WO2014045553A1 - 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板 - Google Patents

低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板 Download PDF

Info

Publication number
WO2014045553A1
WO2014045553A1 PCT/JP2013/005434 JP2013005434W WO2014045553A1 WO 2014045553 A1 WO2014045553 A1 WO 2014045553A1 JP 2013005434 W JP2013005434 W JP 2013005434W WO 2014045553 A1 WO2014045553 A1 WO 2014045553A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
content
amount
steel
wear resistance
Prior art date
Application number
PCT/JP2013/005434
Other languages
English (en)
French (fr)
Inventor
進一 三浦
植田 圭治
石川 信行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201380048590.9A priority Critical patent/CN104662193B/zh
Priority to KR1020157005646A priority patent/KR20150036798A/ko
Priority to AU2013319622A priority patent/AU2013319622B2/en
Priority to EP13838200.7A priority patent/EP2873747B1/en
Priority to JP2014510589A priority patent/JP5648769B2/ja
Priority to BR112015005986A priority patent/BR112015005986B1/pt
Priority to MX2015003378A priority patent/MX370891B/es
Priority to US14/429,499 priority patent/US9982331B2/en
Priority to IN769DEN2015 priority patent/IN2015DN00769A/en
Publication of WO2014045553A1 publication Critical patent/WO2014045553A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an abrasion-resistant steel plate suitable for parts such as industrial machines and transportation equipment.
  • the wear-resistant steel plate of the present invention is excellent in low temperature toughness (low temperature toughness), and is particularly suitable for use in parts applied in places where wear (or wear a brasion) is a problem. About.
  • parts such as excavators, bulldozers, hoppers, buckets, dump trucks, etc. used in construction, civil engineering, mining, etc., and parts such as transportation equipment, are earth and sand (earth and sand) etc. Wear is caused by contact. For this reason, when manufacturing the said parts, the steel material excellent in abrasion resistance is used for the purpose of the lifetime extension.
  • various conditions such as dryness and wetness are assumed for earth and sand.
  • earth and sand in a wet state may contain corrosive substances.
  • the abrasion due to the soil and the like in a wet state is abrasion in an environment containing a corrosive substance, so-called corrosion abrasion.
  • Corrosion wear is known to be extremely severe as a wear environment, and a wear resistant steel material having excellent corrosion wear resistance is desired.
  • Patent Document 1 includes C: 0.30 to 0.50% by mass and contains appropriate amounts of Si, Mn, Al, N, Ti, Nb, and B. Further, after hot-rolling a steel slab containing Cr: 0.10 to 0.50% and Mo: 0.05 to 1.00%, it was quenched from a temperature not lower than the Ar 3 transformation point. There has been proposed a method for producing a high hardness wear resistant steel excellent in low temperature toughness by tempering to obtain a high strength wear resistant steel. In the technique described in Patent Document 1, it is supposed that by containing a large amount of Cr and Mo, the hardenability is improved and the grain boundaries are strengthened to improve the low temperature toughness. Moreover, in the technique described in patent document 1, it is supposed that low temperature toughness will improve further by performing a tempering process.
  • Patent Document 2 includes, in mass%, C: 0.18 to 0.25%, Si: 0.10 to 0.30%, Mn: 0.03 to 0.10%, Nb, Al Toughness and delayed fracture after water quenching and tempering treatment, containing appropriate amounts of N, B and Cr: 1.00 to 2.00% and Mo: more than 0.50 to 0.80% High tough wear-resistant steel sheets with excellent characteristics have been proposed.
  • N, B and Cr 1.00 to 2.00%
  • Mo more than 0.50 to 0.80%
  • High tough wear-resistant steel sheets with excellent characteristics have been proposed.
  • the technique described in Patent Document 2 by suppressing the Mn content and containing a large amount of Cr and Mo, the hardenability is improved, the predetermined hardness can be secured, and the toughness and delayed fracture resistance are improved. If so.
  • Patent Document 3 in mass%, C: 0.30 to 0.45%, Si: 0.10 to 0.50%, Mn: 0.30 to 1.20%, Cr: 0.50 To 1.40%, Mo: 0.15 to 0.55%, B: 0.0005 to 0.0050%, sol.
  • a high tough wear-resistant steel containing Al: 0.015 to 0.060% and further containing an appropriate amount of Nb and / or Ti has been proposed. According to the technique described in Patent Document 3, it is supposed that by containing a large amount of Cr and Mo, the hardenability is improved and the grain boundaries are strengthened to improve the low temperature toughness.
  • Patent Document 4 the proper amounts of Si, Mn, Ti, B, Al, and N, such as C: 0.05 to 0.40% and Cr: 0.1 to 2.0% in mass%, are described.
  • a steel having a composition that may further contain Cu, Ni, Mo, and V as an optional component is hot-rolled at a cumulative reduction of 50% or more in an austenite non-recrystallized region at 900 ° C. or lower, and then Ar 3 points From the above, a method for producing wear-resistant steel that has been quenched and then tempered has been proposed. According to this technology, the low temperature toughness is remarkably improved by directly quenching and tempering the structure in which the austenite grains are expanded to obtain a tempered martensite structure in which the prior austenite grains are expanded.
  • Patent Document 5 by mass, C: 0.10 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, W: 0.10 -1.40%, B: 0.0003-0.0020%, and further having a composition containing Ti: 0.005-0.10% and / or Al: 0.035-0.1%, A wear-resistant steel sheet having excellent low-temperature toughness has been proposed.
  • one or more of Cu, Ni, Cr, and V may be contained.
  • the technique described in Patent Document 5 has high surface hardness, excellent wear resistance, and excellent low-temperature toughness.
  • Patent Document 6 describes a wear-resistant steel plate having excellent bending workability.
  • the wear-resistant steel sheet described in Patent Document 6 contains C: 0.05 to 0.30%, Ti: 0.1 to 1.2% by mass%, and the amount of solute C is 0.03%.
  • This is a wear-resistant steel sheet having the following composition, having a matrix in which the matrix is a ferrite phase and a hard phase is dispersed in the matrix.
  • it is supposed that both the abrasion resistance with respect to earth and sand abrasion and a bending workability will improve, without accompanying the remarkable raise of hardness.
  • each technique described in Patent Documents 1 to 5 aims to have low temperature toughness and wear resistance.
  • the technique described in Patent Document 6 aims to combine bending workability and wear resistance.
  • each technique described in Patent Documents 1 to 4 requires tempering, and there is a problem that the manufacturing cost increases.
  • the technique described in Patent Document 5 contains W as an essential component, and there is a problem that the manufacturing cost increases.
  • the technique described in Patent Document 6 has ferrite as a main phase, has a low surface hardness, and has insufficient wear resistance.
  • An object of the present invention is to solve the problems of the prior art, and to provide a wear-resistant steel sheet that is inexpensive, excellent in wear resistance, excellent in low temperature toughness and excellent in corrosion wear resistance.
  • the present inventors have intensively studied the influence of various factors on wear resistance, low temperature toughness, and corrosion wear resistance.
  • a composition containing an appropriate amount of Cr and / or Mo is required, and by adjusting the amount of solute Cr in steel and the amount of solute Mo in steel so as to satisfy the following formula (1), It has been found that corrosion wear is improved.
  • the present inventors contain Cr and / or Mo in an appropriate amount essential, and further improve hardenability by adjusting to a composition containing an appropriate amount of at least C, Si, Mn, P, S, Al, It has been found that excellent low temperature toughness can be ensured by securing a structure having a martensite phase as a main phase as-quenched with a prior austenite ( ⁇ ) grain size of 30 ⁇ m or less.
  • the present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.10 to 0.20%, Si: 0.05 to 1.00%, Mn: 0.1 to 2.0%, P: 0.020% or less, S: 0.005% or less, Al: 0.005 to 0.100%, and one selected from Cr: 0.05 to 2.0% and Mo: 0.05 to 1.0% Or, including two types, the amount of solute Cr in steel and the amount of solute Mo in steel satisfy the following formula (1), and has a component composition consisting of the balance Fe and inevitable impurities, With the martensite phase as quenched as the main phase, the prior austenite grain size is 30 ⁇ m or less, Furthermore, a wear-resistant steel sheet having excellent low-temperature toughness and corrosion wear resistance, characterized in that the surface hardness is 360 or more with Brinell hardness HBW10 / 3000.
  • a worn steel plate can be manufactured easily and stably.
  • C 0.10 to 0.20% C is an important element for increasing the hardness of the steel sheet and improving the wear resistance. If the C content is less than 0.10%, sufficient hardness cannot be obtained. On the other hand, when the content of C exceeds 0.20%, weldability, low temperature toughness and workability are deteriorated. Therefore, the C content is limited to the range of 0.10 to 0.20%. Preferably, the content is 0.14 to 0.17%.
  • Si 0.05 to 1.00%
  • Si is an effective element that acts as a deoxidizer for molten steel.
  • Si is an element that contributes effectively to improving the strength of the steel sheet by solid solution strengthening.
  • the Si content is 0.05% or more. If the Si content is less than 0.05%, the deoxidation effect cannot be sufficiently obtained.
  • the Si content exceeds 1.0%, ductility and toughness are lowered, and the amount of inclusions in the steel sheet is increased. Therefore, the Si content is limited to the range of 0.05 to 1.0%. Note that the content is preferably 0.2 to 0.5%.
  • Mn 0.1 to 2.0%
  • Mn is an effective element having an effect of improving hardenability. In order to secure such an effect, the Mn content is set to 0.1% or more. On the other hand, if the Mn content exceeds 2.0%, the weldability is lowered. Therefore, the Mn content is limited to the range of 0.1 to 2.0%. It is preferably 0.4 to 1.6%, more preferably 0.7 to 1.4%.
  • P 0.020% or less
  • P is desirably reduced as much as possible because it causes a decrease in low-temperature toughness when contained in a large amount in steel.
  • the P content is acceptable up to 0.020%. For this reason, the content of P is limited to 0.020% or less.
  • the P content is 0.005% or more.
  • S 0.005% or less S is precipitated as MnS when contained in a large amount in steel.
  • MnS becomes a starting point of fracture occurrence and causes deterioration of toughness. For this reason, it is desirable to reduce S as much as possible.
  • the S content is acceptable up to 0.005%. For this reason, the S content is limited to 0.005% or less.
  • the content of S is preferably set to 0.0005% or more.
  • Al 0.005 to 0.100%
  • Al is an effective element that acts as a deoxidizer for molten steel.
  • Al contributes to the improvement of low temperature toughness by refining crystal grains.
  • the Al content is set to 0.005% or more. If the Al content is less than 0.005%, these effects cannot be obtained sufficiently. On the other hand, if the Al content exceeds 0.100%, the weldability decreases. Therefore, the Al content is limited to the range of 0.005 to 0.100%. Preferably, the content is 0.015 to 0.050%.
  • Cr has the effect of improving the low temperature toughness by increasing the hardenability and refining the martensite phase. For this reason, Cr is an important element in the present invention. Also, in a corrosive wear environment where contact with wet soil and the like becomes a problem, Cr elutes as Cr acid ions by the anode reaction and suppresses corrosion by an inhibitor effect, thereby improving the corrosion wear resistance. Has an effect. In order to obtain such an effect, the Cr content is 0.05% or more. If the Cr content is less than 0.05%, such an effect cannot be exhibited sufficiently. On the other hand, when the content of Cr exceeds 2.0%, weldability is lowered and the manufacturing cost is increased. Therefore, the Cr content is limited to the range of 0.05 to 2.0%. In addition, Preferably, it is 0.07 to 1.20% of range.
  • Mo has the effect of improving the low temperature toughness by increasing the hardenability and refining the martensite phase. For this reason, Mo is an important element in the present invention. Also, in a corrosive wear environment where contact with wet soil and the like becomes a problem, Mo elutes as Mo acid ions by the anodic reaction and suppresses corrosion by an inhibitor effect, thereby improving the corrosion wear resistance. Has an effect. In order to obtain such an effect, the Mo content is 0.05% or more. If the Mo content is less than 0.05%, such an effect cannot be exhibited sufficiently. On the other hand, if the Mo content exceeds 1.0%, the weldability is lowered and the manufacturing cost is increased. Therefore, the Mo content is limited to the range of 0.05 to 1.0%. Preferably, the content is 0.10 to 0.50%.
  • the present invention contains Cr and Mo in the above-mentioned range, and further the amount of solid solution Cr in steel and the amount of solid solution Mo in steel are the following formula (1) 0.05 ⁇ (Crsol + 2.5Mosol) ⁇ 2.0 (1) (Here, Crsol: solute Cr amount in steel (mass%), Mosol: solute Mo amount in steel (mass%)) make adjustments to satisfy When Cr and Mo form carbides and precipitate as precipitates, the amount of solid solution Cr and the amount of solid solution Mo decrease around the precipitate. For this reason, the inhibitor effect described above is reduced, and the corrosion wear resistance is lowered.
  • the amount of solute Cr in steel (Crsol) and the amount of solute Mo in steel (Mosol) are adjusted so as to satisfy the above formula (1).
  • (Crsol + 2.5 Mosol) needs to be 0.05 or more.
  • (Crsol + 2.5Mosol) exceeds 2.0, the effect is saturated and the manufacturing cost increases.
  • (Crsol + 2.5 Mosol) is preferably 0.10 to 1.0.
  • the solid solution Cr amount and the solid solution Mo amount can be calculated by the following method. Steel is electrolytically extracted in a 10% acetylacetone electrolytic solution, and the resulting extraction residue (precipitate) is analyzed by ICP emission spectroscopy. Here, the amount of Cr contained in the extraction residue is determined as the amount of precipitated Cr, and the amount of Mo contained in the extraction residue is determined as the amount of precipitated Mo. By subtracting this quantitative value from the total Cr amount and the total Mo amount, respectively, the solid solution Cr amount and the solid solution Mo amount are obtained.
  • the amount of solid solution Cr and the amount of solid solution Mo it is necessary to suppress the precipitation of carbides and the like as much as possible. It is necessary to control the amount and Ti amount. Specifically, for example, the time during which precipitation of Cr or Mo carbides or the like is maintained (500 ° C. to 800 ° C.) is shortened as much as possible, or Nb or Ti that forms carbides more easily than Cr or Mo. It is desirable to add.
  • Nb 0.005-0.1%
  • Ti 0.005-0.1%
  • V 0.005-0.1% 1 or 2 or more types selected from among these and / or Sn: 0.005 to 0.2%
  • Sb 1 or 2 types selected from 0.005 to 0.2%
  • Ca 0.0005 to 0.005%
  • Mg One or more selected from 0.0005 to 0.005% Can be contained.
  • Nb 0.005 to 0.1%
  • Ti 0.005 to 0.1%
  • V 0.005 to 0.1%
  • Nb 0.005 to 0.1%
  • Ti and V All are elements that precipitate as precipitates such as carbonitride and improve toughness through refinement of the structure.
  • the 1 type (s) or 2 or more types chosen from Nb, Ti, and V can be contained as needed.
  • Nb is an element that precipitates as carbonitride and contributes effectively to improving toughness through refinement of the structure.
  • the Nb content is preferably 0.005% or more.
  • the Nb content is preferably limited to a range of 0.005 to 0.1%. From the viewpoint of fine structure, the Nb content is more preferably in the range of 0.012 to 0.03%.
  • Ti is an element that precipitates as TiN and contributes to improvement of toughness through fixation of solute N.
  • the Ti content is preferably 0.005% or more.
  • the Ti content is preferably limited to a range of 0.005 to 0.1%. From the viewpoint of cost reduction, the Ti content is more preferably limited to a range of 0.005 to 0.03%.
  • V is an element that precipitates as carbonitride and contributes to improvement of toughness through the effect of refining the structure.
  • the V content is preferably 0.005% or more.
  • the V content is preferably limited to a range of 0.005 to 0.1%.
  • Sn and Sb are both elements that improve corrosion wear resistance.
  • 1 type or 2 types chosen from Sn and Sb can be contained as needed.
  • the Sn content is preferably 0.005% or more.
  • the Sn content is preferably limited to a range of 0.005 to 0.2%. In view of reducing the number of playing elements, the Sn content is more preferably in the range of 0.005 to 0.1%.
  • the Sb suppresses the corrosion of the steel sheet by suppressing the anode reaction of the steel sheet and the hydrogen generation reaction, which is a cathode reaction, and improves the corrosion wear resistance.
  • the Sb content is preferably 0.005% or more.
  • the Sb content is preferably in the range of 0.005 to 0.2%. More preferably, it is 0.005 to 0.1%.
  • One or more selected from Cu: 0.03-1.0%, Ni: 0.03-2.0%, B: 0.0003-0.0030% Cu, Ni, B are Both are elements that improve hardenability.
  • the 1 type (s) or 2 or more types chosen from Cu, Ni, and B can be contained as needed.
  • the Cu is an element that contributes to improving hardenability.
  • the Cu content is preferably 0.03% or more.
  • the Cu content exceeds 1.0%, the hot workability is lowered and the manufacturing cost is also increased.
  • the Cu content is preferably limited to a range of 0.03 to 1.0%. From the viewpoint of reducing the cost, the Cu content is more preferably limited to a range of 0.03 to 0.5%.
  • Ni is an element that improves hardenability and contributes to low temperature toughness.
  • the Ni content is preferably 0.03% or more.
  • the Ni content exceeds 2.0%, the manufacturing cost is increased. Therefore, when Ni is contained, the Ni content is preferably limited to a range of 0.03 to 2.0%. From the viewpoint of reducing the cost, it is more preferable to limit the Ni content to a range of 0.03 to 0.5%.
  • the B is an element that contributes to improving the hardenability when contained in a small amount.
  • the B content is preferably 0.0003% or more.
  • the B content is preferably limited to a range of 0.0003 to 0.0030%. From the viewpoint of suppressing low-temperature cracking in a low heat input weld such as CO 2 welding generally used for welding of wear-resistant steel plates, the B content is in the range of 0.0003 to 0.0015%. More preferably, it is limited.
  • REM 0.0005 to 0.008%
  • Ca 0.0005 to 0.005%
  • Mg One or more selected from 0.0005 to 0.005% REM, Ca, Mg are All are elements that combine with S to generate sulfide inclusions, and thus are elements that suppress the generation of MnS.
  • the 1 type (s) or 2 or more types chosen from REM, Ca, and Mg can be contained as needed.
  • the REM content is preferably 0.0005% or more.
  • the content of REM exceeds 0.008%, the amount of inclusions in the steel increases, which leads to a decrease in toughness. Therefore, when REM is contained, the REM content is preferably limited to a range of 0.0005 to 0.008%. More preferably, it is 0.0005 to 0.0020%.
  • the Ca content is preferably 0.0005% or more.
  • the content of Ca exceeds 0.005%, the amount of inclusions in the steel increases, which leads to a decrease in toughness.
  • the Ca content is preferably limited to a range of 0.0005 to 0.005%. More preferably, the content is 0.0005 to 0.0030%.
  • the Mg fixes S and suppresses the generation of MnS that causes a decrease in toughness.
  • the Mn content is preferably 0.0005% or more.
  • the Mg content is preferably limited to a range of 0.0005 to 0.005%. More preferably, the content is 0.0005 to 0.0040%.
  • the wear-resistant steel sheet of the present invention has the above-described composition, has a structure in which the martensite phase is the main phase as quenched and the prior austenite ( ⁇ ) grain size is 30 ⁇ m or less.
  • the “main phase” refers to a phase occupying 90% or more in area ratio.
  • As-quenched martensite phase 90% or more in area ratio If the phase fraction of the as-quenched martensite phase is less than 90% in area ratio, the desired hardness cannot be secured, the wear resistance is lowered, and the desired resistance to resistance. Abrasion cannot be ensured. Moreover, sufficient low temperature toughness cannot be ensured. In tempered martensite, Cr and Mo form carbide together with Fe when cementite is produced by tempering, and the amount of solid solution Cr and Mo effective for ensuring corrosion resistance is reduced. For this reason, the martensite phase is made martensite as it is without quenching.
  • the area ratio of martensite as it is quenched is preferably 95% or more.
  • Old ⁇ particle size 30 ⁇ m or less Even if the martensite phase can be kept 90% or more in the area ratio as quenched, if the old ⁇ particle size exceeds 30 ⁇ m and becomes coarse, the low temperature toughness is also lowered.
  • the old ⁇ particle diameter is obtained by observing the structure corroded with the picric acid corrosive solution with an optical microscope (magnification: 400 times) and using the value obtained in accordance with the provisions of JIS G 0551.
  • the wear-resistant steel sheet of the present invention having the composition and structure described above has a Brinell hardness HBW of 10/3000 and is 360 or more.
  • Brinell hardness 360 or more with Brinell hardness HBW10 / 3000
  • the life as a wear-resistant steel sheet is shortened.
  • Brinell hardness shall be measured based on prescription
  • the steel material having the above composition When the steel material having the above composition is maintained at a predetermined temperature, the steel material is either not cooled or cooled and reheated, and then hot-rolled to obtain a steel sheet having a desired size and shape.
  • the manufacturing method of a steel raw material does not need to be specifically limited. It is preferable to melt the molten steel having the above-described composition by a known melting method such as a converter and to obtain a steel material such as a slab having a predetermined size by a known casting method such as a continuous casting method. Needless to say, the steel material may be formed by the ingot-bundling method.
  • Reheating temperature 950 to 1250 ° C If the reheating temperature is less than 950 ° C., the deformation resistance becomes too high, the rolling load becomes excessive, and hot rolling may not be possible. On the other hand, at a high temperature exceeding 1250 ° C., coarsening of crystal grains becomes remarkable, and desired high toughness cannot be ensured. Therefore, the reheating temperature is preferably limited to a range of 950 to 1250 ° C.
  • the hot rolling conditions need not be particularly limited. It is preferable to perform direct quenching (DQ) immediately after the hot rolling.
  • the quenching start temperature is preferably set to a temperature equal to or higher than the Ar3 transformation point.
  • the hot rolling end temperature is preferably set to a range of 800 to 950 ° C., which is a temperature equal to or higher than the Ar3 transformation point.
  • the quenching cooling rate is not particularly limited as long as it is equal to or higher than the cooling rate at which a martensite phase is formed.
  • the cooling stop temperature is preferably set to a temperature below the Ms point. More preferably, the temperature is 300 ° C. or lower in order to prevent the martensite phase from being self-tempered as it is quenched. More preferably, it is 200 degrees C or less.
  • the reheating quenching temperature is preferably 850 to 950 ° C.
  • the cooling rate of quenching after reheating is not particularly limited as long as it is equal to or higher than the cooling rate at which a martensite phase is formed.
  • the cooling stop temperature is preferably set to a temperature not higher than the Ms point. More preferably, the temperature is 300 ° C. or lower in order to prevent the martensite phase from being self-tempered as it is quenched. More preferably, it is 200 degrees C or less.
  • Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace and cast into a mold to obtain a 150 kgf steel ingot (steel material). These steel materials are heated to the reheating temperatures shown in Tables 2 and 3 and then hot-rolled under the conditions shown in Tables 2 and 3, followed by quenching (direct quenching) immediately after the hot rolling is completed (DQ) ) Some steel plates were air-cooled after hot rolling was completed, and further reheated to the heating temperatures shown in Tables 2 and 3, and then subjected to reheating and quenching treatment (RQ) for quenching.
  • reheating and quenching treatment RQ
  • Specimens were collected from the obtained steel sheets and subjected to structure observation, surface hardness test, Charpy impact test, and corrosion wear resistance test. From the obtained steel sheet, a test piece for electrolytic extraction was collected and electrolyzed in a 10% AA electrolytic solution (10% acetylacetone-1% tetramethylammonium chloride-methyl alcohol electrolytic solution) to extract a residue. About the obtained extraction residue, the amount of Cr and Mo contained in the extraction residue was analyzed using ICP emission spectroscopic analysis, and the amount of Cr and Mo as precipitates were calculated.
  • 10% AA electrolytic solution 10% acetylacetone-1% tetramethylammonium chloride-methyl alcohol electrolytic solution
  • the test method was as follows.
  • a thin film specimen (a specimen for observation of a transmission electron microscope structure) was taken in parallel with the plate surface from the position of 1/2 the thickness of the obtained steel sheet.
  • the test piece was made into a thin film by grinding and polishing (mechanical polishing, electrolytic polishing). Subsequently, each of the 20 fields of view was observed with a transmission electron microscope (magnification: 20000 times), and the area where the cementite did not precipitate was determined as a martensite phase region as quenched. This was expressed as a percentage (%) with respect to the entire structure, and was used as the martensite fraction (area ratio) as quenched.
  • the 1 / 2t subsize Charpy test piece was used (t: thickness).
  • t thickness
  • a steel plate having a vE- 40 of 15 J or more was evaluated as a steel plate excellent in “base metal toughness”.
  • Corrosion-resistant wear test Abrasion test pieces (size: 10 mm thickness x 25 mm width x 75 mm length) were taken from the position of the surface layer of 1 mm of the obtained steel sheet. These test pieces were mounted on an abrasion tester and subjected to an abrasion test. The wear test piece is attached so that the surface of the test machine rotor is perpendicular to the rotation axis of the test machine rotor and the surface of 25 mm ⁇ 75 mm is in the circumferential tangent direction of the rotation circle, and then the test piece and the rotor are covered with an outer tub, Wear material was introduced inside.
  • the wear material used was a mixture of cinnabar sand having an average particle diameter of 0.65 mm and an aqueous NaCl solution prepared to a concentration of 15000 ppm by mass such that the weight ratio of the cinnabar sand to the aqueous NaCl solution was 3: 2.
  • the surface hardness is HBW 10/3000 and the surface hardness is 360 or more, and the excellent low-temperature toughness and wear resistance ratio of vE ⁇ 40 : 30J or more (15J or more in the case of 1 / 2t test piece): Excellent corrosion wear resistance of 1.5 or more.
  • the surface hardness is low, the low-temperature toughness is lowered, the corrosion wear resistance is lowered, or two or more of them are lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 耐摩耗性、低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板を提供する。 質量%で、C:0.10~0.20%、Si:0.05~1.00%、Mn:0.1~2.0%、P:0.020%以下、S:0.005%以下、Al:0.005~0.100%を含み、さらに、Cr:0.05~2.0%、Mo:0.05~1.0%のうちから選ばれた1種または2種を含み、かつ鋼中固溶Cr量(Crsol)および鋼中固溶Mo量(Mosol)が0.05≦(Crsol+2.5Mosol)≦2.0を満足し、残部Feおよび不可避的不純物からなる成分組成を有し、焼入れままマルテンサイト相を主相とし、旧オーステナイト粒径が30μm以下である組織を有し、さらに、表面硬さが、ブリネル硬さHBW10/3000で360以上である低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板。

Description

低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
 本発明は、産業機械、運搬機器等の部品用として好適な耐摩耗鋼板(abrasion resistant steel plate)に関する。本発明の耐摩耗鋼板は、低温靱性(low temperature toughness)に優れ、特に水分を含む土砂との接触による摩耗(wear or abrasion)が問題となる箇所に適用される部品用として好適な耐摩耗鋼板に関する。
 従来から、建設、土木、鉱山等の現場で使用される、例えば、パワーショベル、ブルドーザー、ホッパー、バケット、ダンプトラック等の産業機械、運搬機器等の部品は、土砂(earth and sand)等との接触により摩耗が生じる。このため、上記部品を製造する際には、その寿命延長を目的に耐摩耗性に優れた鋼材が用いられている。実際の使用環境では、土砂等は、乾燥、湿潤など種々の状態が想定される。特に、湿潤状態にある土砂等は、腐食性物質を含む場合がある。そのため、湿潤状態にある土砂等による摩耗は、腐食性物質を含む環境下での摩耗、いわゆる腐食摩耗となる。腐食摩耗は、摩耗環境として非常に厳しいことが知られており、耐腐食摩耗性に優れた耐摩耗鋼材が望まれている。
 また、これらの産業機械、運搬機器等は、0℃以下の低温域での使用も想定される。このため、これらの産業機械、運搬機器等の部品用として用いられる鋼材は、耐摩耗性、耐腐食摩耗性に加えて、さらに優れた低温靱性をも有することが望まれている。
 このような要望に対して、例えば特許文献1には、質量%で、C:0.30~0.50%を含み、適正量のSi、Mn、Al、N、Ti、Nb、Bを含有し、さらにCr:0.10~0.50%、Mo:0.05~1.00%を含有する鋼片を熱間圧延したのち、Ar変態点以上の温度から焼入れ処理し、続いて焼戻して、高強度耐摩耗鋼を得る、低温靭性に優れた高硬度耐摩耗鋼の製造方法が提案されている。特許文献1に記載された技術では、Cr、Moを多量含有させることにより、焼入れ性が向上するとともに粒界が強化され低温靭性が向上するとしている。また、特許文献1に記載された技術では、焼戻処理を施すことによりさらに低温靭性が向上するとしている。
 また、特許文献2には、質量%で、C:0.18~0.25%、Si:0.10~0.30%、Mn:0.03~0.10%を含み、Nb、Al、N、Bの適正量を含有し、さらにCr:1.00~2.00%、Mo:0.50超~0.80%を含有する水焼入れおよび焼戻処理後の靭性並びに耐遅れ破壊特性に優れる高靭性耐摩耗鋼板が提案されている。特許文献2に記載された技術では、Mn含有量を低く抑え、Cr、Moを多量含有させることにより、焼入れ性が向上し、所定の硬さが確保できるとともに、靭性および耐遅れ破壊特性が向上するとしている。また、特許文献2に記載された技術では、さらに焼戻処理を施すことによりさらに低温靭性が向上するとしている。
 また、特許文献3には、質量%で、C:0.30~0.45%、Si:0.10~0.50%、Mn:0.30~1.20%、Cr:0.50~1.40%、Mo:0.15~0.55%、B:0.0005~0.0050%、sol.Al:0.015~0.060%を含み、さらにNbおよび/またはTiの適正量を含有する高靭性耐摩耗鋼が提案されている。特許文献3に記載された技術では、Cr、Moを多量含有させることにより、焼入れ性が向上するとともに粒界が強化され低温靭性が向上するとしている。
 また、特許文献4には、質量%で、C:0.05~0.40%、Cr:0.1~2.0%と、Si、Mn、Ti、B、Al、Nの適正量を含み、さらにCu、Ni、Mo、Vを任意成分として含有してもよい組成の鋼を、900℃以下のオーステナイト未再結晶域において累積圧下率50%以上で熱間圧延したのち、Ar点以上から焼入れしその後焼戻する耐摩耗鋼の製造方法が提案されている。この技術では、オーステナイト粒が展伸した組織を直接焼入れ、焼戻して、旧オーステナイト粒を展伸させた焼戻マルテンサイト組織とすることにより、低温靭性が顕著に向上するとしている。
 また、特許文献5には、質量%で、C:0.10~0.30%、Si:0.05~1.0%、Mn:0.1~2.0%、W:0.10~1.40%、B:0.0003~0.0020%を含み、さらにTi:0.005~0.10%および/またはAl:0.035~0.1%を含有する組成を有する、低温靭性に優れた耐摩耗鋼板が提案されている。なお、特許文献5に記載された技術では、さらに、Cu、Ni、Cr、Vのうちから1種以上含有してもよいとしている。これにより、特許文献5に記載された技術では、高い表面硬さを有し、耐摩耗性に優れ、さらに低温靭性にも優れるとしている。
 また、特許文献6には、曲げ加工性に優れた耐摩耗鋼板が記載されている。特許文献6に記載された耐摩耗鋼板は、質量%で、C:0.05~0.30%、Ti:0.1~1.2%を含有し、固溶C量が0.03%以下である組成を有し、マトリクスをフェライト相とし、マトリクス中に硬質相が分散した組織を有する耐摩耗鋼板である。なお、さらにNb、Vの1種または2種、Mo、Wの1種または2種、Si、Mn、Cuの1種または2種、Ni、Bの1種または2種、Cr、を含有してもよいとしている。これにより、特許文献6に記載された技術では、硬さの顕著な上昇を伴うことなく、土砂摩耗に対する耐摩耗性、曲げ加工性がともに向上するとしている。
特開平08-41535号公報 特開平02-179842号公報 特開昭61-166954号公報 特開2002-20837号公報 特開2007-92155号公報 特開2007-197813号公報
 しかしながら、特許文献1~5に記載された各技術は、低温靱性および耐摩耗性を具備することを目的としている。また、特許文献6に記載された技術では、曲げ加工性と耐摩耗性を兼備させることを目的としている。いずれの特許文献においても湿潤状態にある土砂のような、腐食性物質を含む環境下における摩耗についての検討は行われておらず、耐腐食摩耗性に対する配慮がなされていないという問題がある。
 また、特許文献1~4に記載された各技術は、焼戻処理を行うことを要件としており、製造コストが増大するという問題がある。また、特許文献5に記載された技術は、Wを必須含有としており、製造コストが増大する問題がある。特許文献6に記載された技術はフェライトを主相とするもので表面硬さが低く、耐摩耗性が十分ではない。
 本発明は、かかる従来技術の問題を解決し、安価で、耐摩耗性に優れ、かつ優れた低温靱性および優れた耐腐食摩耗性を兼備する耐摩耗鋼板を提供することを目的とする。
 本発明者らは、上記した目的を達成するため、耐摩耗性、さらに低温靭性、耐腐食摩耗性に対する各種要因の影響について鋭意検討を重ねた。その結果、Crおよび/またはMoを適正量必須含有する組成とし、さらに、鋼中固溶Cr量および鋼中固溶Mo量を下記(1)式を満足するように調整することにより、著しく耐腐食摩耗性が向上することを見出した。
0.05≦(Crsol+2.5Mosol)≦2.0‥‥‥(1)
(ここで、Crsol:鋼中固溶Cr量(質量%)、Mosol:鋼中固溶Mo量(質量%)とする。)
 これは、Crおよび/またはMoを適正量必須含有し、固溶Cr量および固溶Mo量を適正量確保することにより、広い範囲のpHを有する湿潤状態の土砂に晒されても、Crおよび/またはMoが酸素酸として存在し、腐食摩耗を抑制するためと推察される。
 そしてさらに、上記の組成としたうえで、表面硬さを高く維持できれば、土砂摩耗に対する耐摩耗性と耐腐食摩耗性との顕著な向上が得られることも知見した。
 さらに、本発明者らは、Crおよび/またはMoを適正量必須含有し、さらに、少なくともC、Si、Mn、P、S、Alを適正量含む組成に調整することにより焼入れ性を向上させ、旧オーステナイト(γ)粒径で30μm以下の焼入れままマルテンサイト相を主相とする組織を確保することにより、優れた低温靱性をも確保することができることを知見した。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.10~0.20%、Si:0.05~1.00%、Mn:0.1~2.0%、P:0.020%以下、S:0.005%以下、Al:0.005~0.100%を含み、さらに、Cr:0.05~2.0%、Mo:0.05~1.0%のうちから選ばれた1種または2種を含み、かつ鋼中固溶Cr量および鋼中固溶Mo量が下記(1)式を満足し、残部Feおよび不可避的不純物からなる成分組成を有し、
焼入れままマルテンサイト相を主相とし、旧オーステナイト粒径が30μm以下である組織を有し、
さらに、表面硬さが、ブリネル硬さHBW10/3000で360以上であることを特徴とする低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板。
0.05≦(Crsol+2.5Mosol)≦2.0‥‥‥(1)
ここで、Crsol:鋼中固溶Cr量(質量%)、Mosol:鋼中固溶Mo量(質量%)とする。
(2)(1)において、上記組成に加えてさらに、質量%で、Nb:0.005~0.1%、Ti:0.005~0.1%、V:0.005~0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする耐摩耗鋼板。
(3)(1)または(2)において、上記組成に加えてさらに、質量%で、Sn:0.005~0.2%、Sb:0.005~0.2%のうちから選ばれた1種または2種を含有することを特徴とする耐摩耗鋼板。
(4)(1)ないし(3)のいずれかにおいて、上記組成に加えてさらに、質量%で、Cu:0.03~1.0%、Ni:0.03~2.0%、B:0.0003~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする耐摩耗鋼板。
(5)(1)ないし(4)のいずれかにおいて、上記組成に加えてさらに、質量%で、REM:0.0005~0.008%、Ca:0.0005~0.005%、Mg:0.0005~0.005%のうちから選ばれた1種または2種以上を含有することを特徴とする耐摩耗鋼板。
 本発明によれば、とくに湿潤状態の土砂摩耗環境下での耐腐食摩耗性に優れ、さらに低温靭性にも優れ、しかも表面硬さを低下させることなく優れた耐摩耗性を安定的に有する耐摩耗鋼板を、容易にしかも安定して製造できる。
 まず、本発明の耐摩耗鋼板の組成の限定理由について説明する。なお、以下、とくに断わらない限り質量%は、単に%で記す。
 C:0.10~0.20%
 Cは、鋼板の硬さを高め、耐摩耗性を向上させるために重要な元素である。Cの含有量が0.10%未満では十分な硬さが得られない。一方、Cの含有量が0.20%を超えると、溶接性、低温靭性および加工性を低下させる。このため、Cの含有量は0.10~0.20%の範囲に限定した。なお、好ましくは0.14~0.17%である。
 Si:0.05~1.00%
 Siは、溶鋼の脱酸剤として作用する有効な元素である。また、Siは固溶強化により鋼板の強度向上に有効に寄与する元素である。このような効果を確保するために、Siの含有量は0.05%以上とする。Siの含有量が0.05%未満では脱酸効果が十分に得られない。一方、Siの含有量が1.0%を超えると、延性、靭性が低下し、また鋼板中の介在物量が増加する。このため、Siの含有量は0.05~1.0%の範囲に限定した。なお、好ましくは0.2~0.5%である。
 Mn:0.1~2.0%
 Mnは、焼入れ性を向上させる作用を有する有効な元素である。このような効果を確保するために、Mnの含有量は0.1%以上とする。一方、Mnの含有量が2.0%を超えると、溶接性が低下する。このため、Mnの含有量は0.1~2.0%の範囲に限定した。なお、好ましくは0.4~1.6%、より好ましくは0.7~1.4%である。
 P:0.020%以下
 Pは、鋼中に多量含有すると低温靭性の低下を招くため、できるだけ低減することが望ましい。本発明において、Pの含有量は0.020%まで許容できる。このため、Pの含有量は0.020%以下に限定した。なお、過度の低減は精錬コストの高騰を招くため、Pの含有量は0.005%以上とすることが望ましい。
 S:0.005%以下
 Sは、鋼中に多量に含まれるとMnSとして析出する。高強度鋼では、MnSは破壊発生の起点となり、靭性の劣化を招く。このため、Sはできるだけ低減することが望ましい。本発明において、Sの含有量は0.005%まで許容できる。このため、Sの含有量は0.005%以下に限定した。なお、過度の低減は精錬コストの高騰を招くため、Sの含有量は0.0005%以上とすることが望ましい。
 Al:0.005~0.100%
 Alは、溶鋼の脱酸剤として作用する有効な元素である。また、Alは結晶粒の微細化により低温靱性の向上に寄与する。このような効果を得るために、Alの含有量は0.005%以上とする。Alの含有量が0.005%未満ではこれらの効果が十分に得られない。一方、Alの含有量が0.100%を超えると、溶接性が低下する。このため、Alの含有量は0.005~0.100%の範囲に限定した。なお、好ましくは0.015~0.050%である。
 Cr:0.05~2.0%、Mo:0.05~1.0%のうちから選ばれた1種または2種
 Cr、Moはいずれも、腐食摩耗を抑制する作用を有し、選択して1種または2種を含有する。
 Crは、焼入れ性を高め、マルテンサイト相を微細化することにより低温靱性を向上させる効果を有する。このため、本発明において、Crは重要な元素である。また、湿潤状態の土砂等との接触が問題となるような腐食摩耗環境において、Crはアノード反応によりCr酸イオンとして溶出し、インヒビター効果により腐食を抑制することで、耐腐食摩耗性を向上させる効果を有する。このような効果を得るために、Crの含有量は0.05%以上とする。Crの含有量が0.05%未満では、このような効果を十分に発揮することができない。一方、Crの含有量が2.0%を超えると、溶接性が低下するとともに、製造コストが高騰する。このため、Crの含有量は0.05~2.0%の範囲に限定した。なお、好ましくは、0.07~1.20%の範囲である。
 Moは、焼入れ性を高め、マルテンサイト相を微細化することにより低温靱性を向上させる効果を有する。このため、本発明において、Moは重要な元素である。また、湿潤状態の土砂等との接触が問題となるような腐食摩耗環境において、Moはアノード反応によりMo酸イオンとして溶出し、インヒビター効果により腐食を抑制することで、耐腐食摩耗性を向上させる効果を有する。このような効果を得るために、Moの含有量は0.05%以上とする。Moの含有量が0.05%未満では、このような効果を十分に発揮することができない。一方、Moの含有量が1.0%を超えると、溶接性が低下するうえ、製造コストが高騰する。このため、Moの含有量は0.05~1.0%の範囲に限定した。なお、好ましくは、0.10~0.50%である。
 なお、CrとMoを複合して含有することにより、耐腐食摩耗性のより顕著な向上を期待できる。これは、CrおよびMoが酸素酸として存在し得るpH領域が異なり、広い範囲のpHを有する湿潤状態の土砂等による腐食摩耗を抑制することができるためであると推定される。
 また、耐腐食摩耗性を向上させるために、本発明では、上記した範囲のCr、Moを含有し、さらに鋼中固溶Cr量および鋼中固溶Mo量が下記(1)式
0.05≦(Crsol+2.5Mosol)≦2.0‥‥‥(1)
(ここで、Crsol:鋼中固溶Cr量(質量%)、Mosol:鋼中固溶Mo量(質量%)とする。)
を満足するように、調整する。Cr、Moが炭化物等を形成し、析出物として析出すると、その析出物周辺では固溶Cr量、固溶Mo量が減少する。このため、上記したインヒビター効果が低減し、耐腐食摩耗性が低下する。本発明では、鋼中固溶Cr量(Crsol)および鋼中固溶Mo量(Mosol)が、上記(1)式を満足するように調節する。上記したインヒビター効果を十分に確保するためには、本発明では(Crsol+2.5Mosol)を0.05以上とする必要がある。一方、(Crsol+2.5Mosol)が2.0を超えると、効果が飽和するとともに、製造コストが高騰する。なお、好ましくは(Crsol+2.5Mosol)が0.10~1.0である。
 なお、固溶Cr量および固溶Mo量は、以下の方法により算出することができる。鋼を、10%アセチルアセトン電解液中で電解抽出し、得られた抽出残渣(析出物)をICP発光分光分析法で分析する。ここで、抽出残渣中に含まれるCr量を析出Cr量、抽出残渣中に含まれるMo量を析出Mo量として、それぞれ定量する。この定量値を、全Cr量、全Mo量からそれぞれ差し引くことにより、固溶Cr量および固溶Mo量を求める。
 また、固溶Cr量、固溶Mo量が(1)式を満足するようにするためには、炭化物等の析出を極力抑制する必要があり、そのためには、熱履歴を調整したり、Nb量やTi量の制御する必要がある。具体的には例えば、CrやMoの炭化物等の析出する温度範囲(500℃~800℃)に保持される時間を極力短くすることや、CrやMoよりも炭化物等を形成しやすいNbやTiを添加することが望ましい。
 上記した成分が、本発明の基本の成分である。本発明は、上記基本の成分に加えて、さらに、選択元素として、Nb:0.005~0.1%、Ti:0.005~0.1%、V:0.005~0.1%のうちから選ばれた1種または2種以上、および/または、Sn:0.005~0.2%、Sb:0.005~0.2%のうちから選ばれた1種または2種、および/または、Cu:0.03~1.0%、Ni:0.03~2.0%、B:0.0003~0.0030%のうちから選ばれた1種または2種以上、および/または、REM:0.0005~0.008%、Ca:0.0005~0.005%、Mg:0.0005~0.005%のうちから選ばれた1種または2種以上、を選択して含有できる。
 Nb:0.005~0.1%、Ti:0.005~0.1%、V:0.005~0.1%のうちから選ばれた1種または2種以上
 Nb、Ti、Vはいずれも、炭窒化物等の析出物として析出し、組織の微細化を介して靭性を向上させる元素である。本発明では、必要に応じて、Nb、Ti、Vのうちから選ばれた1種または2種以上を含有できる。
 Nbは、炭窒化物として析出し、組織の微細化を介して靭性の向上に有効に寄与する元素である。このような効果を確保するために、Nbの含有量は0.005%以上とすることが好ましい。一方、Nbの含有量が0.1%を超えると、溶接性が低下する。このため、Nbを含有する場合には、Nbの含有量は0.005~0.1%の範囲に限定することが好ましい。なお、組織微細化の観点から、Nbの含有量は0.012~0.03%の範囲とすることがより好ましい。
 Tiは、TiNとして析出し、固溶Nの固定を介して靭性向上に寄与する元素である。このような効果を得るために、Tiの含有量は0.005%以上とすることが好ましい。一方、Tiの含有量が0.1%を超えると、粗大な炭窒化物が析出し、靭性が低下する。このため、Tiを含有する場合には、Tiの含有量は0.005~0.1%の範囲に限定することが好ましい。なお、コスト低減という観点から、Tiの含有量は0.005~0.03%の範囲に限定することがより好ましい。
 Vは、炭窒化物として析出し、組織を微細化する効果を介し靱性向上に寄与する元素である。このような効果を得るために、Vの含有量は0.005%以上とすることが好ましい。一方、Vの含有量が0.1%を超えると、溶接性が低下する。このため、Vを含有する場合には、Vの含有量は0.005~0.1%の範囲に限定することが好ましい。
 Sn:0.005~0.2%、Sb:0.005~0.2%のうちから選ばれた1種または2種
 Sn、Sbはいずれも、耐腐食摩耗性を向上させる元素である。本発明では、必要に応じて、Sn、Sbのうちから選ばれた1種または2種を含有できる。
 Snは、アノード反応によりSnイオンとして溶出し、インヒビター効果により腐食を抑制することで、鋼板の耐腐食摩耗性を向上させる。また、Snは、鋼板表面にSnを含む酸化皮膜を形成し、鋼板のアノード反応、カソード反応を抑制することで、鋼板の耐腐食摩耗性を向上させる。これらの効果を得るためには、Snの含有量は0.005%以上とすることが好ましい。一方、Snの含有量が0.2%を超えると、鋼板の延性や靱性の劣化を招く。このため、Snを含有する場合には、Snの含有量は0.005~0.2%の範囲に限定することが好ましい。なお、トランプエレメントの低減という観点から、Snの含有量は0.005~0.1%の範囲とすることがより好ましい。
 Sbは、鋼板のアノード反応を抑制するとともに、カソード反応である水素発生反応を抑制することで鋼板の腐食を抑制し、耐腐食摩耗性を向上させる。このような効果を充分に得るためには、Sbの含有量は0.005%以上とすることが好ましい。一方、Sbの含有量が0.2%を超えると靭性の劣化を招く。このため、Sbを含有する場合には、Sbの含有量は0.005~0.2%の範囲とすることが好ましい。なお、より好ましくは、0.005~0.1%である。
 Cu:0.03~1.0%、Ni:0.03~2.0%、B:0.0003~0.0030%のうちから選ばれた1種または2種以上
 Cu、Ni、Bはいずれも、焼入れ性を向上させる元素である。本発明では、必要に応じてCu、Ni、Bのうちから選ばれた1種または2種以上を含有できる。
 Cuは、焼入れ性向上に寄与する元素である。このような効果を得るためには、Cuの含有量は0.03%以上とすることが好ましい。一方、Cuの含有量が1.0%を超えると、熱間加工性が低下し、製造コストも高騰する。このため、Cuを含有する場合には、Cuの含有量は0.03~1.0%の範囲に限定することが好ましい。なお、コストのより低減という観点からは、Cuの含有量は0.03~0.5%の範囲に限定することがより好ましい。
 Niは、焼入れ性を向上させるとともに、低温靭性向上にも寄与する元素である。このような効果を得るためには、Niの含有量は0.03%以上とすることが好ましい。一方、Niの含有量が2.0%を超えると、製造コストを上昇させる。このため、Niを含有する場合には、Niの含有量は0.03~2.0%の範囲に限定することが好ましい。なお、コストのより低減という観点からは、Niの含有量は0.03~0.5%の範囲に限定することがより好ましい。
 Bは、微量含有で焼入れ性向上に寄与する元素である。このような効果を得るためには、Bの含有量は0.0003%以上とすることが好ましい。一方、Bの含有量が0.0030%を超えると、靭性が低下する。このため、Bを含有する場合には、Bの含有量は0.0003~0.0030%の範囲に限定することが好ましい。なお、耐摩耗鋼板の溶接に一般的に使用されるCO溶接などの低入熱溶接部における低温割れを抑制する観点からは、Bの含有量は0.0003~0.0015%の範囲に限定することがより好ましい。
 REM:0.0005~0.008%、Ca:0.0005~0.005%、Mg:0.0005~0.005%のうちから選ばれた1種または2種以上
 REM、Ca、Mgはいずれも、Sと結合し硫化物系介在物を生成する元素であるため、MnSの生成を抑制する元素である。本発明では、必要に応じてREM、Ca、Mgのうちから選ばれた1種または2種以上を含有できる。
 REMは、Sを固定し、靱性低下の原因となるMnSの生成を抑制する。このような効果を得るために、REMの含有量は0.0005%以上とすることが好ましい。一方、REMの含有量が0.008%を超えると、鋼中介在物量が増加し、かえって靱性の低下を招く。このため、REMを含有する場合には、REMの含有量は0.0005~0.008%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0020%である。
 Caは、Sを固定し、靱性低下の原因となるMnSの生成を抑制する。このような効果を得るために、Caの含有量は0.0005%以上とすることが好ましい。一方、Caの含有量が0.005%を超えると、鋼中介在物量が増加し、かえって靱性の低下を招く。このため、Caを含有する場合には、Caの含有量は0.0005~0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0030%である。
 Mgは、Sを固定し、靱性低下の原因となるMnSの生成を抑制する。このような効果を得るために、Mnの含有量は0.0005%以上とすることが好ましい。一方、0.005%を超えると、鋼中介在物量が増加し、かえって靱性の低下を招く。このため、Mgを含有する場合には、Mgの含有量は0.0005~0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0040%である。
 さらに、本発明の耐摩耗鋼板は、上記の成分組成を有し、焼入れままマルテンサイト相を主相とし、旧オーステナイト(γ)粒径が30μm以下である組織を有する。なお、ここでいう「主相」とは、面積率で90%以上を占める相をいうものとする。
 焼入れままマルテンサイト相:面積率で90%以上
 焼入れままマルテンサイト相の相分率が、面積率で90%未満では、所望の硬さを確保できず、耐摩耗性が低下し、所望の耐摩耗性を確保できない。また、十分な低温靭性を確保できない。また、焼戻しマルテンサイトでは、焼戻しによってセメンタイトが生成する際にCrおよびMoがFeと共に炭化物を形成し、耐食性確保に有効な固溶CrおよびMoが減少してしまう。このため、マルテンサイト相は焼戻しをしない焼入れままマルテンサイトとする。なお、焼入れままマルテンサイトの面積率は、好ましくは95%以上である。
 旧γ粒径:30μm以下
 焼入れままマルテンサイト相が面積率で90%以上を確保できても、旧γ粒径が30μmを超えて粗大となると、やはり低温靭性が低下する。なお、旧γ粒径は、ピクリン酸腐食液で腐食した組織を光学顕微鏡(倍率:400倍)で観察し、JIS G 0551の規定に準拠して、求めた値を用いるものとする。
 上記した組成、組織を有する本発明の耐摩耗鋼板は、ブリネル硬さHBW10/3000で360以上である。
 表面硬さ:ブリネル硬さHBW10/3000で360以上
 表面硬度がブリネル硬さHBW10/3000で360未満では、耐摩耗鋼板としての寿命が短くなる。なお、ブリネル硬さは、JIS Z 2243(2008)の規定に準拠して測定するものとする。
 次に、本発明耐摩耗鋼板の好ましい製造方法について説明する。
 上記した組成の鋼素材を、所定の温度を保持している場合には冷却せずにそのまま、あるいは冷却して再加熱したのち、熱間圧延して、所望の寸法形状の鋼板とする。
なお、鋼素材の製造方法は、とくに限定する必要はない。上記した組成の溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で所定寸法のスラブ等の鋼素材とすることが好ましい。なお、造塊-分塊圧延法で鋼素材としてもよいことは言うまでもない。
 再加熱温度:950~1250℃
 再加熱温度が950℃未満では、変形抵抗が高くなりすぎて圧延負荷が過大となり、熱間圧延ができなくなる場合がある。一方、1250℃を超える高温では、結晶粒の粗大化が著しくなり、所望の高靭性を確保できなくなる。このため、再加熱温度は950~1250℃の範囲に限定することが好ましい。
 再加熱された鋼素材は、あるいは再加熱することなく所定の温度を保持した鋼素材は、ついで、熱間圧延を施して、所望の寸法形状の鋼板とする。熱間圧延条件はとくに限定する必要はない。熱間圧延終了後、直ちに焼入れる直接焼入れ処理(DQ)を施すことが好ましい。なお、焼入れ開始温度は、Ar3変態点以上の温度とすることが好ましい。焼入れ開始温度をAr3変態点以上の温度とするためには、熱間圧延終了温度は、Ar3変態点以上の温度である800~950℃の範囲とすることが好ましい。また、焼入れの冷却速度は、マルテンサイト相が形成される冷却速度以上であればとくに限定されない。
 また、冷却停止温度は、Ms点以下の温度とすることが好ましい。より好ましくは、焼入れままマルテンサイト相が自己焼戻しされることを防止するため、300℃以下である。さらに好ましくは、200℃以下である。
 また、熱間圧延終了後、直ちに焼入れる直接焼入れ処理に代えて、熱間圧延終了後放冷したのち、所定の加熱温度に再加熱し、さらに焼入れる再加熱焼入処理(RQ)としてもよい。なお、再加熱焼入温度としては、850~950℃とすることが望ましい。再加熱後の焼入れの冷却速度は、マルテンサイト相が形成される冷却速度以上であればとくに限定されない。また、冷却停止温度は、Ms点以下の温度とすることが好ましい。より好ましくは、焼入れままマルテンサイト相が自己焼戻しされることを防止するため、300℃以下である。さらに好ましくは、200℃以下である。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す組成の溶鋼を、真空溶解炉で溶製し、鋳型に鋳造し、150kgf鋼塊(鋼素材)とした。これら鋼素材を、表2、3に示す再加熱温度に加熱したのち、表2、3に示す条件で熱間圧延し、ついで熱間圧延終了後直ちに焼入れ(直接焼入れ)する直接焼入れ処理(DQ)を行った。一部の鋼板では、熱間圧延終了後空冷し、さらに表2、3に示す加熱温度に再加熱したのち、焼入れする再加熱焼入れ処理(RQ)を行った。
 得られた鋼板から、試験片を採取し、組織観察、表面硬さ試験、シャルピ-衝撃試験、耐腐食摩耗試験を実施した。なお、得られた鋼板から、電解抽出用試験片を採取し、10%AA電解液(10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メチルアルコール電解液)中で電解し、残渣を抽出した。得られた抽出残渣について、ICP発光分光分析法を用いて、抽出残渣中に含まれるCr、Mo量を分析し、析出物となっているCr量およびMo量を算出した。ついで、全Cr量から析出物となっているCr量、および、全Mo量から析出物となっているMo量を、それぞれ差し引き、固溶Cr量(Crsol)、固溶Mo量(Mosol)をそれぞれ求めた。
 試験方法は次のとおりとした。
 (1)組織観察
 得られた鋼板の板厚1/2位置から、観察面が圧延方向に対して垂直断面となるように組織観察用試験片を採取した。試験片を研磨し、ピクリン酸腐食液で腐食させて旧γ粒を現出させたのち、光学顕微鏡(倍率:400倍)で観察した。各100個の旧γ粒の円相当径を測定し、得られた値を算術平均した。この平均値をその鋼板の旧γ粒径とした。
 また、得られた鋼板の板厚1/2位置から、板面に平行に薄膜状試片(透過電子顕微鏡組織観察用試験片)を採取した。試験片を研削、研磨(機械研磨、電解研磨)により薄膜とした。次いで、透過電子顕微鏡(倍率:20000倍)により各20視野観察し、セメンタイトの析出していない領域を焼入れままマルテンサイト相領域として、その面積を測定した。組織全体に対する割合(%)で表示し、これを焼入れままマルテンサイト分率(面積率)とした。
 (2)表面硬さ試験
 得られた鋼板から、表面硬さ測定用試験片を採取し、JIS Z 2243(2008)の規定に準拠し、表面硬さHBW10/3000を測定した。硬さ測定は、10mmのタングステン硬球を使用し、荷重は3000kgfとした。
 (3)シャルピ-衝撃試験
 得られた鋼板の板厚1/2位置で、JIS Z 2242(2005)の規定に準拠して、圧延方向に垂直な方向(C方向)からVノッチ試験片を採取し、シャルピー衝撃試験を実施した。試験温度は-40℃とし、吸収エネルギーvE-40(J)を求めた。なお、試験片本数は各3本とし、その算術平均を当該鋼板の吸収エネルギーvE-40とした。vE-40が30J以上である鋼板を、「母材低温靱性」に優れる鋼板と評価した。なお、板厚10mm未満の鋼板については、1/2tサブサイズシャルピー試験片を用いた(t:板厚)。1/2tサブサイズシャルピー試験片の場合には、vE-40が15J以上である鋼板を、「母材靱性」に優れる鋼板と評価した。
 (4)耐腐食摩耗試験
 得られた鋼板の表層1mmの位置から摩耗試験片(大きさ:10mm厚×25mm幅×75mm長さ)を採取した。これら試験片を摩耗試験機に装着し、摩耗試験を実施した。
摩耗試験片は、試験機回転子の回転軸と垂直に、かつ25mm×75mmの面が回転円の円周接線方向となるように、取り付けたのち、試験片および回転子を外槽で覆い、内部に摩耗材を導入した。摩耗材は、平均粒径0.65mmの硅砂および濃度が15000質量ppmとなるよう調製したNaCl水溶液を、硅砂とNaCl水溶液の重量比が3:2となるよう混合したものを用いた。
 試験条件は、回転子:600回/分、外槽:45回/分として、それぞれ回転させて行った。回転子の回転数が、計10800回となるまで回転させたのち、試験を終了した。試験終了後、各試験片の重量を測定した。そして、試験後重量と初期重量との差(=重量減少量)を算出し、引張り強さ400MPa級一般構造用圧延鋼材SS400(Rolled steels for general structure, Tensile strength 400MPa class ) (JIS G3101)(従来例)の重量減少量を基準値とし、耐摩耗比(=(基準値)/(試験片の重量減少量))を算出した。耐摩耗比が1.5以上である場合を「耐腐食摩耗性に優れる」と評価した。
 得られた結果を表4、5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明例はいずれも、表面硬さがHBW10/3000で360以上の表面硬さ、vE-40:30J以上(1/2t試験片の場合は15J以上)の優れた低温靱性および耐摩耗比:1.5以上の優れた耐腐食摩耗性を有している。一方、本発明の範囲を外れる比較例は、表面硬さが低いか、低温靱性が低下しているかあるいは耐腐食摩耗性が低下しているか、あるいはそれらの2つ以上が低下している。

Claims (5)

  1.  質量%で、
    C:0.10~0.20%、Si:0.05~1.00%、Mn:0.1~2.0%、P:0.020%以下、S:0.005%以下、Al:0.005~0.100%を含み、
    さらに、Cr:0.05~2.0%、Mo:0.05~1.0%のうちから選ばれた1種または2種を含み、かつ鋼中固溶Cr量および鋼中固溶Mo量が下記(1)式を満足し、残部Feおよび不可避的不純物からなる成分組成を有し、
    焼入れままマルテンサイト相を主相とし、旧オーステナイト粒径が30μm以下である組織を有し、
    さらに、表面硬さが、ブリネル硬さHBW10/3000で360以上であることを特徴とする低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板。
    0.05≦(Crsol+2.5Mosol)≦2.0‥‥‥(1)
    ここで、Crsol:鋼中固溶Cr量(質量%)、Mosol:鋼中固溶Mo量(質量%)とする。
  2.  上記組成に加えてさらに、質量%で、Nb:0.005~0.1%、Ti:0.005~0.1%、V:0.005~0.1%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の耐摩耗鋼板。
  3.  上記組成に加えてさらに、質量%で、Sn:0.005~0.2%、Sb:0.005~0.2%のうちから選ばれた1種または2種を含有することを特徴とする請求項1または2に記載の耐摩耗鋼板。
  4.  上記組成に加えてさらに、質量%で、Cu:0.03~1.0%、Ni:0.03~2.0%、B:0.0003~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の耐摩耗鋼板。
  5.  上記組成に加えてさらに、質量%で、REM:0.0005~0.008%、Ca:0.0005~0.005%、Mg:0.0005~0.005%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし4のいずれかに記載の耐摩耗鋼板。
PCT/JP2013/005434 2012-09-19 2013-09-13 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板 WO2014045553A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380048590.9A CN104662193B (zh) 2012-09-19 2013-09-13 低温韧性和耐腐蚀磨损性优异的耐磨损钢板
KR1020157005646A KR20150036798A (ko) 2012-09-19 2013-09-13 저온 인성 및 내부식 마모성이 우수한 내마모 강판
AU2013319622A AU2013319622B2 (en) 2012-09-19 2013-09-13 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
EP13838200.7A EP2873747B1 (en) 2012-09-19 2013-09-13 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JP2014510589A JP5648769B2 (ja) 2012-09-19 2013-09-13 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
BR112015005986A BR112015005986B1 (pt) 2012-09-19 2013-09-13 placa de aço resistente à abrasão que tem excelente tenacidade à baixa temperatura e excelente resistência ao desgaste corrosivo
MX2015003378A MX370891B (es) 2012-09-19 2013-09-13 Placa de acero resistente a la abrasión que tiene excelente tenacidad a baja temperatura y excelente resistencia al desgaste corrosivo.
US14/429,499 US9982331B2 (en) 2012-09-19 2013-09-13 Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
IN769DEN2015 IN2015DN00769A (ja) 2012-09-19 2013-09-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012205305 2012-09-19
JP2012-205305 2012-09-19

Publications (1)

Publication Number Publication Date
WO2014045553A1 true WO2014045553A1 (ja) 2014-03-27

Family

ID=50340895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005434 WO2014045553A1 (ja) 2012-09-19 2013-09-13 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板

Country Status (12)

Country Link
US (1) US9982331B2 (ja)
EP (1) EP2873747B1 (ja)
JP (1) JP5648769B2 (ja)
KR (1) KR20150036798A (ja)
CN (1) CN104662193B (ja)
AU (1) AU2013319622B2 (ja)
BR (1) BR112015005986B1 (ja)
CL (1) CL2015000662A1 (ja)
IN (1) IN2015DN00769A (ja)
MX (1) MX370891B (ja)
PE (1) PE20150779A1 (ja)
WO (1) WO2014045553A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156079A1 (ja) * 2013-03-28 2014-10-02 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法
WO2016039136A1 (ja) * 2014-09-11 2016-03-17 株式会社神戸製鋼所 高強度鋼板
JP2016079459A (ja) * 2014-10-17 2016-05-16 Jfeスチール株式会社 耐摩耗鋼板およびその製造方法
CN106048444A (zh) * 2016-06-13 2016-10-26 苏州双金实业有限公司 一种价格廉价的钢
JP6119934B1 (ja) * 2016-04-19 2017-04-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2017193739A (ja) * 2016-04-19 2017-10-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
CN108342649A (zh) * 2018-03-27 2018-07-31 武汉钢铁有限公司 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法
JP2018123409A (ja) * 2017-02-03 2018-08-09 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
WO2019181130A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 耐摩耗鋼及びその製造方法
JP2020504240A (ja) * 2016-12-22 2020-02-06 ポスコPosco 高硬度耐摩耗鋼及びその製造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804229B1 (ja) * 2014-01-28 2015-11-04 Jfeスチール株式会社 耐摩耗鋼板およびその製造方法
CN105177426A (zh) * 2015-10-13 2015-12-23 唐山钢铁集团有限责任公司 正火轧制的耐高温容器板及其生产方法
RU2605037C1 (ru) * 2015-11-20 2016-12-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства высокопрочной горячекатаной стали
CN105950980A (zh) * 2016-05-18 2016-09-21 安徽合矿机械股份有限公司 一种汽车轮毂用耐磨合金钢材料
CN105970091A (zh) * 2016-05-30 2016-09-28 苏州双金实业有限公司 一种具有低原料成本的钢
CN105803343A (zh) * 2016-05-30 2016-07-27 苏州双金实业有限公司 一种具有良好韧性的钢
CN105970092A (zh) * 2016-05-30 2016-09-28 苏州双金实业有限公司 一种原料成本低的钢
CN105839001A (zh) * 2016-05-30 2016-08-10 苏州双金实业有限公司 一种具有良好加工性能的钢
CN105803336A (zh) * 2016-05-30 2016-07-27 苏州双金实业有限公司 一种具有低维护成本的钢
CN106048450A (zh) * 2016-06-13 2016-10-26 苏州双金实业有限公司 一种能够有效防止磨损的钢
CN105886903A (zh) * 2016-06-13 2016-08-24 苏州双金实业有限公司 一种具有防磨损性能的钢
KR101899687B1 (ko) * 2016-12-22 2018-10-04 주식회사 포스코 고경도 내마모강 및 이의 제조방법
CN107299289B (zh) * 2017-06-12 2019-04-30 武汉钢铁有限公司 极地破冰运输船结构用钢及制造方法
CN107236909B (zh) * 2017-06-16 2019-06-18 武汉钢铁有限公司 可用于-60℃低温环境的高强度、高韧性耐腐蚀钢及其生产方法
CN107217201A (zh) * 2017-06-27 2017-09-29 包头钢铁(集团)有限责任公司 一种含稀土海洋钻井平台桩腿用600MPa无缝钢管及其生产方法
CN107557685B (zh) * 2017-08-30 2019-03-26 武汉钢铁有限公司 低温环境下440MPa级船舶用耐蚀钢及其生产方法
CN107805758B (zh) * 2017-10-24 2019-06-04 南京钢铁股份有限公司 一种高强度优良低温韧性船用钢及其一钢多级热处理工艺
CN107937806B (zh) * 2017-11-16 2020-02-07 武汉钢铁有限公司 服役于弱酸性环境下的高强耐磨蚀钢板及其制造方法
KR102031446B1 (ko) * 2017-12-22 2019-11-08 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR102031443B1 (ko) * 2017-12-22 2019-11-08 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR102045646B1 (ko) * 2017-12-26 2019-11-15 주식회사 포스코 재질 균일성이 우수한 내마모 강판 및 그 제조방법
CN108411209A (zh) * 2018-06-01 2018-08-17 舞阳钢铁有限责任公司 一种耐腐蚀高强度混凝土搅拌罐用钢板及其生产方法
CN109136744A (zh) * 2018-07-13 2019-01-04 舞阳钢铁有限责任公司 一种耐腐蚀的水泥砌砖专用模具钢板及其生产方法
CN110184532B (zh) * 2018-07-27 2021-07-02 江阴兴澄特种钢铁有限公司 一种具有优良-60℃超低温冲击韧性的耐磨钢板及其生产方法
DE102018122901A1 (de) * 2018-09-18 2020-03-19 Voestalpine Stahl Gmbh Verfahren zur Herstellung ultrahochfester Stahlbleche und Stahlblech hierfür
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
EP3719147A1 (de) * 2019-04-01 2020-10-07 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
KR102674055B1 (ko) * 2019-08-26 2024-06-10 제이에프이 스틸 가부시키가이샤 내마모 박강판 및 그의 제조 방법
CN110819878B (zh) * 2019-10-23 2021-10-29 舞阳钢铁有限责任公司 一种***复合用具备优良低温韧性钢板及其生产方法
KR102348555B1 (ko) * 2019-12-19 2022-01-06 주식회사 포스코 절단 균열 저항성이 우수한 내마모 강재 및 이의 제조방법
KR102368362B1 (ko) * 2019-12-20 2022-02-28 주식회사 포스코 내마모성과 복합내식성이 우수한 강판 및 그 제조방법
CN111074156A (zh) * 2019-12-26 2020-04-28 舞阳钢铁有限责任公司 一种具备优良低温韧性的超高强度钢板及其生产方法
CN111575581B (zh) * 2020-05-09 2021-09-24 湖南华菱涟源钢铁有限公司 一种耐酸腐蚀的马氏体耐磨钢板及其制造方法
CN111549277B (zh) * 2020-05-09 2021-09-24 湖南华菱涟源钢铁有限公司 一种耐大气腐蚀的马氏体耐磨钢板及其制造方法
CN112267073A (zh) * 2020-09-30 2021-01-26 东北大学 具有优异低温韧性和焊接性能的耐腐蚀磨损钢板及其制备方法
CN112593158B (zh) * 2020-12-11 2021-11-30 湖南华菱涟源钢铁有限公司 690MPa耐低温超高强耐候钢板及制备方法
CN113235013A (zh) * 2021-05-10 2021-08-10 莱芜钢铁集团银山型钢有限公司 一种用于矿井环境服役的q800耐蚀钢及其制备方法
CN113789468A (zh) * 2021-08-05 2021-12-14 莱芜钢铁集团银山型钢有限公司 一种泥沙输送管道用耐磨耐蚀钢板及其制备方法
CN114892072B (zh) * 2022-04-08 2023-06-09 上海大学 一种高强高韧抗氢脆钢板及其成分优选和制备方法
CN115074641B (zh) * 2022-06-30 2023-07-14 鞍钢股份有限公司 一种hb400级别高耐磨可冷弯钢板及其生产方法
CN117467911A (zh) * 2022-07-29 2024-01-30 宝山钢铁股份有限公司 一种耐腐蚀性耐磨钢板及其制造方法
CN115838897A (zh) * 2022-11-18 2023-03-24 莱芜钢铁集团银山型钢有限公司 一种415hb级泥沙输送管道用马氏体耐磨耐蚀钢管及其制备方法
CN116254483B (zh) * 2023-02-01 2024-06-14 桂林理工大学 一种具有优异低温冲击韧性的高强钢板及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166954A (ja) 1985-01-18 1986-07-28 Sumitomo Metal Ind Ltd 高靭性耐摩耗鋼
JPH02179842A (ja) 1988-12-29 1990-07-12 Sumitomo Metal Ind Ltd 高靭性耐摩耗鋼板
JPH0841535A (ja) 1994-07-29 1996-02-13 Nippon Steel Corp 低温靱性に優れた高硬度耐摩耗鋼の製造方法
JP2002020837A (ja) 2000-07-06 2002-01-23 Nkk Corp 靭性に優れた耐摩耗鋼およびその製造方法
JP2005256169A (ja) * 2004-02-12 2005-09-22 Jfe Steel Kk 低温靱性に優れた耐摩耗鋼板およびその製造方法
JP2007092155A (ja) 2005-09-30 2007-04-12 Jfe Steel Kk 低温靭性に優れた耐摩耗鋼板およびその製造方法
JP2007197813A (ja) 2005-12-28 2007-08-09 Jfe Steel Kk 曲げ加工性に優れた耐摩耗鋼板
JP2009030092A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
WO2009087990A1 (ja) * 2008-01-07 2009-07-16 Nippon Steel Corporation 高温耐摩耗性および曲げ加工性に優れる耐摩耗鋼板およびその製造方法
JP2011179122A (ja) * 2011-03-07 2011-09-15 Jfe Steel Corp 低温靭性に優れた耐摩耗鋼板

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172550A (ja) 1987-12-25 1989-07-07 Nippon Steel Corp 耐熱亀裂性に優れた高硬度高靭性耐摩耗鋼
JPH0551691A (ja) 1991-03-11 1993-03-02 Sumitomo Metal Ind Ltd 耐遅れ破壊性に優れた耐摩耗性鋼板とその製造方法
FR2733516B1 (fr) 1995-04-27 1997-05-30 Creusot Loire Acier et procede pour la fabrication de pieces a haute resistance a l'abrasion
JP3273404B2 (ja) 1995-10-24 2002-04-08 新日本製鐵株式会社 厚手高硬度高靱性耐摩耗鋼の製造方法
JP3543619B2 (ja) 1997-06-26 2004-07-14 住友金属工業株式会社 高靱性耐摩耗鋼およびその製造方法
JP4058840B2 (ja) 1999-04-09 2008-03-12 住友金属工業株式会社 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法
JP2003171730A (ja) 1999-12-08 2003-06-20 Nkk Corp 耐遅れ破壊性を有する耐摩耗鋼材およびその製造方法
JP3736320B2 (ja) 2000-09-11 2006-01-18 Jfeスチール株式会社 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP2002115024A (ja) 2000-10-06 2002-04-19 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP4116867B2 (ja) 2002-11-13 2008-07-09 新日本製鐵株式会社 溶接性・溶接部の耐磨耗性および耐食性に優れた耐摩耗鋼およびその製造方法
JP4645307B2 (ja) 2005-05-30 2011-03-09 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼およびその製造方法
CN101258256B (zh) * 2005-09-06 2010-11-24 住友金属工业株式会社 低合金钢
JP4846308B2 (ja) 2005-09-09 2011-12-28 新日本製鐵株式会社 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法
BRPI0802627B1 (pt) * 2007-03-30 2017-07-18 Nippon Steel & Sumitomo Metal Corporation Low level steel
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
JP5145804B2 (ja) 2007-07-26 2013-02-20 Jfeスチール株式会社 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP5145805B2 (ja) 2007-07-26 2013-02-20 Jfeスチール株式会社 ガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
AU2009292610B8 (en) 2008-11-11 2011-03-31 Nippon Steel Corporation High-strength steel plate and producing method therefor
JP2010121191A (ja) 2008-11-21 2010-06-03 Nippon Steel Corp 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
JP5439819B2 (ja) 2009-01-09 2014-03-12 Jfeスチール株式会社 疲労特性に優れた高張力鋼材およびその製造方法
CN101775545B (zh) * 2009-01-14 2011-10-12 宝山钢铁股份有限公司 一种低合金高强度高韧性耐磨钢板及其制造方法
JP5728836B2 (ja) 2009-06-24 2015-06-03 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
JP2012031511A (ja) 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
JP5866820B2 (ja) 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
JP5862323B2 (ja) 2011-01-31 2016-02-16 Jfeスチール株式会社 石炭船または石炭・鉱石兼用船ホールド用の耐食鋼
IT1403689B1 (it) * 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166954A (ja) 1985-01-18 1986-07-28 Sumitomo Metal Ind Ltd 高靭性耐摩耗鋼
JPH02179842A (ja) 1988-12-29 1990-07-12 Sumitomo Metal Ind Ltd 高靭性耐摩耗鋼板
JPH0841535A (ja) 1994-07-29 1996-02-13 Nippon Steel Corp 低温靱性に優れた高硬度耐摩耗鋼の製造方法
JP2002020837A (ja) 2000-07-06 2002-01-23 Nkk Corp 靭性に優れた耐摩耗鋼およびその製造方法
JP2005256169A (ja) * 2004-02-12 2005-09-22 Jfe Steel Kk 低温靱性に優れた耐摩耗鋼板およびその製造方法
JP2007092155A (ja) 2005-09-30 2007-04-12 Jfe Steel Kk 低温靭性に優れた耐摩耗鋼板およびその製造方法
JP2007197813A (ja) 2005-12-28 2007-08-09 Jfe Steel Kk 曲げ加工性に優れた耐摩耗鋼板
JP2009030092A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
WO2009087990A1 (ja) * 2008-01-07 2009-07-16 Nippon Steel Corporation 高温耐摩耗性および曲げ加工性に優れる耐摩耗鋼板およびその製造方法
JP2011179122A (ja) * 2011-03-07 2011-09-15 Jfe Steel Corp 低温靭性に優れた耐摩耗鋼板

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156079A1 (ja) * 2013-03-28 2014-10-02 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法
CN106605005A (zh) * 2014-09-11 2017-04-26 株式会社神户制钢所 高强度钢板
WO2016039136A1 (ja) * 2014-09-11 2016-03-17 株式会社神戸製鋼所 高強度鋼板
JP2016056425A (ja) * 2014-09-11 2016-04-21 株式会社神戸製鋼所 高強度鋼板
US11053561B2 (en) 2014-09-11 2021-07-06 Kobe Steel, Ltd. High-strength steel sheet
KR101915913B1 (ko) * 2014-09-11 2018-11-06 가부시키가이샤 고베 세이코쇼 고강도 강판
JP2016079459A (ja) * 2014-10-17 2016-05-16 Jfeスチール株式会社 耐摩耗鋼板およびその製造方法
JP2017193739A (ja) * 2016-04-19 2017-10-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
WO2017183058A1 (ja) * 2016-04-19 2017-10-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP6119934B1 (ja) * 2016-04-19 2017-04-26 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
US11035018B2 (en) 2016-04-19 2021-06-15 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
CN106048444A (zh) * 2016-06-13 2016-10-26 苏州双金实业有限公司 一种价格廉价的钢
US11401572B2 (en) 2016-12-22 2022-08-02 Posco High-hardness wear-resistant steel and method for manufacturing same
JP2020504240A (ja) * 2016-12-22 2020-02-06 ポスコPosco 高硬度耐摩耗鋼及びその製造方法
JP2018123409A (ja) * 2017-02-03 2018-08-09 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2020117811A (ja) * 2018-03-22 2020-08-06 日本製鉄株式会社 耐摩耗鋼
JPWO2019181130A1 (ja) * 2018-03-22 2020-04-30 日本製鉄株式会社 耐摩耗鋼及びその製造方法
WO2019181130A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 耐摩耗鋼及びその製造方法
JP7093804B2 (ja) 2018-03-22 2022-06-30 日本製鉄株式会社 耐摩耗鋼
CN108342649A (zh) * 2018-03-27 2018-07-31 武汉钢铁有限公司 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法

Also Published As

Publication number Publication date
EP2873747A4 (en) 2015-10-28
KR20150036798A (ko) 2015-04-07
BR112015005986A2 (pt) 2017-07-04
AU2013319622B2 (en) 2016-10-13
CN104662193A (zh) 2015-05-27
US9982331B2 (en) 2018-05-29
BR112015005986B1 (pt) 2019-08-13
EP2873747B1 (en) 2018-06-27
CN104662193B (zh) 2017-03-08
IN2015DN00769A (ja) 2015-07-03
MX370891B (es) 2020-01-09
PE20150779A1 (es) 2015-05-30
JPWO2014045553A1 (ja) 2016-08-18
MX2015003378A (es) 2015-06-05
JP5648769B2 (ja) 2015-01-07
CL2015000662A1 (es) 2015-07-31
EP2873747A1 (en) 2015-05-20
AU2013319622A1 (en) 2015-02-26
US20150225822A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP5648769B2 (ja) 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
EP2873748B1 (en) Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JP6573033B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
EP2695960B1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
EP2692890B1 (en) Abrasion-resistant steel plate or steel sheet and method for producing the same
JP5034308B2 (ja) 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
JP5655356B2 (ja) 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP6245220B2 (ja) 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
JP6217671B2 (ja) 高温環境における耐摩耗性に優れた厚鋼板
JP2015193873A (ja) 腐食環境における耐摩耗性に優れた厚鋼板
JP5017937B2 (ja) 曲げ加工性に優れた耐摩耗鋼板
JP4894296B2 (ja) 耐摩耗鋼板
JP6164193B2 (ja) 曲げ加工性及び耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
JP2007262429A (ja) 曲げ加工性に優れた耐摩耗鋼板
JP2007277590A (ja) 曲げ加工性に優れた耐摩耗鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014510589

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013838200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013319622

Country of ref document: AU

Date of ref document: 20130913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157005646

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 000318-2015

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2015000662

Country of ref document: CL

Ref document number: MX/A/2015/003378

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14429499

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015005986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150318