WO2014027673A1 - Em-shielding film and method for covering electronic component - Google Patents

Em-shielding film and method for covering electronic component Download PDF

Info

Publication number
WO2014027673A1
WO2014027673A1 PCT/JP2013/071923 JP2013071923W WO2014027673A1 WO 2014027673 A1 WO2014027673 A1 WO 2014027673A1 JP 2013071923 W JP2013071923 W JP 2013071923W WO 2014027673 A1 WO2014027673 A1 WO 2014027673A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electromagnetic wave
wave shielding
shielding film
base material
Prior art date
Application number
PCT/JP2013/071923
Other languages
French (fr)
Japanese (ja)
Inventor
太一 八束
白石 史広
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020147035705A priority Critical patent/KR101799631B1/en
Priority to CN201380043449.XA priority patent/CN104584707A/en
Priority to SG11201501162UA priority patent/SG11201501162UA/en
Publication of WO2014027673A1 publication Critical patent/WO2014027673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • H05K9/0031Shield cases mounted on a PCB, e.g. cans or caps or conformal shields combining different shielding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an electromagnetic wave shielding film and a method for coating an electronic component.
  • an electromagnetic wave shielding film for example, an electromagnetic wave shielding film having a base material layer made of an insulating material and a metal layer laminated on one or both surfaces of the base material layer has been developed (for example, see Patent Document 1.)
  • Patent Document 1 when the electromagnetic wave shielding film has a metal layer, there has been a problem that it has not been possible to cope with the reduction in weight and thickness that have been increasingly demanded in recent years.
  • An electromagnetic wave shielding film used for covering convex portions on a substrate Comprising a base material layer and an electromagnetic wave shielding layer laminated on one surface side of the base material layer, The electromagnetic wave shielding film, wherein the base material layer has a storage elastic modulus at 150 ° C. of 2.0E + 05 to 5.0E + 08 Pa.
  • the base material layer is a laminate having a three-layer structure in which the first layer, the second layer, and the third layer are laminated in this order from the other surface side (1 ) Or the electromagnetic wave shielding film according to (2).
  • the thickness T (A) of the first layer, the thickness T (B) of the third layer, and the thickness T (C) of the second layer satisfy the following relational expression (I).
  • the electromagnetic wave shielding film according to any one of (3) to (9) above. 0.05 ⁇ T (C) / (T (A) + T (B)) ⁇ 10 (I)
  • the electromagnetic wave shielding layer includes a reflective layer and an absorption layer, and the layers (1) to (11) are laminated bodies laminated in this order from the one surface side of the base material layer.
  • the electromagnetic wave shielding film according to any one of 1).
  • the shape followability when the electromagnetic wave shielding film is thermocompression bonded to the convex portion on the substrate under conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes is 500 ⁇ m or more and 3,000 ⁇ m or less.
  • An electronic component coating method comprising: a peeling step of peeling the base material layer from the electromagnetic wave shielding layer after the pasting step.
  • the storage elastic modulus at 150 ° C. of the base material layer included in the electromagnetic wave shielding film is 2.0E + 05 to 5.0E + 08 Pa, thereby increasing the degree of freedom in designing the substrate covered with the electromagnetic wave shielding film.
  • favorable shape followability can be exhibited with respect to the electronic component which has a board
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention.
  • FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a third embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 6 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 7 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 8 is a longitudinal sectional view for explaining a method for coating an electronic component using the electromagnetic wave shielding film shown in FIG.
  • FIG. 9 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 10 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 11 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 12 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 13 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 14 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film of the present invention is an electromagnetic wave shielding film used for covering the convex portions on the substrate.
  • the electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer laminated on one surface side of the base material layer.
  • the base material layer has a storage elastic modulus at 150 ° C. of 2.0E + 05 to 5.0E + 08 Pa.
  • the method for coating an electronic component of the present invention includes a pasting step in which the electromagnetic wave shielding film is pasted on the substrate so that the electromagnetic wave blocking layer and the electronic component that is a convex portion adhere to each other, and the pasting step And a peeling step of peeling the base material layer from the electromagnetic wave shielding layer.
  • the electromagnetic wave shielding film and the substrate are pressed close to each other while heating the electromagnetic wave shielding film in the attaching step.
  • the base material layer and the electromagnetic wave shielding layer function as a base material having shape followability with respect to the convex portion. From this, the electromagnetic wave shielding layer can be pushed into the concave portion in a state of following the shape of the convex portion. As a result, the substrate provided with the convex portions can be reliably covered with the electromagnetic wave shielding layer. Therefore, the electromagnetic wave shielding property of the substrate provided with the convex portion is improved by the electromagnetic wave shielding layer.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film of the present invention is an electromagnetic wave shielding film used for covering the protrusions 61 on the substrate 5.
  • the electromagnetic wave shielding film 100 includes a base material layer 1 and an electromagnetic wave shielding layer 3.
  • the electromagnetic wave shielding layer 3 is laminated on the lower surface (one surface) side of the base material layer 1 in contact with the base material layer 1.
  • the base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12. These are laminated in this order from the upper surface (the other surface) side of the base material layer 1.
  • the electronic component 4 is mounted (placed) on the substrate 5, and the mounting of the electronic component 4 forms a convex portion 61 on the substrate 5 and a concave portion 62 between the convex portions 61.
  • the case where the convex portion 61 is covered with the electromagnetic wave shielding film 100 will be described.
  • Examples of the electronic component 4 mounted on the substrate 5 include an LCD driver IC mounted on a flexible circuit board (FPC), an IC + capacitor around the touch panel, or an electronic circuit board (motherboard).
  • the base material layer 1 pushes (embeds) the electromagnetic wave shielding layer 3 when the convex portion 61 is covered by pushing the electromagnetic wave shielding layer 3 of the electromagnetic wave shielding film 100 into the concave portion 62 on the substrate 5 in the attaching step. ), Which functions as a base material for improving the shape followability to the convex portion 61 of the electromagnetic wave shielding layer 3. Moreover, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in a state where the electromagnetic wave shielding layer 3 is pushed into the recess 62 in the peeling step.
  • the storage elastic modulus at 150 ° C. of the base material layer 1 is 2.0E + 05 to 5.0E + 08 Pa.
  • the electromagnetic wave shielding layer 3 can be reliably covered in a state corresponding to the shape of the convex portion 61.
  • the electromagnetic wave shielding (blocking) against the substrate 5 provided with the convex portions 61 by the electromagnetic wave shielding layer 3 is achieved. Will be improved.
  • the height of the convex portion 61 provided on the substrate 5 is 500 ⁇ m or more, and further 1.0 to 3.0 mm. Even if the separation distance (pitch) between the convex portions 61 is as small as 200 ⁇ m or less, and further 100 ⁇ m to 150 ⁇ m, the electromagnetic wave blocking layer 3 is surely formed in the concave portion 62 in a state corresponding to the shape of the convex portion 61. Can be pushed into.
  • the storage elastic modulus at 150 ° C. of the base material layer 1 may be 2.0E + 05 to 5.0E + 08 Pa, but is preferably 1.0E + 06 to 3.0E + 08 Pa, and is preferably 3.0E + 06 to 9.0E + 07 Pa. It is more preferable that Thereby, the said effect can be exhibited more notably.
  • the base material layer 1 preferably has a storage elastic modulus at 25 ° C. of 1.0E + 07 to 1.0E + 10 Pa, and more preferably 5.0E + 08 to 5.0E + 09 Pa.
  • room temperature room temperature
  • the base material layer 1 is not liquid but heated before heating the electromagnetic shielding film 100.
  • the electromagnetic wave shielding film 100 is heated, it can be made semi-solid (gel). Therefore, when the base material layer 1 (electromagnetic wave shielding film 100) is attached to the substrate 5, the base material layer 1 can be attached to the substrate 5 without causing wrinkles or the like.
  • operativity at the time of cutting the electromagnetic wave shielding film 100 to a regular size is also improved.
  • the electromagnetic wave shielding layer 3 can be reliably pushed into the concave portion 62 by the base material layer 1 when being pushed into the concave portion 62 provided on the substrate 5.
  • the base material layer 1 having the characteristics of the storage elastic modulus at least the first layer 11 and the third layer 12 are composed of a thermoplastic resin, and even after the heating of the electromagnetic wave shielding film 100 in the pasting step, The storage elastic modulus at 25 ° C. is preferably maintained within the above range. Thereby, the base material layer 1 can be easily peeled from the electromagnetic wave shielding layer 3 in the peeling step.
  • the storage elastic modulus at 120 ° C. of the base material layer 1 is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer 1 is B [Pa], 0.02 ⁇ A / B ⁇ 1. It is preferable to satisfy the relationship of 00, and it is more preferable to satisfy the relationship of 0.02 ⁇ A / B ⁇ 0.50. It can be said that the base material layer 1 satisfying such a relationship has a small range of change in the storage elastic modulus of the base material layer 1 due to the temperature change during the heating. Therefore, even if the temperature condition at the time of heating is changed, the range of change in the storage elastic modulus of the base material layer 1 due to this temperature change can be kept to the minimum necessary. Therefore, the electromagnetic wave shielding layer 3 can be more reliably pushed into the recess 62 by the base material layer 1.
  • the storage elastic modulus in 25 degreeC, 120 degreeC, and 150 degreeC of each layer is obtained using the dynamic viscoelasticity measuring apparatus (Seiko Instruments company make, "DMS6100"), for example.
  • the storage elastic modulus of each layer to be measured is measured under the conditions of 25 to 200 ° C., tensile mode with a constant load of 49 mN, a heating rate of 5 ° C./min, and a frequency of 1 Hz.
  • the storage elastic modulus at 25 ° C., 120 ° C. and 150 ° C. in the dynamic viscoelasticity measuring device is read. Thereby, a storage elastic modulus can be calculated
  • the base material layer 1 is composed of a first layer 11, a second layer 13, and a third layer 12.
  • the base material layer 1 is laminated in this order from the upper surface (the other surface) side of the base material layer 1.
  • the types, thicknesses, and the like of these layers 11 to 13 are appropriately combined so that the characteristics of the base material layer 1 described above are exhibited.
  • the first layer 11 releases the pressing portion of the vacuum pressurizing laminator or the like.
  • the first layer 11 has a function of applying a pressing force from the pressing portion to the second layer 13 side.
  • the constituent material of the first layer (first release layer) 11 is not particularly limited.
  • a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone. Materials and the like. Among these, it is preferable to use syndiotactic polystyrene.
  • polystyrene having a syndiotactic structure as polystyrene, polystyrene comes to have crystallinity. Due to this, it is possible to make the first layer 11 excellent in releasability from the device, and further in heat resistance and shape followability.
  • the content thereof is not particularly limited, but is preferably 60% by weight or more, more preferably 70% by weight or more and 95% by weight or less. Further, it is preferably 80% by weight or more and 90% by weight or less.
  • content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the releasability of the 1st layer 11 may fall.
  • content of syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followable
  • the first layer 11 may be composed of only syndiotactic polystyrene.
  • the first layer 11 may further contain a styrene elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene.
  • the thickness T (A) of the first layer 11 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and further preferably 20 ⁇ m or more and 50 ⁇ m or less. is there.
  • the thickness of the 1st layer 11 is less than the said lower limit, the 1st layer 11 may fracture
  • the thickness of the 1st layer 11 exceeds the said upper limit, the shape followability of the base material layer 1 may fall, and there exists a possibility that the shape followability of the electromagnetic wave shielding layer 3 may fall.
  • the average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 40 to 1000 [ppm / ° C.], and more preferably 80 to 700 [ppm / ° C.].
  • the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, the shape followability with respect to the convex portion 61 of the electromagnetic wave shielding layer 3 can be improved more reliably.
  • the average linear expansion coefficient of each layer is obtained using, for example, a thermomechanical analyzer (“TMASS6100” manufactured by Seiko Instruments Inc.). Specifically, the storage elastic modulus of each layer to be measured is measured at 25 to 200 ° C. under the condition of a constant load of 49 mN and a heating rate of 5 ° C./min. The average linear expansion coefficient at 25 ° C. to 150 ° C. in the thermomechanical analyzer at this time is read. Thereby, an average linear expansion coefficient can be calculated
  • the surface tension of the first layer 11 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m].
  • the first layer 11 having a surface tension within such a range has excellent releasability.
  • the 1st layer 11 can be peeled from a press part after the indentation process using a vacuum pressurization type laminator.
  • the third layer 12 is formed by pressing the electromagnetic wave shielding layer 3 into the concave portion 62 on the substrate 5 using a vacuum pressurizing laminator or the like in the attaching step, and then removing the base material layer 1 from the electromagnetic wave shielding layer in the peeling step.
  • the base layer 1 has a function of imparting peelability.
  • the third layer 12 has a follow-up function to follow in accordance with the shape of the convex portion 61 on the substrate 5 and applies a pressing force from the pressing portion to the electromagnetic wave shielding layer 3 side. It has both functions.
  • the constituent material of the third layer (second release layer) 12 is not particularly limited.
  • syndiotactic polystyrene polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, resin such as silicone Materials.
  • polystyrene is provided with crystallinity by using polystyrene having a syndiotactic structure as polystyrene. Due to this, it is possible to make the third layer 12 excellent in releasability from the electromagnetic wave shielding layer 3, and further in heat resistance and shape followability.
  • the content of the syndiotactic polystyrene in the third layer 12 is not particularly limited and may be composed only of syndiotactic polystyrene, but is preferably 60% by weight or more, and 70% by weight or more. 95% by weight or less, more preferably 80% by weight or more and 90% by weight or less.
  • content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the mold release property of the 3rd layer 12 may fall.
  • content of syndiotactic polystyrene exceeds the said upper limit there exists a possibility that the shape followable
  • the third layer 12 may further contain a styrenic elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene. Further, the resin constituting the third layer 12 and the first layer 11 may be the same or different.
  • the thickness T (B) of the third layer 12 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and further preferably 20 ⁇ m or more and 50 ⁇ m or less. is there.
  • the thickness of the third layer 12 is less than the lower limit, the heat resistance is lowered, the heat resistance of the base material layer is lowered in the thermocompression bonding step, the deformation occurs, and the electromagnetic wave shielding layer may be deformed. .
  • the thickness of the 3rd layer 12 exceeds the said upper limit, the total thickness of the whole film for electromagnetic wave shields becomes thick, and there exists a possibility that workability
  • the thickness of the third layer 12 and the first layer 11 may be the same or different.
  • the average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 40 to 1000 [ppm / ° C.], and more preferably 80 to 700 [ppm / ° C.].
  • the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, the shape followability to the convex part 61 of the 3rd layer 12, and also the electromagnetic wave shielding layer 3 can be improved more reliably.
  • the surface tension of the third layer 12 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m].
  • the third layer 12 having a surface tension within such a range has an excellent releasability.
  • the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 after the indentation process using a vacuum pressurizing laminator or the like, the base material layer 1 is formed at the interface between the third layer 12 and the electromagnetic wave shielding layer 3. It can be surely peeled off.
  • the second layer 13 When the electromagnetic wave shielding layer 3 is pushed into the concave portion 62 on the substrate 5 using the base material layer 1 as a pushing base material, the second layer 13 is formed into the concave portion in the attaching step. Cushion function for pushing (embedding) 62. Further, the second layer 13 has a function of uniformly imparting this pushing force to the third layer 12 and further to the electromagnetic wave shielding layer 3 via the third layer 12. Thereby, the electromagnetic wave shielding layer 3 can be pushed into the concave portion 62 with excellent sealing properties without generating a void between the electromagnetic wave shielding layer 3 and the concave portion 62 and the convex portion 61.
  • an ⁇ -olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene, or the like is included as a copolymer component.
  • Engineering plastics resins such as ⁇ -olefin copolymer, polyethersulfone, polyphenylene sulfide and the like may be used, and these may be used alone or in combination. Among these, it is preferable to use an ⁇ -olefin copolymer.
  • a copolymer of ⁇ -olefin such as ethylene and (meth) acrylic acid ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And a partial ion cross-linked product thereof.
  • the ⁇ -olefin-based copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the third layer 12. From this, the cushion function for pushing (embedding) the 3rd layer 12 with respect to the recessed part 62 can be reliably provided to the 2nd layer 13 comprised with such a constituent material.
  • the thickness T (C) of the second layer 13 is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, and further preferably 30 ⁇ m or more and 60 ⁇ m or less. is there.
  • the thickness of the 2nd layer 13 is less than the said lower limit, there exists a possibility that the shape followable
  • the thickness of the second layer 13 exceeds the upper limit, in the thermocompression bonding step, resin stain from the second layer 13 increases, and it adheres to the heating platen of the crimping apparatus, thereby improving workability. May decrease.
  • the average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 400 or more [ppm / ° C.], more preferably 800 or more [ppm / ° C.].
  • the second layer 13 is more elastic than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Has the property easily. Therefore, the shape followability of the second layer 13 and the electromagnetic wave shielding layer 3 with respect to the unevenness 6 can be improved more reliably.
  • the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 5.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
  • the thickness T (A) of the first layer 11, the thickness T (B) of the third layer 12, and the thickness T (C) of the second layer 13 satisfy the following relational expression, for example.
  • 0.05 ⁇ T (C) / (T (A) + T (B)) ⁇ 10
  • the following relational expression is satisfied: 0.14 ⁇ T (C) / (T (A) + T (B)) ⁇ 4
  • the following relational expression is satisfied: 0.3 ⁇ T (C) / (T (A) + T (B)) ⁇ 1.5.
  • the shape follows. More improved.
  • the total thickness T (F) of the base material layer 1 is not particularly limited, but is preferably 20 ⁇ m or more and 300 ⁇ m or less, more preferably 40 ⁇ m or more and 220 ⁇ m or less, and further preferably 70 ⁇ m or more and 160 ⁇ m or less. It is.
  • the 1st layer 11 may fracture
  • the whole thickness of the base material layer 1 exceeds the said upper limit, there exists a possibility that the shape followability of the base material layer 1 may fall and the shape followability of the electromagnetic wave shielding layer 3 may fall.
  • Electromagnetic wave blocking layer 3 Next, the electromagnetic wave blocking layer (blocking layer) 3 will be described.
  • the electromagnetic wave shielding layer 3 includes an electronic component 4 (convex portion 61) provided on the substrate 5, and other electronic components located on the opposite side of the substrate 5 (electronic component 4) via the electromagnetic wave shielding layer 3. And has a function of shielding (shielding) electromagnetic waves generated from at least one of the above.
  • the electromagnetic wave shielding layer 3 is not particularly limited, and may be any type of electromagnetic wave shielding material.
  • a reflection layer that shields (shields) the electromagnetic wave incident on the electromagnetic wave shielding layer 3 by reflecting the electromagnetic wave
  • an absorption layer that blocks (shields) the electromagnetic wave incident on the electromagnetic wave blocking layer 3 by absorbing the electromagnetic wave.
  • the reflection layer blocks the electromagnetic wave incident on the reflection layer by reflecting it.
  • the reflective layer examples include a conductive adhesive layer, a metal thin film layer, a metal mesh, a layer subjected to surface treatment of a conductive material such as ITO, and the like. These may be used alone or in combination. Among these, it is preferable to use a conductive adhesive layer.
  • the conductive adhesive layer is preferably used as a reflective layer because it exhibits excellent electromagnetic shielding properties even when its film thickness (thickness) is set to be relatively thin.
  • the conductive adhesive layer includes metal powder and a binder resin.
  • the metal powder include gold, silver, copper, silver-coated copper, and nickel. Among these, it is preferable to use silver because it has excellent electromagnetic shielding properties.
  • the content ratio of the metal powder and the binder resin in the conductive adhesive layer is not particularly limited, but is preferably 40:60 to 90:10, and preferably 50:50 to 80:20 by weight. More preferably, it is preferably 55:45 to 70:30.
  • the content ratio of the metal powder and the binder resin is less than the lower limit, it may be difficult to develop conductivity.
  • the content ratio of metal powder and binder resin exceeds the said upper limit, there exists a possibility that flexibility and adhesiveness with an electronic device component may fall.
  • the conductive adhesive layer may further contain a flame retardant, a leveling agent, a viscosity modifier and the like in addition to the metal powder and the binder resin.
  • the thickness T (E1) of the reflective layer is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 8 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the reflective layer is less than the lower limit value, depending on the constituent material of the reflective layer, the goblet folding resistance may be reduced, and the mounted component may be broken at the end.
  • the thickness of the reflective layer exceeds the upper limit, the shape following property may be lowered depending on the constituent material of the reflective layer.
  • the thickness T (E1) of the reflective layer is set within such a range, excellent electromagnetic shielding properties can be exhibited. Therefore, it is possible to reduce the thickness of the reflective layer T (E1), and thus to reduce the weight of the substrate 5 on which the electronic component 4 covered with the electromagnetic wave shielding layer (reflective layer) 3 is mounted. .
  • the absorbing layer absorbs the electromagnetic wave incident on the absorbing layer and converts the electromagnetic wave energy into thermal energy, thereby blocking the electromagnetic wave.
  • a conductive absorption layer composed mainly of a conductive absorption material such as metal powder and a conductive polymer material, and a dielectric absorption material such as a carbon-based material and a conductive polymer material as a main material.
  • a dielectric absorption layer a magnetic absorption layer composed mainly of a magnetic absorption material such as a soft magnetic metal, and these may be used alone or in combination.
  • the conductive absorption layer absorbs electromagnetic waves by converting electromagnetic energy into heat energy by a current flowing inside the material when an electric field is applied.
  • a dielectric absorption layer absorbs electromagnetic waves by converting the energy of electromagnetic waves into thermal energy by dielectric loss.
  • the magnetic absorption layer absorbs electromagnetic waves by converting and consuming radio wave energy into heat due to magnetic losses such as overcurrent loss, hysteresis loss, and magnetic resonance.
  • the film thickness is set to be relatively thin, the dielectric absorption layer and the conductive absorption layer exhibit particularly excellent electromagnetic wave shielding properties. Therefore, it is preferably used as an absorption layer.
  • the particle size of the material contained in the layer is small and the amount of addition can be reduced, the film thickness can be set relatively easily and the weight can be reduced.
  • examples of the conductive absorbing material include conductive polymers, metal oxides such as ATO, and conductive ceramics.
  • Examples of the conductive polymer include polyacetylene, polypyrrole, PEDOT (poly-ethylenedithiothiophene), PEDOT / PSS, polythiophene, polyaniline, poly (p-phenylene), polyfluorene, polycarbazole, polysilane, and derivatives thereof. 1 type or 2 types or more of these can be used in combination.
  • Examples of the dielectric absorbing material include carbon-based materials and conductive polymers.
  • Examples of carbon-based materials include carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, carbon Examples thereof include carbon such as nanocoil, carbon nanohorn, and carbon nanowall, and one or more of these can be used in combination.
  • examples of the magnetic absorption material include iron, silicon steel, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), silicon copper (Fe -Cu-Si alloy), Fe-Si alloy, soft magnetic metal such as Fe-Si-B (-Cu-Nb) alloy, ferrite and the like.
  • the thickness T (E2) of the absorbing layer is not particularly limited, but is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 80 ⁇ m or less, and further preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the absorbent layer is less than the lower limit, depending on the constituent material of the absorbent layer, the board-mounted component may be broken at the end.
  • the thickness of an absorption layer exceeds the said upper limit, there exists a possibility that shape followability may fall depending on the constituent material etc. of an absorption layer.
  • the thickness T (E2) of the absorption layer is set within such a range, excellent electromagnetic shielding properties can be exhibited. Therefore, it is possible to reduce the thickness T (E2) of the absorption layer and to reduce the weight of the substrate 5 on which the electronic component 4 covered with the electromagnetic wave blocking layer (absorption layer) 3 is mounted. .
  • the electromagnetic wave shielding layer 3 as described above preferably has an electromagnetic wave shielding property for shielding (shielding) an electromagnetic wave of 5 dB or more, more preferably 30 dB or more, and further preferably 50 dB or more.
  • the electromagnetic wave shielding layer 3 having such an electromagnetic wave shielding property has an excellent electromagnetic wave shielding property, and can more reliably block electromagnetic waves.
  • the electromagnetic wave shielding layer 3 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa.
  • the electromagnetic wave shielding layer 3 is formed in the recess 62 on the substrate 5 by the pressing force from the base material layer 1 after the heating of the electromagnetic wave shielding film 100 in the attaching step.
  • the electromagnetic wave shielding layer 3 can be deformed corresponding to the shape of the convex portion 61 according to the pressing force from the base material layer 1 when the convex portion 61 is covered by pushing. That is, the shape followability with respect to the convex portion 61 of the electromagnetic wave shielding layer 3 can be improved.
  • the electromagnetic wave shielding layer 3 may be either a reflective layer or an absorbing layer, but is preferably an absorbing layer when they have substantially the same electromagnetic shielding properties.
  • the electromagnetic wave incident on the absorption layer is absorbed, and the electromagnetic wave is blocked by converting the electromagnetic wave energy into thermal energy. Therefore, the electromagnetic wave disappears due to this absorption, so that it is ensured that the reflected electromagnetic wave, such as the reflection layer, has an adverse effect such as malfunction on other members not covered with the electromagnetic wave blocking layer 3. Can be prevented.
  • the electromagnetic wave shielding film 100 having the above configuration is heated on the concave portion 62 and the convex portion 61 formed by mounting the electronic component 4 on the substrate 5 under conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes.
  • the shape following property of the electromagnetic wave shielding film 100 is preferably 500 ⁇ m or more, more preferably 800 ⁇ m or more, and still more preferably 1000 ⁇ m or more.
  • the difference between the top surface of the convex portion 61 and the bottom surface of the concave portion 62, that is, the convex portion 61 having a height of 500 ⁇ m or more can be covered with the electromagnetic wave shielding film 100, and the convex portion 61 having a height of 800 ⁇ m or more More preferably, the convex portion 61 having a height of 1000 ⁇ m or more can be covered.
  • the electromagnetic wave shielding film 100 that can cover the convex portion 61 (having a large step) having a high height has excellent shape followability.
  • the convex portion 61 can be covered with the electromagnetic wave shielding layer 3 with an excellent filling rate with respect to the concave portion 62.
  • the shape following property can be obtained as follows. That is, first, a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height of 2 mm is formed by forming grooves having a width of 0.2 mm and predetermined steps in a grid pattern at intervals of 0.2 mm. Get the substrate. Then, the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board under a condition of 150 ° C. ⁇ 2 MPa ⁇ 5 minutes using a vacuum pressurizing laminator, and attached to the printed wiring board. After pasting, the base material layer is peeled from the electromagnetic wave shielding film. Next, it is determined whether or not there is a gap between the blocking layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space
  • the electromagnetic wave shielding film is attached to the substrate so that the electromagnetic wave shielding layer and the electronic component are adhered to each other, and the base material layer is attached after the attaching step. And a peeling step for peeling from the electromagnetic wave shielding layer.
  • FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
  • the affixing step is a step of affixing the electromagnetic wave shielding film 100 to the substrate 5 so as to cover the convex portions 61 provided on the substrate 5 as shown in FIG.
  • the method of attaching is not particularly limited, and examples thereof include a vacuum / pressure forming method.
  • the vacuum / pressure forming method is a method of covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 using, for example, a vacuum pressurizing laminator.
  • a vacuum pressurizing laminator First, in the closed space that can be set to a vacuum atmosphere, the surface of the substrate 5 on which the convex portion 61 is formed and the surface of the electromagnetic wave shielding film 100 on the electromagnetic wave shielding layer 3 side face each other. And the electromagnetic wave shielding film 100 are set in a superposed state. Thereafter, under heating, the closed space is brought into a vacuum atmosphere so that the electromagnetic wave shielding film 100 is made to approach the substrate 5 uniformly from the electromagnetic wave shielding film 100 side. Thereafter, they are pressurized. Thereby, the vacuum / pressure forming method is carried out.
  • the storage elastic modulus at 150 ° C. of the base material layer 1 is 2.0E + 05 to 2.0E + 08 Pa. Therefore, the base material layer 1 exhibits excellent shape followability with respect to the protrusion 61 when heated by the vacuum / pressure forming method.
  • the base layer 1 corresponds to the shape of the convex portion 61 by uniformly pressing the electromagnetic wave shielding film 100 from the electromagnetic wave shielding film 100 side and making the closed space under a vacuum atmosphere. And deform. Further, in conjunction with this deformation, the electromagnetic wave shielding layer 3 located closer to the substrate 5 than the base material layer 1 is deformed corresponding to the shape of the convex portion 61. Accordingly, the convex portion 61 is covered with the electromagnetic wave blocking layer 3 in a state where the electromagnetic wave blocking layer 3 is pushed into the concave portion 62 corresponding to the shape of the convex portion 61.
  • the temperature for pasting is not particularly limited, but is preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 180 ° C. or lower.
  • the pressure to be applied is not particularly limited, but is preferably 0.5 MPa or more and 5.0 MPa or less, more preferably 1.0 MPa or more and 3.0 MPa or less.
  • the sticking time is not particularly limited, but is preferably 1 minute or more and 30 minutes or less, more preferably 5 minutes or more and 15 minutes or less.
  • the electromagnetic wave shielding layer 3 can be reliably covered with the electromagnetic wave shielding layer 3 while the electromagnetic wave shielding layer 3 is pushed into the concave part 62 on the substrate 5. .
  • the said peeling process is a process of peeling the base material layer 1 from the film 100 for electromagnetic wave shields after the said sticking process, for example, as shown in FIG.2 (b).
  • peeling occurs at the interface between the base material layer 1 and the electromagnetic wave shielding layer 3 in the electromagnetic wave shielding film 100, and as a result, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3. .
  • the convex portion 61 is covered with the electromagnetic wave shielding layer 3 in a state where the base material layer 1 is peeled from the electromagnetic wave shielding layer 3.
  • the convex part 61 corresponds to the shape of the electromagnetic wave shielding film 100 to be attached. Can be covered with the electromagnetic wave shielding layer 3. Therefore, by appropriately setting the shape of the electromagnetic wave shielding film 100 corresponding to the shape of the convex portion 61 to be covered, the convex portion 61 to be covered can be selectively covered with the electromagnetic wave shielding layer 3. That is, the electromagnetic wave shielding layer 3 can selectively shield the convex portion 61 from electromagnetic waves.
  • the method for peeling the base material layer 1 is not particularly limited, but the base material layer 1 is stretched when the electromagnetic wave shielding film 100 after the completion of the vacuum / pressure forming method (the pasting step) is at a high temperature. As a result, a resin residue or the like is generated, and the peeling workability may be lowered.
  • the base material layer 1 is gripped. Next, the base material layer 1 is peeled off from the electromagnetic wave shielding layer 3 with the gripped end as a starting point. Next, the base material layer 1 is sequentially peeled off from the electromagnetic wave shielding layer 3 from this end portion to the central portion of the base material layer 1 and further to the other end portion of the base material layer 1. By doing so, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3.
  • the peeling temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
  • the convex part 61 can be coat
  • the base material layer 1 first layer 11, second layer 13, third layer 12
  • electromagnetic wave shielding layer 3 are laminated in this order.
  • the case where the convex portion 61 on the substrate 5 is covered with the electromagnetic wave shielding layer 3 using the electromagnetic wave shielding film 100 has been described.
  • the layer configuration of the electromagnetic wave shielding film 100 is not limited to such a case.
  • the electromagnetic wave shielding film 100 has a layer configuration as shown in the second to twelfth embodiments as described below. Also good.
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
  • 3 is the same as the electromagnetic wave shielding film 100 shown in FIG. 1 except that the formation of the first layer 11 included in the base material layer 1 is omitted.
  • the electromagnetic wave shielding film 100 is a laminate in which the base material layer 1 composed of the second layer 13 and the third layer 12 and the electromagnetic wave shielding layer 3 are laminated in this order. Yes.
  • the pressing portion of the vacuum pressurizing laminator or the like used when the electromagnetic wave shielding layer 3 is pushed into the concave portion 62 on the substrate 5 in the attaching step is separated from the second layer 13. It has moldability, whereby the formation of the first layer 11 is omitted.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the pressing portion can be reliably peeled from the second layer 13 after the pressing process using a vacuum pressurizing laminator or the like.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • FIG. 4 is a longitudinal sectional view showing a third embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 4 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 is a laminated body in which the base material layer 1 including the first layer 11 and the second layer 13 and the electromagnetic wave shielding layer 3 are laminated in this order. ing.
  • the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after the pressing process using a vacuum pressurizing laminator or the like.
  • Examples of such an electromagnetic wave shielding layer 3 having surface tension include a resin in which a conductive polymer or a carbon-based material is dispersed in a thermosetting resin such as polyurethane.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • FIG. 5 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding layer 3 is not a single layer structure but a laminated body composed of an absorption layer 31 and a reflective layer 32, which are the lower surface (one surface) of the base material layer 1. It is the same as that of the electromagnetic wave shielding film 100 shown in FIG. 1 except that the layers are laminated in that order from the side and the absorbing layer 31 is in contact with the base material layer 1 (third layer 12).
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, and the blocking layer including the absorption layer 31 and the reflection layer 32.
  • 3 is a laminated body laminated in this order.
  • the absorbing layer 31 is formed on the reflective layer 32 with respect to the convex portion 61.
  • the convex portion 61 is covered with the electromagnetic wave shielding layer 3 in a state where the reflective layer 32 is disposed on the side in contact with the convex portion 61.
  • the shielding layer 3 is composed of a laminated body including the absorption layer 31 and the reflective layer 32, the electromagnetic wave shielding property by the electromagnetic wave shielding layer 3 can be further improved.
  • the absorption layer 31 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa. .
  • the reflective elastic layer 32 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa.
  • the electromagnetic wave shielding layer 3 including the reflective layer 32 can be more reliably deformed corresponding to the shape of the convex portion 61.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • FIG. 6 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 6 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding layer 3 is not a single layer structure but a laminated body composed of a reflective layer 32 and an absorbing layer 31, and these are the lower surface (one surface) of the base material layer 1. It is the same as that of the electromagnetic wave shielding film 100 shown in FIG. 1 except that the layers are laminated in that order from the side and the reflective layer 32 is in contact with the base material layer 1 (third layer 12).
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, and the blocking layer including the reflection layer 32 and the absorption layer 31.
  • 3 is a laminated body laminated in this order.
  • the convex portion 61 on the substrate 5 With the electromagnetic wave shielding film 100 including the blocking layer 3, which is configured by such a laminate, the reflective layer 32 of the absorbing layer 31 is made to the convex portion 61.
  • the convex portion 61 is covered with the electromagnetic wave blocking layer 3 in a state where the absorption layer 31 is disposed on the side in contact with the convex portion 61.
  • the shielding layer 3 is composed of a laminate composed of the reflective layer 32 and the absorbing layer 31, the electromagnetic wave shielding property by the electromagnetic wave shielding layer 3 can be further improved.
  • the reflective layer 32 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa.
  • the storage layer 31 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa.
  • the reflecting layer 32 and the reflecting layer 32 and the absorbing layer 31 are set according to the pressing force from the base material layer 1.
  • the blocking layer 3 including the absorption layer 31 can be more reliably deformed corresponding to the shape of the convex portion 61.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • the electromagnetic wave shielding film 100 of the fourth embodiment and the electromagnetic wave shielding film 100 of the fifth embodiment are different except that the order of lamination of the reflective layer 32 and the absorbing layer 31 of the blocking layer 3 is different. Are identical to each other.
  • the absorption layer 31 absorbs the electromagnetic wave incident on the absorption layer 31 and blocks the electromagnetic wave, so that the electromagnetic wave disappears due to this absorption. From this, the electromagnetic wave shielding film 100 of the fourth embodiment reliably prevents the electromagnetic wave reflected by the reflective layer 32 from adversely affecting other members not covered by the blocking layer 3.
  • the absorbing layer 31 is the electromagnetic wave shielding film 100 of the fourth embodiment positioned on the opposite side of the reflective layer 32 with respect to the convex portion 61. Is preferred.
  • the blocking layer 3 includes one reflection layer 32 and one absorption layer 31 each. It was set as the laminated body of.
  • the blocking layer 3 is not limited to such a two-layer structure, and is formed of a three-layer structure including at least one of the reflective layer 32 and the absorption layer 31. It may be.
  • FIG. 7 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 7 is the same as the electromagnetic wave shielding film 100 shown in FIG. 1 except that the insulating layer 2 is formed between the base material layer 1 and the electromagnetic wave shielding layer 3. .
  • the electromagnetic wave shielding film 100 includes the base material layer 1, the insulating layer 2, and the electromagnetic wave shielding layer 3.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the lower surface (one surface) side of the base material layer 1, and the insulating layer 2 is in contact with the base material layer 1.
  • the storage elastic modulus of the base material layer 1 at 150 ° C. may be 2.0E + 05 to 2.0E + 08 Pa, but is preferably 1.0E + 06 to 1.0E + 08 Pa, and preferably 3.0E + 06 to 6.0E + 07 Pa. It is more preferable that Thereby, the said effect can be exhibited more notably.
  • the average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.].
  • the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated.
  • the shape followability with respect to the convex part 61 of the layer 3 and the insulating layer 2 can be improved more reliably.
  • the average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], and more preferably 100 to 700 [ppm / ° C.].
  • the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. It is possible to more reliably improve the shape followability of the layer 12 and the electromagnetic wave shielding layer 3 and the convex portion 61 of the insulating layer 2.
  • the average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 500 or more [ppm / ° C.], more preferably 1000 or more [ppm / ° C.].
  • the second layer 13 is more elastic than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Has the property easily. Therefore, the shape followability of the second layer 13 and further the electromagnetic wave shielding layer 3 and the convex portion 61 of the insulating layer 2 can be improved more reliably.
  • the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 2.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
  • the insulating layer 2 is provided in contact with the base material layer 1 (third layer 12).
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the base material layer 1 side.
  • the electromagnetic wave shielding layer 3 comes into contact with the substrate 5 and the electronic component 4 by covering the convex portion 61 on the substrate 5 using the electromagnetic wave shielding film 100 including the insulating layer 2 and the electromagnetic wave shielding layer 3 laminated in this manner.
  • the electronic component 4 is coated in the order of the electromagnetic wave shielding layer 3 and the insulating layer 2 from the substrate 5 side.
  • the insulating layer 2 covers the substrate 5 and the electronic component 4 via the electromagnetic wave shielding layer 3.
  • substrate 5, the electronic component 4, and the electromagnetic wave shielding layer 3 are insulated from the other members (electronic components etc.) located in the opposite side to the board
  • the insulating layer 2 examples include a thermosetting insulating resin or a thermoplastic insulating resin (insulating film). Among these, it is preferable to use an insulating resin having thermoplasticity.
  • An insulating resin having thermoplasticity is a film having excellent flexibility. Therefore, in the pasting step, when the base layer 1 is used as a base for pressing into the recess 62 and the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the recess 62 on the substrate 5, the insulating layer 2 can be made to follow reliably corresponding to the shape of the convex part 61.
  • an insulating resin having thermoplasticity is particularly useful when repairing a substrate because it can be re-peeled from the substrate to be bonded when heated to its softening point temperature.
  • thermoplastic polyester examples include thermoplastic polyester, ⁇ -olefin, vinyl acetate, polyvinyl acetal, ethylene vinyl acetate, vinyl chloride, acrylic, polyamide, and cellulose.
  • thermoplastic polyesters and ⁇ -olefins because they have excellent adhesion to the substrate, flexibility and chemical resistance.
  • the insulating resin having thermoplasticity is a phenolic resin, a silicone resin, a urea resin, an acrylic resin, a polyester resin, a polyamide resin, as long as the performance such as heat resistance and flex resistance is not impaired.
  • a polyimide resin or the like can be contained.
  • a silane coupling agent, an antioxidant, a pigment, a dye, as long as the adhesiveness and solder reflow resistance are not reduced. You may add tackifying resin, a plasticizer, a ultraviolet absorber, an antifoamer, a leveling regulator, a filler, a flame retardant, etc.
  • the thickness T (D) of the insulating layer 2 is not particularly limited, but is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 4 ⁇ m or more and 30 ⁇ m or less, and further preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the insulating layer 2 is less than the lower limit value, the goblet folding resistance is lowered, and cracks may occur in the bent portion after thermocompression bonding to the convex portion 61.
  • film strength falls and it is difficult to play the role as an insulating support body of a conductive adhesive layer.
  • shape followability may be reduced.
  • the insulating layer 2 can be made more excellent in flexibility.
  • the insulating layer 2 is Further, it can be made to follow more reliably corresponding to the shape of the convex portion 61.
  • the average linear expansion coefficient at 25 to 150 ° C. of the insulating layer 2 is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.].
  • the insulating layer 2 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, it is possible to more reliably improve the shape followability of the insulating layer 2 and further the convex portion 61 of the electromagnetic wave shielding layer 3.
  • the insulating layer 2 may be a laminated body of two or more layers in which different ones of the above-described insulating films are laminated in addition to the one constituted by one layer.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • FIG. 9 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 9 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 9 is the same as the electromagnetic wave shielding film 100 shown in FIG. 3 except that an insulating layer is formed between the base material layer 1 and the electromagnetic wave shielding layer 3.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the second embodiment, and is similar to the electromagnetic wave shielding film 100 of the second embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
  • FIG. 10 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 10 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 10 is the same as the electromagnetic wave shielding film 100 shown in FIG. 4 except that the insulating layer 2 is formed between the base material layer 1 and the electromagnetic wave shielding layer 3. .
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
  • FIG. 11 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 11 is referred to as “upper” and the lower side is referred to as “lower”.
  • the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. This is the same as the electromagnetic wave shielding film 100 shown in FIG.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order.
  • the laminated body is made.
  • the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after the pressing process using a vacuum pressurizing laminator or the like.
  • Examples of such an electromagnetic wave shielding layer 3 having surface tension include a resin in which a carbon-based material or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and is similar to the electromagnetic wave shielding film 100 of the sixth embodiment. The effect is obtained.
  • FIG. 12 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 12 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 12 will be described, but differences from the electromagnetic wave shielding film 100 shown in FIG. 7 will be mainly described, and description of similar matters will be omitted.
  • the electromagnetic wave shielding film 100 shown in FIG. 12 is the same as the electromagnetic wave shielding film 100 shown in FIG. 7 except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3.
  • the laminated body is laminated in this order.
  • the insulating layer 2 comes into contact with the substrate 5 and the electronic component 4 by covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 including the electromagnetic wave shielding layer 3 and the insulating layer 2 laminated in this manner.
  • the electronic component 4 is coated in the order of the insulating layer 2 and the electromagnetic wave shielding layer 3 from the substrate 5 side.
  • the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them.
  • substrate 5 and the electronic component 4 are insulated from the electromagnetic wave shielding layer 3 and other members (electronic components etc.) located on the opposite side to the board
  • the electromagnetic wave shielding film 100 having such a configuration for example, even if the electromagnetic wave shielding layer 3 includes a conductive material, adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and is similar to the electromagnetic wave shielding film 100 of the sixth embodiment. The effect is obtained.
  • FIG. 13 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 13 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 13 is the same as the electromagnetic wave shielding film 100 shown in FIG. 5 except that the insulating layer 2 is formed between the electromagnetic wave shielding layer 3 and the base material layer 1. .
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, the absorption layer 31, and the reflection layer.
  • the electromagnetic wave shielding layer 3 made of 32 forms a laminated body laminated in this order. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the fourth embodiment, and is the same as the electromagnetic wave shielding film 100 of the fourth embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
  • FIG. 14 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 14 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 14 is the same as the electromagnetic wave shielding film 100 shown in FIG. 6 except that the insulating layer 2 is formed between the electromagnetic wave shielding layer 3 and the base material layer 1. .
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, the reflection layer 32, and the absorption layer.
  • the electromagnetic wave shielding layer 3 composed of 31 forms a laminated body laminated in this order. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
  • the electromagnetic wave shielding film 100 of the eleventh embodiment and the electromagnetic wave shielding film 100 of the twelfth embodiment are different from each other in the order of lamination of the reflective layer 32 and the absorbing layer 31 of the electromagnetic wave shielding layer 3. Are identical to each other.
  • the absorption layer 31 absorbs the electromagnetic wave incident on the absorption layer 31 and blocks the electromagnetic wave, so that the electromagnetic wave disappears due to this absorption.
  • the electromagnetic wave shielding film 100 of the eleventh embodiment reliably prevents the electromagnetic wave reflected by the reflective layer 32 from adversely affecting other members that are not covered by the electromagnetic wave shielding layer 3. Has the advantage of being able to.
  • the absorbing layer 31 is the electromagnetic wave shielding film 100 of the eleventh embodiment located on the opposite side of the reflective layer 32 with respect to the convex portion 61. Is preferred.
  • the electromagnetic wave shielding layer 3 includes two layers each of the reflective layer 32 and the absorbing layer 31. It was set as the laminated body of a structure.
  • the electromagnetic wave shielding layer 3 is not limited to such a two-layer laminate, and is constituted by a three-layer laminate including at least one of the reflective layer 32 and the absorption layer 31. May be.
  • the said embodiment demonstrated the case where the one insulating layer 2 was laminated
  • the insulating layer 2 may be laminated as a separate layer on each of the two layers.
  • any configuration of the first to twelfth embodiments can be combined.
  • the electromagnetic wave shielding film of the present invention may be added with an arbitrary layer that can exhibit the same function.
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • the conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
  • the total thickness of the electromagnetic wave shielding film of Example 1A is 140 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the electromagnetic wave shielding layer.
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the average linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1A were measured, they were 420, 2400 and 420 ppm / ° C., respectively.
  • the obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2. Affixed by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • a personal computer memory substrate trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.
  • Example 2A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 80 ⁇ m.
  • Example 3A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 10 ⁇ m.
  • Example 4A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 90 ⁇ m.
  • Example 5A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 20 ⁇ m.
  • Example 6A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 10 ⁇ m.
  • Example 7A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 90 ⁇ m.
  • Example 8A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the electromagnetic wave shielding layer was 5 ⁇ m.
  • Example 9A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the electromagnetic wave shielding layer was 150 ⁇ m.
  • Example 10A As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1A, except that a blended product having a weight percent concentration of 60 wt% and 40 wt% was prepared.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 11A As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1A except that a blended product was prepared at a weight percent concentration of 80 wt% and 20 wt%, respectively.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 12A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that polymethylpentene (trade name: TPX MX004, manufactured by Mitsui Chemicals, Inc.) was prepared as the first layer.
  • polymethylpentene trade name: TPX MX004, manufactured by Mitsui Chemicals, Inc.
  • Example 13A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5505S) was prepared as the first layer.
  • polybutylene terephthalate manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5505S
  • Example 14A As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight.
  • a film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1A, except that a blended product of 70 wt% and 30 wt% was prepared.
  • Example 15A As the second layer, ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) are in weight percent.
  • An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that a blended product was prepared at a concentration of 70 wt% and 30 wt%, respectively.
  • Example 16A As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106), polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) and polypropylene (Sumitomo).
  • Example 17A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 5 ⁇ m.
  • Example 18A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 120 ⁇ m.
  • Example 19A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 3 ⁇ m.
  • Example 20A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 80 ⁇ m and the thickness of the first layer was 10 ⁇ m.
  • Example 21A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 5 ⁇ m, the thickness of the second layer was 80 ⁇ m, and the thickness of the third layer was 5 ⁇ m.
  • Example 22A An electromagnetic wave shielding film and an electronic component were formed in the same manner as in Example 1A, except that the formation of the first layer was omitted and a conductive polymer polyaniline dispersion (PANI-PD manufactured by Regulus Co., Ltd.) was used for the electromagnetic wave shielding layer. Manufactured.
  • Example 23A An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A except that the formation of the third layer was omitted.
  • Comparative Example 1A As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and the thickness of the base material layer was changed to 30 ⁇ m. Parts and manufactured.
  • Comparative Example 2A As a base material layer, only polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and the thickness of the base material layer was set to 100 ⁇ m. Parts and manufactured.
  • a groove having a width of 0.2 mm and a predetermined step (depth) is formed in a grid pattern at intervals of 0.2 mm on a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height of 3 mm.
  • the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board at 150 ° C. ⁇ 1 MPa ⁇ 10 minutes using a vacuum / pressure forming apparatus, and is attached to the printed wiring board.
  • the base material layer was peeled off from the electromagnetic wave shielding layer.
  • step difference is less than 500 micrometers.
  • The level difference is 500 ⁇ m or more and less than 1000 ⁇ m.
  • Double-circle A level
  • the releasability can be determined as follows.
  • An electromagnetic wave shielding film was thermocompression bonded to the same printed wiring board as in the shape followability evaluation method. Thereafter, only the base material layer was evaluated by ease of peeling when manually peeling from the electromagnetic wave shielding layer.
  • symbol is as follows. X was rejected, and the others were determined to be acceptable.
  • the goblet folding resistance can be determined as follows.
  • the electromagnetic shielding film is bonded to a flexible substrate such as a flexible circuit board.
  • the bonded material was folded in a goblet and the bent portion was observed with a microscope. However, the folding is performed by hand, and the folding is performed only once.
  • Second layer spotting ability The second layer smearing property of the base material layer can be determined as follows.
  • the base material layer was hot pressed at 150 ° C. ⁇ 2.0 MPa ⁇ 5 minutes.
  • the maximum distance from the end of the second layer of the constituent material of the second layer that was smeared out was measured with calipers or the like.
  • symbol is as follows. X was rejected, and the others were determined to be acceptable. X: The maximum distance is 1.0 mm or more. ⁇ : The maximum distance is 0.5 mm or more and less than 1.0 mm. A: The maximum distance is less than 0.5 mm.
  • the heat resistance of the base material layer can be determined as follows.
  • the electromagnetic wave shielding film is pressure-bonded to a printed wiring board at 150 ° C. ⁇ 2 MPa ⁇ 5 minutes using a vacuum / pressure forming apparatus, and is attached to the printed wiring board. After pasting, the base material layer was peeled off from the electromagnetic wave shielding layer. Next, it is visually observed whether the electromagnetic wave shielding layer attached to the printed wiring board has wrinkles.
  • the electromagnetic wave shielding films of Examples 1A to 23A showed good shape following properties, and further had release properties, gouge folding resistance, second layer spotting property of the base material layer, Excellent balance in terms of electromagnetic shielding shielding and punching workability.
  • the electromagnetic wave shielding films of Comparative Examples 1A and 2A resulted in insufficient shape followability as compared with the electromagnetic wave shielding films of Examples 1A to 23A.
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • the conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
  • the total thickness of the electromagnetic wave shielding film of Example 1B is 140 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the electromagnetic wave shielding layer.
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the average linear expansion coefficients of the first layer, the second layer, and the third layer in the electromagnetic wave shielding film of Example 1B were measured, they were 420, 2400, and 420 ppm / ° C., respectively.
  • the obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2.
  • the film was pasted by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • Example 2B As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight.
  • a film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B, except that a blended product of 70 wt% and 30 wt% was prepared.
  • Example 3B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that the thickness of the first layer was 10 ⁇ m.
  • Example 4B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that the thickness of the second layer was 90 ⁇ m.
  • Example 5B As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1B, except that a blended product was blended at a weight percent concentration of 60 wt% and 40 wt%, respectively.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 6B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the first layer was 80 ⁇ m.
  • Example 7B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the first layer was 100 ⁇ m.
  • Example 8B As a first layer, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) at a weight percent concentration of 60 wt. %, A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B except that a blended product blended at 40 wt% was prepared.
  • Example 9B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) was prepared as the second layer.
  • polypropylene manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2
  • Example 10B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020) was prepared as the first layer.
  • polybutylene terephthalate manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020
  • Example 11B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that 6-nylon (manufactured by Ube Industries, Ltd., trade name: UBE nylon 1022B) was prepared as the first layer.
  • 6-nylon manufactured by Ube Industries, Ltd., trade name: UBE nylon 1022B
  • Example 1B A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B, except that a cyclic olefin copolymer (manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017) was prepared as the base material layer.
  • a cyclic olefin copolymer manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017
  • Example 2B An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the third layer was 1 ⁇ m and the thickness of the first layer was 1 ⁇ m.
  • the storage elastic modulus at 150 ° C. of the base material layer was not set within an appropriate range, resulting in insufficient shape following ability. .
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • the conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
  • the total thickness of the electromagnetic wave shielding film of Example 1C is 140 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the electromagnetic wave shielding layer.
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2.
  • the film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • Example 2C An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C except that a conductive adhesive layer (trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
  • a conductive adhesive layer trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.
  • Example 3C An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C, except that a conductive adhesive layer (trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
  • a conductive adhesive layer trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.
  • Example 4C An electromagnetic wave shielding film and an electronic component were prepared in the same manner as in Example 1C, except that a conductive adhesive layer (trade name: CA-2504-4B, manufactured by Daiken Chemical Industry Co., Ltd.) was used as the electromagnetic wave shielding layer. Manufactured.
  • Example 5C Electromagnetic waves as in Example 1C, except that a polyaniline dispersion (trade name: PANI-PD, thickness: 20 ⁇ m, manufactured by Regulus Co., Ltd.) was prepared for the conductive absorption layer functioning as the absorption layer as the resin constituting the barrier layer. Shielding films and electronic parts were manufactured.
  • a polyaniline dispersion trade name: PANI-PD, thickness: 20 ⁇ m, manufactured by Regulus Co., Ltd.
  • Example 6C Example 1C, except that a multilayer carbon nanotube dispersion (trade name: NT-7K, thickness: 20 ⁇ m) manufactured by Hodogaya Chemical Co., Ltd. was prepared for the dielectric absorption layer functioning as the absorption layer as the resin constituting the barrier layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
  • a multilayer carbon nanotube dispersion (trade name: NT-7K, thickness: 20 ⁇ m) manufactured by Hodogaya Chemical Co., Ltd. was prepared for the dielectric absorption layer functioning as the absorption layer as the resin constituting the barrier layer.
  • NT-7K thickness: 20 ⁇ m
  • Example 7C Example 1C, except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 ⁇ m) was prepared as the resin constituting the barrier layer in the conductive absorption layer functioning as the absorption layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 ⁇ m
  • Example 8C As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the product is a product name, PANI-PD, thickness 10 ⁇ m), and the film is coated in the order of a reflective layer and an absorbing layer. Films and electronic components were manufactured.
  • a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m) that functions as a reflective layer
  • a polyaniline dispersion (Regulus) Except that the product is a product name, PANI-PD, thickness 10 ⁇ m)
  • the film is coated in the order of a reflective layer and an absorbing layer. Films and electronic components were manufactured.
  • Example 9C As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m) and a dielectric functioning as an absorbing layer Absorbing layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)) was prepared, and these were coated on the film in the order of the reflective layer and the absorbing layer. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C.
  • a conductive adhesive layer functioning as a reflective layer manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m
  • a dielectric functioning as an absorbing layer Absorbing layer PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)
  • Example 10C As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the product is a product name, PANI-PD, thickness 10 ⁇ m), and these are coated on the film in the order of the absorbing layer and the reflecting layer. Films and electronic components were manufactured.
  • a conductive adhesive layer trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m
  • PANI-PD thickness 10 ⁇ m
  • Example 11C As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m) and a dielectric functioning as an absorbing layer Example 1C, except that an absorbent layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)) was prepared, and these were coated on the film in the order of the absorbent layer and the reflective layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • a film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
  • the total thickness of the electromagnetic wave shielding film of Example 1D is 160 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the average linear expansion coefficients of the first layer, the second layer, and the third layer in the electromagnetic wave shielding film of Example 1D were measured, they were 420, 2400, and 420 ppm / ° C., respectively.
  • the obtained electromagnetic shielding film was placed on the surface of a personal computer memory board (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2.
  • the film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • Example 2D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 80 ⁇ m.
  • Example 3D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 10 ⁇ m.
  • Example 4D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 90 ⁇ m.
  • Example 5D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 20 ⁇ m.
  • Example 6D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the third layer was 10 ⁇ m.
  • Example 7D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the third layer was 90 ⁇ m.
  • Example 8D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the insulating layer was 5 ⁇ m.
  • Example 9D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the insulating layer was 50 ⁇ m.
  • Example 10D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the electromagnetic wave shielding layer was 5 ⁇ m.
  • Example 11D Except for the thickness of the electromagnetic wave shielding layer being 150 ⁇ m, an electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D.
  • Example 12D As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1D, except that a blended product was prepared at a weight percent concentration of 60 wt% and 40 wt%, respectively.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 13D As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1D, except that a blended product having a weight percent concentration of 80 wt% and 20 wt% was prepared.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 14D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX MX004) was prepared as the first layer.
  • polymethylpentene manufactured by Mitsui Chemicals, Inc., trade name: TPX MX004
  • Example 15D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: Nova Duran 5505S) was prepared as the first layer.
  • polybutylene terephthalate manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: Nova Duran 5505S
  • Example 16D As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight.
  • a film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1D, except that preparations blended at 70 wt% and 30 wt% were prepared.
  • Example 17D As the second layer, ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) are in weight percent.
  • An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that a blended product containing 70 wt% and 30 wt% was prepared.
  • Example 18D As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106), polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) and polypropylene (Sumitomo).
  • Example 19D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that a saturated copolymerized polyester emulsion (trade name: Elitel KT-8803, manufactured by Unitika Ltd.) was prepared as an insulating layer.
  • a saturated copolymerized polyester emulsion (trade name: Elitel KT-8803, manufactured by Unitika Ltd.) was prepared as an insulating layer.
  • Example 20D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the first layer was 5 ⁇ m.
  • Example 21D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 120 ⁇ m.
  • Example 22D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the third layer was 3 ⁇ m.
  • Example 23D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the second layer was 80 ⁇ m and the thickness of the first layer was 10 ⁇ m.
  • Example 24D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 5 ⁇ m, the thickness of the second layer was 80 ⁇ m, and the thickness of the third layer was 5 ⁇ m.
  • Example 25D An electromagnetic wave shielding film and an electronic component were formed in the same manner as in Example 1D, except that the formation of the first layer was omitted and a conductive polymer polyaniline dispersion (PANI-PD manufactured by Regulus Co., Ltd.) was used for the electromagnetic wave shielding layer. Manufactured.
  • Example 26D An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the formation of the third layer was omitted.
  • Comparative Example 1D As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) is prepared, and the thickness of the base material layer is 30 ⁇ m. Parts and manufactured.
  • Example 2D As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and a film for electromagnetic wave shielding and an electron were prepared in the same manner as in Example 1D except that the thickness of the base material layer was 100 ⁇ m. Parts and manufactured.
  • the electromagnetic wave shielding films of Examples 1D to 26D exhibit good shape following properties, and further have mold release properties, gouge folding resistance, second layer spotting property of the base material layer, Excellent balance in terms of electromagnetic shielding shielding and punching workability.
  • the electromagnetic wave shielding films of Comparative Examples 1D and 2D resulted in insufficient shape followability as compared with Examples 1D to 26D.
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • a film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
  • the total thickness of the electromagnetic wave shielding film of Example 1E is 160 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2.
  • the film was pasted by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • Example 2E As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight.
  • a film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a blended product of 70 wt% and 30 wt% was prepared.
  • Example 3E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 10 ⁇ m.
  • Example 4E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the second layer was 90 ⁇ m.
  • Example 5E As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) was prepared in the same manner as in Example 1E, except that a blended product having a weight percent concentration of 60 wt% and 40 wt% was prepared.
  • syndiotactic polystyrene made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107
  • styrene-ethylene-butylene-styrene block copolymer made by Kuraray Co., Ltd., trade name: Septon S8007
  • Example 6E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 80 ⁇ m.
  • Example 7E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 100 ⁇ m.
  • Example 8E As a first layer, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) in a weight percent concentration of 60 wt. %, A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a blended product blended at 40 wt% was prepared.
  • Example 9E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) was prepared as the second layer.
  • polypropylene manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2
  • Example 10E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020) was prepared as the first layer.
  • polybutylene terephthalate manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020
  • Example 1E A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a cyclic olefin copolymer (manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017) was prepared as the base material layer.
  • a cyclic olefin copolymer manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017
  • Example 2E An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E except that the thickness of the third layer was 1 ⁇ m and the thickness of the first layer was 1 ⁇ m.
  • Examples 1E to 10E exhibited good shape following properties because the storage elastic modulus at 150 ° C. of the base material layer was set within an appropriate range. Furthermore, the results were excellent in a well-balanced manner with respect to releasability, goblet folding resistance, second layer spotting of the base material layer, and electromagnetic wave shield cutting / punching workability.
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer.
  • a conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • a film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
  • the total thickness of the electromagnetic wave shielding film of Example 1F is 160 ⁇ m, the thickness of the first layer is 30 ⁇ m, the thickness of the third layer is 30 ⁇ m, the thickness of the second layer is 60 ⁇ m, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • the obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 ⁇ m) at a temperature of 150 ° C. and a pressure of 2.
  • the film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
  • Example 2F An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
  • a conductive adhesive layer trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.
  • Example 3F An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
  • a conductive adhesive layer trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.
  • Example 4F An electromagnetic wave shielding film and an electronic component were prepared in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: CA-2504-4B, manufactured by Daiken Chemical Industry Co., Ltd.) was used as the electromagnetic wave shielding layer. Manufactured.
  • Example 5F Electromagnetic waves as in Example 1F, except that a polyaniline dispersion (trade name: PANI-PD, thickness: 20 ⁇ m) was prepared for the conductive absorption layer functioning as the absorption layer as the resin constituting the barrier layer. Shielding films and electronic parts were manufactured.
  • a polyaniline dispersion trade name: PANI-PD, thickness: 20 ⁇ m
  • Example 6F Example 1F, except that a multilayer carbon nanotube dispersion (made by Hodogaya Chemical Co., Ltd., trade name: NT-7K, thickness 20 ⁇ m) was prepared as a resin constituting the barrier layer in the dielectric absorption layer functioning as the absorption layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
  • a multilayer carbon nanotube dispersion made by Hodogaya Chemical Co., Ltd., trade name: NT-7K, thickness 20 ⁇ m
  • Example 7F As in Example 1F, except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 ⁇ m) was prepared as the resin constituting the barrier layer in the conductive absorption layer functioning as the absorption layer. An electromagnetic shielding film and an electronic component were produced.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 ⁇ m
  • Example 8F As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the film was coated with a reflective layer and an absorbing layer in this order, and the film for electromagnetic wave shielding and the electronic device were the same as in Example 1F. Parts and manufactured.
  • a conductive adhesive layer trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m
  • a polyaniline dispersion (Regulus) Except that the film was coated with a reflective layer and an absorbing layer in this order, and the film for electromagnetic wave shielding and the electronic device were the same as in Example 1F. Parts and manufactured.
  • Example 9F As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m) and a dielectric functioning as an absorbing layer Absorbing layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)) was prepared, and these were coated on the film in the order of the reflective layer and the absorbing layer. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F.
  • a conductive adhesive layer functioning as a reflective layer manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m
  • a dielectric functioning as an absorbing layer Absorbing layer PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)
  • Example 10F As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the film was coated with a film in the order of an absorption layer and a reflection layer, and an electromagnetic wave shielding film and an electronic device were prepared in the same manner as in Example 1F. Parts and manufactured.
  • a conductive adhesive layer trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 ⁇ m
  • Regular polyaniline dispersion
  • Example 11F As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 ⁇ m) and a dielectric functioning as an absorbing layer Example 1F, except that an absorbent layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m)) was prepared, and these were coated on the film in the order of the absorbent layer and the reflective layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 ⁇ m
  • the film for electromagnetic wave shielding according to the present invention can increase the degree of freedom in designing a substrate and can be reduced in weight and thickness, and has a good shape following property with respect to a convex portion 61 of 500 ⁇ m or more. It is an electromagnetic wave shielding film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

This EM-shielding film is used to cover convexities on a substrate and comprises a base layer and an EM-blocking layer laminated to one surface of said base layer. The base layer is designed so as to exhibit a storage elastic modulus of 2.0×105 to 5.0×108 Pa at 150°C. The present invention provides an EM-shielding film that increases the degree of freedom available when designing a substrate, allows reductions in weight and thickness, and exhibits good shape-following performance with respect to electronic components that have convexities with sizes greater than or equal to 500 µm. The present invention also provides a method wherein said EM-shielding film is used to cover an electronic component.

Description

電磁波シールド用フィルム、および電子部品の被覆方法Electromagnetic wave shielding film and method for coating electronic component
 本発明は、電磁波シールド用フィルム、および電子部品の被覆方法に関するものである。 The present invention relates to an electromagnetic wave shielding film and a method for coating an electronic component.
 従来、携帯電話、医療機器のように電磁波の影響を受けやすい電子部品や、半導体素子等の発熱性電子部品、さらにはコンデンサー、コイル等の各種電子部品、またはこれらの電子部品を回路基板に実装した電子機器は、電磁波によるノイズの影響を軽減するため、その表面に電磁波シールド用フィルムが貼付されてきた。 Conventionally, electronic components that are easily affected by electromagnetic waves, such as mobile phones and medical devices, exothermic electronic components such as semiconductor elements, various electronic components such as capacitors and coils, or these electronic components are mounted on a circuit board. In order to reduce the influence of noise due to electromagnetic waves, an electronic shielding film has been attached to the surface of the electronic equipment.
 このような電磁波シールド用フィルムとしては、例えば、絶縁性材料からなる基材層と、基材層の一方または双方の面に積層された金属層とを有する電磁波シールド用フィルムが開発されている(例えば、特許文献1参照。)。 As such an electromagnetic wave shielding film, for example, an electromagnetic wave shielding film having a base material layer made of an insulating material and a metal layer laminated on one or both surfaces of the base material layer has been developed ( For example, see Patent Document 1.)
 しかしながら、特許文献1に記載のように、電磁波シールド用フィルムが金属層を有する場合、近年要望が高まりつつある軽量化・薄型化に対応できないという問題があった。 However, as described in Patent Document 1, when the electromagnetic wave shielding film has a metal layer, there has been a problem that it has not been possible to cope with the reduction in weight and thickness that have been increasingly demanded in recent years.
特開2006-156946公報JP 2006-156946 A
 さらに、従来技術では、上記問題に加え、凸部を備える基板を有する電子部品に対して、電磁波シールド用フィルムで被覆しようとすると、この電磁波シールド用フィルムの凸部に対する形状追従性が優れないという問題がある。そのため、凸部を備える基板を有する電子部品に対しては、アルミやSUSで形成された金属カンシールドを用いたシールド方法が実施されてきた。しかし、この金属カンシールドを用いたシールド方法は、基板上の各部品個別に対して実施できず、種類別に配置された部品集合体に対して実施される。そのため、基板上の各部品の配置は制約され、それにより、基板の設計自由度は、機能面からは必ずしも最良というわけではない。 Furthermore, in the prior art, in addition to the above problems, when trying to cover an electronic component having a substrate having a convex portion with an electromagnetic wave shielding film, the shape following property to the convex portion of the electromagnetic wave shielding film is not excellent. There's a problem. Therefore, a shielding method using a metal can shield made of aluminum or SUS has been implemented for an electronic component having a substrate having a convex portion. However, the shielding method using the metal can shield cannot be performed for each component on the board, but is performed for a component assembly arranged by type. For this reason, the arrangement of each component on the board is restricted, so that the degree of freedom in designing the board is not necessarily the best in terms of function.
 したがって、本発明の目的は、基板の設計自由度を高め、かつ軽量化・薄型化を図るとともに、凸部を備える基板を有する電子部品に対して、良好な形状追従性を有する電磁波シールド用フィルムを提供することにある。また、本発明の他の目的は、かかる電磁波シールド用フィルムを用いた電子部品の被覆方法を提供することにある。 Accordingly, an object of the present invention is to increase the degree of freedom in designing a substrate, to reduce the weight and thickness, and to provide an electromagnetic shielding film having a good shape following property for an electronic component having a substrate having a convex portion. Is to provide. Another object of the present invention is to provide a method for coating an electronic component using the electromagnetic wave shielding film.
 このような目的は、下記(1)~(18)に記載の本発明により達成される。
 (1) 基板上の凸部を被覆するために用いられる電磁波シールド用フィルムであって、
 基材層と、該基材層の一方の面側に積層された電磁波遮断層とを含んで構成され、
 前記基材層は、150℃における貯蔵弾性率が2.0E+05~5.0E+08Paであることを特徴とする電磁波シールド用フィルム。
Such an object is achieved by the present invention described in the following (1) to (18).
(1) An electromagnetic wave shielding film used for covering convex portions on a substrate,
Comprising a base material layer and an electromagnetic wave shielding layer laminated on one surface side of the base material layer,
The electromagnetic wave shielding film, wherein the base material layer has a storage elastic modulus at 150 ° C. of 2.0E + 05 to 5.0E + 08 Pa.
 (2) 前記基材層の120℃における貯蔵弾性率をA[Pa]とし、前記基材層の150℃における貯蔵弾性率をB[Pa]としたとき、0.02≦A/B≦1.00なる関係を満足する上記(1)に記載の電磁波シールド用フィルム。 (2) When the storage elastic modulus at 120 ° C. of the base material layer is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer is B [Pa], 0.02 ≦ A / B ≦ 1 The film for electromagnetic wave shielding as described in (1) above, which satisfies the relationship of .00.
 (3) 前記基材層は、第1の層と、第2の層と、第3の層とが他方の面側からこの順で積層された3層構成をなす積層体である上記(1)または(2)に記載の電磁波シールド用フィルム。 (3) The base material layer is a laminate having a three-layer structure in which the first layer, the second layer, and the third layer are laminated in this order from the other surface side (1 ) Or the electromagnetic wave shielding film according to (2).
 (4) 前記第1の層は、25~150℃における平均線膨張係数が40~1000[ppm/℃]である上記(3)に記載の電磁波シールド用フィルム。 (4) The electromagnetic wave shielding film according to (3), wherein the first layer has an average linear expansion coefficient at 25 to 150 ° C. of 40 to 1000 [ppm / ° C.].
 (5) 前記第1の層の厚みT(A)は、5μm以上、100μm以下である上記(3)または(4)に記載の電磁波シールド用フィルム。 (5) The electromagnetic shielding film according to (3) or (4), wherein the first layer has a thickness T (A) of 5 μm or more and 100 μm or less.
 (6) 前記第3の層は、25~150℃における平均線膨張係数が40~1000[ppm/℃]である上記(3)ないし(5)のいずれか1項に記載の電磁波シールド用フィルム。 (6) The electromagnetic wave shielding film according to any one of (3) to (5), wherein the third layer has an average coefficient of linear expansion at 25 to 150 ° C. of 40 to 1000 [ppm / ° C.]. .
 (7) 前記第3の層の厚みT(B)は、5μm以上、100μm以下である上記(3)ないし(6)のいずれか1項に記載の電磁波シールド用フィルム。 (7) The electromagnetic wave shielding film according to any one of (3) to (6), wherein the third layer has a thickness T (B) of 5 μm or more and 100 μm or less.
 (8) 前記第2の層は、25~150℃における平均線膨張係数が400以上[ppm/℃]である上記(3)ないし(7)のいずれか1項に記載の電磁波シールド用フィルム。 (8) The electromagnetic wave shielding film according to any one of (3) to (7), wherein the second layer has an average linear expansion coefficient at 25 to 150 ° C. of 400 or more [ppm / ° C.].
 (9) 前記第2の層の厚みT(C)は、10μm以上、100μm以下である上記(3)ないし(8)のいずれか1項に記載の電磁波シールド用フィルム。 (9) The film for electromagnetic wave shielding according to any one of (3) to (8), wherein the thickness T (C) of the second layer is 10 μm or more and 100 μm or less.
 (10) 前記第1の層の厚みT(A)と、前記第3の層の厚みT(B)と、前記第2の層の厚みT(C)は、下記関係式(I)を満たす上記(3)ないし(9)のいずれか1項に記載の電磁波シールド用フィルム。
 0.05<T(C)/(T(A)+T(B))<10  ・・・ (I)
(10) The thickness T (A) of the first layer, the thickness T (B) of the third layer, and the thickness T (C) of the second layer satisfy the following relational expression (I). The electromagnetic wave shielding film according to any one of (3) to (9) above.
0.05 <T (C) / (T (A) + T (B)) <10 (I)
 (11) 前記電磁波遮断層は、150℃における貯蔵弾性率が1.0E+05~1.0E+09Paである上記(1)ないし(10)のいずれか1項に記載の電磁波シールド用フィルム。 (11) The electromagnetic wave shielding film according to any one of (1) to (10), wherein the electromagnetic wave shielding layer has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa.
 (12) 前記電磁波遮断層は、反射層と、吸収層とで構成され、これらが前記基材層の前記一方の面側からこの順で積層された積層体である上記(1)ないし(11)のいずれか1項に記載の電磁波シールド用フィルム。 (12) The electromagnetic wave shielding layer includes a reflective layer and an absorption layer, and the layers (1) to (11) are laminated bodies laminated in this order from the one surface side of the base material layer. The electromagnetic wave shielding film according to any one of 1).
 (13) 当該電磁波シールド用フィルムを前記基板上の前記凸部に温度150℃、圧力2MPa、時間5分の条件で熱圧着した際の形状追従性が、500μm以上、3,000μm以下である上記(1)ないし(12)のいずれか1項に記載の電磁波シールド用フィルム。
 (14) 前記基材層と前記電磁波遮断層との間に積層された絶縁層をさらに含む上記(1)ないし(13)のいずれか1項に記載の電磁波シールドフィルム。
 (15) 前記絶縁層と前記電磁波遮断層とは、前記基材層の前記一方の面側からこの順で積層された積層体をなしている上記(14)に記載の電磁波シールド用フィルム。
 (16) 前記絶縁層は、熱可塑性を有する絶縁樹脂で構成されている上記(14)または(15)に記載の電磁波シールド用フィルム。
 (17) 前記絶縁層の厚みT(D)は、3μm以上、50μm以下である上記(14)ないし(16)のいずれか1項に記載の電磁波シールド用フィルム。
(13) The shape followability when the electromagnetic wave shielding film is thermocompression bonded to the convex portion on the substrate under conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes is 500 μm or more and 3,000 μm or less. (1) The electromagnetic wave shielding film according to any one of (12).
(14) The electromagnetic wave shielding film according to any one of (1) to (13), further including an insulating layer laminated between the base material layer and the electromagnetic wave shielding layer.
(15) The film for electromagnetic wave shielding according to (14), wherein the insulating layer and the electromagnetic wave shielding layer form a laminated body laminated in this order from the one surface side of the base material layer.
(16) The electromagnetic shielding film according to (14) or (15), wherein the insulating layer is made of an insulating resin having thermoplasticity.
(17) The electromagnetic shielding film according to any one of (14) to (16), wherein a thickness T (D) of the insulating layer is 3 μm or more and 50 μm or less.
 (18) 前記基板上の前記凸部に、上記(1)ないし(17)のいずれか1項に記載の電磁波シールド用フィルムを前記電磁波遮断層と電子部品とが接着するように貼付する貼付工程と、
 前記貼付工程の後、前記基材層を前記電磁波遮断層から剥離する剥離工程とを有することを特徴とする電子部品の被覆方法。
(18) An attaching step of attaching the electromagnetic wave shielding film according to any one of (1) to (17) to the convex portion on the substrate so that the electromagnetic wave shielding layer and the electronic component are adhered. When,
An electronic component coating method comprising: a peeling step of peeling the base material layer from the electromagnetic wave shielding layer after the pasting step.
 本発明によれば、電磁波シールド用フィルムが備える基材層の150℃における貯蔵弾性率を、2.0E+05~5.0E+08Paとすることにより、電磁波シールド用フィルムで覆われる基板の設計自由度を高め、かつ軽量化・薄型化を図ることが可能である。さらに、凸部を備える基板を有する電子部品に対して、良好な形状追従性を発揮することができる。 According to the present invention, the storage elastic modulus at 150 ° C. of the base material layer included in the electromagnetic wave shielding film is 2.0E + 05 to 5.0E + 08 Pa, thereby increasing the degree of freedom in designing the substrate covered with the electromagnetic wave shielding film. In addition, it is possible to reduce the weight and thickness. Furthermore, favorable shape followability can be exhibited with respect to the electronic component which has a board | substrate provided with a convex part.
図1は、本発明の電磁波シールド用フィルムの第1実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention. 図2は、図1に示す電磁波シールド用フィルムを用いて電子部品の被覆方法を説明するための縦断面図である。FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG. 図3は、本発明の電磁波シールド用フィルムの第2実施形態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a second embodiment of the electromagnetic wave shielding film of the present invention. 図4は、本発明の電磁波シールド用フィルムの第3実施形態を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a third embodiment of the electromagnetic wave shielding film of the present invention. 図5は、本発明の電磁波シールド用フィルムの第4実施形態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention. 図6は、本発明の電磁波シールド用フィルムの第5実施形態を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention. 図7は、本発明の電磁波シールド用フィルムの第6実施形態を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention. 図8は、図7に示す電磁波シールド用フィルムを用いて電子部品の被覆方法を説明するための縦断面図である。FIG. 8 is a longitudinal sectional view for explaining a method for coating an electronic component using the electromagnetic wave shielding film shown in FIG. 図9は、本発明の電磁波シールド用フィルムの第7実施形態を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention. 図10は、本発明の電磁波シールド用フィルムの第8実施形態を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention. 図11は、本発明の電磁波シールド用フィルムの第9実施形態を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention. 図12は、本発明の電磁波シールド用フィルムの第10実施形態を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention. 図13は、本発明の電磁波シールド用フィルムの第11実施形態を示す縦断面図である。FIG. 13 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention. 図14は、本発明の電磁波シールド用フィルムの第12実施形態を示す縦断面図である。FIG. 14 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention.
 以下、本発明の電磁波シールド用フィルム、および電子部品の被覆方法を、添付図面に示す好適実施形態に基づいて、詳細に説明する。 Hereinafter, the film for electromagnetic wave shielding of the present invention and the method for coating an electronic component will be described in detail based on preferred embodiments shown in the accompanying drawings.
 本発明の電磁波シールド用フィルムは、基板上の凸部を被覆するために用いられる電磁波シールド用フィルムである。その電磁波シールド用フィルムは、基材層と、該基材層の一方の面側に積層された電磁波遮断層とを含んで構成されている。前記基材層は、150℃における貯蔵弾性率が2.0E+05~5.0E+08Paであることを特徴とする。 The electromagnetic wave shielding film of the present invention is an electromagnetic wave shielding film used for covering the convex portions on the substrate. The electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer laminated on one surface side of the base material layer. The base material layer has a storage elastic modulus at 150 ° C. of 2.0E + 05 to 5.0E + 08 Pa.
 また、本発明の電子部品の被覆方法は、前記基板上に、前記電磁波シールド用フィルムを、前記電磁波遮断層と凸部である電子部品とが接着するように貼付する貼付工程と、前記貼付工程の後、前記基材層を前記電磁波遮断層から剥離する剥離工程とを有することを特徴とする。 Also, the method for coating an electronic component of the present invention includes a pasting step in which the electromagnetic wave shielding film is pasted on the substrate so that the electromagnetic wave blocking layer and the electronic component that is a convex portion adhere to each other, and the pasting step And a peeling step of peeling the base material layer from the electromagnetic wave shielding layer.
 このような電磁波シールド用フィルムを用いて、基板上の凸部を被覆すると、前記貼付工程において、電磁波シールド用フィルムを加熱しつつ、電磁波シールド用フィルムと基板とが互いに接近するように押圧することで、基材層、電磁波遮断層が凸部に対して形状追従性を有する基材として機能する。このことから、電磁波遮断層を凸部の形状に追従した状態で凹部に押し込むことができる。その結果、この凸部が設けられた基板を、電磁波遮断層で確実に被覆することができる。そのため、この電磁波遮断層により凸部が設けられた基板の電磁波シールド性が向上することとなる。 When such a film for electromagnetic wave shielding is used to cover the convex portion on the substrate, the electromagnetic wave shielding film and the substrate are pressed close to each other while heating the electromagnetic wave shielding film in the attaching step. Thus, the base material layer and the electromagnetic wave shielding layer function as a base material having shape followability with respect to the convex portion. From this, the electromagnetic wave shielding layer can be pushed into the concave portion in a state of following the shape of the convex portion. As a result, the substrate provided with the convex portions can be reliably covered with the electromagnetic wave shielding layer. Therefore, the electromagnetic wave shielding property of the substrate provided with the convex portion is improved by the electromagnetic wave shielding layer.
 <電磁波シールド用フィルム>
 まずは、本発明の電磁波シールド用フィルムについて説明する。
<Electromagnetic wave shielding film>
First, the electromagnetic wave shielding film of the present invention will be described.
 <第1実施形態>
 図1は、本発明の電磁波シールド用フィルムの第1実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図1中の上側を「上」、下側を「下」と言う。
<First Embodiment>
FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention. In the following description, for convenience of description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 本発明の電磁波シールド用フィルムは、基板5上の凸61を被覆するために用いられる電磁波シールド用フィルムである。 The electromagnetic wave shielding film of the present invention is an electromagnetic wave shielding film used for covering the protrusions 61 on the substrate 5.
 図1に示すように、本実施形態において、電磁波シールド用フィルム100は、基材層1と、電磁波遮断層3とを含んで構成されている。電磁波遮断層3は、基材層1の下面(一方の面)側に、基材層1に接触して積層されている。 As shown in FIG. 1, in this embodiment, the electromagnetic wave shielding film 100 includes a base material layer 1 and an electromagnetic wave shielding layer 3. The electromagnetic wave shielding layer 3 is laminated on the lower surface (one surface) side of the base material layer 1 in contact with the base material layer 1.
 また、基材層1は、第1の層11と、第2の層13と、第3の層12とで構成されている。これらが基材層1の上面(他方の面)側から、この順で積層されている。 The base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12. These are laminated in this order from the upper surface (the other surface) side of the base material layer 1.
 なお、以下では、基板5上に電子部品4が搭載(載置)され、この電子部品4の搭載により基板5上に凸部61と、凸部61同士の間に凹部62とが形成されており、この凸部61を電磁波シールド用フィルム100で被覆する場合について説明する。なお、基板5上に搭載する電子部品4としては、例えば、フレキシブル回路基板(FPC)上に搭載されているLCDドライバーIC、タッチパネル周辺のIC+コンデンサーまたは電子回路基板(マザーボード)が挙げられる。 In the following description, the electronic component 4 is mounted (placed) on the substrate 5, and the mounting of the electronic component 4 forms a convex portion 61 on the substrate 5 and a concave portion 62 between the convex portions 61. The case where the convex portion 61 is covered with the electromagnetic wave shielding film 100 will be described. Examples of the electronic component 4 mounted on the substrate 5 include an LCD driver IC mounted on a flexible circuit board (FPC), an IC + capacitor around the touch panel, or an electronic circuit board (motherboard).
 <基材層1>
 まず、基材層1について説明する。
<Base material layer 1>
First, the base material layer 1 will be described.
 基材層1は、貼付工程において、基板5上の凹部62に電磁波シールド用フィルム100の電磁波遮断層3を押し込むことで、この凸部61を被覆する際に、電磁波遮断層3を押し込み(埋め込み)、この電磁波遮断層3の凸部61に対する形状追従性を向上させるための基材として機能するものである。また、基材層1は、剥離工程において、凹部62に電磁波遮断層3を押し込んだ状態で、電磁波遮断層3から剥離されるものである。 The base material layer 1 pushes (embeds) the electromagnetic wave shielding layer 3 when the convex portion 61 is covered by pushing the electromagnetic wave shielding layer 3 of the electromagnetic wave shielding film 100 into the concave portion 62 on the substrate 5 in the attaching step. ), Which functions as a base material for improving the shape followability to the convex portion 61 of the electromagnetic wave shielding layer 3. Moreover, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in a state where the electromagnetic wave shielding layer 3 is pushed into the recess 62 in the peeling step.
 本発明では、この基材層1の150℃における貯蔵弾性率が2.0E+05~5.0E+08Paとなっている。 In the present invention, the storage elastic modulus at 150 ° C. of the base material layer 1 is 2.0E + 05 to 5.0E + 08 Pa.
 このように、電磁波遮断層3の凸部61に対する形状追従性を向上させるための基材として機能する基材層1の加熱時における貯蔵弾性率を、前記範囲内に設定することにより、電磁波シールド用フィルム100を用いて、基板5上の凸部61を被覆する際に、電磁波遮断層3を凸部61の形状に対応した状態で確実に被覆することができる。その結果、この凸部61が設けられた基板5を、電磁波遮断層3をもって確実に被覆することができるため、この電磁波遮断層3による凸部61が設けられた基板5に対する電磁波シールド(遮断)性が向上することとなる。 Thus, by setting the storage elastic modulus at the time of heating of the base material layer 1 functioning as a base material for improving the shape followability to the convex portion 61 of the electromagnetic wave shielding layer 3 within the above range, the electromagnetic wave shield When the convex portion 61 on the substrate 5 is covered with the film 100 for use, the electromagnetic wave shielding layer 3 can be reliably covered in a state corresponding to the shape of the convex portion 61. As a result, since the substrate 5 provided with the convex portions 61 can be reliably covered with the electromagnetic wave shielding layer 3, the electromagnetic wave shielding (blocking) against the substrate 5 provided with the convex portions 61 by the electromagnetic wave shielding layer 3 is achieved. Will be improved.
 また、基材層1の150℃における貯蔵弾性率を前記範囲内とすることにより、基板5に設けられた凸部61の高さが500μm以上、さらには1.0~3.0mmであるように大きく、前記凸部61同士の離間距離(ピッチ)が200μm以下、さらには100μm~150μmであるように小さいとしても、電磁波遮断層3を凸部61の形状に対応した状態で確実に凹部62に押し込むことができる。 Further, by setting the storage elastic modulus of the base material layer 1 at 150 ° C. within the above range, the height of the convex portion 61 provided on the substrate 5 is 500 μm or more, and further 1.0 to 3.0 mm. Even if the separation distance (pitch) between the convex portions 61 is as small as 200 μm or less, and further 100 μm to 150 μm, the electromagnetic wave blocking layer 3 is surely formed in the concave portion 62 in a state corresponding to the shape of the convex portion 61. Can be pushed into.
 なお、基材層1の150℃における貯蔵弾性率は、2.0E+05~5.0E+08Paとなっていればよいが、1.0E+06~3.0E+08Paであるのが好ましく、3.0E+06~9.0E+07Paであるのがより好ましい。これにより、前記効果をより顕著に発揮させることができる。 The storage elastic modulus at 150 ° C. of the base material layer 1 may be 2.0E + 05 to 5.0E + 08 Pa, but is preferably 1.0E + 06 to 3.0E + 08 Pa, and is preferably 3.0E + 06 to 9.0E + 07 Pa. It is more preferable that Thereby, the said effect can be exhibited more notably.
 また、基材層1は、25℃における貯蔵弾性率が1.0E+07~1.0E+10Paであるのが好ましく、5.0E+08~5.0E+09Paであるのがより好ましい。このように、常温(室温)時、すなわち25℃における貯蔵弾性率を前記範囲内に設定することにより、基材層1を、電磁波シールド用フィルム100の加熱前には液状ではなく固形状に、電磁波シールド用フィルム100の加熱時には半固形状(ゲル状)にすることができる。そのため、基材層1(電磁波シールド用フィルム100)の基板5への貼付時には、基材層1を基板5にシワ等を生じさせることなく貼付することができる。また、電磁波シールド用フィルム100を規定のサイズにカットする際の作業性も向上する。さらに、基板5に設けられた凹部62への押し込み時には、電磁波遮断層3を凹部62内に、この基材層1で確実に押し込むことができる。なお、かかる貯蔵弾性率の特性を有する基材層1において、少なくとも第1の層11および第3の層12が熱可塑性樹脂で構成され、貼付工程における電磁波シールド用フィルム100の加熱後においても、その25℃における貯蔵弾性率が前記範囲内を維持しているのが好ましい。これにより、剥離工程において、電磁波遮断層3から基材層1を容易に剥離させることができる。 The base material layer 1 preferably has a storage elastic modulus at 25 ° C. of 1.0E + 07 to 1.0E + 10 Pa, and more preferably 5.0E + 08 to 5.0E + 09 Pa. Thus, by setting the storage elastic modulus at room temperature (room temperature), that is, at 25 ° C., within the above range, the base material layer 1 is not liquid but heated before heating the electromagnetic shielding film 100, When the electromagnetic wave shielding film 100 is heated, it can be made semi-solid (gel). Therefore, when the base material layer 1 (electromagnetic wave shielding film 100) is attached to the substrate 5, the base material layer 1 can be attached to the substrate 5 without causing wrinkles or the like. Moreover, the workability | operativity at the time of cutting the electromagnetic wave shielding film 100 to a regular size is also improved. Furthermore, the electromagnetic wave shielding layer 3 can be reliably pushed into the concave portion 62 by the base material layer 1 when being pushed into the concave portion 62 provided on the substrate 5. In addition, in the base material layer 1 having the characteristics of the storage elastic modulus, at least the first layer 11 and the third layer 12 are composed of a thermoplastic resin, and even after the heating of the electromagnetic wave shielding film 100 in the pasting step, The storage elastic modulus at 25 ° C. is preferably maintained within the above range. Thereby, the base material layer 1 can be easily peeled from the electromagnetic wave shielding layer 3 in the peeling step.
 さらに、基材層1の120℃における貯蔵弾性率をA[Pa]とし、基材層1の150℃における貯蔵弾性率をB[Pa]としたとき、0.02≦A/B≦1.00なる関係を満足するのが好ましく、0.02≦A/B≦0.50なる関係を満足するのがより好ましい。かかる関係を満足する基材層1は、その加熱時において、加熱時の温度変化に起因する基材層1の貯蔵弾性率の変化の幅が小さいものと言うことができる。したがって、加熱時の温度条件をたとえ変化させたとしても、この温度変化に起因する基材層1の貯蔵弾性率の変化の幅を必要最小限にとどめることができる。そのため、電磁波遮断層3を凹部62内に、この基材層1でより確実に押し込むことができる。 Furthermore, when the storage elastic modulus at 120 ° C. of the base material layer 1 is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer 1 is B [Pa], 0.02 ≦ A / B ≦ 1. It is preferable to satisfy the relationship of 00, and it is more preferable to satisfy the relationship of 0.02 ≦ A / B ≦ 0.50. It can be said that the base material layer 1 satisfying such a relationship has a small range of change in the storage elastic modulus of the base material layer 1 due to the temperature change during the heating. Therefore, even if the temperature condition at the time of heating is changed, the range of change in the storage elastic modulus of the base material layer 1 due to this temperature change can be kept to the minimum necessary. Therefore, the electromagnetic wave shielding layer 3 can be more reliably pushed into the recess 62 by the base material layer 1.
 なお、各層の25℃、120℃および150℃における貯蔵弾性率は、例えば、動的粘弾性測定装置(セイコーインスツルメント社製、「DMS6100」)を用いて得られる。具体的には、測定すべき各層の貯蔵弾性率を、25~200℃で、49mNの一定荷重の引張モード、昇温速度5℃/分、周波数1Hzの条件で測定する。動的粘弾性測定装置における、25℃、120℃および150℃での貯蔵弾性率を、それぞれ読み取る。これにより、貯蔵弾性率を求めることができる。 In addition, the storage elastic modulus in 25 degreeC, 120 degreeC, and 150 degreeC of each layer is obtained using the dynamic viscoelasticity measuring apparatus (Seiko Instruments company make, "DMS6100"), for example. Specifically, the storage elastic modulus of each layer to be measured is measured under the conditions of 25 to 200 ° C., tensile mode with a constant load of 49 mN, a heating rate of 5 ° C./min, and a frequency of 1 Hz. The storage elastic modulus at 25 ° C., 120 ° C. and 150 ° C. in the dynamic viscoelasticity measuring device is read. Thereby, a storage elastic modulus can be calculated | required.
 本実施形態では、基材層1は、第1の層11と、第2の層13と、第3の層12とで構成されている。基材層1は、これらが基材層1の上面(他方の面)側から、この順で積層されている。上述した基材層1の特性が発揮されるように、これら各層11~13の種類、および厚さ等が適宜組み合わされる。 In the present embodiment, the base material layer 1 is composed of a first layer 11, a second layer 13, and a third layer 12. The base material layer 1 is laminated in this order from the upper surface (the other surface) side of the base material layer 1. The types, thicknesses, and the like of these layers 11 to 13 are appropriately combined so that the characteristics of the base material layer 1 described above are exhibited.
 以下、これら各層11~13について、それぞれ、説明する。
 第1の層11は、貼付工程において、基板5上の凹部62に電磁波遮断層3を、例えば、真空加圧式ラミネーター等を用いて押し込む際に、真空加圧式ラミネーター等が有する押圧部を離型する機能を有する。また、第1の層11は、第2の層13側に押圧部からの押圧力を付与する機能を有する。
Hereinafter, each of these layers 11 to 13 will be described.
When the electromagnetic wave blocking layer 3 is pushed into the recess 62 on the substrate 5 using, for example, a vacuum pressurizing laminator or the like, the first layer 11 releases the pressing portion of the vacuum pressurizing laminator or the like. Has the function of The first layer 11 has a function of applying a pressing force from the pressing portion to the second layer 13 side.
 この第1の層(第1離型層)11の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料等、が挙げられる。これらの中でも、シンジオタクチックポリスチレンを用いることが好ましい。このように、ポリスチレンとしてシンジオタクチック構造を有するポリスチレンを用いることにより、ポリスチレンが、結晶性を備えるようになる。これに起因して、第1の層11の装置との離型性、さらには耐熱性および形状追従性を優れたものとすることができる。 The constituent material of the first layer (first release layer) 11 is not particularly limited. For example, a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone. Materials and the like. Among these, it is preferable to use syndiotactic polystyrene. Thus, by using polystyrene having a syndiotactic structure as polystyrene, polystyrene comes to have crystallinity. Due to this, it is possible to make the first layer 11 excellent in releasability from the device, and further in heat resistance and shape followability.
 第1の層11に前記シンジオタクチックポリスチレンを用いる場合、その含有量は、特に制限されないが、60重量%以上であることが好ましく、70重量%以上、95重量%以下であることがより好ましく、さらには80重量%以上、90重量%以下であることが好ましい。シンジオタクチックポリスチレンの含有量が前記下限値未満である場合、第1の層11の離型性が低下するおそれがある。また、シンジオタクチックポリスチレンの含有量が前記上限値を超える場合、第1の層11の形状追従性が低下するおそれがある。 When the syndiotactic polystyrene is used for the first layer 11, the content thereof is not particularly limited, but is preferably 60% by weight or more, more preferably 70% by weight or more and 95% by weight or less. Further, it is preferably 80% by weight or more and 90% by weight or less. When content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the releasability of the 1st layer 11 may fall. Moreover, when content of syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followable | trackability of the 1st layer 11 may fall.
 なお、第1の層11は、シンジオタクチックポリスチレンのみで構成されていても構わない。また、第1の層11は、前記シンジオタクチックポリスチレンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。 Note that the first layer 11 may be composed of only syndiotactic polystyrene. The first layer 11 may further contain a styrene elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene.
 第1の層11の厚みT(A)は、特に限定されないが、5μm以上、100μm以下であることが好ましく、10μm以上、70μm以下であることがより好ましく、さらに好ましくは20μm以上、50μm以下である。第1の層11の厚みが前記下限値未満である場合、第1の層11が破断し、その離型性が低下するおそれがある。また、第1の層11の厚みが前記上限値を超える場合、基材層1の形状追従性が低下し、電磁波遮断層3の形状追従性が低下するおそれがある。 The thickness T (A) of the first layer 11 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and further preferably 20 μm or more and 50 μm or less. is there. When the thickness of the 1st layer 11 is less than the said lower limit, the 1st layer 11 may fracture | rupture and there exists a possibility that the release property may fall. Moreover, when the thickness of the 1st layer 11 exceeds the said upper limit, the shape followability of the base material layer 1 may fall, and there exists a possibility that the shape followability of the electromagnetic wave shielding layer 3 may fall.
 また、第1の層11の25~150℃における平均線膨張係数は、40~1000[ppm/℃]であるのが好ましく、80~700[ppm/℃]であるのがより好ましい。第1の層11の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第1の層11は、優れた伸縮性を有する。そのため、電磁波遮断層3の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 40 to 1000 [ppm / ° C.], and more preferably 80 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the first layer 11 within this range, the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, the shape followability with respect to the convex portion 61 of the electromagnetic wave shielding layer 3 can be improved more reliably.
 なお、各層の平均線膨張係数は、例えば、熱機械分析装置(セイコーインスツルメント社製、「TMASS6100」)を用いて得られる。具体的には、測定すべき各層の貯蔵弾性率を、25~200℃で、49mNの一定荷重の引張モード、昇温速度5℃/分の条件で測定する。この時の熱機械分析装置における25℃~150℃での平均線膨張係数を、それぞれ読み取る。これにより、平均線膨張係数を求めることができる。 The average linear expansion coefficient of each layer is obtained using, for example, a thermomechanical analyzer (“TMASS6100” manufactured by Seiko Instruments Inc.). Specifically, the storage elastic modulus of each layer to be measured is measured at 25 to 200 ° C. under the condition of a constant load of 49 mN and a heating rate of 5 ° C./min. The average linear expansion coefficient at 25 ° C. to 150 ° C. in the thermomechanical analyzer at this time is read. Thereby, an average linear expansion coefficient can be calculated | required.
 さらに、第1の層11の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第1の層11は、優れた離型性を備える。また、真空加圧式ラミネーター等を用いた押し込みプロセスの後に、押圧部から第1の層11を剥離させることができる。 Furthermore, the surface tension of the first layer 11 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m]. The first layer 11 having a surface tension within such a range has excellent releasability. Moreover, the 1st layer 11 can be peeled from a press part after the indentation process using a vacuum pressurization type laminator.
 第3の層12は、貼付工程において、基板5上の凹部62に対する電磁波遮断層3の押し込みを、真空加圧式ラミネーター等を用いて実施した後に、剥離工程において、基材層1を電磁波遮断層3から剥離する際に、基材層1に剥離性を付与する機能を有する。また、第3の層12は、基板5上の凸部61の形状に応じて、追従する追従性の機能を有し、かつ、電磁波遮断層3側に、押圧部からの押圧力を付与する機能を併せ持つものである。 The third layer 12 is formed by pressing the electromagnetic wave shielding layer 3 into the concave portion 62 on the substrate 5 using a vacuum pressurizing laminator or the like in the attaching step, and then removing the base material layer 1 from the electromagnetic wave shielding layer in the peeling step. When peeling from 3, the base layer 1 has a function of imparting peelability. Further, the third layer 12 has a follow-up function to follow in accordance with the shape of the convex portion 61 on the substrate 5 and applies a pressing force from the pressing portion to the electromagnetic wave shielding layer 3 side. It has both functions.
 この第3の層(第2離型層)12の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料、が挙げられる。これらの中でも、シンジオタクチックポリスチレンを用いることが好ましい。このように、ポリスチレンとしてシンジオタクチック構造を有するポリスチレンを用いることにより、ポリスチレンが結晶性を備えるようになる。これに起因して、第3の層12の電磁波遮断層3との離型性、さらには耐熱性および形状追従性を優れたものとすることができる。 The constituent material of the third layer (second release layer) 12 is not particularly limited. For example, syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, resin such as silicone Materials. Among these, it is preferable to use syndiotactic polystyrene. Thus, polystyrene is provided with crystallinity by using polystyrene having a syndiotactic structure as polystyrene. Due to this, it is possible to make the third layer 12 excellent in releasability from the electromagnetic wave shielding layer 3, and further in heat resistance and shape followability.
 第3の層12における前記シンジオタクチックポリスチレンの含有量は、特に制限されず、シンジオタクチックポリスチレンのみで構成されていても構わないが、60重量%以上であることが好ましく、70重量%以上、95重量%以下であることがより好ましく、さらには80重量%以上、90重量%以下であることが好ましい。シンジオタクチックポリスチレンの含有量が前記下限値未満である場合、第3の層12の離型性が低下するおそれがある。また、シンジオタクチックポリスチレンの含有量が前記上限値を超える場合、第3の層12の形状追従性が低下するおそれがある。 The content of the syndiotactic polystyrene in the third layer 12 is not particularly limited and may be composed only of syndiotactic polystyrene, but is preferably 60% by weight or more, and 70% by weight or more. 95% by weight or less, more preferably 80% by weight or more and 90% by weight or less. When content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the mold release property of the 3rd layer 12 may fall. Moreover, when content of syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followable | trackability of the 3rd layer 12 may fall.
 なお、第3の層12は、前記シンジオタクチックポリスチレンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。また、第3の層12と、前記第1の層11とを構成する樹脂は、同じであっても異なっていても構わない。 The third layer 12 may further contain a styrenic elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene. Further, the resin constituting the third layer 12 and the first layer 11 may be the same or different.
 第3の層12の厚みT(B)は、特に限定されないが、5μm以上、100μm以下であることが好ましく、10μm以上、70μm以下であることがより好ましく、さらに好ましくは20μm以上、50μm以下である。第3の層12の厚みが前記下限値未満である場合、耐熱性が低下し、熱圧着工程で基材層の耐熱性が低下し、変形が発生し、電磁波遮断層が変形するおそれがある。また、第3の層12の厚みが前記上限値を超える場合、電磁波シールド用フィルム全体の総厚みが厚くなり、カット等の作業性が低下するおそれがある。また、コスト面でも経済的ではない。 The thickness T (B) of the third layer 12 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and further preferably 20 μm or more and 50 μm or less. is there. When the thickness of the third layer 12 is less than the lower limit, the heat resistance is lowered, the heat resistance of the base material layer is lowered in the thermocompression bonding step, the deformation occurs, and the electromagnetic wave shielding layer may be deformed. . Moreover, when the thickness of the 3rd layer 12 exceeds the said upper limit, the total thickness of the whole film for electromagnetic wave shields becomes thick, and there exists a possibility that workability | operativity, such as a cut, may fall. Also, it is not economical in terms of cost.
 なお、第3の層12と、第1の層11との厚みは、同じであっても異なっていても構わない。 Note that the thickness of the third layer 12 and the first layer 11 may be the same or different.
 また、第3の層12の25~150℃における平均線膨張係数は、40~1000[ppm/℃]であるのが好ましく、80~700[ppm/℃]であるのがより好ましい。第3の層12の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第3の層12は、優れた伸縮性を有するものとなる。そのため、第3の層12、さらには電磁波遮断層3の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 40 to 1000 [ppm / ° C.], and more preferably 80 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the third layer 12 within such a range, the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, the shape followability to the convex part 61 of the 3rd layer 12, and also the electromagnetic wave shielding layer 3 can be improved more reliably.
 さらに、第3の層12の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第3の層12は優れた離型性を備える。また、真空加圧式ラミネーター等を用いた押し込みプロセスの後に、基材層1を電磁波遮断層3から剥離する際に、第3の層12と電磁波遮断層3との界面において、基材層1を確実に剥離させることができる。 Furthermore, the surface tension of the third layer 12 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m]. The third layer 12 having a surface tension within such a range has an excellent releasability. In addition, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 after the indentation process using a vacuum pressurizing laminator or the like, the base material layer 1 is formed at the interface between the third layer 12 and the electromagnetic wave shielding layer 3. It can be surely peeled off.
 第2の層13は、貼付工程において、基材層1を押し込み用の基材として用いて基板5上の凹部62に対して電磁波遮断層3を押し込む際に、第3の層12を、凹部62に対して押し込む(埋め込む)ためのクッション機能を有する。また、第2の層13は、この押し込む力を、第3の層12、さらには、この第3の層12を介して電磁波遮断層3に、均一に付与する機能を有している。これにより、電磁波遮断層3と、凹部62および凸部61との間にボイドを発生させることなく、電磁波遮断層3を凹部62に対して優れた密閉性をもって押し込むことができる。 When the electromagnetic wave shielding layer 3 is pushed into the concave portion 62 on the substrate 5 using the base material layer 1 as a pushing base material, the second layer 13 is formed into the concave portion in the attaching step. Cushion function for pushing (embedding) 62. Further, the second layer 13 has a function of uniformly imparting this pushing force to the third layer 12 and further to the electromagnetic wave shielding layer 3 via the third layer 12. Thereby, the electromagnetic wave shielding layer 3 can be pushed into the concave portion 62 with excellent sealing properties without generating a void between the electromagnetic wave shielding layer 3 and the concave portion 62 and the convex portion 61.
 この第2の層(クッション層)13の構成材料としては、例えば、ポリエチレン、ポリプロプレン等のαオレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、メチルペンテン等を共重合体成分として有するαオレフィン系共重合体、ポリエーテルスルホン、ポリフェニレンスルフィド等のエンジニアリングプラスチックス系樹脂が挙げられ、これらを単独あるいは複数併用してもよい。これらの中でも、αオレフィン系共重合体を用いることが好ましい。具体的には、エチレン等のαオレフィンと、(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体(EMMA)、およびそれらの部分イオン架橋物等が挙げられる。αオレフィン系共重合体は、形状追従性に優れ、さらに、第3の層12の構成材料と比較して柔軟性に優れる。このことから、かかる構成材料で構成される第2の層13に、第3の層12を凹部62に対して押し込む(埋め込む)ためのクッション機能を確実に付与することができる。 As a constituent material of the second layer (cushion layer) 13, for example, an α-olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene, or the like is included as a copolymer component. Engineering plastics resins such as α-olefin copolymer, polyethersulfone, polyphenylene sulfide and the like may be used, and these may be used alone or in combination. Among these, it is preferable to use an α-olefin copolymer. Specifically, a copolymer of α-olefin such as ethylene and (meth) acrylic acid ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And a partial ion cross-linked product thereof. The α-olefin-based copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the third layer 12. From this, the cushion function for pushing (embedding) the 3rd layer 12 with respect to the recessed part 62 can be reliably provided to the 2nd layer 13 comprised with such a constituent material.
 第2の層13の厚みT(C)は、特に限定されないが、10μm以上、100μm以下であることが好ましく、20μm以上、80μm以下であることがより好ましく、さらに好ましくは30μm以上、60μm以下である。第2の層13の厚みが前記下限値未満である場合、第2の層13の形状追従性が低下し、熱圧着工程で凸部61への追従性が低下するというおそれがある。また、第2の層13の厚みが前記上限値を超える場合、熱圧着工程において、第2の層13からの樹脂のシミ出しが多くなり、それが圧着装置の熱盤に付着し、作業性が低下するというおそれがある。 The thickness T (C) of the second layer 13 is not particularly limited, but is preferably 10 μm or more and 100 μm or less, more preferably 20 μm or more and 80 μm or less, and further preferably 30 μm or more and 60 μm or less. is there. When the thickness of the 2nd layer 13 is less than the said lower limit, there exists a possibility that the shape followable | trackability of the 2nd layer 13 may fall and the followable | trackability to the convex part 61 may fall by a thermocompression bonding process. In addition, when the thickness of the second layer 13 exceeds the upper limit, in the thermocompression bonding step, resin stain from the second layer 13 increases, and it adheres to the heating platen of the crimping apparatus, thereby improving workability. May decrease.
 また、第2の層13の25~150℃における平均線膨張係数は、400以上[ppm/℃]であるのが好ましく、800以上[ppm/℃]であるのがより好ましい。第2の層13の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第2の層13は、第3の層12と比較してより優れた伸縮性を容易に有する。そのため、第2の層13、さらには電磁波遮断層3の凹凸6に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 400 or more [ppm / ° C.], more preferably 800 or more [ppm / ° C.]. By setting the average linear expansion coefficient of the second layer 13 within such a range, the second layer 13 is more elastic than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Has the property easily. Therefore, the shape followability of the second layer 13 and the electromagnetic wave shielding layer 3 with respect to the unevenness 6 can be improved more reliably.
 なお、各層11~13の平均線膨張係数を、それぞれ、前述した範囲内において適宜設定することで、基材層1の150℃における貯蔵弾性率を2.0E+05~5.0E+08Paの範囲内に容易に設定することができる。 It should be noted that the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 5.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
 また、第1の層11の厚みT(A)と、第3の層12の厚みT(B)と、第2の層13の厚みT(C)とは、例えば、次の関係式を満たすことが好ましく、
0.05<T(C)/(T(A)+T(B))<10、
次の関係式を満たすことがより好ましく、
0.14<T(C)/(T(A)+T(B))<4、
さらに好ましくは次の関係式を満たすことである、
0.3<T(C)/(T(A)+T(B))<1.5。
The thickness T (A) of the first layer 11, the thickness T (B) of the third layer 12, and the thickness T (C) of the second layer 13 satisfy the following relational expression, for example. Preferably
0.05 <T (C) / (T (A) + T (B)) <10,
More preferably, the following relational expression is satisfied:
0.14 <T (C) / (T (A) + T (B)) <4,
More preferably, the following relational expression is satisfied:
0.3 <T (C) / (T (A) + T (B)) <1.5.
 第1の層11の厚みT(A)と、第3の層12の厚みT(B)と、第2の層13の厚みT(C)とが、前記関係式を満たすことにより、形状追従性がより向上する。 When the thickness T (A) of the first layer 11, the thickness T (B) of the third layer 12, and the thickness T (C) of the second layer 13 satisfy the relational expression, the shape follows. More improved.
 基材層1の全体の厚みT(F)は、特に限定されないが、20μm以上、300μm以下であることが好ましく、40μm以上、220μm以下であることがより好ましく、さらに好ましくは70μm以上、160μm以下である。基材層1の全体の厚みが前記下限値未満である場合、第1の層11が破断し、基材層1の離型性が低下するというおそれがある。また、基材層1の全体の厚みが前記上限値を超える場合、基材層1の形状追従性が低下し、電磁波遮断層3の形状追従性が低下するというおそれがある。 The total thickness T (F) of the base material layer 1 is not particularly limited, but is preferably 20 μm or more and 300 μm or less, more preferably 40 μm or more and 220 μm or less, and further preferably 70 μm or more and 160 μm or less. It is. When the whole thickness of the base material layer 1 is less than the said lower limit, the 1st layer 11 may fracture | rupture and there exists a possibility that the releasability of the base material layer 1 may fall. Moreover, when the whole thickness of the base material layer 1 exceeds the said upper limit, there exists a possibility that the shape followability of the base material layer 1 may fall and the shape followability of the electromagnetic wave shielding layer 3 may fall.
<電磁波遮断層3>
 次に、電磁波遮断層(遮断層)3について説明する。
<Electromagnetic wave blocking layer 3>
Next, the electromagnetic wave blocking layer (blocking layer) 3 will be described.
 電磁波遮断層3は、基板5上に設けられた電子部品4(凸部61)と、この電磁波遮断層3を介して、基板5(電子部品4)と反対側に位置する他の電子部品等との少なくとも一方から生じる電磁波を遮断(シールド)する機能を有する。 The electromagnetic wave shielding layer 3 includes an electronic component 4 (convex portion 61) provided on the substrate 5, and other electronic components located on the opposite side of the substrate 5 (electronic component 4) via the electromagnetic wave shielding layer 3. And has a function of shielding (shielding) electromagnetic waves generated from at least one of the above.
 この電磁波遮断層3は、特に限定されず、如何なる形態で電磁波を遮断するものであってもよく、例えば、電磁波遮断層3に入射する電磁波を反射させることにより遮断(遮蔽)する反射層と、電磁波遮断層3に入射した電磁波を吸収することにより遮断(遮蔽)する吸収層とが挙げられる。 The electromagnetic wave shielding layer 3 is not particularly limited, and may be any type of electromagnetic wave shielding material. For example, a reflection layer that shields (shields) the electromagnetic wave incident on the electromagnetic wave shielding layer 3 by reflecting the electromagnetic wave, And an absorption layer that blocks (shields) the electromagnetic wave incident on the electromagnetic wave blocking layer 3 by absorbing the electromagnetic wave.
 以下、反射層および吸収層について、それぞれ、説明する。
 反射層は、上述のとおり、反射層に入射する電磁波を反射させることにより遮断するものである。
Hereinafter, each of the reflective layer and the absorbing layer will be described.
As described above, the reflection layer blocks the electromagnetic wave incident on the reflection layer by reflecting it.
 この反射層としては、例えば、導電性接着剤層、金属薄膜層、金属メッシュ、ITOなどの導電性材料の表面処理を施した層等が挙げられる。これらを単独あるいは併用してもよい。これらの中でも、導電性接着剤層を用いることが好ましい。導電性接着剤層は、その膜厚(厚み)を比較的薄く設定したとしても、優れた電磁波シールド性を発揮するため、反射層として好ましく用いられる。 Examples of the reflective layer include a conductive adhesive layer, a metal thin film layer, a metal mesh, a layer subjected to surface treatment of a conductive material such as ITO, and the like. These may be used alone or in combination. Among these, it is preferable to use a conductive adhesive layer. The conductive adhesive layer is preferably used as a reflective layer because it exhibits excellent electromagnetic shielding properties even when its film thickness (thickness) is set to be relatively thin.
 前記導電性接着剤層としては、金属粉とバインダー樹脂とを含んで構成される。金属粉は、例えば、金、銀、銅または銀コート銅、ニッケル等が挙げられる。これらの中でも、電磁波シールド性に優れているという理由から、銀を用いることが好ましい。 The conductive adhesive layer includes metal powder and a binder resin. Examples of the metal powder include gold, silver, copper, silver-coated copper, and nickel. Among these, it is preferable to use silver because it has excellent electromagnetic shielding properties.
 前記導電性接着剤層における金属粉とバインダー樹脂との含有比率は、特に制限されないが、重量比で40:60~90:10であることが好ましく、50:50~80:20であることがより好ましく、さらには55:45~70:30であることが好ましい。金属粉とバインダー樹脂との含有比率が前記下限値未満である場合、導電性の発現が困難になるおそれがある。また、金属粉とバインダー樹脂との含有比率が前記上限値を超える場合、可撓性や電子機器部品との密着性が低下するおそれがある。 The content ratio of the metal powder and the binder resin in the conductive adhesive layer is not particularly limited, but is preferably 40:60 to 90:10, and preferably 50:50 to 80:20 by weight. More preferably, it is preferably 55:45 to 70:30. When the content ratio of the metal powder and the binder resin is less than the lower limit, it may be difficult to develop conductivity. Moreover, when the content ratio of metal powder and binder resin exceeds the said upper limit, there exists a possibility that flexibility and adhesiveness with an electronic device component may fall.
 前記導電性接着剤層は、前記金属粉とバインダー樹脂との他に、さらに難燃剤、レベリング剤、粘度調整剤等を含有しても良い。 The conductive adhesive layer may further contain a flame retardant, a leveling agent, a viscosity modifier and the like in addition to the metal powder and the binder resin.
 反射層の厚みT(E1)は、特に限定されないが、5μm以上、100μm以下であることが好ましく、8μm以上、50μm以下であることがより好ましく、さらに好ましくは10μm以上、30μm以下である。反射層の厚みが前記下限値未満である場合、反射層の構成材料等によっては耐ハゼ折り性が低下し、搭載部品が端部で破断するおそれがある。反射層の厚みが前記上限値を超える場合、反射層の構成材料等によっては形状追従性が低下するおそれがある。また、かかる範囲内に反射層の厚みT(E1)を設定すると、優れた電磁波シールド性を発揮させることができる。そのため、反射層の厚みT(E1)の薄膜化を実現すること、ひいては、電磁波遮断層(反射層)3で被覆された電子部品4が搭載された基板5の軽量化を実現することができる。 The thickness T (E1) of the reflective layer is not particularly limited, but is preferably 5 μm or more and 100 μm or less, more preferably 8 μm or more and 50 μm or less, and further preferably 10 μm or more and 30 μm or less. When the thickness of the reflective layer is less than the lower limit value, depending on the constituent material of the reflective layer, the goblet folding resistance may be reduced, and the mounted component may be broken at the end. When the thickness of the reflective layer exceeds the upper limit, the shape following property may be lowered depending on the constituent material of the reflective layer. Moreover, if the thickness T (E1) of the reflective layer is set within such a range, excellent electromagnetic shielding properties can be exhibited. Therefore, it is possible to reduce the thickness of the reflective layer T (E1), and thus to reduce the weight of the substrate 5 on which the electronic component 4 covered with the electromagnetic wave shielding layer (reflective layer) 3 is mounted. .
 吸収層は、上述のとおり、吸収層に入射した電磁波を吸収し、電磁波エネルギーを熱エネルギーに変換することにより、電磁波を遮断するものである。 As described above, the absorbing layer absorbs the electromagnetic wave incident on the absorbing layer and converts the electromagnetic wave energy into thermal energy, thereby blocking the electromagnetic wave.
 この吸収層としては、例えば、金属粉および導電性高分子材料等の導電吸収材料を主材料として構成される導電吸収層、炭素系材料および導電性高分子材料等の誘電吸収材料を主材料として構成される誘電吸収層、軟磁性金属等の磁性吸収材料を主材料として構成される磁性吸収層等が挙げられ、これらを単独あるいは併用してもよい。 As this absorption layer, for example, a conductive absorption layer composed mainly of a conductive absorption material such as metal powder and a conductive polymer material, and a dielectric absorption material such as a carbon-based material and a conductive polymer material as a main material. Examples thereof include a dielectric absorption layer, a magnetic absorption layer composed mainly of a magnetic absorption material such as a soft magnetic metal, and these may be used alone or in combination.
 なお、導電吸収層は、電界を印加した際に材料内部に流れる電流により、電磁エネルギーを熱エネルギーに変換することで、電磁波を吸収する。誘電吸収層は、電磁波のエネルギーを誘電損失により熱エネルギーに変換することで、電磁波を吸収する。磁性吸収層は、過電流損、ヒステレス損、磁気共鳴等の磁性損失により、電波のエネルギーを熱に変換して消費することで、電磁波を吸収する。 Note that the conductive absorption layer absorbs electromagnetic waves by converting electromagnetic energy into heat energy by a current flowing inside the material when an electric field is applied. A dielectric absorption layer absorbs electromagnetic waves by converting the energy of electromagnetic waves into thermal energy by dielectric loss. The magnetic absorption layer absorbs electromagnetic waves by converting and consuming radio wave energy into heat due to magnetic losses such as overcurrent loss, hysteresis loss, and magnetic resonance.
 これらの中でも、誘電吸収層、導電吸収層を用いることが好ましい。誘電吸収層および導電吸収層は、その膜厚(厚み)を比較的薄く設定したとしても、特に優れた電磁波シールド性を発揮する。そのため、吸収層として好ましく用いられる。また、その層中に含まれる材料の粒子径が小さいことやその添加量も少なくできることから、その膜厚を比較的容易に薄く設定することができ、また軽量化も可能である。 Among these, it is preferable to use a dielectric absorption layer and a conductive absorption layer. Even if the film thickness (thickness) is set to be relatively thin, the dielectric absorption layer and the conductive absorption layer exhibit particularly excellent electromagnetic wave shielding properties. Therefore, it is preferably used as an absorption layer. In addition, since the particle size of the material contained in the layer is small and the amount of addition can be reduced, the film thickness can be set relatively easily and the weight can be reduced.
 なお、導電吸収材料としては、例えば、導電性高分子、ATO等の金属酸化物、導電性セラミックスが挙げられる。 Note that examples of the conductive absorbing material include conductive polymers, metal oxides such as ATO, and conductive ceramics.
 また、導電性高分子としては、例えば、ポリアセチレン、ポリピロール、PEDOT(poly-ethylenedioxythiophene)、PEDOT/PSS、ポリチオフェン、ポリアニリン、ポリ(p-フェニレン)、ポリフルオレン、ポリカルバゾール、ポリシランまたはこれらの誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the conductive polymer include polyacetylene, polypyrrole, PEDOT (poly-ethylenedithiothiophene), PEDOT / PSS, polythiophene, polyaniline, poly (p-phenylene), polyfluorene, polycarbazole, polysilane, and derivatives thereof. 1 type or 2 types or more of these can be used in combination.
 誘電吸収材料としては、炭素系材料、導電性高分子等が挙げられる。
 また、炭素系材料としては、例えば、単層カーボンナノチューブ、多層カーボンナノチューブのようなカーボンナノチューブ、カーボンナノファイバー、CNナノチューブ、CNナノファイバー、BCNナノチューブ、BCNナノファイバー、グラフェンや、カーボンマイクロコイル、カーボンナノコイル、カーボンナノホーン、カーボンナノウォールのような炭素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
Examples of the dielectric absorbing material include carbon-based materials and conductive polymers.
Examples of carbon-based materials include carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, carbon Examples thereof include carbon such as nanocoil, carbon nanohorn, and carbon nanowall, and one or more of these can be used in combination.
 さらに、磁性吸収材料としては、例えば、鉄、ケイ素鋼、磁性ステンレス(Fe-Cr-Al-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金のような軟磁性金属、フェライト等が挙げられる。 Further, examples of the magnetic absorption material include iron, silicon steel, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), silicon copper (Fe -Cu-Si alloy), Fe-Si alloy, soft magnetic metal such as Fe-Si-B (-Cu-Nb) alloy, ferrite and the like.
 吸収層の厚みT(E2)は、特に限定されないが、1μm以上、100μm以下であることが好ましく、2μm以上、80μm以下であることがより好ましく、さらに好ましくは、3μm以上、50μm以下である。吸収層の厚みが前記下限値未満である場合、吸収層の構成材料等によっては、基板搭載部品が端部で破断するおそれがある。また、吸収層の厚みが前記上限値を超える場合、吸収層の構成材料等によっては形状追従性が低下するおそれがある。また、かかる範囲内に吸収層の厚みT(E2)を設定すると、優れた電磁波シールド性を発揮させることができる。そのため、吸収層の厚みT(E2)の薄膜化を実現すること、ひいては、電磁波遮断層(吸収層)3で被覆された電子部品4が搭載された基板5の軽量化を実現することができる。 The thickness T (E2) of the absorbing layer is not particularly limited, but is preferably 1 μm or more and 100 μm or less, more preferably 2 μm or more and 80 μm or less, and further preferably 3 μm or more and 50 μm or less. When the thickness of the absorbent layer is less than the lower limit, depending on the constituent material of the absorbent layer, the board-mounted component may be broken at the end. Moreover, when the thickness of an absorption layer exceeds the said upper limit, there exists a possibility that shape followability may fall depending on the constituent material etc. of an absorption layer. Moreover, when the thickness T (E2) of the absorption layer is set within such a range, excellent electromagnetic shielding properties can be exhibited. Therefore, it is possible to reduce the thickness T (E2) of the absorption layer and to reduce the weight of the substrate 5 on which the electronic component 4 covered with the electromagnetic wave blocking layer (absorption layer) 3 is mounted. .
 以上のような電磁波遮断層3は、電磁波を遮断(シールド)する電磁波シールド性が5dB以上であるのが好ましく、30dB以上であるのがより好ましく、50dB以上であるのがさらに好ましい。このような電磁波シールド性を有する電磁波遮断層3は、優れた電磁波シールド性を有し、電磁波をより確実に遮断することができる。 The electromagnetic wave shielding layer 3 as described above preferably has an electromagnetic wave shielding property for shielding (shielding) an electromagnetic wave of 5 dB or more, more preferably 30 dB or more, and further preferably 50 dB or more. The electromagnetic wave shielding layer 3 having such an electromagnetic wave shielding property has an excellent electromagnetic wave shielding property, and can more reliably block electromagnetic waves.
 また、電磁波遮断層3は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。前記貯蔵弾性率をかかる範囲内に設定することにより、貼付工程において、電磁波シールド用フィルム100の加熱の後、基材層1からの押圧力により、基板5上の凹部62に電磁波遮断層3を押し込むことで、この凸部61を被覆する際に、前記基材層1からの押圧力に応じて、電磁波遮断層3を凸部61の形状に対応して変形させることができる。すなわち、電磁波遮断層3の凸部61に対する形状追従性を向上させることができる。 The electromagnetic wave shielding layer 3 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa. By setting the storage elastic modulus within such a range, the electromagnetic wave shielding layer 3 is formed in the recess 62 on the substrate 5 by the pressing force from the base material layer 1 after the heating of the electromagnetic wave shielding film 100 in the attaching step. The electromagnetic wave shielding layer 3 can be deformed corresponding to the shape of the convex portion 61 according to the pressing force from the base material layer 1 when the convex portion 61 is covered by pushing. That is, the shape followability with respect to the convex portion 61 of the electromagnetic wave shielding layer 3 can be improved.
 なお、前述のとおり、電磁波遮断層3は、反射層と吸収層とのいずれであってもよいが、それらがほぼ同一の電磁波シールド性を有する場合には、吸収層であるのが好ましい。吸収層では、吸収層に入射した電磁波を吸収し、電磁波エネルギーを熱エネルギーに変換することで電磁波を遮断する。したがって、この吸収により電磁波が消滅することから、反射層のように反射した電磁波が電磁波遮断層3で被覆されていない他の部材等に対して誤作動等の悪影響をおよぼしてしまうのを確実に防止することができる。 As described above, the electromagnetic wave shielding layer 3 may be either a reflective layer or an absorbing layer, but is preferably an absorbing layer when they have substantially the same electromagnetic shielding properties. In the absorption layer, the electromagnetic wave incident on the absorption layer is absorbed, and the electromagnetic wave is blocked by converting the electromagnetic wave energy into thermal energy. Therefore, the electromagnetic wave disappears due to this absorption, so that it is ensured that the reflected electromagnetic wave, such as the reflection layer, has an adverse effect such as malfunction on other members not covered with the electromagnetic wave blocking layer 3. Can be prevented.
 以上のような構成の電磁波シールド用フィルム100を、基板5上に電子部品4を搭載することで形成された凹部62、凸部61に、温度150℃、圧力2MPa、時間5分の条件で熱圧着した際、電磁波シールド用フィルム100の形状追従性が、500μm以上であることが好ましく、800μm以上であることがより好ましく、さらに好ましくは1000μm以上である。すなわち、凸部61の上面と凹部62の底面との差、すなわち、高さが500μm以上の凸部61を電磁波シールド用フィルム100で被覆できるのが好ましく、高さ800μm以上の凸部61を被覆できるのがより好ましく、高さ1000μm以上の凸部61を被覆できるのがさらに好ましい。このように、高さが高い凸部61(段差が大きい)を被覆できる電磁波シールド用フィルム100は、優れた形状追従性を有する。また、電磁波遮断層3により、凹部62に対して優れた埋め込み率で凸部61を被覆することができる。 The electromagnetic wave shielding film 100 having the above configuration is heated on the concave portion 62 and the convex portion 61 formed by mounting the electronic component 4 on the substrate 5 under conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes. When crimped, the shape following property of the electromagnetic wave shielding film 100 is preferably 500 μm or more, more preferably 800 μm or more, and still more preferably 1000 μm or more. That is, it is preferable that the difference between the top surface of the convex portion 61 and the bottom surface of the concave portion 62, that is, the convex portion 61 having a height of 500 μm or more can be covered with the electromagnetic wave shielding film 100, and the convex portion 61 having a height of 800 μm or more More preferably, the convex portion 61 having a height of 1000 μm or more can be covered. Thus, the electromagnetic wave shielding film 100 that can cover the convex portion 61 (having a large step) having a high height has excellent shape followability. Moreover, the convex portion 61 can be covered with the electromagnetic wave shielding layer 3 with an excellent filling rate with respect to the concave portion 62.
 なお、前記形状追従性は、以下のようにして求めることができる。
 すなわち、まず、縦100mm×横100mm×高さ2mmのプリント配線板(マザーボード)に、幅0.2mm、所定の段差の溝を、0.2mm間隔で碁盤目状に形成することにより、プリント配線基板を得る。その後、電磁波シールド用フィルムを、真空加圧式ラミネーターを用いて、150℃×2MPa×5分間の条件で、プリント配線板に圧着させ、プリント配線板に貼り付ける。貼付後、電磁波シールド用フィルムから基材層を剥離する。次に、プリント配線板に貼り付けた遮断層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察し、評価した。
The shape following property can be obtained as follows.
That is, first, a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height of 2 mm is formed by forming grooves having a width of 0.2 mm and predetermined steps in a grid pattern at intervals of 0.2 mm. Get the substrate. Then, the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board under a condition of 150 ° C. × 2 MPa × 5 minutes using a vacuum pressurizing laminator, and attached to the printed wiring board. After pasting, the base material layer is peeled from the electromagnetic wave shielding film. Next, it is determined whether or not there is a gap between the blocking layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space | gap.
 <電子部品の被覆方法>
 次に、本発明の電子部品の被覆方法について説明する。
<Method of coating electronic parts>
Next, the method for coating an electronic component according to the present invention will be described.
 本発明の電子部品の被覆方法は、前記基板上に、前記電磁波シールド用フィルムを前記電磁波遮断層と電子部品が接着するように貼付する貼付工程と、前記貼付工程の後、前記基材層を前記電磁波遮断層から剥離する剥離工程とを有することを特徴とする。 In the method for coating an electronic component according to the present invention, the electromagnetic wave shielding film is attached to the substrate so that the electromagnetic wave shielding layer and the electronic component are adhered to each other, and the base material layer is attached after the attaching step. And a peeling step for peeling from the electromagnetic wave shielding layer.
 図2は、図1に示す電磁波シールド用フィルムを用いて電子部品の被覆方法を説明するための縦断面図である。 FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
 以下、電子部品の被覆方法の各工程について、順次説明する。
(貼付工程)
 前記貼付工程とは、例えば、図2(a)に示すように、基板5上に設けられた凸部61を覆うように、電磁波シールド用フィルム100を基板5に貼付する工程である。
 貼付する方法としては、特に限定されないが、例えば、真空圧空成形法が挙げられる。
Hereafter, each process of the coating method of an electronic component is demonstrated sequentially.
(Attaching process)
The affixing step is a step of affixing the electromagnetic wave shielding film 100 to the substrate 5 so as to cover the convex portions 61 provided on the substrate 5 as shown in FIG.
The method of attaching is not particularly limited, and examples thereof include a vacuum / pressure forming method.
 真空圧空成形法とは、例えば、真空加圧式ラミネーターを用いて、電磁波シールド用フィルム100で基板5上の凸部61を被覆する方法である。まず、真空雰囲気に設定できる閉空間内に、基板5の凸部61が形成されている側の面と、電磁波シールド用フィルム100の電磁波遮断層3側の面とが対向するように、基板5と電磁波シールド用フィルム100とを重ね合わせた状態でそれらをセットする。その後、これらを加熱下において、電磁波シールド用フィルム100側から均一に電磁波シールド用フィルム100を基板5に接近させるように、前記閉空間を真空雰囲気下にする。その後、それらを加圧する。これにより、真空圧空成形法が実施される。 The vacuum / pressure forming method is a method of covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 using, for example, a vacuum pressurizing laminator. First, in the closed space that can be set to a vacuum atmosphere, the surface of the substrate 5 on which the convex portion 61 is formed and the surface of the electromagnetic wave shielding film 100 on the electromagnetic wave shielding layer 3 side face each other. And the electromagnetic wave shielding film 100 are set in a superposed state. Thereafter, under heating, the closed space is brought into a vacuum atmosphere so that the electromagnetic wave shielding film 100 is made to approach the substrate 5 uniformly from the electromagnetic wave shielding film 100 side. Thereafter, they are pressurized. Thereby, the vacuum / pressure forming method is carried out.
 この際、本発明では、基材層1の150℃における貯蔵弾性率が2.0E+05~2.0E+08Paとなっている。そのため、基材層1は、真空圧空成形法の加熱時に、凸61に対して優れた形状追従性を発揮するものとなる。 At this time, in the present invention, the storage elastic modulus at 150 ° C. of the base material layer 1 is 2.0E + 05 to 2.0E + 08 Pa. Therefore, the base material layer 1 exhibits excellent shape followability with respect to the protrusion 61 when heated by the vacuum / pressure forming method.
 したがって、この状態で、電磁波シールド用フィルム100側から電磁波シールド用フィルム100を均一に加圧しつつ、前記閉空間を真空雰囲気下とすることで、基材層1が凸部61の形状に対応して変形する。さらに、この変形に併せて、基材層1よりも基板5側に位置する、電磁波遮断層3が凸部61の形状に対応して変形する。これにより、凸部61の形状に対応して電磁波遮断層3が凹部62に押し込まれた状態で、電磁波遮断層3により凸部61が被覆される。 Therefore, in this state, the base layer 1 corresponds to the shape of the convex portion 61 by uniformly pressing the electromagnetic wave shielding film 100 from the electromagnetic wave shielding film 100 side and making the closed space under a vacuum atmosphere. And deform. Further, in conjunction with this deformation, the electromagnetic wave shielding layer 3 located closer to the substrate 5 than the base material layer 1 is deformed corresponding to the shape of the convex portion 61. Accordingly, the convex portion 61 is covered with the electromagnetic wave blocking layer 3 in a state where the electromagnetic wave blocking layer 3 is pushed into the concave portion 62 corresponding to the shape of the convex portion 61.
 このような貼付工程において、貼付する温度は、特に限定されないが、100℃以上、200℃以下であることが好ましく、より好ましくは120℃以上、180℃以下である。 In such a pasting step, the temperature for pasting is not particularly limited, but is preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 180 ° C. or lower.
 また、貼付する圧力は、特に限定されないが、0.5MPa以上、5.0MPa以下であることが好ましく、より好ましくは1.0MPa以上、3.0MPa以下である。 The pressure to be applied is not particularly limited, but is preferably 0.5 MPa or more and 5.0 MPa or less, more preferably 1.0 MPa or more and 3.0 MPa or less.
 さらに、貼付する時間は、特に限定されないが、1分以上、30分以下であることが好ましく、より好ましくは5分以上、15分以下である。 Furthermore, the sticking time is not particularly limited, but is preferably 1 minute or more and 30 minutes or less, more preferably 5 minutes or more and 15 minutes or less.
 貼付工程における条件を上記範囲内に設定することにより、基板5上の凹部62に対して電磁波遮断層3を押し込んだ状態で、この電磁波遮断層3で凸部61を確実に被覆することができる。 By setting the conditions in the pasting step within the above range, the electromagnetic wave shielding layer 3 can be reliably covered with the electromagnetic wave shielding layer 3 while the electromagnetic wave shielding layer 3 is pushed into the concave part 62 on the substrate 5. .
(剥離工程)
 前記剥離工程とは、例えば、図2(b)に示すように、前記貼付工程の後、基材層1を電磁波シールド用フィルム100から剥離する工程である。
(Peeling process)
The said peeling process is a process of peeling the base material layer 1 from the film 100 for electromagnetic wave shields after the said sticking process, for example, as shown in FIG.2 (b).
 この剥離工程により、本実施形態では、電磁波シールド用フィルム100における基材層1と電磁波遮断層3との界面において、剥離が生じ、その結果、電磁波遮断層3から基材層1が剥離される。これにより、電磁波遮断層3から基材層1を剥離した状態で、電磁波遮断層3により凸部61が被覆される。 By this peeling step, in this embodiment, peeling occurs at the interface between the base material layer 1 and the electromagnetic wave shielding layer 3 in the electromagnetic wave shielding film 100, and as a result, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3. . Thus, the convex portion 61 is covered with the electromagnetic wave shielding layer 3 in a state where the base material layer 1 is peeled from the electromagnetic wave shielding layer 3.
 なお、このような電磁波シールド用フィルム100を用いた電磁波遮断層3による凸部61の被覆では、図2に示したように、貼付する電磁波シールド用フィルム100の形状に対応して、凸部61を電磁波遮断層3で被覆することができる。そのため、被覆すべき凸部61の形状に対応して電磁波シールド用フィルム100の形状を適宜設定することにより、被覆すべき凸部61を選択的に電磁波遮断層3で被覆することができる。すなわち、電磁波遮断層3による凸部61の選択的な電磁波シールドが可能となる。 In addition, in covering of the convex part 61 by the electromagnetic wave shielding layer 3 using such an electromagnetic wave shielding film 100, as shown in FIG. 2, the convex part 61 corresponds to the shape of the electromagnetic wave shielding film 100 to be attached. Can be covered with the electromagnetic wave shielding layer 3. Therefore, by appropriately setting the shape of the electromagnetic wave shielding film 100 corresponding to the shape of the convex portion 61 to be covered, the convex portion 61 to be covered can be selectively covered with the electromagnetic wave shielding layer 3. That is, the electromagnetic wave shielding layer 3 can selectively shield the convex portion 61 from electromagnetic waves.
 また、基材層1を剥離する方法としては、特に限定されないが、真空圧空成形法が完了した(上記の貼付工程)後の電磁波シールド用フィルム100が高温の状態では、基材層1が伸びてしまい、樹脂残り等が発生し、剥離作業性が低下する可能性があるので、手作業による剥離が挙げられる。 In addition, the method for peeling the base material layer 1 is not particularly limited, but the base material layer 1 is stretched when the electromagnetic wave shielding film 100 after the completion of the vacuum / pressure forming method (the pasting step) is at a high temperature. As a result, a resin residue or the like is generated, and the peeling workability may be lowered.
 この手作業による剥離では、例えば、まず、基材層1の一方の端部を把持する。次に、この把持した端部を起点に、基材層1を電磁波遮断層3から引き剥がす。次いで、この端部から基材層1の中央部へ、さらには基材層1の他方の端部へと、順次基材層1を電磁波遮断層3から引き剥がす。そうすることにより、電磁波遮断層3から基材層1が剥離される。 In this manual peeling, for example, first, one end of the base material layer 1 is gripped. Next, the base material layer 1 is peeled off from the electromagnetic wave shielding layer 3 with the gripped end as a starting point. Next, the base material layer 1 is sequentially peeled off from the electromagnetic wave shielding layer 3 from this end portion to the central portion of the base material layer 1 and further to the other end portion of the base material layer 1. By doing so, the base material layer 1 is peeled from the electromagnetic wave shielding layer 3.
 剥離する温度は、180℃以下であることが好ましく、より好ましくは150℃以下、さらに好ましくは100℃以下である。 The peeling temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
 以上のような工程を経ることにより、電磁波遮断層3から基材層1を剥離した状態で、電磁波遮断層3により凸部61を被覆することができる。 By passing through the above processes, the convex part 61 can be coat | covered with the electromagnetic wave shielding layer 3 in the state which peeled the base material layer 1 from the electromagnetic wave shielding layer 3. FIG.
 なお、本実施形態では、図1に示したように、基材層1(第1の層11、第2の層13、第3の層12)、電磁波遮断層3がこの順で積層された電磁波シールド用フィルム100を用いて、電磁波遮断層3で、基板5上の凸部61を被覆する場合について説明した。しかし、電磁波シールド用フィルム100の層構成は、かかる場合に限定されず、例えば、以下に示すような第2~第12実施形態のような層構成をなしている電磁波シールド用フィルム100であってもよい。 In the present embodiment, as shown in FIG. 1, the base material layer 1 (first layer 11, second layer 13, third layer 12) and electromagnetic wave shielding layer 3 are laminated in this order. The case where the convex portion 61 on the substrate 5 is covered with the electromagnetic wave shielding layer 3 using the electromagnetic wave shielding film 100 has been described. However, the layer configuration of the electromagnetic wave shielding film 100 is not limited to such a case. For example, the electromagnetic wave shielding film 100 has a layer configuration as shown in the second to twelfth embodiments as described below. Also good.
 <第2実施形態>
 以下、本発明の電磁波シールド用フィルムの第2実施形態について説明する。
Second Embodiment
Hereinafter, 2nd Embodiment of the film for electromagnetic wave shielding of this invention is described.
 図3は、本発明の電磁波シールド用フィルムの第2実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図3中の上側を「上」、下側を「下」と言う。 FIG. 3 is a longitudinal sectional view showing a second embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図3に示す電磁波シールド用フィルム100について説明するが、図1に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 3 will be described, but the description will be centered on differences from the electromagnetic wave shielding film 100 shown in FIG. 1, and description of similar matters will be omitted.
 図3に示す電磁波シールド用フィルム100では、基材層1が備える第1の層11の形成が省略されていること以外は、図1に示した電磁波シールド用フィルム100と同様である。 3 is the same as the electromagnetic wave shielding film 100 shown in FIG. 1 except that the formation of the first layer 11 included in the base material layer 1 is omitted.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第2の層13、第3の層12からなる基材層1と電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 is a laminate in which the base material layer 1 composed of the second layer 13 and the third layer 12 and the electromagnetic wave shielding layer 3 are laminated in this order. Yes.
 かかる構成の電磁波シールド用フィルム100では、貼付工程において、基板5上の凹部62に電磁波遮断層3を押し込む際に用いられる真空加圧式ラミネーター等が有する押圧部が、第2の層13との離型性を備えており、これにより、第1の層11の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, the pressing portion of the vacuum pressurizing laminator or the like used when the electromagnetic wave shielding layer 3 is pushed into the concave portion 62 on the substrate 5 in the attaching step is separated from the second layer 13. It has moldability, whereby the formation of the first layer 11 is omitted.
 この場合、前記押圧部の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みプロセスの後に、第2の層13から押圧部を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the pressing portion can be reliably peeled from the second layer 13 after the pressing process using a vacuum pressurizing laminator or the like.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 <第3実施形態>
 次に、本発明の電磁波シールド用フィルムの第3実施形態について説明する。
<Third Embodiment>
Next, a third embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図4は、本発明の電磁波シールド用フィルムの第3実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図4中の上側を「上」、下側を「下」と言う。 FIG. 4 is a longitudinal sectional view showing a third embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 4 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図4に示す電磁波シールド用フィルム100について説明するが、図1に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 4 will be described, but the description will be centered on differences from the electromagnetic wave shielding film 100 shown in FIG. 1, and description of similar matters will be omitted.
 図4に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略されていること以外は、図1に示した電磁波シールド用フィルム100と同様である。 4 is the same as the electromagnetic wave shielding film 100 shown in FIG. 1 except that the formation of the third layer 12 included in the base material layer 1 is omitted.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in the present embodiment, the electromagnetic wave shielding film 100 is a laminated body in which the base material layer 1 including the first layer 11 and the second layer 13 and the electromagnetic wave shielding layer 3 are laminated in this order. ing.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を電磁波遮断層3から剥離する際に、第2の層13と電磁波遮断層3との界面において基材層1が電磁波遮断層3から剥離される。このような剥離では、電磁波遮断層3が第2の層13との離型性を備えており、これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
 この場合、電磁波遮断層3の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みプロセスの後に、電磁波遮断層3から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after the pressing process using a vacuum pressurizing laminator or the like.
 このような、表面張力を有する電磁波遮断層3としては、例えば、導電性高分子やカーボン系材料をポリウレタンのような熱硬化性樹脂に分散させた樹脂等が挙げられる。 Examples of such an electromagnetic wave shielding layer 3 having surface tension include a resin in which a conductive polymer or a carbon-based material is dispersed in a thermosetting resin such as polyurethane.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 <第4実施形態>
 次に、本発明の電磁波シールド用フィルムの第4実施形態について説明する。
<Fourth embodiment>
Next, a fourth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図5は、本発明の電磁波シールド用フィルムの第4実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図5中の上側を「上」、下側を「下」と言う。 FIG. 5 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図5に示す電磁波シールド用フィルム100について説明するが、図1に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 5 will be described, but the description will be centered on differences from the electromagnetic wave shielding film 100 shown in FIG. 1, and description of similar matters will be omitted.
 図5に示す電磁波シールド用フィルム100では、電磁波遮断層3が単層構成ではなく、吸収層31および反射層32からなる積層体をなし、それらは、基材層1の下面(一方の面)側からその順序で積層され、吸収層31が基材層1(第3の層12)に接触していること以外は、図1に示した電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 5, the electromagnetic wave shielding layer 3 is not a single layer structure but a laminated body composed of an absorption layer 31 and a reflective layer 32, which are the lower surface (one surface) of the base material layer 1. It is the same as that of the electromagnetic wave shielding film 100 shown in FIG. 1 except that the layers are laminated in that order from the side and the absorbing layer 31 is in contact with the base material layer 1 (third layer 12).
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、吸収層31、反射層32からなる遮断層3とが、この順で積層された積層体をなしている。このような積層体で構成された、遮断層3を備える電磁波シールド用フィルム100を用いて基板5上の凸部61を被覆することで、吸収層31を凸部61に対して反射層32の反対側に、反射層32を凸部61に接触する側に配置した状態で、凸部61が電磁波遮断層3で被覆される。このように、本実施形態では、遮断層3が吸収層31と、反射層32とからなる積層体で構成されるため、電磁波遮断層3による電磁波シールド性をより向上させることができる。 That is, in the present embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, and the blocking layer including the absorption layer 31 and the reflection layer 32. 3 is a laminated body laminated in this order. By covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 including the blocking layer 3, which is configured by such a laminate, the absorbing layer 31 is formed on the reflective layer 32 with respect to the convex portion 61. On the opposite side, the convex portion 61 is covered with the electromagnetic wave shielding layer 3 in a state where the reflective layer 32 is disposed on the side in contact with the convex portion 61. Thus, in this embodiment, since the shielding layer 3 is composed of a laminated body including the absorption layer 31 and the reflective layer 32, the electromagnetic wave shielding property by the electromagnetic wave shielding layer 3 can be further improved.
 また、かかる構成の電磁波遮断層3において、吸収層31は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。 Further, in the electromagnetic wave shielding layer 3 having such a configuration, the absorption layer 31 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa. .
 さらに、反射層32は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。 Further, the reflective elastic layer 32 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa.
 上記のような順で積層される吸収層31および反射層32における貯蔵弾性率を、それぞれ、前記範囲内に設定することにより、前記基材層1からの押圧力に応じて、吸収層31および反射層32を備える電磁波遮断層3を凸部61の形状に対応してより確実に変形させることができる。 By setting the storage elastic modulus in the absorption layer 31 and the reflection layer 32 laminated in the order as described above within the ranges, respectively, the absorption layer 31 and the absorption layer 31 according to the pressing force from the base material layer 1 The electromagnetic wave shielding layer 3 including the reflective layer 32 can be more reliably deformed corresponding to the shape of the convex portion 61.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 <第5実施形態>
 次に、本発明の電磁波シールド用フィルムの第5実施形態について説明する。
<Fifth Embodiment>
Next, a fifth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図6は、本発明の電磁波シールド用フィルムの第5実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図6中の上側を「上」、下側を「下」と言う。 FIG. 6 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of description, the upper side in FIG. 6 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図6に示す電磁波シールド用フィルム100について説明するが、図1に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 6 will be described, but the description will be centered on differences from the electromagnetic wave shielding film 100 shown in FIG. 1, and description of similar matters will be omitted.
 図6に示す電磁波シールド用フィルム100では、電磁波遮断層3が単層構成ではなく、反射層32および吸収層31からなる積層体をなし、それらは、基材層1の下面(一方の面)側からその順序で積層され、反射層32が基材層1(第3の層12)に接触していること以外は、図1に示した電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 6, the electromagnetic wave shielding layer 3 is not a single layer structure but a laminated body composed of a reflective layer 32 and an absorbing layer 31, and these are the lower surface (one surface) of the base material layer 1. It is the same as that of the electromagnetic wave shielding film 100 shown in FIG. 1 except that the layers are laminated in that order from the side and the reflective layer 32 is in contact with the base material layer 1 (third layer 12).
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、反射層32、吸収層31からなる遮断層3とが、この順で積層された積層体をなしている。このような積層体で構成された、遮断層3を備える電磁波シールド用フィルム100を用いて基板5上の凸部61を被覆することで、反射層32を凸部61に対して吸収層31の反対側に、吸収層31を凸部61に接触する側に配置した状態で、凸部61が電磁波遮断層3で被覆される。このように、本実施形態では、遮断層3が反射層32と、吸収層31とからなる積層体で構成されるため、電磁波遮断層3による電磁波シールド性をより向上させることができる。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, and the blocking layer including the reflection layer 32 and the absorption layer 31. 3 is a laminated body laminated in this order. By covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 including the blocking layer 3, which is configured by such a laminate, the reflective layer 32 of the absorbing layer 31 is made to the convex portion 61. On the opposite side, the convex portion 61 is covered with the electromagnetic wave blocking layer 3 in a state where the absorption layer 31 is disposed on the side in contact with the convex portion 61. Thus, in this embodiment, since the shielding layer 3 is composed of a laminate composed of the reflective layer 32 and the absorbing layer 31, the electromagnetic wave shielding property by the electromagnetic wave shielding layer 3 can be further improved.
 また、かかる構成の遮断層3において、反射層32は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。 In the blocking layer 3 having such a configuration, the reflective layer 32 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, more preferably 5.0E + 05 to 5.0E + 08 Pa.
 さらに、吸収層31は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。 Furthermore, the storage layer 31 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa.
 上記のような順で積層される反射層32および吸収層31における貯蔵弾性率を、それぞれ、前記範囲内に設定することにより、前記基材層1からの押圧力に応じて、反射層32および吸収層31を備える遮断層3を凸部61の形状に対応してより確実に変形させることができる。 By setting the storage elastic modulus in the reflecting layer 32 and the absorbing layer 31 laminated in the order as described above within the above range, the reflecting layer 32 and the reflecting layer 32 and the absorbing layer 31 are set according to the pressing force from the base material layer 1. The blocking layer 3 including the absorption layer 31 can be more reliably deformed corresponding to the shape of the convex portion 61.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 なお、前記第4実施形態の電磁波シールド用フィルム100と、前記第5実施形態の電磁波シールド用フィルム100とでは、遮断層3が有する反射層32と吸収層31との積層順序が異なること以外は、互いに同一である。前述のとおり、吸収層31は、吸収層31に入射した電磁波を吸収することで電磁波を遮断するため、この吸収により電磁波が消滅する。このことから、第4実施形態の電磁波シールド用フィルム100は、反射層32で反射した電磁波が遮断層3で被覆されていない他の部材等に対して悪影響をおよぼしてしまうのを確実に防止することができるという利点を有する。そのため、これら第4および第5実施形態の電磁波シールド用フィルム100では、吸収層31を凸部61に対して反射層32の反対側に位置する第4実施形態の電磁波シールド用フィルム100とするのが好ましい。 The electromagnetic wave shielding film 100 of the fourth embodiment and the electromagnetic wave shielding film 100 of the fifth embodiment are different except that the order of lamination of the reflective layer 32 and the absorbing layer 31 of the blocking layer 3 is different. Are identical to each other. As described above, the absorption layer 31 absorbs the electromagnetic wave incident on the absorption layer 31 and blocks the electromagnetic wave, so that the electromagnetic wave disappears due to this absorption. From this, the electromagnetic wave shielding film 100 of the fourth embodiment reliably prevents the electromagnetic wave reflected by the reflective layer 32 from adversely affecting other members not covered by the blocking layer 3. Has the advantage of being able to. Therefore, in the electromagnetic wave shielding film 100 of the fourth and fifth embodiments, the absorbing layer 31 is the electromagnetic wave shielding film 100 of the fourth embodiment positioned on the opposite side of the reflective layer 32 with respect to the convex portion 61. Is preferred.
 また、前記第4実施形態の電磁波シールド用フィルム100と、前記第5実施形態の電磁波シールド用フィルム100とでは、遮断層3を反射層32と吸収層31とをそれぞれ1層ずつ備える2層構成の積層体とした。しかし、遮断層3は、このような2層構成の積層体に限らず、少なくとも反射層32と吸収層31とのうちのいずれか一方を2層以上備える、3層以上の積層体で構成されていてもよい。 Moreover, in the electromagnetic wave shielding film 100 of the fourth embodiment and the electromagnetic wave shielding film 100 of the fifth embodiment, a two-layer configuration in which the blocking layer 3 includes one reflection layer 32 and one absorption layer 31 each. It was set as the laminated body of. However, the blocking layer 3 is not limited to such a two-layer structure, and is formed of a three-layer structure including at least one of the reflective layer 32 and the absorption layer 31. It may be.
 <第6実施形態>
 次に、本発明の電磁波シールド用フィルムの第6実施形態について説明する。
 図7は、本発明の電磁波シールド用フィルムの第6実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図7中の上側を「上」、下側を「下」と言う。
<Sixth Embodiment>
Next, a sixth embodiment of the electromagnetic wave shielding film of the present invention will be described.
FIG. 7 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図7に示す電磁波シールド用フィルム100について説明するが、図1に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。
 図7に示す電磁波シールド用フィルム100では、基材層1と電磁波遮断層3との間に絶縁層2が形成されていること以外は、図1に示した電磁波シールド用フィルム100と同様である。
Hereinafter, although the electromagnetic wave shielding film 100 shown in FIG. 7 will be described, differences from the electromagnetic wave shielding film 100 shown in FIG. 1 will be mainly described, and description of similar matters will be omitted.
The electromagnetic wave shielding film 100 shown in FIG. 7 is the same as the electromagnetic wave shielding film 100 shown in FIG. 1 except that the insulating layer 2 is formed between the base material layer 1 and the electromagnetic wave shielding layer 3. .
 すなわち、図7に示すように、本実施形態において、電磁波シールド用フィルム100は、基材層1と、絶縁層2と、電磁波遮断層3とを含んで構成されている。絶縁層2および電磁波遮断層3は、基材層1の下面(一方の面)側からこの順で積層され、絶縁層2が基材層1に接触している。 That is, as shown in FIG. 7, in the present embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1, the insulating layer 2, and the electromagnetic wave shielding layer 3. The insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the lower surface (one surface) side of the base material layer 1, and the insulating layer 2 is in contact with the base material layer 1.
 <基材層1>
 まず、図1に示す電磁波シールド用フィルム100の基材層1との相違点について説明する。
<Base material layer 1>
First, the difference between the electromagnetic wave shielding film 100 shown in FIG. 1 and the base material layer 1 will be described.
 なお、基材層1の150℃における貯蔵弾性率は、2.0E+05~2.0E+08Paとなっていればよいが、1.0E+06~1.0E+08Paであるのが好ましく、3.0E+06~6.0E+07Paであるのがより好ましい。これにより、前記効果をより顕著に発揮させることができる。 The storage elastic modulus of the base material layer 1 at 150 ° C. may be 2.0E + 05 to 2.0E + 08 Pa, but is preferably 1.0E + 06 to 1.0E + 08 Pa, and preferably 3.0E + 06 to 6.0E + 07 Pa. It is more preferable that Thereby, the said effect can be exhibited more notably.
 また、第1の層11の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。第1の層11の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第1の層11は、優れた伸縮性を有するものとなるため、電磁波遮断層3および絶縁層2の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the first layer 11 within such a range, the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. The shape followability with respect to the convex part 61 of the layer 3 and the insulating layer 2 can be improved more reliably.
 また、第3の層12の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。第3の層12の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第3の層12は、優れた伸縮性を有するものとなるため、第3の層12、さらには電磁波遮断層3および絶縁層2の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], and more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the third layer 12 within this range, the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. It is possible to more reliably improve the shape followability of the layer 12 and the electromagnetic wave shielding layer 3 and the convex portion 61 of the insulating layer 2.
 また、第2の層13の25~150℃における平均線膨張係数は、500以上[ppm/℃]であるのが好ましく、1000以上[ppm/℃]であるのがより好ましい。第2の層13の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第2の層13は、第3の層12と比較してより優れた伸縮性を容易に有する。そのため、第2の層13、さらには電磁波遮断層3および絶縁層2の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 500 or more [ppm / ° C.], more preferably 1000 or more [ppm / ° C.]. By setting the average linear expansion coefficient of the second layer 13 within such a range, the second layer 13 is more elastic than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Has the property easily. Therefore, the shape followability of the second layer 13 and further the electromagnetic wave shielding layer 3 and the convex portion 61 of the insulating layer 2 can be improved more reliably.
 なお、各層11~13の平均線膨張係数を、それぞれ、前述した範囲内において適宜設定することで、基材層1の150℃における貯蔵弾性率を2.0E+05~2.0E+08Paの範囲内に容易に設定することができる。 It should be noted that the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 2.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
<絶縁層2>
 次に、絶縁層2について説明する。
<Insulating layer 2>
Next, the insulating layer 2 will be described.
 絶縁層2は、本実施形態では、基材層1(第3の層12)に接触して設けられる。基材層1側から絶縁層2、電磁波遮断層3の順で積層されている。このように積層された絶縁層2および電磁波遮断層3を備える電磁波シールド用フィルム100を用いて基板5上の凸部61を被覆することで、基板5および電子部品4に電磁波遮断層3が接触し、基板5側から電磁波遮断層3、絶縁層2の順で電子部品4を被覆することとなる。 In this embodiment, the insulating layer 2 is provided in contact with the base material layer 1 (third layer 12). The insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the base material layer 1 side. The electromagnetic wave shielding layer 3 comes into contact with the substrate 5 and the electronic component 4 by covering the convex portion 61 on the substrate 5 using the electromagnetic wave shielding film 100 including the insulating layer 2 and the electromagnetic wave shielding layer 3 laminated in this manner. Then, the electronic component 4 is coated in the order of the electromagnetic wave shielding layer 3 and the insulating layer 2 from the substrate 5 side.
 このように、本実施形態では、絶縁層2は、基板5および電子部品4を、電磁波遮断層3を介して被覆する。これにより、基板5、電子部品4および電磁波遮断層3を、絶縁層2を介して基板5と反対側に位置する他の部材(電子部品等)から絶縁する。 As described above, in this embodiment, the insulating layer 2 covers the substrate 5 and the electronic component 4 via the electromagnetic wave shielding layer 3. Thereby, the board | substrate 5, the electronic component 4, and the electromagnetic wave shielding layer 3 are insulated from the other members (electronic components etc.) located in the opposite side to the board | substrate 5 through the insulating layer 2. FIG.
 この絶縁層2としては、例えば、熱硬化性を有する絶縁樹脂または熱可塑性を有する絶縁樹脂(絶縁フィルム)が挙げられる。これらの中でも、熱可塑性を有する絶縁樹脂を用いることが好ましい。熱可塑性を有する絶縁樹脂は、屈曲性に優れたフィルムである。このことから、貼付工程において、基材層1を凹部62への押し込み用の基材として用いて、基板5上の凹部62に対して絶縁層2および電磁波遮断層3を押し込む際に、絶縁層2を、凸部61の形状に対応して確実に追従させることができる。また、熱可塑性を有する絶縁樹脂は、その軟化点温度に加熱すると、接着対象の基板から再剥離することができるので、基板の修理の際には、特に有用である。 Examples of the insulating layer 2 include a thermosetting insulating resin or a thermoplastic insulating resin (insulating film). Among these, it is preferable to use an insulating resin having thermoplasticity. An insulating resin having thermoplasticity is a film having excellent flexibility. Therefore, in the pasting step, when the base layer 1 is used as a base for pressing into the recess 62 and the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the recess 62 on the substrate 5, the insulating layer 2 can be made to follow reliably corresponding to the shape of the convex part 61. FIG. In addition, an insulating resin having thermoplasticity is particularly useful when repairing a substrate because it can be re-peeled from the substrate to be bonded when heated to its softening point temperature.
 熱可塑性を有する絶縁樹脂としては、例えば、熱可塑性ポリエステル、α-オレフィン、酢酸ビニル、ポリビニルアセタール、エチレン酢酸ビニル、塩化ビニル、アクリル、ポリアミド、セルロースが挙げられる。これらの中でも基板との密着性、屈曲性、耐薬品性に優れるという理由から熱可塑性ポリエステル、α-オレフィンを用いることが好ましい。 Examples of the insulating resin having thermoplasticity include thermoplastic polyester, α-olefin, vinyl acetate, polyvinyl acetal, ethylene vinyl acetate, vinyl chloride, acrylic, polyamide, and cellulose. Among these, it is preferable to use thermoplastic polyesters and α-olefins because they have excellent adhesion to the substrate, flexibility and chemical resistance.
 さらに、熱可塑性を有する絶縁樹脂には、耐熱性や耐屈曲性等の性能を損なわない範囲で、フェノール系樹脂、シリコーン系樹脂、ユリア系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等を含有させることができる。また、熱可塑性を有する絶縁樹脂には、後述する導電性接着剤層の場合と同様に、接着性、耐ハンダリフロー性を低下させない範囲で、シランカップリング剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤等を添加してもよい。 Furthermore, the insulating resin having thermoplasticity is a phenolic resin, a silicone resin, a urea resin, an acrylic resin, a polyester resin, a polyamide resin, as long as the performance such as heat resistance and flex resistance is not impaired. A polyimide resin or the like can be contained. In addition, in the insulating resin having thermoplasticity, as in the case of the conductive adhesive layer described later, a silane coupling agent, an antioxidant, a pigment, a dye, as long as the adhesiveness and solder reflow resistance are not reduced. You may add tackifying resin, a plasticizer, a ultraviolet absorber, an antifoamer, a leveling regulator, a filler, a flame retardant, etc.
 絶縁層2の厚みT(D)は、特に限定されないが、3μm以上、50μm以下であることが好ましく、4μm以上、30μm以下であることがより好ましく、さらに好ましくは5μm以上、20μm以下である。絶縁層2の厚みが前記下限値未満である場合、耐ハゼ折り性が低下し、凸部61への熱圧着後に折り曲げ部にてクラックが発生するおそれがある。また、フィルム強度が低下し、導電性接着剤層の絶縁性支持体としての役割を担うことが難しい。前記上限値を超える場合、形状追従性が低下するおそれがある。すなわち、絶縁層2の厚みT(D)を前記範囲内に設定することにより、絶縁層2を屈曲性により優れたものとすることができる。また、貼付工程において、基材層1を凹部62への押し込み用の基材として用いて、基板5上の凹部62に対して絶縁層2および電磁波遮断層3を押し込む際に、絶縁層2を、凸部61の形状に対応してより確実に追従させることができる。 The thickness T (D) of the insulating layer 2 is not particularly limited, but is preferably 3 μm or more and 50 μm or less, more preferably 4 μm or more and 30 μm or less, and further preferably 5 μm or more and 20 μm or less. When the thickness of the insulating layer 2 is less than the lower limit value, the goblet folding resistance is lowered, and cracks may occur in the bent portion after thermocompression bonding to the convex portion 61. Moreover, film strength falls and it is difficult to play the role as an insulating support body of a conductive adhesive layer. When the upper limit is exceeded, shape followability may be reduced. That is, by setting the thickness T (D) of the insulating layer 2 within the above range, the insulating layer 2 can be made more excellent in flexibility. In the pasting step, when the base layer 1 is used as a base for pressing into the recess 62 and the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the recess 62 on the substrate 5, the insulating layer 2 is Further, it can be made to follow more reliably corresponding to the shape of the convex portion 61.
 また、絶縁層2の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。絶縁層2の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、絶縁層2は、優れた伸縮性を有する。そのため、絶縁層2、さらには電磁波遮断層3の凸部61に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient at 25 to 150 ° C. of the insulating layer 2 is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the insulating layer 2 within this range, the insulating layer 2 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Therefore, it is possible to more reliably improve the shape followability of the insulating layer 2 and further the convex portion 61 of the electromagnetic wave shielding layer 3.
 なお、この絶縁層2は、図7、8で示したように、1層で構成されるものの他、上述した絶縁フィルムのうち異なるものを積層させた2層以上の積層体であってもよい。
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。
In addition, as shown in FIGS. 7 and 8, the insulating layer 2 may be a laminated body of two or more layers in which different ones of the above-described insulating films are laminated in addition to the one constituted by one layer. .
The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 <第7実施形態>
 以下、本発明の電磁波シールド用フィルムの第7実施形態について説明する。
<Seventh embodiment>
Hereinafter, a seventh embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図9は、本発明の電磁波シールド用フィルムの第7実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図9中の上側を「上」、下側を「下」と言う。 FIG. 9 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 9 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図9に示す電磁波シールド用フィルム100について説明するが、図3に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 9 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 shown in FIG. 3, and description of similar matters will be omitted.
 図9に示す電磁波シールド用フィルム100では、絶縁層が基材層1と電磁波遮断層3との間に形成されていること以外は、図3に示した電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 9 is the same as the electromagnetic wave shielding film 100 shown in FIG. 3 except that an insulating layer is formed between the base material layer 1 and the electromagnetic wave shielding layer 3.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第2の層13、第3の層12からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。なお、絶縁層2は、第6実施形態の絶縁層2と同様であるので、その説明を省略する。 That is, in the present embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第2実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第2実施形態の電磁波シールド用フィルム100と同様の効果が得られる。また、本実施形態の電磁波シールド用フィルム100は絶縁層2を有しているので、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the second embodiment, and is similar to the electromagnetic wave shielding film 100 of the second embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
 <第8実施形態>
 次に、本発明の電磁波シールド用フィルムの第8実施形態について説明する。
<Eighth Embodiment>
Next, an eighth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図10は、本発明の電磁波シールド用フィルムの第8実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図10中の上側を「上」、下側を「下」と言う。 FIG. 10 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 10 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図10に示す電磁波シールド用フィルム100について説明するが、図4に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 10 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 shown in FIG. 4, and description of similar matters will be omitted.
 図10に示す電磁波シールド用フィルム100では、絶縁層2が基材層1と電磁波遮断層3との間に形成されていること以外は、図4に示した電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 10 is the same as the electromagnetic wave shielding film 100 shown in FIG. 4 except that the insulating layer 2 is formed between the base material layer 1 and the electromagnetic wave shielding layer 3. .
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。なお、絶縁層2は、第6実施形態の絶縁層2と同様であるので、その説明を省略する。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。また、本実施形態の電磁波シールド用フィルム100は絶縁層2を有しているので、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
 <第9実施形態>
 次に、本発明の電磁波シールド用フィルムの第9実施形態について説明する。
<Ninth Embodiment>
Next, a ninth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図11は、本発明の電磁波シールド用フィルムの第9実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図11中の上側を「上」、下側を「下」と言う。 FIG. 11 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 11 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図11に示す電磁波シールド用フィルム100について説明するが、図7に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 11 will be described, but the description will be centered on differences from the electromagnetic wave shielding film 100 shown in FIG. 7, and description of similar matters will be omitted.
 図11に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略され、さらに、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、図7に示した電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 11, the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. This is the same as the electromagnetic wave shielding film 100 shown in FIG.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、電磁波遮断層3と、絶縁層2とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を電磁波遮断層3から剥離する際に、第2の層13と電磁波遮断層3との界面において基材層1が電磁波遮断層3から剥離される。このような剥離では、電磁波遮断層3が第2の層13との離型性を備えており、これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
 この場合、電磁波遮断層3の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みプロセスの後に、電磁波遮断層3から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after the pressing process using a vacuum pressurizing laminator or the like.
 このような、表面張力を有する電磁波遮断層3としては、例えば、炭素系材料や導電性高分子をポリウレタン等の熱硬化性樹脂中に分散させた樹脂等が挙げられる。 Examples of such an electromagnetic wave shielding layer 3 having surface tension include a resin in which a carbon-based material or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and is similar to the electromagnetic wave shielding film 100 of the sixth embodiment. The effect is obtained.
 <第10実施形態>
 次に、本発明の電磁波シールド用フィルムの第10実施形態について説明する。
<Tenth Embodiment>
Next, a tenth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図12は、本発明の電磁波シールド用フィルムの第10実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図12中の上側を「上」、下側を「下」と言う。 FIG. 12 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 12 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図12に示す電磁波シールド用フィルム100について説明するが、図7に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 12 will be described, but differences from the electromagnetic wave shielding film 100 shown in FIG. 7 will be mainly described, and description of similar matters will be omitted.
 図12に示す電磁波シールド用フィルム100では、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、図7に示した電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 12 is the same as the electromagnetic wave shielding film 100 shown in FIG. 7 except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。このように積層された、電磁波遮断層3および絶縁層2を備える電磁波シールド用フィルム100を用いて基板5上の凸部61を被覆することで、基板5および電子部品4に絶縁層2が接触し、基板5側から絶縁層2、電磁波遮断層3の順で電子部品4を被覆することとなる。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3. The laminated body is laminated in this order. The insulating layer 2 comes into contact with the substrate 5 and the electronic component 4 by covering the convex portion 61 on the substrate 5 with the electromagnetic wave shielding film 100 including the electromagnetic wave shielding layer 3 and the insulating layer 2 laminated in this manner. Then, the electronic component 4 is coated in the order of the insulating layer 2 and the electromagnetic wave shielding layer 3 from the substrate 5 side.
 このように、本実施形態では、絶縁層2は、基板5および電子部品4を、これらに接触した状態で被覆する。これにより、基板5および電子部品4を、絶縁層2を介して基板5と反対側に位置する電磁波遮断層3および他の部材(電子部品等)から絶縁する。 As described above, in this embodiment, the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them. Thereby, the board | substrate 5 and the electronic component 4 are insulated from the electromagnetic wave shielding layer 3 and other members (electronic components etc.) located on the opposite side to the board | substrate 5 through the insulating layer 2. FIG.
 そのため、かかる構成の電磁波シールド用フィルム100では、例えば、電磁波遮断層3が導電性材料を含んでいたとしても、隣接する電子部品4同士を絶縁層2により確実に絶縁することができる。 Therefore, in the electromagnetic wave shielding film 100 having such a configuration, for example, even if the electromagnetic wave shielding layer 3 includes a conductive material, adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and is similar to the electromagnetic wave shielding film 100 of the sixth embodiment. The effect is obtained.
 <第11実施形態>
 次に、本発明の電磁波シールド用フィルムの第11実施形態について説明する。
<Eleventh embodiment>
Next, an eleventh embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図13は、本発明の電磁波シールド用フィルムの第11実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図13中の上側を「上」、下側を「下」と言う。 FIG. 13 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 13 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図13に示す電磁波シールド用フィルム100について説明するが、図5に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, although the electromagnetic wave shielding film 100 shown in FIG. 13 will be described, differences from the electromagnetic wave shielding film 100 shown in FIG. 5 will be mainly described, and description of similar matters will be omitted.
 図13に示す電磁波シールド用フィルム100では、絶縁層2が電磁波遮断層3と基材層1との間に形成されていること以外は、図5に示した電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 13 is the same as the electromagnetic wave shielding film 100 shown in FIG. 5 except that the insulating layer 2 is formed between the electromagnetic wave shielding layer 3 and the base material layer 1. .
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、絶縁層2と、吸収層31、反射層32からなる電磁波遮断層3とが、この順で積層された積層体をなしている。なお、絶縁層2は、第6実施形態の絶縁層2と同様であるので、その説明を省略する。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, the absorption layer 31, and the reflection layer. The electromagnetic wave shielding layer 3 made of 32 forms a laminated body laminated in this order. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第4実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第4実施形態の電磁波シールド用フィルム100と同様の効果が得られる。また、本実施形態の電磁波シールド用フィルム100は絶縁層2を有しているので、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the fourth embodiment, and is the same as the electromagnetic wave shielding film 100 of the fourth embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
 <第12実施形態>
 次に、本発明の電磁波シールド用フィルムの第12実施形態について説明する。
<Twelfth embodiment>
Next, a twelfth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図14は、本発明の電磁波シールド用フィルムの第12実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図14中の上側を「上」、下側を「下」と言う。 FIG. 14 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 14 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図14に示す電磁波シールド用フィルム100について説明するが、図6に示す電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 14 will be described, but the description will focus on differences from the electromagnetic wave shielding film 100 shown in FIG. 6, and description of similar matters will be omitted.
 図14に示す電磁波シールド用フィルム100では、絶縁層2が電磁波遮断層3と基材層1との間に形成されていること以外は、図6に示した電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 14 is the same as the electromagnetic wave shielding film 100 shown in FIG. 6 except that the insulating layer 2 is formed between the electromagnetic wave shielding layer 3 and the base material layer 1. .
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、絶縁層2と、反射層32、吸収層31からなる電磁波遮断層3とが、この順で積層された積層体をなしている。なお、絶縁層2は、第6実施形態の絶縁層2と同様であるので、その説明を省略する。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the insulating layer 2, the reflection layer 32, and the absorption layer. The electromagnetic wave shielding layer 3 composed of 31 forms a laminated body laminated in this order. Since the insulating layer 2 is the same as the insulating layer 2 of the sixth embodiment, the description thereof is omitted.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。また、本実施形態の電磁波シールド用フィルム100は絶縁層2を有しているので、前記第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained. Moreover, since the electromagnetic wave shielding film 100 of this embodiment has the insulating layer 2, it can be used in the same manner as the electromagnetic wave shielding film 100 of the sixth embodiment, and the electromagnetic wave of the sixth embodiment. The same effect as the shielding film 100 can be obtained.
 なお、前記第11実施形態の電磁波シールド用フィルム100と、前記第12実施形態の電磁波シールド用フィルム100とでは、電磁波遮断層3が有する反射層32と吸収層31との積層順序が異なること以外は、互いに同一である。前述のとおり、吸収層31は、吸収層31に入射した電磁波を吸収することで電磁波を遮断するため、この吸収により電磁波が消滅する。このことから、第11実施形態の電磁波シールド用フィルム100は、反射層32で反射した電磁波が電磁波遮断層3で被覆されていない他の部材等に対して悪影響をおよぼしてしまうのを確実に防止することができるという利点を有する。そのため、これら第11および第12実施形態の電磁波シールド用フィルム100では、吸収層31を凸部61に対して反射層32の反対側に位置する第11実施形態の電磁波シールド用フィルム100とするのが好ましい。 The electromagnetic wave shielding film 100 of the eleventh embodiment and the electromagnetic wave shielding film 100 of the twelfth embodiment are different from each other in the order of lamination of the reflective layer 32 and the absorbing layer 31 of the electromagnetic wave shielding layer 3. Are identical to each other. As described above, the absorption layer 31 absorbs the electromagnetic wave incident on the absorption layer 31 and blocks the electromagnetic wave, so that the electromagnetic wave disappears due to this absorption. Thus, the electromagnetic wave shielding film 100 of the eleventh embodiment reliably prevents the electromagnetic wave reflected by the reflective layer 32 from adversely affecting other members that are not covered by the electromagnetic wave shielding layer 3. Has the advantage of being able to. Therefore, in the electromagnetic wave shielding film 100 of these eleventh and twelfth embodiments, the absorbing layer 31 is the electromagnetic wave shielding film 100 of the eleventh embodiment located on the opposite side of the reflective layer 32 with respect to the convex portion 61. Is preferred.
 また、前記第11実施形態の電磁波シールド用フィルム100と、前記第12実施形態の電磁波シールド用フィルム100とでは、電磁波遮断層3を反射層32と吸収層31とをそれぞれ1層ずつ備える2層構成の積層体とした。しかし、電磁波遮断層3は、このような2層構成の積層体に限らず、少なくとも反射層32と吸収層31とのうちのいずれか一方を2層以上備える、3層以上の積層体で構成されていてもよい。 Moreover, in the electromagnetic wave shielding film 100 of the eleventh embodiment and the electromagnetic wave shielding film 100 of the twelfth embodiment, the electromagnetic wave shielding layer 3 includes two layers each of the reflective layer 32 and the absorbing layer 31. It was set as the laminated body of a structure. However, the electromagnetic wave shielding layer 3 is not limited to such a two-layer laminate, and is constituted by a three-layer laminate including at least one of the reflective layer 32 and the absorption layer 31. May be.
 また、前記実施形態では、電磁波遮断層3の上面または下面の何れか一方に1つの絶縁層2が積層される場合について説明したが、かかる場合に限定されず、電磁波遮断層3の上面および下面の双方に1層ずつ別層として絶縁層2が積層されていてもよい。 Moreover, although the said embodiment demonstrated the case where the one insulating layer 2 was laminated | stacked on either the upper surface or lower surface of the electromagnetic wave shielding layer 3, it is not limited to such a case, The upper surface and lower surface of the electromagnetic wave shielding layer 3 The insulating layer 2 may be laminated as a separate layer on each of the two layers.
 以上、本発明の電磁波シールド用フィルム、および電子部品の被覆方法について説明したが、本発明は、これらに限定されるものではない。 As mentioned above, although the film for electromagnetic wave shielding of this invention and the coating method of an electronic component were demonstrated, this invention is not limited to these.
 例えば、本発明の電磁波シールド用フィルムでは、前記第1~第12実施形態の任意の構成を組み合わせることもできる。 For example, in the electromagnetic wave shielding film of the present invention, any configuration of the first to twelfth embodiments can be combined.
 また、本発明の電磁波シールド用フィルムには、同様の機能を発揮し得る、任意の層が追加されていてもよい。 In addition, the electromagnetic wave shielding film of the present invention may be added with an arbitrary layer that can exhibit the same function.
 さらに、本発明の電子部品の被覆方法には、1または2以上の任意の工程が追加されていてもよい。 Furthermore, one or two or more arbitrary steps may be added to the method for coating an electronic component of the present invention.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.
 1.電磁波シールド用フィルムの層構成に関する検討
 (実施例1A)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
1. Study on layer structure of electromagnetic shielding film (Example 1A)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. The conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
 実施例1Aの電磁波シールド用フィルムの全体の厚みは、140μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1A is 140 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the electromagnetic wave shielding layer. Was 20 μm.
 また、実施例1Aの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the average linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1A were measured, they were 420, 2400 and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150℃、圧力2.0MPaの条件で、5分間、真空圧空成形法で、貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. Affixed by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2A)
 第1の層の厚みを80μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 80 μm.
 (実施例3A)
 第1の層の厚みを10μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 3A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 10 μm.
 (実施例4A)
 第2の層の厚みを90μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 90 μm.
 (実施例5A)
 第2の層の厚みを20μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 20 μm.
 (実施例6A)
 第3の層の厚みを10μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 10 μm.
 (実施例7A)
 第3の層の厚みを90μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 90 μm.
 (実施例8A)
 電磁波遮断層の厚みを5μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the electromagnetic wave shielding layer was 5 μm.
 (実施例9A)
 電磁波遮断層の厚みを150μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the electromagnetic wave shielding layer was 150 μm.
 (実施例10A)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10A)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1A, except that a blended product having a weight percent concentration of 60 wt% and 40 wt% was prepared.
 (実施例11A)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々80wt%、20wt%で配合した配合品を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 11A)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1A except that a blended product was prepared at a weight percent concentration of 80 wt% and 20 wt%, respectively.
 (実施例12A)
 第1の層として、ポリメチルペンテン(三井化学(株)社製、商品名:TPX MX004)を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 12A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that polymethylpentene (trade name: TPX MX004, manufactured by Mitsui Chemicals, Inc.) was prepared as the first layer.
 (実施例13A)
 第1の層として、ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス(株)社製、商品名:ノバデュラン5505S)を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 13A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5505S) was prepared as the first layer.
 (実施例14A)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々70wt%、30wt%で配合した配合品を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 14A)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight. A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1A, except that a blended product of 70 wt% and 30 wt% was prepared.
 (実施例15A)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリエチレン(宇部興産(株)社製、商品名:UBEポリエチレンF222NH)とを重量パーセント濃度で各々70wt%、30wt%で配合した配合品を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 15A)
As the second layer, ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) are in weight percent. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that a blended product was prepared at a concentration of 70 wt% and 30 wt%, respectively.
 (実施例16A)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリエチレン(宇部興産(株)社製、商品名:UBEポリエチレンF222NH)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々60wt%、20wt%、20wt%で配合した配合品を準備した以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 16A)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106), polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) and polypropylene (Sumitomo). A film for electromagnetic wave shielding as in Example 1A, except that preparations were prepared by blending 60 wt%, 20 wt%, and 20 wt%, respectively, in terms of weight percent concentration with a product name manufactured by Chemical Co., Ltd., trade name: Nobrene FS2011DG2). Electronic parts were manufactured.
 (実施例17A)
 第1の層の厚みを5μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 17A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 5 μm.
 (実施例18A)
 第2の層の厚みを120μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 18A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 120 μm.
 (実施例19A)
 第3の層の厚みを3μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 19A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the third layer was 3 μm.
 (実施例20A)
 第2の層の厚みを80μm、第1の層の厚みを10μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 20A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the second layer was 80 μm and the thickness of the first layer was 10 μm.
 (実施例21A)
 第1の層の厚みを5μm、第2の層の厚みを80μm、第3の層の厚みを5μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 21A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A, except that the thickness of the first layer was 5 μm, the thickness of the second layer was 80 μm, and the thickness of the third layer was 5 μm.
 (実施例22A)
 第1の層の形成を省略し、電磁波遮断層に導電性高分子ポリアニリン分散液(レグルス社製PANI-PD)を用いたこと以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 22A)
An electromagnetic wave shielding film and an electronic component were formed in the same manner as in Example 1A, except that the formation of the first layer was omitted and a conductive polymer polyaniline dispersion (PANI-PD manufactured by Regulus Co., Ltd.) was used for the electromagnetic wave shielding layer. Manufactured.
 (実施例23A)
 第3の層の形成を省略したこと以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 23A)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1A except that the formation of the third layer was omitted.
 (比較例1A)
 基材層として、ポリエチレンテレフタレート(東レ(株)社製、商品名:ルミラーS10)のみを準備し、基材層の厚みを30μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 1A)
As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and the thickness of the base material layer was changed to 30 μm. Parts and manufactured.
 (比較例2A)
 基材層として、ポリエチレンテレフタレート(東レ(株)社製、商品名:ルミラーS10)のみを準備し、基材層の厚みを100μmとした以外は、実施例1Aと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 2A)
As a base material layer, only polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and the thickness of the base material layer was set to 100 μm. Parts and manufactured.
<評価試験>
 実施例1A~23A、および比較例1A、2Aで作製した電磁波シールド用フィルム、または電子部品について、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性の評価を行った。以下に、これらの評価方法について説明する。
<Evaluation test>
For the electromagnetic wave shielding films or electronic parts produced in Examples 1A to 23A and Comparative Examples 1A and 2A, shape followability, release property, gouge folding resistance, second layer spotting property of the base material layer, The heat resistance and electromagnetic wave shield cutting / punching workability were evaluated. Below, these evaluation methods are demonstrated.
<<形状追従性>>
 前記形状追従性は、以下のようにして求めることができる。
<< Shape followability >>
The shape following property can be obtained as follows.
 縦100mm×横100mm×高さ3mmのプリント配線板(マザーボード)に、幅0.2mm、所定の段差(深さ)の溝を、0.2mm間隔で碁盤目状に形成する。その後、電磁波シールド用フィルムを、真空圧空成形装置を用いて、150℃×1MPa×10分間、プリント配線板に圧着させ、プリント配線板に貼り付ける。貼付後、基材層を電磁波遮断層から剥離した。次に、プリント配線板に貼り付けた電磁波遮断層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察し、評価した。 A groove having a width of 0.2 mm and a predetermined step (depth) is formed in a grid pattern at intervals of 0.2 mm on a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height of 3 mm. Thereafter, the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board at 150 ° C. × 1 MPa × 10 minutes using a vacuum / pressure forming apparatus, and is attached to the printed wiring board. After pasting, the base material layer was peeled off from the electromagnetic wave shielding layer. Next, it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space | gap.
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
   ×  :段差が500μm未満である。
   ○  :段差が500μm以上、1000μm未満である。
   ◎   :段差が1000μm以上、2000μm未満である。
   ◎◎ :段差が2000μm以上である。
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
X: A level | step difference is less than 500 micrometers.
○: The level difference is 500 μm or more and less than 1000 μm.
(Double-circle): A level | step difference is 1000 micrometers or more and less than 2000 micrometers.
A: The step is 2000 μm or more.
<<離型性>>
 前記離型性は、以下のようにして求めることができる。
<< Releasability >>
The releasability can be determined as follows.
 上記形状追従性の評価方法と同様のプリント配線板に、電磁波シールド用フィルムを熱圧着させた。その後、基材層のみを手作業で電磁波遮断層から剥離する際の剥がれやすさで評価した。
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
An electromagnetic wave shielding film was thermocompression bonded to the same printed wiring board as in the shape followability evaluation method. Thereafter, only the base material layer was evaluated by ease of peeling when manually peeling from the electromagnetic wave shielding layer.
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
   ×:基材層に樹脂が残った。
   ○:基材層に樹脂が残らなかったが、基材層の剥離が若干重い。
   ◎:基材層に樹脂が残らず、容易に基材層を剥離できる。
X: Resin remained in the base material layer.
○: Resin did not remain in the base material layer, but the base material layer was slightly peeled off.
(Double-circle): Resin does not remain in a base material layer, but can peel a base material layer easily.
<<耐ハゼ折り性>>
 前記耐ハゼ折り性は、以下のようにして求めることができる。
<< Haze fold resistance >>
The goblet folding resistance can be determined as follows.
 電磁波シールド用フィルムを、屈曲性のある基板、例えば、フレキシブル回路基板等に貼り合わせる。貼り合せたものをハゼ折りし、その折り曲げ箇所を顕微鏡により観察した。但し、折り曲げは手により行い、折り曲げは1回のみである。 The electromagnetic shielding film is bonded to a flexible substrate such as a flexible circuit board. The bonded material was folded in a goblet and the bent portion was observed with a microscope. However, the folding is performed by hand, and the folding is performed only once.
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
   ×:折り曲げ部にクラックが発生した。
   ○:折り曲げ部に若干のシワがあった。
   ◎:折り曲げ部にクラックが発生しなかった。
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
X: A crack occurred in the bent portion.
○: There were some wrinkles in the bent part.
(Double-circle): The crack did not generate | occur | produce in the bending part.
<<第2の層シミ出し性>>
 前記基材層の第2の層シミ出し性は、以下のようにして求めることができる。
<< Second layer spotting ability >>
The second layer smearing property of the base material layer can be determined as follows.
 基材層を、150℃×2.0MPa×5分間、熱プレスした。シミ出した第2の層の構成材料の第2の層の端部からの最大距離をノギス等で測定した。 The base material layer was hot pressed at 150 ° C. × 2.0 MPa × 5 minutes. The maximum distance from the end of the second layer of the constituent material of the second layer that was smeared out was measured with calipers or the like.
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
   ×:最大距離が1.0mm以上である。
   ○:最大距離が0.5mm以上、1.0mm未満である。
   ◎:最大距離が0.5mm未満である。
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
X: The maximum distance is 1.0 mm or more.
○: The maximum distance is 0.5 mm or more and less than 1.0 mm.
A: The maximum distance is less than 0.5 mm.
<<耐熱性>>
 前記基材層の耐熱性は、以下のようにして求めることができる。
<< Heat resistance >>
The heat resistance of the base material layer can be determined as follows.
 前記形状追従性の評価方法と同様に、電磁波シールド用フィルムを、真空圧空成形装置を用いて、150℃×2MPa×5分間、プリント配線板に圧着させ、プリント配線板に貼り付ける。貼付後、基材層を電磁波遮断層から剥離した。次に、プリント配線板に貼り付けた電磁波遮断層にシワがあるかどうかを目視で観察する。 In the same manner as the shape follow-up evaluation method described above, the electromagnetic wave shielding film is pressure-bonded to a printed wiring board at 150 ° C. × 2 MPa × 5 minutes using a vacuum / pressure forming apparatus, and is attached to the printed wiring board. After pasting, the base material layer was peeled off from the electromagnetic wave shielding layer. Next, it is visually observed whether the electromagnetic wave shielding layer attached to the printed wiring board has wrinkles.
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
   ×:電磁波遮断層にシワが発生している。
   ○:電磁波遮断層に微細なシワが発生している。
   ◎:電磁波遮断層にシワが発生していない。
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
X: Wrinkles are generated in the electromagnetic wave shielding layer.
○: Fine wrinkles are generated in the electromagnetic wave shielding layer.
A: Wrinkles are not generated in the electromagnetic wave shielding layer.
<<カット・打ち抜き作業性>>
 前記電磁波シールドのカット・打ち抜き作業性は、以下のようにして求めることができる。
<< Cut / Punching workability >>
The workability of cutting and punching the electromagnetic wave shield can be obtained as follows.
 電磁波シールド用フィルムを所定のサイズおよび形状にカット、打ち抜く際に、多くの工程数を必要とし、著しく作業性が低下するかどうかで判断する。 カ ッ ト When cutting and punching an electromagnetic shielding film into a predetermined size and shape, a large number of processes are required, and it is judged whether workability is significantly reduced.
 各符号は以下のとおりである。×を不合格とし、それ以外を合格とした。
   ×:作業性が著しく低下する。
   ○:作業性が若干低下する。
   ◎:作業性に問題ない。
 以上の各実施例、比較例の評価結果を表1に示す。
Each code | symbol is as follows. X was rejected, and the others were determined to be acceptable.
X: Workability is significantly reduced.
○: Workability slightly decreases.
A: There is no problem in workability.
Table 1 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1A~23Aの電磁波シールド用フィルムは、良好な形状追従性を示し、さらに離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れている。これに対し、比較例1A、2Aの電磁波シールド用フィルムは、実施例1A~23Aの電磁波シールド用フィルムと比較すると、形状追従性が十分でないという結果になった。 As is clear from Table 1, the electromagnetic wave shielding films of Examples 1A to 23A showed good shape following properties, and further had release properties, gouge folding resistance, second layer spotting property of the base material layer, Excellent balance in terms of electromagnetic shielding shielding and punching workability. In contrast, the electromagnetic wave shielding films of Comparative Examples 1A and 2A resulted in insufficient shape followability as compared with the electromagnetic wave shielding films of Examples 1A to 23A.
 2.基材層の貯蔵弾性率に関する検討
 (実施例1B)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
2. Study on storage elastic modulus of base material layer (Example 1B)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. The conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
 実施例1Bの電磁波シールド用フィルムの全体の厚みは、140μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1B is 140 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the electromagnetic wave shielding layer. Was 20 μm.
 また、実施例1Bの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the average linear expansion coefficients of the first layer, the second layer, and the third layer in the electromagnetic wave shielding film of Example 1B were measured, they were 420, 2400, and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150℃、圧力2.0MPaの条件で、5分真空圧空成形法で貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. The film was pasted by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2B)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々70wt%、30wt%で配合した配合品を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2B)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight. A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B, except that a blended product of 70 wt% and 30 wt% was prepared.
 (実施例3B)
 第1の層の厚みを10μmとした以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 3B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that the thickness of the first layer was 10 μm.
 (実施例4B)
 第2の層の厚みを90μmとした以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that the thickness of the second layer was 90 μm.
 (実施例5B)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5B)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1B, except that a blended product was blended at a weight percent concentration of 60 wt% and 40 wt%, respectively.
 (実施例6B)
 第1の層の厚みを80μmとした以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the first layer was 80 μm.
 (実施例7B)
 第1の層の厚みを100μmとした以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the first layer was 100 μm.
 (実施例8B)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8B)
As a first layer, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) at a weight percent concentration of 60 wt. %, A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B except that a blended product blended at 40 wt% was prepared.
 (実施例9B)
 第2の層として、ポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) was prepared as the second layer.
 (実施例10B)
 第1の層として、ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス(株)社製、商品名:ノバデュラン5020)を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020) was prepared as the first layer.
 (実施例11B)
 第1の層として、6-ナイロン(宇部興産(株)社製、商品名:UBEナイロン1022B)を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 11B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that 6-nylon (manufactured by Ube Industries, Ltd., trade name: UBE nylon 1022B) was prepared as the first layer.
 (比較例1B)
 基材層として、環状オレフィン系共重合体(ポリプラスチックス(株)社製、商品名:TOPAS6017)を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 1B)
A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1B, except that a cyclic olefin copolymer (manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017) was prepared as the base material layer.
 (比較例2B)
 第3の層の厚みを1μm、第1の層の厚みを1μmとした以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 2B)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B except that the thickness of the third layer was 1 μm and the thickness of the first layer was 1 μm.
<評価試験>
 実施例1B~11B、および比較例1B、2Bで作製した電磁波シールド用フィルム、または電子部品についても、実施例1A~23A、および比較例1A、2Aで作製した電磁波シールド用フィルム、または電子部品について実施したのと同様にして、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性の評価を行った。
 以上の各実施例、比較例の評価結果を表2に示す。
<Evaluation test>
Regarding the electromagnetic wave shielding films or electronic parts produced in Examples 1B to 11B and Comparative Examples 1B and 2B, the electromagnetic wave shielding films or electronic parts produced in Examples 1A to 23A and Comparative Examples 1A and 2A In the same manner as performed, the shape followability, mold release property, goby folding resistance, base layer second layer spotting property, heat resistance, and electromagnetic wave shielding / punching workability were evaluated.
Table 2 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1B~11Bの電磁波シールド用フィルムでは、基材層の150℃における貯蔵弾性率が適切な範囲内に設定されていることに起因して、良好な形状追従性を示した。さらに、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れている結果となった。 As can be seen from Table 2, in the electromagnetic wave shielding films of Examples 1B to 11B, good shape following is achieved because the storage elastic modulus at 150 ° C. of the base material layer is set within an appropriate range. Showed sex. Furthermore, the results were excellent in a well-balanced manner with respect to releasability, goblet folding resistance, second layer spotting of the base material layer, heat resistance, and electromagnetic wave shield cutting / punching workability.
 これに対して、比較例1B、2Bの電磁波シールド用フィルムでは、基材層の150℃における貯蔵弾性率が適切な範囲内に設定されておらず、形状追従性が十分でないという結果になった。 On the other hand, in the electromagnetic wave shielding films of Comparative Examples 1B and 2B, the storage elastic modulus at 150 ° C. of the base material layer was not set within an appropriate range, resulting in insufficient shape following ability. .
 3.遮断層の層構成および貯蔵弾性率に関する検討
 (実施例1C)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
3. Examination on layer structure and storage elastic modulus of barrier layer (Example 1C)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. The conductive adhesive layer as an electromagnetic wave shielding layer was coated on a base material layer to produce an electromagnetic wave shielding film.
 実施例1Cの電磁波シールド用フィルムの全体の厚みは、140μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1C is 140 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the electromagnetic wave shielding layer. Was 20 μm.
 また、実施例1Cの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420であった。 Further, when the average linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1C were measured, they were 420, 2400 and 420, respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150℃、圧力2.0MPaの条件で、5分間、真空圧空成形法で貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. The film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2C)
 電磁波遮断層として、導電性接着剤層(東洋紡(株)社製、商品名:DW-250H-5)とした以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2C)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C except that a conductive adhesive layer (trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
 (実施例3C)
 電磁波遮断層として、導電性接着剤層(東洋紡(株)社製、商品名:DW-250H-23)とした以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 3C)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C, except that a conductive adhesive layer (trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
 (実施例4C)
 電磁波遮断層として、導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B)とした以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4C)
An electromagnetic wave shielding film and an electronic component were prepared in the same manner as in Example 1C, except that a conductive adhesive layer (trade name: CA-2504-4B, manufactured by Daiken Chemical Industry Co., Ltd.) was used as the electromagnetic wave shielding layer. Manufactured.
 (実施例5C)
 遮断層を構成する樹脂として、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス社製、商品名:PANI-PD、厚さ20μm)を準備したこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5C)
Electromagnetic waves as in Example 1C, except that a polyaniline dispersion (trade name: PANI-PD, thickness: 20 μm, manufactured by Regulus Co., Ltd.) was prepared for the conductive absorption layer functioning as the absorption layer as the resin constituting the barrier layer. Shielding films and electronic parts were manufactured.
 (実施例6C)
 遮断層を構成する樹脂として、吸収層として機能する誘電吸収層に多層カーボンナノチューブ分散液(保土谷化学社製、商品名:NT-7K、厚さ20μm)を準備したこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6C)
Example 1C, except that a multilayer carbon nanotube dispersion (trade name: NT-7K, thickness: 20 μm) manufactured by Hodogaya Chemical Co., Ltd. was prepared for the dielectric absorption layer functioning as the absorption layer as the resin constituting the barrier layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
 (実施例7C)
 遮断層を構成する樹脂として、吸収層として機能する導電吸収層にPEDOT/PSS(中京油脂(株)社製、商品名:S-941、厚さ20μm)を準備したこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7C)
Example 1C, except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 μm) was prepared as the resin constituting the barrier layer in the conductive absorption layer functioning as the absorption layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
 (実施例8C)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(東洋紡社製、商品名:DW260-H1、厚さ10μm)と、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス(株)社製、商品名:PANI-PD、厚さ10μm)とを準備し、これらをフィルムに、反射層、吸収層の順でコーティングしたこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8C)
As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 μm) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the product is a product name, PANI-PD, thickness 10 μm), and the film is coated in the order of a reflective layer and an absorbing layer. Films and electronic components were manufactured.
 (実施例9C)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B、厚さ10μm)と、吸収層として機能する誘電吸収層(PEDOT/PSS(中京油脂(株)社製、商品名:S-941、厚さ10μm)とを準備し、これらをフィルムに、反射層、吸収層の順でコーティングしたこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9C)
As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 μm) and a dielectric functioning as an absorbing layer Absorbing layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 μm)) was prepared, and these were coated on the film in the order of the reflective layer and the absorbing layer. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1C.
 (実施例10C)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(東洋紡社製、商品名:DW260-H1、厚さ10μm)と、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス(株)社製、商品名:PANI-PD、厚さ10μm)とを準備し、これらをフィルムに、吸収層、反射層の順でコーティングしたこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10C)
As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 μm) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the product is a product name, PANI-PD, thickness 10 μm), and these are coated on the film in the order of the absorbing layer and the reflecting layer. Films and electronic components were manufactured.
 (実施例11C)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B、厚さ10μm)と、吸収層として機能する誘電吸収層(PEDOT/PSS(中京油脂社製、商品名:S-941、厚さ10μm)とを準備し、これらをフィルムに、吸収層、反射層の順でコーティングしたこと以外は、実施例1Cと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 11C)
As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 μm) and a dielectric functioning as an absorbing layer Example 1C, except that an absorbent layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 μm)) was prepared, and these were coated on the film in the order of the absorbent layer and the reflective layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
<評価試験>
 実施例1C~11Cで作製した電磁波シールド用フィルム、または電子部品についても、実施例1A~23A、および比較例1A、2Aで作製した電磁波シールド用フィルム、または電子部品について実施したのと同様にして、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性の評価を行った。
 以上の各実施例、比較例の評価結果を表3に示す。
<Evaluation test>
The electromagnetic wave shielding films or electronic parts produced in Examples 1C to 11C were the same as those carried out for the electromagnetic wave shielding films or electronic parts produced in Examples 1A to 23A and Comparative Examples 1A and 2A. The shape following property, mold release property, goby folding resistance, base layer second layer spotting property, heat resistance, and electromagnetic wave shielding / punching workability were evaluated.
Table 3 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例1C~11Cに示したとおり、基材層の150℃における貯蔵弾性率を適切な範囲内に設定するばかりでなく、電磁波遮断層の150℃における貯蔵弾性率を適切な範囲内に設定することにより、良好な形状追従性を示した。さらに、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れたものとし得ることが判った。
As is clear from Table 3, as shown in Examples 1C to 11C, not only the storage elastic modulus at 150 ° C. of the base material layer was set within an appropriate range, but also the storage elastic modulus at 150 ° C. of the electromagnetic wave shielding layer. By setting the value within an appropriate range, good shape following ability was exhibited. Further, it has been found that the mold release property, goby folding resistance, the second layer spotting property of the base material layer, and the electromagnetic wave shield cutting / punching workability can be excellent in a well-balanced manner.
 4.電磁波シールド用フィルムの層構成に関する検討
 (実施例1D)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。絶縁層を構成する樹脂として、ポリオレフィン系エマルジョン(ユニチカ(株)社製、商品名:アローベースTC-4010)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
4). Study on layer structure of electromagnetic shielding film (Example 1D)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、また、絶縁層として前記ポリオレフィン系エマルジョンを、この順で基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. A film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
 実施例1Dの電磁波シールド用フィルムの全体の厚みは、160μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、絶縁層の厚みは20μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1D is 160 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Dの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the average linear expansion coefficients of the first layer, the second layer, and the third layer in the electromagnetic wave shielding film of Example 1D were measured, they were 420, 2400, and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150度、圧力2.0MPaの条件で、5分間、真空圧空成形法で貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic shielding film was placed on the surface of a personal computer memory board (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. The film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2D)
 第1の層の厚みを80μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 80 μm.
 (実施例3D)
 第1の層の厚みを10μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
Example 3D
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 10 μm.
 (実施例4D)
 第2の層の厚みを90μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 90 μm.
 (実施例5D)
 第2の層の厚みを20μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 20 μm.
 (実施例6D)
 第3の層の厚みを10μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the third layer was 10 μm.
 (実施例7D)
 第3の層の厚みを90μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the third layer was 90 μm.
 (実施例8D)
 絶縁層の厚みを5μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the insulating layer was 5 μm.
 (実施例9D)
 絶縁層の厚みを50μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the insulating layer was 50 μm.
 (実施例10D)
 電磁波遮断層の厚みを5μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the electromagnetic wave shielding layer was 5 μm.
 (実施例11D)
 電磁波遮断層の厚みを150μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 11D)
Except for the thickness of the electromagnetic wave shielding layer being 150 μm, an electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D.
 (実施例12D)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 12D)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1D, except that a blended product was prepared at a weight percent concentration of 60 wt% and 40 wt%, respectively.
 (実施例13D)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々80wt%、20wt%で配合した配合品を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 13D)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1D, except that a blended product having a weight percent concentration of 80 wt% and 20 wt% was prepared.
 (実施例14D)
 第1の層として、ポリメチルペンテン(三井化学(株)社製、商品名:TPX MX004)を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 14D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that polymethylpentene (manufactured by Mitsui Chemicals, Inc., trade name: TPX MX004) was prepared as the first layer.
 (実施例15D)
 第1の層として、ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス(株)社製、商品名:ノバデュラン5505S)を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 15D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: Nova Duran 5505S) was prepared as the first layer.
 (実施例16D)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々70wt%、30wt%で配合した配合品を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 16D)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight. A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1D, except that preparations blended at 70 wt% and 30 wt% were prepared.
 (実施例17D)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリエチレン(宇部興産(株)社製、商品名:UBEポリエチレンF222NH)とを重量パーセント濃度で各々70wt%、30wt%とを配合した配合品を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 17D)
As the second layer, ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) are in weight percent. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that a blended product containing 70 wt% and 30 wt% was prepared.
 (実施例18D)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリエチレン(宇部興産(株)社製、商品名:UBEポリエチレンF222NH)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々60wt%、20wt%、20wt%で配合した配合品を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 18D)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106), polyethylene (manufactured by Ube Industries, Ltd., trade name: UBE polyethylene F222NH) and polypropylene (Sumitomo). A film for electromagnetic wave shielding as in Example 1D, except that a compounded product of Chemical Co., Ltd., trade name: Nobrene FS2011DG2) was prepared at a weight percent concentration of 60 wt%, 20 wt%, and 20 wt%, respectively. Electronic parts were manufactured.
 (実施例19D)
 絶縁層として、飽和共重合ポリエステルエマルジョン(ユニチカ(株)社製、商品名:エリーテルKT-8803)を準備した以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 19D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that a saturated copolymerized polyester emulsion (trade name: Elitel KT-8803, manufactured by Unitika Ltd.) was prepared as an insulating layer.
 (実施例20D)
 第1の層の厚みを5μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 20D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the first layer was 5 μm.
 (実施例21D)
 第2の層の厚みを120μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 21D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the second layer was 120 μm.
 (実施例22D)
 第3の層の厚みを3μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 22D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the third layer was 3 μm.
 (実施例23D)
 第2の層の厚みを80μm、第1の層の厚みを10μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 23D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D, except that the thickness of the second layer was 80 μm and the thickness of the first layer was 10 μm.
 (実施例24D)
 第1の層の厚みを5μm、第2の層の厚みを80μm、第3の層の厚みを5μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 24D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the thickness of the first layer was 5 μm, the thickness of the second layer was 80 μm, and the thickness of the third layer was 5 μm.
 (実施例25D)
 第1の層の形成を省略し、電磁波遮断層に導電性高分子ポリアニリン分散液(レグルス社製PANI-PD)を用いたこと以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 25D)
An electromagnetic wave shielding film and an electronic component were formed in the same manner as in Example 1D, except that the formation of the first layer was omitted and a conductive polymer polyaniline dispersion (PANI-PD manufactured by Regulus Co., Ltd.) was used for the electromagnetic wave shielding layer. Manufactured.
 (実施例26D)
 第3の層の形成を省略したこと以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 26D)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1D except that the formation of the third layer was omitted.
 (比較例1D)
 基材層として、ポリエチレンテレフタレート(東レ(株)社製、商品名:ルミラーS10)のみを準備し、基材層の厚みを30μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 1D)
As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) is prepared, and the thickness of the base material layer is 30 μm. Parts and manufactured.
 (比較例2D)
 基材層として、ポリエチレンテレフタレート(東レ(株)社製、商品名:ルミラーS10)のみを準備し、基材層の厚みを100μmとした以外は、実施例1Dと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 2D)
As a base material layer, only a polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name: Lumirror S10) was prepared, and a film for electromagnetic wave shielding and an electron were prepared in the same manner as in Example 1D except that the thickness of the base material layer was 100 μm. Parts and manufactured.
<評価試験>
 実施例1D~26D、および比較例1D、2Dで作製した電磁波シールド用フィルム、または電子部品について、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性が、前述した<評価試験>と同様に評価された。
 以上の各実施例、比較例の評価結果を表4に示す。
<Evaluation test>
For the electromagnetic wave shielding films or electronic parts produced in Examples 1D to 26D and Comparative Examples 1D and 2D, shape followability, release property, gouge folding resistance, second layer spotting property of the base material layer, The heat resistance and electromagnetic wave shield cutting / punching workability were evaluated in the same manner as in the above <evaluation test>.
Table 4 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例1D~26Dの電磁波シールド用フィルムは、良好な形状追従性を示し、さらに離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れている。これに対し、比較例1D、2Dの電磁波シールド用フィルムは、実施例1D~26Dと比較すると、形状追従性が十分でないという結果になった。 As is clear from Table 4, the electromagnetic wave shielding films of Examples 1D to 26D exhibit good shape following properties, and further have mold release properties, gouge folding resistance, second layer spotting property of the base material layer, Excellent balance in terms of electromagnetic shielding shielding and punching workability. On the other hand, the electromagnetic wave shielding films of Comparative Examples 1D and 2D resulted in insufficient shape followability as compared with Examples 1D to 26D.
 5.基材層の貯蔵弾性率に関する検討
 (実施例1E)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。絶縁層を構成する樹脂として、ポリオレフィン系エマルジョン(ユニチカ(株)社製、商品名:アローベースTC-4010)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
5. Study on storage elastic modulus of base material layer (Example 1E)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、また、絶縁層として前記ポリオレフィン系エマルジョンを、この順で基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. A film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
 実施例1Eの電磁波シールド用フィルムの全体の厚みは、160μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、絶縁層の厚みは20μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1E is 160 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Eの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the average linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1E were measured, they were 420, 2400 and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150℃、圧力2.0MPaの条件で、5分真空圧空成形法で貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. The film was pasted by a vacuum / pressure forming method for 5 minutes under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2E)
 第2の層として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々70wt%、30wt%で配合した配合品を準備した以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2E)
As the second layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) are in a concentration by weight. A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a blended product of 70 wt% and 30 wt% was prepared.
 (実施例3E)
 第1の層の厚みを10μmとした以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 3E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 10 μm.
 (実施例4E)
 第2の層の厚みを90μmとした以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the second layer was 90 μm.
 (実施例5E)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とスチレン-エチレン-ブチレン-スチレンブロック共重合体(クラレ(株)社製、商品名:セプトンS8007)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5E)
As the first layer, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and styrene-ethylene-butylene-styrene block copolymer (made by Kuraray Co., Ltd., trade name: Septon S8007) ) Was prepared in the same manner as in Example 1E, except that a blended product having a weight percent concentration of 60 wt% and 40 wt% was prepared.
 (実施例6E)
 第1の層の厚みを80μmとした以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 80 μm.
 (実施例7E)
 第1の層の厚みを100μmとした以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that the thickness of the first layer was 100 μm.
 (実施例8E)
 第1の層として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)とポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)とを重量パーセント濃度で各々60wt%、40wt%で配合した配合品を準備した以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8E)
As a first layer, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) and polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) in a weight percent concentration of 60 wt. %, A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a blended product blended at 40 wt% was prepared.
 (実施例9E)
 第2の層として、ポリプロピレン(住友化学(株)社製、商品名:ノーブレンFS2011DG2)を準備した以外は、実施例1Bと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1B, except that polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: Nobrene FS2011DG2) was prepared as the second layer.
 (実施例10E)
 第1の層として、ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス(株)社製、商品名:ノバデュラン5020)を準備した以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E, except that polybutylene terephthalate (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5020) was prepared as the first layer.
 (比較例1E)
 基材層として、環状オレフィン系共重合体(ポリプラスチックス(株)社製、商品名:TOPAS6017)を準備した以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 1E)
A film for electromagnetic wave shielding and an electronic component were produced in the same manner as in Example 1E, except that a cyclic olefin copolymer (manufactured by Polyplastics Co., Ltd., trade name: TOPAS6017) was prepared as the base material layer.
 (比較例2E)
 第3の層の厚みを1μm、第1の層の厚みを1μmとした以外は、実施例1Eと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Comparative Example 2E)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1E except that the thickness of the third layer was 1 μm and the thickness of the first layer was 1 μm.
<評価試験>
 実施例1E~10E、および比較例1E、2Eで作製した電磁波シールド用フィルム、または電子部品についても、実施例1D~26D、および比較例1D、2Dで作製した電磁波シールド用フィルム、または電子部品について実施したのと同様にして、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性の評価を行った。
 以上の各実施例、比較例の評価結果を表5に示す。
<Evaluation test>
Regarding the electromagnetic wave shielding films or electronic parts produced in Examples 1E to 10E and Comparative Examples 1E and 2E, the electromagnetic wave shielding films or electronic parts produced in Examples 1D to 26D and Comparative Examples 1D and 2D In the same manner as performed, the shape followability, mold release property, goby folding resistance, base layer second layer spotting property, heat resistance, and electromagnetic wave shielding / punching workability were evaluated.
Table 5 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、実施例1E~10Eでは、基材層の150℃における貯蔵弾性率が適切な範囲内に設定されていることに起因して、良好な形状追従性を示した。さらに、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れている結果となった。 As is apparent from Table 5, Examples 1E to 10E exhibited good shape following properties because the storage elastic modulus at 150 ° C. of the base material layer was set within an appropriate range. Furthermore, the results were excellent in a well-balanced manner with respect to releasability, goblet folding resistance, second layer spotting of the base material layer, and electromagnetic wave shield cutting / punching workability.
 これに対して、比較例1E、2Eでは、基材層の150℃における貯蔵弾性率が適切な範囲内に設定されておらず、形状追従性が十分でないという結果になった。 On the other hand, in Comparative Examples 1E and 2E, the storage elastic modulus at 150 ° C. of the base material layer was not set within an appropriate range, resulting in insufficient shape following ability.
 6.遮断層の層構成および貯蔵弾性率に関する検討
 (実施例1F)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。絶縁層を構成する樹脂として、ポリオレフィン系エマルジョン(ユニチカ(株)社製、商品名:アローベースTC-4010)を準備した。電磁波遮断層を構成する樹脂として、導電性接着剤層(東洋紡(株)社製、商品名:DW-260H-1)を準備した。
6). Examination on layer structure and storage elastic modulus of barrier layer (Example 1F)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. A polyolefin emulsion (manufactured by Unitika Ltd., trade name: Arrow Base TC-4010) was prepared as a resin constituting the insulating layer. A conductive adhesive layer (manufactured by Toyobo Co., Ltd., trade name: DW-260H-1) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層として前記導電性接着剤層を、また、絶縁層として前記ポリオレフィン系エマルジョンを、この順で基材層にコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. A film for electromagnetic wave shielding was prepared by coating the base material layer with the conductive adhesive layer as an electromagnetic wave shielding layer and the polyolefin emulsion as an insulating layer in this order.
 実施例1Fの電磁波シールド用フィルムの全体の厚みは、160μmであり、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、絶縁層の厚みは20μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1F is 160 μm, the thickness of the first layer is 30 μm, the thickness of the third layer is 30 μm, the thickness of the second layer is 60 μm, and the thickness of the insulating layer is The thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Fの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の平均線膨張係数を測定したところ、それぞれ、420、2400および420であった。 Further, when the average linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1F were measured, they were 420, 2400 and 420, respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電子部品の製造>
 得られた電磁波シールド用フィルムを、パソコン用メモリー基板(サムスン(株)社製、商品名:DDR2 667 M470T6554EZ3-CE6 PC2-5300)(段差1,000μm)の表面に、温度150℃、圧力2.0MPaの条件で、5分間、真空圧空成形法で貼付した。貼付後、基材層のみ手作業で電磁波遮断層から剥離し、電子部品を製造した。
<Manufacture of electronic components>
The obtained electromagnetic wave shielding film was placed on the surface of a personal computer memory substrate (trade name: DDR2 667 M470T6554EZ3-CE6 PC2-5300, manufactured by Samsung Corp.) (step: 1,000 μm) at a temperature of 150 ° C. and a pressure of 2. The film was pasted for 5 minutes by vacuum / pressure forming under the condition of 0 MPa. After pasting, only the base material layer was peeled off from the electromagnetic wave shielding layer manually to produce an electronic component.
 (実施例2F)
 電磁波遮断層として、導電性接着剤層(東洋紡(株)社製、商品名:DW-250H-5)とした以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 2F)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: DW-250H-5, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
 (実施例3F)
 電磁波遮断層として、導電性接着剤層(東洋紡(株)社製、商品名:DW-250H-23)とした以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 3F)
An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: DW-250H-23, manufactured by Toyobo Co., Ltd.) was used as the electromagnetic wave shielding layer.
 (実施例4F)
 電磁波遮断層として、導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B)とした以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 4F)
An electromagnetic wave shielding film and an electronic component were prepared in the same manner as in Example 1F, except that a conductive adhesive layer (trade name: CA-2504-4B, manufactured by Daiken Chemical Industry Co., Ltd.) was used as the electromagnetic wave shielding layer. Manufactured.
 (実施例5F)
 遮断層を構成する樹脂として、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス社製、商品名:PANI-PD、厚さ20μm)を準備したこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 5F)
Electromagnetic waves as in Example 1F, except that a polyaniline dispersion (trade name: PANI-PD, thickness: 20 μm) was prepared for the conductive absorption layer functioning as the absorption layer as the resin constituting the barrier layer. Shielding films and electronic parts were manufactured.
 (実施例6F)
 遮断層を構成する樹脂として、吸収層として機能する誘電吸収層に多層カーボンナノチューブ分散液(保土谷化学社製、商品名:NT-7K、厚さ20μm)を準備したこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 6F)
Example 1F, except that a multilayer carbon nanotube dispersion (made by Hodogaya Chemical Co., Ltd., trade name: NT-7K, thickness 20 μm) was prepared as a resin constituting the barrier layer in the dielectric absorption layer functioning as the absorption layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
 (実施例7F)
 遮断層を構成する樹脂として、吸収層として機能する導電吸収層にPEDOT/PSS(中京油脂社製、商品名:S-941、厚さ20μm)を準備したこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 7F)
As in Example 1F, except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 20 μm) was prepared as the resin constituting the barrier layer in the conductive absorption layer functioning as the absorption layer. An electromagnetic shielding film and an electronic component were produced.
 (実施例8F)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(東洋紡社製、商品名:DW260-H1、厚さ10μm)と、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス社製、商品名:PANI-PD、厚さ10μm)とを準備し、これらをフィルムに、反射層、吸収層の順でコーティングしたこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 8F)
As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 μm) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the film was coated with a reflective layer and an absorbing layer in this order, and the film for electromagnetic wave shielding and the electronic device were the same as in Example 1F. Parts and manufactured.
 (実施例9F)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B、厚さ10μm)と、吸収層として機能する誘電吸収層(PEDOT/PSS(中京油脂(株)社製、商品名:S-941、厚さ10μm)とを準備し、これらをフィルムに、反射層、吸収層の順でコーティングしたこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 9F)
As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 μm) and a dielectric functioning as an absorbing layer Absorbing layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 μm)) was prepared, and these were coated on the film in the order of the reflective layer and the absorbing layer. An electromagnetic wave shielding film and an electronic component were produced in the same manner as in Example 1F.
 (実施例10F)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(東洋紡社製、商品名:DW260-H1、厚さ10μm)と、吸収層として機能する導電吸収層にポリアニリン分散液(レグルス社製、商品名:PANI-PD、厚さ10μm)とを準備し、これらをフィルムに、吸収層、反射層の順でコーティングしたこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 10F)
As the resin constituting the barrier layer, a conductive adhesive layer (trade name: DW260-H1, manufactured by Toyobo Co., Ltd., thickness 10 μm) that functions as a reflective layer, and a polyaniline dispersion (Regulus) Except that the film was coated with a film in the order of an absorption layer and a reflection layer, and an electromagnetic wave shielding film and an electronic device were prepared in the same manner as in Example 1F. Parts and manufactured.
 (実施例11F)
 遮断層を構成する樹脂として、反射層として機能する導電性接着剤層(大研化学工業(株)社製、商品名:CA-2503-4B、厚さ10μm)と、吸収層として機能する誘電吸収層(PEDOT/PSS(中京油脂社製、商品名:S-941、厚さ10μm)とを準備し、これらをフィルムに、吸収層、反射層の順でコーティングしたこと以外は、実施例1Fと同様に電磁波シールド用フィルムと電子部品とを製造した。
(Example 11F)
As a resin constituting the barrier layer, a conductive adhesive layer functioning as a reflective layer (manufactured by Daiken Chemical Industry Co., Ltd., trade name: CA-2503-4B, thickness 10 μm) and a dielectric functioning as an absorbing layer Example 1F, except that an absorbent layer (PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., trade name: S-941, thickness 10 μm)) was prepared, and these were coated on the film in the order of the absorbent layer and the reflective layer. In the same manner, an electromagnetic wave shielding film and an electronic component were produced.
<評価試験>
 実施例1F~11Fで作製した電磁波シールド用フィルム、または電子部品についても、実施例1D~26D、および比較例1D、2Dで作製した電磁波シールド用フィルム、または電子部品について実施したのと同様にして、形状追従性、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性の評価を行った。
 以上の各実施例、比較例の評価結果を表6に示す。
<Evaluation test>
For the electromagnetic wave shielding films or electronic components produced in Examples 1F to 11F, the electromagnetic wave shielding films or electronic components produced in Examples 1D to 26D and Comparative Examples 1D and 2D were similarly performed. The shape following property, mold release property, goby folding resistance, base layer second layer spotting property, heat resistance, and electromagnetic wave shielding / punching workability were evaluated.
Table 6 shows the evaluation results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、実施例1F~11Fに示したとおり、基材層の150℃における貯蔵弾性率を適切な範囲内に設定するばかりでなく、電磁波遮断層の150℃における貯蔵弾性率を適切な範囲内に設定することにより、良好な形状追従性を示した。さらに、離型性、耐ハゼ折り性、基材層の第2の層シミ出し性、耐熱性、電磁波シールドのカット・打ち抜き作業性に関してもバランスよく優れたものとし得ることが判った。 As is clear from Table 6, as shown in Examples 1F to 11F, not only the storage elastic modulus at 150 ° C. of the base material layer was set within an appropriate range, but also the storage elastic modulus at 150 ° C. of the electromagnetic wave shielding layer. By setting the value within an appropriate range, good shape following ability was exhibited. Further, it has been found that the mold release property, goby folding resistance, the second layer spotting property of the base material layer, the heat resistance, and the electromagnetic wave shield cutting and punching workability can be well balanced.
 本発明に係る電磁波シールド用フィルムは、基板の設計自由度を高め、かつ軽量化・薄型化を図ることが可能であるとともに、500μm以上の凸部61に対して、良好な形状追従性を有する電磁波シールド用フィルムである。 The film for electromagnetic wave shielding according to the present invention can increase the degree of freedom in designing a substrate and can be reduced in weight and thickness, and has a good shape following property with respect to a convex portion 61 of 500 μm or more. It is an electromagnetic wave shielding film.

Claims (18)

  1.  基板上の凸部を被覆するために用いられる電磁波シールド用フィルムであって、
     基材層と、該基材層の一方の面側に積層された電磁波遮断層とを含んで構成され、
     前記基材層は、150℃における貯蔵弾性率が2.0E+05~5.0E+08Paであることを特徴とする電磁波シールド用フィルム。
    An electromagnetic wave shielding film used for covering a convex portion on a substrate,
    Comprising a base material layer and an electromagnetic wave shielding layer laminated on one surface side of the base material layer,
    The electromagnetic wave shielding film, wherein the base material layer has a storage elastic modulus at 150 ° C. of 2.0E + 05 to 5.0E + 08 Pa.
  2.  前記基材層の120℃における貯蔵弾性率をA[Pa]とし、前記基材層の150℃における貯蔵弾性率をB[Pa]としたとき、0.02≦A/B≦1.00なる関係を満足する請求項1に記載の電磁波シールド用フィルム。 When the storage elastic modulus at 120 ° C. of the base material layer is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer is B [Pa], 0.02 ≦ A / B ≦ 1.00. The electromagnetic wave shielding film according to claim 1, which satisfies the relationship.
  3.  前記基材層は、第1の層と、第2の層と、第3の層とが他方の面側からこの順で積層された3層構成をなす積層体である請求項1または2に記載の電磁波シールド用フィルム。 The said base material layer is a laminated body which makes | forms the 3 layer structure on which the 1st layer, the 2nd layer, and the 3rd layer were laminated | stacked in this order from the other surface side. The film for electromagnetic wave shielding as described.
  4.  前記第1の層は、25~150℃における平均線膨張係数が40~1000[ppm/℃]である請求項3に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 3, wherein the first layer has an average linear expansion coefficient at 25 to 150 ° C of 40 to 1000 [ppm / ° C].
  5.  前記第1の層の厚みT(A)は、5μm以上、100μm以下である請求項3または4に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 3 or 4, wherein the thickness T (A) of the first layer is 5 µm or more and 100 µm or less.
  6.  前記第3の層は、25~150℃における平均線膨張係数が40~1000[ppm/℃]である請求項3ないし5のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to any one of claims 3 to 5, wherein the third layer has an average linear expansion coefficient at 25 to 150 ° C of 40 to 1000 [ppm / ° C].
  7.  前記第3の層の厚みT(B)は、5μm以上、100μm以下である請求項3ないし6のいずれか1項に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to any one of claims 3 to 6, wherein the thickness T (B) of the third layer is 5 µm or more and 100 µm or less.
  8.  前記第2の層は、25~150℃における平均線膨張係数が400以上[ppm/℃]である請求項3ないし7のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 3 to 7, wherein the second layer has an average linear expansion coefficient at 25 to 150 ° C of 400 or more [ppm / ° C].
  9.  前記第2の層の厚みT(C)は、10μm以上、100μm以下である請求項3ないし8のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 3 to 8, wherein a thickness T (C) of the second layer is 10 µm or more and 100 µm or less.
  10.  前記第1の層の厚みT(A)と、前記第3の層の厚みT(B)と、前記第2の層の厚みT(C)は、下記関係式(I)を満たす請求項3ないし9のいずれか1項に記載の電磁波シールド用フィルム。
     0.05<T(C)/(T(A)+T(B))<10  ・・・ (I)
    The thickness T (A) of the first layer, the thickness T (B) of the third layer, and the thickness T (C) of the second layer satisfy the following relational expression (I). The film for electromagnetic wave shields of any one of thru | or 9.
    0.05 <T (C) / (T (A) + T (B)) <10 (I)
  11.  前記電磁波遮断層は、150℃における貯蔵弾性率が1.0E+05~1.0E+09Paである請求項1ないし10のいずれか1項に記載の電磁波シールド用フィルム。 11. The electromagnetic wave shielding film according to claim 1, wherein the electromagnetic wave shielding layer has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa.
  12.  前記電磁波遮断層は、反射層と、吸収層とで構成され、これらが前記基材層の前記一方の面側からこの順で積層された積層体である請求項1ないし11のいずれか1項に記載の電磁波シールド用フィルム。 The said electromagnetic wave shielding layer is comprised of a reflection layer and an absorption layer, and these are laminated bodies laminated in this order from the one surface side of the base material layer. Film for electromagnetic wave shielding as described in 2.
  13.  当該電磁波シールド用フィルムを前記基板上の前記凸部に温度150℃、圧力2MPa、時間5分の条件で熱圧着した際の形状追従性が、500μm以上、3,000μm以下である請求項1ないし12のいずれか1項に記載の電磁波シールド用フィルム。 The shape following property when the electromagnetic wave shielding film is thermocompression bonded to the convex portions on the substrate under conditions of a temperature of 150 ° C, a pressure of 2 MPa, and a time of 5 minutes is 500 µm or more and 3,000 µm or less. 12. The electromagnetic wave shielding film according to any one of 12 above.
  14.  前記基材層と前記電磁波遮断層との間に積層された絶縁層をさらに含む請求項1ないし13のいずれか1項に記載の電磁波シールドフィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 13, further comprising an insulating layer laminated between the base material layer and the electromagnetic wave shielding layer.
  15.  前記絶縁層と前記電磁波遮断層とは、前記基材層の前記一方の面側からこの順で積層された積層体をなしている請求項14に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 14, wherein the insulating layer and the electromagnetic wave shielding layer form a laminated body laminated in this order from the one surface side of the base material layer.
  16.  前記絶縁層は、熱可塑性を有する絶縁樹脂で構成されている請求項14または15に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 14 or 15, wherein the insulating layer is made of an insulating resin having thermoplasticity.
  17.  前記絶縁層の厚みT(D)は、3μm以上、50μm以下である請求項14ないし16のいずれか1項に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to any one of claims 14 to 16, wherein a thickness T (D) of the insulating layer is 3 µm or more and 50 µm or less.
  18.  前記基板上の前記凸部に、請求項1ないし17のいずれか1項に記載の電磁波シールド用フィルムを前記電磁波遮断層と電子部品とが接着するように貼付する貼付工程と、
     前記貼付工程の後、前記基材層を前記電磁波遮断層から剥離する剥離工程とを有することを特徴とする電子部品の被覆方法。
    A sticking step of sticking the electromagnetic wave shielding film according to any one of claims 1 to 17 on the convex part on the substrate so that the electromagnetic wave shielding layer and the electronic component are bonded,
    An electronic component coating method comprising: a peeling step of peeling the base material layer from the electromagnetic wave shielding layer after the pasting step.
PCT/JP2013/071923 2012-08-16 2013-08-14 Em-shielding film and method for covering electronic component WO2014027673A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147035705A KR101799631B1 (en) 2012-08-16 2013-08-14 Em-shielding film and method for covering electronic component
CN201380043449.XA CN104584707A (en) 2012-08-16 2013-08-14 EM-shielding film and method for covering electronic component
SG11201501162UA SG11201501162UA (en) 2012-08-16 2013-08-14 Electromagnetic shielding film and method of covering electronic component

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-180537 2012-08-16
JP2012180537 2012-08-16
JP2013-051098 2013-03-13
JP2013051098A JP6263846B2 (en) 2012-08-16 2013-03-13 Electromagnetic wave shielding film and method for coating electronic component
JP2013051100A JP6263847B2 (en) 2012-08-16 2013-03-13 Electromagnetic wave shielding film and method for coating electronic component
JP2013-051100 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014027673A1 true WO2014027673A1 (en) 2014-02-20

Family

ID=50614085

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/071923 WO2014027673A1 (en) 2012-08-16 2013-08-14 Em-shielding film and method for covering electronic component
PCT/JP2013/071922 WO2014027672A1 (en) 2012-08-16 2013-08-14 Em-shielding film and method for covering electronic component

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071922 WO2014027672A1 (en) 2012-08-16 2013-08-14 Em-shielding film and method for covering electronic component

Country Status (6)

Country Link
JP (4) JP6263847B2 (en)
KR (2) KR101799630B1 (en)
CN (2) CN104584708A (en)
SG (2) SG11201501165XA (en)
TW (2) TWI675617B (en)
WO (2) WO2014027673A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981138A (en) * 2014-04-10 2015-10-14 苏州驭奇材料科技有限公司 Electromagnetic shielding heat-dissipation film and manufacturing method thereof
WO2019044512A1 (en) * 2017-08-31 2019-03-07 住友ベークライト株式会社 Electromagnetic wave shield film
JP2019043135A (en) * 2017-08-31 2019-03-22 積水化学工業株式会社 Release film
JP2020057711A (en) * 2018-10-03 2020-04-09 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and electronic component mounting board
WO2020241468A1 (en) * 2019-05-30 2020-12-03 東洋紡株式会社 Resin composition for insert molding, sealing body for electronic component, and method for producing sealing body for electronic component
KR20210002738A (en) 2018-06-12 2021-01-08 토요잉크Sc홀딩스주식회사 Electromagnetic shielding sheet
US11437183B2 (en) 2018-04-02 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Coil component

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125328B2 (en) * 2013-05-27 2017-05-10 日東電工株式会社 Method for manufacturing soft magnetic film laminated circuit board
JP2015159214A (en) * 2014-02-25 2015-09-03 住友ベークライト株式会社 Electromagnetic wave shield film, and flexible printed board
WO2015129546A1 (en) * 2014-02-25 2015-09-03 住友ベークライト株式会社 Electromagnetic shielding film, flexible printed substrate, substrate for mounting electronic component, and method for covering electronic component
JP6497009B2 (en) * 2014-09-16 2019-04-10 住友ベークライト株式会社 Electromagnetic wave shielding film
JP2016058565A (en) * 2014-09-10 2016-04-21 住友ベークライト株式会社 Film for electromagnetic shielding
JP6459019B2 (en) * 2014-05-22 2019-01-30 ナガセケムテックス株式会社 Sealed laminated sheet and method for manufacturing the same, mounting structure sealed using the laminated sheet for sealing, and method for manufacturing the same
JP2016006808A (en) * 2014-05-26 2016-01-14 住友ベークライト株式会社 Film for electromagnetic wave shield, and electronic component packaging substrate
CN106465568B (en) * 2014-06-02 2019-01-01 大自达电线股份有限公司 Electric conductivity junction film, printed wiring board and electronic equipment
JP2016009809A (en) * 2014-06-26 2016-01-18 住友ベークライト株式会社 Film for electromagnetic wave shield and electronic component mounting board
EP3163995B1 (en) 2014-08-01 2019-01-02 Huawei Technologies Co. Ltd. Electromagnetic shielding material and method for packaging optical module
TWI631889B (en) * 2014-12-27 2018-08-01 中原大學 Electromagnetic wave shielding composite film
JP6515559B2 (en) * 2015-02-06 2019-05-22 住友ベークライト株式会社 Film for electromagnetic wave shielding and electronic component mounting substrate
JP2017022319A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board
CN108353523B (en) * 2015-11-25 2020-02-25 株式会社巴川制纸所 Matching type electromagnetic wave absorber
JP2017118015A (en) 2015-12-25 2017-06-29 株式会社トーキン Electronic device and arrangement method of electromagnetic interference suppression body
JP6648626B2 (en) * 2016-04-27 2020-02-14 オムロン株式会社 Electronic device and method of manufacturing the same
JP6777423B2 (en) * 2016-04-28 2020-10-28 新科實業有限公司SAE Magnetics(H.K.)Ltd. Electronic component module and its manufacturing method
DE102017107230A1 (en) * 2016-05-02 2017-11-02 Toyota Motor Engineering & Manufacturing North America Inc. Omnidirectional red structural color of high chroma
JP2017216337A (en) * 2016-05-31 2017-12-07 Jnc株式会社 Electromagnetic wave suppression coating agent, electromagnetic wave suppression sheet, electromagnetic wave shield component, and electronic apparatus
JP2018060990A (en) * 2016-07-08 2018-04-12 住友ベークライト株式会社 Sealing film, method for sealing electronic component-mounted substrate, and electronic component-mounted substrate covered with sealing film
JP6358405B2 (en) * 2016-07-08 2018-07-18 住友ベークライト株式会社 Film for sealing, sealing method for electronic component mounting substrate, and film-covered electronic component mounting substrate for sealing
CN106163247A (en) * 2016-07-18 2016-11-23 福建星宏新材料科技有限公司 A kind of wide frequency domain absorbing material
CN106131991B (en) * 2016-07-28 2022-09-16 杭州信多达智能科技有限公司 Wire coil assembly with surround shielding radiation function
JP2018060991A (en) * 2016-09-28 2018-04-12 住友ベークライト株式会社 Sealing film, method for sealing electronic component-mounted substrate, and sealing film-covered electronic component-mounted substrate
JP6865340B2 (en) * 2017-03-31 2021-04-28 ナガセケムテックス株式会社 Manufacturing method of mounting structure and laminated sheet used for this
JP2019029549A (en) * 2017-08-01 2019-02-21 住友ベークライト株式会社 Film set
JP6451801B1 (en) * 2017-08-10 2019-01-16 東洋インキScホールディングス株式会社 Electromagnetic shielding film used for manufacturing method of electromagnetic shielding electronic device and manufacturing method of electromagnetic shielding electronic device
JP6516108B2 (en) * 2017-08-10 2019-05-22 東洋インキScホールディングス株式会社 Electromagnetic wave shield laminate for vacuum forming, and electromagnetic wave shield molded body using the same
KR102530753B1 (en) * 2017-08-11 2023-05-10 삼성전자주식회사 Semiconductor package blocking electromagnetic interference and electronic system having the same
SG11202005449YA (en) * 2017-12-14 2020-07-29 Nagase Chemtex Corp Manufacturing method of mounting structure, and sheet therefor
JP2019119820A (en) * 2018-01-09 2019-07-22 住友ベークライト株式会社 Encapsulation film, encapsulation film coated electronic component loading substrate and re-detachment method
KR102616814B1 (en) * 2018-03-09 2023-12-21 삼성전자주식회사 Semiconductor package and semiconductor module
CN110691497B (en) * 2018-07-06 2024-04-23 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
WO2020129985A1 (en) 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 Electronic component mounting substrate and electronic apparatus
KR102094743B1 (en) * 2019-03-25 2020-03-30 고려대학교 산학협력단 Electromagnetic wave absorber
DE102019118092A1 (en) * 2019-07-04 2021-01-07 Carl Freudenberg Kg Process for the production of a component shielded from electromagnetic radiation
JP2024013611A (en) * 2022-07-20 2024-02-01 Jx金属株式会社 Electromagnetic wave shielding material, covering material or outer casing material, and electric and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2003273571A (en) * 2002-03-18 2003-09-26 Fujitsu Ltd High-frequency module for shielding inter-element radio wave interference
JP2006216782A (en) * 2005-02-03 2006-08-17 Kitagawa Ind Co Ltd Method for obtaining contact and fixing between shield case and conductive material
WO2008001682A1 (en) * 2006-06-27 2008-01-03 Mitsui Chemicals, Inc. Film and mold release film
JP2009241410A (en) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd Release film
JP2009277764A (en) * 2008-05-13 2009-11-26 San Totsukusu Kk Sheet for coverlay film thermocompression bonding
JP2011161747A (en) * 2010-02-09 2011-08-25 Sumitomo Bakelite Co Ltd Laminated film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW592035B (en) * 2003-04-25 2004-06-11 Optimax Tech Corp Shielding layer structure for electromagnetic wave and manufacturing method thereof
JP4319167B2 (en) * 2005-05-13 2009-08-26 タツタ システム・エレクトロニクス株式会社 Shield film, shield printed wiring board, shield flexible printed wiring board, shield film manufacturing method, and shield printed wiring board manufacturing method
JP2007173682A (en) * 2005-12-26 2007-07-05 Sumitomo Bakelite Co Ltd Electromagnetic wave absorbing film, circuit board, and manufacturing method thereof
JP2008292857A (en) * 2007-05-25 2008-12-04 Panasonic Electric Works Co Ltd Optical filter for pdp
JP5139156B2 (en) * 2008-05-30 2013-02-06 タツタ電線株式会社 Electromagnetic shielding material and printed wiring board
JP5272589B2 (en) * 2008-09-01 2013-08-28 住友ベークライト株式会社 Release film
KR101244022B1 (en) * 2008-09-04 2013-03-14 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Electromagnetic interference suppressing hybrid sheet
WO2010061851A1 (en) * 2008-11-28 2010-06-03 株式会社 きもと Sheet with coating film and manufacturing method thereof
US9072204B2 (en) * 2009-07-17 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Electronic module and production method therefor
KR101745038B1 (en) * 2010-02-09 2017-06-08 스미또모 베이크라이트 가부시키가이샤 Laminated film
JP5619466B2 (en) * 2010-04-13 2014-11-05 デクセリアルズ株式会社 Curable resin composition, adhesive epoxy resin paste, die bond agent, non-conductive paste, adhesive epoxy resin film, non-conductive epoxy resin film, anisotropic conductive paste and anisotropic conductive film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2003273571A (en) * 2002-03-18 2003-09-26 Fujitsu Ltd High-frequency module for shielding inter-element radio wave interference
JP2006216782A (en) * 2005-02-03 2006-08-17 Kitagawa Ind Co Ltd Method for obtaining contact and fixing between shield case and conductive material
WO2008001682A1 (en) * 2006-06-27 2008-01-03 Mitsui Chemicals, Inc. Film and mold release film
JP2009241410A (en) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd Release film
JP2009277764A (en) * 2008-05-13 2009-11-26 San Totsukusu Kk Sheet for coverlay film thermocompression bonding
JP2011161747A (en) * 2010-02-09 2011-08-25 Sumitomo Bakelite Co Ltd Laminated film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981138A (en) * 2014-04-10 2015-10-14 苏州驭奇材料科技有限公司 Electromagnetic shielding heat-dissipation film and manufacturing method thereof
CN104981138B (en) * 2014-04-10 2018-06-15 苏州驭奇材料科技有限公司 A kind of manufacturing method for being electromagnetically shielded heat dissipation film
WO2019044512A1 (en) * 2017-08-31 2019-03-07 住友ベークライト株式会社 Electromagnetic wave shield film
JP2019043135A (en) * 2017-08-31 2019-03-22 積水化学工業株式会社 Release film
JPWO2019044512A1 (en) * 2017-08-31 2019-11-07 住友ベークライト株式会社 Electromagnetic wave shielding film
JP7277092B2 (en) 2017-08-31 2023-05-18 積水化学工業株式会社 release film
US11437183B2 (en) 2018-04-02 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Coil component
US11990420B2 (en) 2018-06-12 2024-05-21 Artience Co., Ltd. Electromagnetic wave shielding sheet
KR20210002738A (en) 2018-06-12 2021-01-08 토요잉크Sc홀딩스주식회사 Electromagnetic shielding sheet
KR20210066802A (en) 2018-10-03 2021-06-07 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet and electronic component mounting board
US11172599B2 (en) 2018-10-03 2021-11-09 Toyo Ink Sc Holdings Co., Ltd. Electromagnetic-wave shielding sheet and electronic component-mounted substrate
JP2020057711A (en) * 2018-10-03 2020-04-09 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and electronic component mounting board
JP2020193304A (en) * 2019-05-30 2020-12-03 東洋紡株式会社 Resin composition for insert molding, electronic part-sealed body, and method for producing electronic part-sealed body
JP7236326B2 (en) 2019-05-30 2023-03-09 東洋紡株式会社 Electronic component sealing body and method for manufacturing electronic component sealing body
WO2020241468A1 (en) * 2019-05-30 2020-12-03 東洋紡株式会社 Resin composition for insert molding, sealing body for electronic component, and method for producing sealing body for electronic component

Also Published As

Publication number Publication date
TWI675617B (en) 2019-10-21
JP6225436B2 (en) 2017-11-08
SG11201501165XA (en) 2015-05-28
TW201419996A (en) 2014-05-16
JP2014057042A (en) 2014-03-27
CN104584708A (en) 2015-04-29
JP6225437B2 (en) 2017-11-08
JP6263847B2 (en) 2018-01-24
WO2014027672A1 (en) 2014-02-20
JP6263846B2 (en) 2018-01-24
KR20150042747A (en) 2015-04-21
TW201419997A (en) 2014-05-16
KR101799630B1 (en) 2017-11-20
JP2014057043A (en) 2014-03-27
CN104584707A (en) 2015-04-29
KR20150044853A (en) 2015-04-27
JP2014057041A (en) 2014-03-27
JP2014057040A (en) 2014-03-27
KR101799631B1 (en) 2017-11-20
SG11201501162UA (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2014027673A1 (en) Em-shielding film and method for covering electronic component
JP6481612B2 (en) Electromagnetic wave shielding film and electronic component mounting board
WO2015129546A1 (en) Electromagnetic shielding film, flexible printed substrate, substrate for mounting electronic component, and method for covering electronic component
KR20130004903A (en) Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
WO2019239710A1 (en) Electromagnetic wave shielding sheet
KR101552976B1 (en) An emi shield film and method for fabricating the same
JP2015159214A (en) Electromagnetic wave shield film, and flexible printed board
JP6497009B2 (en) Electromagnetic wave shielding film
JP6639079B2 (en) Anisotropic conductive material
WO2020095919A1 (en) Electromagnetic shielding film, method for manufacturing electromagnetic shielding film, and method for manufacturing shielded printed wiring board
JP6654954B2 (en) Anisotropic conductive connection structure
JP2016006808A (en) Film for electromagnetic wave shield, and electronic component packaging substrate
JP2016058565A (en) Film for electromagnetic shielding
TW201943054A (en) Electromagnetic wave shielding film, shielding printed circuit board and method for manufacturing shielding printed circuit capable of exhibiting high adhesive strength when an adhered member such as a reinforced plate is adhered to the isolation layer
TW201940021A (en) Electromagnetic wave shield film and shield printed circuit board enables the connection portion of the ground component to easily penetrate through the insulation layer of the electromagnetic wave shield film while pressing the ground component
JP2019121719A (en) Sealing film and sealing film-covering electronic component-mounted substrate
JP2016009809A (en) Film for electromagnetic wave shield and electronic component mounting board
JP2017063158A (en) Film for electromagnetic wave shielding, and electronic component mounting board
JP2017118046A (en) Electromagnetic wave shield material and manufacturing method thereof
JP2013138161A (en) Thin film conductive film
JP2017183239A (en) Anisotropic conductive connection structure
JP2016177917A (en) Circuit connection material and connection method
JP2006007537A (en) Conductive sheet and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879520

Country of ref document: EP

Kind code of ref document: A1