WO2014017456A1 - 焼結軸受 - Google Patents

焼結軸受 Download PDF

Info

Publication number
WO2014017456A1
WO2014017456A1 PCT/JP2013/069847 JP2013069847W WO2014017456A1 WO 2014017456 A1 WO2014017456 A1 WO 2014017456A1 JP 2013069847 W JP2013069847 W JP 2013069847W WO 2014017456 A1 WO2014017456 A1 WO 2014017456A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
graphite
bearing
sintered
sintered bearing
Prior art date
Application number
PCT/JP2013/069847
Other languages
English (en)
French (fr)
Inventor
容敬 伊藤
隆宏 後藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49997267&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014017456(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201380038414.7A priority Critical patent/CN104487721B/zh
Priority to US14/414,555 priority patent/US10125819B2/en
Priority to EP13822555.2A priority patent/EP2878839B1/en
Priority to IN381DEN2015 priority patent/IN2015DN00381A/en
Publication of WO2014017456A1 publication Critical patent/WO2014017456A1/ja
Priority to US16/145,465 priority patent/US20190032714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/16Sliding surface consisting mainly of graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/48Particle sizes

Definitions

  • the present invention relates to a sintered bearing made of sintered metal.
  • Sintered bearings are widely used as bearings for precision small motors due to their excellent quietness.
  • This sintered bearing is roughly classified into a copper system mainly composed of copper, an iron system mainly composed of iron, and a copper iron system mainly composed of copper and iron.
  • Both types of sintered bearings are usually used by impregnating the pores of the porous structure with a lubricating oil.
  • a copper-iron sintered bearing impregnated with a lubricating oil a copper-based powder having a diameter of 45 ⁇ m or less and a copper ratio and an oil permeability specified within a predetermined range are known (see Patent Document 1). ).
  • the lubricating oil it may not be preferable to use the lubricating oil.
  • a copying machine or a printing machine there is a possibility that the paper is soiled with lubricating oil leaked from the bearing.
  • the electrical parts for automobiles there is a possibility that the periphery of the bearing becomes high temperature and the lubricating oil deteriorates or evaporates in a short period of time, thereby impairing the bearing performance.
  • dry bearings dry type sintered bearings
  • dry bearings are apt to cause poor lubrication, and as such, use conditions such as rotational speed and load are greatly restricted. Therefore, as a countermeasure, it is conceivable to increase the blending amount of graphite as a solid lubricant blended in the raw material powder and enhance the self-lubricating performance of the bearing itself.
  • an object of the present invention is to provide a sintered bearing having high strength and small variations in dimensions and bearing performance during mass production.
  • the sintered bearing according to the present invention is a sintered bearing obtained by forming raw material powder containing graphite powder and metal powder with a mold, and thereafter sintering the granulated powder as the graphite powder, and on the bearing surface.
  • the ratio of free graphite is 25% to 80% in area ratio.
  • the ratio of free graphite on the bearing surface is adjusted to 25% to 80% by area ratio. Further, high lubricity can be obtained even in a dry state where no lubricating oil is impregnated.
  • the average particle size of the granulated powder it is desirable to set the average particle size of the granulated powder to 60 ⁇ m to 500 ⁇ m.
  • the blending ratio of the granulated graphite powder in the raw material powder is preferably 3 to 15% by weight.
  • the blending ratio of graphite has to be smaller than 3% by weight due to the above problem, but according to the present invention, 3% by weight or more of graphite powder can be blended. Therefore, as described above, a graphite structure can be formed in a vast area of the bearing surface.
  • the apparent density of the graphite granulated powder is desirably 1.0 g / cm 3 or less.
  • the sintered bearing according to the present invention can be used as a dry bearing not impregnated with lubricating oil as described above, but can also be used as an oil-impregnated bearing impregnated with lubricating oil.
  • the lubricity of the bearing surface can be improved.
  • variations in bearing performance and dimensional accuracy due to segregation can be suppressed even during mass production, and the strength of the green compact and sintered body can be improved.
  • the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner periphery.
  • the shaft 2 made of stainless steel or the like is inserted into the inner periphery of the sintered bearing 1 and the shaft is rotated in this state, or the sintered bearing 1 is rotated, the outer peripheral surface of the shaft 2 is the bearing of the sintered bearing 1.
  • the surface 1a is rotatably supported.
  • the sintered bearing 1 of the present invention is formed by filling raw material powder mixed with various powders in a mold, compressing this to form a green compact, and then sintering the green compact.
  • the sintered bearing 1 of the present embodiment is a so-called copper iron-based material, and a mixed powder containing copper powder, iron powder, low melting point metal powder, and graphite powder as main components is used as raw material powder.
  • various molding aids for example, a lubricant (metal soap or the like) for improving releasability are added as necessary.
  • a lubricant metal soap or the like
  • Copper powder As the copper powder, spherical and dendritic copper powders widely used for sintered bearings can be widely used. In this embodiment, electrolytic powder or water atomized powder is used. These mixed powders can also be used.
  • the average particle diameter of the copper powder is, for example, 40 ⁇ m to 160 ⁇ m, and the apparent density is, for example, 1.5 to 3.0 g / cm 3 .
  • the definition of the apparent density conforms to the rules of JIS Z 8901 (hereinafter the same).
  • Flat copper powder can also be used as the copper powder.
  • iron powder known powders such as reduced iron powder and water atomized iron powder can be widely used.
  • reduced iron powder is used.
  • the reduced iron powder is also called spongy iron powder because it has a substantially spherical shape, an irregular shape and a porous shape, and a spongy shape having minute irregularities on the surface.
  • iron powder having an average particle size of 60 ⁇ m to 200 ⁇ m and an apparent density of 2.0 to 3.0 g / cm 3 is used.
  • the amount of oxygen contained in the iron powder is 0.2% by weight or less.
  • the low melting point metal powder is a metal powder having a melting point lower than the sintering temperature.
  • a metal powder having a melting point of 700 ° C. or lower for example, a powder of tin, zinc, phosphorus or the like is used. Of these, tin is preferred because it causes less transpiration during sintering.
  • atomized powder is used as the tin powder.
  • These low melting point metal powders have a melting point of 700 ° C. or lower and a melting point lower than the sintering temperature, and less transpiration during sintering. Since tin powder has high wettability with respect to copper, liquid phase sintering and solid phase sintering proceed during sintering by blending it with raw material powder. Bond strength is enhanced.
  • graphite powder graphite granulated powder obtained by granulating fine graphite powder and increasing the diameter is used.
  • fine powder scale-like or spherical natural graphite powder having an average particle diameter of 40 ⁇ m or less is used.
  • the granulated graphite powder has an average particle size in the range of 60 ⁇ m to 500 ⁇ m and an apparent density of 1.0 g / cm 3 or less.
  • a phenol resin is used as a binder for granulation.
  • the amount of the binder is preferably 5 to 15% by weight with respect to the graphite fine powder.
  • Raw material powder is obtained by uniformly mixing each of the above powders with a known mixer.
  • the blending ratio of the graphite powder to the raw material powder is 3 wt% to 15 wt% (desirably 5 wt% to 12 wt%).
  • the blending ratio of the low melting point metal powder in the raw material powder can be arbitrarily determined, for example, 1 to 4% by weight.
  • the mixing ratio of the iron powder and the copper powder can be arbitrarily determined in consideration of the use conditions and cost of the bearing.
  • the mixed raw material powder is supplied to the mold 3 of the molding machine.
  • the mold 3 includes a core 3a, a die 3b, an upper punch 3c, and a lower punch 3d, and a raw material powder is filled in a cavity defined by these.
  • the raw material powder is formed by the molding surface composed of the outer peripheral surface of the core 3a, the inner peripheral surface of the die 3b, the end surface of the upper punch 3c, and the end surface of the lower punch 3d.
  • a green compact 4 having a shape (cylindrical in this embodiment) corresponding to the sintered bearing 1 is obtained.
  • the green compact 4 is sintered in a sintering furnace.
  • the sintering conditions are such that carbon contained in the graphite does not react with iron (carbon diffusion does not occur).
  • the reaction between carbon (graphite) and iron starts after the temperature exceeds 900 ° C., and a pearlite phase ⁇ Fe is generated.
  • the pearlite phase ⁇ Fe is generated, the amount of the graphite structure liberated on the bearing surface 1a is reduced, and the object of the present invention cannot be achieved.
  • the pearlite phase ⁇ Fe is a hard structure (HV300 or more) and has a strong attacking property against the counterpart material, excessive precipitation of the pearlite phase may cause the shaft 2 to progress.
  • an endothermic gas obtained by mixing liquefied petroleum gas (butane, propane, etc.) and air and thermally decomposing with a Ni catalyst is used as the sintering atmosphere.
  • liquefied petroleum gas butane, propane, etc.
  • Ni catalyst thermally decomposing with a Ni catalyst
  • carbon may diffuse and harden the surface.
  • the sintering is performed at a low temperature of 900 ° C. or lower, specifically, 700 ° C. (desirably 760 ° C.) to 840 ° C.
  • the sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum.
  • the aggressiveness against the shaft 2 is not so high, while the effect of suppressing the wear of the bearing surface 1a is obtained. Can do.
  • the term “grain boundary” as used herein means both grain boundaries formed between ferrite phases and between ferrite phases and other particles, as well as crystal grain boundaries in the ferrite phase.
  • the sintering temperature is raised to 820 ° C. to 900 ° C.
  • a gas containing carbon as the furnace atmosphere for example, natural gas And sintering using an endothermic gas (RX gas).
  • RX gas endothermic gas
  • a porous sintered body can be obtained through the sintering process described above. By sizing this sintered body, the sintered bearing 1 shown in FIG. 1 is completed. Since the sintered bearing of this embodiment is used as a dry bearing, the impregnation of the lubricating oil after sizing is not performed. As described above, carbon and iron are not reacted at the time of sintering, and the iron structure is made into a soft ferrite phase, so that the sintered body is likely to cause plastic flow during sizing, and high-precision sizing can be performed. .
  • the graphite structure can be formed on the bearing surface 1a at a ratio of 25% or more by area ratio. Therefore, the self-lubricating property of the bearing surface 1a can be improved, the lubricating performance and conductivity of the bearing can be improved, and a sintered bearing having a high durability life can be provided even under high speed rotation and high load conditions. . Also, it can be used as a dry bearing that does not impregnate the porous structure with lubricating oil, and it can be used in copying machines, printing machines (eg, mag rolls), automotive electrical components, household appliances, high vacuum equipment, etc. It can also be used for parts that cannot be used. Note that if the area of the graphite structure liberated on the bearing surface 1a becomes excessive, the strength of the bearing surface 1a is reduced, so the upper limit of the area ratio is 80%.
  • the measurement of the area ratio in the bearing surface 1a can be performed by image analysis.
  • This image analysis is performed as follows, for example. (1) Photographed with a metallographic microscope (ECLIPSE ME600 manufactured by Nikon Corporation) (100x). (2) Image acquisition is performed by Digital Sight DS-U3 manufactured by Nikon Corporation. (3) Image processing is performed by NIS-Elements D manufactured by Nikon Instruments Company. (4) The area ratio of graphite is calculated with digital image analysis software (Quick Grain manufactured by Innotech Co., Ltd.).
  • the weight per particle of graphite powder can be increased.
  • the weight difference between the graphite powder and the metal powder per particle is reduced, the fluidity of the raw material powder can be improved.
  • the raw material powder can be uniformly mixed. Accordingly, variations in dimensions and bearing performance due to segregation during mass production can be reduced, and a bearing having a complicated shape can be manufactured.
  • the green compact strength and sintered body strength can be improved as compared with the case where a large amount of graphite is dispersed.
  • a copper iron system using copper powder, iron powder, and low-melting-point metal powder as a metal powder was mentioned, but the present invention is not limited to this, and as metal powder
  • the present invention can be similarly applied to copper-based sintered bearings using copper powder and low-melting-point metal powder, and iron-based sintered bearings using iron powder and a small amount of copper powder as metal powder.
  • the product of the present invention (hereinafter referred to as the present product) will be described in comparison with a conventional product that does not use granulated graphite powder.
  • the product of the present invention and the conventional product are copper-based sintered bearings unlike the above embodiment.
  • FIG. 3A and 3B are enlarged micrographs of the bearing surface 1a of the sintered bearing 1, FIG. 3A shows the product of the present invention, and FIG. 3B shows the conventional product.
  • the bright part shows a copper structure (including an alloy part with Sn)
  • the dark part shows a graphite structure.
  • the fine dark part is a hole opened on the surface.
  • the product of the present invention has a larger distribution of graphite than the conventional product.
  • graphite is uniformly dispersed in the product of the present invention.
  • the area ratio of graphite in FIG. 3A is 28%
  • the area ratio of graphite in FIG. 3B is 78%.
  • the above-mentioned apparatus and method were used for the image analysis for measuring this area ratio.
  • FIG. 4 shows the results of a ratra test conducted to evaluate the strength of the green compact.
  • the Ratra test is a measurement based on the Latra test method for metal green compacts (Japan Powder Metallurgy Industry Association Standard: JSPM Standard 4-69), and using the value calculated from the obtained measurement results, This is a method for determining the ease of disintegration of a piece (a compact body) (the strength of the compact body is quantified). The lower the Latra value obtained, the stronger the compact body.
  • the product of the present invention has a lower rattra value than the conventional product, so that the strength of the compact is excellent, and chipping, cracking, and the like can be suppressed.
  • FIG. 5 shows the crushing strength measured in order to evaluate the strength of the green compact.
  • the product of the present invention has a greater crushing strength than the conventional product, so that the strength of the compact is excellent, and chipping, cracking, and the like can be suppressed.
  • FIG. 6 shows the maximum value, the average value, and the minimum value of the molding weight measured in order to evaluate the variation in the molding weight.
  • the product of the present invention has a smaller difference between the maximum value and the minimum value of the molding weight than the conventional product, and the variation in the molding weight is small.
  • FIG. 7 shows the average value and the minimum value of the green compact length measured to evaluate the dispersion of the green compact length.
  • the product of the present invention has a smaller difference between the maximum value and the minimum value of the green compact length than the conventional product, and the variation in the green compact length is small.
  • FIG. 8 shows the amount of wear on the inner surface of the bearing after operation under the following conditions. Further, FIG. 9 shows the change in the friction coefficient in the operation under the same conditions.
  • Peripheral speed: V 7m / min
  • Surface pressure: P 2MPa
  • the product of the present invention can suppress the amount of wear on the inner surface of the bearing as compared with the conventional product. Further, as can be seen from FIG. 9, after 10 minutes have elapsed, the product of the present invention can suppress the friction coefficient as compared with the conventional product.
  • the bearing that supports the rotational motion of the shaft is exemplified as the sintered bearing, but the sintered bearing according to the present invention is also used as a so-called linear bearing that supports the linear motion of the sliding member such as the shaft. be able to.
  • the sintered bearing of the present invention can be used not only as a dry bearing not impregnated with lubricating oil but also as an oil-impregnated bearing impregnated with lubricating oil after sizing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 黒鉛粉と金属粉とを含む原料粉を型で成形し、その後焼結して得られる焼結軸受1において、黒鉛粉として造粒粉を用い、かつ軸受面1aにおける遊離黒鉛の割合を面積比で25%~80%とした。前記造粒粉の平均粒径を、60μm~500μmとした。また、原料粉における前記造粒粉の配合割合を、3重量%~15重量%とした。

Description

焼結軸受
 本発明は、焼結金属からなる焼結軸受に関する。
 精密小型モータ用の軸受として、その優れた静粛性から焼結軸受が広く用いられている。この焼結軸受は、銅を主体とする銅系、鉄を主体とする鉄系、銅と鉄を主体とする銅鉄系に大別される。何れのタイプの焼結軸受も、通常はその多孔質組織の空孔に潤滑油を含浸させて使用される。例えば潤滑油を含浸させた銅鉄系の焼結軸受として、直径45μm以下の銅系粉末を用い、かつ銅の比率や通油度を所定範囲に規定したものが公知である(特許文献1参照)。
特開2012-67893号公報
 ところで、焼結軸受の使用環境によっては、潤滑油を使用することが好ましくない場合がある。例えば、複写機や印刷機では、軸受から漏洩した潤滑油で紙を汚す可能性がある。また、自動車用電装部品では、軸受の周辺が高温となって潤滑油が短期間で劣化もしくは蒸散し、軸受性能を害する可能性がある。さらに潤滑油によって軸と軸受とが電気的に絶縁されることで生じる静電気の帯電が問題となる場合もある。
 これら潤滑油を使用することが好ましくない用途では、潤滑油を含浸させていない、いわゆるドライタイプの焼結軸受(ドライ軸受)を用いることが考えられる。しかしながら、ドライ軸受ではどうしても潤滑不良が生じ易く、そのままでは回転数や荷重等の使用条件が大きく制約される。そこで、対策として、原料粉に配合される固体潤滑剤としての黒鉛の配合量を増やし、軸受自体の自己潤滑性能を強化することが考えられる。
 しかしながら、黒鉛粉の比重や粒径は金属粉のそれらよりもかなり小さいため(例えば比重は金属粉の1/4程度である)、黒鉛の配合量を増やせば、それだけ原料粉全体の流動性が低下する。すなわち、原料粉を成形用の金型に充填し、これを圧縮して圧粉体を成形する際に、粉体の落下速度が不均一となり、偏析等による重量、寸法、密度等にバラツキを生じるおそれがある。また、原料粉を均一に混合することが難しく、このことも焼結体における偏析の発生を助長する。さらに黒鉛を多く含む原料粉は固まり難いので、圧粉体の強度が低下し、この結果、欠け、割れ、クラック等が発生し易くなる。
 また、金属粉間の結合強度を強化するために原料粉に錫を添加した場合、原料粉中の黒鉛の添加量が多いと、黒鉛が錫による金属粉の結合機能を阻害するため、焼結体の強度低下を招く。
 本発明は、上記事情に鑑み、高強度で量産時の寸法や軸受性能のばらつきが小さい焼結軸受を提供することを目的とする。
 本発明に係る焼結軸受は、黒鉛粉と金属粉とを含む原料粉を型で成形し、その後焼結して得られる焼結軸受において、黒鉛粉として造粒粉を用い、かつ軸受面における遊離黒鉛の割合を面積比で25%~80%としたことを特徴とするものである。
 このように軸受面における遊離黒鉛の割合を面積比で25%~80%とすることで、軸受面における潤滑性が高まる。また、潤滑油を含浸させないドライな状態でも高い潤滑性を得ることができる。
 このように軸受面に多くの黒鉛を遊離させるため、黒鉛粉の配合量を既存品よりも増やす必要があるが、その場合でも黒鉛の造粒粉、すなわち黒鉛の微粉を造粒して大径化したものを使用することで、黒鉛粉1粒子当たりの重量を大きくすることができる。これにより1粒子当りの黒鉛粉と金属粉の重量差が小さくなるので、原料粉の流動性を向上させることができる。また、原料粉を均一混合も可能となる。従って、量産時の偏析による寸法や軸受性能のばらつきを小さくすることができ、かつ複雑な形状の軸受も製作可能となる。また、黒鉛の存在領域が集約されるため、多量の黒鉛が分散して存在する場合に比べ、圧粉体強度や焼結体強度を向上させることができる。
 上記構成においては、前記造粒粉の平均粒径を、60μm~500μmに設定するのが望ましい。
 原料粉末における黒鉛の造粒粉の配合割合は、3重量%~15重量%にするのが望ましい。既存品では、上記の問題から黒鉛の配合割合は3重量%よりも小さくせざるを得なかったが、本発明によれば3重量%以上の黒鉛粉を配合することが可能となる。そのため、上記のとおり軸受面の広大な領域に黒鉛組織を形成することが可能となる。
 黒鉛の造粒粉の見かけ密度は、1.0g/cm3以下とするのが望ましい。
 本発明にかかる焼結軸受は、上記のとおり潤滑油を含浸させないドライ軸受として使用することができるが、潤滑油を含浸させる含油軸受としても使用することが可能である。
 本発明によれば、軸受面の潤滑性を向上させることができる。また、量産時でも偏析による軸受性能や寸法精度のばらつきを抑制することができ、かつ圧粉体や焼結体の強度を向上させることができる。また、複雑な形状を有する焼結軸受を製作することも可能となり、軸受形状の自由度が高まる。
本発明の実施形態に係る焼結軸受の軸方向断面図である。 金型による圧粉体の成形工程を示す断面図である。 本発明の実施品である焼結軸受における軸受面の顕微鏡写真を示す図である。 従来品の焼結軸受における軸受面の顕微鏡写真を示す図である。 ラトラ試験の結果(ラトラ値)を示す図である。 圧環強さを示す図である。 成形重量を示す図である。 圧粉体長さを示す図である。 焼結軸受の内径面の摩耗量を示す図である。 焼結軸受の摩擦係数を示す図である。
 以下、本発明を実施するための形態について図面に基づき説明する。
 図1に示すように、本実施形態では、焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。この焼結軸受1の内周にステンレス鋼等からなる軸2を挿入し、その状態で軸を回転させ、あるいは焼結軸受1を回転させると、軸2の外周面が焼結軸受1の軸受面1aによって回転自在に支持される。
 本発明の焼結軸受1は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。
 本実施形態の焼結軸受1は、いわゆる銅鉄系と呼ばれるものであり、原料粉として、銅粉、鉄粉、低融点金属粉、および黒鉛粉を主成分とする混合粉末が用いられる。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。以下、焼結軸受1の実施形態について、その原料粉末および製造手順を詳細に述べる。
[銅粉]
 銅粉としては、焼結軸受用として汎用されている球状や樹枝状の銅粉が広く使用可能であるが、本実施形態では、電解粉又は水アトマイズ粉が用いられる。なお、これらの混合粉も使用可能である。銅粉の平均粒径は、例えば40μm~160μmとし、見かけ密度は、例えば1.5~3.0g/cm3とする。見かけ密度の定義は、JIS Z 8901の規定に準じる(以下、同じ)。銅粉として扁平銅粉を使用することもできる。
[鉄粉]
 鉄粉としては、還元鉄粉、水アトマイズ鉄粉等の公知の粉末が広く使用可能であるが、本実施形態では、還元鉄粉を使用する。還元鉄粉は、略球形でありながら不規則形状でかつ多孔質状をなし、表面に微小な凹凸を有する海綿状となることから、海綿鉄粉とも呼ばれる。鉄粉としては、例えば、平均粒径60μm~200μm、見かけ密度2.0~3.0g/cm3のものを使用する。なお、鉄粉に含まれる酸素量は0.2重量%以下とする。
 [低融点金属粉]
 低融点金属粉は、焼結温度よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫が好ましい。また、錫粉としてはアトマイズ粉を使用する。これら低融点金属粉は、融点が700℃以下で焼結温度よりも低融点であり、また、焼結時の蒸散が少ない。錫粉は、銅に対して高いぬれ性を持つため、原料粉に配合することで、焼結時に、液相焼結と固相焼結が進行し、鉄組織と銅組織や銅組織同士の結合強度が強化される。
 [黒鉛粉]
 黒鉛粉としては、黒鉛の微粉を造粒し、大径化させた黒鉛造粒粉が使用される。微粉としては、鱗状又は球状の天然黒鉛粉で、平均粒径が40μm以下のものを用いる。造粒後の黒鉛粉は、平均粒径60μm~500μmの範囲とし、見かけ密度は1.0g/cm3以下とする。造粒のためのバインダとしては、例えばフェノール樹脂を使用する。バインダの量は、黒鉛微粉に対して5重量%~15重量%とするのが望ましい。
 [配合比]
 上記各粉末を公知の混合機で均一に混合することで原料粉が得られる。原料粉に対する黒鉛粉の配合割合は3重量%~15重量%とする(望ましくは5重量%~12重量%)。原料粉における低融点金属粉の配合割合は任意に定めることができ、例えば1重量%~4重量%とする。鉄粉と銅粉の配合割合は、軸受の使用条件やコストを勘案して任意に定めることができる。
 [成形]
 混合後の原料粉は成形機の金型3に供給される。図2に示すように、金型3は、コア3a、ダイ3b、上パンチ3c、および下パンチ3dからなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ3c,3dを接近させて原料粉体を圧縮すると、原料粉末が、コア3aの外周面、ダイ3bの内周面、上パンチ3cの端面、および下パンチ3dの端面からなる成形面によって成形され、焼結軸受1に対応した形状(本実施形態では円筒状)の圧粉体4が得られる。
 [焼結]
 その後、圧粉体4は焼結炉にて焼結される。焼結条件は、黒鉛に含まれる炭素が鉄と反応しない(炭素の拡散が生じない)条件とする。焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相γFeが生じる。パーライト相γFeが生じると、軸受面1aに遊離する黒鉛組織の量が減少し、本発明の目的を達成できない。また、パーライト相γFeは硬い組織(HV300以上)で相手材に対する攻撃性が強いため、過剰にパーライト相が析出すると軸2の摩耗を進行させるおそれがある。
 また、従来の焼結軸受の製造工程では、焼結雰囲気として、液化石油ガス(ブタン、プロパン等)と空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)を使用する場合が多い。しかしながら、吸熱型ガス(RXガス)では炭素が拡散して表面を硬化させるおそれがある。
 以上の観点から、本実施形態では、焼結は900℃以下の低温焼結、具体的には700℃(望ましくは760℃)~840℃の焼結温度とする。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかいフェライト相αFe(HV200以下)となる。焼結に伴い、各種成形助剤や黒鉛造粒粉に含まれるバインダは焼結体内部から揮散する。
 なお、パーライト相(γFe)がフェライト相(αFe)の粒界に点在する程度であれば、軸2に対する攻撃性はそれほど高まらず、その一方で軸受面1aの摩耗を抑制する効果を得ることができる。ここでいう「粒界」は、フェライト相の間やフェライト相と他の粒子との間に形成される粒界の他、フェライト相中の結晶粒界の双方を意味する。このような態様でパーライト相をフェライト相の粒界に存在させるためには、焼結温度を上記例示よりも上げて820℃~900℃とし、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相を形成することができる。
 以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施すことにより、図1に示す焼結軸受1が完成する。本実施形態の焼結軸受はドライ軸受として使用されるので、サイジング後における潤滑油の含浸は行われない。上記のように、焼結時に炭素と鉄を反応させず、鉄組織を軟質のフェライト相にすることにより、サイジング時に焼結体が塑性流動を生じやすくなり、高精度のサイジングを行うことができる。
 本発明では、上記のように原料粉における黒鉛粉の配合割合を3重量%以上としているので、軸受面1aに黒鉛組織を面積比で25%以上の割合で形成することができる。そのため、軸受面1aの自己潤滑性を高めて、軸受の潤滑性能と導電性を向上させることができ、高速回転や高荷重の条件下でも高い耐久寿命を有する焼結軸受を提供することができる。また、潤滑油を多孔質組織に含浸させないドライ軸受としての使用も可能となり、複写機や印刷機(例えばマグロール)、自動車用電装部品、家庭用電化製品、高真空機器等において、潤滑油が使用できない部位にも使用することが可能となる。なお、軸受面1aに遊離する黒鉛組織の面積が過剰になると、軸受面1aの強度低下を招くため、面積比の上限は80%とする。
 なお、軸受面1aにおける面積比の測定は画像解析により行うことができる。この画像解析は、例えば次のように行う。
(1)金属顕微鏡((株)ニコン製ECLIPSE ME600)で撮影(100倍)。
(2)画像取得は(株)ニコン製Digital Sigaht DS-U3で行う。
(3)画像処理は(株)ニコンインストルメンツカンパニー製NIS-Elements Dで行う。
(4)デジタル画像解析ソフト(イノテック(株)製Quick Grain)で黒鉛の面積比率を算出する。
 更に、本発明では黒鉛粉として造粒粉を使用しているので、黒鉛粉1粒子当たりの重量を大きくすることができる。これにより1粒子当りの黒鉛粉と金属粉の重量差が小さくなるので、原料粉の流動性を向上させることができる。また、原料粉を均一混合も可能となる。従って、量産時の偏析による寸法や軸受性能のばらつきを小さくすることができ、かつかつ複雑な形状の軸受も製作可能となる。また、多孔質組織において黒鉛の存在領域が集約されるため、多量の黒鉛が分散して存在する場合に比べ、圧粉体強度や焼結体強度を向上させることができる
 なお、以上の説明では、焼結軸受の例示として、金属粉として銅粉、鉄粉、および低融点金属粉を使用する銅鉄系を挙げたが、本発明はこれに限られず、金属粉として銅粉と低融点金属粉を使用する銅系焼結軸受や、金属粉として鉄粉と微量の銅粉を使用する鉄系焼結軸受にも同様に適用することができる。
 次に、本発明の実施品(以下、本発明品と記す)について、造粒黒鉛粉を使用しない従来品と比較して説明する。この本発明品と従来品は、上記実施形態とは異なり、銅系焼結軸受である。
 図3A、図3Bは焼結軸受1の軸受面1aを拡大した顕微鏡写真であり、図3Aが本発明品を、図3Bが従来品を示す。両図において、明部が銅組織(Snとの合金部分も含む)を示し、暗部が黒鉛組織を示す。微細な暗部は、表面に開口した空孔である。本発明品では従来品よりも黒鉛の分布量が多くなっていることが分かる。また、本発明品では、黒鉛が均一に分散していることも理解できる。ちなみに、図3Aにおける黒鉛の面積比は28%であり、図3Bにおける黒鉛の面積比は78%である。なお、この面積比率を測定するための画像解析は、上述の機器と方法を使用した。
 図4は、圧粉体の強さを評価するために行ったラトラ試験の結果を示す。ここで、ラトラ試験とは、金属圧粉体のラトラ試験法(日本粉末冶金工業会規格:JSPM標準4-69)に基づいて測定を行い、得られる測定結果から算出する値を用いて、試験片(圧紛体)の崩壊のしやすさ(圧紛体の強さを数値化)を求める方法で、得られるラトラ値が低い方が圧紛体は強い。図4から分かるように、本発明品は、従来品よりラトラ値が低いので、圧紛体の強度が優れ、欠け、割れ等を抑制できる。
 図5は、圧粉体の強さを評価するために測定した圧環強さを示す。図5から分かるように、本発明品は、従来品より圧環強さが大きいため、圧紛体の強度が優れ、欠け、割れ等を抑制できる。
 図6は、成形重量のばらつきを評価するために測定した成形重量の最大値、平均値、最小値を示す。図6から分かるように、本発明品は、従来品より成形重量の最大値と最小値との差が小さく、成形重量のばらつきが小さい。
 図7は、圧粉体長さのばらつきを評価するために測定した圧粉体長さの平均値、最小値を示す。図7から分かるように、本発明品は、従来品より圧粉体長さの最大値と最小値との差が小さく、圧粉体長さのばらつきが小さい。
 図8は、以下の条件での運転後の軸受内径面の摩耗量を示す。また、同条件の運転での摩擦係数の変化を図9に示す。
周速:V=7m/min
面圧:P=2MPa
温度:100℃
試験軸:SUS420J2(HRC=50、Ra=0.4μm)
隙間:15μm
 図8から分かるように、本発明品は、従来品に比較して、軸受内径面の摩耗量を抑制することができる。また、図9から分かるように、10min経過後では、本発明品は、従来品と比較して、摩擦係数を抑制することができる。
 以上の説明では、焼結軸受として軸の回転運動を支持する軸受を例示したが、本発明にかかる焼結軸受は、軸等の摺動部材の直線運動を支持するいわゆるリニア軸受としても使用することができる。また、本発明の焼結軸受は、潤滑油を含浸させないドライ軸受として使用するだけでなく、サイジング後に潤滑油を含浸させる含油軸受としても使用することができる。
1   焼結軸受
1a  軸受面
2   軸
3   金型
4   圧粉体

Claims (6)

  1.  黒鉛粉と金属粉とを含む原料粉を型で成形し、その後焼結して得られる焼結軸受において、
     黒鉛粉として造粒粉を用い、かつ軸受面における遊離黒鉛の割合を面積比で25%~80%としたことを特徴とする焼結軸受。
  2.  前記造粒粉の平均粒径を、60μm~500μmとした請求項1に記載の焼結軸受。
  3.  原料粉における前記造粒粉の配合割合を、3重量%~15重量%とした請求項1または2に記載の焼結軸受。
  4.  前記造粒粉の見かけ密度を、1.0g/cm3以下とした請求項1~3の何れか1項に記載の焼結軸受。
  5.  潤滑油を含浸させずに使用される請求項1~4の何れか1項に記載の焼結軸受。
  6.  潤滑油を含浸させて使用される請求項1~4の何れか1項に記載の焼結軸受。
PCT/JP2013/069847 2012-07-26 2013-07-23 焼結軸受 WO2014017456A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380038414.7A CN104487721B (zh) 2012-07-26 2013-07-23 烧结轴承
US14/414,555 US10125819B2 (en) 2012-07-26 2013-07-23 Sintered bearing
EP13822555.2A EP2878839B1 (en) 2012-07-26 2013-07-23 Sintered bearing and manufacturing method thereof
IN381DEN2015 IN2015DN00381A (ja) 2012-07-26 2013-07-23
US16/145,465 US20190032714A1 (en) 2012-07-26 2018-09-28 Sintered bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165844A JP6114512B2 (ja) 2012-07-26 2012-07-26 焼結軸受およびその製造方法
JP2012-165844 2012-07-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/414,555 A-371-Of-International US10125819B2 (en) 2012-07-26 2013-07-23 Sintered bearing
US16/145,465 Division US20190032714A1 (en) 2012-07-26 2018-09-28 Sintered bearing

Publications (1)

Publication Number Publication Date
WO2014017456A1 true WO2014017456A1 (ja) 2014-01-30

Family

ID=49997267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069847 WO2014017456A1 (ja) 2012-07-26 2013-07-23 焼結軸受

Country Status (6)

Country Link
US (2) US10125819B2 (ja)
EP (1) EP2878839B1 (ja)
JP (1) JP6114512B2 (ja)
CN (2) CN104487721B (ja)
IN (1) IN2015DN00381A (ja)
WO (1) WO2014017456A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (ja) 2016-07-29 2021-01-20 株式会社ダイヤメット 鉄銅基焼結含油軸受及びその製造方法
WO2018021501A1 (ja) * 2016-07-29 2018-02-01 株式会社ダイヤメット 鉄銅基焼結含油軸受及びその製造方法
JP6864459B2 (ja) * 2016-10-18 2021-04-28 株式会社ダイヤメット 焼結含油軸受およびその製造方法
CN113840987B (zh) * 2019-06-25 2022-08-19 美蓓亚三美株式会社 球轴承
WO2020262029A1 (ja) 2019-06-25 2020-12-30 ミネベアミツミ株式会社 玉軸受
CN112536436B (zh) * 2020-11-20 2023-04-07 昌河飞机工业(集团)有限责任公司 一种直升机用自润滑铜基粉末冶金结构件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551708A (ja) * 1991-08-20 1993-03-02 Toshiba Corp 圧縮機用耐摩耗材料およびその材料を使用した圧縮機
JPH11117044A (ja) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp 初期なじみ性のすぐれた遊離黒鉛析出型鉄系焼結材料製軸受
JP2005240159A (ja) * 2004-02-27 2005-09-08 Mitsubishi Materials Corp モータ式燃料ポンプのCu基焼結合金製軸受及びそれを用いたモータ式燃料ポンプ
JP2010077474A (ja) * 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd 鉄系焼結軸受およびその製造方法
JP2010193621A (ja) * 2009-02-18 2010-09-02 Toyo Tanso Kk 金属黒鉛質ブラシ
JP2011052252A (ja) * 2009-08-31 2011-03-17 Diamet:Kk Cu基焼結摺動部材
JP2012067893A (ja) 2010-09-27 2012-04-05 Ntn Corp 焼結軸受

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974039A (en) * 1951-02-05 1961-03-07 Deventor Max Molding of metal powders
JPS5150925A (ja) * 1974-10-30 1976-05-06 Nippon Kokuen Kogyo Kk
JPS556695B2 (ja) 1974-12-28 1980-02-19
JPS5789404A (en) 1980-11-25 1982-06-03 Nissan Motor Co Ltd Preparation of aluminum-containing sintered body
JPH0238540A (ja) 1988-07-29 1990-02-07 Komatsu Ltd 無給脂摺動材の製造方法
JP3446809B2 (ja) 1998-03-19 2003-09-16 株式会社小松製作所 複層焼結摺動部材およびその製造方法
JP3383843B2 (ja) 2000-05-10 2003-03-10 独立行政法人産業技術総合研究所 軽合金基自己潤滑複合材料及びその製造方法
JP4109023B2 (ja) 2002-06-17 2008-06-25 オイレス工業株式会社 鉄系焼結摺動部材の製造方法及び鉄系焼結摺動部材
JP4331538B2 (ja) 2003-07-30 2009-09-16 日鉱金属株式会社 銅被覆黒鉛粉末及びその製造方法
JP2006207783A (ja) 2004-12-27 2006-08-10 Mitsubishi Materials Pmg Corp 摺動部材及びその製造方法
JP4705092B2 (ja) * 2005-01-31 2011-06-22 株式会社小松製作所 Fe系の焼結摺動材料の製造方法及び摺動部材の製造方法
US20080146467A1 (en) * 2006-01-26 2008-06-19 Takemori Takayama Sintered Material, Ferrous Sintered Sliding Material, Producing Method of the Same, Sliding Member, Producing Method of the Same and Coupling Device
JP2007232113A (ja) 2006-03-02 2007-09-13 Hitachi Powdered Metals Co Ltd 焼結動圧軸受の製造方法
JP2008007795A (ja) * 2006-06-27 2008-01-17 Mitsubishi Materials Pmg Corp 耐食性、耐摩擦摩耗性および耐焼付き性に優れた軸受用Cu−Ni−Sn系銅基焼結合金
JP4886545B2 (ja) * 2007-02-22 2012-02-29 日立粉末冶金株式会社 焼結含油軸受およびその製造方法
JP4994937B2 (ja) 2007-05-07 2012-08-08 日立粉末冶金株式会社 ファンモータ用焼結含油軸受
JP4823183B2 (ja) 2007-09-14 2011-11-24 株式会社小松製作所 銅系焼結摺動材料およびそれを用いる焼結摺動部材
JP5384014B2 (ja) * 2008-02-21 2014-01-08 Ntn株式会社 焼結軸受
JP2009091661A (ja) * 2008-11-14 2009-04-30 Totan Kako Kk 複合材料、複合材料の製造方法及び該複合材料を用いた摺動部材
JP2011094167A (ja) * 2009-10-27 2011-05-12 Diamet:Kk 鉄銅系焼結摺動部材およびその製造方法
CN101704104B (zh) * 2009-11-26 2011-12-21 大连三环复合材料技术开发有限公司 一种双金属自润滑轴承材料的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551708A (ja) * 1991-08-20 1993-03-02 Toshiba Corp 圧縮機用耐摩耗材料およびその材料を使用した圧縮機
JPH11117044A (ja) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp 初期なじみ性のすぐれた遊離黒鉛析出型鉄系焼結材料製軸受
JP2005240159A (ja) * 2004-02-27 2005-09-08 Mitsubishi Materials Corp モータ式燃料ポンプのCu基焼結合金製軸受及びそれを用いたモータ式燃料ポンプ
JP2010077474A (ja) * 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd 鉄系焼結軸受およびその製造方法
JP2010193621A (ja) * 2009-02-18 2010-09-02 Toyo Tanso Kk 金属黒鉛質ブラシ
JP2011052252A (ja) * 2009-08-31 2011-03-17 Diamet:Kk Cu基焼結摺動部材
JP2012067893A (ja) 2010-09-27 2012-04-05 Ntn Corp 焼結軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878839A1

Also Published As

Publication number Publication date
US20190032714A1 (en) 2019-01-31
US10125819B2 (en) 2018-11-13
CN104487721B (zh) 2017-06-06
CN107252888B (zh) 2019-05-14
CN104487721A (zh) 2015-04-01
JP6114512B2 (ja) 2017-04-12
EP2878839A4 (en) 2016-07-13
EP2878839B1 (en) 2020-06-24
IN2015DN00381A (ja) 2015-06-12
EP2878839A1 (en) 2015-06-03
US20150139847A1 (en) 2015-05-21
CN107252888A (zh) 2017-10-17
JP2014025527A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6114512B2 (ja) 焼結軸受およびその製造方法
KR101101078B1 (ko) 철계 소결 베어링 및 그 제조 방법
US20190010984A1 (en) Sintered bearing
US10536048B2 (en) Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6921046B2 (ja) 焼結軸受の製造方法
JP6302259B2 (ja) 焼結軸受の製造方法
CN102471853A (zh) 铁系烧结滑动部件及其制造方法
JP2019002570A (ja) 振動モータ
JP6038459B2 (ja) 焼結軸受
JP6424983B2 (ja) 鉄系焼結含油軸受
JP2013159795A (ja) 焼結軸受の製造方法
JP6487957B2 (ja) 焼結軸受
JP7021312B2 (ja) 焼結軸受
JP6759389B2 (ja) 焼結軸受
JP6038460B2 (ja) 焼結軸受の製造方法
CN110475982B (zh) 烧结轴承及其制造方法
WO2009154052A1 (ja) Fe系焼結金属製軸受およびその製造方法
JP2018109445A (ja) 焼結軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414555

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013822555

Country of ref document: EP