圧モータが油圧ポンプからの油圧によって回転駆動されてモータ軸を回転させる。油圧モータの回転はモータ軸を通じて遊星歯車機構212Bに伝達される。静油圧式変速機構212Aは、油圧ポンプの斜板212aに連動されているシリンダを変位させることにより、この斜板212aの角度変更が行なわれ、正回転状態、逆回転状態、及び正回転状態と逆回転状態の間に位置する中立状態に変速され、かつ正回転状態に変速された場合においても逆回転状態に変速された場合においても、油圧ポンプの回転速度を無段階に変更して油圧モータの回転速度(時間当たり回転数)を無段階に変更する。その結果、油圧モータから遊星歯車機構212Bに出力する動力の回転速度を無段階に変更する。静油圧式変速機構212Aは、斜板212aが中立状態に位置されることで、油圧ポンプによる油圧モータの回転を停止、結果的には油圧モータから遊星歯車機構212Bに対する出力を停止する。
 遊星歯車機構212Bは、サンギヤと、当該サンギヤの周囲に等間隔で分散して配置された3個の遊星ギヤと、各遊星ギヤを回転自在に支持するキャリヤと、3個の遊星ギヤに噛合うリングギヤと、前後進切換装置213に連結している出力軸(動力伝達軸230の1つ)とを備えている。なお、この実施形態では、キャリヤは外周にエンジンE側の動力伝達軸230に取り付けられた出力ギヤと噛み合うギヤ部を形成しているとともに、サンギヤのボス部に相対回転自在に支持されている。
 上述した構成により、このHMT212は、静油圧式変速機構212Aの斜板212aの角度を変更することにより、駆動車輪である前輪202aまたは後輪202bあるいはその両方への動力伝達を、無段階で変速することができる。この斜板212a制御は、変速制御ユニット208からの制御指令に基づいて動作する油圧制御ユニット208aの油圧制御によって実現する。また、上述した油圧駆動式のシリンダや主クラッチ231や変速クラッチ210aなどの油圧アクチュエータの油圧源としての油圧ポンプPが備えられている。この油圧ポンプPは動力伝達軸230から回転動力を受ける機械式ポンプを採用してもよいし、電動モータから回転動力を受ける電動式ポンプを採用してもよい。電動式ポンプの場合、その電動モータは油圧制御ユニット208aによって制御される。
 変速制御ユニット208には、変速装置210に対する変速操作を行うための種々の制御機能が構築されているが、特に本発明に関係する機能は、内燃機関Eにおける負荷の増大を軽減するように変速比を変更する負荷追従変速比制御を実行する機能である。その機能は負荷追従変速比制御部280によって構築されている。ここでは、図13に示すように、負荷追従変速比制御部280は、HMT212の斜板212aの角度を変えることで、変速比を変えている。
 この動力システムにおけるモータジェネレータ204の制御、つまりエンジンEに対するトルクアシストは、動力管理ユニット205によって行われるが、ここでは、この動力管理ユニット205は、図9と図10を用いて説明した構成を流用している。動力管理ユニット205、エンジン制御ユニット206、車両状態検出ユニットSも、それぞれ車載LANによってデータ伝送可能に接続されている。
 車両状態検出ユニットSは、トラクタに配備されている種々のセンサからの信号や、運転者によって操作される操作器(クラッチペダルやブレーキペダル)の状態を示す操作入力信号を入力し、必要に応じて信号変換や評価演算を行い、得られた信号やデータを車載LANに送り出す。
 油圧制御ユニット208aに制御指令を与える上部の電子デバイスとして、変速装置210における変速操作のための変速制御ユニット208や耕耘装置209の操作のための作業装置制御ユニット299が油圧制御ユニット208aと接続されている。変速制御ユニット208や作業装置制御ユニット299も車載LANにつながっており、その他のユニットとの間でデータ交換が可能である。
 図14に示すように、このアシスト特性決定部252には、アシスト特性マップ格納部252aが設けられている。このアシスト特性マップ格納部252aは、アシスト特性をマップ化したアシスト特性マップMを予め複数作成して格納するか、あるいは必要に応じて適正なアシスト特性マップMを作成して設定する機能を有する。模式的に図示されているように、このアシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。図14の例では、横軸が時間で、縦軸がアシストゲインである。アシストゲインは、負荷情報から読み出した負荷量に応じて算定される最大アシスト量(モータトルク)に対する比率であり、0%から100%の間の数値をとる。つまり、最大アシスト量にこのアシスト特性マップMから得られたアシストゲインを乗算することで、実際にモータジェネレータ204によってアシストされるアシスト量が求められる。この実施形態でのアシスト特性は、所定時間一定のアシスト量を維持する初期アシスト特性領域Sとアシスト量を零まで経時的に減少させる終期アシスト特性領域Eとからなる。初期アシスト特性領域Sの時間間隔t1が1.5秒から2.5秒、好ましくは2秒であり、終期アシスト特性領域Eの時間間隔t2が1.5秒から2.5秒、好ましくは2秒である。図示されたアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは100%で一定であり、終期アシスト特性領域Eは線形である。もちろん、その減少傾向は、任意の形状を採用することができる。また、初期アシスト特性領域Sと終期アシスト特性領域Eの両方の領域において非線形なグラフを採用することも可能である。アシスト特性決定部252は、負荷情報から読み出した負荷量とバッテリ情報から読み出した充電量とから最適なアシスト特性マップMを決定する。その他のアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは10%程度から100%未満の範囲の値をとり、終期アシスト特性領域Eは減少関数となるような、種々のアシスト特性が記述されている。つまり、実際にモータジェネレータ204によって生み出されるアシスト量は、負荷量または充電量あるいはそれら両方によってその都度変動する。なお、このアシスト特性に基づくアシスト制御の連続した実行は、アシスト制御禁止決定部253によって禁止される。アシスト制御の実行間隔、つまり禁止時間は、バッテリBの充電量によって変更してもよいし、バッテリBの容量によって予め決めておいても良い。また、作業によって可変されてもよい。いずれにせよ、バッテリ充電量の急激な低下をもたらさないように設定される。
 図15に示すように、エンジンEの後面側にモータジェネレータ204と主クラッチ231とを収容するモータハウジング240が備えられている。モータジェネレータ204は、エンジンEの駆動力により発電を行う三相交流発電機の機能と、外部から供給される電力により回転作動する三相交流モータの機能とを併せ持つ。従って、インバータ部270がバッテリBからの直流電力を三相交流電力に変換してモータジェネレータ204に供給する。また、インバータ部270は、モータジェネレータ204で発電された三相交流電流を直流電流に変換し昇圧してバッテリBに供給する。
 図15から明らかなように、エンジンEとモータジェネレータ204と主クラッチ231とが、この順序で備えられ、エンジンEの後部に連結したリヤエンドプレート240aに対してモータハウジング240が連結し、これによりモータハウジング240にモータジェネレータ204と主クラッチ231とが収容されている。
 モータジェネレータ204は、永久磁石241を外周に備えたロータ242と、このロータ242を取り囲む位置に配置されたステータ243とで構成され、ステータ243は、ステータコアの複数のティース部(図示せず)にコイルを巻回した構造を有している。エンジンEの出力軸Ex(クランク軸)の軸端に対向して、この出力軸Exの回転軸芯Xと同軸芯で、モータジェネレータ204のロータ242が配置され、このロータ242のうち出力軸Exと反対側の面に主クラッチ231のベースプレート231aが配置され、出力軸Exとロータ242と主クラッチ231のベースプレート231aとがねじ連結されている。このベースプレート231aはフライホイールとしての機能も有するが、上述したように、モータジェネレータ204は、フライホイールが果たしていた慣性力機能を部分的に実行するので、従来に比べ軽量化されている。
 モータハウジング240は、前部ハウジング240Aと後部ハウジング240Bとを分離可能に連結した構造を有しており、モータジェネレータ204を組み立てる際には、前部ハウジング240Aの内面にステータ243を備えた状態で、この前部ハウジング240Aをリヤエンドプレート240aに連結し、次に、出力軸Exの後端にロータ242が連結される。
 主クラッチ231は、ベースプレート231aの後面に連結するクラッチカバー231bの内部にクラッチディスク231cと、プレッシャプレート231dと、ダイヤフラムバネ231eとを配置し、クラッチディスク231cからの駆動力が伝えられる、動力伝達軸230の1つの構成要素としてのクラッチ軸230aとを備えており、図示されていないクラッチペダルによって操作される。
 クラッチ軸230aは、後部ハウジング240Bに対して回転軸芯Xを中心にして回転自在に支持され、クラッチディスク231cは、スプライン構造によりクラッチ軸230aに対してトルク伝動自在、かつ、回転軸芯Xに沿って変位自在に支持され、ダイヤフラムバネ231eは、プレッシャプレート231dを介してクラッチ入り方向への付勢力をクラッチディスク231cに作用させる構成を有している。また、クラッチ軸230aの動力は、ギヤ伝動機構を介して変速装置210の入力軸となる、動力伝達軸230の1つの構成要素としての中間伝動軸230bに伝えられる。
 エンジンEとモータジェネレータ204の駆動制御は、図9を用いて説明したように、動力管理ユニット205によって行われる。エンジン制御機器260としてのコモンレール式の燃料噴射機器による燃料噴射を制御するためにエンジン制御ユニット206は、アクセルペダルセンサからの信号、エンジン回転信号、コモンレール内の燃料圧力信号、吸気部位の吸気圧信号等を取得し、インジェクターの作動タイミングを決める制御を行う。このような構成からエンジン制御ユニット206は、エンジンEの負荷率(エンジン負荷率)を算定することも可能である。このエンジン負荷率を負荷情報生成部251はアシスト制御のために利用することができる。
 また、負荷情報生成部251は、エンジンが受ける回転負荷の増大を検知するため、動力伝達軸230の回転数(回転速度)の変動を利用することも可能である。そのような場合、動力伝達軸230の回転数の回転数を検出する回転速度センサS1は、この実施形態では、モータハウジング240の壁面を貫通する孔に挿通され、下端のセンシング部を主クラッチ231のベースプレート231aの外周面近くに位置している。つまり、回転速度センサS1は、磁束密度の変化からベースプレート231aの回転をカウントするピックアップ型として構成されている。もちろん、回転速度センサS1として光学式のものを採用してもよいし、動力伝達軸230の回転数を検出する構成を採用してもよい。
 トラクタに搭載されているバッテリBの容量は限定されたものであり、作業走行中のトルクアシストには、かなりの電力消費が要求されることから、作業中にアシスト制御が繰り返されると、バッテリBの充電量がすぐになくなってしまう。これを回避するために、モータジェネレータ204によるアシストはバッテリBの充電量を考慮しながら実行することが必要となる。
 このため、この実施形態では、負荷情報生成部251によって生成された負荷情報に含まれている負荷量(エンジン負荷率、回転数低下量)と、バッテリ管理部254から送られてくるバッテリ情報に含まれている充電量とに基づいて、アシスト制御禁止決定部253が、アシスト制御の許可と禁止を判定する。その際に用いられる判定マップの一例が図8に示されている。この判定マップから理解できることは、原則的には充電量が十分でない限りアシスト制御は行われないようにしている。例えば、充電量が80%程度のところをアシスト判定ラインとし、それ以下ではトルクアシストを行わず、バッテリBが上がってしまうことを避けようしている。しかしながら、エンジン負荷率が100%に近くなれば、エンジンストールの可能性が出てくるので、充電量が80%以下でもアシスト制御を許可する。その際に、エンジン負荷率が90%から100%にかけてアシスト判定ラインを傾斜させて、つまりエンジン負荷率が所定量(ここでは約90%以上)において、エンジン負荷率が高いほど充電量が低い状態でもアシスト制御が許可される。エンジン負荷率が100%では、充電量が30%程度でもアシスト制御が許可される。この判定マップでは、アシスト判定ラインは帯状となっており、アシスト判定ラインの上側境界線より上の領域は、アシスト駆動領域であり、アシスト制御が許可される。アシスト判定ラインの下側境界線より下の領域は充電駆動領域である。さらに、アシスト判定ラインの上側境界線と下側境界線とに囲まれたアシスト判定帯は、アシスト制御も充電も行わないバッファ領域であり、この実施形態では、このバッファ領域をゼロトルク駆動制御が行われるゼロトルク駆動領域としている。充電駆動領域とゼロトルク駆動領域では、アシスト制御は禁止される。
〔第2実施形態の別実施形態〕
(1)上述した実施形態では、エンジンEに作用する負荷を検出するためにエンジン回転数ないしは伝動軸回転数を利用していたが、作業装置209に直接負荷検出センサを設けて、この負荷検出信号を用いて、アシスト制御の要否を判定してもよい。
(2)上記実施形態では、エンジンEとモータジェネレータ204とが直結されており、その後に主クラッチ231が装着され、動力伝達軸230に動力が伝達されていたが、これに代えて、エンジンEとモータジェネレータ204との間に主クラッチ231を装着してもよい。
(3)上記実施形態では、変速装置210にHMT212を用いた無段変速が採用されていたが、多段ギヤ式変速装置を用いた多段変速を採用してもよい。
(4)アシスト特性として、作業装置209のタイプおよびその使用形態にそれぞれ最適化された個別のアシスト特性を予め作成して、それを適切に選択するようにしてもよい。例えば、作業車に装着される作業装置209の種別を検知する作業装置種別検知部あるいは手動の作業装置種別設定部を設け、実際に装着され利用される作業装置209の種別を補助パラメータとしてアシスト特性決定部252に与える。これにより、アシスト特性決定部252は、使用作業装置種により適切なアシスト特性を決定することができる。
(5)上述した実施形態では、モータアシスト制御による電気アシストと負荷追従変速比制御による機械アシストが選択的に実行されていたが、モータアシスト制御による電気アシストと負荷追従変速比制御による機械アシストとを所定のアシスト割合で同時に実行させてもよい。さらに、モータアシスト制御から負荷追従変速比制御へ移行するようなアシスト制御を行う場合には、モータアシスト制御のアシスト割合を減少させていくとともに負荷追従変速比制御のアシスト割合を増加させていく混合制御が好適である。
〔第3実施形態〕 本発明の第3実施の形態を、具体的に説明する前に、図16の模式図を用いて本発明による省エネ運転時におけるエンジン回転数低下処理とモータアシスト処理の基本的な流れを説明する。
 図16は、運転者の自発的な操作入力(ここでは省エネボタンとしてのエンジン回転数低下ボタン390の操作)をトリガーとして、エンジン回転数を下げるとともに変速比を変更して車両速度(以下単に車速と略称する)を維持する制御の流れを図解している。運転者が作業用車両を運転し一定車速で耕耘作業を行っている際に、例えば、省エネ運転のためにエンジン回転数を低下させたいときには、エンジン回転数低下ボタン390(以下単に下げボタンと称する)を押す。なお、図では回転数を200rpm低減させることを意味する「-200」がボタン操作面に描かれているが、この数値は一例に過ぎない。下げボタン390が操作されたことにより、下げ操作指令としての下げ操作信号が省エネ変速モジュール307に出力される。この省エネ変速モジュール307は下げ操作指令をトリガーとして、回転数低下指令と変速比変更指令とを生成する。回転数低下指令は、現時点のエンジン回転数を基準としてそれから予め設定されている所定のエンジン回転数分だけ低下させた省エネエンジン回転数となるようにエンジン制御ユニット305Aに要求する指令である。変速比変更指令は、現時点の変速装置310における変速比を基準として、省エネ運転のために行なわれたエンジン回転数の低下によってもたらされる車速の低下を補償して現車速を維持するための変速比、つまり補償変速比を変速装置310が作り出すように変速制御ユニット320に要求する指令である。
 この回転数低下指令と変速比変更指令とを出力する省エネ処理は、複数回行うことができる。つまり、運転者がエンジン回転数下げボタン390を押す毎に、回転数低下指令と変速比変更指令とが出力され、段階的に低下するエンジン回転を作り出すとともに、その都度、変速装置310における変速比を変更して車速が実質的に変わらないようにする。
 図16は、エンジン回転数をぎりぎりまで低下させた省エネ運転中において生じた突発的なエンジン負荷(回転負荷)の増大に対処するための、エンジンEに対するモータユニット304のアシスト制御の流れも示している。なお、以下の説明では、モータユニット304はバッテリを充電するジェネレータとしても機能するモータジェネレータとして構成されているので、以下モータユニット304はモータジェネレータ304と称する。省エネ運転中において生じる突発的な回転負荷の増大は、エンジンEの回転数の低下、つまり車速の低下、さらにはエンジンストールを導く。特に定車速で作業走行する作業車両の場合、定速制御モードでのエンジンEの運転が頻繁に行なわれ、その際、作業状況や接地している地面状況によって、急激な負荷が動力伝達手段にかかり、結果的にエンジンEの回転数を低下させる事態が生じる。エンジン回転数の低下は車速の低下や作業装置の駆動力不足を導く。これを回避するために、エンジンEやエンジン動力を伝達する動力伝達手段にかかる回転負荷が検知され、その負荷を少なくとも部分的に補償すべくモータジェネレータ304が短時間だけ駆動され、エンジンEがアシストされる。これが、エンジンEに対するモータジェネレータ304のアシスト制御である。
 このアシスト制御のために、負荷情報生成部381とアシスト制御モジュール306が機能する。負荷情報生成部381は、エンジンEないしは動力伝達軸や変速装置310から構成される動力伝達手段が受ける回転負荷を示す負荷情報を、エンジン制御ユニット305Aから与えられるエンジン制御情報または、各種センサによる検出情報から取り出される入力パラメータに基づいて生成する機能を有する。負荷情報生成部381で利用される入力パラメータとしては、エンジンEの回転数(回転速度)、動力伝達手段の回転数(回転速度)、エンジン制御ユニット305Aによって算定されたエンジントルク、動力伝達手段のトルク、車速、作業装置309の作業状態(耕耘深さ、牽引力、ローダーへの作用力など)が挙げられるが、実際に利用される入力パラメータは、作業車に装備されているセンサに依存する。動力伝達軸のための回転検出センサや車速センサは標準装備されている可能性が高いので、入力パラメータとして、動力伝達手段の回転速度変動値や車速変動値を用いると好都合である。これらの入力パラメータは各種センサからの信号を処理する車両状態検出ユニットを通じて送られてくる。負荷情報生成部381は、突発的な回転負荷の増大を検知するために、経時的な回転負荷の微分値または差分値に基づいて突発的な回転負荷の増大を示す負荷情報を生成してもよいが、単にしきい値判定だけでアシスト制御のトリガーとなる回転負荷の増大を示す負荷情報を生成してもよい。
 アシスト制御モジュール306は、負荷情報生成部381によって生成された負荷情報に基づいて、モータジェネレータ304を用いたエンジンEに対するアシスト制御を実行するかどうかを判定する。例えば、バッテリ充電量が所定値以下の場合、アシスト制御の中止、または部分的なアシスト量でのアシスト制御に限定される。さらに、アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行を禁止する。さらに、アシスト制御モジュール306は、負荷情報生成部381によって生成された負荷情報に基づいて、アシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を決定する。さらに、アシスト制御モジュール306は、決定されたアシスト特性に基づいてアシスト制御信号をモータ制御ユニット305Bに出力する。モータ制御ユニット305Bは、アシスト制御信号に基づいてモータ制御信号を出力し、モータジェネレータ304を制御する。
 モータジェネレータ304によるアシスト制御が禁止されている場合において、あるいは限定的なアシスト量でしかアシスト制御が実行できない場合において、車両走行が不安定であることを運転者が感じた場合には、段階処理されている省エネ処理を一段階ずつ戻すことが必要となる。図16には、そのために行われる戻し処理の制御の流れも示されている。ここでは、運転者の自発的な操作入力(ここでは省エネボタンとしてのエンジン回転数低下戻しボタン391の操作)をトリガーとして、省エネ運転のために下げられたエンジン回転数を段階的に元に戻すとともに変速比を変更して車両速度(以下単に車速と略称する)が維持される。省エネ運転のためのエンジン低下処理を何段階にわたって実施していた場合、まず、エンジン回転数低下戻しボタン(以下単に戻しボタンと称す)391を押す。なお、図では回転数を200rpmだけ戻す(上げる)ことを意味する「+200」がボタン操作面に描かれているが、この数値は一例に過ぎない。戻しボタン391が操作されたことにより、戻し操作指令としての戻し操作信号が省エネ変速モジュール307に出力される。省エネ変速モジュール307は戻し操作指令をトリガーとして、新たな回転数低下指令と変速比変更指令とを生成する。ここでいう回転数低下指令は、最初の省エネ処理における基準エンジン回転数となったエンジン回転数からの低下を意味しており、実質的には、現状のエンジン回転数を増加させる指令である。この回転数低下指令がエンジン制御ユニット305Aに与えられることにより、エンジン回転数は省エネ処理での対応する段階で行われたエンジン低下分が解消され、実質的にはエンジン回転数は増加する。同時に、その解消されたエンジン低下分によるエンジン回転数の変化、結果的には増加によってもたらされる車速の上昇を補償して現車速を維持するための変速比、つまり補償変速比を作り出す必要がある。変速比変更指令は、この目的で、その補償変速比が変速装置310で作り出されるように変速制御ユニット320に要求するものである。この戻し処理は、基準エンジン回転数に基づいて行われた省エネ処理の処理段階数だけ実行可能である。
 図17を用いて、上述したモータジェネレータ304によるアシスト制御における情報の基本的な流れをさらに詳しく説明する。まず、エンジン制御ユニット305Aは、エンジン制御機器350にアクセル設定デバイスで設定された設定値に基づくエンジン制御信号を送っている。このエンジン制御信号に基づいて燃料噴射量等が調整され、エンジンEが駆動される。エンジンEの回転数の変動は外部因子の変動、つまり走行負荷や作業負荷などの負荷変動によって生じるので、その負荷変動量によって回転数の不測の低下やエンジンストールが生じないように、燃料噴射量等を調整して、トルクを大きくする。しかしながら、エンジンEの定格出力は通常作業で要求される最大のトルクに合わせているので、不測の突発的な負荷増大が生じた場合、回転数の低下、最悪の場合エンジンストールに至ってしまう。これを避けるために、モータ制御ユニット305Bがインバータ部351にアシスト信号を送り、モータジェネレータ304を用いて、負荷増大時にエンジンEをアシストする。
 負荷情報生成部381は、車両状態検出ユニット309から送られてくる車両状態情報あるいは、エンジン制御機器350から送られてくるエンジン状態情報に基づいて負荷量を含む負荷情報を生成して、アシスト特性決定部361に送る。バッテリ管理部354は、バッテリBからの充電情報に基づいて、充電量(一般にSOCと呼ばれている)を算定し、この充電量を含むバッテリ情報をアシスト制御モジュール306に送る。ここでは、アシスト制御モジュール306は、2つの機能ブロックとしてアシスト特性決定部361とアシスト制御決定部362とを備えている。
 アシスト特性決定部361は、負荷情報から読み出した負荷量:Lと、バッテリ情報から読み出した充電量:SCに基づいて、適切なアシスト特性:W(t)を決定する。このアシスト特性は、W(t)=Γ〔L,SC〕といった一般式から導出されるものである。つまり、アシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。実際には、複数のアシスト特性をマップ化して格納しておき、負荷量:Lと充電量:SCとから最適なアシスト特性を選択する構成が好適である。
 アシスト特性が決定されると、モータ制御ユニット305Bがこのアシスト特性に基づいてアシスト制御信号を生成し、インバータ部351を通じてモータジェネレータ304を駆動制御し、エンジンEないしは動力伝達手段に生じた負荷の増大を補償する。電気モータのトルク応答性は早いので、突発的な走行負荷や作業負荷の増大が発生しても、それにより回転数の低下が回避される。負荷増大が持続した場合やバッテリBの充電量に余裕がない場合には、省エネ変速モジュール307における変速比の調整で対処することになる。
 なお、モータ制御ユニット305Bは、アシスト制御以外に、発電指令をインバータ部351に送ることで、モータジェネレータ304をジェネレータとして機能させ、バッテリBを充電することができる。また、モータ制御ユニット305Bがゼロトルク制御信号をインバータ部351に送ることで、モータジェネレータ304はゼロトルク駆動を行う。
 次に、本発明の具体的な第3実施形態を説明する。この実施形態では、ハイブリッド車両は、図18と図19とに示すような、よく知られた形態の汎用トラクタである。このトラクタの動力システムは、図20に模式化して示されている。トラクタ車体には、エンジンE、モータジェネレータ304、油圧駆動式の主クラッチ331、変速装置310、運転部303、及び、走行装置302としての左右一対の前輪302aと後輪302bなどが備えられている。さらに車体の後部に作業装置Wとして耕耘装置が昇降機構によって装着されている。昇降機構は油圧シリンダによって動作する。
 図20に模式的に示されているように、このトラクタのエンジンEはコモンレール方式で回転制御されるディーゼルエンジンであり、エンジン制御機器350としてコモンレール制御機器を備えている。変速装置310は、油圧機械式の無段変速装置(以下、HMTと略称する)312と前後進切換装置313と複数段の変速を行うギヤ変速装置314、ディファレンシャル機構315とを含み、その動力は動力伝達軸330を通じて、最終的に駆動車輪(前輪302aまたは後輪302bあるいはその両方)302を回転させる。前後進切換装置313とギヤ変速装置314のそれぞれには油圧駆動式の変速クラッチ310aが備えられている。さらに、このエンジンE及びモータジェネレータ304の回転動力を伝達する動力伝達軸330の一部を構成するPTO軸W1を経てトラクタに装備された耕耘装置Wは回転動力を受けることができ、これにより耕耘ロータが所定の耕耘深さで回転駆動する。
 HMT312は、エンジンE及びモータジェネレータ304からの動力を受ける斜板式可変吐出型油圧ポンプと当該油圧ポンプからの油圧によって回転して動力を出力する油圧モータとからなる静油圧式変速機構312Aと、遊星歯車機構312Bとから構成されている。遊星歯車機構312Bは、エンジンE及びモータジェネレータ304からの動力と油圧モータからの動力とを入力として、その変速出力を後段の動力伝達軸330に供給するように構成されている。
 この静油圧式変速機構312Aでは、エンジンE及びモータジェネレータ304からの動力がポンプ軸に入力されることにより、油圧ポンプから油圧モータに圧油が供給され、油圧モータが油圧ポンプからの油圧によって回転駆動されてモータ軸を回転させる。油圧モータの回転はモータ軸を通じて遊星歯車機構312Bに伝達される。静油圧式変速機構312Aは、油圧ポンプの斜板312aに連動されているシリンダを変位させることにより、この斜板312aの角度変更が行なわれ、正回転状態、逆回転状態、及び正回転状態と逆回転状態の間に位置する中立状態に変速され、かつ正回転状態に変速された場合においても逆回転状態に変速された場合においても、油圧ポンプの回転速度を無段階に変更して油圧モータの回転速度(時間当たり回転数)を無段階に変更する。その結果、油圧モータから遊星歯車機構312Bに出力する動力の回転速度を無段階に変更する。静油圧式変速機構312Aは、斜板312aが中立状態に位置されることで、油圧ポンプによる油圧モータの回転を停止、結果的には油圧モータから遊星歯車機構312Bに対する出力を停止する。
 遊星歯車機構312Bは、サンギヤと、当該サンギヤの周囲に等間隔で分散して配置された3個の遊星ギヤと、各遊星ギヤを回転自在に支持するキャリヤと、3個の遊星ギヤに噛合うリングギヤと、前後進切換装置313に連結している出力軸(動力伝達軸330の1つ)とを備えている。なお、この実施形態では、キャリヤは外周にエンジンE側の動力伝達軸330に取り付けられた出力ギヤと噛み合うギヤ部を形成しているとともに、サンギヤのボス部に相対回転自在に支持されている。
 上述した構成により、このHMT312は、静油圧式変速機構312Aの斜板312aの角度を変更することにより、駆動車輪である前輪302aまたは後輪302bあるいはその両方への動力伝達を、無段階で変速することができる。この斜板312aの制御は、変速制御ユニット320からの制御指令に基づいて動作する油圧制御ユニット322の油圧制御によって実現する。また、上述した油圧駆動式のシリンダや主クラッチ331や変速クラッチ310aなどの油圧アクチュエータの油圧源としての油圧ポンプPが備えられている。この油圧ポンプPは動力伝達軸330から回転動力を受ける機械式ポンプを採用してもよいし、電動モータから回転動力を受ける電動式ポンプを採用してもよい。電動式ポンプの場合、その電動モータは油圧制御ユニット322によって制御される。
 変速制御ユニット320には、変速操作具による変速操作指令や省エネ変速モジュール307からの変速比調整指令に基づいて変速装置310に対する変速操作を行うための種々の制御機能が構築されている。特に本発明に関係する機能は、省エネ変速モジュール307からの指令に基づいて、HMT312の斜板312aの角度を変えることで、変速比を調節することである。
 変速制御は、人為的な操作による操作信号入力と機械的に生成された操作信号入力の両方で可能であるが、人為的入力のための変速操作具として機能する変速ペダル325は、運転操作領域の右側のフロアに配置されている。この変速ペダル325は、定車速走行のために任意の位置で保持可能である。また、運転操作領域には、先に説明したが、エンジン回転数を調整するために運転者の操作による操作指令を送出する操作器としてのエンン回転数下げボタン390とエンジン回転数戻しボタン391、及び変速レバー327が備えられている。エンジン回転数下げボタン390とエンジン回転数戻しボタン391は、この実施形態では図19に示されているように、後輪フェンダの上部を覆うサイドパネル上に表示ディスプレイ339とともに設けられているが、左側のサイドパネルやステアリングハンドルやハンドル前方のフロントパネルなどに設けてもよい。
 この動力システムにおけるモータジェネレータ304の制御、つまりエンジンEに対するアシスト制御はアシスト制御モジュール306によって行われるが、ここでは、このアシスト制御モジュール306は、図17を用いて説明した構成を流用している。前述した負荷情報生成部381やバッテリ管理部382は、動力管理モジュール308に構築されている。この実施形態では、エンジン制御ユニット305A、モータ制御ユニット305B、アシスト制御モジュール306、省エネ変速モジュール307、動力管理モジュール308、車両状態検出ユニット309、変速制御ユニット320、作業装置Wの操作のための作業装置制御ユニット321などの、ECUと呼ばれる各種制御ユニットはそれぞれ車載LANによってデータ伝送可能に接続されている。もちろん、ここでは分割した構成となっている各種制御ユニットを自在に統合することやさらに分割することは可能であるが、この実施形態での構成は本発明での説明を分かり易くすることを優先したものであり、それは、発明を限定するものではない。
 車両状態検出ユニット309は、トラクタに配備されている種々のセンサからの信号や、運転者によって操作される操作器の状態を示す操作入力信号を入力し、必要に応じて信号変換や評価演算を行い、得られた信号やデータを車載LANに送り出す。本発明に特に関係するセンサは、先に説明したエンジン回転数下げボタン390及びエンジン回転数戻しボタン391、変速ペダル325を踏み込むことによって生じる変速操作量(ここでは揺動角度)を検出信号として生成するペダルセンサ392、変速レバー327の操作位置を検出して操作信号を生成するレバーセンサ393、エンジン出力軸Exの回転数を検出する回転数センサ394などである。もちろん各種センサやボタンが車両状態検出ユニット9を介さずに直接各制御ユニットに接続される構成を採用してもよい。
 以下、図20、図21、図22を用いて、本発明に関する動力制御をより詳しく説明する。
 エンジン制御ユニット305Aは、よく知られているように、エンジンEを電子制御するための中核機能部であり、外部操作入力信号及び内部センサ信号等によって推定されるエンジンEの運転状態に応じて、予め設定されているプログラムに基づく制御、例えば定回転数制御や定トルク制御など種々のタイプのエンジン制御を行う。
 変速制御ユニット320は、外部操作入力信号や内部センサ信号等に基づいて前述した変速装置310の油圧制御要素を油圧制御ユニット322を介して制御して、変速装置310の変速比を設定し、トラクタを所望の速度で走行させる。表示制御ユニット338は、運転操作領域に設けられている液晶などからなるディスプレイ339に各種報知情報を表示するための制御信号を生成する。この実施形態では、ディスプレイ339は、図19に示すように、運転席の手元(右側)領域のサイドパネル上に、エンジン回転数下げボタン390とエンジン回転数戻しボタン391とからなるスイッチパネルに隣接して配置されているが、これに代えて又はこれに加えて、車速計やタコメータなどを配置しているフロントパネルに組み込むことができる。いずれにしても、このディスプレイ339には、車両操作などの種々の情報が表示されるが、本発明に関係するものとしては、次の表示事象が挙げられる。
(1)図16を用いて説明したエンジン回転数低下処理又はエンジン回転数低下処理の実行中に、エンジン回転低下量の表示を行う。
(2)エンジン回転数低下処理又はエンジン回転数低下処理が行われていることを示す点灯表示を行う。
(3)モータジェネレータ304によるアシスト制御が実行されていることを示す。
(4)バッテリBの充電量を示す。
 省エネ変速モジュール307は、一時的なエンジン回転数低下処理を実現する制御モジュールである。省エネ変速モジュール307の重要な機能は次の2つである。
(1)この実施形態ではエンジン回転数下げボタン(以下、下げボタンと略称する)390とエンジン回転数戻しボタン(以下戻しボタンと略称する)391として構成されている、運転者によって操作される操作器から送出される操作指令に基づいて、エンジン制御ユニット305Aで設定されている、定回転数制御のためのエンジン回転数を所定量だけ低減させる回転数低下指令をエンジン制御ユニット305Aに与える。
(2)定速度走行制御中での車両速度を維持するために下げボタン390の操作に基づく当該回転数低下指令によるエンジン回転数の低下を補償するように変速比の変更を変速制御ユニット320に要求する変速比変更指令を与える操作器が用意されている。この実施形態では、戻しボタン391を操作することで、上記戻し操作指令の送出が行われる。
 なお、この実施形態の具体例では、下げボタン390を1回操作するごとに、エンジン回転数は、定速度走行制御のために設定された設定回転数:N0より200rpmずつ低下し、戻しボタン391を1回操作すると、直前の下げボタン操作によるエンジン回転数の低下及び補償変速比の変更が取り消され、直前の下げボタン操作の前の状態に復帰するように構成されている。
 また、下げボタン390によるエンジン回転数の低下回数は、所定回数に制限されることが好ましい。例えば、この実施形態では、この制限回数を4回とすることで、800rpmまでのエンジン回転数低下に制限することができる。もちろん、この制限回数は任意の回数に設定可能にすることが好ましい。
 省エネ変速モジュール307は、アシスト制御モジュール306や動力管理モジュール308などとの間でデータ交換が可能なコンピュータによって構築され、主にコンピュータプログラムによってその機能が作り出される。図21に示すように、省エネ変速モジュール307には、上記機能を実現するため、回転数低下指令生成部371、変速比変更指令生成部372、下げ処理履歴メモリ373、負荷判定部374、強制戻し制御部375が含まれている。
 回転数低下指令生成部371は、運転者の下げボタン390の押下による操作指令に基づいて現状のエンジン回転数を200rpmだけ低下させる回転数低下指令を生成して、エンジン制御ユニット305Aに送り出す。その際、変速比変更指令生成部372は、この回転数低下指令によるエンジン回転数の低下が車速の低下を伴わないように、その低下分を補償する変速比の変更値を求め、その変更値に基づいた変速比変更指令を生成し、この変速比変更指令を変速制御ユニット320に送り出す。アクセルレバー332の操作位置によって設定された基本エンジン回転数を制御目標としてエンジン制御ユニット308がエンジンEの回転数を制御しているが、この回転数低下指令は、その基本エンジン回転数を低下させるものであり、この実施形態では複数回数、例えば4回にわたる回転数低下を指令することができる。つまり、1回目の回転数低下指令で基本エンジン回転数から200rpmの低下、2回目の回転数低下指令でさらに200rpmつまり基本エンジン回転数から400rpmの低下が指令されることになる。もちろん、そのエンジン回転数低下に伴う車速の低下は、その都度の変速比変更指令生成部372からの変速比変更指令によって補償される。
 さらに運転者が戻しボタン391を押し下げた場合には、戻し操作指令が、省エネ変速モジュール307に与えられ、回転数低下指令生成部371は、現時点で設定されている回転数低下指令の積算回数を1段階取り消す戻し指令をエンジン制御ユニット308に送る。これにより、回転数低下指令が1回設定されているだけの状態なら、その1回分のエンジン回転数低下が取り消され、エンジン制御ユニット308でのエンジンEの目標回転数は、元の基本エンジン回転数となる。回転数低下指令が2回設定されている状態なら、1回分のエンジン回転数低下が取り消され、エンジン制御ユニット308でのエンジンEの目標回転数は、基本エンジン回転数より200rpmだけ低下させた回転数となる。回転数低下指令によるエンジン回転数の低下が設定されていない状態で戻しボタン391が押し下げられても、回転数低下指令は生成されない。戻しボタン391は、回転数低下指令の取消処理を行うだけである。当然ながら、戻しボタン391の操作による戻し操作指令によりエンジン回転数低下が修正された場合には、同時に、その修正に伴う車速の増加は、変速比変更指令生成部372からの変速比変更指令によって補償され、車速は一定に維持される。
 このため、回転数低下指令生成部371によってエンジン制御ユニット305Aに設定される回転数低下指令の回数を記録しておく必要があり、このため下げ処理履歴メモリ373が備えられている。下げ処理履歴メモリ373はスタックメモリのようなメモリ構造が適しており、回転数低下指令が生成されると回転数低下に関する情報が下げ処理履歴メモリ373に書き込まれ(プッシュ)、戻し指令が生成されると最後に書き込まれた回転数低下に関する情報が読み出され消去される(ポップ)。もちろん、回転数低下指令や戻し操作指令を時系列的に記録する履歴メモリのようなメモリ構造を採用してもよい。いずれにしても、回転数低下指令生成部371によって、エンジン制御ユニット305Aに回転数低下指令が送られると、1回の下げボタン90の操作による200rpmのエンジン回転数低下の情報が必要に応じて変速比変更の情報も含めて下げ処理履歴メモリ373に書き込まれる。そして、下げ処理履歴メモリ373にアクセスすれば、現状の下げボタン390の操作履歴と現状エンジン制御ユニット305Aに指令しているエンジン回転数の低下量、現状の変速比を知ることができる。
 負荷判定部374は、エンジン負荷が所定レベルを超えたかどうかを判定する機能を有し、所定レベルを越えるエンジン負荷が判定された場合、回転数低下指令によって設定されている目標エンジン回転数の低下及び補償変速比の変更を取り消すための戻し指令が生成される。例えば、負荷判定部374は、アシスト制御モジュール306によるアシスト制御が禁止された禁止期間において所定レベルを越えるエンジン負荷が判定された場合、先に行われたエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令を出力する。
 強制戻し制御部375は、エンジン負荷以外でも予め設定しておいた所定取消条件が成立した場合に、戻し操作指令を強制的に出力して、エンジン制御ユニット305Aに設定されたエンジン回転数の低下及び変速制御ユニット320に施された補償変速比の変更を取り消す。この取消条件は、定速走行が必要な作業走行のモードから車速を任意に調整しながら走行する必要がある一般路上走行のモードになった場合など、定速走行が不要な状況が検知されるというのが典型的な条件である。また、エンジンキーをオフにして車両運転を終了した場合も、強制的にエンジン回転数の低下を取り消すことが好ましい。
 なお、アクセル操作器を操作することによって基本エンジン回転数が調整されると、エンジン回転数は人為的に変更されるが、その際でも回転数低下指令を引き継ぐように構成されている。これにより、アクセル操作器の操作を頻繁に行ったとしても、省エネ運転が維持できる。同様に、変速操作器である変速ペダル325によって変速装置310の変速比も人為的に変更されるが、その際でも変速比の変更に伴うエンジン回転数の変更とその後の回転数低下及びその回転数の低下に伴う補償変速比の設定が行われるように構成されている。
 省エネ運転を行なうためにエンジン回転数を下げた場合、エンジンEが受ける回転負荷が突発的に増大した時にモータジェネレータ304を適切に駆動してアシストするアシスト制御モジュール306には、図22に示すように、アシスト特性決定部361とアシスト制御決定部362が備えられている。このアシスト特性決定部361には、アシスト特性マップ格納部351aが設けられている。このアシスト特性マップ格納部361aは、アシスト特性をマップ化したアシスト特性マップMを予め複数作成して格納するか、あるいは必要に応じて適正なアシスト特性マップMを作成して設定する機能を有する。模式的に図示されているように、このアシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。図22の例では、横軸が時間で、縦軸がアシストゲインである。アシストゲインは、負荷情報から読み出した負荷量に応じて算定される最大アシスト量(モータトルク)に対する比率であり、0%から100%の間の数値をとる。つまり、最大アシスト量にこのアシスト特性マップMから得られたアシストゲインを乗算することで、実際にモータジェネレータ304によってアシストされるアシスト量が求められる。この実施形態でのアシスト特性は、所定時間一定のアシスト量を維持する初期アシスト特性領域Sとアシスト量を零まで経時的に減少させる終期アシスト特性領域Eとからなる。初期アシスト特性領域Sの時間間隔t1が1.5秒から2.5秒、好ましくは2秒であり、終期アシスト特性領域Eの時間間隔t2が1.5秒から2.5秒、好ましくは2秒である。図示されたアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは100%で一定であり、終期アシスト特性領域Eは線形である。もちろん、その減少傾向は、任意の形状を採用することができる。また、初期アシスト特性領域Sと終期アシスト特性領域Eの両方の領域において非線形なグラフを採用することも可能である。アシスト特性決定部361は、負荷情報から読み出した負荷量とバッテリ情報から読み出した充電量とから最適なアシスト特性マップMを決定する。その他のアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは10%程度から100%未満の範囲の値をとり、終期アシスト特性領域Eは減少関数となるような、種々のアシスト特性が記述されている。つまり、実際にモータジェネレータ304によって生み出されるアシスト量は、負荷量または充電量あるいはそれら両方によってその都度変動する。なお、このアシスト特性に基づくアシスト制御の連続した実行は、アシスト制御決定部362によって禁止される。アシスト制御の実行間隔、つまり禁止時間は、バッテリBの充電量によって変更してもよいし、バッテリBの容量によって予め決めておいても良い。また、作業によって可変されてもよい。いずれにせよ、バッテリ充電量の急激な低下をもたらさないように設定される。
 動力管理モジュール308には、前述した負荷情報生成部381、バッテリ管理部382、運転モード選択部383が備えられている。バッテリ管理部382は、バッテリBからの充電情報に基づいて、充電量を算定し、この充電量を含むバッテリ情報を出力する。運転モード選択部383は、PTO軸W0から一定回転数の回転動力を取り出して作業に利用する作業装置Wを用いた作業の際や、作業車を所定速度で走行(クルージング走行)させる際に用いられる回転数を一定に維持する定速制御モードを設定する。この定速制御モードが設定されると、エンジン制御ユニット305AはエンジンEの回転数を設定された所定値に維持するようにエンジン制御機器350を制御する。
 図23に示すように、エンジンEの後面側にモータジェネレータ304と主クラッチ331とを収容するモータハウジング340が備えられている。モータジェネレータ304は、エンジンEの駆動力により発電を行う三相交流発電機の機能と、外部から供給される電力により回転作動する三相交流モータの機能とを併せ持つ。従って、インバータ部370がバッテリBからの直流電力を三相交流電力に変換してモータジェネレータ304に供給する。また、インバータ部370は、モータジェネレータ304で発電された三相交流電流を直流電流に変換し昇圧してバッテリBに供給する。
 図23から明らかなように、エンジンEとモータジェネレータ304と主クラッチ331とが、この順序で備えられ、エンジンEの後部に連結したリヤエンドプレート340aに対してモータハウジング340が連結し、これによりモータハウジング340にモータジェネレータ304と主クラッチ331とが収容されている。
 モータジェネレータ304は、永久磁石341を外周に備えたロータ342と、このロータ342を取り囲む位置に配置されたステータ343とで構成され、ステータ343は、ステータコアの複数のティース部(図示せず)にコイルを巻回した構造を有している。エンジンEの出力軸Ex(クランク軸)の軸端に対向して、この出力軸Exの回転軸芯Xと同軸芯で、モータジェネレータ304のロータ342が配置され、このロータ342のうち出力軸Exと反対側の面に主クラッチ331のベースプレート331aが配置され、出力軸Exとロータ342と主クラッチ331のベースプレート331aとがねじ連結されている。このベースプレート331aはフライホイールとしての機能も有するが、上述したように、モータジェネレータ304は、フライホイールが果たしていた慣性力機能を部分的に実行するので、従来に比べ軽量化されている。
 モータハウジング340は、前部ハウジング340Aと後部ハウジング340Bとを分離可能に連結した構造を有しており、モータジェネレータ304を組み立てる際には、前部ハウジング340Aの内面にステータ343を備えた状態で、この前部ハウジング340Aをリヤエンドプレート340aに連結し、次に、出力軸Exの後端にロータ342が連結される。
 主クラッチ331は、ベースプレート331aの後面に連結するクラッチカバー331bの内部にクラッチディスク331cと、プレッシャプレート331dと、ダイヤフラムバネ331eとを配置し、クラッチディスク331cからの駆動力が伝えられる、動力伝達軸330の1つの構成要素としてのクラッチ軸330aとを備えており、図示されていないクラッチペダルによって操作される。
 クラッチ軸330aは、後部ハウジング340Bに対して回転軸芯Xを中心にして回転自在に支持され、クラッチディスク331cは、スプライン構造によりクラッチ軸330aに対してトルク伝動自在、かつ、回転軸芯Xに沿って変位自在に支持され、ダイヤフラムバネ331eは、プレッシャプレート331dを介してクラッチ入り方向への付勢力をクラッチディスク331cに作用させる構成を有している。また、クラッチ軸330aの動力は、ギヤ伝動機構を介して変速装置310の入力軸となる、動力伝達軸330の1つの構成要素としての中間伝動軸330bに伝えられる。
 トラクタに搭載されているバッテリBの容量は限定されたものであり、作業走行中のトルクアシストには、かなりの電力消費が要求されることから、作業中にアシスト制御が繰り返されると、バッテリBの充電量がすぐになくなってしまう。これを回避するために、モータジェネレータ304によるアシストはバッテリBの充電量を考慮しながら実行することが必要となる。
 このため、この実施形態では、負荷情報生成部381によって生成された負荷情報に含まれている負荷量(エンジン負荷率、回転数低下量)と、バッテリ管理部382から送られてくるバッテリ情報に含まれている充電量とに基づいて、アシスト制御決定部352が、アシスト制御の許可と禁止を判定する。その際に用いられる判定マップの一例が図8に示されている。この判定マップから理解できることは、原則的には充電量が十分でない限りアシスト制御は行われないようにしている。例えば、充電量が80%程度のところをアシスト判定ラインとし、それ以下ではトルクアシストを行わず、バッテリBが上がってしまうことを避けようしている。しかしながら、エンジン負荷率が100%に近くなれば、エンジンストールの可能性が出てくるので、充電量が80%以下でもアシスト制御を許可する。その際に、エンジン負荷率が90%から100%にかけてアシスト判定ラインを傾斜させて、つまりエンジン負荷率が所定量(ここでは約90%以上)において、エンジン負荷率が高いほど充電量が低い状態でもアシスト制御が許可される。エンジン負荷率が100%では、充電量が30%程度でもアシスト制御が許可される。この判定マップでは、アシスト判定ラインは帯状となっており、アシスト判定ラインの上側境界線より上の領域は、アシスト駆動領域であり、アシスト制御が許可される。アシスト判定ラインの下側境界線より下の領域は充電駆動領域である。さらに、アシスト判定ラインの上側境界線と下側境界線とに囲まれたアシスト判定帯は、アシスト制御も充電も行わないバッファ領域であり、この実施形態では、このバッファ領域をゼロトルク駆動制御が行われるゼロトルク駆動領域としている。充電駆動領域とゼロトルク駆動領域では、アシスト制御は禁止される。
 上述したハイブリッドトラクタによって実行される、省エネ運転をもたらす省エネ変速処理の基本的な流れの図24のフローチャートを用いて説明する。省エネ変速処理には、変速比の調整をともなうエンジン回転数低下処理と、モータアシスト処理とが含まれている。
 運転者が、一定車速での作業走行中にエンジンEに余裕があると感じた時に、エンジン回転数を落とした省エネ運転を行なうために下げボタン390を操作する(#00)ことで、省エネ変速処理がスタートする。まず、上述したように、エンジン回転数を所定値、例えば200rpmだけ低下させる回転数低下処理(#02)と、この回転数の低下を相殺する変速比の調整を行なう変速比変更処理(#04)とが実行される。続いて、回転数低下に伴ってエンジンEに所定値以上の回転負荷がかかっていないかどうかがチェックされる(#06)。この負荷チェックで現状の回転負荷がまだ問題ないと判定されると(#06の負荷小分岐)、その旨の表示と省エネ運転のためのエンジン回転数低下が行なわれていること、例えば、下げボタン390の操作回数やそれによる回転数低下量などがディスプレイ339に表示される(#08)。
 運転者はなおもエンジンEに余裕があると感じれば、下げボタン390をさらに操作することができるし、これで適切と感じれば、この状態を続行することができる。したがって、このルーチンでは、下げボタン390が操作されたかどうかチェックし(#10)、操作された場合(#10のON分岐)、ステップ#02に戻って回転数低下処理、変速比変更処理が再度実行される。下げボタン390が操作されなければ(#10のOFF分岐)、ステップ#06に戻ってエンジンEの回転負荷チェックがなされる。
 ステップ#06の負荷チェックでエンジンEに所定値以上の回転負荷がかかっていると判定されると(#06の負荷大分岐)、まずモータジェネレータ304を用いたモータアシストが可能かどうかチェックされる(#12)。モータアシストが可能ならば(#12の可分岐)、前述したようなモータアシスト処理が実行され、負荷量に応じたモータアシストが行われる(#14)。そして、ステップ#06に戻り、回転負荷がチェックされる。
 前回のモータアシストとの間隔が短く、モータアシストの禁止時間帯であるため、あるいはバッテリBの充電量が不足しているためなどの理由よりモータアシストが不可能の場合(#12の不可分岐)、さらにその回転負荷がすぐにエンジンストールなどをもたらすような過剰負荷であるかどうかチェックされる(#16)。過剰負荷でない場合(#16のNo分岐)、緊急事態ではないが、回転負荷が高まっていることをディスプレイ339に表示し(#18)、この回転負荷の高まりを解消すべく戻しボタン391を用いて回転数低下を戻す操作が行われるかどうか、つまり戻しボタン391の操作がチェックされる(#20)。戻しボタン391が操作されていない場合(#20のOFF分岐)、ステップ#06に戻り、回転負荷がチェックされる。戻しボタン391が操作された場合(#20のON分岐)、上述したように、先の下げボタン390による回転数低下を解消すべく、回転数増加処理(#22)と変速比変更処理(#24)が行われ、ステップ#06に戻る。
 ステップ#16で過剰負荷と判定された場合(#16のYes分岐)、緊急事態なので、下げボタン390による回転数低下を強制的に元に戻す強制戻し処理を行う(#26)。従って、この強制戻し処理には、回転数増加処理と変速比変更処理が含まれている。
 なお、この省エネ変速処理は、本発明のわかりやすい説明のためのものであり、実際には、各種操作に基づく割り込み処理が頻繁に発生するので、図のフローチャートのように制御が流れるわけでない。
〔第3実施形態の別実施形態〕
(1)上述した実施形態では、エンジンEに作用する負荷を検出するためにエンジン回転数ないしは伝動軸回転数を利用していたが、作業装置Wに直接負荷検出センサを設けて、この負荷検出信号を用いて、アシスト制御の要否を判定してもよい。

(2)上記実施形態では、エンジンEとモータジェネレータ304とが直結されており、その後に主クラッチ331が装着され、動力伝達軸330に動力が伝達されていたが、これに代えて、エンジンEとモータジェネレータ304との間に主クラッチ331を装着してもよい。

(3)上記実施形態では、変速装置310にHMT312を用いた無段変速が採用されていたが、多段ギヤ式変速装置を用いた多段変速を採用してもよい。

(4)アシスト特性として、作業装置Wのタイプおよびその使用形態にそれぞれ最適化された個別のアシスト特性を予め作成して、それを適切に選択するようにしてもよい。例えば、作業車に装着される作業装置Wの種別を検知する作業装置種別検知部あるいは手動の作業装置種別設定部を設け、実際に装着され利用される作業装置Wの種別を補助パラメータとしてアシスト特性決定部361に与える。これにより、アシスト特性決定部361は、使用作業装置種により適切なアシスト特性を決定することができる。
〔第4実施形態〕 本発明による作業車の具体的な第4実施形態を説明する前に、図25を用いて本発明を特徴付けている基本的な構成を説明する。
 この作業車は、伝動軸や伝動ギヤなどで構成される動力伝達手段を介して走行装置としての車輪402に動力を伝達する原動機ユニット401を搭載している。原動機ユニット401には内燃機関であるエンジンEが含まれている。動力伝達手段には原動機ユニット401から出力された回転動力を変速する変速装置410が含まれている。原動機ユニットから出力される動力の回転数によって作動油供給量が変化する油圧ポンプPが備えられている。作業装置Wが、油圧ポンプPから供給される作動油によって駆動する油圧駆動機器HDの一例としてのリフトシリンダによって昇降可能に作業車に装備されている。原動機ユニット401の出力軸Exから分岐したPTO(動力取り出し)軸W1を介して動力が作業装置Wに供給可能である。油圧駆動機器HDを操作する油圧操作具Tが備えられている。
 制御系として、設定されるエンジン回転数でエンジンEを制御するエンジン制御ユニット405Aと、変速装置410の変速比を調整する変速制御ユニット403と、油圧管理ユニット405が備えられている。油圧管理ユニット405には、必要作動油量算定機能と回転数増加指令生成機能と変速比変更指令生成機能が、実質的にはコンピュータプログラムで構築されている。必要作動油量算定機能は、油圧駆動機器HDに対する操作情報に基づいて油圧駆動機器HDが必要とする必要作動油量を算定する機能である。回転数増加指令生成機能は、算定された必要作動油量に基づいて油圧駆動機器HDに対する作動油供給不足が判定された場合に、エンジン制御ユニット405Aで設定されているエンジン回転数を増加させるエンジン回転数増加指令を生成して、エンジン制御ユニット405Aに与える機能である。変速比変更指令生成機能は、作業車速度(作業車の走行速度、以下車速と略称する)を維持するために、上記エンジン回転数増加指令によるエンジン回転数の増加を相殺するように変速比を変更させる変速比変更指令を前記変速制御ユニットに与える機能である。
 例えば一定車速で作業車を走行させながら、フロントローダ装置や耕耘装置などの作業装置Wを操作して作業走行する際に、省エネ運転を心がけるためには、できるだけ低いエンジン回転数でエンジンEを駆動させる。その場合、油圧ポンプPの駆動回転数はエンジン回転数に依存するので、エンジン回転数が低下すると、油圧ポンプPの駆動回転数の低下、結果的には油圧ポンプPからの作動油供給量が低下する。油圧駆動機器HDが動作していないか、動作していても大きな作動油量を必要としない場合はよいが、油圧駆動機器HDが大きな動作を行なう際には作動油量の不足が生じ、油圧駆動機器HDの動作に遅れが生じる可能性が生じる。例えば、作業装置を動作させるような油圧駆動機器HDが必要とする必要作動油量は、操作情報の一例である、当該油圧駆動機器HDを操作する操作具Tの操作入力に基づいて推定することができる。この場合、作業走行時に、特に省エネ運転時に操作具Tが操作されると、その操作入力に関する操作情報から対象となる油圧駆動機器HDが必要とする必要作動油量が算定される。さらに、算定された必要作動油量が現状のエンジン回転数では油圧ポンプPによって供給できない場合には、エンジン回転数を増加させて、油圧ポンプPが必要作動油量を供給できるようにする。同時に、そのエンジン回転数の増加を相殺するように、少なくとも作業車の加速が無視できる程度となるように、変速比を調整(通常は大きく)する。これにより、エンジン回転数を増加による急加速が抑制される。また、定速走行が要求される作業走行を行っている場合においても、その定速走行が実質的に維持される。
 操作情報は逐次チェックされており、エンジン回転数を低下させても前記作動油供給不足が解消される場合に、前記エンジン回転数増加指令を取り消す回転数戻し指令が前記エンジン制御ユニット405Aに与えられる。この回転数戻し指令は、先行したエンジン回転数増加を段階的に解消する複数の指令に分割しても良い。同時に、作業車速度を維持するために前記エンジン回転数戻し指令によるエンジン回転数の減少を相殺するように変速比を変更させる変速比変更指令が前記変速制御ユニット403に与えられる。これにより、エンジン回転数を減少による急減速が抑制される。また、定速走行が要求される作業走行を行っている場合においても、その定速走行が実質的に維持される。
 次に、図面を用いて、本発明による作業車の具体的な第4実施形態の1つを説明する。ここでは、作業車はよく知られた形態の汎用トラクタであり、図26は、その斜視図であり、図27はトラクタ操縦エリアの鳥瞰図である。このトラクタは、左右一対の前輪402aと後輪402bによって対地支持された車体を備え、その車体の前部に原動機ユニット401、その中央部に操縦エリアが配置されている。車体後部には、作業装置Wとして耕耘装置が昇降機構によって装着されている。この昇降機構は、図28で模式的に示されているだけであるが、油圧駆動機器HDの1つである油圧シリンダ101によって動作する。図27に示された操縦エリアには、運転席420及び運転席420の前方にステアリングホイール421が配置されている。運転席420に着座した運転者によって操作される操作レバーや操作ボタンは、ステアリングホイール421の周辺や運転席420の両側に配置されている。本発明に特に関係する操作レバーや操作ボタンとして、昇降機構の油圧シリンダ101に対する操作を入力する油圧操作具Tとしての昇降レバー422、ギャ変速装置414の変速段を切り換える変速レバー423、省エネ運転のためにエンジン回転数を低減させる下げボタン424、低減させたエンジン回転数を戻す戻しボタン425、変速(車速制御)ペダル426などが挙げられる。操縦エリアには、メータパネル427aやフラットディスプレイ427bも配置されている。
 図28で模式的に示されているが、操向輪としての前輪402aは、油圧パワーステアリング装置PSを介してステアリングホイール421によって操作される。この油圧パワーステアリング装置PSは、油圧源から供給される作動油をステアリングホイール421の操舵量に応じて調節して、油圧駆動機器HDとしてのパワステシリンダ102を油圧制御して前輪402aを操舵する。従って、ステアリングホイール421は本発明における油圧操作具Tとして機能する。例えば、ステアリングホイール421を急速に大きな操舵量で操作すると、大量の作動油がパワステシリンダ102に供給され、素早い操舵が実現する。
 このトラクタは、図28と図29で模式的示された動力系統図から明らかなように、原動機ユニット401にエンジンEとモータユニット404とが含まれているハイブリッド車両である。なお、ここでのエンジンEはコモンレール方式で回転制御されるディーゼルエンジンであり、エンジン制御機器405aとしてコモンレール制御機器を備えている。また、ここでのモータユニット404はバッテリBを充電させる発電機としても機能するモータジェネレータ404である。
 図30に示すように、エンジンEの後面側にモータジェネレータ404と主クラッチ431とを収容するモータハウジング440が備えられている。モータジェネレータ404は、エンジンEの駆動力により発電を行う三相交流発電機の機能と、外部から供給される電力により回転作動する三相交流モータの機能とを併せ持つ。従って、インバータ部470がバッテリBからの直流電力を三相交流電力に変換してモータジェネレータ404に供給する。また、インバータ部470は、モータジェネレータ404で発電された三相交流電流を直流電流に変換し昇圧してバッテリBに供給する。
 図30から明らかなように、エンジンEとモータジェネレータ404と主クラッチ431とが、この順序で備えられ、エンジンEの後部に連結したリヤエンドプレート440aに対してモータハウジング440が連結し、これによりモータハウジング440にモータジェネレータ404と主クラッチ431とが収容されている。
 モータジェネレータ404は、永久磁石441を外周に備えたロータ442と、このロータ442を取り囲む位置に配置されたステータ443とで構成され、ステータ443は、ステータコアの複数のティース部(図示せず)にコイルを巻回した構造を有している。エンジンEの出力軸Ex(クランク軸)の軸端に対向して、この出力軸Exの回転軸芯Xと同軸芯で、モータジェネレータ404のロータ442が配置され、このロータ442のうち出力軸Exと反対側の面に主クラッチ431のベースプレート431aが配置され、出力軸Exとロータ442と主クラッチ431のベースプレート431aとがねじ連結されている。このベースプレート431aはフライホイールとしての機能も有するが、上述したように、モータジェネレータ404は、フライホイールが果たしていた慣性力機能を部分的に実行するので、従来に比べ軽量化されている。
 モータハウジング440は、前部ハウジング440Aと後部ハウジング440Bとを分離可能に連結した構造を有しており、モータジェネレータ404を組み立てる際には、前部ハウジング440Aの内面にステータ443を備えた状態で、この前部ハウジング440Aをリヤエンドプレート440aに連結し、次に、出力軸Exの後端にロータ442が連結される。
 主クラッチ431は、ベースプレート431aの後面に連結するクラッチカバー431bの内部にクラッチディスク431cと、プレッシャプレート431dと、ダイヤフラムバネ431eとを配置し、クラッチディスク431cからの駆動力が伝えられる、動力伝達軸430の1つの構成要素としてのクラッチ軸430aとを備えており、図示されていないクラッチペダルによって操作される。
 クラッチ軸430aは、後部ハウジング440Bに対して回転軸芯Xを中心にして回転自在に支持され、クラッチディスク431cは、スプライン構造によりクラッチ軸430aに対してトルク伝動自在、かつ、回転軸芯Xに沿って変位自在に支持され、ダイヤフラムバネ431eは、プレッシャプレート431dを介してクラッチ入り方向への付勢力をクラッチディスク431cに作用させる構成を有している。また、クラッチ軸430aの動力は、ギヤ伝動機構を介して変速装置410の入力軸となる、動力伝達軸430の1つの構成要素としての中間伝動軸430bに伝えられる。
 図29から明らかなように変速装置410は、油圧機械式の無段変速装置(以下、HMTと略称する)412と前後進切換装置413と複数段の変速(ここでは、道路走行のための高速段と作業走行のための低速段)を行うギヤ変速装置414、ディファレンシャル機構415とを含み、その動力は動力伝達軸430を通じて、最終的に駆動車輪(前輪402aまたは後輪402bあるいはその両方)402を回転させる。前後進切換装置413とギヤ変速装置414のそれぞれには油圧駆動式の変速クラッチ410aが備えられている。さらに、このエンジンE及びモータジェネレータ404の回転動力を伝達する動力伝達軸430の一部を構成するPTO軸W1を経てトラクタに装備された耕耘装置Wは回転動力を受けることができ、これにより耕耘ロータが所定の耕耘深さで回転駆動する。
 HMT412は、エンジンE及びモータジェネレータ404からの動力を受ける斜板式可変吐出型油圧ポンプと当該油圧ポンプからの油圧によって回転して動力を出力する油圧モータとからなる静油圧式変速機構412Aと、遊星歯車機構412Bとから構成されている。遊星歯車機構412Bは、エンジンE及びモータジェネレータ404からの動力と油圧モータからの動力とを入力として、その変速出力を後段の動力伝達軸430に供給するように構成されている。
 この静油圧式変速機構412Aでは、エンジンE及びモータジェネレータ404からの動力がポンプ軸に入力されることにより、油圧ポンプから油圧モータに圧油が供給され、油圧モータが油圧ポンプからの油圧によって回転駆動されてモータ軸を回転させる。油圧モータの回転はモータ軸を通じて遊星歯車機構412Bに伝達される。静油圧式変速機構412Aは、油圧ポンプの斜板412aに連動されているシリンダを変位させることにより、この斜板412aの角度変更が行なわれ、正回転状態、逆回転状態、及び正回転状態と逆回転状態の間に位置する中立状態に変速され、かつ正回転状態に変速された場合においても逆回転状態に変速された場合においても、油圧ポンプの回転速度を無段階に変更して油圧モータの回転速度(時間当たり回転数)を無段階に変更する。その結果、油圧モータから遊星歯車機構412Bに出力する動力の回転速度を無段階に変更する。静油圧式変速機構412Aは、斜板412aが中立状態に位置されることで、油圧ポンプによる油圧モータの回転を停止、結果的には油圧モータから遊星歯車機構412Bに対する出力を停止する。
 遊星歯車機構412Bは、サンギヤと、当該サンギヤの周囲に等間隔で分散して配置された3個の遊星ギヤと、各遊星ギヤを回転自在に支持するキャリヤと、3個の遊星ギヤに噛合うリングギヤと、前後進切換装置413に連結している出力軸(動力伝達軸430の1つ)とを備えている。なお、この実施形態では、キャリヤは外周にエンジンE側の動力伝達軸430に取り付けられた出力ギヤと噛み合うギヤ部を形成しているとともに、サンギヤのボス部に相対回転自在に支持されている。
 上述した構成により、このHMT412は、静油圧式変速機構412Aの斜板412aの角度を変更することにより、駆動車輪である前輪402aまたは後輪402bあるいはその両方への動力伝達を、無段階で変速することができる。この斜板412aの制御は、変速制御ユニット403からの制御指令に基づいて動作する油圧制御ユニット408の油圧制御によって実現する。
 本発明における油圧駆動機器HDの油圧源としての油圧ポンプPが備えられている。この油圧ポンプPは、原動機ユニット1と変速装置410との間に位置する動力伝達軸430から回転動力を受ける機械式ポンプであり、そのポンプ軸回転数はエンジン回転数に依存する。つまり、油圧ポンプPの作動油供給量はエンジン回転数に依存することになる。油圧制御弁などから構成される油圧制御ユニット408を介して、この油圧ポンプPから作動油が供給される油圧駆動機器HDは、図28や図29で図示されている限りでは、昇降シリンダ101、パワステシリンダ102、変速装置410の変速クラッチ411である。昇降シリンダ101に対する油圧操作具Tは昇降レバー422であり、パワステシリンダ102に対する油圧操作具Tはステアリングホイール421である。なお、トラクタに搭載される作業装置Wによってはさらに種々の油圧シリンダや油圧モータが備えられるので、油圧ポンプPによって作動油が供給される油圧駆動機器HDも増えることになる。あくまで、昇降シリンダ101やパワステシリンダ102は、油圧ポンプPによって作動油が供給される油圧駆動機器HDの一例である。
 図31は、上述した油圧ポンプPと油圧駆動機器HDと油圧操作具Tの関係を模式的に示す油圧回路図である。この油圧回路には、HMT412を構成する静油圧式変速機構412Aの油圧回路480、耕耘装置(作業装置)Wを昇降する昇降シリンダ(油圧駆動機器HD)101の油圧回路480、油圧パワーステアリング装置PSのパワステ油圧回路482が示されているが、主クラッチ431や変速クラッチ410aなど、他の油圧回路は省略されている。なお、静油圧式変速機構412Aの油圧回路480には、油圧供給源として、エンジンE及びモータジェネレータ404の動力によって駆動する斜板制御タイプの油圧ポンプ481aとチャージポンプ481bとが備えられている。油圧ポンプ481aから供給される作動油によって回転する油圧モータの正転及び逆転での回転速度は、斜板制御弁を含む斜板調整機構による油圧ポンプの斜板角調整によって変更される。つまり、静油圧式変速機構412Aの油圧回路480は、独自の油圧ポンプ481aを有するものであり、油圧ポンプPによって直接作動油を供給されるものではない。
 昇降シリンダ101の油圧回路481及びパワステ油圧回路482には、油圧供給源として、油圧ポンプPが接続されている。油圧回路481における必要作動油量は、油圧操作具Tである昇降レバー422の操作挙動によって決定される。昇降レバー422の操作挙動は昇降レバーセンサ492によって検出される。パワステ油圧回路482における必要作動油量は油圧操作具Tであるステアリングホイール421の操作挙動によって決定される。ステアリングホイール421の操作挙動はステアリングセンサ491によって検出される。昇降レバーセンサ492やステアリングセンサ491は、車両状態検出ユニット409に接続されており、車両状態検出ユニット409で必要な信号処理が施された後、必要な機能ユニットに転送される。もちろん、車両状態検出ユニット409を介さずに直接各センサを機能ユニットに接続してもよい。なお、変速レバー423の操作位置を検出する変速レバーセンサ493も車両状態検出ユニット409に接続されている。
 以下に詳しく述べられるが、昇降シリンダ101の油圧回路481やパワステ油圧回路482における必要作動油量が油圧ポンプPによって供給可能であるかどうかは、油圧管理ユニット405によって判定される。油圧管理ユニット405は、作動油の供給不足が生じる場合には、エンジン回転数を増加させて、作動油の供給不足を回避する。
 次に、上述した動力系を制御する電子制御系について説明する。
 このトラクタの電子制御系には、図28や図29に示されているように、エンジン制御ユニット405A、モータ制御ユニット405B、アシスト制御ユニット406、油圧管理ユニット405、車両状態検出ユニット409、変速制御ユニット403、耕耘装置(作業装置)Wの操作のための作業装置制御ユニットW0などが含まれている。これらのECUと呼ばれる各種制御ユニットはそれぞれ車載LANによってデータ伝送可能に接続されている。もちろん、ここでは分割した構成となっている各種制御ユニットを自在に統合することやさらに分割することは可能であるが、この実施形態での構成は本発明での説明を分かり易くすることを優先したものであり、それは、発明を限定するものではない。
 エンジン制御ユニット405Aは、よく知られているように、エンジンEを電子制御するための中核機能部であり、外部操作入力信号及び内部センサ信号等によって推定されるエンジンEの運転状態に応じて、予め設定されているプログラムに基づく制御、例えば定回転数制御や定トルク制御など種々のタイプのエンジン制御を行う。
 変速制御ユニット403には、変速ペダル426などの変速操作具による変速操作指令や油圧管理ユニット405からの変速比変更指令に基づいて変速装置410に対する変速操作を行うための制御機能が構築されている。さらに、変速制御ユニット403は、油圧管理ユニット405からの変速比増加指令や変速比変更指令に基づいて、HMT412の斜板412aの角度を変位させ、変速比を変更することである。変速制御は、人為的な操作による操作信号入力と機械的に生成された操作信号入力の両方で可能である。車速を変えるために人為的変速操作具として機能する変速ペダル426は、定車速走行のために任意の位置で位置保持機構426aによって保持される。変速ペダル426の操作位置はペダルセンサ490によって検出される。ペダルセンサ490も車両状態検出ユニット409に接続されている。
 モータジェネレータ404の制御、つまりエンジンEに対するアシスト制御はアシスト制御ユニット406によって行われる。特に、このアシスト制御は、エンジン回転数をぎりぎりまで低下させた省エネ運転中において生じた突発的なエンジン負荷(回転負荷)の増大に対処するため用いられる。省エネ運転中において生じる突発的な回転負荷の増大は、エンジンEの回転数の低下、つまり車速の低下、さらにはエンジンストールを導く。特に定車速で作業走行する作業車両の場合、定速制御モードでのエンジンEの運転が頻繁に行なわれ、その際、作業状況や接地している地面状況によって、急激な負荷が動力伝達手段にかかり、結果的にエンジンEの回転数を低下させる事態が生じる。エンジン回転数の低下は車速の低下や作業装置の駆動力不足を導く。これを回避するために、エンジンEやエンジン動力を伝達する動力伝達手段にかかる回転負荷が検知され、その負荷を少なくとも部分的に補償すべくモータジェネレータ404が短時間だけ駆動され、エンジンEがアシストされる。
 このアシスト制御のために、アシスト制御ユニット406は、エンジンEが受ける回転負荷を示す負荷情報を、エンジン制御ユニット405Aから与えられるエンジン制御情報または、各種センサによる検出情報から取り出される入力パラメータに基づいて生成する機能を有する。負荷情報の生成のために利用される入力パラメータとしては、エンジンEの回転数(回転速度)、変速装置410を構成する動力伝達軸430の回転数(回転速度)、エンジン制御ユニット405Aによって算定されたエンジントルク、動力伝達軸430のトルク、車速、作業装置Wの作業状態(耕耘深さ、牽引力、ローダーへの作用力など)が挙げられるが、実際に利用される入力パラメータは、トラクタに装備されているセンサに依存する。動力伝達軸430のための回転検出センサや車速センサは標準装備されている可能性が高いので、入力パラメータとして、動力伝達軸430の回転速度変動値や車速変動値を用いると好都合である。これらの入力パラメータは各種センサからの信号を処理する車両状態検出モジュールユニット409を通じて送られてくる。突発的な回転負荷の増大を検知するために、経時的な回転負荷の微分値または差分値に基づいて突発的な回転負荷の増大を示す情報を、負荷情報として用いてよい。あるいは、単にしきい値判定だけでアシスト制御のトリガーとなる回転負荷の増大を示す負荷情報を負荷情報として用いてもよい。
 アシスト制御ユニット406は、負荷情報に基づいて、モータジェネレータ404を用いたエンジンEに対するアシスト制御を実行するかどうかを判定する。例えば、バッテリ充電量が所定値以下の場合、アシスト制御の中止、または部分的なアシスト量でのアシスト制御に限定される。さらに、アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行を禁止する。さらに、アシスト制御ユニット406は、負荷情報に基づいて、アシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を決定する。さらに、アシスト制御ユニット406は、決定されたアシスト特性に基づいてアシスト制御信号をモータ制御ユニット405Bに出力する。モータ制御ユニット405Bは、アシスト制御信号に基づいてモータ制御信号をインバータ部405bに出力し、モータジェネレータ404を制御する。なお、モータ制御ユニット405Bは、アシスト制御以外に、発電指令をインバータ部405bに送ることで、モータジェネレータ404をジェネレータとして機能させ、バッテリBを充電することができる。また、モータ制御ユニット405Bがゼロトルク制御信号をインバータ部405bに送ることで、モータジェネレータ404はゼロトルク駆動を行う。
 上述した機能を果たすため、アシスト制御ユニット406には図32に示すように、バッテリ管理部460、負荷情報を生成する負荷情報生成部461、アシスト特性マップ格納部462aを含むアシスト特性決定部462、アシスト制御決定部463が構築されている。バッテリ管理部460は、バッテリBからの充電情報に基づいて、充電量を算定し、この充電量を含むバッテリ情報を出力する。
 アシスト特性決定部463は、負荷情報から読み出した負荷量:Lと、バッテリ情報から読み出した充電量:SCに基づいて、適切なアシスト特性:W(t)を決定する。このアシスト特性は、W(t)=Γ〔L,SC〕といった一般式から導出されるものである。つまり、アシスト特性は、経時的なアシスト量を決めるグラフで表すことできる。実際には、以下に述べるように、複数のアシスト特性をマップ化して格納しておき、負荷量:Lと充電量:SCとから最適なアシスト特性が選択される。アシスト特性が決定されると、モータ制御ユニット405Bがこのアシスト特性に基づいてアシスト制御信号を生成し、インバータ部405bを通じてモータジェネレータ404を駆動制御し、エンジンEないしは動力伝達手段に生じた負荷の増大を補償する。電気モータのトルク応答性は早いので、突発的な走行負荷や作業負荷の増大が発生しても、それにより回転数の低下が回避される。負荷増大が持続した場合やバッテリBの充電量に余裕がない場合には、省エネ変速モジュール407における変速比の調整で対処することになる。
 アシスト特性マップ格納部462aは、上述したようなアシスト特性をマップ化したアシスト特性マップMを予め複数作成して格納するか、あるいは必要に応じて適正なアシスト特性マップMを作成して設定する機能を有する。模式的に図示されているように、このアシスト特性は、経時的なアシスト量を決めるグラフで表すことができる。図32で模式的に図示された例では、横軸が時間で、縦軸がアシストゲインである。アシストゲインは、負荷情報から読み出した負荷量に応じて算定される最大アシスト量(モータトルク)に対する比率であり、0%から100%の間の数値をとる。つまり、最大アシスト量にこのアシスト特性マップMから得られたアシストゲインを乗算することで、実際にモータジェネレータ404によってアシストされるアシスト量が求められる。この実施形態でのアシスト特性は、所定時間一定のアシスト量を維持する初期アシスト特性領域Sとアシスト量を零まで経時的に減少させる終期アシスト特性領域Eとからなる。初期アシスト特性領域Sの時間間隔t1が1.5秒から2.5秒、好ましくは2秒であり、終期アシスト特性領域Eの時間間隔t2が1.5秒から2.5秒、好ましくは2秒である。図示されたアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは100%で一定であり、終期アシスト特性領域Eは線形である。もちろん、その減少傾向は、任意の形状を採用することができる。また、初期アシスト特性領域Sと終期アシスト特性領域Eの両方の領域において非線形なグラフを採用することも可能である。アシスト特性決定部462は、負荷情報から読み出した負荷量とバッテリ情報から読み出した充電量とから最適なアシスト特性マップMを決定する。その他のアシスト特性マップMでは、初期アシスト特性領域Sにおけるアシストゲインは10%程度から100%未満の範囲の値をとり、終期アシスト特性領域Eは減少関数となるような、種々のアシスト特性が記述されている。つまり、実際にモータジェネレータ404によって生み出されるアシスト量は、負荷量または充電量あるいはそれら両方によってその都度変動する。なお、このアシスト特性に基づくアシスト制御の連続した実行は、アシスト制御決定部463によって禁止される。アシスト制御の実行間隔、つまり禁止時間は、バッテリBの充電量によって変更してもよいし、バッテリBの容量によって予め決めておいても良い。また、作業によって可変されてもよい。いずれにせよ、バッテリ充電量の急激な低下をもたらさないように設定される。
 この実施形態における油圧管理ユニット405は、図25を用いて説明した油圧管理ユニット405の機能を備えている。従って、油圧管理ユニット405には、図33で示すように、必要作動油量算定部451、回転数増加指令生成部452、変速比変更指令生成部453、回転数戻し指令生成部454が構築されている。必要作動油量算定部451は、車両状態検出ユニット409から送られてきた、ステアリングホイール421の操作挙動や昇降レバー422の操作挙動を示す操作情報に基づいてパワステシリンダ102やリフトシリンダ101が必要とする必要作動油量を算定する。回転数増加指令生成部452は、必要作動油量算定部451によって算定された必要作動油量に基づいてパワステシリンダ102やリフトシリンダ101に対する作動油供給不足が判定された場合に、エンジン回転数増加指令を生成する。エンジン回転数増加指令は、エンジン制御ユニット405Aで設定されている現時点のエンジン回転数に対して回転数を増加させる指令である。増加させる回転数の値としては、所定値、例えば200rpmでもよいし、そのつど、演算またはマッピングによって求めた回転数であってよい。そのようにして生成されたエンジン回転数増加指令は、エンジン制御ユニット5Aに与えられることで、エンジンEの回転数が上昇する。
 回転数戻し指令生成部454は、エンジン回転数増加指令によるエンジン回転数増加を行なわなくとも元のエンジン回転数で作動油供給不足が発生しないと判定された場合、先に行ったエンジン回転数増加指令を取り消す回転数戻し指令を生成する。その際、先に行ったエンジン回転数増加指令によるエンジン回転数の増加を複数回に分けて低減するような回転数戻し指令を生成してもよい。いずれにせよ、このエンジン回転数増加指令がエンジン制御ユニット405Aに与えられることで、エンジンEの回転数が低下する。
 変速比変更指令生成部453は、急加速を避けるべくトラクタの車速を維持するために、エンジン回転数増加指令によるエンジン回転数の増加を相殺するように変速比を変更させる変速比変更指令を変速制御ユニット403に与える。これにより、変速制御ユニット403は油圧制御ユニット408を介して静油圧式変速機構412Aの油圧ポンプの斜板412aを調節して、変速比を大きくし、エンジン回転数の増加に伴う車速の上昇を回避する。同様の目的で、変速比変更指令生成部453は、エンジン回転数戻し指令によるエンジン回転数の低減を相殺するように変速比を変更させる変速比変更指令を変速制御ユニット403に与える。これにより、変速制御ユニット403は油圧制御ユニット408を介して斜板412aを調節して、変速比を小さくし、エンジン回転数の低下に伴う車速の低下を回避する。
 この油圧管理ユニット405による作動油供給量制御機能は、作業走行時に利用されるものであり、道路走行時には原則的には必要ではない。このため、この油圧管理ユニット405による作動油供給量制御機能を、道路走行時に限定すると好都合である。そのために、この実施形態では、道路走行用変速段と作業用変速段とを備えたギヤ変速装置414の変速段を切り換える変速レバー423の操作位置を利用している。つまり、ギヤ変速装置414が道路走行用変速段に切り換えられていることを変速レバーセンサ493の信号から検出し、その際にはエンジン回転数増加指令によるエンジン回転数の増加を禁止する。
 この実施形態では、上述した変速制御ユニット403には、省エネルギー運転のため、運転者の操作に基づいて一時的なエンジン回転数低下処理とこのエンジン回転数低下処理を取り消すエンジン回転数戻し処理とを実現する省エネ変速モジュール407が構築されている。このエンジン回転数低下処理及びエンジン回転数戻し処理は、上述したエンジン回転数増加指令によるエンジン回転数の増加処理及びエンジン回転数戻し指令によるエンジン回転数の低減処理と類似するので、共通的に構築することができる利点がある。
 図34に示すように、省エネ変速モジュール407には、上記機能を実現するため、回転数低下指令生成部471、変速比変更指令生成部472、下げ処理履歴メモリ473、負荷判定部474、強制戻し制御部475が含まれている。
 回転数低下指令生成部471は、運転者の下げボタン424の押下による操作指令に基づいて現状のエンジン回転数を200rpmだけ低下させる回転数低下指令を生成して、エンジン制御ユニット405Aに送り出す。その際、変速比変更指令生成部472は、この回転数低下指令によるエンジン回転数の低下が車速の低下を伴わないように、その低下分を補償する変速比の変更値を求め、その変更値に基づいた変速比変更指令を生成し、この変速比変更指令を油圧制御ユニット408に送り出す。アクセルレバー432の操作位置によって設定された基本エンジン回転数を制御目標としてエンジン制御ユニット405AがエンジンEの回転数を制御しているが、この回転数低下指令は、その基本エンジン回転数を低下させるものであり、この実施形態では複数回数、例えば4回にわたる回転数低下を指令することができる。つまり、1回目の回転数低下指令で基本エンジン回転数から200rpmの低下、2回目の回転数低下指令でさらに200rpmつまり基本エンジン回転数から400rpmの低下が指令されることになる。もちろん、そのエンジン回転数低下に伴う車速の低下は、その都度の変速比変更指令生成部472からの変速比変更指令によって補償される。
 さらに運転者が戻しボタン425を押し下げた場合には、戻し操作指令が、省エネ変速モジュール407に与えられ、回転数低下指令生成部471は、現時点で設定されている回転数低下指令の積算回数を1段階取り消す戻し指令をエンジン制御ユニット405Aに送る。これにより、回転数低下指令が1回設定されているだけの状態なら、その1回分のエンジン回転数低下が取り消され、エンジン制御ユニット405AでのエンジンEの目標回転数は、元の基本エンジン回転数となる。回転数低下指令が2回設定されている状態なら、1回分のエンジン回転数低下が取り消され、エンジン制御ユニット405AでのエンジンEの目標回転数は、基本エンジン回転数より200rpmだけ低下させた回転数となる。回転数低下指令によるエンジン回転数の低下が設定されていない状態で戻しボタン425が押し下げられても、回転数低下指令は生成されない。戻しボタン425は、回転数低下指令の取消処理を行うだけである。当然ながら、戻しボタン425の操作による戻し操作指令によりエンジン回転数低下が修正された場合には、同時に、その修正に伴う車速の増加は、変速比変更指令生成部472からの変速比変更指令によって補償され、車速は一定に維持される。
 このため、回転数低下指令生成部471によってエンジン制御ユニット405Aに設定される回転数低下指令の回数を記録しておく必要があり、このため下げ処理履歴メモリ473が備えられている。下げ処理履歴メモリ473はスタックメモリのようなメモリ構造が適しており、回転数低下指令が生成されると回転数低下に関する情報が下げ処理履歴メモリ473に書き込まれ(プッシュ)、戻し指令が生成されると最後に書き込まれた回転数低下に関する情報が読み出され消去される(ポップ)。もちろん、回転数低下指令や戻し操作指令を時系列的に記録する履歴メモリのようなメモリ構造を採用してもよい。いずれにしても、回転数低下指令生成部471によって、エンジン制御ユニット405Aに回転数低下指令が送られると、1回の下げボタン424の操作による200rpmのエンジン回転数低下の情報が必要に応じて変速比変更の情報も含めて下げ処理履歴メモリ473に書き込まれる。そして、下げ処理履歴メモリ473にアクセスすれば、現状の下げボタン424の操作履歴と現状のエンジン制御ユニット405Aに指令しているエンジン回転数の低下量、現状の変速比を知ることができる。
 負荷判定部474は、エンジン負荷が所定レベルを超えたかどうかを判定する機能を有し、所定レベルを越えるエンジン負荷が判定された場合、回転数低下指令によって設定されている目標エンジン回転数の低下及び補償変速比の変更を取り消すための戻し指令が生成される。例えば、負荷判定部474は、アシスト制御ユニット406によるアシスト制御が禁止された禁止期間において所定レベルを越えるエンジン負荷が判定された場合、先に行われたエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令を出力する。
 強制戻し制御部475は、エンジン負荷以外でも予め設定しておいた所定取消条件が成立した場合に、戻し操作指令を強制的に出力して、エンジン制御ユニット405Aに設定されたエンジン回転数の低下及び変速制御ユニット403に施された補償変速比の変更を取り消す。この取消条件は、定速走行が必要な作業走行のモードから車速を任意に調整しながら走行する必要がある一般路上走行のモードになった場合など、定速走行が不要な状況が検知されるというのが典型的な条件である。また、エンジンキーをオフにして車両運転を終了した場合も、強制的にエンジン回転数の低下を取り消すことが好ましい。
 なお、アクセル操作器を操作することによって基本エンジン回転数が調整されると、エンジン回転数は人為的に変更されるが、その際でも回転数低下指令を引き継ぐように構成されている。これにより、アクセル操作器の操作を頻繁に行ったとしても、省エネ運転が維持できる。同様に、変速操作器である変速ペダル426によって変速装置410の変速比も人為的に変更されるが、その際でも変速比の変更に伴うエンジン回転数の変更とその後の回転数低下及びその回転数の低下に伴う補償変速比の設定が行われるように構成されている。
〔第4実施形態の別実施形態〕
(1)上述した実施形態では、原動機ユニット401がエンジンEとモータジェネレータ404とからなるハイブリッドタイプで構成されていたが、エンジンEだけでもよい。
(2)上記実施形態では、変速装置410にHMT412を用いた無段変速が採用されていたが、多段ギヤ式変速装置を用いた多段変速を採用してもよい。
 本発明は、内燃機関を備えた種々の車両に適用可能である。例えば、そのような車両としてトラクタ以外に、乗用型田植機、芝刈機、コンバインなどの農用作業車、さらにはフロントローザなどの土木作業車が挙げられる。
10:変速装置

30:動力伝達軸
31:クラッチ

 4:モータジェネレータ

40:モータハウジング

 5:動力管理ユニット

50:アシスト制御決定部

51:負荷情報生成部

52:モータアシスト特性算定部

52a:モータアシスト特性マップ格納部

53:モータアシスト制御禁止決定部

54:バッテリ管理部

55:運転モード選択部

 6:エンジン制御ユニット

60:エンジン制御機器(コモンレール)

 7:モータ制御ユニット

70:インバータ部

 8:変速制御ユニット

80:機械アシスト変速比算定部

 9:作業装置

 S:車両状態検出ユニット

 B:バッテリ

 E:内燃機関

Claims (31)


  1.  動力伝達手段を介して走行装置と作業装置とに駆動力を供給する内燃機関と、

     前記動力伝達手段に設けられた変速装置と、

     前記変速装置の変速比を調整する変速制御ユニットと、

     前記動力伝達手段に接続されたモータジェネレータと、

     前記モータジェネレータから前記動力伝達手段に動力を出力することで前記内燃機関をアシストするモータアシスト制御を行うモータ制御ユニットと、

     前記モータジェネレータによって充電電力を受けるとともに前記モータジェネレータに駆動電力を与えるバッテリと、

     前記内燃機関が受ける回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、

     前記回転負荷の増大を解消するために、前記モータアシスト制御を、前記変速制御ユニットを通じて前記変速装置の変速比を下げることによって前記内燃機関をアシストする機械アシスト制御に優先して実行させるアシスト制御決定部と、

    を備えた車両。

  2.  前記モータアシスト制御のためのモータアシスト特性を前記負荷情報に基づいて算定するモータアシスト特性算定部と、前記機械アシスト制御のための変速比を算定する機械アシスト変速比算定部が備えられている請求項1に記載の車両。

  3.  前記モータアシスト特性は前記モータアシスト制御におけるアシスト量とアシスト時間を規定しており、かつ前記モータアシスト特性が、所定時間一定のアシスト量を維持する初期モータアシスト特性領域とアシスト量を零まで経時的に減少させる終期モータアシスト特性領域とからなる請求項2に記載の車両。

  4.  前記初期モータアシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期モータアシスト特性領域が1.5秒から2.5秒の時間間隔を有する請求項3に記載の車両。

  5.  前記モータアシスト制御が実行された後、所定時間の間、次のモータアシスト制御の実行を禁止するモータアシスト制御禁止決定部が備えられている請求項1から4のいずれか一項に記載の車両。

  6.  前記内燃機関はコモンレール方式で駆動され、前記負荷情報生成部は、コモンレール制御情報に基づいて前記負荷情報を生成する請求項1から5のいずれか一項に記載の車両。

  7.  前記負荷情報生成部は、前記内燃機関の回転数挙動に基づいて前記負荷情報を生成する請求項1から5のいずれか一項に記載の車両。

  8.  動力伝達手段を介して走行装置と作業装置とに駆動力を供給する内燃機関と、

     前記動力伝達手段に動力を出力することで前記内燃機関をアシストするモータジェネレータと、

     前記モータジェネレータによって充電電力を受けるとともに前記モータジェネレータに駆動電力を与えるバッテリと、

     前記内燃機関が受ける突発的な回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、

     前記突発的な回転負荷の増大に対して前記モータジェネレータを用いて前記内燃機関をアシストするアシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を前記負荷情報に基づいて決定するアシスト特性決定部と、

     前記モータジェネレータを前記アシスト特性に基づいて制御するモータ制御ユニットとを備えた車両。

  9.  前記アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行を禁止するアシスト制御禁止決定部が備えられている請求項8に記載の車両。

  10.  前記動力伝達手段には変速制御ユニットを通じて変速比の調整が可能な変速装置が含まれており、かつ

     前記変速制御ユニットには前記回転負荷による前記内燃機関の負荷増大を軽減するように前記変速比を変更する負荷追従変速比制御を実行する負荷追従変速比制御部が含まれており、前記負荷追従変速比制御は前記アシスト制御と選択的に実行されるか、あるいは少なくとも部分的に前記アシスト制御と混在して実行される請求項8または9に記載の車両。

  11.  前記アシスト制御は前記負荷追従変速比制御に先立って実行される請求項10に記載の車両。

  12.  前記アシスト特性が、所定時間一定のアシスト量を維持させる初期アシスト特性領域とアシスト量を零まで経時的に減少させる終期アシスト特性領域とからなる請求項8から11のいずれか一項に記載の車両。

  13.  前記初期アシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期アシスト特性領域が1.5秒から2.5秒の時間間隔を有する請求項12に記載の車両。

  14.  前記アシスト特性は基準アシスト量に対する比率と経過時間とを変数とする関数をマップ化したものであり、負荷情報から得られる負荷量によって選択可能に複数用意されており、選択したマップから導出された比率に前記基準アシスト量を乗じることでアシスト量が算定される請求項8から13のいずれか一項に記載の車両。

  15.  前記内燃機関はコモンレール方式で駆動され、前記負荷情報生成部は、コモンレール制御情報に基づいて前記負荷情報を生成する請求項8から14のいずれか一項に記載の車両。

  16.  前記負荷情報生成部は、前記内燃機関の回転数挙動に基づいて前記負荷情報を生成する請求項8から14のいずれか一項に記載の車両。

  17.  動力伝達手段を介して走行装置に駆動力を供給するエンジンと、

     前記エンジンのエンジン回転数を設定するエンジン制御ユニットと、

     前記動力伝達手段に設けられた変速装置と、

     前記変速装置の変速比を調整する変速制御ユニットと、

     前記動力伝達手段に動力を出力することで前記エンジンをアシストするモータユニットと、

     前記エンジンが受ける回転負荷の増大を表す負荷情報を生成する負荷情報生成部と、

     前記負荷情報に基づいて前記モータユニットから前記動力伝達手段に動力を出力するアシスト制御を行うモータ制御ユニットと、

     前記モータユニットに駆動電力を与えるバッテリと、

     運転者の操作により操作指令を送出する操作器が備えられ、

     前記操作指令に基づいて前記エンジン制御ユニットで設定されているエンジン回転数を所定量だけ低減させる回転数低下指令を前記エンジン制御ユニットに与えるとともに、車両速度を維持するために当該回転数低下指令によるエンジン回転数の低下を補償するように変速比の変更を前記変速制御ユニットに要求する変速比変更指令を与える変速モジュールと、

    を備えた車両。

  18.  前記回転数低下指令が前記エンジン制御ユニットに与えられた後に発生する回転負荷の増大に対して、前記アシスト制御が行われる請求項17に記載の車両。

  19.  前記モータユニットはモータジェネレータとして構成され、前記バッテリは前記モータジェネレータから充電電力を受けることができる請求項17または18に記載の車両。

  20.  前記アシスト制御におけるアシスト量とアシスト時間を規定するアシスト特性を前記負荷情報に基づいて決定するアシスト特性決定部が備えられ、前記モータ制御ユニットは前記アシスト特性に基づいて前記モータユニットによるアシスト制御を行う請求項17から19のいずれか一項に記載の車両。

  21.  前記アシスト特性が、所定時間一定のアシスト量を維持する初期アシスト特性領域とアシスト量を零まで経時的に減少させる終期アシスト特性領域とからなる請求項17から20のいずれか一項に記載の車両。

  22.  前記初期アシスト特性領域が1.5秒から2.5秒の時間間隔を有し、前記終期アシスト特性領域が1.5秒から2.5秒の時間間隔を有する請求項21に記載の車両。

  23.  前記アシスト制御が実行された後、所定時間の間、次のアシスト制御の実行が禁止される請求項17から22のいずれか一項に記載の車両。

  24.  前記負荷情報に基づいてエンジン負荷が所定レベルを超えたかどうかを判定する負荷判定部が備えられ、アシスト制御の禁止期間において前記所定レベルを越えるエンジン負荷が判定された場合、前記操作指令に基づくエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令が出力される請求項23に記載の車両。

  25.  前記操作器は、前記操作指令に基づくエンジン回転数の低下及び補償変速比の変更を取り消すための戻し操作指令の送出が可能である請求項17から24のいずれか一項に記載の車両。

  26.  動力伝達手段を介して走行装置に動力を供給する、少なくともエンジンを含む原動機ユニットと、

     前記エンジンのエンジン回転数を設定するエンジン制御ユニットと、

     前記動力伝達手段に設けられた変速装置と、

     前記変速装置の変速比を調整する変速制御ユニットと、

     前記原動機ユニットから供給される動力の回転数によって作動油供給量が変化する油圧ポンプと、

     前記油圧ポンプから供給される作動油によって駆動する油圧駆動機器と、

     前記油圧駆動機器を操作する油圧操作具と、

     前記油圧駆動機器に対する操作情報に基づいて前記油圧駆動機器が必要とする必要作動油量を算定する必要作動油量算定部と、

     前記必要作動油量に基づいて前記油圧駆動機器に対する作動油供給不足が判定された場合に、前記エンジン制御ユニットで設定されているエンジン回転数を増加させるエンジン回転数増加指令を前記エンジン制御ユニットに与える回転数増加指令生成部と、

     作業車速度を維持するために前記エンジン回転数増加指令によるエンジン回転数の増加を相殺するように変速比を変更させる変速比変更指令を前記変速制御ユニットに与える変速比変更指令生成部と、

    を備えた車両。

  27.  前記必要作動油量算定部は前記操作情報に含まれている前記油圧操作具の操作入力に基づいて前記必要作動油量を算定する請求項26に記載の車両。

  28.  エンジン回転数を低下させても前記作動油供給不足が解消される場合に、前記エンジン回転数増加指令を取り消すエンジン回転数戻し指令が前記エンジン制御ユニットに与えられ、かつ

     作業車速度を維持するために前記エンジン回転数戻し指令によるエンジン回転数の減少を相殺するように変速比を変更させる変速比変更指令が前記変速制御ユニットに与えられる請求項26または27に記載の車両。

  29.  前記変速装置は無段変速装置を含み、前記エンジン回転数増加指令及び前記エンジン回転数戻し指令は前記無段変速装置を対象とする請求項26から28のいずれか一項に記載の車両。

  30.  前記変速装置は道路走行用変速段と作業用変速段とを備えた多段変速装置を含み、前記道路走行用変速段に切り換えられている場合、前記エンジン回転数増加指令によるエンジン回転数の増加が禁止される請求項26から29のいずれか一項に記載の車両。

  31.  前記原動機ユニットには、前記エンジンをアシストするモータユニットが備えられている請求項26から30のいずれか一項に記載の車両。
PCT/JP2013/057227 2012-09-24 2013-03-14 車両 WO2014045613A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/342,854 US9776615B2 (en) 2012-09-24 2013-03-14 Vehicle
KR1020167026782A KR101811975B1 (ko) 2012-09-24 2013-03-14 차량
CN201380011171.8A CN104125904B (zh) 2012-09-24 2013-03-14 车辆
KR1020147022489A KR101662645B1 (ko) 2012-09-24 2013-03-14 차량
EP13839482.0A EP2899082B1 (en) 2012-09-24 2013-03-14 Vehicle

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012210088A JP2014065348A (ja) 2012-09-24 2012-09-24 ハイブリッド車両
JP2012-210087 2012-09-24
JP2012210087A JP2014065347A (ja) 2012-09-24 2012-09-24 ハイブリッド作業車
JP2012-210089 2012-09-24
JP2012-210088 2012-09-24
JP2012210089A JP5921998B2 (ja) 2012-09-24 2012-09-24 ハイブリッド作業車
JP2012215235A JP6066649B2 (ja) 2012-09-27 2012-09-27 作業車
JP2012-215235 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014045613A1 true WO2014045613A1 (ja) 2014-03-27

Family

ID=50340946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057227 WO2014045613A1 (ja) 2012-09-24 2013-03-14 車両

Country Status (5)

Country Link
US (1) US9776615B2 (ja)
EP (1) EP2899082B1 (ja)
KR (2) KR101662645B1 (ja)
CN (1) CN104125904B (ja)
WO (1) WO2014045613A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014457A1 (de) * 2013-08-30 2015-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Antrieb eines Kraftfahrzeuges sowie Antriebssystem für ein Kraftfahrzeug
DE102015208077A1 (de) * 2015-04-30 2016-11-03 Deere & Company Generatoreinheit
US11247552B2 (en) 2015-08-03 2022-02-15 Cummins, Inc. Systems and methods of energy management and control of an electrified powertrain
WO2017027332A1 (en) 2015-08-07 2017-02-16 Cummins, Inc. Systems and methods of battery management and control for a vehicle
DE102015215818A1 (de) * 2015-08-19 2017-02-23 Zf Friedrichshafen Ag Antriebsstrang eines Mobilfahrzeugs
US10435007B2 (en) 2015-09-23 2019-10-08 Cummins, Inc. Systems and methods of engine stop/start control of an electrified powertrain
CN108883734B (zh) 2015-12-10 2021-11-19 康明斯有限公司 车辆配件的能量管理与控制的***和方法
DE102016209756A1 (de) * 2016-06-03 2017-12-07 Voith Patent Gmbh Ermittlung eines Füllstandes bei einer hydrodynamischen Kupplung
JP6548609B2 (ja) * 2016-06-13 2019-07-24 株式会社クボタ 作業車
JP6408171B2 (ja) * 2016-07-22 2018-10-17 新電元工業株式会社 ハイブリッド車両の制御装置および制御方法
JP6736442B2 (ja) * 2016-09-29 2020-08-05 本田技研工業株式会社 変速操作検出装置
DE102016221311A1 (de) * 2016-10-28 2018-05-03 Deere & Company Landwirtschaftliches Nutzfahrzeug mit Zapfwelle und Verfahren zum Antrieb der Zapfwelle
US10486681B2 (en) * 2017-01-13 2019-11-26 Ford Global Technologies, Llc Method and system for torque management in hybrid vehicle
US10404137B2 (en) * 2017-10-24 2019-09-03 Deere & Company Off-board power and implement coupler for a work vehicle
JP6676676B2 (ja) * 2018-02-22 2020-04-08 本田技研工業株式会社 電動車両および電動車両用制御装置
US11345327B2 (en) * 2018-08-06 2022-05-31 Xl Hybrids, Inc. Throttle signal controller for a dynamic hybrid vehicle
CN109353341A (zh) * 2018-09-29 2019-02-19 潍柴动力股份有限公司 降低矿车***油耗的方法和矿车***
US11046303B2 (en) * 2019-03-12 2021-06-29 Ford Global Technologies, Llc Methods and system for starting a hybrid vehicle
DE102019206829A1 (de) * 2019-05-10 2020-11-12 Deere & Company Antriebssystem für eine Erntemaschine
JP7171517B2 (ja) * 2019-06-28 2022-11-15 株式会社クボタ 作業機
GB2586156A (en) * 2019-08-08 2021-02-10 Caterpillar Inc Method for operating steering systems and propulsion systems of track-type machines
JP7275024B2 (ja) * 2019-12-27 2023-05-17 株式会社クボタ 作業車両
JP7238823B2 (ja) * 2020-02-07 2023-03-14 トヨタ自動車株式会社 車両用制御装置
CN111226613B (zh) * 2020-02-28 2021-08-03 江苏大学 一种切纵流脱粒装置的混合动力传动***及方法和收获机
DE102020112433A1 (de) * 2020-05-07 2021-11-11 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325736A (ja) 1991-04-26 1992-11-16 Hino Motors Ltd 車両用バッテリの上り防止方法
JPH05338474A (ja) 1992-06-10 1993-12-21 Yanmar Agricult Equip Co Ltd 移動農機
JP2002252904A (ja) 2001-02-26 2002-09-06 Hino Motors Ltd ハイブリッド動力装置
JP2006046576A (ja) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd ハイブリッド車のモータ発熱回避制御装置
JP2011073573A (ja) * 2009-09-30 2011-04-14 Jatco Ltd 電動駆動ユニット
JP2011194985A (ja) * 2010-03-18 2011-10-06 Aisin Seiki Co Ltd ハイブリッド車両の制御装置
JP2012162248A (ja) 2011-01-20 2012-08-30 Kubota Corp 変速制御システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788146B2 (ja) 1988-10-07 1995-09-27 株式会社クボタ 作業車両用変速装置
JP2608997B2 (ja) 1991-02-08 1997-05-14 日立建機株式会社 油圧建設機械の駆動制御装置
JP2749733B2 (ja) 1991-11-08 1998-05-13 日立建機株式会社 油圧建設機械の油圧制御装置
JP2000097056A (ja) 1998-09-16 2000-04-04 Sumitomo Constr Mach Co Ltd 建設機械のエンジン回転数制御装置
JP3613216B2 (ja) * 2001-09-18 2005-01-26 日産自動車株式会社 ハイブリッド車両の制御装置
JP4258505B2 (ja) 2005-08-25 2009-04-30 パナソニック電工株式会社 給電システム
US7921945B2 (en) 2006-02-21 2011-04-12 Clean Emissions Technologies, Inc. Vehicular switching, including switching traction modes and shifting gears while in electric traction mode
JP4215070B2 (ja) * 2006-04-26 2009-01-28 トヨタ自動車株式会社 車両用駆動装置の制御装置
US8534399B2 (en) * 2007-02-21 2013-09-17 Ford Global Technologies, Llc Hybrid propulsion system
US8408341B2 (en) 2007-07-12 2013-04-02 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
JP4743218B2 (ja) 2008-03-03 2011-08-10 日産自動車株式会社 ハイブリッド車両のクラッチ制御装置
JP4325736B1 (ja) 2008-04-28 2009-09-02 パナソニック株式会社 ドラム式洗濯機
US8178267B2 (en) 2008-05-23 2012-05-15 Konica Minolta Business Technologies, Inc. Electrophotographic toner
US8430789B2 (en) 2009-01-08 2013-04-30 Aisin Aw Co., Ltd. Vehicle control device
DE102009021456A1 (de) * 2009-05-15 2010-11-25 Daimler Ag Verfahren zur Steuerung eines Getriebes in einem Hybridfahrzeug
US9296290B2 (en) * 2010-03-26 2016-03-29 Ford Global Technologies, Llc Multiple-ratio transmission downshift strategy for hybrid electric vehicle powertrains
JP5691389B2 (ja) * 2010-10-25 2015-04-01 日産自動車株式会社 ハイブリッド車両の制御装置
JP5462829B2 (ja) 2011-03-30 2014-04-02 株式会社日立製作所 電動機の軸受部構造
JP5425132B2 (ja) 2011-03-30 2014-02-26 三菱電機株式会社 回転電機
JP2012210089A (ja) 2011-03-30 2012-10-25 Tokyo Electric Power Co Inc:The 落下防止具
JP5798773B2 (ja) 2011-03-31 2015-10-21 株式会社パイオラックス ボルトクリップ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325736A (ja) 1991-04-26 1992-11-16 Hino Motors Ltd 車両用バッテリの上り防止方法
JPH05338474A (ja) 1992-06-10 1993-12-21 Yanmar Agricult Equip Co Ltd 移動農機
JP2002252904A (ja) 2001-02-26 2002-09-06 Hino Motors Ltd ハイブリッド動力装置
JP2006046576A (ja) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd ハイブリッド車のモータ発熱回避制御装置
JP2011073573A (ja) * 2009-09-30 2011-04-14 Jatco Ltd 電動駆動ユニット
JP2011194985A (ja) * 2010-03-18 2011-10-06 Aisin Seiki Co Ltd ハイブリッド車両の制御装置
JP2012162248A (ja) 2011-01-20 2012-08-30 Kubota Corp 変速制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899082A4 *

Also Published As

Publication number Publication date
KR101811975B1 (ko) 2018-01-25
US20160046278A1 (en) 2016-02-18
KR20140112551A (ko) 2014-09-23
CN104125904A (zh) 2014-10-29
EP2899082A1 (en) 2015-07-29
EP2899082A4 (en) 2017-03-15
EP2899082B1 (en) 2021-01-20
US9776615B2 (en) 2017-10-03
KR101662645B1 (ko) 2016-10-14
CN104125904B (zh) 2017-08-08
KR20160119257A (ko) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2014045613A1 (ja) 車両
US9561789B2 (en) Hybrid work vehicle
JP5921998B2 (ja) ハイブリッド作業車
CN101544230B (zh) 混合制动电动车的混合档位状态和/或输入速度的优选
JP6416787B2 (ja) 作業車両及びその制御方法
JP5703138B2 (ja) 変速制御システム
JP6327846B2 (ja) 作業車両及びその制御方法
JP2013203234A (ja) ハイブリッド作業車
WO2015068861A1 (ja) 作業車両及びその制御方法
JP2014065347A (ja) ハイブリッド作業車
JP5906575B2 (ja) 無段変速機の制御装置
JP2013203377A (ja) 車両
JP2014065348A (ja) ハイブリッド車両
JP6066649B2 (ja) 作業車
JP6059268B2 (ja) 変速制御システム
JP2013203235A (ja) ハイブリッド作業車
JP2006214538A (ja) 電動モータ式4輪駆動車両における発電機出力制御装置
JP2009024522A (ja) 作業車両
JP2013177927A (ja) 作業車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14342854

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022489

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013839482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE