WO2014038706A1 - シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法 - Google Patents

シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法 Download PDF

Info

Publication number
WO2014038706A1
WO2014038706A1 PCT/JP2013/074352 JP2013074352W WO2014038706A1 WO 2014038706 A1 WO2014038706 A1 WO 2014038706A1 JP 2013074352 W JP2013074352 W JP 2013074352W WO 2014038706 A1 WO2014038706 A1 WO 2014038706A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
conductor
inductor
sheet
conductors
Prior art date
Application number
PCT/JP2013/074352
Other languages
English (en)
French (fr)
Inventor
健一 茶谷
直治 山本
▲吉▼田 栄▲吉▼
Original Assignee
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン株式会社 filed Critical Necトーキン株式会社
Priority to US14/422,679 priority Critical patent/US20150235753A1/en
Priority to KR1020157004081A priority patent/KR20150053900A/ko
Priority to CN201380043958.2A priority patent/CN104603889B/zh
Publication of WO2014038706A1 publication Critical patent/WO2014038706A1/ja
Priority to US16/132,356 priority patent/US10943725B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to an inductor component, and more particularly to a sheet-like inductor used for a power circuit of a small electronic device and an inductor built in a multilayer substrate.
  • Patent Documents 1, 2, and 3 As inductors configured such that a magnetic flux generated in a magnetic core circulates in a plane of a flat surface formed by the magnetic core.
  • the magnetic substrate (inductor) disclosed in Patent Document 1 includes a magnetic core made of a plurality of thin sheets stacked in the vertical direction.
  • the magnetic core has a hole penetrating the magnetic core in the vertical direction.
  • a coil conductor (coil) is formed by forming a plating seed layer on the surface and hole of the magnetic core.
  • silver paste coil conductors are filled in through-holes in an alternating laminate of flat metal powder sintered layers and insulator layers, and the coil conductors on the front and back surfaces are filled with silver paste.
  • An inductor that is connected by a connecting conductor to form a coil is disclosed.
  • the ferrite sintered body easily breaks.
  • Patent Document 3 for example, a material such as Finemet, MHz excitation was difficult due to eddy current.
  • a powder molded body is used to improve this, the frequency characteristics are improved, but the magnetic permeability is as low as about 50 and the magnetic characteristics are inferior.
  • a coil component used for a power circuit of an electronic device a coil component built in a laminated resin substrate is known.
  • a cavity is provided inside the laminated resin substrate, and a magnetic core or coil made of a magnetic material is enclosed in the cavity.
  • FIGS. 3 and 8 of Patent Document 4 disclose a laminated resin substrate including a resin layer containing a high-frequency metallic soft magnetic material such as Co—Fe that has been flattened. Yes.
  • the ferrite when ferrite is used as the magnetic body for the magnetic core of the coil component, the ferrite has better inductance and high frequency characteristics than the metal material, but has a lower saturation magnetic flux density than the metal material. Has the disadvantages.
  • the above-mentioned method (e) of providing a magnetic layer made of an amorphous or magnetic vapor deposition film as a magnetic core inside and outside the laminated resin substrate cannot ensure both a sufficient magnetic volume and a reduction in magnetic loss at 1 MHz or higher. There's a problem.
  • a magnetic layer made of an amorphous ribbon or a vapor-deposited magnetic film is built in, the magnetic layer is too thin to secure a necessary volume and has a disadvantage that magnetic saturation occurs.
  • amorphous ribbons and vapor-deposited magnetic films are inherently thin due to restrictions on the manufacturing method, and even if they are laminated to ensure the necessary volume, eddy current loss cannot be used greatly at frequencies of 1 MHz or higher. There are drawbacks and disadvantages in that the superposition characteristics of the magnetic core cannot be improved.
  • the necessary magnetic permeability is 50 or more, preferably 100 or more, but a problem that a sufficiently large magnetic permeability exceeding 100 cannot be obtained. There is.
  • a soft magnetic material having a permeability of 100 or more is molded together with the base material of the laminated resin substrate so as to apply pressure to the soft magnetic material, and the laminated resin
  • one technical problem of the present invention is to provide a magnetic core and a sheet-like inductor that improve the magnetic characteristics and reliability, reduce the electrical resistance, and simplify the manufacturing method.
  • Another technical problem of the present invention is a multilayer circuit having an inductor that is designed to save space, reduce loss, increase inductance, adaptability to large current application, reduce electrical resistance, and improve reliability. It is to provide a substrate.
  • this invention has the shaping
  • a magnetic core characterized by this can be obtained.
  • the magnetic core includes a coil
  • the magnetic core has a predetermined thickness, two planes opposed to the thickness direction, and two side surfaces connecting the two planes.
  • the coil includes the first via hole And the first and second via conductors provided through the second via holes, respectively, and the first and second surface conductors provided on two planes of the magnetic core, respectively.
  • each of the second via conductors has a center conductor and plug portions at both ends thereof, and the first and second surface conductors are connected to the first and second via conductors via the plug portion.
  • a mixture containing a flat metal powder having soft magnetism and a binder is molded into a sheet shape so that the soft magnetic flat metal powder is oriented in a plane formed by the inductor. And a step of forming a sheet.
  • a via conductor forming step for forming the first and second via conductors respectively, and the first and second surface conductors are superposed on the first and second via conductors and pressed in the thickness direction of the magnetic core;
  • a laminated resin substrate in which a pair of first resin substrates are laminated, a sheet-like magnetic core accommodated in the laminated resin substrate, and the laminated resin substrate and the magnetic core are penetrated.
  • the laminated resin substrate includes an adhesive component
  • the sheet-shaped magnetic core is formed of a flat metal powder having soft magnetism on a flat plate.
  • the flat metal powder is oriented in the plane of the flat plate, the magnetic flux generated by the coil conductor is refluxed in the plane of the flat plate, and the magnetic core is the laminated resin substrate.
  • a multilayer substrate built-in type inductor is obtained, wherein the inductor is integrated with the multilayer resin substrate under pressure, and the adhesive component is impregnated in the hole portion of the magnetic core.
  • a step of forming a coil through the via hole wherein the laminated resin substrate includes an adhesive component, and the sheet-like magnetic core is a molded body obtained by forming a flat metal powder having soft magnetism into a flat plate.
  • the flat metal powder is oriented in the plane of the flat plate, and the magnetic flux generated by the coil conductor is recirculated in the plane of the flat plate, and the magnetic core receives a pressure together with the laminated resin substrate.
  • the magnetic core material formed by orienting the flat metal powder in the plane formed by the molded sheet is used, the coil is divided into small portions, and each conductor constituting each portion is accompanied by pressure deformation. Are joined together.
  • this configuration can provide a magnetic core and a sheet-like inductor that can simultaneously realize improvement in magnetic characteristics and reliability, reduction in electrical resistance, and simplification of the manufacturing method.
  • an inductor embedded in a multilayer circuit board that achieves space saving, low loss, increased inductance, compatibility with large current conduction, low electrical resistance, and improved reliability is provided. Can be provided.
  • FIG. 1 is a perspective view showing a sheet-like inductor according to a first embodiment of the present invention. It is a figure which shows the molded object sheet
  • FIG. FIG. 2 is an exploded perspective view of the sheet-like inductor in FIG. 1. It is a top view which shows the sheet-like inductor by the 2nd Embodiment of this invention.
  • FIGS. 9A, 9B, and 9C are cross-sectional views sequentially showing manufacturing steps of the inductor according to the sixth embodiment of FIGS. 9A and 9B.
  • FIGS. 9A, 9B, and 9C are cross-sectional views sequentially showing manufacturing steps of the inductor according to the sixth embodiment of FIGS. 9A and 9B.
  • (A) is a perspective view which shows the sheet-like inductor by Example 1 of this invention
  • (b) is a top view which shows the sheet-like inductor by Example 1 of this invention. It is a figure which shows the result of having measured the inductance of 1 MHz about the sheet-like inductor which concerns on Example 1 of this invention, and also shows Comparative Examples 1 thru
  • FIG. 1 is a perspective view showing a sheet-like inductor according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a molded sheet used for the magnetic core of the sheet-like inductor of FIG. 3A is a cross-sectional view showing a plug portion indicated by II in FIG. 1, and
  • FIG. 3B is a plug portion indicated by II in FIG. 1 of a sheet-like inductor according to another example of the first embodiment. It is sectional drawing which shows the same part.
  • FIG. 4 is an exploded perspective view of the sheet-like inductor of FIG.
  • a sheet-like inductor 10 is formed by integrating a magnetic core 1 made of a sheet-like composite magnetic material and a coil 8 by applying pressure.
  • the sheet-like inductor 10 has a configuration in which a magnetic flux generated when a current is passed through the coil 8 circulates in the sheet surface of the magnetic core 1.
  • the magnetic core 1 is obtained by mixing a soft magnetic flat metal powder 51 with a binder 54 of a thermosetting binder resin and flattening it in the in-plane direction by a die slot method or a doctor blade method.
  • a molded body sheet 50 in which the metal powder 51 is oriented and formed into a sheet shape, one or a plurality of the molded body sheets 50 are stacked and pressed in the stacking direction (first direction) to obtain a high density. It is formed as a molded body.
  • the soft magnetic flat metal powder 51 includes Fe-Al-Si alloy known by Sendust (registered trademark), Fe-Ni alloy known by Permalloy (registered trademark), Fe group metal and alloy (iron alloy).
  • the surface of the soft magnetic flat metal powder is subjected to an oxidation treatment, as well as the surface of the soft magnetic flat metal powder.
  • low melting point glass glass frit
  • borosilicate, bismuth, phosphoric acid and zinc oxide may be coated.
  • the volume ratio of the high-density molded body (or molded body sheet 50) to the soft magnetic flat metal powder 51 is preferably 55% by volume or more in order to obtain a high magnetic permeability while having a saturation magnetic flux density.
  • the amount of the binder 54 of the binder resin is preferably 10% by volume or more in order to increase the strength, and is preferably 45% by volume or less which does not decrease the pressure resistance strength.
  • the porosity of the holes 53 formed in the binder 54 of the binding resin is determined so that the molded body is impregnated with the adhesive component in the binder and the molded body is firmly integrated in order to obtain elasticity and an appropriate room for deformation.
  • the content is set to 5% by volume or more, and further to 25% by volume or less, and more preferably 5% to 20% by volume so as to increase the metal content ratio.
  • the high-density molded body of the metal flat powder 51 constituting the magnetic core 1 has a high saturation magnetic flux density, so that a large current can be passed, and high permeability and inductance equivalent to ferrite can be obtained. Superposition characteristics exceeding 1 can be obtained. Moreover, although it is a metal material, since it is the structure which bound the powder with the binder 54 which is an insulator, it is excellent in a frequency characteristic.
  • the magnetic core 1 made of a high-density molded body of the metal flat powder 51 is not a brittle material unlike ferrite, and therefore can be tolerated without being cracked even in low-cost pressure molding.
  • the coil 8 includes the first and second via conductors 2 and 3, the first surface conductor 4 provided on one plane of the magnetic core 1, and the second surface provided on the other plane of the magnetic core 1.
  • the magnetic core 1 is coated with the flat metal powder 51 with the insulating binder layer 52, it is not necessary to use an insulating member, and the conductor constituting the coil 8 and the magnetic core 1 can be in direct contact with each other. it can.
  • first via holes 1 a penetrating through two planes (front and back surfaces) facing each other in the first direction are equally spaced in a second direction (length direction) intersecting the first direction.
  • the second via holes 1b are provided in a line at equal intervals along this line.
  • the first via conductor 2 is made of an elongated conductor and has a center conductor and end portions 2a and 2b on both sides thereof.
  • the first via conductor 2 is provided through the first via hole 1a.
  • the second via conductor 3 has a central conductor and end portions 3a and 3b on both sides thereof.
  • the second via conductor 3 is provided through the second via hole 1b.
  • the first surface conductor 4 has plug holes 4a and 4b that form plug portions on both sides.
  • One ends 2a, 2b, 3a, 3b of the first and second via conductors 2, 3 provided at symmetrical positions with respect to the center line on both sides in the length direction of the magnetic core 1 are plugged into the plug holes 4a, 4b.
  • the first and second via conductors 2 3 are deformed to form a tapered plug portion 3a (indicated by the same reference numeral 3a as the one end) whose outer cross-sectional area is larger than the inner cross-sectional area, as best shown in FIG.
  • the tapered plug portion 3a indicated by the same reference numeral 3a as the one end
  • the second surface conductor 5 has plug holes 5a and 5b that form plug portions on both sides.
  • the other end 2b of the first via conductor 2 provided at opposite positions on both sides in the length direction (second direction) of the magnetic core 1, and the first via conductor 2 intersecting the first and second directions.
  • the other end 3b of the second via conductor 3 shifted by one in the length direction from the via conductor 3 is fitted into the plug hole 5b.
  • one end of the first via conductor 2 on the front surface side is connected to one end facing each other in the width direction, but the other end 2b of the first via conductor 2 is different on the back surface side from the surface on the one end side. Is connected to the other end 3b of the second via conductor 3 shifted by one in the length direction.
  • the other ends 2b and 3b of the first and second via conductors 2 and 3 are also pressurized in the same manner as the one ends 2a and 3a, so that the other ends 2b and 3b of the first and second via conductors 2 and 3 are deformed. Then, like the surface side, tapered plug portions 2b and 3b having a large outer cross-sectional area are formed.
  • the plug portion 3a and the upper surface of the surface conductor are shown as protruding from the two planes of the magnetic core in FIG. 3A, in reality, the magnetic core is plastically deformed by the applied pressure, and the surface conductor is projected from the two planes. Becomes a buried shape.
  • guide grooves may be provided in advance on the two planes.
  • one end 3 a of the via conductor 3 and the surface conductor 4 are arranged in contact with each other without providing the plug hole 4 b in the surface conductor 4, and the via conductor 3 in the surface conductor 4 is arranged.
  • a pressure may be applied to the portion to electrically connect the surface conductor 4 and the via conductor 3.
  • fusing or current pulse energization may be performed simultaneously with or after pressurization to promote joining.
  • a conductive connection can be made more reliably by applying local pressure to the portion of the via conductor 3 in the surface conductor 4, thereby forming the surface conductor 4 shown in FIG. 1 and FIG.
  • a recess 4b ′ is formed at the position of the plug portion 3a instead of the plug portion 3a, and the one end 3a of the second via conductor becomes the plug portion 3a.
  • terminal members 6 and 6 having lead wires 7 and 7 are respectively the same as the first and second surface conductors 4 and 5.
  • the plug parts 2b and 3b are formed by being fitted into the plug holes 6a and 6a of the terminal members 6 and 6 and pressurized, and lead wires 7 and 7 are drawn out from the respective terminal members 6 and 6 in the longitudinal direction. It is.
  • the lead wires 7 and 7 are formed integrally with the terminal members 6 and 6, but the terminal members 6 and 6 are separate from the lead wires 7 and 7, Needless to say, the terminal members 6 and 6 may be formed after the plug portions are formed, even when the plug portions 2b and 3b are formed.
  • the DC electrical resistance of the coil 8 has a small number of turns and a large cross-sectional area in order to reduce the loss of the winding of the inductor.
  • the coil 8 preferably has a wire diameter corresponding to a round wire having a diameter of 0.15 mm or more, which is difficult to achieve with a printed conductor or plating.
  • the cross-sectional area S of a coil it is preferable from the following formula 1 that the amount of heat generated when a current of 15 A is passed through a 2 cm long conductor is 1 W or less.
  • a via conductor having a cross-sectional area of 0.4 mm or more in diameter and corresponding to a round wire, and more preferably 0.8 to 1.2 mm in diameter.
  • the cross-sectional area of the first and second surface conductors 4 and 5 is preferably a cross-sectional area corresponding to a rectangle having a width of 2 mm and a thickness of 0.25 mm, but is 2 mm in width and 0.3 mm in thickness. It is more preferable.
  • the magnetic core 1 is composed of a high-density molded body, cracks do not occur during pressure bonding of conductors.
  • via holes are provided in the high-density molded body, a conductor provided in the via holes and a conductor having a plug portion for connecting between vias are arranged together with the molded body, and the via portions are crimped.
  • the via conductors 2 and 3 installed in the via are fitted in the plug holes of the surface conductor and deformed by the applied pressure to form a plug portion, thereby forming a highly reliable coil.
  • the winding is simple and the winding can be thickened, the electrical resistance can be reduced and the reliability of the joint is improved.
  • FIG. 5 is a plan view showing a sheet-like inductor according to the second embodiment of the present invention.
  • the sheet-like inductor 10a according to the second embodiment of the present invention shown in FIG. 5 is different from the sheet-like inductor 10 according to the first embodiment shown in FIGS. 4 is different from the first embodiment in that a U-shaped gap 9 is provided along the periphery of 4 through two surfaces (front and back surfaces) facing each other in the first direction. It has the same configuration as the sheet-like inductor 10.
  • the sheet-like inductor 10 a according to the second embodiment of the present invention has a configuration in which a magnetic flux generated when a current is passed through the coil 8 circulates in the sheet surface of the magnetic core 1.
  • the ferrite core when a pressure is applied for connection, the ferrite core will be brittle and cracked. This tendency is particularly remarkable when a slit or the like for adjusting characteristics is provided in a part of the sheet-like inductor. According to the second embodiment of the present invention, since the molded body of flat metal powder is used for the magnetic core 1, this difficulty is solved.
  • the sheet-like inductor according to the second embodiment of the present invention is a compacted body of metal magnetic powder, it has excellent frequency characteristics, excellent superposition characteristics, and cracks during pressure bonding of conductors. It has the advantage that it does not occur.
  • FIG. 6 is a plan view showing a sheet-like inductor according to the third embodiment of the present invention.
  • the sheet-shaped inductor 10b according to the third embodiment of the present invention shown in FIG. 6 is different from the sheet-shaped inductor according to the first embodiment of the present invention shown in FIGS. ), Except that a gap 9 is provided in the third direction so as to penetrate the two planes of the magnetic core 1 and divide into two, and the sheet according to the first embodiment is different. It has the same configuration as the inductor 10.
  • the magnetic core 1 is a compacted body of metal magnetic powder, like the sheet-like inductors 10 and 10a according to the first and second embodiments.
  • the frequency characteristics are excellent, the superposition characteristics are excellent, and there is an advantage that no cracks are generated during pressure bonding of conductors.
  • FIG. 7 is a plan view showing a sheet-like inductor according to the fourth embodiment of the present invention.
  • the sheet-like inductor 10c according to the fourth embodiment of the present invention shown in FIG. 7 is different in that a coil 8 having the same shape as the coil of the sheet-like inductor 10 shown in FIGS. 1 to 4 is provided in the width direction.
  • the sheet-like inductor 10 according to the first embodiment has the same configuration.
  • one coil 8 is a primary coil, and the other coil 8 is a secondary coil.
  • the sheet-like inductor 10c according to the fourth embodiment of the present invention is a powder-molded body in which the magnetic core 1 is a metal magnetic powder, like the sheet-like inductors 10, 10a, 10b according to the first to third embodiments. For this reason, there are advantages that the frequency characteristics are excellent, the superposition characteristics are excellent, and cracks do not occur during pressure bonding of conductors.
  • FIG. 8 is a perspective view showing a sheet-like inductor according to the fifth embodiment of the present invention.
  • the sheet-shaped inductor 20 includes a primary side coil 11 and a secondary side coil 12.
  • the primary coil includes a first via conductor 2 and first and second surface conductors 14 and 15 connected to both ends 2a and 2b of the first via conductor for terminal connection, respectively. .
  • the first and second surface conductors are extended to the side surfaces of the respective magnetic cores 1 to form first and second side surface electrodes 14a and 15a on the side surfaces of the magnetic cores.
  • the secondary coil 12 has first and second surface conductors 14 and 15 connected to both ends 3 a and 3 b of the second via conductor 3.
  • the first and second surface conductors 14 and 15 are extended to both side surfaces of the magnetic core 1, and side electrodes 14 a and 15 a are formed on the side surfaces of the magnetic core 1.
  • top surfaces of the first and second surface conductors 14 and 15 and the plug portions 2a, 2b, 3a, and 3b are located inside the two planes of the magnetic core 1 during pressurization, that is, buried.
  • guide grooves for embedding the first and second surface conductors 14 and 15 may be provided in advance on the two planes of the magnetic core 1.
  • the first and second via conductors 2, 3 are provided on the first and second surface conductors 4, 5, 14, 15. Since both sides of the first and second via conductors 2 and 3 are deformed by pressurization to form a plug portion and are joined via the plug portion, in a magnetic core such as ferrite, The first and second surface conductors 4, 5, 14, 15 and the first and second via conductors 2, 3, which have been difficult due to breakage of the magnetic core, can be mechanically joined.
  • the metal magnetic core is less likely to be magnetically saturated than the ferrite magnetic core and has an advantage that a large current can flow.
  • the metal magnetic core has the disadvantage that excitation is difficult due to eddy current loss.
  • the magnetic core 1 according to the embodiment uses a molded sheet which is a powder molded body with no eddy current loss by coating metal powder with an insulating binder component, and further aligns the orientation of the soft magnetic flat metal powder. By being in a plane, it is possible to prevent a decrease in magnetic permeability and to provide a magnetic gap.
  • the sheet-like inductor having two or more types of coils is used as a transformer or a coupled inductor by electromagnetic coupling between the two or more types of coils.
  • the sheet-like inductor may be a functioning sheet-like inductor.
  • FIG. 9 (a) is a cross-sectional view showing a multilayer substrate built-in type inductor according to a sixth embodiment of the present invention
  • FIG. 9 (b) is a perspective view of the inductor of FIG. 9 (a).
  • a laminated substrate built-in inductor 20 includes a laminated resin substrate 21 in which a pair of first resin substrates 21a and 21b are laminated,
  • the magnetic core 1 made of a magnetic material enclosed in the laminated resin substrate 21, the via holes 23a and 23b provided through the laminated resin substrate 21 and the magnetic core 1, and the via holes 23a and 23b are formed.
  • a coil 24 is formed on a laminated resin substrate 21 in which a pair of first resin substrates 21a and 21b are laminated.
  • the magnetic core 1 made of a magnetic material enclosed in the laminated resin substrate 21, the via holes 23a and 23b provided through the laminated resin substrate 21 and the magnetic core 1, and the via holes 23a and 23b are formed.
  • a coil 24 made of a magnetic material enclosed in the laminated resin substrate 21, the via holes 23a and 23b provided through the laminated resin substrate 21 and the magnetic core 1, and the via holes 23a and 23b are formed.
  • the first resin substrates 21a and 21b are formed from a single-sided copper foil substrate having a copper foil on one side, and the first substrate surface conductor 4 and the second substrate surface conductor 5 of the substrate formed in a pattern from this copper foil. (Hereinafter simply referred to as first and second surface conductors 4 and 5) and first and second surface conductors (terminal members) 6 and 6 for terminal connection, respectively.
  • first and second surface conductors 4 and 5 are formed by laminating two or more conductor films having a thickness of 100 ⁇ m or less.
  • the coil 24 includes a first via conductor 2 provided through the first via hole 23a, a second via conductor 3 provided through the second via hole 23, and the first and second vias.
  • the first and second surface conductors 4 and 5 are respectively connected to the end portions of the via conductors 2 and 3.
  • the first and second via conductors 2 and 3 can be made of conductive paste or copper wire, but have conductivity in order to fill the first and second via holes 23a and 23b. Any material can be used.
  • plug portions 2a, 2b, 3a, 3b may be formed at the ends of the conductors 2, 3.
  • the laminated resin substrate 21 has a prepreg 22 having an adhesive component.
  • the magnetic core 1 made of a magnetic body is a sheet-like molded body obtained by stacking a plurality of magnetic bodies obtained by molding a flat metal powder into a sheet shape and press-molding the same into a flat plate shape.
  • This flat metal powder is oriented so as to have an easy magnetization axis in the plane of the flat plate.
  • the easy magnetization axis is oriented in the plane of the flat powder, there is an advantage that the magnetic permeability in the in-plane direction is increased.
  • the magnetic core 1 made of a magnetic material is applied with the laminated resin substrate and integrated with the laminated resin substrate.
  • the adhesive component is impregnated in the pores of the magnetic core 1.
  • the porosity of the molded body forming the magnetic core 1 has both elasticity and an appropriate room for deformation, and the molded body is impregnated with the adhesive component of the laminated resin substrate base material (prepreg 22), so that the substrate and the molded body are impregnated. It is made 5 volume% or more so that it can integrate firmly. Furthermore, it is 25 volume% or less so as to increase the metal content ratio. More preferably, it is 5% by volume or more and 20% or less.
  • the molded body forming the magnetic core 1 includes a flat magnetic metal powder and a binder that binds the flat magnetic metal powder.
  • the volume fraction of the binder component is 10% by volume or more and 45% by volume or less, more preferably 10% by volume or more and 20% or less. The reason is that when the volume fraction of the binder component is less than 10% by volume, the strength is insufficient, and when it is greater than 45%, the ratio of the metal component is decreased and the pressure resistance strength is insufficient.
  • the magnetic powder contained in the magnetic core 1 is a metal material
  • the molded body has a configuration in which a flat metal magnetic powder is bound with an insulator, so that it has excellent frequency characteristics and is an oxide magnetic material. Unlike ferrite, it is not a brittle material and can withstand pressure forming.
  • the volume ratio of the flat metal powder to the molded body is preferably a high-density molded body having a volume ratio of 55% by volume or more.
  • the reason is that since the molded body contains 55% by volume or more of a soft magnetic metal component, high permeability equivalent to ferrite can be obtained while having a high saturation magnetic flux density. It is more preferable to increase the volume fraction of the metal in the molded body to 65% by volume or more.
  • FIGS. 10A, 10B, and 10C are cross-sectional views sequentially showing manufacturing steps of the multilayer substrate built-in type inductor according to the sixth embodiment of FIGS. 9A and 9B.
  • the magnetic core 1 is accommodated in the prepreg 22 and sandwiched between the first resin substrates 21a and 21b made of a single-sided copper foil substrate having a conductor pattern patterned on one surface from above and below. Perform a hot press.
  • symbol 21c is a hole for the air release provided in the 1st resin board
  • first and second via conductors 2, 3 are formed so as to penetrate the first and second surface conductors 4, 5.
  • First and second via holes 23a and 23b are formed.
  • first and second via conductors 2 and 3 made of conductive paste or copper wire are passed through first and second via holes 23a and 23b, Was pressed to obtain the multilayer substrate built-in inductor 20.
  • FIG. 11 is a cross-sectional view showing an inductor with a built-in multilayer substrate according to a seventh embodiment of the present invention.
  • a multilayer substrate built-in type inductor 20 according to a thirteenth embodiment of the present invention is a second resin substrate superimposed on a pair of first resin substrates 21a and 21b as a multilayer substrate. It differs from having 25a and 25b and having the 3rd and 4th surface conductors 26 and 27 further on the surface of the 2nd resin substrate 25a and 25b.
  • first resin substrates 21a and 21b a pair of first resin substrates 21a and 21b, a pair of second resin substrates 25a and 25b on which a laminated resin substrate 29 is laminated, and a magnetic material made of a magnetic material sealed in the laminated resin substrate 29.
  • the core 1 first and second via holes 28 a and 28 b provided through the laminated resin substrate 29 and the magnetic core 1, and coils formed via the first and second via holes 28 a and 28 b 24.
  • the first resin substrates 21a and 21b are made of insulating resin substrates.
  • the second resin substrates 25a and 25b are formed from a double-sided copper foil substrate having copper foil on both sides, and a first surface conductor corresponding to the first substrate surface conductor 4 formed in a pattern from the copper foil. 4.
  • the second surface conductor 5, the third substrate surface conductor 26, and the fourth substrate surface conductor 27 (hereinafter simply referred to as third and fourth surface conductors) corresponding to the second substrate surface conductor 5. Each has it.
  • the thickness of the first and second surface conductors 4 and 5 is a laminate of two or more conductor films of 100 ⁇ m or less. Is formed.
  • the coil 24 is provided at the ends of the first and second via conductors 2 and 3 provided through the first and second via holes 28a and 28b, and the first and second via conductors 2 and 3, respectively.
  • the first and second surface conductors 4 and 5 and the third and fourth surface conductors 26 and 27 are connected to each other.
  • the laminated resin substrate 29 has a prepreg 22 having an adhesive component.
  • the magnetic core 1 is the same as that described with reference to FIGS. 9A and 9B and FIGS. 10A and 10B, description thereof will be omitted.
  • FIG. 12 is a cross-sectional view showing an inductor with a built-in multilayer substrate according to an eighth embodiment of the present invention.
  • the inductor 20 according to the fourteenth embodiment of the present invention is sandwiched and accommodated between a laminated resin substrate 21 in which a pair of first resin substrates 21a and 21b are laminated, and the laminated resin substrate 21.
  • the sheet-shaped magnetic core 1, via holes 23 a and 23 b provided through the laminated resin substrate 21 and the magnetic core 1, and a coil 24 formed through the via holes 23 a and 23 b are provided.
  • the first resin substrates 21a and 21b are formed from a single-sided copper foil substrate having a copper foil on one side, and each includes a first surface conductor 4 and a second surface conductor 5 formed in a pattern from the copper foil. Yes.
  • the first and second surface conductors 4 and 5 are formed by laminating two or more layers of conductor films of 100 ⁇ m or less.
  • the coil 24 includes a first via conductor 2 provided through the first via hole 23a, a second via conductor 3 provided through the second via hole 23b, and first and second via conductors. It has the 1st and 2nd surface conductor 5 connected to the edge part of 2 and 3, respectively.
  • first and second via conductors 2 and 3 a conductive material such as a conductive paste or a copper wire can be used.
  • a plastically deformable conductive material such as a copper wire
  • they are joined and fixed by soldering.
  • plug portions 2a, 2b, 3a and 3b may be formed at the end portions of the via conductors 2 and 3, respectively.
  • the laminated resin substrate 21 has an adhesive layer 31 having an adhesive component formed on the inner surfaces of the first and second resin substrates 21a and 21b.
  • the magnetic core 1 is a molded body obtained by forming a flat metal powder into a flat plate.
  • the flat metal powder has an easy axis of magnetization in the plane of the flat plate.
  • this pressure molding uses pressure molding, and there is no crack in the molded body even when pressure is applied to the molded body, and the magnetic core 1 is magnetic. Since the characteristics do not change, it is easy to enclose the molded body in the substrate.
  • the magnetic core 1 is applied with the laminated resin substrate and integrated with the laminated resin substrate. Adhesive components from the adhesive layer 31 of the first resin substrates 21 a and 21 b are impregnated in the pores of the magnetic core 1.
  • the porosity of the molded body constituting the magnetic core 1 is 5% by volume or more and 25% by volume or less, preferably 5% by volume or more and 20% or less.
  • the magnetic material has 5% by volume or more of pores, it has 5% by volume or more of pores that have both elasticity and appropriate deformation, and the adhesive component of the resin substrate is impregnated in the pores. If it is less than 5%, the adhesive component is not impregnated. If it exceeds 25%, the metal component ratio is increased, and the metal filling rate and strength are insufficient.
  • the molded body includes a flat metal powder and a binder that binds the flat metal powder.
  • the volume fraction of the binder component is 10% by volume or more and 45% by volume or less, more preferably 10% by volume or more and 20% or less. The reason is that if it is less than 10%, the strength is insufficient, which is not preferable, and if it is more than 45%, the ratio of the metal content is lowered and the pressure resistance strength is insufficient.
  • the volume ratio of the flat metal powder to the molded body is preferably 55% by volume or more.
  • the reason for this is that, in order to obtain a high-density molded body of flat metal powder, the molded body contains a soft magnetic metal component of 55% by volume or more, and thus has a high magnetic permeability equivalent to ferrite while having a high saturation magnetic flux density. can get. It is more preferable to increase the metal volume ratio of the molded body to 65% by volume or more.
  • FIG. 13 is a cross-sectional view showing an inductor with a built-in multilayer substrate according to a ninth embodiment of the present invention.
  • the multilayer substrate built-in inductor 20 according to the ninth embodiment of the present invention includes a pair of first resin substrates 21 a and a third resin substrate having an accommodating portion 31 a for accommodating the magnetic core 1.
  • the first resin substrates 21a and 21b have insulating resin substrates having adhesive layers 31 and 31 on the inner surface.
  • the third resin substrate 32 functions as a spacer, and has an adhesive layer 31 on both the front and back surfaces and the inner surface of the accommodating portion 32a.
  • First and second surface conductors 4 and 5 made of copper foil or copper plate are formed on the surfaces of the first resin substrates 21a and 21b.
  • the thicknesses of the first and second surface conductors 4 and 5 are formed by laminating two or more conductor films of 100 ⁇ m or less, as in the sixth to eighth embodiments.
  • the coil 24 has a via conductor 2 provided through the via hole 21a and first and second surface conductors 4 and 5 connected to end portions of the via conductors 2 and 3, respectively.
  • a conductive material such as a conductive paste or a copper wire can be used, and the first and second surface conductors are joined and fixed by soldering.
  • a plastically deformable conductive material such as a wire is used, each of the first and fifth surface conductors 4, 5, 6 (not shown) is connected to each of the first and fifth surface conductors, as in the first and fifth embodiments.
  • plug portions 2a, 2b, 3a, 3b may be formed at the end portions of the second via conductors 2, 3.
  • first resin substrates 21a and 21b of the laminated resin substrate 30 have adhesive layers 31 and 31 as adhesive components on the inner surface
  • the third resin substrate 32 is disposed on both surfaces and the inner surface 32a of the housing portion. It has an adhesive layer.
  • the magnetic core 1 made of a magnetic material is a molded body in which a flat metal powder is formed into a sheet shape and a plurality of sheets are stacked and formed into a flat plate.
  • the flat metal powder is oriented in the plane of the flat plate.
  • the magnetic permeability in the in-plane direction has an advantage.
  • the magnetic core 1 is applied with the laminated resin substrate and integrated with the laminated resin substrate.
  • the adhesive component is impregnated in the pores of the magnetic core 1.
  • the porosity of the molded body forming the magnetic core 1 is that the adhesive component of the adhesive layer is impregnated into the molded body, and the substrate and the molded body are firmly integrated to have elasticity and an appropriate room for deformation. It is preferable that it is 5 volume% or more which can be performed, On the other hand, it is preferable that it is 25 volume% or less which does not lack metal filling rate and intensity
  • the molded body includes a flat metal powder and a binder that binds the flat metal powder.
  • the volume fraction of the binder component is preferably 10% by volume to 45% by volume, and more preferably 10% by volume to 20% by volume. The reason is that if it is less than 10%, the strength is insufficient, and if it is more than 45%, the pressure-resistant strength is insufficient (the metal content ratio is increased).
  • the metal material is a metal material, it has a structure in which powder is bound with an insulator, so it has excellent frequency characteristics. Unlike ferrite, it is not a brittle material and can withstand pressure forming.
  • the volume ratio of the flat metal powder to the molded body is preferably 55% by volume or more. The reason is that since the molded body contains 55% by volume or more of a soft magnetic metal component, high permeability equivalent to ferrite can be obtained while having a high saturation magnetic flux density. Furthermore, the metal content ratio can be increased when the metal volume ratio is 65% by volume or more.
  • FIG. 14A is a cross-sectional view showing the multilayer substrate built-in type inductor according to the tenth embodiment of the present invention
  • FIG. 14B is a perspective view of the multilayer substrate built-in type inductor of FIG. 14A.
  • the multilayer substrate built-in inductor 20 includes a pair of first resin substrates 21a and 21b and a magnetic core 1 made of a magnetic material.
  • the first resin substrates 21a and 21b have insulating resin substrates having adhesive layers 31 and 31 on the inner surface.
  • the third resin substrate 32 functions as a spacer, and has an adhesive layer 31 on both surfaces and the inner surface of the accommodating portion 32a.
  • First and second surface conductors 4 and 5 made of copper foil or copper plate are formed on the surfaces of the first resin substrates 21a and 21b, and are formed so as to straddle the opposite sides of the magnetic core 1 having a mouth shape. Yes.
  • each of the first and second surface conductors 4 and 5 is formed by laminating two or more layers of conductor films of 100 ⁇ m or less as in the sixth to ninth embodiments.
  • the thickness of the surface conductor is such that the surface conductor is formed using at least two copper foil patterns having a thickness of 100 ⁇ m or less per sheet.
  • the primary side coil 24a and the secondary side coil 24b are formed in parallel on the front side and the rear side.
  • the primary side coil 24a includes first and second via conductors 2 and 3 provided through first and second via holes 23a and 23b formed in a row on the front side and the immediately rear side, First and second surface conductors 4 and 5 are connected to the ends of the first and second via conductors 2 and 3, respectively.
  • first and second via conductors 2 and 3 a conductive material such as a conductive paste or copper wire can be used.
  • the first and second via conductors 2 are used.
  • , 3 are made of copper wire, and the first to fourth surface conductors 4.5.26.27 are joined by soldering using a solder film previously provided in the via hole.
  • the second via conductors 2 and 3 are made of a plastically deformable conductive material such as a copper wire
  • the respective surface conductors 26 and 27 are respectively connected to the respective surface conductors 26 and 27 as in the first to fifth embodiments.
  • plug portions 2a, 2b, 3a, 3b may be formed at the end portions of the via conductors 2, 3.
  • the secondary side coil 24b includes a via conductor 2 provided through a rear side and via holes 23a and 23b formed in a row in front of the rear side, and a via conductor 2
  • the first and second surface conductors 4 and 5 and the first and second surface conductors (terminal members) 6 and 6 respectively connected to the end portions of the first and second surface conductors.
  • first resin substrates 21a and 21b of the laminated resin substrate 30 have adhesive layers 31 and 31 as adhesive components on the inner surface
  • the third resin substrate 32 has both the front and back surfaces and the housing portion 32.
  • the adhesive layer 31 is provided on the inner surface, the adhesive layer 31 may not be provided as long as it is formed on the inner surface of the first resin substrates 21a and 21b.
  • the magnetic core 1 made of a magnetic material is a molded body in which a flat metal powder is formed into a sheet shape, and a plurality of sheets are stacked and pressed into a flat plate.
  • the flat metal powder is oriented in the plane of the flat plate.
  • the magnetic permeability in the in-plane direction has an advantage.
  • the magnetic core 1 is applied with the laminated resin substrate and integrated with the laminated resin substrate.
  • the adhesive component is impregnated in the pores of the magnetic core 1.
  • the porosity of the molded body forming the magnetic core 1 is that the adhesive component of the adhesive layer is impregnated into the molded body, and the substrate and the molded body are firmly integrated to have elasticity and an appropriate room for deformation. It is preferable that it is 5 volume% or more which can be performed, On the other hand, it is preferable that it is 25 volume% or less which does not lack metal filling rate and intensity
  • the molded body includes a flat metal powder and a binder that binds the flat metal powder.
  • the volume fraction of the binder component is preferably 10% by volume to 45% by volume, and more preferably 10% by volume to 20% by volume. The reason is that if it is less than 10%, the strength is insufficient, and if it is more than 45%, the pressure-resistant strength is insufficient (the metal content ratio is increased).
  • the metal material is a metal material, it has a structure in which powder is bound with an insulator, so it has excellent frequency characteristics. Unlike ferrite, it is not a brittle material and can withstand pressure forming.
  • the volume ratio of the flat metal powder to the molded body is preferably 55% by volume or more, and more preferably, the volume ratio is set to 65% by volume or more to further increase the metal content ratio.
  • the molded body contains 55% by volume or more of a soft magnetic metal component, high permeability equivalent to ferrite can be obtained while having a high saturation magnetic flux density.
  • the metal content ratio can be increased when the metal volume ratio is 65% by volume or more.
  • a magnetic core made of a soft magnetic metal powder having a flat shape is placed inside the laminated resin substrate and the laminated resin substrate. While being integrated and pressurized and sealed, the porosity of the molded body expressed as a volume fraction is 5% or more and 30% or less, and the binder component that binds the metal powder is 10% or more and 40% or less, By making the soft magnetic metal powder component 55% or more and 85% or less, in the integral molding with the laminated resin substrate, the molded body is integrated with the resin substrate without being destroyed, and has a high magnetic permeability and saturation magnetic flux density. As a result, it is possible to obtain a coil having a large inductance in which the magnetic core 1 is sealed in a laminated resin substrate.
  • the sixth to tenth embodiments of the present invention it is not necessary to provide a gap around the magnetic core built in the resin substrate, and the molding pressure for laminating the laminated resin substrate is sealed. Since the structure directly acts on the core, the volume of the magnetic core built in the resin substrate can be increased, and the reliability is improved.
  • the magnetic core 1 made of a magnetic material since it has pores of 5% by volume or more, it has both elasticity and an appropriate deformation space. There is no cracking. Moreover, since it has a void of 5% by volume or more and the pore component is impregnated with the adhesive component of the resin substrate, the resin substrate and the magnetic core 1 can be joined and integrated.
  • a magnetic core material in which flat metal powder is oriented and molded in the plane formed by the multilayer substrate built-in type inductor is used as the magnetic core 1, and 55 volume% filled with metal powder of 55 volume% or more. %, It has superposition characteristics more than twice that of NiZn ferrite and, unlike metal ribbons with high relative permeability, is equivalent to NiZn ferrite with excellent frequency characteristics. Has high frequency characteristics.
  • the coil is formed using the double-sided copper foil substrate or the conductor pattern formed on the single-sided copper foil substrate of a plurality of layers.
  • the coil conductor it is possible to reduce the increase in AC electrical resistance due to the skin effect.
  • a free-cutting magnetic core was sealed in the substrate, and then via processing was performed, so that it was built in the resin substrate.
  • a current path of the coil that penetrates the magnetic core can be formed.
  • the via processing is performed after the magnetic core is built in the substrate, the occurrence of cracks in the magnetic material due to the via processing is prevented.
  • the multilayer substrate built-in type inductor according to the embodiment of the present invention can be provided for an inductance element of a transformer type coupling type, a coupled L type coupling type, a slit type, and a gap type.
  • Example 1 First, the production of sheet-like inductors according to examples and comparative examples of the present invention will be described.
  • 15 (a) and 15 (b) are a perspective view and a plan view showing the sheet-like inductor according to Example 1 of the present invention.
  • a gas atomized powder of Fe—Si—Al alloy (Sendust) having an average particle diameter D50 of 55 ⁇ m was used as a raw material powder of soft magnetic metal.
  • the raw material powder is subjected to forging processing for 8 hours using a ball mill, and further subjected to heat treatment at 700 ° C. for 3 hours in a nitrogen atmosphere to obtain a flat shaped metal powder.
  • Sendust powder was prepared.
  • the produced flat metal powder has an average major axis (Da) of 60 ⁇ m, an average maximum thickness (ta) of 3 ⁇ m, and an average aspect ratio (Da / ta) of 20.
  • the flat metal powder was mixed with a thickener and a thermosetting binder component to prepare a slurry.
  • Ethanol was used as the solvent.
  • polyacrylic acid ester was used as a thickener.
  • a methyl silicone resin was used as the thermosetting binder component.
  • the slurry was applied on a PET (polyethylene terephthalate) film by the die slot method. Then, it dried at 60 degreeC temperature for 1 hour, the solvent was removed, and the sheet-shaped preform was obtained by this. At this time, the flat metal powder is oriented in the plane of the preform without applying a magnetic field.
  • the above preformed body was cut into a rectangle 15 mm wide and 10 mm long using a die.
  • Four cut preforms were stacked and sealed in a mold.
  • the sealed preform was subjected to pressure molding for 1 hour at 150 ° C. and a molding pressure of 20 kg / square centimeter.
  • the sheet-like inductor was heat-treated in a nitrogen atmosphere at 350 ° C. for one hour to produce a sheet-like inductor.
  • a molded body (magnetic core 1) having a thickness (T) of 0.9 mm, a width (W) of 15 mm, and a length (L) of 11 mm was obtained. .
  • via holes 1a and 1b having a diameter of 0.8 mm were provided at predetermined positions of the molded body 1 by drill cutting. Further, the molded body 10 was heat-treated in a nitrogen atmosphere at 600 ° C. for 1 hour to prepare the magnetic core 1.
  • the magnetic core 1 has a volume resistivity of 10 k ⁇ ⁇ cm or more.
  • the density of the magnetic core 1 is 4.9 g / cc, and the volume filling factor of the metal component obtained from this density is about 67%.
  • first and second via conductors 2 which have a diameter of 0.8 millimeters and a length of 1.8 millimeters and have no insulation coating and are inserted into via holes, are formed. Used as 3. Further, a copper plate having a width of 2 mm and a thickness of 0.3 mm and having no insulating film is cut so as to have a predetermined length, and a diameter is obtained by drill cutting at a position shown in FIG. The first and second surface conductors 4 are formed so that 0.8 mm holes are formed and plug holes 4 a, 4 b, 5 a, 5 b for joining to the first and second via conductors 2, 3 are formed. Used as 5.
  • the first and second via conductors 2 and 3 are inserted into each magnetic core 1 obtained as described above, and the first and second surface conductors 4 and 5 are arranged at predetermined positions.
  • the first and second via conductors 2 and 3 and the first and second surface conductors 4 and 5 were joined by sandwiching between stainless steel plates and applying a pressure of 15 kgf.
  • both ends 2a, 2b, 3a, 3b of the first and second via conductors are deformed by the applied pressure. It was confirmed that the diameter was larger than the initial diameter of 0.8 mm. Further, it was confirmed that the surface conductor was buried inside the two planes of the magnetic core 1.
  • the assembled sheet-like inductor 10d is heat-treated in a nitrogen atmosphere at 650 ° C. for 1 hour, and the plug portions of the first and second via conductors 2 and 3 and the first and second surfaces Diffusion bonding was produced at the joint between the conductors 4 and 5 and the plug hole, and the electrical resistance at the joint between the plug and the plug hole was reduced.
  • this heat treatment the organic component pyrolysis in the binder, but also may be discharged as carbon dioxide, if coated in advance flat metal powders of SiO 2 containing insulating bond coating flat by heat treatment
  • the metal powder is bound via the SiO 2 -containing insulating bond film, and the binding force between the flat metal powders can be maintained by substituting at least a part of the function as a binder.
  • a commercially available Ni—Zn-based ferrite sintered body was cut and polished in the thickness direction, and had a shape similar to that shown in FIG. 15 (a), 15 mm wide, 10 mm long, and 0.9 mm thick.
  • a plate-like Ni—Zn ferrite core was prepared.
  • As the magnetic permeability of the NiZn ferrite sintered body three kinds of materials having 200, 260, and 550 as real number components of the relative magnetic permeability at 1 MHz were used.
  • a via hole having a diameter of 0.8 mm was provided at a predetermined position of each sintered body by ultrasonic processing, and magnetic cores of Comparative Examples 2, 3, and 4 were prepared.
  • the magnetic core has a volume resistivity of 10 k ⁇ ⁇ cm or more.
  • a copper wire having a diameter of 0.8 mm and a length of 1.8 mm and having no insulating film was prepared and used as via conductors 2 and 3 to be inserted into via holes. Further, a copper plate having a width of 2 mm and a thickness of 0.3 mm and having no insulating film is cut so as to have a predetermined length, and a diameter is obtained by drill cutting at a position shown in FIG. 8B.
  • the first and second surface conductors 4 are formed so that 0.8 mm holes are formed and plug holes 4 a, 4 b, 5 a, 5 b for joining to the first and second via conductors 2, 3 are formed. Used as 5.
  • the first and second via conductors are inserted into each of the magnetic cores obtained as described above, and the first and second surface conductors 4 and 5 are arranged at predetermined positions.
  • the via conductor and the surface conductor were joined by applying a pressure of 15 kgf.
  • the via conductor was deformed by the applied pressure and was larger than the initial diameter of 0.8 mm.
  • the assembled sheet-like inductor is heat-treated in a nitrogen atmosphere at 650 ° C. for 1 hour to cause diffusion bonding at the junction between the via conductor and the surface conductor, thereby reducing the electrical resistance at the junction. I let you.
  • Example 1 shows a summary of damage occurrence rates and characteristics evaluation results at the time of preparation.
  • An LCR meter HP4284A manufactured by Hewlett-Packard (currently Agilent Technologies) was used to measure the inductance at 1 MHz.
  • an impedance analyzer 4294A manufactured by Agilent Technologies was used for measuring the frequency characteristics of the inductance.
  • the sheet-like inductor of Example 1 according to the present invention has the same level of inductance as that of a Ni—Zn ferrite inductor, and the inductance is reduced by eddy current loss up to 1 MHz or more. Not. Further, it is confirmed that it has a high inductance up to a high frequency equal to or higher than that of Comparative Examples 2 to 4 using Ni—Zn ferrite characterized by having good high frequency characteristics as a magnetic core. This fact also indicates that no coil short-circuit occurs even when the high-temperature heat treatment is performed with the coil portion formed of the via conductor and the surface conductor and the magnetic core of Example 1 in close contact with each other. .
  • the inductance is significantly superior. Specifically, for example, when the bias current is 5 A, the inductance value is approximately twice as large as that of the inductors using the Ni—Zn ferrite cores of Comparative Examples 2 to 4. ing. This is because a metal powder having a high saturation magnetic flux density compared to Ni—Zn ferrite is used as the magnetic core material, and the sheet-like inductor having the configuration of Example 1 of the present invention has a large current. It can be seen that the inductor is suitable for high-current energization, in which the inductance does not easily decrease even when energized.
  • Example 1 of this invention was demonstrated, about the kind or addition amount of organic binders, such as polyacrylic acid ester used as a thickener or a binder for shaping
  • organic binders such as polyacrylic acid ester used as a thickener or a binder for shaping
  • a conductor having no insulating film is used as a constituent element of the coil, a conductor having an insulating film at an appropriate portion may be used. Further, when joining conductors by applying pressure, fusing or current pulse energization may be performed simultaneously to promote joining. Moreover, although it is not indispensable to carry out the diffusion bonding of the bonding site by heat treatment, the diffusion bonding may be promoted by interposing metal powder nanoparticles in the bonding portion as necessary.
  • Example 2 An implementation for a pressure resistance strength test of a magnetic core built in the resin substrate and a bonding test with the resin substrate will be described.
  • a raw material powder of soft magnetic metal As a raw material powder of soft magnetic metal, a water atomized powder of Fe-3.5Si-2Cr alloy having an average particle diameter D50 of 33 ⁇ m was used. In order to flatten the powder shape, the raw material powder was forged for 8 hours using a ball mill, and further subjected to a heat treatment at 500 ° C. for 3 hours in a nitrogen atmosphere, so that Fe-3. 5Si-2Cr powder was obtained.
  • the flat metal powder is mixed with ethanol as a solvent, polyacrylic acid ester as a thickener, and methylphenyl silicone resin as a thermosetting binder component to prepare a slurry, and PET (polyethylene terephthalate) by die slot method.
  • the solvent was removed by drying at 60 ° C. for 1 hour to obtain a preform.
  • the amount of methyl silicone resin added to 100 grams of the flat metal powder was set to a predetermined level between 2 wt% and 20 wt%.
  • the preform is cut into a square of 100 mm in width and 100 mm in length using a punching die, and a predetermined number of the obtained pieces are stacked and sealed in a mold, and a molding pressure of 150 ° C. and 2 MPa is used. For 1 hour. Furthermore, this molded body 1 was heat-treated in a nitrogen atmosphere at 550 ° C. for 1 hour to prepare three test pieces for each pressure resistance strength test for each binder addition level. The thickness of the test piece is 0.3 mm.
  • the molding density of the test piece was measured by the Archimedes method.
  • the true density of only the flattened Fe-3.5Si-2Cr alloy measured by the Archimedes method is 7.6 g / cc
  • the true density after curing of the methylphenyl silicone resin is 1.3 g / cc. cc.
  • the methylphenyl silicone resin exhibits a weight loss by heating of 20% by weight under a heat treatment condition of 550 ° C. for 1 hour in a nitrogen atmosphere.
  • the thickener component is almost completely pyrolyzed by the heat treatment and does not remain in the magnetic core. From these numerical values, the volume filling rate of the metal component, the volume filling rate of the component after curing of the methylphenyl-based silicone resin, that is, the binder, and the porosity were calculated for the molded heat-treated flat metal powder.
  • test piece is mirror-polished and sandwiched between two stainless steel plates having a thickness of 6 mm, and a pressure of 15 MPa is applied using a hydraulic press, and the presence or absence of cracking or peeling is confirmed and the pressure resistance strength The test was conducted.
  • a heat-treated molded body having a width of 100 mm, a length of 100 mm, and a thickness of 0.3 mm obtained by producing in the same manner as the test piece for the pressure-resistant strength test is obtained. They were placed between two prepregs with a thickness of 0.3 mm and pressure bonded under the conditions of 180 ° C., 3 MPa, and 1 hour. Furthermore, the flat metal powder molded body thus obtained and the heat-cured laminate of the prepreg were separated into individual pieces having a width of 15 mm, a height of 15 mm, and a thickness of 0.9 mm using a dicing saw. A total of 36 pieces were obtained. In each piece, the four sides were cut by a dicing saw.
  • the piece is heated for 1 minute on a hot plate heated to 350 ° C., and the number of test pieces in which the phenomenon of separation between the flat metal powder molded body and the prepreg layer occurs is counted. This was adopted as an index for evaluating the bonding state with the substrate.
  • Table 2 summarizes the above evaluation results.
  • the volume fraction of the binder component is 7% by volume and the porosity is 33% by volume
  • cracking occurs in the pressure-resistant strength test due to insufficient strength of the molded body, and the resin Peeling occurred in the flat metal powder molded body portion of the piece obtained by cutting the joined body with the substrate.
  • the volume filling rate of the binder component is 9.5% by volume or more and 46.5% by volume or less and the porosity is 4% by volume or more and 25.5% or less
  • the pressure resistance strength In the test cracks did not occur, and at the same time, no peeling occurred on the cut pieces of the resin substrate laminate.
  • the molded body has sufficient strength, and has an appropriate porosity, so that the pore component of the molded body is impregnated with the adhesive component of the prepreg. This is considered to be because they are integrated with each other and the interlayer strength between the molded body and the prepreg is kept high.
  • the porosity was 2.5% by volume or less, peeling occurred on the cut pieces of the resin substrate laminate. This corresponds to the fact that since the porosity of the molded body is too low, the pore component of the molded body is not sufficiently impregnated with the adhesive component of the prepreg, and the interlayer strength between the molded body and the prepreg is insufficient.
  • a gas atomized powder of Fe—Si—Al alloy (Sendust) having an average particle diameter D50 of 55 ⁇ m was used as a raw material powder of soft magnetic metal.
  • the raw material powder is forged for 8 hours using a ball mill, and further subjected to heat treatment at 700 ° C. for 3 hours in a nitrogen atmosphere to obtain a sendust powder having a flat shape. It was.
  • the produced flat metal powder has an average major axis (Da) of 60 ⁇ m, an average maximum thickness (ta) of 3 ⁇ m, and an average aspect ratio (Da / ta) of 20.
  • the aspect ratio of the flat metal powder is obtained by impregnating a compressed metal powder with a resin and curing it, polishing the cured body, and observing the shape of the flat metal powder on the polished surface with a scanning electron microscope. It was. Specifically, for 30 flat metal powders, the major axis (D) and the thickness (t) of the thickest part were measured, and the average value of the aspect ratio (D / t) was calculated.
  • the sendust powder is mixed with ethanol as a solvent, polyacrylic acid ester as a thickener, and a methyl silicone resin as a thermosetting binder component to prepare a slurry, which is formed on a PET (polyethylene terephthalate) film by a die slot method. After the slurry was applied, the solvent was removed by drying at 60 ° C. for 1 hour to obtain a preform.
  • the preform is cut into a rectangle 15 mm wide and 10 mm long using a die, and a predetermined number of pieces are stacked and sealed in a mold, and a molding pressure of 150 ° C. and 2 MPa is used. For 1 hour.
  • the thickness of the molded body after pressure molding is 0.9 mm.
  • a via hole having a diameter of 0.8 mm is formed by drill cutting at a predetermined position of the molded body 1.
  • this molded body 1 was heat-treated in a nitrogen atmosphere at 650 ° C. for 1 hour to prepare the magnetic core 1 of Example 1.
  • the magnetic core 1 has a volume resistivity of 10 k ⁇ ⁇ cm or more.
  • the density of the magnetic core is 4.9 g / cc
  • the volume filling rate of the metal component obtained from this density is about 67%
  • the volume filling rate of the cured component of the methyl silicone resin is about 18%.
  • the porosity is about 15%.
  • the thickener component is almost completely pyrolyzed by the heat treatment and does not remain in the magnetic core.
  • a commercially available Ni—Zn-based ferrite sintered body was cut and polished in the thickness direction to produce a plate-like Ni—Zn-based ferrite core having a width of 15 mm, a length of 10 mm, and a thickness of 0.9 mm.
  • As the magnetic permeability of the NiZn ferrite sintered body three kinds of materials having 200, 260, and 550 as real number components of the relative magnetic permeability at 1 MHz were used.
  • a via hole having a diameter of 0.8 mm was provided at a predetermined position of each sintered body by ultrasonic processing, and magnetic cores of Comparative Examples 2, 3 and 4 were prepared.
  • the magnetic core has a volume resistivity of 10 k ⁇ ⁇ cm or more.
  • a copper wire having a diameter of 0.8 mm and a length of 1.8 mm and having no insulating film was prepared and used as a via conductor to be inserted into a via hole. Further, a copper plate having a width of 2 mm and a thickness of 0.3 mm and having no insulating film is cut to have a predetermined length, and a diameter of 0.8 mm is drilled at a predetermined position. A hole was made and used as a surface conductor so as to become a plug portion for joining with a via conductor.
  • Via conductors are inserted into each of the magnetic cores obtained as described above, and surface conductors are arranged at predetermined positions, sandwiched between stainless steel plates, and pressurized with 15 kgf to form via conductors. The surface conductors were joined.
  • the schematic diagram of the structure of the obtained inductance element is the same as that shown in FIGS. 15 (a) and 15 (b).
  • Example 2 of the present invention in order to produce an inductor having a magnetic core built in a substrate according to Example 2 of the present invention, a preformed body obtained in the same manner as Example 1 was used by using a die. Cut into a rectangle of 15 mm in width and 10 mm in length, and stack the prescribed number of pieces and enclose them in a mold, and press-mold at 150 ° C. and 2 MPa for 1 hour. did. The thickness t1 of the molded body 1 after the pressure molding is 0.9 mm. The molded body 1 was heat-treated in a nitrogen atmosphere at 650 ° C. for 1 hour to produce a magnetic body (magnetic core) 1. As shown in FIGS.
  • the magnetic core 1 is arranged in a central portion where three prepregs each having a width of 15 mm, a length of 10 mm, and a thickness of 0.3 mm are stacked and stacked.
  • a single-sided copper foil substrate having a thickness of 0.5 mm on which a conductor pattern forming a part of a coil conductor is formed is disposed as the first resin substrates 21a and 21b, and pressed under conditions of 3 MPa, 180 ° C., and 1 hour. Laminated. Via holes 23a and 23b having a diameter of 0.8 mm were provided by drill cutting at predetermined positions corresponding to FIG. 19 of the pressure laminate.
  • a copper wire having a diameter of 0.8 mm was inserted into the via hole as via conductors 2 and 3.
  • the copper wire and the conductor pattern formed on the single-sided copper foil substrate are joined by soldering to produce an inductor in which a magnetic material is built in a laminated resin substrate having the same shape as the inductor shown in FIGS. did.
  • Example 2 For the inductors of Examples 1, Comparative Examples 5, 6, 7 and Example 2 obtained as described above, the results of measuring the frequency characteristics of the inductance are shown in FIG. The measurement results are shown in FIG. An LCR meter HP4284A manufactured by Hewlett-Packard (currently Agilent Technologies) was used to measure the inductance at 1 MHz. In addition, an impedance analyzer 4294A manufactured by Agilent Technologies was used for measuring the frequency characteristics of the inductance.
  • the inductors according to the first and second embodiments of the present invention have the same level of inductance as the Ni—Zn ferrite inductance element, and the inductance is reduced by eddy current loss up to 1 MHz or more. It has not occurred. That is, the inductance elements of Examples 1 and 2 have a high inductance up to a high frequency equal to or higher than that of the inductors according to Comparative Examples 5 to 7 using Ni—Zn ferrite having good high frequency characteristics as a magnetic core. That is confirmed.
  • the inductors according to Examples 1 and 2 of the present invention have a larger bias current than the inductance elements using the Ni—Zn ferrite cores of Comparative Examples 5 to 7. It can be seen that the inductance is significantly superior. Specifically, for example, when the bias current is 5 A, the inductance value is approximately twice as large as that of the inductance element using the Ni—Zn ferrite core of Comparative Examples 5 to 7. is doing. This is because a metal powder having a higher saturation magnetic flux density than Ni—Zn ferrite is used as the magnetic core material of Examples 1 and 2, and the inductance element having the configuration of the present invention is large. It can be seen that the inductor does not easily decrease even when a current is applied, and is suitable for a large current.
  • the characteristics of the inductance element of Example 2 in which the magnetic core is built in the resin substrate are shown as those in Example 1 without creating the magnetic core in the resin substrate.
  • the characteristics of the inductance elements are almost the same. That is, if it is set as the structure of the magnetic core 1 of Example 1 of this invention, it is not restricted that there is no fear that a magnetic core will be damaged by the pressurization force at the time of enclosure of the magnetic core 1 in a board
  • the sheet-like inductor and the manufacturing method thereof according to the present invention are applied to an inductor mounted on a power circuit of a small electronic device and a manufacturing method thereof.
  • the multilayer substrate built-in type inductor of the present invention can be used for a noise filter, an antenna and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 シート状インダクタは、磁芯1と、コイル8とを有し、前記磁芯1の対向する2面を夫々前記積層方向に貫通する第1及び第2のビアホール1a、1bを設けた。前記コイル8は、前記第1及び第2のビアホール1a,1bから端部が外側に突出するように夫々形成した第1及び第2のビア導体2,3と、前記第第1及び第2のビア導体2,3の両端にプラグ部2a,3aを介して接合された第1及び第2の表面導体4,5とを有する。磁芯1は、軟磁性を有する扁平金属粉末と、バインダとを含む混合物を、前記軟磁性扁平金属粉末は、当該インダクタがなす平面内に配向され成型されたシートからなるか、もしくは、前記シートを複数枚積層して積層方向に加圧してなる。積層基板内蔵型インダクタは、磁芯1を積層基板内に内蔵してなる。

Description

シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法
 本発明は、インダクタ部品に関し、詳しくは、小型電子機器の電源回路に用いられるシート状インダクタ及び積層基板に内蔵されるインダクタに関する。
 従来、磁芯に発生する磁束が、磁芯がなす平板面の面内で還流するように構成されたインダクタとして、特許文献1、2及び3に示すものがある。
 特許文献1に開示された磁性基板(インダクタ)は、上下方向に積層した複数枚の薄いシートからなる磁芯を備えている。磁芯は、磁芯を上下方向に貫通する孔を有している。磁芯の表面及び孔にめっきシード層を形成することで、コイル導体(コイル)が形成されている。
 また、特許文献2の図1及び図2には、扁平金属粉燒結体層と絶縁体層の交互積層体のスルーホールに銀ペーストのコイル導体を充填するとともに、表裏面のコイル導体を銀ペーストの接続導体で接続してコイルとしたインダクタが開示されている。
 また、特許文献3の段落[0024]、図1には、ファインメット(登録商標)コアの外周を円筒絶縁物で固定して、両端を絶縁板で挟みこみ、スタッドコイルを巻回するように形成してコイルとした構成が開示されている。
特開2008-66671号公報 特開2002-289419号公報 特許2002-57043号公報 特開2011-129798号公報
 特許文献1、2及び3のインダクタにおいては、製造時の磁芯破損防止乃至絶縁性の確保のいずれか、または両方を満足させつつコイル部分を形成することを目的として、次の(a)、(b)及び(c)等の少なくとも1つの方策が適用されている。
(a)磁芯材料として高抵抗の軟磁性セラミック材料を用いること、
(b)巻線としてめっき膜や印刷導体を用いこと、
(c)コイルと磁芯材料の間に絶縁部材を設けること。
 しかしながら、上記(a)乃至(c)の方策は、インダクタの小型化、大電流適合性、及び製造コストのいずれかの面で欠点を有していた。
 具体的には、導体を印刷するために、また、スルーホールに設けられた導体(ビア導体)間を接合しようとする際に、加圧力が加わるとフェライト燒結体では容易に割れてしまう。
 また、特許文献1及び2のインダクタにおいては、導体を印刷しているために、巻線を太くしたり、低抵抗にできないという欠点があった。
 さらに、特許文献3の金属磁芯、例えば、ファインメットのような材料では、渦電流によってMHz励磁が困難であった。そして、これを改善するために粉末成型体とすると、周波数特性は改善するが、透磁率が50程度と低く、磁気特性が劣るという欠点があった。
 また、電子機器の電源回路に用いられるコイル部品として、積層樹脂基板に内蔵されるコイル部品が知られている。このようなコイル部品に対して、大きなインダクタンスを得ることを目的として、(d)積層樹脂基板内部にキャビティを設け、当該キャビティに磁性体よりなる磁芯もしくはコイルを封入することが行われている。
 また、他の方策として、(e)アモルファスや磁性蒸着膜からなる磁性層を積層樹脂基板内外に設けて磁芯とすることが行われている。
 さらに、別の方策として、(f)積層樹脂基板をなす基板層の一部を、磁性粉末を含有する樹脂からなる基板層とすることが行われている。上記(f)の方策として、特許文献4の図3及び図8には、扁平に処理されたCo-Fe等の高周波用金属軟磁性材料を含有する樹脂層を含む積層樹脂基板が開示されている。
 上記(d)の方策による磁芯やコイル部品を内蔵する場合は、積層樹脂基板内のキャビティに封入した磁芯やコイル部品の周囲に、基板から応力が及ぶことを防止するための空隙を設ける必要がある。しかしながら、その空隙のために、磁芯やコイル部品を内蔵する場合は、加圧力が加わると部品が破壊されたり、接合不良が発生する問題がある。そのため、樹脂基板層と磁芯やコイル部品を密着及び一体化することができないため、接合不良を生じて、積層樹脂基板全体の信頼性が低下するという問題がある。
 また、コイル部品の磁芯用の磁性体として、フェライトを用いた場合には、フェライトは、金属材料に比べてインダクタンス及び高周波特性は良好であるが、金属材料と比較して飽和磁束密度が小さいという欠点を有する。
 また、フェライトを用いた場合には、積層後のビアホール加工ができず、樹脂基板に内蔵された磁性体を貫通するコイル電流経路を形成することが困難であり、樹脂基板に内蔵されたフェライトに、積層封入の後に貫通穴を設けることは実際上不可能であった。
 また、上記(e)のアモルファスや磁性蒸着膜からなる磁性層を磁芯として積層樹脂基板内外に設けるという方策では、十分な磁性体体積の確保と、1MHz以上における磁気損失の低下を両立できないという問題がある。また、アモルファス薄帯や蒸着磁性膜からなる磁性層を内蔵する場合は、磁性層が薄すぎて必要な体積を確保できず、磁気飽和が起こるという欠点も有する。また、アモルファス薄帯や蒸着磁性膜は、製造方法上の制約により本来的に薄く、仮にこれらを積層して必要な体積を確保したとしても、1MHz以上の周波数では渦電流損失が大きく使用できないという欠点や、磁芯の重畳特性を向上できないという欠点を有する。
 また、上記(f)磁性粉末を含有する基板を用いるという方策では、必要な透磁率は、50以上、好ましくは、100以上であるが、100を超える十分大きな透磁率が得ることができないという問題がある。
 また、コイル部品の導体の電気抵抗を小さくできないという欠点を有した。両面銅箔基板にコイルパターンを形成し、断面積を稼ぐようにすると、これに伴い、表皮効果が低減される。
 以上述べたように、いずれの従来の方策においても、100以上の透磁率を有する軟磁性材料を、積層樹脂基板の基材と共に、軟磁性材料にも加圧力が加わるように成形し、積層樹脂基板に封入しうることを示唆しておらず、また、そのような構成を可能とするための手段や、磁性体よりなる磁芯の内部組織について開示された前例は無い。
 そこで、本発明の一技術的課題は、磁気特性・信頼性の向上を図り、電気抵抗の低減と製造方法の簡易化を実現した磁芯及びシート状インダクタを提供することにある。
 また、本発明の他の技術的課題は、省スペース化、低損失化、インダクタンスの増大、大電流通電への適合性、電気抵抗の小ささ、信頼性の向上を図ったインダクタを有する積層回路基板を提供することにある。
 本発明によれば、軟磁性を有する扁平金属粉末とバインダとを含む混合物の成型シートを有し、前記軟磁性扁平金属粉末は、前記成型体シートの平面内に2次元的に配向されていることを特徴とする磁芯が得られる。
 また、本発明によれば、磁芯と、コイルとを有し、前記磁芯は、予め定められた厚さと、前記厚さの方向に対向する2平面と、前記2平面を結ぶ2つの側面と、前記2平面間に設けられた第1のビアホールと、前記2平面間の前記第1のビアホールと離れた位置に設けられた第2のビアホールとを有し、前記コイルは、前記第1及び第2のビアホールを夫々貫通して設けられた第1及び第2のビア導体と、前記磁芯の2平面にそれぞれ設けられた第1及び第2の表面導体とを有し、前記第1及び第2のビア導体の夫々は、中心導体とその両端のプラグ部とを有し、前記第1及び第2の表面導体は、前記第1及び第2のビア導体に前記プラグ部を介して接合されていることを有することを特徴とするシート状インダクタが得られる。
 また、本発明によれば、軟磁性を有する扁平金属粉末と、バインダとを含む混合物を、前記軟磁性扁平金属粉を当該インダクタがなす平面内に配向するように、シート状に成型して成型シートを形成する工程とを有することを特徴とする磁芯の製造方法が得られる。
 さらに、本発明によれば、磁芯の対向する2平面を夫々前記積層方向に貫通する互いに離れた第1及び第2のビアホールを設ける穿孔工程と、前記第1及び第2のビアホールを貫通する第1及び第2のビア導体を夫々形成するビア導体形成工程と、前記第1及び第2のビア導体に第1及び第2の表面導体を重ね合わせて前記磁芯の厚さ方向に加圧して、前記第1及び第2の表面導体に前記第1及び第2のビア導体からなるプラグ部を形成することで接合して電気接続するコイル形成工程とを有することを特徴とするシート状インダクタの製造方法が得られる。
 また、本発明によれば、一対の第1の樹脂基板を積層した積層樹脂基板と、前記積層樹脂基板内に収容されたシート状の磁芯と、前記積層樹脂基板及び磁芯を貫通して設けられたビアホールと、前記ビアホールを介して形成されたコイルとを備えたインダクタにおいて、前記積層樹脂基板は接着成分を含み、前記シート状の磁芯は、軟磁性を有する扁平金属粉末を平板に成形した成型体であり、前記扁平金属粉末は、前記平板の面内に配向するとともに、前記コイル導体の発生磁束が前記平板の面内で還流しており、前記磁芯は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化し、前記接着成分が、前記磁芯の空孔部に含浸していることを特徴とする積層基板内蔵型インダクタが得られる。
 さらに、本発明によれば、一対の第1の樹脂基板を積層した積層樹脂基板に内にシート状の磁芯を収容する工程と、前記積層樹脂基板及び磁芯を貫通してビアホールを形成する工程と、前記ビアホールを介してコイルを形成する工程とを備え、前記積層樹脂基板は接着成分を含み、前記シート状の磁芯は、軟磁性を有する扁平金属粉末を平板に成形した成型体であり、前記扁平金属粉末は、前記平板の面内に配向するとともに、前記コイル導体の発生磁束が前記平板の面内で還流しており、前記磁芯は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化し、前記接着成分が、前記磁芯の空孔部に含浸させることを特徴とするインダクタの製造方法が得られる。
 本発明によれば、扁平金属粉末を成型シートがなす平面内に配向して成型された磁芯材料を用い、かつ、コイルを小部分に分け、各部を構成する夫々導体が加圧変形を伴って接合された構成としている。本発明では、この構成により、磁気特性・信頼性の向上、電気抵抗の低減、製造方法の簡易化を同時に実現することができる磁芯及びシート状インダクタを提供することができる。
 また、本発明によれば、省スペース化、低損失化、インダクタンスの増大、大電流通電への適合性、電気抵抗の小ささ、信頼性の向上を図った積層回路基板に内蔵されたインダクタを提供することができる。
本発明の第1の実施の形態によるシート状インダクタを示す斜視図である。 図1のシート状インダクタの磁芯に用いられる成型体シートを示す図である。 (a)は図1のIIで示すプラグ部分を示す断面図、(b)は、第1の実施の形態の他の例に係るシート状インダクタの図1のIIで示すプラグ部分と同様の部分を示す断面図である。 図1のシート状インダクタの分解組立斜視図である。 本発明の第2の実施の形態によるシート状インダクタを示す平面図である。 本発明の第3の実施の形態によるシート状インダクタを示す平面図である。 本発明の第4の実施の形態によるシート状インダクタを示す平面図である。 本発明の第5の実施の形態によるシート状インダクタを示す斜視図である。 (a)は本発明の第6の実施の形態による積層基板内蔵型インダクタを示す断面図、(b)は図9(a)のインダクタの斜視図である。 (a),(b),及び(c)は、図9(a)及び図9(b)の第6の実施の形態によるインダクタの製造工程を順に示す断面図である。 本発明の第7の実施の形態による積層基板内蔵型インダクタを示す断面図である。 本発明の第8の実施の形態による積層基板内蔵型インダクタを示す断面図である。 本発明の第9の実施の形態による積層基板内蔵型インダクタを示す断面図である。 (a)は本発明の第10の実施の形態による積層基板内蔵型インダクタを示す断面図、(b)は図14(a)の積層基板内蔵型インダクタの斜視図である。 (a)は本発明の実施例1によるシート状インダクタを示す斜視図、(b)は本発明の実施例1によるシート状インダクタを示す平面図である。 本発明の実施例1に係るシート状インダクタについて、1MHzのインダクタンスを測定した結果を示す図で、比較のために比較例1乃至3についても示している。 本発明の実施例1に係るシート状インダクタのインダクタンスの周波数依存性を測定した結果を示す図である。 本発明の実施例2に係るインダクタの分解組立斜視図である。 図18のインダクタの斜視図である。 本発明の実施例1及び2に係るインダクタのインダクタンスの周波数特性を示す図で、比較のために比較例5,6,7に係るインダクタの測定結果も合わせて示している。 本発明の実施例1及び2に係るインダクタの1MHzにおけるインダクタンスのバイアス電流依存性を示す図で、比較例5,6,7に係るインダクタの測定結果も合わせて示している。
 以下に、本発明の実施の形態について説明する。
 図1は、本発明の第1の実施の形態によるシート状インダクタを示す斜視図である。図2は図1のシート状インダクタの磁芯に用いられる成型体シートを示す図である。図3(a)は図1のIIで示すプラグ部分を示す断面図、図3(b)は、第1の実施の形態の他の例に係るシート状インダクタの図1のIIで示すプラグ部分と同様の部分を示す断面図である。図4は図1のシート状インダクタの分解組立斜視図である。
 図1を参照すると、シート状インダクタ10は、シート状の複合磁性材料からなる磁芯1と、コイル8とを、加圧力により一体化して形成されている。
 シート状インダクタ10は、コイル8に電流を流した際に、発生する磁束が、磁芯1のシート面内に環流している構成である。
 図2に示すように、磁芯1は、軟磁性扁平金属粉末51と、熱硬化性の結合樹脂のバインダ54とを混合して、ダイスロット法やドクターブレード法等によって、面内方向に扁平金属粉末51を配向させてシート状に形成した成型体シート50とし、この成型体シート50を1枚もしくは複数枚を積層して、積層方向(第1の方向)に加圧することで、高密度成型体として形成されている。なお、軟磁性扁平金属粉末51としては、センダスト(登録商標)で知られるFe-Al-Si合金、パーマロイ(登録商標)で知られるFe-Ni合金、Fe族系金属や合金(鉄系合金)を用いることができるが、これらに限定されるものではない。また、磁芯の絶縁性を向上させるため、SiO含有絶縁結合皮膜(コーティング)52を形成するために、前記軟磁性扁平金属粉末表面に酸化処理を施すほか、前記軟磁性扁平金属粉末表面に、ホウ珪酸系、ビスマス系、リン酸系及び酸化亜鉛系等の低融点ガラス(ガラスフリット)をコーティングしてもよい。
 高密度成型体(または成型体シート50)の軟磁性扁平金属粉末51に対する体積比は、飽和磁束密度を有しながら高透磁率を得るために、55体積%以上が好ましい。結合樹脂のバインダ54の量は、強度を増加させるために10体積%以上が好ましく、耐加圧強度を低下させない45体積%以下が好ましい。
 また、結合樹脂のバインダ54中に形成される空孔53の空孔率は、弾力と適度の変形余地を得るために、基板とバインダ中の接着成分とが成型体に含浸して強固に一体化するために、5体積%以上とし、さらに、金属分比率を高めるように、25体積%以下とし,より好ましくは、5体積%以上20体積%以下としている。
 磁芯1を構成する金属扁平粉51の高密度成型体は、高い飽和磁束密度を有するので、大電流を通電することができるとともに、フェライト相当の高透磁率やインダクタンスが得られ、さらに、フェライトを超える重畳特性が得られる。また、金属材料ではあるが、粉末を絶縁体であるバインダ54で結着させた構成であるため、周波数特性に優れる。
 また、金属扁平粉51の高密度成型体からなる磁芯1は、フェライトと異なり脆性材料ではないため、低コストである加圧成型においても割れず、耐えうる。
 さらに、磁芯1の金属扁平粉51の高密度成型体の磁化容易軸が平面内になるように扁平粉末を面内に配向した場合、面内方向の透磁率が高くなるという利点を有する。
 また、コイル8は、第1及び第2のビア導体2,3と、磁芯1の一平面に設けられた第1の表面導体4と、磁芯1の他の平面に設けられた第2の表面導体5,6とを有している。両側の第2の表面導体6,6は、それぞれリード線7,7に接続され、端子として用いられるので、以下の説明においては、端子部材6,6と呼ぶ。
 なお、磁芯1は、偏平金属粉末51は絶縁性のバインダ層52でコーティングされているため、絶縁用の部材を用いなくともよく、コイル8を構成する導体と磁芯1は直接接することができる。
 磁芯1には、第1の方向に互いに対向する2平面(表裏面)を貫通して第1のビアホール1aが、第1の方向に交差する第2の方向(長さ方向)に等間隔で一列に設けられ、この列に沿って第2のビアホール1bが、等間隔で一列に設けられている。
 第1のビア導体2は、細長い導体からなり、中心導体と、その両側の端部2a,2bを有する。第1のビア導体2は、第1のビアホール1aを貫通して設けられている。
 第2のビア導体3は、第1のビア導体と同様に、中心導体とその両側の端部3a,3bを有する。第2のビア導体3は、第2のビアホール1bを貫通して設けられている。
 第1の表面導体4は、両側にプラグ部分を形成するプラグ穴4a,4bを有している。磁芯1の長さ方向の両側に中心線に対して対称位置に設けられた第1及び第2のビア導体2,3のそれぞれの一端2a,2b,3a,3bをプラグ穴4a,4bに嵌合、圧入して、両端2a,2b,3a,3bを、表面導体4,5とともに磁芯の厚さ方向(第1の方向)に加圧することで、第1及び第2のビア導体2,3の一端2a,3aが変形して、図3に最も良く示されるように、外側断面積が内側断面積よりも大きなテーパ状のプラグ部3a(一端と同じ符号3aで示す)が形成される。
 第2の表面導体5は、両側にプラグ部分を形成するプラグ穴5a,5bを有している。磁芯1の長さ方向(第2の方向)の両側に対向位置に設けられた第1のビア導体2の他端2bと、第1のビア導体2に第1及び第2の方向に交差する第3の方向(幅方向)に対向する第2のビア導体3の他端3bに隣り合う第2のビア導体3の他端3b、即ち、第1のビア導体2に対応する第2のビア導体3から長さ方向にひとつずれた第2のビア導体3の他端3bとをプラグ穴5bに嵌合する。つまり、表面側の第1のビア導体2の一端は互いに幅方向に対向する一端同士が接続されるが、裏面側は、一端側の表面とは異なり、第1のビア導体2の他端2bは、長さ方向に一つずれた第2のビア導体3の他端3bと接続される。第1及び第2のビア導体2,3の他端2b,3bも、一端2a,3aと同様に加圧することで、第1及び第2のビア導体2,3の他端2b,3bが変形して、表面側と同様に、外側断面積が大きなテーパ状のプラグ部2b,3bが形成される。
 このプラグ部3a及び表面導体の上面は、図3(a)では、磁芯の2平面から突出して示されているが、実際は、加圧力によって、磁芯が塑性変形し、2平面から表面導体が埋没した形状になる。なお、2平面から埋没させるには、予め2平面にガイド溝を設けておいてもよい。
 ここで、図3(b)に示すように、表面導体4にプラグ穴4bを設けずとも、ビア導体3の一端3aと表面導体4が接するように配し、表面導体4におけるビア導体3の部分に加圧力を加え、表面導体4とビア導体3を導電接続してもよい。加圧力による導体の接合に際しては、加圧と同時、ないしは加圧の後に、ヒュージングや電流パルスの通電を行い、接合の促進を行ってもよい。この際、表面導体4におけるビア導体3の部分に局所的な加圧力を加えることでより確実に導電接続することができ、これにより、図1及び図3(a)に示す表面導体4に形成されたプラグ部3aの位置に、プラグ部3aの代わりに凹み4b’が生じ、第2のビア導体の一端3aが、プラグ部3aとなる。
 第1の方向に互いに対向する2面の内の一端側の面(裏面)側において、第2の方向(長さ方向)一端側の第2のビア導体3の他端3b及び第2の方向(長さ方向)の他端側の第1のビア導体2の他端には、リード線7,7を有する端子部材6,6がそれぞれ第1及び第2の表面導体4,5と同様に端子部材6,6のプラグ穴6a,6aに嵌合され、加圧されてプラグ部2b,3bが形成され、それぞれの端子部材6,6から長さ方向の外側にリード線7,7が引き出されている。なお、上記の例では、リード線7,7は、端子部材6,6に一体に形成されているものを用いたが、端子部材6,6とは、別体のリード線7,7に、プラグ部2b,3b形成の際に取り付けても、プラグ部形成の後、端子部材6,6を形成してもよいことは勿論である。
 ここで、コイル8の直流電気抵抗は、インダクタの巻線は低損失化のため、巻き数が少なく、断面積が大きい方が望ましい。このコイル8は、印刷導体やめっきでは実現困難となる直径0.15mm以上の丸線に相当する線径とすることが好ましい。コイルの断面積Sは、長さ2cmの導線に15Aを通電する時の発熱量が1W以下であることが、下記数1から好ましい。
Figure JPOXMLDOC01-appb-M000001
 なお、ビア導体断面積が直径0.4mm以上丸線相当の断面積のものを用いることが好ましく、直径0.8~1.2mmであることがより好ましい。
 また、第1及び第2の表面導体4,5の断面積は、幅2mm、厚み0.25mmの長方形以上に相当する断面積を用いることが、好ましいが、幅2mm、厚み0.3mmであることがより好ましい。
 本発明の第1の実施の形態においては、磁芯1を高密度成型体で構成しているので、導体の加圧接合に際して割れが生じない。
 また、高密度成型体に、ビアホールを設け、ビアホールに設置した導体と、ビア間を接続するためのプラグ部を有する導体を、前記成型体とともに配置し、ビア部を圧着する。ビアに設置したビア導体2,3は、表面導体のプラグ穴に嵌合し、かつ加圧力により変形しプラグ部を形成し、信頼性が高いコイルが形成される。
 本発明の第1の実施の形態によるコイルにおいては、巻線が簡単、巻線を太くできるので、電気抵抗を小さくできるとともに接合部の信頼性が向上する。
 図5は本発明の第2の実施の形態によるシート状インダクタを示す平面図である。図5に示す本発明の第2の実施の形態によるシート状インダクタ10aは、図1乃至図4に示す第1の実施の形態によるシート状インダクタ10とは、コイル8の一面側をなす表面導体4の周囲に沿って、第1方向に互いに対向する2面(表裏面)を貫通するコの字状のギャップ9が設けられている点で異なっているほかは、第1の実施の形態によるシート状インダクタ10と同じ構成を有している。本発明の第2の実施の形態シート状インダクタ10aは、コイル8に電流を流した際に、発生する磁束が、磁芯1のシート面内に環流している構成である。
 また、接続のための加圧力を与えた場合、フェライト磁芯では、脆く割れてしまう。特に、シート状インダクタの一部に特性調整のためのスリット等がある場合には、この傾向は特に顕著となる。本発明の第2の実施の形態によれば、磁芯1に、扁平金属粉末の成型体を用いているので、この難点が解消される。
 本発明の第2の実施の形態によるシート状インダクタは、金属磁性粉末の圧粉成型体であるために、周波数特性が優れている、重畳特性が優れている、導体の加圧接合に際して割れが生じないという利点を有する。
 図6は本発明の第3の実施の形態によるシート状インダクタを示す平面図である。図6に示す本発明の第3の実施の形態によるシート状インダクタ10bは、図1乃至図4に示す本発明の第1の実施の形態によるシート状インダクタとは、第1の方向(厚み方向)に、磁芯1の2平面を貫通するとともに2分割するように第3の方向に設けられたギャップ9が設けられている点で、異なっているほかは、第1の実施の形態によるシート状インダクタ10と同じ構成を有している。
 本発明の第3の実施の形態によるシート状インダクタ10bは、第1及び第2の実施の形態によるシート状インダクタ10,10aと同様に、磁心1が金属磁性粉末の圧粉成型体であるために、周波数特性が優れている、重畳特性が優れている、導体の加圧接合に際して割れが生じないという利点を有する。
 図7は本発明の第4の実施の形態によるシート状インダクタを示す平面図である。図7に示す本発明の第4の実施の形態によるシート状インダクタ10cは、図1乃至図4に示すシート状インダクタ10のコイルと同形状のコイル8を幅方向に併設している点で異なるほかは、第1の実施の形態によるシート状インダクタ10と同じ構成を有している。
 図7のシート状インダクタ10cにおいては、一方のコイル8を一次側コイル、他方のコイル8を2次側コイルとしている。
 本発明の第4の実施の形態によるシート状インダクタ10cは、第1乃至第3の実施の形態によるシート状インダクタ10,10a,10bと同様に、磁心1が金属磁性粉末の圧粉成型体であるために、周波数特性が優れている、重畳特性が優れている、導体の加圧接合に際して割れが生じないという利点を有する。
 図8は本発明の第5の実施の形態によるシート状インダクタを示す斜視図である。
 図8を参照すると、シート状インダクタ20は、1次側コイル11と2次側コイル12とを有している。1次側コイルは、第1のビア導体2と、第1のビア導体の両端2a,2bに夫々端子接続用に接続された第1及び第2の表面導体14,15とを有している。第1及び第2の表面導体は、それぞれの磁芯1の側面まで、延長され、磁芯の側面において、第1及び第2の側面電極14a,15aを形成している。また、2次側コイル12は、第2のビア導体3の両端3a,3bに接続された第1及び第2の表面導体14,15とを有している。第1及び第2の表面導体14,15は、磁芯1の両側面まで延長され、磁芯1の側面において、側面電極14a,15aを形成している。
 上記第1及び第2の表面導体14,15と、プラグ部2a,2b,3a,3bの上面は、加圧の際に、磁芯1の2平面よりも内部にある、即ち、埋没した形であるが、予め磁芯1の2平面に第1及び第2の表面導体14,15を埋没させるためのガイド溝を設けてもよいことは勿論である。
 更に、磁芯1の第2の方向(長さ方向)において、1次側コイル11及び2次側のコイル12の間、磁芯1の一端側と1次側コイル11の間及び磁芯1の他端12と2次側コイル12の間には、第1の方向に沿って対向する2面を貫通したギャップ9a,9b,9cがそれぞれ設けられている。
 以上説明したように、本発明の第1乃至第5の実施の形態においては、第1及び第2の表面導体4,5,14,15に、第1及び第2のビア導体2,3を嵌合し、加圧によって第1及び第2のビア導体2,3の両側を変形させて、プラグ部を形成し、このプラグ部を介して接合しているので、フェライト等の磁芯においては、磁芯が割れて困難であった第1及び第2の表面導体4,5,及び14,15と第1及び第2のビア導体2,3との機械的接合が可能となる。
 また、金属磁芯は、フェライト磁芯よりも磁気飽和しにくい、大電流が流せるという利点がある反面、渦電流損失によって励磁が困難であるという欠点あったが、本発明の第1乃至第5の実施の形態に係る磁芯1は、金属粉末を絶縁性のバインダ成分でコーティングすることで、渦電流損失のない粉末成型体である成型シートを用い、さらに、軟磁性扁平金属粉末の配向を平面内にすることで、透磁率の低下を防ぐことができるとともに、磁気ギャップを設けることができる。
 また、本発明の第1乃至第5の実施の形態によるシート状インダクタにおいて、2種以上のコイルを有するシート状インダクタは、2種以上のコイル間の電磁結合により、トランス、ないしはカップルドインダクタとして機能するシート状インダクタであっても良いことは勿論である。
 さらに、本発明の第6乃至第10の実施の形態について、図面を参照しながら説明する。
 図9(a)は本発明の第6の実施の形態による積層基板内蔵型インダクタを示す断面図、図9(b)は図9(a)のインダクタの斜視図である。
 図9(a)及び図9(b)を参照すると、本発明の実施の形態による積層基板内蔵型インダクタ20は、一対の第1の樹脂基板21a,21bを積層した積層樹脂基板21と、前記積層樹脂基板21に封入された磁性体よりなる磁芯1と、前記積層樹脂基板21及び磁芯1を貫通して設けられたビアホール23a,23bと、前記ビアホール23a,23bを介して形成されたコイル24とを備えている。
 第1の樹脂基板21a、21bは、一面に銅箔を有する片面銅箔基板から形成され、この銅箔からパターンに形成された基板の第1の基板表面導体4及び第2の基板表面導体5(以下、単に第1及び第2の表面導体4,5と呼ぶ)と端子接続用の第1及び第2の表面導体(端子部材)6,6を夫々備えている。
 また、第1及び第2の表面導体4,5の厚さは100μm以下の導体膜を二層以上積層して形成されている。ここで、第1及び第2の表面導体4,5の厚さは、一枚あたりの厚さが100μm以下の銅箔パターンを少なくとも2層以上用いて表面導体を形成することが好ましい。その理由は、表皮深さδは、1MHzにおいて約70μm、MHzにおいて約50μmであるため、1MHz以上での交流電気抵抗低減の観点からは、コイルの導体をなす銅箔の厚みは70×2=140μm以下であることが望ましいが、同時にコイルの導体の総断面積はできるだけ大きくして直流電気抵抗を低減することが望ましいので、コイル24の導体をなす100μm以下の銅箔パターンを2層以上用いることにより、トータルのコイル導体断面積を増大せしめるからである。
 コイル24は、第1のビアホール23aを貫通して設けられた第1のビア導体2と、第2のビアホール23を貫通して設けられた第2のビア導体3と、第1及び第2のビア導体2,3の端部にそれぞれ接続された第1及び第2の表面導体4,5とを有している。
 第1及び第2のビア導体2,3には、導電性ペースト又は銅線を用いることができるが、第1及び第2のビアホール23a,23bを充填するために、導電性を有するものであるならば、どのような材料であってもよい。
 なお、図9(a),(b)では示さなかったが、第6の実施の形態においては、第1及び第2のビア導体2,3として、銅線を用いる場合には、第1及び第2の表面導体4,5との接続は、半田付けによって接続固定されているが、第1及び第5の実施の形態と同様に、それぞれの表面導体4,5,6に、それぞれのビア導体2,3の端部にプラグ部2a,2b,3a,3bを形成しても良いことは勿論である。
 積層樹脂基板21は、接着成分を有するプリプレグ22を有している。
 磁性体よりなる磁芯1は、扁平金属粉末をシート状に成形した磁性体を複数枚重ね合わせて、平板状に加圧成形したシート状の成型体である。この扁平金属粉末は、平板の面内に磁化容易軸を有するように、配向している。ここで、磁化容易軸を、扁平粉末を面内に配向した場合、面内方向の透磁率が高くなるという利点がある。
 このように、加圧成形を行うことで、成型体に加圧力を与えても成型体の割れが無く、かつ磁気特性が変化しないため、積層型基板への成型体封入が容易にすることができる。
 磁性体よりなる磁芯1は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化している。接着成分は、磁芯1の空孔部に含浸している。
 また、コイル24に電流を通電した時に、発生する磁束は、平板の面内で還流している。
 ここで、磁芯1をなす成型体の空孔率は、弾力と適度な変形余地を兼ね備えるとともに、積層樹脂基板基材(プリプレグ22)の接着成分が成型体に含浸して基板と成型体を強固に一体化することができるように5体積%以上としている。さらに、金属分比率を高めるように、25体積%以下としている。より好ましくは、5体積%以上20%以下である。
 また、磁芯1をなす成型体は、扁平磁性金属粉末と前記扁平磁性金属粉末とを結着するバインダとを含む。バインダ成分の体積率は、10体積%以上45体積%以下、より好ましくは、10体積%以上20%以下である。その理由は、バインダ成分の体積率が10体積%より小では強度が不足し、45%より大では、金属成分の比率を低めるとともに耐加圧強度が不足を生じるからである。
 また、磁芯1に含有される磁性粉末は、金属材料ではあるが、成型体は扁平金属磁性粉末を絶縁体で結着させた構成であるため、周波数特性に優れ、酸化物磁性材料であるフェライトと異なり脆性材料ではないため、加圧成形に耐えることができる。
 また、扁平金属粉末の成型体に対する体積比は55体積%以上の高密度成型体であることが好ましい。その理由は、成型体が55体積%以上の軟磁性金属成分を含有するため、高い飽和磁束密度を有しながら、フェライト相当の高透磁率が得られる。成型体の金属分の体積率を65体積%以上に高めることがより好ましい。
 図10(a),(b),及び(c)は、図9(a)及び図9(b)の第6の実施の形態による積層基板内蔵型インダクタの製造工程を順に示す断面図である。図10(a)を参照すると、磁芯1をプリプレグ22に収容し、上下から、一面にパターニングされた導体パターンを有する片面銅箔基板からなる第1の樹脂基板21a,21bで挟み込み、両面から加熱プレスを行う。なお、符号21cは、第1の樹脂基板21aに設けられた、層間接着熱プレスの時の空気抜き用の穴である。
 さらに、加熱プレス後に、図10(b)に示すように、第1及び第2の表面導体4,5を貫通するように、第1及び第2のビア導体2,3を形成するための第1及び第2のビアホール23a,23bを穿設する。
 次に、図10(c)に示すように、第1及び第2のビアホール23a,23bに導電性ペーストもしくは、銅線よりなる第1及び第2のビア導体2,3を貫通させて、両面をプレスして積層基板内蔵型インダクタ20を得た。
 図11は本発明の第7の実施の形態による積層基板内蔵型インダクタを示す断面図である。図11を参照すると、本発明の第13の実施の形態による積層基板内蔵型インダクタ20は、積層基板として、一対の第1の樹脂基板21a,21bのさらに上に重ね合わされた第2の樹脂基板25a、25bを有することと、第2の樹脂基板25a,25bの表面にさらに、第3及び第4の表面導体26,27を有する点で異なる。
 即ち、一対の第1の樹脂基板21a,21bとその上に一対の第2の樹脂基板25a,25b両側を積層した積層樹脂基板29と、前記積層樹脂基板29に封入された磁性体よりなる磁芯1と、前記積層樹脂基板29及び磁芯1を貫通して設けられた第1及び第2のビアホール28a,28bと、前記第1及び第2のビアホール28a,28bを介して形成されたコイル24とを備えている。
 第1の樹脂基板21a、21bは、絶縁樹脂基板からなる。また、第2の樹脂基板25a,25bは、両面に銅箔を有する両面銅箔基板から形成され、この銅箔からパターンに形成された第1の基板表面導体4に相当する第1の表面導体4、第2の基板表面導体5に相当する第2の表面導体5、第3の基板表面導体26及び第4の基板表面導体27(以下、単に第3及び第4の表面導体と呼ぶ)を夫々備えている。第1及び第2の表面導体4,5の厚さは、前述した第6の実施の形態の第1及び第2の表面導体4,5と同様に、100μm以下の導体膜を二層以上積層して形成されている。
 第3及び第4の表面導体26,27の厚さは、第1及び第2の表面導体4,5と同様に、一枚あたりの厚さが100μm以下の銅箔パターンを少なくとも2層以上用いて形成する、表皮深さδは、1MHzにおいて約70μm、MHzにおいて約50μmであるため、1MHz以上での交流電気抵抗低減の観点からは、コイルの導体をなす銅箔の厚みは70×2=140μm以下であることが望ましい。しかしながら、同時にコイルの導体のトータルの断面積はできるだけ大きくして直流電気抵抗を低減することが望ましいので、コイル導体をなす100μm以下の銅箔パターンを2層以上用いることにより、トータルのコイル導体断面積を増大せしめる。
 コイル24は、第1及び第2のビアホール28a,28bを貫通して設けられた第1及び第2のビア導体2,3と、第1及び第2のビア導体2,3の端部にそれぞれ接続された第1及び第2の表面導体4,5及び第3及び第4の表面導体26,27とを有している。
 また、積層樹脂基板29は、接着成分を有するプリプレグ22を有している。
 磁芯1は、図9(a),(b)及び図10(a),(b)を用いて説明したものと同様であるので、その説明は省略する。
 図12は本発明の第8の実施の形態による積層基板内蔵型インダクタを示す断面図である。
 図12を参照すると、本発明の第14の実施の形態によるインダクタ20は、一対の第1の樹脂基板21a,21bを積層した積層樹脂基板21と、前記積層樹脂基板21に挟み込まれて収容されたシート状の磁芯1と、前記積層樹脂基板21及び磁芯1を貫通して設けられたビアホール23a,23bと、前記ビアホール23a,23bを介して形成されたコイル24とを備えている。
 第1の樹脂基板21a,21bは、一面に銅箔を有する片面銅箔基板から形成され、この銅箔からパターンに形成された第1の表面導体4及び第2の表面導体5を夫々備えている。
 第6及び第7の実施の形態で説明したように、第1及び第2の表面導体4,5の厚さは100μm以下の導体膜を二層以上積層して形成されている。
 コイル24は第1のビアホール23aを貫通して設けられた第1のビア導体2と第2のビアホール23bを貫通して設けられた第2のビア導体3と、第1及び第2のビア導体2,3の端部にそれぞれ接続された第1及び第2の表面導体5とを有している。
 第1及び第2のビア導体2,3には、導電性ペースト又は銅線等の導電性材料を用いることができるが、銅線等の塑性変形可能な導電性材料を用いる場合には、第6の実施の形態のように、半田付けにて接合固定されているが、第1及び第5の実施の形態と同様に、それぞれの表面導体4,5,6(図示せず)に、それぞれのビア導体2,3の端部にプラグ部2a,2b,3a,3bを形成しても良いことは勿論である。
 また、積層樹脂基板21は、第1及び第2の樹脂基板21a,21bの内側面に形成された接着成分を有する接着層31を有している。
 磁芯1は、扁平金属粉末を平板に成形した成型体である。この扁平金属粉末は、その磁化容易軸が平板の面内に配向している。このような扁平粉末を面内に配向した場合、面内方向の透磁率が高くなるという利点を有する。また、本発明では、磁芯1を積層型基板に収容する際に、加圧成形を用いているこの加圧成形は、成型体に加圧力を与えても成型体の割れが無く、かつ磁気特性が変化しないため、基板への成型体封入が容易である。
 コイル24に通電した場合に発生する磁束は、磁芯1の平板の面内で還流している。磁芯1は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化している。第1の樹脂基板21a,21bの接着層31からの接着成分は、磁芯1の空孔部に含浸している。
 ここで、磁芯1をなす成型体の空孔率は、5体積%以上25体積%以下、好ましくは、好ましくは、5体積%以上20%以下である。その理由は、磁性体は5体積%以上の気孔を有するため、弾力と適度な変形余地を兼ね備えている、5体積%以上の空孔を有し、樹脂基板の接着成分が当該気孔部に含浸されるようにしている、5%より小では接着成分が含浸しない。25%より大では、金属成分比率を高め、金属充填率、強度が不足するからである。
 この成型体は、扁平金属粉末と前記扁平金属粉末とを結着するバインダとを含む。バインダ成分の体積率は、10体積%以上45体積%以下、より好ましくは、10体積%以上20%以下である。その理由は、10%より小では強度が不足するために好ましくなく、45%より大では金属分の比率を下げ、耐加圧強度が不足するからである。
 また、金属材料ではあるが、粉末を絶縁体で結着させた構成であるため、周波数特性に優れ、フェライトと異なり脆性材料ではないため、加圧成形に耐える。
 また、扁平金属粉末の成型体に対する体積比は55体積%以上であることが好ましい。その理由は、金属扁平粉の高密度成型体を得るには、成型体が55体積%以上の軟磁性金属成分を含有するため、高い飽和磁束密度を有しながら、フェライト相当の高透磁率が得られる。成型体の金属分の体積率65体積%以上に高めることがより好ましい。
 図13は本発明の第9の実施の形態による積層基板内蔵型インダクタを示す断面図である。図13を参照すると、本発明の第9の実施の形態による積層基板内蔵型インダクタ20は、一対の第1の樹脂基板21aと、磁芯1を収容する収容部31aを有する第3の樹脂基板31とを積層した積層樹脂基板30と、前記積層樹脂基板30に封入された磁芯1と、前記積層樹脂基板30及び磁芯1を貫通して設けられたビアホール23a,23bと、前記ビアホール23a,23bを介して形成されたコイル24とを備えている。
 第1の樹脂基板21a、21bは、内側面に接着層31,31を有する絶縁性の樹脂基板を有する。
 第3の樹脂基板32は、スペーサとして機能し、表裏両面及び収容部32aの内側面には、接着層31を有する。
 第1の樹脂基板21a,21bの表面に銅箔もしくは銅板からなる第1及び第2の表面導体4,5が形成されている。第1及び第2の表面導体4,5の厚さは、第6乃至第8の実施の形態と同様に、100μm以下の導体膜を二層以上積層して形成されている。ここで、前述したように、表面導体4,5の厚さは、一枚あたりの厚さが100μm以下の銅箔パターンを少なくとも2層以上用いて形成する。表皮深さδは、1MHzにおいて約70μm、MHzにおいて約50μmであるため、1MHz以上での交流電気抵抗低減の観点からは、コイル導体をなす銅箔の厚みは70×2=140μm以下であることが望ましい。しかしながら、同時にコイル導体のトータルの断面積はできるだけ大きくして直流電気抵抗を低減することが望ましいので、コイル導体をなす100μm以下の銅箔パターンを2層以上用いることにより、トータルのコイル導体断面積を増大せしめる。
 コイル24はビアホール21aを貫通して設けられたビア導体2と、ビア導体2,3の端部にそれぞれ接続された第1及び第2の表面導体4,5とを有している。
 ビア導体2,3には、導電性ペースト又は銅線等の導電性材料を用いることができ、第1及び第2の表面導体との接合は、半田付けによって、接続固定されているが、銅線等の塑性変形可能な導電性材料を用いる場合には、第1及び第5の実施の形態と同様に、それぞれの表面導体4,5,6(図示せず)に、それぞれの第1及び第2のビア導体2,3の端部にプラグ部2a,2b,3a,3bを形成しても良いことは勿論である。
 また、積層樹脂基板30の第1の樹脂基板21a,21bは、内側面に接着成分である接着層31,31を有し、第3の樹脂基板32は、両面及び収容部の内側面32aに接着層を有している。
 磁性体よりなる磁芯1は、扁平金属粉末をシート状に成形し、複数枚重ね合わせて平板に成形した成型体である。この扁平金属粉末は、平板の面内に配向している。
 なお、本発明において、磁化容易軸を扁平粉末を面内に配向した場合、面内方向の透磁率が高くなるという利点を有する。
 また、磁芯1の作製に、加圧成形を用いることによって、成型体に加圧力を与えても成型体の割れが無く、かつ磁気特性が変化しないため、基板への成型体封入が容易であるという利点を有している。
 コイル24に通電した際に発生する磁束は、磁芯1の平板の面内で還流している。磁芯1は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化している。接着成分は、磁芯1の空孔部に含浸している。
 ここで、磁芯1をなす成型体の空孔率は、接着層の接着成分が成型体に含浸して、基板と成型体を強固に一体化して、弾力と適度な変形余地を兼ね備えることができる5体積%以上であることが好ましく、一方、金属充填率、強度が不足しない25体積%以下であることが、好ましい。なお、5%より小では接着成分が含浸しない。
 成型体は、扁平金属粉末と前記扁平金属粉末とを結着するバインダとを含む。バインダ成分の体積率は、10体積%以上45体積%以下であることが好ましく、10体積%以上20体積%以下がより好ましい。その理由は、10%より小では強度が不足し、45%より大では耐加圧強度が不足(金属分比率を高める)するからである。
 また、金属材料ではあるが、粉末を絶縁体で結着させた構成であるため、周波数特性に優れる。フェライトと異なり脆性材料ではないため、加圧成形に耐える。
 また、扁平金属粉末の成型体に対する体積比は55体積%以上であることが好ましい。その理由は、成型体が55体積%以上の軟磁性金属成分を含有するため、高い飽和磁束密度を有しながら、フェライト相当の高透磁率が得られる。さらに、金属分の体積率65体積%以上で、金属分比率を高めることができる。
 図14(a)は本発明の第10の実施の形態による積層基板内蔵型インダクタを示す断面図、図14(b)は図14(a)の積層基板内蔵型インダクタの斜視図である。
 図14(a)及び図14(b)を参照すると、第10の実施の形態による積層基板内蔵型インダクタ20は、一対の第1の樹脂基板21a,21bと、磁性体よりなる磁芯1を収容する口字形状の収容部32aを有する第3の樹脂基板32とを積層した積層樹脂基板30と、前記積層樹脂基板30に封入された口字形状の磁性体よりなる磁芯1と、前記積層樹脂基板30の磁芯1の周囲を貫通して設けられた第1及び第2のビアホール23a,23bと、前記第1及び第2のビアホール23a,23bを介して形成された一次側コイル24a,二次側コイル24bとを備えている。
 第1の樹脂基板21a、21bは、内側面に接着層31,31を有する絶縁性の樹脂基板を有する。
 第3の樹脂基板32は、スペーサとして機能し、両面及び収容部32aの内側面には、接着層31を有する。
 第1の樹脂基板21a,21bの表面に銅箔もしくは銅板からなる第1及び第2の表面導体4,5が形成され、口字形状の磁芯1の対向辺を夫々またぐように形成されている。
 第1及び第2の夫々の表面導体4,5の厚さは、第6乃至第9の実施の形態と同様に、100μm以下の導体膜を二層以上積層して形成されている。ここで、前述したように、表面導体の厚さは、一枚あたりの厚さが100μm以下の銅箔パターンを少なくとも2層以上用いて表面導体を形成する、表皮深さδは、1MHzにおいて約70μm、MHzにおいて約50μmであるため、1MHz以上での交流電気抵抗低減の観点からは、コイル導体をなす銅箔の厚みは70×2=140μm以下であることが望ましい。しかしながら、同時にコイル導体のトータルの断面積はできるだけ大きくして直流電気抵抗を低減することが望ましいので、コイル導体をなす100μm以下の銅箔パターンを2層以上用いることにより、トータルのコイル導体断面積を増大せしめる。
 一次側コイル24a及び二次側コイル24bが正面側及び後側に並列して形成されている。
 一次側コイル24aは、手前側及びすぐ後ろ側に列をなして形成された第1及び第2のビアホール23a,23bを貫通して設けられた第1及び第2のビア導体2,3と、第1及び第2のビア導体2,3の端部にそれぞれ接続された第1及び第2の表面導体4及び5とを有している。
 第1及び第2のビア導体2,3には、導電性ペースト又は銅線等の導電性材料を用いることができるが、第10の実施の形態においては、第1及び第2のビア導体2,3を銅線を用いており、第1乃至第4の表面導体4.5.26.27との接合は、ビアホール内に予め設けられた半田膜を用いた半田付けによるが、第1及び第2のビア導体2,3を銅線等の塑性変形可能な導電性材料を用いる場合には、第1乃至第5の実施の形態と同様に、それぞれの表面導体26,27に、それぞれのビア導体2,3の端部にプラグ部2a,2b,3a,3bを形成しても良いことは勿論である。
 二次側コイル24bは、一次側コイル24aと同様に、後側と、後ろ側より手前に列をなして形成されたビアホール23a,23bを貫通して設けられたビア導体2と、ビア導体2の端部にそれぞれ接続された第1及び第2の表面導体4及び5と、第1及び第2の表面導体(端子部材)6,6を有している。
 また、積層樹脂基板30の第1の樹脂基板21a,21bは、内側面に接着成分である接着層31,31を有し、第3の樹脂基板32は、表裏をなす両面及び収容部32の内側面に接着層31を有しているが、第1の樹脂基板21a,21bの内側面に形成されていれば、接着層31は有しなくても良い。
 磁性体よりなる磁芯1は、扁平金属粉末をシート状に成形し、このシートを複数枚重ね合わせて平板に加圧成形した成型体である。この扁平金属粉末は、平板の面内に配向している。
 なお、本発明において、磁化容易軸を扁平粉末を面内に配向した場合、面内方向の透磁率が高くなるという利点を有する。
 また、磁芯1の作製に、加圧成形を用いることによって、成型体に加圧力を与えても成型体の割れが無く、かつ磁気特性が変化しないため、基板への成型体封入が容易であるという利点を有している。
 一次側コイル24a及び二次側コイル24bに通電した際に発生する磁束は、平板の面内で還流している。磁芯1は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化している。接着成分は、磁芯1の空孔部に含浸している。
 ここで、磁芯1をなす成型体の空孔率は、接着層の接着成分が成型体に含浸して、基板と成型体を強固に一体化して、弾力と適度な変形余地を兼ね備えることができる5体積%以上であることが好ましく、一方、金属充填率、強度が不足しない25体積%以下であることが、好ましい。なお、5%より小では接着成分が含浸しない。ここで、成型体は、扁平金属粉末と前記扁平金属粉末とを結着するバインダとを含む。バインダ成分の体積率は、10体積%以上45体積%以下であることが好ましく、10体積%以上20体積%以下がより好ましい。その理由は、10%より小では強度が不足し、45%より大では耐加圧強度が不足(金属分比率を高める)するからである。
 また、金属材料ではあるが、粉末を絶縁体で結着させた構成であるため、周波数特性に優れる。フェライトと異なり脆性材料ではないため、加圧成形に耐える。
 また、扁平金属粉末の成型体に対する体積比は55体積%以上であることが好ましく、さらに、体積率を65体積%以上として、金属分比率をより高めることが、より好ましい。その理由は、成型体が55体積%以上の軟磁性金属成分を含有するため、高い飽和磁束密度を有しながら、フェライト相当の高透磁率が得られる。さらに、金属分の体積率65体積%以上で、金属分比率を高めることができる。
 以上説明したように、本発明の第6乃至第10の実施の形態によれば、扁平形状を有する軟磁性金属粉末の成型体よりなる磁芯を、積層樹脂基板の内部に、積層樹脂基板と一体化させて加圧封入するとともに、成型体を、体積分率で表した空孔率が5%以上30%以下であり、金属粉末を結合せしめるバインダ成分が10%以上40%以下であり、軟磁性金属粉末成分が55%以上85%以下とせしめることにより、積層樹脂基板との一体成形において、前記成型体は破壊されることなく樹脂基板と一体化するとともに、高い透磁率と飽和磁束密度を具有し、その結果、磁芯1が積層樹脂基板に封入されてなる、大きなインダクタンスを有するコイルを得ることができる。
 また、本発明の第6乃至第10の実施の形態では、樹脂基板に内蔵する磁芯の周囲に、空隙を設ける必要が無く、かつ、積層樹脂基板を積層する成形圧力が、封入される磁芯にも直接働く構成としているため、樹脂基板に内蔵する磁芯の体積を大きくできるとともに、信頼性が向上する。
 また、本発明の第6乃至第10の実施の形態においては、磁性体からなる磁芯1は5体積%以上の気孔を有するため、弾力と適度な変形余地を兼ね備えているため、加圧によって割れることが無い。また、5体積%以上の空孔を有し、樹脂基板の接着成分が当該気孔部に含浸されるようにしているため、樹脂基板と磁芯1を接合して一体化することができる。
 また、本発明においては、磁芯1として、扁平金属粉末が積層基板内蔵型インダクタがなす平面内に配向され成形された磁芯材料を用い、55体積%以上金属粉末が充填されている55体積%以上の金属成分を含有しているため、NiZnフェライトの二倍以上の重畳特性を有するとともに、高い比透磁率を有する金属薄帯金属薄帯等と異なり、周波数特性に優れるNiZnフェライトと同等の高周波特性を有する。
 さらに、本発明の第6乃至第10の実施の形態によれば、両面銅箔基板、乃至は、複数層の片面銅箔基板上に形成された導体パターンを用いてコイルを形成しているため、コイル導体の断面積を稼ぐと同時に、表皮効果による交流電気抵抗の増大を低減できる。
 また、本発明の第6乃至第10の実施の形態に積層基板内蔵型インダクタを製造するに際し、快削性を有する磁芯を基板に封入後、ビア加工を施して、樹脂基板に内蔵された磁芯を貫通するコイルの電流経路を形成できる。また、基板に磁芯を内蔵した後にビア加工を施すので、ビア加工による磁性体のひびカケ発生が防がれる。
 なお、本発明の実施の形態による積層基板内蔵型インダクタは、トランス型結合タイプ、カップルL型結合タイプ、スリット、ギャップありタイプのインダクタンス素子に提供できることは勿論である
 以下、本発明の実施例について図面を参照しながら説明する。
(実施例1)
I.まず、本発明の実施例及び比較例に係るシート状インダクタの作成について説明する。
 図15(a),(b)は本発明の実施例1によるシート状インダクタを示す斜視図及び平面図である。
 軟磁性金属の原料粉末として、平均粒径D50として55μmを有するFe-Si-Al系合金(センダスト)のガスアトマイズ粉末を用いた。粉末形状を扁平化するために、ボールミルを用いて、前記原料粉末に8時間の鍛造加工を施し、さらに、窒素雰囲気中で700℃、3時間の熱処理を加え、扁平形状を有する金属粉末であるセンダスト粉末を作製した。作製した扁平金属粉末の平均長径(Da)は60μmであり、平均最大厚さ(ta)は3μmであり、平均アスペクト比(Da/ta)は20である。上記扁平金属粉末を、増粘剤、及び熱硬化性バインダ成分と混合してスラリーを作製した。溶媒としては、エタノールを使用した。また、増粘剤としては、ポリアクリル酸エステルを使用した。熱硬化性バインダ成分としては、メチル系シリコーンレジンを使用した。
 上記ダイスロット法によって、上記スラリーをPET(ポリエチレンテレフタレート)フィルム上に塗布した。その後、60℃の温度下で1時間乾燥して溶媒を除去し、これによりシート状の予備成型体を得た。このとき磁場をかけなくても、扁平状金属粉末は、予備成型体の面内に配向される。
 上記の予備成型体を、抜型を用いて、横15mm縦10mmの長方形にカットした。カットした4枚の予備成型体を積層して金型中に封入した。封入した予備成型体に、150℃、20kg/平方センチメートルの成型圧力にて1時間の加圧成型を施した。
 成型歪を取り除くために、シート状インダクタを窒素雰囲気中にて、350℃、一時間の条件で加熱処理して、シート状インダクタを作製した。
 図15(a)に示すように、加圧成型後、厚さ(T)が0.9mm、幅(W)が15mm、長さ(L)11mmの成型体(磁芯1)が得られた。
 その後、図15(b)に示すように、当該成型体1の所定の位置に、ドリル切削にて直径0.8ミリのビアホール1a,1bを設けた。さらにこの成型体10を、窒素雰囲気中で600℃、1時間の条件で熱処理し、磁芯1を作成した。当該磁芯1は、その体積抵抗率として10kΩ・cm以上の値を有している。また、当該磁芯1の密度は4.9g/ccであり、この密度から求めた金属成分の体積充填率は、約67%である。
 図15(a)に示すように、直径0.8ミリ、長さ1.8ミリを有する、絶縁皮膜を有しない銅線を作成し、ビアホールに挿入する第1及び第2のビア導体2,3として用いた。また、幅2ミリ、厚さ0.3ミリを有する、絶縁皮膜を有しない銅板を、所定の長さを有するように切断し、かつ、図15(b)に示す位置にドリル切削にて直径0.8ミリの穴を開け、第1及び第2のビア導体2,3と接合するためのプラグ穴4a,4b,5a,5bになるようにして、第1及び第2の表面導体4,5として用いた。
 前記のようにして得られた各々の磁芯1に、第1及び第2のビア導体2,3を挿入し、また、所定位置に第1及び第2の表面導体4,5を配置した上で、ステンレス製の板にはさみ、15kgfの加圧を施して第1及び第2のビア導体2,3と第1及び第2の表面導体4,5を接合した。第1及び第2のビア導体2,3と第1及び第2の表面導体4,5の接合部において、第1及び第2のビア導体の両端2a,2b,3a,3bは加圧力により変形し、初期の直径0.8ミリよりも大きくなっていることを確認した。また、表面導体が、磁芯1の2平面よりも内側に埋没されていることが確認された。さらに、当該組み立て済みのシート状インダクタ10dを、窒素雰囲気にて650℃、1時間の条件で熱処理して、第1及び第2のビア導体2,3のプラグ部と第1及び第2の表面導体4,5のプラグ穴との接合部において、拡散接合を生じせしめ、プラグ部とプラグ穴との接合部における電気抵抗を低下させた。なお、この熱処理により、バインダにおける有機成分が熱分解され、二酸化炭素として排出されることもあり得るが、予め扁平状金属粉末をSiO含有絶縁結合皮膜でコーティングしておけば、熱処理により扁平状金属粉末の間がSiO含有絶縁結合皮膜を介して結着され、バインダとしての機能の少なくとも一部を代替することで、扁平状金属粉末間の結着力を維持することができる。
(比較例1~3)
 比較例に係るシート状インダクタの作製について説明する。
 市販のNi-Zn系フェライト焼結体に切断加工および厚み方向の研磨を施し、図15(a)に示すものと同様な形状の、横15ミリ、縦10ミリ、厚さ0.9ミリの板状のNi-Zn系フェライト磁芯を作成した。NiZn系フェライト焼結体の透磁率は、1MHzにおける比透磁率の実数成分として200、260、550を有する3種類の材料を用いた。各々の焼結体の所定の位置に、超音波加工により、直径0.8ミリのビアホールを設け、比較例2,3、及び4の磁芯を作成した。当該磁芯は、その体積抵抗率として10kΩ・cm以上の値を有している。
 図15(a)に示すように、直径0.8ミリ、長さ1.8ミリを有する、絶縁皮膜を有しない銅線を作成し、ビアホールに挿入するビア導体2,3として用いた。また、幅2ミリ、厚さ0.3ミリを有する、絶縁皮膜を有しない銅板を、所定の長さを有するように切断し、かつ、図8(b)に示す位置にドリル切削にて直径0.8ミリの穴を開け、第1及び第2のビア導体2,3と接合するためのプラグ穴4a,4b,5a,5bになるようにして、第1及び第2の表面導体4,5として用いた。
 前記のようにして得られた各々の磁芯に、第1及び第2のビア導体を挿入し、また、所定位置に第1及び第2の表面導体4,5を配置した上で、ステンレス製の板にはさみ、15kgfの加圧を施してビア導体と表面導体を接合した。ビア導体と表面導体の接合部において、ビア導体は加圧力により変形し、初期の直径0.8ミリよりも大きくなっていることを確認した。さらに、当該組み立て済みのシート状インダクタを、窒素雰囲気にて650℃、1時間の条件で熱処理して、ビア導体と表面導体の接合部において、拡散接合を生じせしめ、接合部における電気抵抗を低下させた。
II.次に、本発明の実施例及び比較例に係るシート状インダクタの諸特性の評価について説明する。
 以上のようにして得られた実施例1、実施例2、比較例のシート状インダクタについて、1MHzのインダクタンスを測定した結果を図16に、インダクタンスの周波数依存性を測定した結果を図17に、作成時の破損発生率および特性評価結果のまとめを表1にそれぞれ示す。1MHzにおけるインダクタンスの測定にはヒューレットパッカード社(現アジレントテクノロジー社)のLCRメーターHP4284Aを用いた。また、インダクタンスの周波数特性の測定には、アジレントテクノロジー社のインピーダンスアナライザー4294Aを用いた。
 図16に示す通り、本発明にあたる実施例1のシート状インダクタで、Ni-Zn系フェライトインダクタと同等レベルのインダクタンスを有しており、また、1MHz以上まで渦電流損失などによるインダクタンスの低下が生じていない。さらに、良好な高周波特性を有することを特徴とするNi-Zn系フェライトを磁芯として用いた比較例2ないし4と同等以上の高周波まで高いインダクタンスを有していることが確認される。この事実は同時に、ビア導体と表面導体で形成されたコイル部分と、実施例1の磁芯が相互に密着した状態で高温熱処理を行っても、コイルのショートが生じていないことを示している。
 また図17および表1に示すとおり、本発明にあたる実施例1のシート状インダクタでは、比較例2ないし4のNi-Zn系フェライト磁芯を用いたインダクタと比較して、バイアス電流を大きくしたときのインダクタンスが顕著に優れていることが分かる。具体的には、例えばバイアス電流を5Aとしたときのインダクタンスの値は、比較例2ないし4のNi-Zn系フェライト磁芯を用いたインダクタと比較して、概ね2倍程度のインダクタンスを有している。これは、Ni-Zn系フェライトと比較して高い飽和磁束密度を有する金属粉末を磁芯材料として用いているためであり、本発明の実施例1の構成を有するシート状インダクタは、大電流を通電してもインダクタンスが低下しにくい、大電流通電に適したインダクタであることが分かる。
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施例1について説明したが、増粘剤ないし成型用バインダとして用いたポリアクリル酸エステル、メチル系シリコーンレジン等の有機結合材の種類もしくは添加量については、成型の対象となる金属粉末の性状に応じて適宜選択、加減されるべきものである。特に、おおむね粉末の比表面積に比例して成型用のバインダ添加量を加減すれば、上記実施例と同様の好適な結果が得られることはいうまでもない。
 また、コイルの構成要素として、絶縁皮膜を有しない導体を用いたが、適切な部位に絶縁皮膜を有する導体を用いてもよい。また、加圧力による導体の接合に際しては、同時にヒュージングや電流パルスの通電を行い、接合の促進を行ってもよい。また、熱処理による接合部位の拡散接合の実施は必須ではないが、必要に応じ、接合部に金属粉ナノ粒子を介在させることにより、拡散接合の促進を行ってもよい。
 以上の説明は、本発明の実施の形態に係るシート状インダクタの効果について説明するためのものであって、これによって特許請求の範囲に記載の発明を限定し、あるいは請求の範囲を減縮するものではない。また、本発明の各部構成や使用される軟磁性金属粉末の材種は、上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
(実施例2)
I.樹脂基板に内蔵する磁芯の耐加圧強度試験、並びに、樹脂基板との接合試験用の実施について説明する。
 軟磁性金属の原料粉末として、平均粒径D50として33μmを有するFe-3.5Si-2Cr合金の水アトマイズ粉末を用いた。粉末形状を扁平化するために、ボールミルを用いて、前記原料粉末に8時間の鍛造加工を施し、さらに、窒素雰囲気中で500℃、3時間の熱処理を加え、扁平形状を有するFe-3.5Si-2Cr粉末を得た。当該扁平金属粉末に対し、溶媒としてエタノール、増粘剤としてポリアクリル酸エステル、熱硬化性バインダ成分として、メチルフェニル系シリコーンレジンを混合してスラリーを作製し、ダイスロット法によりPET(ポリエチレンテレフタレート)フィルム上にスラリーを塗布した後、60℃で1時間乾燥して溶媒を除去し、予備成型体を得た。この際、前記扁平金属粉末100グラムに対するメチル系シリコーンレジンの添加量を、2重量%から20重量%の間の所定の水準に設定した。
 前記予備成型体を、抜型を用いて、横100ミリ、縦100ミリの正方形にカットし、得られた個片を、所定枚数積層して金型中に封入し、150℃、2MPaの成形圧力にて1時間の加圧成形を施した。さらにこの成型体1を、窒素雰囲気中で550℃、1時間の条件で熱処理して、耐加圧強度試験用のテストピースを各バインダ添加量水準あたり3枚作成した。当該テストピースの厚さは、0.3ミリである。
 当該テストピースの成形密度を、アルキメデス法により測定した。ここで、アルキメデス法により測定した、扁平化したFe-3.5Si-2Cr合金のみの真密度は7.6g/ccであり、メチルフェニル系シリコーンレジンの硬化後の真密度は、1.3g/ccである。また、メチルフェニル系シリコーンレジンは、窒素雰囲気中550℃1時間の熱処理条件で、20重量%の加熱減量を示す。増粘剤成分については、前記熱処理によってほぼ完全に熱分解し、磁芯中には残存しない。これらの数値から、熱処理済みの扁平金属粉末の成型体について、金属成分の体積充填率と、メチルフェニル系シリコーンレジン、すなわち、バインダの硬化後成分の体積充填率と、気孔率を計算した。
 また、前記テストピースを、鏡面研磨を施し厚み6ミリを有する二枚ステンレス板にはさみ、油圧プレス機を用いて15MPaの加圧を施し、割れや剥離の発生有無を確認して耐加圧強度の試験を実施した。
 また、前記の耐加圧強度試験用のテストピースと同様に作成して得られた横100ミリ、縦100ミリ、厚み0.3ミリを有する熱処理済みの成型体を、横100ミリ、縦100ミリ、厚さ0.3ミリのプリプレグ2枚の間に配置し、180℃、3MPa、1時間の条件で加圧接着した。さらに、このようにして得られた、扁平金属粉末の成型体と、加熱硬化されたプリプレグの積層体を、ダイシングソーを用いて、横15ミリ、縦15ミリ、厚み0.9ミリの個片に切断し、計36個の個片を得た。いずれの個片も、周囲4辺はダイシングソーによる切断面となるようにした。当該個片を、350度に加熱したホットプレートで1分間加熱し、扁平金属粉末の成型体と、プリプレグ層の間の剥離により、両者が分離する現象が発生したテストピースの個数を数え、樹脂基板との接合状態を評価する指標として採用した。
 以上の評価結果をまとめて表2に示す。耐加圧強度試験において、バインダ成分の体積率が7体積%、気孔率が33体積%の場合には、成型体の強度不足のため、耐加圧強度試験で割れが発生し、かつ、樹脂基板との接合体を切断した個片の扁平金属粉成型体部分において剥離が発生した。次に、バインダ成分の体積充填率が9.5体積%以上で46.5体積%以下であってかつ、気孔率が4体積%以上で25.5%以下の場合には、耐加圧強度試験において割れが発生しないと同時に、樹脂基板積層体の切断個片における剥離も発生していない。これは、バインダ成分の量が適切であって成型体が十分な強度を有していると共に、適度な気孔率を有しているため、プリプレグの接着成分が成型体の気孔部に含浸して互いに一体化し、成型体とプリプレグの層間強度が高く保たれているためと考えられる。次に、気孔率が2.5体積%以下の場合には、樹脂基板積層体の切断個片における剥離が発生した。これは、成型体の気孔率が低すぎるため、プリプレグの接着成分が成型体の気孔部に十分含浸しておらず、成型体とプリプレグの層間強度が不足していることに対応する。次に、バインダ成分が53体積%以上の場合には、耐加圧強度試験において割れが発生した。これは、成型体の空孔率が低すぎるため、成型体の弾力が低下し、加圧力が緩衝されない効果と、成型体の強度を保持するためのフィラーとしても作用する金属成分の体積充填率が低すぎるため、成型体の強度が保持されない効果が相乗的に作用したためである。
 全体として、バインダ成分の体積充填率が9.5%以上50%以下、気孔率が4%以上25.5%以下となるように組織を制御した場合に、耐加圧強度試験において成型体の割れが発生せず、かつ、樹脂基板積層体の切断個片において剥離が発生しない良好な結果が得られる。
Figure JPOXMLDOC01-appb-T000003
II.実施例1のシート状インダクタの磁芯の作製について説明する。
 軟磁性金属の原料粉末として、平均粒径D50として55μmを有するFe-Si-Al系合金(センダスト)のガスアトマイズ粉末を用いた。粉末形状を扁平化するために、ボールミルを用いて、前記原料粉末に8時間の鍛造加工を施し、さらに、窒素雰囲気中で700℃、3時間の熱処理を加え、扁平形状を有するセンダスト粉末を得た。作製した扁平金属粉末の平均長径(Da)は60μmであり、平均最大厚さ(ta)は3μmであり、平均アスペクト比(Da/ta)は20である。扁平金属粉末のアスペクト比は、圧縮した金属粉末に樹脂を含浸して硬化させ、当該硬化体を研磨して、走査電子顕微鏡にて研磨面上にある扁平金属粉末の形状を観察することによって求めた。詳しくは、30個の扁平金属粉末について、長径(D)と、最も厚い部位の厚さ(t)を測定し、アスペクト比(D/t)の平均値を計算した。
 当該センダスト粉末に対し、溶媒としてエタノール、増粘剤としてポリアクリル酸エステル、熱硬化性バインダ成分としてメチル系シリコーンレジンを混合してスラリーを作製し、ダイスロット法によりPET(ポリエチレンテレフタレート)フィルム上にスラリーを塗布した後、60℃で1時間乾燥して溶媒を除去し、予備成型体を得た。
 前記予備成型体を、抜型を用いて、横15ミリ、縦10ミリの長方形にカットし、得られた個片を、所定枚数積層して金型中に封入し、150℃、2MPaの成形圧力にて1時間の加圧成形を施した。加圧成形後の成型体の厚さは、0.9ミリである。
 実施例1と同様の磁芯1を作成するため、図8(a)及び図8(b)に示すように、成型体1の所定の位置に、ドリル切削にて直径0.8ミリのビアホールを設けた。さらにこの成型体1を、窒素雰囲気中で650℃、1時間の条件で熱処理し、実施例1の磁芯1を作成した。当該磁芯1は、その体積抵抗率として10kΩ・cm以上の値を有している。また、当該磁芯の密度は4.9g/ccであり、この密度から求めた金属成分の体積充填率は、約67%、メチル系シリコーンレジンの硬化後成分の体積充填率は、約18%、気孔率は、約15%である。増粘剤成分については、前記熱処理によってほぼ完全に熱分解し、磁芯中には残存しない。
III.次に、比較例5,6,7のシート状インダクタの磁芯の作製について説明する。
 市販のNi-Zn系フェライト焼結体に切断加工および厚み方向の研磨を施し、横15ミリ、縦10ミリ、厚さ0.9ミリの板状のNi-Zn系フェライト磁芯を作成した。NiZn系フェライト焼結体の透磁率は、1MHzにおける比透磁率の実数成分として200、260、550を有する3種類の材料を用いた。各々の焼結体の所定の位置に、超音波加工により、直径0.8ミリのビアホールを設け、比較例2および3および4の磁芯を作成した。当該磁芯は、その体積抵抗率として10kΩ・cm以上の値を有している。
IV. コイル形成用導体部品の作成について説明する。
 直径0.8ミリ、長さ1.8ミリを有する、絶縁皮膜を有しない銅線を作成し、ビアホールに挿入するビア導体として用いた。また、幅2ミリ、厚さ0.3ミリを有する、絶縁皮膜を有しない銅板を、所定の長さを有するように切断し、かつ、所定の位置にドリル切削にて直径0.8ミリの穴を開け、ビア導体と接合するためのプラグ部分になるようにして、表面導体として用いた。
 さらに、実施例1、および、比較例5,6,7のインダクタの作製について説明する。
 前記のようにして得られた各々の磁芯に、ビア導体を挿入し、また、所定位置に表面導体を配置した上で、ステンレス製の板にはさみ、15kgfの加圧を施してビア導体と表面導体を接合した。得られたインダクタンス素子の構成の概略図は、図15(a)及び図15(b)に示したものと同様である。
V.次に実施例2の積層基板内蔵型インダクタの作製について説明する。
 図18及び19に示すように、本発明の実施例2に係る、基板に磁芯が内蔵されたインダクタを作製するため、実施例1と同じくして得られる予備成型体を、抜型を用いて、横15ミリ、縦10ミリの長方形にカットし、得られた個片を、所定枚数積層して金型中に封入し、150℃、2MPaの成形圧力にて1時間の加圧成形を施した。加圧成形後の成型体1の厚さt1は、0.9ミリである。前記成型体1を、窒素雰囲気中で650℃、1時間の条件で熱処理して磁性体(磁芯)1を作製した。この磁芯1を、図18及び図19に示す構成のように、横15ミリ、縦10ミリ、穴をあけた厚み0.3ミリのプリプレグを3枚積み重ねた中央部に配置し、その上下に、コイル導体の一部をなす導体パターンを形成した厚み0.5ミリの片面銅箔基板を第1の樹脂基板21a,21bとして、配置し、3MPa、180℃、1時間の条件で加圧積層した。この加圧積層体の図19に対応する所定の位置に、ドリル切削にて直径0.8ミリのビアホール23a,23bを設けた。当該ビアホールに、直径0.8ミリの銅線をビア導体2,3として挿入した。当該銅線と、前記片面銅箔基板上に形成された導体パターンを、半田付けによって接合し、図18及び19に示すインダクタと同様な形状の積層樹脂基板に磁性体が内蔵されたインダクタを作成した。
 以上のようにして得られた、実施例1,比較例5,6,7、及び実施例2のインダクタについて、インダクタンスの周波数特性を測定した結果を図20、1MHzにおけるインダクタンスのバイアス電流依存性を測定した結果を図21に示す。1MHzにおけるインダクタンスの測定にはヒューレットパッカード社(現アジレントテクノロジー社)のLCRメーターHP4284Aを用いた。また、インダクタンスの周波数特性の測定には、アジレントテクノロジー社のインピーダンスアナライザー4294Aを用いた。
 図20に示す通り、本発明の実施例1,2のインダクタは、Ni-Zn系フェライトインダクタンス素子と同等レベルのインダクタンスを有しており、また、1MHz以上まで渦電流損失などによるインダクタンスの低下が生じていない。すなわち、実施例1及び2のインダクタンス素子は、良好な高周波特性を有するNi-Zn系フェライトを磁芯として用いた比較例5乃至7に係るインダクタと同等以上の高周波まで高いインダクタンスを有していることが確認される。
 また、図21に示すとおり、本発明の実施例1,2に係るインダクタは、比較例5ないし7のNi-Zn系フェライト磁芯を用いたインダクタンス素子と比較して、バイアス電流を大きくしたときのインダクタンスが顕著に優れていることが分かる。具体的には、例えばバイアス電流を5Aとしたときのインダクタンスの値は、比較例5ないし7のNi-Zn系フェライト磁芯を用いたインダクタンス素子と比較して、概ね2倍程度のインダクタンスを有している。これは、Ni-Zn系フェライトと比較して高い飽和磁束密度を有する金属粉末を、実施例1,2の磁芯材料として用いているためであり、本発明の構成を有するインダクタンス素子は、大電流を通電してもインダクタンスが低下しにくい、大電流通電に適したインダクタとなっていることが分かる。
 さらに、図20,図21に示す通り、樹脂基板に磁芯が内蔵されてなる実施例2のインダクタンス素子の特性は、実施例1として示した、当該磁芯を樹脂基板に内蔵せずに作成したインダクタンス素子の特性とほとんど一致している。すなわち、本発明の実施例1の磁芯1の構成とすれば、磁芯1の基板内封入に際する加圧力によって磁芯が損傷する懸念がないことに留まらず、磁芯1が有する優れた磁気特性が、磁芯の基板内封入後も変わらずに維持されるという利点も有していることが分かる。
 以上の説明は、本発明の実施の形態に係る、積層樹脂基板内蔵型インダクタの効果について説明するためのものであって、これによって特許請求の範囲に記載の発明を限定し、あるいは請求の範囲を減縮するものではない。また、本発明の各部構成や使用される軟磁性金属粉末の材種は、上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
 以上の説明の通り、本発明に係るシート状インダクタおよびその製造方法は、小型電子機器の電源回路に搭載されるインダクタとその製造方法に適用される。
 また、本発明の積層基板内蔵型インダクタは、ノイズフィルタ、アンテナ等に用いることができる。
  1  磁芯
  1a,23a,28a  第1のビアホール
  1b,23b,28b  第2のビアホール
  2 第1のビア導体
  2a  一端(プラグ部)
  3 第2のビア導体
  3a  一端(プラグ部)
  3b  他端(プラグ部)
  4 第1の(基板)表面導体
  4a,5a  第1のプラグ穴
  4b,5b  第2のプラグ穴
  5 第2の(基板)表面導体
  6 第2の(基板)表面導体(端子部材)
  6a  プラグ穴
  7  リード線
  8  コイル
  9  ギャップ
  10,10a,10b,10c,10d,20  シート状インダクタ
  11  1次側コイル
  12  2次側コイル
  14  第1の(端子接続用)表面導体
  14a  側面電極
  15  第2の(端子接続用)表面導体
  15a  側面電極
  21,29,30  積層基板
  21a,21b  第1の樹脂基板
  21c  空気抜き用の穴
  22 プリプレグ
  24  コイル
  24a  一次側コイル
  24b  二次側コイル
  25a,25b  第2の樹脂基板
  26  第3の(基板)表面導体
  27  第4の(基板)表面導体
  31  接着層
  32a  収容部
  32  第3の樹脂基板

Claims (38)

  1.  軟磁性を有する扁平金属粉末とバインダとを含む混合物の成型体シートを有し、前記軟磁性扁平金属粉末は、前記成型体シートの平面内に2次元的に配向されていることを特徴とする磁芯。
  2.  請求項1に記載の磁芯において、前記成型体シートの空孔率は、5体積%以上25体積%以下であることを特徴とする磁芯。
  3.  請求項1又は2に記載の磁芯において、前記成型体シートは、前記扁平金属粉末と前記扁平金属粉末とを結着するバインダとを含み、前記バインダ成分の体積率は、10体積%以上45体積%以下であることを特徴とする磁芯。
  4.  請求項1乃至3のいずれか一項に記載された磁芯において、前記扁平金属粉末の前記成型体シートに対する体積比は55体積%以上であることを特徴とする磁芯。
  5.  請求項1乃至4の内のいずれか一項に記載の磁芯において、前記金属磁性粉末は、SiO含有絶縁結合皮膜によってコーティングされ、前記SiO含有絶縁結合皮膜は、前記バインダの少なくとも一部を構成していることを特徴とする磁芯。
  6.  請求項1乃至5の内のいずれか一項に記載の磁芯において、前記磁芯は、成型体よりなり、前記成型体は、厚み方向に積層されて、加圧された複数枚の前記成型体シートを有することを特徴とする磁芯。
  7.  請求項1乃至6の内のいずれか一項に記載の磁芯において、前記バインダは、熱硬化性樹脂を含むことを特徴とする磁芯。
  8.  請求項1乃至7の内のいずれか一項に記載の磁芯と、コイルとを有し、
     前記磁芯は、予め定められた厚さと、前記厚さの方向に対向する2平面と、前記2平面を結ぶ2つの側面と、
     前記2平面間に設けられた第1のビアホールと、
     前記2平面間の前記第1のビアホールと離れた位置に設けられた第2のビアホールとを有し、
     前記コイルは、前記第1及び第2のビアホールを夫々貫通して設けられた第1及び第2のビア導体と、
     前記磁芯の2平面にそれぞれ設けられた第1及び第2の表面導体とを有し、
     前記第1及び第2のビア導体の夫々は、中心導体とその両端のプラグ部とを有し、
     前記第1及び第2の表面導体は、前記第1及び第2のビア導体に前記プラグ部を介して接合されていることを有することを特徴とするシート状インダクタ。
  9.  請求項8に記載のシート状インダクタにおいて、前記シート状インダクタは、1次側コイル及び2次側コイルを有し、
     前記1次側コイルは、前記第1のビア導体と、前記第1のビア導体と一対の前記第1及び第2の表面導体とを有し、前記一対の第1及び第2の表面導体は、前記第1のビア導体のプラグ部から引き出すために前記磁芯の2側面に夫々形成された第1及び第2の側面電極を有し、
     前記2次側コイルは、前記第2のビア導体と、さらに一対の前記第1及び第2の表面導体とを有し、前記さらに一対の第1及び第2の表面導体は、前記第2のビア導体のプラグ部から引き出すために前記磁芯の2側面に夫々形成された第1及び第2の側面電極を有する、前記磁芯の2側面に形成され形成された第1及び第2の側面電極とを夫々有することを特徴とするシート状インダクタ。
  10.  請求項8に記載のシート状インダクタにおいて、前記磁芯は、複数の前記第1のビアホールと、複数の前記第2のビアホールとを有し、
     前記コイルは、前記複数の第1のビアホールを貫通した複数の第1のビア導体と、前記複数の第2のビアホールを貫通した複数の第2のビア導体とを有し、
     前記第1の表面導体は、前記磁芯の2平面の内の一面で一つの前記第1のビア導体と一つの前記第2のビア導体の夫々のプラグ部を連絡し、
     前記第2の表面導体は、前記磁芯の2平面の内の他面で前記一つの第1のビア導体と他の一つの前記第2のビア導体のプラグ部を連絡していることを特徴とするシート状インダクタ。
  11.  請求項8乃至10の内のいずれか一項に記載のシート状インダクタにおいて、前記第1及び第2の表面導体は、前記プラグ部が形成されたプラグ穴を有し、前記プラグ部は、前記第1及び第2のビア導体を前記プラグ穴に夫々嵌合して加圧することで変形を伴って形成されていることを特徴とするシート状インダクタ。
  12.  請求項8乃至11の内のいずれか一項に記載のシート状インダクタにおいて、前記磁芯の一部には、スリット部またはギャップ部が設けられていることを特徴とするシート状インダクタ。
  13.  請求項8乃至12の内のいずれか一項に記載のシート状インダクタにおいて、前記第1及び第2の表面導体が、前記磁芯の2平面から埋没して配置されていることを特徴とするシート状インダクタ。
  14.  軟磁性を有する扁平金属粉末と、バインダとを含む混合物を、前記軟磁性扁平金属粉を当該シートがなす平面内に配向するように、シート状に成型して成型体シートを形成する工程とを有することを特徴とする磁芯の製造方法。
  15.  請求項14に記載の磁芯の製造方法において、さらに、前記成型体シートを厚さ方向に複数枚積層して、前記厚さ方向に加圧して成型体を形成する工程とを有することを特徴とする磁芯の製造方法。
  16.  請求項14又は15に記載の磁芯の製造方法において、前記バインダは、熱硬化性樹脂を含むものを用いることを特徴とする磁芯の製造方法。
  17.  請求項14乃至16の内のいずれか一項に記載の磁芯の製造方法において、前記金属磁性粉末には、SiO含有絶縁結合皮膜によってコーティングされているものを用いることを特徴とする磁芯の製造方法。
  18.  請求項1乃至7の内のいずれか一項に記載の磁芯の対向する2面を夫々前記積層方向に貫通する互いに離れた第1及び第2のビアホールを設ける穿孔工程と、
     前記第1及び第2のビアホールを貫通する第1及び第2のビア導体を夫々形成するビア導体形成工程と、
     前記第1及び第2のビア導体に第1及び第2の表面導体を重ね合わせて前記磁芯の厚さ方向に加圧して、前記第1及び第2の表面導体に前記第1及び第2のビア導体からなるプラグ部を形成することで接合して電気接続するコイル形成工程とを有することを特徴とするシート状インダクタの製造方法。
  19.  請求項18に記載のシート状インダクタの製造方法において、前記コイル形成工程は、第1のビア導体に前記磁芯の2平面において、一対の第1及び第2の表面導体を夫々接続して、前記側面まで延長して第1及び第2の側面電極を形成することで、1次側コイルを形成するとともに、前記第2のビア導体に前記磁芯の2平面に前記一対の第1及び第2の表面導体とは夫々異なる他の一対の第1及び第2の表面導体を接続して、前記側面まで延長して第1及び第2の側面電極を形成することで、2次側コイルを形成することを特徴とするシート状インダクタの製造方法。
  20.  請求項18に記載のシート状インダクタの製造方法において、前記穿孔工程は、前記磁芯に複数の前記第1のビアホールと、複数の前記第2のビアホールとを形成することを含み、
     前記ビア導体形成工程は、前記複数の第1のビアホールを複数の第1のビア導体を貫通させることと、前記複数の第2のビアホールを複数の第2のビア導体を貫通させることとを含み、
     前記コイル形成工程は、前記第1の表面導体を前記磁芯の2平面の内の一面で一つの前記第1のビア導体と一つの前記第2のビア導体に重ねるとともに、
     前記第2の表面導体を前記磁芯の2平面の内の他面で前記一つの第1のビア導体と他の一つの前記第2のビア導体に重ね合わせて、前記磁芯の厚さ方向に加圧することで、前記プラグ部を形成して前記第1及び第2のビア導体と前記第1及び第2の表面導体とを電気接続することを特徴とするシート状インダクタの製造方法。
  21.  請求項18乃至20のいずれか一項に記載のシート状インダクタの製造方法において、前記第1及び第2の表面導体は、前記プラグ部が形成されたプラグ穴を有し、前記プラグ部は、前記第1及び第2のビア導体を前記プラグ穴に夫々嵌合して加圧することで変形を伴って形成されていることを特徴とするシート状インダクタの製造方法。
  22.  請求項18乃至21のいずれか一項に記載のシート状インダクタの製造方法において、前記磁芯の一部に、スリット部またはギャップ部を形成する工程を有することを特徴とするシート状インダクタの製造方法。
  23.  一対の第1の樹脂基板を積層した積層樹脂基板と、前記積層樹脂基板内に収容されたシート状の磁芯と、前記積層樹脂基板を貫通して設けられたビアホールと、前記ビアホールを介して形成されたコイルとを備え、
     前記積層樹脂基板は接着成分を含み、
     前記シート状の磁芯は、軟磁性を有する扁平金属粉末を平板に成形した成型体であり、前記扁平金属粉末は、前記平板の面内に配向するとともに、前記コイル導体の発生磁束が前記平板の面内で還流しており、
     前記磁芯は、前記積層樹脂基板と一体化し、前記接着成分が、前記磁芯の空孔部に含浸していることを特徴とする積層基板内蔵型インダクタ。
  24.  請求項23に記載の積層基板内蔵型インダクタにおいて、前記成形体の空孔率は、5体積%以上25体積%以下であることを特徴とする積層基板内蔵型インダクタ。
  25.  請求項23又は24に記載の積層基板内蔵型インダクタにおいて、前記成形体は、前記扁平金属粉末と前記扁平金属粉末とを結着するバインダとを含み、前記バインダ成分の体積率は、10体積%以上45体積%以下であることを特徴とする積層基板内蔵型インダクタ。
  26.  請求項23乃至25の内のいずれか一項に記載された積層基板内蔵型インダクタにおいて、前記扁平金属粉末の前記成形体に対する体積比は55体積%以上であることを特徴とする積層基板内蔵型インダクタ。
  27.  請求項23乃至26の内のいずれか一項に記載の積層基板内蔵型インダクタにおいて、前記コイルは前記ビアホールを貫通して設けられたビア導体と、前記積層樹脂基板の表面に設けられ、前記ビア導体に接続された第1の表面導体とを備え、前記第1の表面導体の厚さは100μm以下の導体膜を二層以上積層したものであることを特徴とする積層基板内蔵型インダクタ。
  28.  請求項27に記載の積層基板内蔵型インダクタにおいて、前記第1の樹脂基板は、片面銅箔基板からなり、前記第1の表面導体は、前記片面銅箔基板の一面に形成された導体パターンからなることを特徴とする積層基板内蔵型インダクタ。
  29.  請求項23乃至28の内のいずれか一項に記載の積層基板内蔵型インダクタにおいて、前記積層樹脂基板の両面に夫々積層された第2の樹脂基板を備え、前記ビアホールは、更に、前記第2の樹脂基板を貫通して設けられ、前記コイル導体は、前記ビアホールを貫通して設けられたビア導体と、前記第1及び第2の樹脂基板の表面に設けられ、前記ビア導体に接続された内部導体と第2の表面導体とを夫々有していることを特徴とする積層基板内蔵型インダクタ。
  30.  請求項29に記載の積層基板内蔵型インダクタにおいて、前記第2の樹脂基板は両面銅箔基板からなり、前記内部導体及び第2の表面導体は、前記両面銅箔基板の両面に形成された導体パターンからなることを特徴とする積層基板内蔵型インダクタ。
  31.  請求項23乃至30の内のいずれか一項に記載の積層基板内蔵型インダクタにおいて、前記磁芯は、前記扁平金属粉末のシート状成形体を複数枚重ね合わせて加圧成形した成形体であることを特徴とする積層基板内蔵型インダクタ。
  32.  請求項23乃至31の内のいずれか一項に記載の積層基板内蔵型インダクタにおいて、前記ビアホールは前記磁芯もしくは前記磁芯の近傍を貫通して設けられていることを特徴とする積層基板内蔵型インダクタ。
  33.  一対の第1の樹脂基板を積層した積層樹脂基板に内に請求項1乃至7の内のいずれか一項に記載の磁芯を収容する工程と、前記積層樹脂基板を貫通してビアホールを形成する工程と、前記ビアホールを介してコイルを形成する工程とを備え、
     前記積層樹脂基板は接着成分を含み、
     前記シート状の磁芯は、軟磁性を有する扁平金属粉末を平板に成形した成型体であり、前記扁平金属粉末は、前記平板の面内に配向するとともに、前記コイル導体の発生磁束が前記平板の面内で還流しており、
     前記磁芯は、前記積層樹脂基板と共に加圧力を受けて当該積層樹脂基板と一体化し、前記接着成分が、前記磁芯の空孔部に含浸させることを特徴とする積層基板内蔵型インダクタの製造方法。
  34.  請求項33に記載の積層基板内蔵型インダクタの製造方法において、前記コイルは前記ビアホールを貫通して設けられたビア導体と、前記積層樹脂基板の表面に設けられ、前記ビア導体に接続された第1の表面導体とを備え、前記第1の表面導体の厚さは100μm以下の導体膜を二層以上積層したものを用いることを特徴とする積層基板内蔵型インダクタの製造方法。
  35.  請求項33又は34に記載の積層基板内蔵型インダクタの製造方法において、前記第1の樹脂基板は、片面銅箔基板からなり、前記第1の表面導体は、前記片面銅箔基板の一面に形成された導体パターンからなることを特徴とする積層基板内蔵型インダクタの製造方法。
  36.  請求項33乃至35の内のいずれか一項に記載の積層基板内蔵型インダクタの製造方法において、前記積層樹脂基板の両面に夫々積層された第2の樹脂基板を備え、前記ビアホールは、更に、前記第2の樹脂基板を貫通して設けられ、前記コイル導体は、前記ビアホールを貫通して設けられたビア導体と、前記第1及び第2の樹脂基板の表面に設けられ、前記ビア導体に接続された内部導体と第2の表面導体とを夫々有していることを特徴とする積層基板内蔵型インダクタの製造方法。
  37.  請求項36に記載の積層基板内蔵型インダクタの製造方法において、前記第2の樹脂基板は両面銅箔基板からなり、前記内部導体及び第2の表面導体は、前記両面銅箔基板の両面に形成された導体パターンからなることを特徴とする積層基板内蔵型インダクタの製造方法。
  38.  請求項33乃至37の内のいずれか一項に記載の積層基板内蔵型インダクタの製造方法において、前記ビアホールを前記磁芯もしくは前記磁芯の近傍を貫通して設けることを特徴とする積層基板内蔵型インダクタの製造方法。
PCT/JP2013/074352 2012-09-10 2013-09-10 シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法 WO2014038706A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/422,679 US20150235753A1 (en) 2012-09-10 2013-09-10 Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors
KR1020157004081A KR20150053900A (ko) 2012-09-10 2013-09-10 시트형상 인덕터, 적층 기판 내장형 인덕터 및 이들의 제조 방법
CN201380043958.2A CN104603889B (zh) 2012-09-10 2013-09-10 片状电感器以及片状电感器的制造方法
US16/132,356 US10943725B2 (en) 2012-09-10 2018-09-14 Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-198844 2012-09-10
JP2012198844A JP6062691B2 (ja) 2012-04-25 2012-09-10 シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/422,679 A-371-Of-International US20150235753A1 (en) 2012-09-10 2013-09-10 Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors
US16/132,356 Division US10943725B2 (en) 2012-09-10 2018-09-14 Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors

Publications (1)

Publication Number Publication Date
WO2014038706A1 true WO2014038706A1 (ja) 2014-03-13

Family

ID=50237824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074352 WO2014038706A1 (ja) 2012-09-10 2013-09-10 シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法

Country Status (5)

Country Link
US (2) US20150235753A1 (ja)
JP (1) JP6062691B2 (ja)
KR (1) KR20150053900A (ja)
CN (2) CN104603889B (ja)
WO (1) WO2014038706A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973620A4 (en) * 2013-03-11 2017-03-08 Bourns, Inc. Devices and methods related to laminated polymeric planar magnetics
WO2017134993A1 (ja) * 2016-02-02 2017-08-10 株式会社村田製作所 表面実装型コイル部品及びその製造方法、並びに、これを用いたdc-dcコンバータ
WO2023149168A1 (ja) * 2022-02-03 2023-08-10 ローム株式会社 回路部品、電子装置および回路部品の製造方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353642B2 (ja) * 2013-02-04 2018-07-04 株式会社トーキン 磁芯、インダクタ、及びインダクタを備えたモジュール
JP2015082554A (ja) * 2013-10-22 2015-04-27 日東電工株式会社 軟磁性樹脂組成物、および、軟磁性フィルム
JP2015109367A (ja) * 2013-12-05 2015-06-11 日立化成株式会社 磁気シート材およびその製造方法
JP2015138935A (ja) * 2014-01-24 2015-07-30 イビデン株式会社 プリント配線板
JP6385811B2 (ja) * 2014-01-29 2018-09-05 アルプス電気株式会社 電子部品および電子機器
JP6217417B2 (ja) * 2014-01-31 2017-10-25 株式会社デンソー インダクタンス素子内蔵多層基板およびその製造方法
JP6508878B2 (ja) * 2014-03-17 2019-05-08 株式会社トーキン 軟磁性成型体
JP6383215B2 (ja) * 2014-08-07 2018-08-29 株式会社トーキン インダクタおよびその製造方法
WO2016043306A1 (ja) * 2014-09-19 2016-03-24 株式会社村田製作所 インダクタ部品およびインダクタ部品の製造方法
WO2016047653A1 (ja) * 2014-09-24 2016-03-31 株式会社村田製作所 インダクタ部品の製造方法およびインダクタ部品
JP6415938B2 (ja) * 2014-11-14 2018-10-31 株式会社トーキン 磁性部材およびその製造方法
JP6550731B2 (ja) * 2014-11-28 2019-07-31 Tdk株式会社 コイル部品
KR101681409B1 (ko) * 2015-04-16 2016-12-12 삼성전기주식회사 코일 전자부품
JP6552093B2 (ja) * 2015-07-02 2019-07-31 株式会社トーキン インダクタおよびその製造方法
JP6401119B2 (ja) * 2015-07-21 2018-10-03 太陽誘電株式会社 モジュール基板
JP6583627B2 (ja) * 2015-11-30 2019-10-02 Tdk株式会社 コイル部品
KR101883036B1 (ko) * 2015-12-29 2018-08-24 삼성전기주식회사 적층 전자 부품 및 적층형 칩 안테나
CN107046366B (zh) 2016-02-05 2019-06-04 台达电子企业管理(上海)有限公司 电源变换器及其制备方法
JP6484194B2 (ja) * 2016-03-18 2019-03-13 太陽誘電株式会社 電子部品及びその製造方法
CN105932014A (zh) * 2016-05-11 2016-09-07 上海华虹宏力半导体制造有限公司 水平磁场结构的电感结构
JP2017220502A (ja) * 2016-06-06 2017-12-14 イビデン株式会社 インダクタ部品、インダクタ部品の製造方法
US10930419B2 (en) 2016-06-21 2021-02-23 Nissan Motor Co., Ltd. Inductor
KR102480127B1 (ko) * 2016-07-08 2022-12-22 주식회사 위츠 무선 통신 안테나 및 이의 제조 방법
CN109643597B (zh) * 2016-09-02 2021-08-24 株式会社村田制作所 电感器部件以及电源模块
US9799722B1 (en) * 2016-10-05 2017-10-24 Cyntec Co., Ltd. Inductive component and package structure thereof
WO2018074188A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 インダクタ部品、インダクタ部品の製造方法
US10287413B2 (en) 2016-12-19 2019-05-14 3M Innovative Properties Company Thermoplastic polymer composite containing soft, ferromagnetic particulate material and methods of making thereof
EP3944271A1 (en) * 2016-12-22 2022-01-26 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Inductor made of component carrier material comprising electrically conductive plate structures
WO2018123410A1 (ja) 2016-12-28 2018-07-05 株式会社村田製作所 インダクタおよびdc-dcコンバータ
JP6956493B2 (ja) * 2017-02-07 2021-11-02 株式会社トーキン 複合磁性体、磁性部品、および複合磁性体の製造方法
US10923417B2 (en) * 2017-04-26 2021-02-16 Taiwan Semiconductor Manufacturing Company Limited Integrated fan-out package with 3D magnetic core inductor
CN108809079B (zh) 2017-05-05 2019-11-05 台达电子企业管理(上海)有限公司 功率变换器、电感元件以及电感切除控制方法
JP7266963B2 (ja) 2017-08-09 2023-05-01 太陽誘電株式会社 コイル部品
JP6690620B2 (ja) * 2017-09-22 2020-04-28 株式会社村田製作所 複合磁性材料及びそれを用いたコイル部品
WO2019066868A1 (en) * 2017-09-28 2019-04-04 Intel Corporation CROSSING INTERCONNECT HOLE STRUCTURE FOR INTEGRATED INDUCTION COIL OF HIGH DENSITY HOUSING
US11732104B2 (en) 2017-11-16 2023-08-22 3M Innovative Properties Company Polymer matrix composites comprising dielectric particles and methods of making the same
US10927228B2 (en) 2017-11-16 2021-02-23 3M Innovative Properties Company Polymer matrix composites comprising intumescent particles and methods of making the same
US10836873B2 (en) 2017-11-16 2020-11-17 3M Innovative Properties Company Polymer matrix composites comprising thermally insulating particles and methods of making the same
JP7317007B2 (ja) 2017-11-16 2023-07-28 スリーエム イノベイティブ プロパティズ カンパニー ポリマーマトリックス複合体の製造方法
US10913834B2 (en) 2017-11-16 2021-02-09 3M Innovative Properties Company Polymer matrix composites comprising indicator particles and methods of making the same
EP3710156A1 (en) 2017-11-16 2020-09-23 3M Innovative Properties Company Polymer matrix composites comprising functional particles and methods of making the same
US11383487B2 (en) * 2018-01-23 2022-07-12 Tokin Corporation Laminated substrate and manufacturing method of the same
JP6849620B2 (ja) * 2018-01-23 2021-03-24 株式会社トーキン 積層基材及びその製造方法
JP7105179B2 (ja) * 2018-11-26 2022-07-22 株式会社トーキン 基板
WO2019193802A1 (ja) * 2018-04-04 2019-10-10 株式会社村田製作所 インダクタ素子およびインダクタ素子の製造方法
US11450560B2 (en) * 2018-09-24 2022-09-20 Intel Corporation Microelectronic assemblies having magnetic core inductors
US11417593B2 (en) 2018-09-24 2022-08-16 Intel Corporation Dies with integrated voltage regulators
CN115359999A (zh) * 2018-11-02 2022-11-18 台达电子企业管理(上海)有限公司 变压器模块及功率模块
US12002615B2 (en) * 2018-11-02 2024-06-04 Delta Electronics (Shanghai) Co., Ltd. Magnetic element, manufacturing method of magnetic element, and power module
CN111145988B (zh) * 2018-11-02 2021-12-07 台达电子企业管理(上海)有限公司 变压器模块及功率模块
CN111145996A (zh) 2018-11-02 2020-05-12 台达电子企业管理(上海)有限公司 磁性元件的制造方法及磁性元件
DE102018218782A1 (de) * 2018-11-05 2020-05-07 Zf Friedrichshafen Ag Leiterplatten-Transformator
KR102146801B1 (ko) * 2018-12-20 2020-08-21 삼성전기주식회사 코일 전자 부품
CN110010493B (zh) * 2018-12-25 2021-01-08 浙江集迈科微电子有限公司 一种互联电感的制作方法
US11676756B2 (en) * 2019-01-07 2023-06-13 Delta Electronics (Shanghai) Co., Ltd. Coupled inductor and power supply module
JP2020141043A (ja) * 2019-02-28 2020-09-03 Tdk株式会社 コイル部品
EP3713027A1 (en) * 2019-03-20 2020-09-23 ABB Schweiz AG Bus bar arrangement with magnetic shielding between the conductive bars
JP7304727B2 (ja) * 2019-04-03 2023-07-07 株式会社トーキン 複合磁性体及びその製造方法
CN114096751A (zh) * 2019-05-16 2022-02-25 维斯塔斯风力***集团公司 用于风力涡轮机的全dc电压电力备用***
CN210156233U (zh) 2019-07-26 2020-03-17 株式会社东金 电感器
JP7147713B2 (ja) * 2019-08-05 2022-10-05 株式会社村田製作所 コイル部品
KR102662853B1 (ko) * 2019-09-30 2024-05-03 삼성전기주식회사 인쇄회로기판
US20210118601A1 (en) * 2019-10-17 2021-04-22 Infineon Technologies Austria Ag Inductor devices and stacked power supply topologies
WO2021108965A1 (zh) * 2019-12-02 2021-06-10 华为技术有限公司 一种集成有电感的封装基板及电子设备
JP2022014637A (ja) * 2020-07-07 2022-01-20 Tdk株式会社 積層コイル部品
JP2022020437A (ja) 2020-07-20 2022-02-01 株式会社トーキン 回路基板の製造方法及び回路基板
JP7428098B2 (ja) * 2020-07-31 2024-02-06 Tdk株式会社 インダクタ部品及びこれを用いたdcdcコンバータ
CN112635182B (zh) * 2020-11-23 2021-10-22 深圳市信维通信股份有限公司 电感器及其制备方法
US20220293326A1 (en) * 2021-03-12 2022-09-15 Virginia Tech Intellectual Properties, Inc. Multi-phase integrated coupled inductor structure
EP4092695A1 (en) * 2021-05-18 2022-11-23 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft A magnetic inlay with electrically conductive vertical through connections for a component carrier
US11950378B2 (en) * 2021-08-13 2024-04-02 Harbor Electronics, Inc. Via bond attachment
CN114597015B (zh) * 2022-03-16 2024-01-09 深圳市铂科新材料股份有限公司 一种叠层电感及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157011A (en) * 1980-05-09 1981-12-04 Tdk Corp Open-magnetic-circuit type laminated coil
JPH0446570U (ja) * 1990-08-24 1992-04-21
JPH05121242A (ja) * 1991-10-29 1993-05-18 Amorphous Denshi Device Kenkyusho:Kk 分割積層型コイル
JPH10303043A (ja) * 1997-04-25 1998-11-13 Citizen Electron Co Ltd 薄型コイル及びその製造方法
JP2001358419A (ja) * 2000-06-15 2001-12-26 Mitsubishi Electric Corp プリント配線板およびその製造方法、ならびにその配線板を用いた半導体装置
JP2004247663A (ja) * 2003-02-17 2004-09-02 Nec Tokin Corp 複合磁性材シート
JP2007088356A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 層間接続用導電体およびその製造方法
JP2007208026A (ja) * 2006-02-02 2007-08-16 Univ Nihon 複合磁性シートおよびその製造方法
JP2007220747A (ja) * 2006-02-14 2007-08-30 Sumida Corporation 複合磁性シートおよびその製造方法
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2011530172A (ja) * 2008-07-29 2011-12-15 クーパー テクノロジーズ カンパニー 電磁デバイス

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH488259A (de) * 1968-03-14 1970-03-31 Siemens Ag In der Art von gedruckten Schaltungen ausgebildete Spule
US3731005A (en) * 1971-05-18 1973-05-01 Metalized Ceramics Corp Laminated coil
US5574420A (en) * 1994-05-27 1996-11-12 Lucent Technologies Inc. Low profile surface mounted magnetic devices and components therefor
JP3204933B2 (ja) * 1997-08-20 2001-09-04 太陽誘電株式会社 セラミック電子部品とその製造方法
JPH11176680A (ja) * 1997-12-11 1999-07-02 Tokin Corp 磁芯の製造方法
JP2000021664A (ja) * 1998-06-26 2000-01-21 Tokin Corp 圧粉磁心の製造方法
US6094123A (en) * 1998-09-25 2000-07-25 Lucent Technologies Inc. Low profile surface mount chip inductor
US6535098B1 (en) * 2000-03-06 2003-03-18 Chartered Semiconductor Manufacturing Ltd. Integrated helix coil inductor on silicon
JP2002057043A (ja) 2000-08-09 2002-02-22 Toshiba Corp トランスまたはリアクトル
JP2002289419A (ja) 2001-01-19 2002-10-04 Tdk Corp 軟磁性合金厚膜及び磁気素子並びにそれらの製造方法
DE10109586A1 (de) * 2001-02-28 2002-09-05 Philips Corp Intellectual Pty Verfahren und Vorrichtung zur Bildverarbeitung von Röntgenaufnahmen
US20040219328A1 (en) 2001-08-31 2004-11-04 Kazunori Tasaki Laminated soft magnetic member, soft magnetic sheet and production method for laminated soft magnetic member
JP2004143554A (ja) * 2002-10-25 2004-05-20 Jfe Steel Kk 被覆鉄基粉末
US7259648B2 (en) * 2002-12-13 2007-08-21 Matsushita Electric Industrial Co., Ltd. Multiple choke coil and electronic equipment using the same
JP2004274004A (ja) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd 超小型電力変換装置
TWI224798B (en) * 2003-04-04 2004-12-01 Via Tech Inc Transformer formed between two layout layers
JPWO2004109722A1 (ja) * 2003-06-09 2006-09-21 ミネベア株式会社 インバータトランス
TWI226647B (en) * 2003-06-11 2005-01-11 Via Tech Inc Inductor formed between two layout layers
JP2005213621A (ja) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd 軟磁性材料および圧粉磁心
US20060109071A1 (en) * 2004-11-19 2006-05-25 Thongsouk Christopher H Circuit board inductor
US20060272850A1 (en) 2005-06-06 2006-12-07 Matsushita Electric Industrial Co., Ltd. Interlayer connection conductor and manufacturing method thereof
JP2007012863A (ja) * 2005-06-30 2007-01-18 Tdk Corp 複合多孔体の製造方法
KR101247796B1 (ko) * 2005-08-08 2013-03-26 니뽄 가가쿠 야킨 가부시키가이샤 희토류 합금계 무바인더 자석 및 그 제조 방법
CN101300648B (zh) * 2005-11-01 2012-06-20 株式会社东芝 平面磁性元件及使用了该元件的电源ic组件
JP4811464B2 (ja) * 2006-06-20 2011-11-09 株式会社村田製作所 積層コイル部品
JP2008066671A (ja) * 2006-09-11 2008-03-21 Fuji Electric Device Technology Co Ltd 薄型磁気部品及びその製造方法
JP2008066672A (ja) * 2006-09-11 2008-03-21 Fuji Electric Device Technology Co Ltd 薄型磁気部品内蔵基板及びそれを用いたスイッチング電源モジュール
JP4835414B2 (ja) * 2006-12-07 2011-12-14 富士電機株式会社 超小型電力変換装置
JP2008153456A (ja) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd インダクタおよびその製造方法
TWI347616B (en) * 2007-03-22 2011-08-21 Ind Tech Res Inst Inductor devices
JP5054445B2 (ja) 2007-06-26 2012-10-24 スミダコーポレーション株式会社 コイル部品
TWI384739B (zh) * 2008-01-03 2013-02-01 Delta Electronics Inc 組合式電路及電子元件
KR100982639B1 (ko) * 2008-03-11 2010-09-16 (주)창성 연자성 금속분말이 충전된 시트를 이용한 적층형 파워인덕터
KR101162154B1 (ko) * 2008-04-28 2012-07-04 가부시키가이샤 무라타 세이사쿠쇼 적층 코일 부품 및 그 제조 방법
US7948346B2 (en) * 2008-06-30 2011-05-24 Alpha & Omega Semiconductor, Ltd Planar grooved power inductor structure and method
US20110027557A1 (en) * 2009-07-31 2011-02-03 Glen Harold Kirby Solvent based environmental barrier coatings for high temperature ceramic components
JP2011129798A (ja) 2009-12-21 2011-06-30 Mitsumi Electric Co Ltd 高周波用磁性材料、高周波デバイス及び磁性粒子
US8466769B2 (en) * 2010-05-26 2013-06-18 Tyco Electronics Corporation Planar inductor devices
JP5048156B1 (ja) * 2011-08-10 2012-10-17 太陽誘電株式会社 積層インダクタ
US9009951B2 (en) * 2012-04-24 2015-04-21 Cyntec Co., Ltd. Method of fabricating an electromagnetic component
US20140043130A1 (en) * 2012-08-10 2014-02-13 Tyco Electronics Corporation Planar electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157011A (en) * 1980-05-09 1981-12-04 Tdk Corp Open-magnetic-circuit type laminated coil
JPH0446570U (ja) * 1990-08-24 1992-04-21
JPH05121242A (ja) * 1991-10-29 1993-05-18 Amorphous Denshi Device Kenkyusho:Kk 分割積層型コイル
JPH10303043A (ja) * 1997-04-25 1998-11-13 Citizen Electron Co Ltd 薄型コイル及びその製造方法
JP2001358419A (ja) * 2000-06-15 2001-12-26 Mitsubishi Electric Corp プリント配線板およびその製造方法、ならびにその配線板を用いた半導体装置
JP2004247663A (ja) * 2003-02-17 2004-09-02 Nec Tokin Corp 複合磁性材シート
JP2007088356A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 層間接続用導電体およびその製造方法
JP2007208026A (ja) * 2006-02-02 2007-08-16 Univ Nihon 複合磁性シートおよびその製造方法
JP2007220747A (ja) * 2006-02-14 2007-08-30 Sumida Corporation 複合磁性シートおよびその製造方法
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2011530172A (ja) * 2008-07-29 2011-12-15 クーパー テクノロジーズ カンパニー 電磁デバイス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973620A4 (en) * 2013-03-11 2017-03-08 Bourns, Inc. Devices and methods related to laminated polymeric planar magnetics
WO2017134993A1 (ja) * 2016-02-02 2017-08-10 株式会社村田製作所 表面実装型コイル部品及びその製造方法、並びに、これを用いたdc-dcコンバータ
JPWO2017134993A1 (ja) * 2016-02-02 2018-08-16 株式会社村田製作所 表面実装型コイル部品及びその製造方法、並びに、これを用いたdc−dcコンバータ
US11387037B2 (en) 2016-02-02 2022-07-12 Murata Manufacturing Co., Ltd. Surface mount coil component, method of manufacturing the same, and DC-DC converter using the same
WO2023149168A1 (ja) * 2022-02-03 2023-08-10 ローム株式会社 回路部品、電子装置および回路部品の製造方法

Also Published As

Publication number Publication date
US20150235753A1 (en) 2015-08-20
US20190043654A1 (en) 2019-02-07
JP2013243330A (ja) 2013-12-05
CN104603889A (zh) 2015-05-06
CN109545518A (zh) 2019-03-29
CN109545518B (zh) 2021-02-19
JP6062691B2 (ja) 2017-01-18
US10943725B2 (en) 2021-03-09
CN104603889B (zh) 2018-11-30
KR20150053900A (ko) 2015-05-19

Similar Documents

Publication Publication Date Title
JP6062691B2 (ja) シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法
JP5281090B2 (ja) 積層インダクタ、その製造方法、及び積層チョークコイル
KR100385124B1 (ko) 적층 세라믹 전자 부품의 제조 방법 및 적층 세라믹 전자부품
US8779884B2 (en) Multilayered inductor and method of manufacturing the same
KR102052770B1 (ko) 파워인덕터 및 그 제조방법
JP5682548B2 (ja) 積層型インダクタ素子およびその製造方法
TW200941515A (en) Inductor and method for making thereof
CN104078193A (zh) 电感器和该电感器的制造方法
KR20160093425A (ko) 파워 인덕터
CN112652446A (zh) 线圈部件及其制造方法
JP2014236112A (ja) 積層コイル部品の製造方法
JP6456729B2 (ja) インダクタ素子およびその製造方法
JP2003347124A (ja) 磁性素子およびこれを用いた電源モジュール
CN111354562A (zh) 一种贴片电感的制造方法及贴片电感
US11515079B2 (en) Laminated coil
CN104078204B (zh) 电感器和用于制造其的方法
CN113674967A (zh) 电子部件
KR20140121809A (ko) 인덕터 및 그 제조 방법
KR101046879B1 (ko) 초박형 파워 인덕터
JP6668113B2 (ja) インダクタ
CN219393092U (zh) 复合电感器
CN116052985A (zh) 复合电感器及其制备方法
JP2023039711A (ja) インダクタ部品
JP2021068822A (ja) コイル部品及びコイル部品の製造方法
JP2023125912A (ja) 磁性複合体、磁性複合体を備えるコイル部品、及び磁性複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157004081

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422679

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834841

Country of ref document: EP

Kind code of ref document: A1