WO2014002885A1 - カーボンナノチューブ含有組成物の分散液および導電性成形体 - Google Patents

カーボンナノチューブ含有組成物の分散液および導電性成形体 Download PDF

Info

Publication number
WO2014002885A1
WO2014002885A1 PCT/JP2013/067059 JP2013067059W WO2014002885A1 WO 2014002885 A1 WO2014002885 A1 WO 2014002885A1 JP 2013067059 W JP2013067059 W JP 2013067059W WO 2014002885 A1 WO2014002885 A1 WO 2014002885A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
containing composition
dispersion
carbon nanotubes
dispersant
Prior art date
Application number
PCT/JP2013/067059
Other languages
English (en)
French (fr)
Inventor
西野秀和
本遠和範
今津直樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147036260A priority Critical patent/KR20150028780A/ko
Priority to CN201380034221.4A priority patent/CN104411632B/zh
Priority to US14/404,440 priority patent/US20150111025A1/en
Priority to JP2013528450A priority patent/JP6217395B2/ja
Priority to EP13810402.1A priority patent/EP2865645A4/en
Publication of WO2014002885A1 publication Critical patent/WO2014002885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a dispersion of a carbon nanotube-containing composition and a conductive molded body obtained by applying it to a substrate.
  • Carbon nanotubes are substances that are expected to have various industrial applications due to various characteristics resulting from their ideal one-dimensional structure, such as electrical conductivity, thermal conductivity, and mechanical strength. By controlling the diameter, the number of layers, and the length of the carbon nanotube, it is expected to improve the performance and expand the applicability. Carbon nanotubes usually have a high graphite structure when the number of layers is smaller. Single-walled carbon nanotubes and double-walled carbon nanotubes are known to have high properties such as conductivity and thermal conductivity because they have a high graphite structure. Among multi-walled carbon nanotubes, 2- to 5-walled carbon nanotubes with a relatively small number of layers have the characteristics of both single-walled carbon nanotubes and multi-walled carbon nanotubes. Therefore, they attract attention as promising materials for various applications. Collecting.
  • Examples of applications utilizing the conductivity of carbon nanotubes include clean room members, display members, and automobile members.
  • Carbon nanotubes are used to impart antistatic properties, electrical conductivity, radio wave absorptivity, electromagnetic wave shielding properties, near infrared cut properties, and the like to these members. Since the carbon nanotube has a high aspect ratio and can form a conductive path with a small amount, the carbon nanotube can be a conductive material excellent in light transmittance and drop-off resistance as compared with conventional conductive fine particles such as carbon black.
  • Patent Document 1 an optical transparent conductive film using carbon nanotubes is known (Patent Document 1).
  • the carbon nanotubes are highly dispersed by solving thick bundles and strong aggregations of several tens of carbon nanotubes, and few carbon nanotubes. Therefore, it is necessary to efficiently form a conductive path with the number of wires.
  • a method of applying a dispersion obtained by highly dispersing carbon nanotubes in a solvent to a substrate is known.
  • a technique of dispersing using a dispersant Patent Documents 1 and 2.
  • Patent Document 2 In order to disperse carbon nanotubes to a higher degree, it is preferable to disperse in an aqueous solvent using a dispersant having a hydrophilic group having affinity for water and a hydrophobic group having a high affinity for carbon nanotubes.
  • the present invention has been made in view of the circumstances as described above, and the dispersibility of the carbon nanotubes in the dispersion is good, the cutting of the carbon nanotubes can be suppressed, and when the dispersion is applied to the substrate
  • Another object of the present invention is to obtain a dispersion of a carbon nanotube-containing composition that is excellent in dispersibility of carbon nanotubes on a substrate and that can produce a conductive molded article having good transparent conductivity.
  • the inventors of the present invention used a dispersant having a specific molecular weight to disperse the carbon nanotube-containing composition in an aqueous solvent, whereby the aggregate diameter of the carbon nanotube-containing composition on the base material It has been found that a small dispersion can be obtained, and the present invention has been achieved.
  • the present invention is a dispersion of a carbon nanotube-containing composition
  • a carbon nanotube-containing composition comprising a carbon nanotube-containing composition, a dispersant having a weight average molecular weight of 50,000 to 60,000 as measured by gel permeation chromatography, and an aqueous solvent.
  • the present invention also relates to a conductive molded article having a conductive layer formed on a substrate, the conductive layer having a weight average molecular weight of 50,000 or more measured by a carbon nanotube-containing composition and gel permeation chromatography.
  • a dispersant in the range of 10,000 or less, the aggregate diameter of the carbon nanotube-containing composition is 1 nm to 4.5 nm, and the average length of the carbon nanotube-containing composition is 3.5 ⁇ m to 6 ⁇ m It is a certain conductive molding.
  • the present invention is a method for producing a conductive molded article, in which a water-based solvent is removed after a dispersion of the carbon nanotube-containing composition is applied to a substrate.
  • a dispersion of a carbon nanotube-containing composition having good dispersibility of carbon nanotubes in the dispersion, suppressing cutting of the carbon nanotubes, and excellent dispersibility when coated on a substrate. Can be obtained.
  • a conductive molded body obtained using such a dispersion of carbon nanotubes can be transparent and highly conductive.
  • FIG. 1 is a graph showing the relationship between the weight average molecular weight of the dispersant, the aggregate diameter on the carbon nanotube substrate, and the average length of the carbon nanotubes.
  • carbon nanotubes are used as the conductive material.
  • the carbon nanotube-containing composition means a total including a plurality of carbon nanotubes.
  • the presence form of the carbon nanotube in the carbon nanotube-containing composition is not particularly limited, and the carbon nanotubes may exist independently, in a bundle form, intertwined form, or a mixed form thereof. Various layers or diameters may be included. Further, even when contained in a composition containing a dispersion or other components, or in a composite compounded with other components, a composition containing carbon nanotubes is included as long as it contains a plurality of carbon nanotubes. I understand.
  • the carbon nanotube-containing composition may contain impurities (for example, catalyst or amorphous carbon) derived from the carbon nanotube production method.
  • the carbon nanotube has a shape in which one surface of graphite is wound into a cylindrical shape.
  • a single-walled carbon nanotube is wound in one layer, a double-walled carbon nanotube is wound in two layers, and is wound in multiple layers. This was called multi-walled carbon nanotube.
  • any of single-walled, double-walled, and multi-walled carbon nanotubes can be used depending on required application characteristics. If carbon nanotubes having a single layer to five layers and a small number of layers are used, a conductive molded body having higher conductivity and higher light transmittance can be obtained. If two or more layers of carbon nanotubes are used, it is possible to obtain a conductive molded body with less optical wavelength dependency in optical characteristics. In order to obtain a conductive molded body having high light transmittance, it is preferable that 50 or more carbon nanotubes having a single-layer to five-layer structure are included in 100 carbon nanotubes.
  • the number of double-walled carbon nanotubes is 50 or more of 100 carbon nanotubes because of extremely high conductivity and dispersibility.
  • multi-walled carbon nanotubes of 6 or more layers have low crystallinity and low conductivity, and have a large diameter and a small number of contacts per unit amount of carbon nanotubes in the conductive layer, so that the transparent conductivity of the conductive molded body is low. Become.
  • the number of carbon nanotube layers can be measured, for example, by preparing a sample as follows.
  • the carbon nanotube-containing composition is a composition dispersed in a solvent
  • the solvent when the solvent is aqueous, the composition is appropriately diluted with water to a concentration that can be easily seen, and a few ⁇ L is dropped on the collodion film and air-dried. Thereafter, the carbon nanotube-containing composition on the collodion film is examined using a direct transmission electron microscope.
  • the solvent is non-aqueous, the solvent is once removed by drying, then dispersed again in water, diluted as appropriate, dropped several ⁇ L onto the collodion film, air-dried, and observed with a transmission electron microscope.
  • the number of carbon nanotube layers in the conductive molded body can be observed in the same manner as the composition before coating.
  • the conductive molded body is embedded with an epoxy resin, and then a transparent section is observed by observing a section cut to a thickness of 0.1 ⁇ m or less using a microtome or the like. Can be examined with a scanning electron microscope.
  • the carbon nanotube-containing composition can be extracted from the conductive molded body with a solvent and observed with a high-resolution transmission electron microscope in the same manner as in the case of the composition.
  • the concentration of the carbon nanotube-containing composition in the liquid dropped on the collodion film may be a concentration at which the carbon nanotubes can be observed one by one, for example, 0.001% by weight.
  • the measurement of the number of carbon nanotube layers is performed, for example, as follows. Observe at 400,000 magnifications using a transmission electron microscope, and measure the number of layers of 100 carbon nanotubes arbitrarily extracted from the field of view where 10% or more of the field of view is carbon nanotubes in a 75 nm square field of view. To do. When 100 carbon nanotubes cannot be measured in one visual field, measurement is performed from a plurality of visual fields until the number becomes 100. At this time, one carbon nanotube is counted as one if some carbon nanotubes are visible in the field of view, and both ends are not necessarily visible. In addition, even if it is recognized as two in the field of view, it may be connected outside the field of view and become one, but in that case, it is counted as two.
  • the diameter of the carbon nanotube is not particularly limited, but the diameter of the carbon nanotube having the number of layers in the above preferred range is 1 nm to 10 nm, and those having a diameter in the range of 1 to 3 nm are preferably used.
  • the carbon nanotubes may be modified at the surface or terminal with functional groups or alkyl groups, or may be doped with alkali metals or halogens.
  • the carbon nanotube may be functionalized with a carboxyl group or a hydroxyl group by heating in an acid.
  • doping carbon nanotubes is preferable because the conductivity of the carbon nanotubes is improved.
  • the average length is preferably 3.5 ⁇ m or more.
  • the average length is preferably 6 ⁇ m or less.
  • the average length of carbon nanotubes in the dispersion can be examined using an atomic force microscope as described later.
  • the composition it can be examined with an atomic force microscope after several ⁇ L is dropped on a mica substrate and air-dried.
  • the concentration of the carbon nanotube-containing composition to be dropped may be appropriately diluted so that the carbon nanotubes can be observed one by one. For example, 0.003% by weight.
  • a sample was prepared by the above method, observed with an atomic force microscope, and a photograph was taken where 10 or more carbon nanotubes were included in one field of view of 30 ⁇ m square.
  • the length of each carbon nanotube extracted arbitrarily is measured along the length direction. When 100 lines cannot be measured in one field of view, measurement is performed from a plurality of fields until 100 lines are obtained. By measuring the length of a total of 100 carbon nanotubes, the length and number of carbon nanotubes contained in the 100 can be confirmed.
  • the number of carbon nanotubes in the range of 0.5 ⁇ m or less is 30 or less in 100, the contact resistance can be reduced, the light transmittance can be improved, and the carbon nanotube in the range of 1 ⁇ m or less is preferable. Is more preferably 30 or less out of 100. Further, it is preferable that the number of carbon nanotubes in the range of 10 ⁇ m or more is 30 or less out of 100 because dispersibility can be improved.
  • a carbon nanotube dispersion technique is very important in order to obtain a conductive molded body with higher conductivity using carbon nanotubes having a high degree of crystallinity.
  • the carbon nanotube used in the present invention is not particularly limited, but a carbon nanotube having linearity and high crystallinity is preferable because of high conductivity.
  • Carbon nanotubes with good linearity are carbon nanotubes with few defects and high carbon nanotube crystallinity.
  • the crystallinity of the carbon nanotube can be evaluated by Raman spectroscopy. There are various laser wavelengths used in Raman spectroscopy, but 532 nm is used.
  • the Raman shift observed in the vicinity of 1590 cm ⁇ 1 in the Raman spectrum is called a G band derived from graphite
  • the Raman shift observed in the vicinity of 1350 cm ⁇ 1 is called a D band derived from defects in amorphous carbon or graphite. That is, the higher the G / D ratio, which is the ratio of the peak height of the G band to the D band, the higher the linearity and crystallinity and the higher the quality.
  • Raman spectroscopy a powder sample is placed in a resonance Raman spectrometer (INF-300 manufactured by Horiba Joban Yvon) and measured using a laser wavelength of 532 nm. In the measurement, the analysis is performed at three places and different places, the heights of the G band and the D band are measured, the G / D ratio is obtained by the ratio of the respective heights, and the arithmetic average is expressed.
  • a resonance Raman spectrometer INF-300 manufactured by Horiba Joban Yvon
  • the carbon nanotube-containing composition is produced, for example, as follows.
  • a powdery catalyst in which iron is supported on magnesia is present in the entire vertical cross-sectional direction of the reactor in a vertical reactor, and methane is circulated in the vertical direction in the reactor, so that methane and the above catalyst are 500 to 1200.
  • the product After contacting with carbon dioxide to obtain a product containing carbon nanotubes, the product is further oxidized to obtain a carbon nanotube-containing composition containing single to five-walled carbon nanotubes.
  • Examples of the oxidation treatment include treating the carbon nanotube-containing composition before the oxidation treatment with an oxidizing agent selected from nitric acid, hydrogen peroxide, and mixed acid.
  • an oxidizing agent selected from nitric acid, hydrogen peroxide, and mixed acid.
  • the carbon nanotube-containing composition is mixed, for example, in commercially available nitric acid (40 to 80% by weight) to a concentration of 0.001 to 10% by weight. , And reacting at a temperature of 60 to 150 ° C. for 0.5 to 50 hours.
  • Treating the carbon nanotube-containing composition with hydrogen peroxide means that the carbon nanotube-containing composition before the oxidation treatment is, for example, in a commercially available 34.5% hydrogen peroxide solution to a concentration of 0.001 to 10% by weight.
  • the mixing ratio of the mixed acid the ratio of concentrated sulfuric acid / concentrated nitric acid can be 1/10 to 10/1 depending on the amount of single-walled carbon nanotubes in the product.
  • the dispersion of the carbon nanotube-containing composition of the present invention uses a polymer dispersant as a dispersant. This is because carbon nanotubes can be highly dispersed in a solution by using a polymer-based dispersant, and a stable dispersion can be obtained even when a high shear force is applied. At this time, if the molecular weight of the dispersing agent is too small, the interaction between the dispersing agent and the carbon nanotube is weakened, so that the bundle of carbon nanotubes cannot be sufficiently solved. On the other hand, when the molecular weight of the dispersant is too large, it becomes difficult to penetrate between the bundles of carbon nanotubes.
  • the cutting of the carbon nanotubes proceeds before the bundle is unwound.
  • the weight average molecular weight of the dispersant to 50,000 or more and 60,000 or less, not only can the carbon nanotubes be highly dispersed in the solution, but also there is an effect of suppressing the cutting of the carbon nanotubes in the dispersion treatment. I found out.
  • the dispersant can easily enter the gaps between the carbon nanotubes during dispersion.
  • the carbon nanotubes can be dispersed with less energy, and the carbon nanotubes can be highly dispersed, and the cutting of the carbon nanotubes is suppressed. Furthermore, since it aggregates on the base material of a carbon nanotube when apply
  • the weight average molecular weight indicates a weight average molecular weight calculated by using a gel permeation chromatography method and comparing with a calibration curve using polyethylene glycol.
  • a dispersant having a weight average molecular weight of 50,000 or more and 60,000 or less is synthesized so that the range of the weight average molecular weight is within this range, or a higher molecular weight dispersant is reduced in the molecular weight by a method such as hydrolysis. Can be obtained.
  • a method for evaluating the stability of a dispersion of a carbon nanotube-containing composition against a high shear force for example, there is a method of evaluating the stability of a dispersion when a high shear is continuously applied using a rheometer.
  • a rheometer MCR501, manufactured by Anton Paar
  • setting the stage / rotor gap to 0.01 mm when using a smooth rotor (PP25) load 0.3 mL of the dispersion to be measured.
  • the rotor part was visually observed after applying a high shear force at a shear rate of 200,000 s ⁇ 1 for 30 minutes to this dispersion, and when no aggregation was observed in the dispersion of the carbon nanotube-containing composition, a high shear force was applied. It can also be judged that it is stable without aggregation.
  • the amount of the dispersant contained in the dispersion is preferably larger than the amount adsorbed on the carbon nanotubes and does not hinder the conductivity.
  • the dispersant is preferably 200 parts by weight or more and 500 parts by weight or less, more preferably 200 parts by weight or more and 400 parts by weight or less, with respect to 100 parts by weight of the carbon nanotube-containing composition.
  • the type of dispersant can be selected from synthetic polymers and natural polymers.
  • the synthetic polymer is preferably a polymer selected from polyacrylic acid, polystyrene sulfonic acid and derivatives thereof.
  • the natural polymer is preferably a polymer selected from polysaccharides such as alginic acid, chondroitin sulfate, hyaluronic acid, cellulose, and derivatives thereof.
  • the derivative means an esterified product, an etherified product, or a salt of the aforementioned polymer.
  • One dispersant may be used, or two or more dispersants may be mixed and used.
  • An ionic polymer is preferably used as the dispersant from the viewpoint that by using a dispersant with good dispersibility, the bundle of carbon nanotubes can be released to improve the transparent conductivity.
  • those having an ionic functional group such as a sulfonic acid group or a carboxylic acid group are preferable because of high dispersibility and conductivity.
  • the ionic polymer a polymer selected from polystyrene sulfonic acid, chondroitin sulfate, hyaluronic acid, carboxymethyl cellulose and derivatives thereof is preferable.
  • a polymer selected from carboxymethyl cellulose which is a polysaccharide having an ionic functional group and derivatives thereof is most preferable.
  • a salt is preferred as the derivative.
  • carboxymethyl cellulose having a weight average molecular weight of 60,000 or less is not commercially available, in order to obtain carboxymethyl cellulose having a weight average molecular weight of 50,000 to 60,000, carboxymethyl cellulose having a weight average molecular weight of more than 60,000 is added with water. Reduce molecular weight by methods such as decomposition.
  • the carboxymethyl cellulose used as a raw material is not particularly limited, but it is preferable to use a commercially available carboxymethyl cellulose having a low molecular weight as much as possible. Specifically, carboxymethyl cellulose having a weight average molecular weight of more than 60,000 and 500,000 or less is preferable. This is because carboxymethylcellulose having a weight average molecular weight exceeding 500,000 takes time for the hydrolysis reaction, and a large amount of oxidative degradation products of carboxymethylcellulose are generated, which makes purification difficult.
  • the degree of etherification of carboxymethylcellulose obtained by hydrolysis is preferably 0.4 or more and 1 or less. If the degree of etherification is less than 0.4, carboxymethyl cellulose is insoluble in water, which is not preferable. When carboxymethyl cellulose has a molecular weight, the interaction with the carbon nanotube-containing composition is reduced. Therefore, when the degree of etherification of carboxymethyl cellulose is 1 or more, the effect as a dispersant may be insufficient. Since the hydrolysis reaction of carboxymethyl cellulose hydrolyzes the ⁇ glycoside bond, there is no change in the degree of etherification before and after the reaction. Therefore, the etherification degree of the carboxymethyl cellulose after hydrolysis used as a raw material is preferably in the range of 0.4 to 1.
  • the hydrolysis reaction of carboxymethyl cellulose is preferably performed using an acid hydrolysis method in water.
  • the hydrolysis reaction is preferably carried out at a pH of 3 or less and at a temperature of 100 ° C. or more. This is because the hydrolysis reaction does not proceed at a temperature lower than 100 ° C.
  • When the reaction is carried out in a closed pressure vessel it is possible to heat at 120 ° C. or higher under the condition of pH 3 and pH 7 or lower. This is because the hydrolysis reaction proceeds by pressurizing even if there is little acid.
  • the atmosphere during the reaction is not particularly limited, but if necessary, it is preferable to perform gas replacement with nitrogen, argon, helium, or the like.
  • the reaction time varies depending on the degree of molecular weight reduction.
  • the acid to be used is not particularly limited, but sulfuric acid, nitric acid, hydrochloric acid, hydrogen peroxide, acetic acid and the like are preferable. In view of the heating conditions, sulfuric acid that is less volatile is particularly preferable.
  • alkali is added until the pH becomes 7 or more.
  • the alkali is not particularly limited in type, but when the acid used is a strong acid, it is preferable to use a weak base. Specific examples include ammonia, sodium hydrogen carbonate, ethylamine, triethylamine, propylamine, and isopropylamine. Ammonia containing no metal ions or organic substances is preferred.
  • the carboxymethylcellulose aqueous solution after the hydrolysis reaction is often colored. This is because hydrolysis is carried out under heating, so that a part of carboxymethylcellulose is oxidized and causes a structural change. Therefore, after the hydrolysis reaction, it is preferable to remove by-products and salts generated when the reaction is stopped using a dialysis membrane method.
  • the aqueous solution after the hydrolysis reaction is placed in a tubular dialysis membrane and immersed in ion-exchanged water at room temperature overnight.
  • the purpose of the dialysis membrane method is desalting, but the oxidative degradation product of carboxymethylcellulose, which is a by-product, is also removed because it is less than the molecular weight cut off, and the color becomes dilute.
  • the dialysis membrane As the dialysis membrane, a membrane having a fractional molecular weight smaller than the desired low molecular weight carboxymethylcellulose is used. As the difference between the low molecular weight carboxymethyl cellulose and the molecular weight cut off is larger, more efficient purification is possible. Specifically, a dialysis membrane having a molecular weight cutoff of 100 to 10,000 is preferable. The molecular weight cutoff is more preferably 1000 to 5000.
  • the dialysis when the absorbance at 280 nm of the commercially available carboxymethylcellulose as a raw material is 1.
  • the ratio of absorbance after membrane treatment is preferably 10 or less.
  • carboxymethyl cellulose becomes almost colorless and transparent, and can maintain transparency when used as a dispersant to form a transparent conductor or the like.
  • the molecular weight distribution (Mw / Mn) of carboxymethylcellulose before and after hydrolysis hardly changes from carboxymethylcellulose as a raw material.
  • the molecular weight distribution is preferably 2 or less from the viewpoint of dispersion stability of the carbon nanotube-containing composition.
  • a carbon nanotube dispersion is prepared using a carbon nanotube-containing composition, a dispersant, and an aqueous solvent.
  • the dispersion may be liquid or semi-solid such as paste or gel, but liquid is preferred. It is preferable that the dispersion does not have any sediment or aggregate visually, and does not have any sediment or aggregate visually after standing for at least 24 hours.
  • An aqueous solvent is water or an organic solvent miscible with water. Any dispersant can be used as long as it dissolves and disperses carbon nanotubes.
  • organic solvents that are miscible with water include ethers (dioxane, tetrahydrofuran, methyl cellosolve, etc.), ether alcohols (ethoxyethanol, methoxyethoxyethanol, etc.), alcohols (ethanol, isopropanol, phenol, etc.), lower carboxylic acids (acetic acid, etc.) ), Amines (triethylamine, trimethanolamine, etc.), nitrogen-containing polar solvents (N, N-dimethylformamide, nitromethane, N-methylpyrrolidone, acetonitrile, etc.), sulfur compounds (dimethylsulfoxide, etc.), etc. can be used. .
  • the pH of the carbon nanotube-containing composition dispersion is preferably alkaline, more preferably pH 8-12, and particularly preferably pH 9-11.
  • the pH can be adjusted by adding an alkaline solution. An ammonia or organic amine solution is used as the alkaline solution.
  • organic amine ethanolamine, ethylamine, n-propylamine, isopropylamine, diethylamine, triethylamine, ethylenediamine, hexamethylenediamine, hydrazine, pyridine, piperidine, hydroxypiperidine and the like are preferable. Most preferred among these ammonia and organic amines is ammonia. Water is preferably used as a solvent for dissolving these organic amines and ammonia. The pH is measured with a pH meter (HM-30S, manufactured by Toa Denpa Kogyo Co., Ltd.).
  • the concentration of the carbon nanotube-containing composition at the time of preparing the dispersion of the carbon nanotube-containing composition is not particularly limited, but is preferably in the range of 0.1% by mass to 0.3% by mass.
  • concentration is less than 0.1% by mass, energy irradiation to the carbon nanotube-containing composition is increased during dispersion, and the cutting of the carbon nanotubes is promoted.
  • concentration is higher than 0.3% by mass, the energy at the time of dispersion is not sufficiently applied to the carbon nanotube-containing composition, making dispersion difficult.
  • a method for preparing a dispersion of a carbon nanotube-containing composition a carbon nanotube-containing composition, a dispersant, and a solvent are mixed with a general mixing and dispersing machine (eg, vibration mill, planetary mill, ball mill, bead mill, sand mill, A method of mixing and dispersing using a jet mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, an ultrasonic device, an attritor, a resolver, a paint shaker, or the like can be used.
  • a general mixing and dispersing machine eg, vibration mill, planetary mill, ball mill, bead mill, sand mill,
  • a method of mixing and dispersing using a jet mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, an ultrasonic device, an attritor, a resolver, a paint shaker, or the like can be
  • the carbon nanotube-containing composition to be dispersed may be in a dry state or in a state containing a solvent, but it is preferable to disperse in a state containing a solvent without being dried after purification in order to improve dispersibility. .
  • the dispersion of the carbon nanotube-containing composition may include, for example, various polymer materials such as surfactants, conductive polymers, and non-conductive polymers, and other additives. As long as it does not interfere with the effects of the present invention, it may be included.
  • the dispersion of the carbon nanotube-containing composition of the present invention is applied to a substrate by the method described later, whereby a conductive layer containing the carbon nanotube-containing composition forms a conductive molded body formed on the substrate. be able to.
  • the shape, size, and material are not particularly limited as long as the carbon nanotube dispersion liquid can be applied and the obtained conductive layer can be fixed, and can be selected according to the intended use.
  • grains, etc. are mentioned.
  • the material of the base material can be selected from resins such as polyester, polycarbonate, polyamide, acrylic, polyurethane, polymethyl methacrylate, cellulose, triacetyl cellulose, and amorphous polyolefin as long as they are organic materials.
  • Inorganic materials can be selected from metals such as stainless steel, aluminum, iron, gold and silver, glass and carbon materials.
  • a conductive film excellent in adhesion, stretchability and flexibility can be obtained, which is preferable.
  • a preferable thickness of the substrate is not particularly limited, and may be, for example, a thickness of about 1 to about 1000 ⁇ m. In preferred embodiments, the thickness of the substrate is from about 5 to about 500 ⁇ m. In a more preferred embodiment, the thickness of the substrate is from about 10 to about 200 ⁇ m.
  • the substrate may be subjected to surface hydrophilization treatment such as corona discharge treatment, ozone treatment or glow discharge as necessary.
  • surface hydrophilization treatment such as corona discharge treatment, ozone treatment or glow discharge as necessary.
  • an undercoat layer may be provided.
  • a highly hydrophilic material is preferable.
  • the base material use must also be made of a material on which the opposite surface on which the carbon nanotube dispersion is applied has been subjected to a hard coat treatment imparting abrasion resistance, high surface hardness, solvent resistance, contamination resistance, fingerprint resistance, etc. Can do.
  • a transparent base material means that the total light transmittance is 50% or more.
  • the conductive layer containing carbon nanotubes is further overcoated with a binder material. Overcoating is effective for the dispersion and transfer of charges.
  • the binder material may be contained in the carbon nanotube dispersion liquid, and after applying to the substrate, the binder material may be dried or baked (cured) by heating as necessary. The heating conditions at that time are set according to the binder material.
  • the binder is photocurable or radiation curable
  • the coating film is cured by irradiating the coating film with light or radiation after application, not by heat curing.
  • the radiation ionizing radiation such as electron beam, ultraviolet ray, X-ray and gamma ray can be used. The irradiation dose is determined according to the binder material.
  • the binder material is not particularly limited as long as it is used for conductive paints, and various transparent inorganic polymers or precursors thereof (hereinafter sometimes referred to as “inorganic polymer binders”) or transparent organic materials.
  • inorganic polymer binders various transparent inorganic polymers or precursors thereof (hereinafter sometimes referred to as “inorganic polymer binders”) or transparent organic materials.
  • a polymer or a precursor thereof hereinafter sometimes referred to as “organic polymer-based binder” can be used.
  • inorganic polymer binders include sols of metal oxides such as silica, tin oxide, aluminum oxide, and zirconium oxide, or hydrolyzable or thermally decomposable organometallic compounds (organophosphorus) that serve as precursors of the inorganic polymer.
  • metal oxides such as silica, tin oxide, aluminum oxide, and zirconium oxide
  • organometallic compounds organophosphorus
  • specific examples of the hydrolyzable or thermally decomposable organometallic compound are metal alkoxides or partial hydrolysates thereof, lower carboxylates such as metal acetates, and metal complexes such as acetylacetone complexes.
  • Inorganic polymers are generally glassy, have high hardness, excellent scratch resistance, and high transparency.
  • the organic polymer binder may be of any type, such as thermoplasticity, thermosetting, or radiation curable such as ultraviolet rays or electron beams.
  • suitable organic binders include polyolefin (polyethylene, polypropylene, etc.), polyamide (nylon 6, nylon 11, nylon 66, nylon 6, 10, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), silicone resin, vinyl Resin (polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polyacrylate, polystyrene derivatives, polyvinyl acetate, polyvinyl alcohol, etc.), polyketone, polyimide, polycarbonate, polysulfone, polyacetal, fluororesin, phenol resin, urea resin, melamine resin, Organic polymers such as epoxy resins, polyurethane, cellulose polymers, proteins (gelatin, casein, etc.), chitin, polypeptides, polysaccharides, polynu
  • the organic polymer binder is preferably a compound having an unsaturated bond that can be radically cured by radiation, that is, a monomer, oligomer, or polymer having a vinyl group or a vinylidene group.
  • this type of monomer include styrene derivatives (such as styrene and methylstyrene), acrylic acid or methacrylic acid or derivatives thereof (such as alkyl acrylate or methacrylate, allyl acrylate or methacrylate), vinyl acetate, acrylonitrile, and itaconic acid.
  • the oligomer or polymer is preferably a compound having a double bond in the main chain or a compound having acryloyl or methacryloyl groups at both ends of the straight chain.
  • This type of radical polymerization curable binder has a high hardness, excellent scratch resistance, and can form a highly transparent film or matrix.
  • the amount of binder used may be an amount sufficient for overcoating, or an amount sufficient for obtaining a viscosity suitable for coating when blended in a dispersion. If the amount is too small, the coating will not be successful, and if the amount is too large, the conductivity will be hindered.
  • the method for applying the carbon nanotube dispersion liquid to the substrate is not particularly limited.
  • Known coating methods such as micro gravure coating, wire bar coating, die coating, spray coating, dip coating, roll coating, spin coating, doctor knife coating, kiss coating, slit coating, slit die coating, gravure coating, blade coating, extrusion Coating, screen printing, gravure printing, inkjet printing, pad printing, and other types of printing can be used.
  • the application may be performed any number of times, and two different application methods may be combined.
  • the most preferred application method is a method selected from microgravure coating, die coating and wire bar coating.
  • the preferable coating thickness (wet thickness) of the carbon nanotube dispersion liquid is not particularly limited as long as the desired conductivity can be obtained because it also depends on the concentration of the dispersion liquid. However, it is preferable that the thickness is 0.01 ⁇ m to 50 ⁇ m. More preferably, it is 0.1 ⁇ m to 20 ⁇ m.
  • the conductive layer is formed by removing the solvent by a method such as air drying, heating, or decompression. Thereby, the carbon nanotube forms a three-dimensional stitch structure and is fixed to the base material.
  • the electroconductive molded object in which the electroconductive layer containing a carbon nanotube was formed on the base material is formed.
  • drying by heating is preferable.
  • the drying temperature should just be below the heat-resistant temperature of a base material, from which a solvent can be removed. In the case of a resin base material, it is preferably 0 ° C. to 250 ° C., more preferably 15 ° C. to 150 ° C.
  • the preferable coating thickness (dry thickness) of the conductive layer containing carbon nanotubes after drying is not specified as long as desired conductivity is obtained, but is preferably 0.001 ⁇ m to 5 ⁇ m. More preferably, the thickness is 0.001 to 1 ⁇ m.
  • the dry thickness can be measured by observing a cross section of the conductive molded body. For example, it can be observed using a transmission microscope, and the measurement sample may be stained if necessary.
  • the conductive molded body of the present invention is a conductive molded body in which a conductive layer is formed on a substrate, and the conductive layer has a weight average molecular weight of 0 measured by a carbon nanotube-containing composition and gel permeation chromatography.
  • the conductive molded body of the present invention can be obtained by applying a dispersion of the carbon nanotube-containing composition of the present invention to a substrate.
  • a dispersion of carbon nanotubes is suppressed in the process in which the carbon nanotube dispersion is brought into contact with the substrate and the solvent is removed.
  • a dispersion containing a dispersant and an aqueous solvent having a weight average molecular weight in the range of from 50,000 to 60,000 as measured by gel permeation chromatography, Can be highly dispersed, and aggregation of carbon nanotubes on the surface of the substrate can be prevented.
  • an undercoat layer having high hydrophilicity on the surface of the base material to which the carbon nanotube dispersion liquid is applied is a preferable method for preventing aggregation of the carbon nanotubes on the surface of the base material.
  • a hydrophilic inorganic oxide as the material of the undercoat layer. More preferably, it is an inorganic oxide selected from silica, alumina and titania. These substances have a hydroxyl group which is a hydrophilic group on the surface and are preferable because high hydrophilicity can be obtained.
  • the undercoat layer may be a composite of these inorganic oxides and resin, for example, a composite of silica fine particles and polysilicate.
  • the conductive layer containing carbon nanotubes with a binder material to form an overcoat layer on the conductive layer.
  • Overcoating is effective for the dispersion and transfer of charges.
  • a binder material may be included in the carbon nanotube-containing composition dispersion.
  • the binder material forms a conductive layer together with the carbon nanotube-containing composition and the dispersant.
  • the thickness of the carbon nanotube layer when measuring the aggregate diameter is not particularly limited, but it is preferable to measure the aggregate diameter in the range where the total light transmittance is 87 ⁇ 1% from the viewpoint of the carbon nanotube density.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate is preferably in the range of 1 nm to 4.5 nm. In a double-walled carbon nanotube, about 2 nm corresponds to one, and 4.5 nm corresponds to about 2.3 carbon nanotubes.
  • the aggregate diameter of the carbon nanotube-containing composition measured on the substrate is substantially the same as the dispersion diameter of the carbon nanotube-containing composition in the dispersion.
  • the measuring method of the dispersion diameter of the carbon nanotube containing composition in a dispersion liquid is performed by the method using the atomic force microscope similar to the measurement of the length of the carbon nanotube containing composition mentioned above.
  • the average length of the carbon nanotube-containing composition on the substrate is preferably in the range of 3.5 ⁇ m to 6 ⁇ m.
  • the average length of the carbon nanotube-containing composition is preferably 3.5 ⁇ m or more because a conductive path cannot be efficiently formed if it is too short.
  • the average length of the carbon nanotube-containing composition is preferably 6 ⁇ m or less because the dispersibility tends to decrease if it is too long.
  • the average length of the carbon nanotube-containing composition on the substrate can be observed as described above using the carbon nanotube-containing composition dispersion before coating.
  • the carbon nanotubes can be highly dispersed at the time of dispersion, and the cutting of the carbon nanotubes is suppressed. Furthermore, since the aggregation of carbon nanotubes on the substrate is also suppressed when applied on the substrate, the range of the aggregate diameter and the average length of the carbon nanotube-containing composition can be achieved. Since the carbon nanotubes in the conductive layer are sufficiently dispersed, the conductive molded body of the present invention exhibits sufficient conductivity with a small amount of carbon nanotubes, and thus has excellent conductivity and transparency.
  • the total light transmittance of the conductive molded body is 50% or more.
  • the total light transmittance of the conductive molded body is preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and most preferably 90% or more.
  • the surface resistance value of the conductive molded body is preferably 10 0 to 10 4 ⁇ / ⁇ , and more preferably 10 0 to 10 3 ⁇ / ⁇ .
  • the total light transmittance is a value obtained by loading the conductive molded body into a haze meter (Nippon Denshoku Kogyo NDH4000) and measuring the total light transmittance.
  • the surface resistance value is a value obtained by using a four-probe method according to JIS K7194 (established in 1994) and using Loresta (registered trademark) EP MCP-T360 (manufactured by Dia Instruments Co., Ltd.). .
  • the surface resistance tends to be low, and when the amount is small, the surface resistance tends to be high. It can be adjusted.
  • the light transmittance and the surface resistance value increase when the coating amount is decreased to increase the light transmittance, and the light transmittance decreases when the coating amount is increased to decrease the surface resistance value. It is a conflicting value. Since the dispersion of the carbon nanotube-containing composition of the present invention can reduce the surface resistance value of the conductive layer while maintaining the dispersibility of the carbon nanotube, the conductive molded article having excellent conductivity and transparency Is obtained.
  • the conductive molded body obtained by applying the dispersion of the carbon nanotube-containing composition of the present invention has high conductivity, and is used for clean room members such as anti-static shoes and anti-static plates, electromagnetic shielding materials, It can be used as a display member such as an infrared cut material, a transparent electrode, a touch panel, a radio wave absorber, and an automobile member. In particular, it exhibits particularly excellent performance as a transparent electrode related to a display such as a touch panel, a liquid crystal display, organic electroluminescence, and electronic paper, which mainly requires surface smoothness.
  • the evaluation method in the examples is as follows.
  • the absorbance of the dispersant sodium carboxymethylcellulose was measured as follows. Sodium carboxymethylcellulose was dissolved in ion-exchanged water to prepare a 0.1% aqueous solution, and the absorbance was measured. The absorbance value observed at this time at a wavelength of 280 nm was used. The absorbance when a 1% aqueous solution of sodium carboxymethyl cellulose used as a raw material before hydrolysis was set to 1, and the ratio of the absorbance of sodium carboxymethyl cellulose after hydrolysis to that was evaluated.
  • the degree of etherification of the dispersant was measured as follows. 1 g of sodium carboxymethylcellulose and 200 g of ion-exchanged water were weighed into an Erlenmeyer flask, and 5 mL of 0.05 mol / L sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and boiled for 10 minutes. After cooling this, 3 drops of 1.0 wt% phenolphthalein ethanol solution (Wako Pure Chemical Industries, Ltd.) was added, and 0.1 mol / L potassium hydroxide aqueous solution (Wako Pure Chemical Industries, Ltd.) was added. ).
  • [High-resolution transmission electron micrograph] 1 mg of the carbon nanotube-containing composition was placed in 1 mL of ethanol, and dispersion treatment was performed using an ultrasonic bath for about 15 minutes. A few drops of the dispersed sample were dropped on the grid and dried. The grid thus coated with the sample was placed in a transmission electron microscope (JEM-2100, manufactured by JEOL Ltd.) and measured. The measurement magnification was 50,000 to 500,000 times, and the observation of the outer diameter distribution and the wall number distribution of the carbon nanotubes was performed at 400,000 times. The acceleration voltage is 120 kV.
  • the light transmittance was measured by loading the carbon nanotube dispersion liquid-coated film on a haze meter (Nippon Denko Kogyo NDH4000) and measuring the total light transmittance.
  • the surface resistance value was measured using a 4-terminal 4-probe method according to JIS K7149 (established in December 1994) and Loresta (registered trademark) EP MCP-T360 (manufactured by Dia Instruments Co., Ltd.). When measuring high resistance, the measurement was performed using Hirester (registered trademark) UP MCP-HT450 (manufactured by Dia Instruments, 10 V, 10 seconds).
  • the autoclave container was allowed to cool, the slurry-like cloudy substance was taken out from the container, and excess water was separated by suction filtration.
  • a small amount of water contained in the filtered product was removed by heating and drying in a dryer at 120 ° C.
  • the obtained solid content was sieved while being refined in a mortar, and a catalyst body having a particle size in the range of 10 to 20 mesh was recovered.
  • the granular catalyst body shown on the left was introduced into an electric furnace and heated at 600 ° C. for 3 hours in the atmosphere.
  • the bulk density of the obtained catalyst body was 0.32 g / mL.
  • the filtrate in the suction filtration was analyzed with an energy dispersive X-ray analyzer (EDX), iron was not detected. From this, it was confirmed that the added iron (III) ammonium citrate was supported on the whole amount of magnesium oxide. Furthermore, from the EDX analysis result of the catalyst body, the iron content contained in the catalyst body was 0.39 wt%.
  • Carbon nanotubes were synthesized using the above catalyst.
  • a catalyst body layer was formed by taking 132 g of the solid catalyst and introducing it onto the quartz sintered plate at the center of the reaction tube installed in the vertical direction. While heating the catalyst layer until the temperature in the reaction tube reaches about 860 ° C., nitrogen gas is supplied from the bottom of the reactor toward the top of the reactor at 16.5 L / min so as to pass through the catalyst layer. Circulated. Thereafter, while supplying nitrogen gas, methane gas was further introduced at 0.78 L / min for 60 minutes and aeration was performed so as to pass through the catalyst body layer to cause a reaction.
  • the carbon nanotube-containing composition obtained as described above was added to concentrated nitric acid (Primary Assay 60-61%, manufactured by Wako Pure Chemical Industries, Ltd.) having a weight of about 300 times. Thereafter, the mixture was heated to reflux with stirring in an oil bath at about 140 ° C. for 24 hours. After heating to reflux, the nitric acid solution containing the carbon nanotube-containing composition was diluted twice with ion-exchanged water and suction filtered. The carbon nanotube-containing composition was stored in a wet state containing water after washing with ion-exchanged water until the suspension of the filtered material became neutral.
  • concentrated nitric acid Primary Assay 60-61%, manufactured by Wako Pure Chemical Industries, Ltd.
  • the average outer diameter of the carbon nanotube-containing composition was observed with a high-resolution transmission electron microscope, it was 1.7 nm.
  • the proportion of the double-walled carbon nanotubes was 90%, the Raman G / D ratio measured at a wavelength of 532 nm was 80, and the combustion peak temperature was 725 ° C.
  • the aqueous solution was adjusted to pH 10 using a 28% aqueous ammonia solution (manufactured by Kishida Chemical Co., Ltd.) to stop the reaction.
  • the weight average molecular weight of the sodium carboxymethylcellulose after hydrolysis was calculated by comparing with a calibration curve with polyethylene glycol using a gel permeation chromatography method. As a result, the weight average molecular weight was about 35000, and the molecular weight distribution (Mw / Mn) was 1.5. The yield was 97%.
  • dialysis was performed for 12 hours in a beaker containing 1000 g of fresh ion exchange water.
  • the aqueous sodium carboxymethylcellulose solution taken out from the dialysis tube was concentrated under reduced pressure using an evaporator and then dried using a freeze dryer. As a result, powdered sodium carboxymethylcellulose was obtained in a yield of 70%.
  • the weight average molecular weight by gel permeation chromatography was the same as that before dialysis.
  • the peak area in the gel permeation chromatography spectrum the peak area of carboxymethylcellulose sodium before dialysis was 57%, whereas the peak area of ammonium sulfate decreased after dialysis, and the peak area of carboxymethylcellulose sodium was It improved to 91%.
  • the light absorbency of wavelength 280nm by an ultraviolet visible absorption spectrum is 0.1 weight% of carboxymethylcellulose sodium (Daiichi Kogyo Seiyaku Co., Ltd. product, Serogen (trademark) 5A (weight average molecular weight: 80,000)) which is a raw material.
  • Serogen trademark
  • 5A weight average molecular weight: 80,000
  • Example 1 A carbon nanotube-containing composition in a wet state obtained in Reference Example 1 (25 mg in terms of dry weight), a 3.5% by mass aqueous solution of sodium carboxymethyl cellulose (weight average molecular weight: 35,000) obtained in Reference Example 2 1.8 g and 13.3 g of zirconia beads (manufactured by Toray Industries, Inc., Treceram (registered trademark), bead size: 0.8 mm) are added to a container, and a 28% aqueous ammonia solution (manufactured by Kishida Chemical Co., Ltd.) The pH was adjusted to 10 using The container was shaken for 2 hours using a vibration ball mill (VS-1, manufactured by Irie Trading Co., Ltd., vibration frequency: 1800 cpm (60 Hz)) to prepare a carbon nanotube-containing composition paste.
  • the particle size of the carbon nanotube-containing composition in the obtained carbon nanotube-containing composition paste was 2.9 ⁇ m.
  • this carbon nanotube-containing composition paste was diluted with ion-exchanged water so that the concentration of the carbon nanotube-containing composition was 0.15% by mass, and 10 g of the diluted solution was adjusted to pH 10 using a 28% aqueous ammonia solution. Adjusted.
  • the aqueous solution was subjected to dispersion treatment under ice-cooling using an ultrasonic homogenizer (VCX-130, manufactured by Ieda Trading Co., Ltd.) with an output of 20 W for 1.5 minutes (2 kW ⁇ min / g). During the dispersion treatment, the liquid temperature was set to 10 ° C. or lower.
  • the obtained liquid was centrifuged at 10,000 G for 15 minutes using a high-speed centrifuge (Tomy Seiko Co., Ltd., MX-300) to obtain 9 g of a carbon nanotube-containing composition dispersion.
  • the average diameter of the carbon nanotube-containing composition in this dispersion measured by AFM was 1.7 nm. Since the outer diameter of 100 carbon nanotubes arbitrarily extracted with a high-resolution transmission electron microscope was coincident with the arithmetic average value of 1.7 nm, the carbon nanotube-containing composition was isolated and dispersed. it is conceivable that.
  • the average length of the carbon nanotube-containing composition was 3.8 ⁇ m.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.0 nm as measured by a scanning electron microscope.
  • the average length of the carbon nanotubes in the substrate form is considered to be equivalent to the average length in the dispersion.
  • Example 2 A carbon nanotube-containing composition paste was obtained in the same manner as in Example 1, except that sodium carboxymethylcellulose (weight average molecular weight: 45,000) obtained in Reference Example 3 was used as a dispersant. The particle diameter of the carbon nanotube-containing composition in the paste was 2.6 ⁇ m. Using this carbon nanotube-containing composition paste, 9 g of a carbon nanotube-containing composition dispersion was obtained in the same manner as in Example 1. The average diameter of the dispersion of the carbon nanotube-containing composition as measured by AFM in the dispersion was 1.7 nm.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.1 nm as measured by a scanning electron microscope.
  • Example 3 A carbon nanotube-containing composition paste was obtained in the same manner as in Example 1 except that sodium carboxymethylcellulose (weight average molecular weight: 54,000) obtained in Reference Example 4 was used as a dispersant.
  • the particle size of the carbon nanotube-containing composition in the paste was 2.4 ⁇ m.
  • 9 g of a carbon nanotube-containing composition dispersion was obtained in the same manner as in Example 1.
  • the average diameter of the dispersion of the carbon nanotube-containing composition as measured by AFM in this dispersion was 2.8 nm.
  • the average length of the carbon nanotube-containing composition was 3.8 ⁇ m.
  • the carbon nanotube-containing composition dispersion was applied on the film in the same manner as in Example 1.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.4 nm as measured by a scanning electron microscope.
  • Example 4 A carbon nanotube-containing composition paste was obtained in the same manner as in Example 1, except that sodium carboxymethylcellulose (weight average molecular weight: 18,000) obtained in Reference Example 5 was used as the dispersant.
  • the particle size of the carbon nanotube-containing composition in the paste was 3.9 ⁇ m.
  • 9 g of a carbon nanotube-containing composition dispersion was obtained in the same manner as in Example 1.
  • the average diameter of the dispersion of the carbon nanotube-containing composition as measured by AFM in the dispersion was 1.7 nm.
  • the average length of the carbon nanotube-containing composition was 3.9 ⁇ m.
  • the carbon nanotube-containing composition dispersion was applied on the film in the same manner as in Example 1.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.0 nm as measured by a scanning electron microscope.
  • Example 5 Wet carbon nanotube-containing composition obtained in Reference Example 1 (15 mg in terms of dry weight) and 6.0 g of a 1 wt% aqueous solution of sodium carboxymethylcellulose (weight average molecular weight: 8000) obtained in Reference Example 6 were weighed. I took it. Ion exchange water was added to make 10 g, the pH was adjusted to 10 using ammonia, and dispersion treatment was performed with an ultrasonic homogenizer output of 20 W for 1.5 minutes under ice cooling to prepare a carbon nanotube-containing composition dispersion. The obtained liquid was centrifuged at 10,000 G for 15 minutes with a high-speed centrifuge (Tomy Seiko Co., Ltd., MX-300) to obtain 9 g of a carbon nanotube dispersion. The average diameter of the dispersion of the carbon nanotube-containing composition in this dispersion measured by AFM was 1.7 nm. The average length of the carbon nanotube-containing composition was 3.8 ⁇ m.
  • the carbon nanotube-containing composition dispersion was applied on the film in the same manner as in Example 1.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.0 nm as measured by a scanning electron microscope.
  • the average length of the carbon nanotubes in the substrate form is considered to be equivalent to the average length in the dispersion.
  • Example 1 Comparative Example 1 In the same manner as in Example 1, except that sodium carboxymethylcellulose (Dell Daiichi Kogyo Seiyaku Co., Ltd., Cellogen (registered trademark) 5A (weight average molecular weight: 78,000)) was used as the dispersant, A nanotube-containing composition paste was prepared, and the particle size of the carbon nanotube-containing composition in the carbon nanotube-containing composition paste was 4.5 ⁇ m.
  • sodium carboxymethylcellulose Dell Daiichi Kogyo Seiyaku Co., Ltd., Cellogen (registered trademark) 5A (weight average molecular weight: 78,000)
  • a nanotube-containing composition paste was prepared, and the particle size of the carbon nanotube-containing composition in the carbon nanotube-containing composition paste was 4.5 ⁇ m.
  • the carbon nanotube-containing composition dispersion was applied on the film in the same manner as in Example 1.
  • the aggregate diameter of the carbon nanotube-containing composition on the substrate was 4.8 nm as measured by a scanning electron microscope.
  • FIG. 1 shows the relationship between the weight average molecular weight of the dispersant used in Examples 1 to 5 and Comparative Example 1 and the aggregate diameter and average length of the carbon nanotube-containing composition on the substrate in the obtained conductive film. It was. When the weight average molecular weight of the dispersant is small, the aggregate diameter tends to be small and the average length of the carbon nanotube tends to be long. When the weight average molecular weight of the dispersant exceeds 60,000, the aggregate diameter of the carbon nanotube-containing composition increases, indicating that the dispersibility of the carbon nanotube-containing composition is reduced. Moreover, when the weight average molecular weight of a dispersing agent exceeds 60,000, the average length of a carbon nanotube containing composition will become short, and it has shown that the carbon nanotube is cut
  • the conductive molded body obtained by applying the carbon nanotube dispersion liquid of the present invention is highly conductive, and it is a member for clean rooms such as antistatic shoes and antistatic plates, an electromagnetic shielding material, and a near infrared cut material. It can be used as a display member such as a transparent electrode, a touch panel, a radio wave absorber, and an automobile member. In particular, it exhibits particularly excellent performance as a transparent electrode related to a display such as a touch panel, a liquid crystal display, organic electroluminescence, and electronic paper, which mainly requires surface smoothness.

Abstract

 本発明は、カーボンナノチューブ含有組成物、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が0.5万以上6万以下である分散剤および水系溶媒を含むカーボンナノチューブ含有組成物の分散液である。本発明は、カーボンナノチューブ含有組成物の高分散性を維持し、基材上での分散性に優れたカーボンナノチューブ含有組成物の分散液を提供する。

Description

カーボンナノチューブ含有組成物の分散液および導電性成形体
 本発明は、カーボンナノチューブ含有組成物の分散液およびそれを基材に塗布して得られる導電性成形体に関する。
 カーボンナノチューブは、その理想的な一次元構造に起因する様々な特性、例えば、電気伝導性、熱伝導性や力学強度などによって、様々な工業的応用が期待されている物質である。カーボンナノチューブの直径、層数および長さを制御することにより、性能向上および応用性の広がりが期待されている。カーボンナノチューブは、通常、層数の少ない方が高グラファイト構造を有する。単層カーボンナノチューブや二層カーボンナノチューブは、高グラファイト構造を有しているために、導電性や熱伝導性などの特性も高いことが知られている。また、多層カーボンナノチューブの中でも層数の比較的少ない2~5層カーボンナノチューブは、単層カーボンナノチューブと多層カーボンナノチューブの両方の特性を有しているために、種々の用途において有望な素材として注目を集めている。
 カーボンナノチューブの導電性を利用した用途として、例えば、クリーンルーム用部材や、ディスプレイ用部材、自動車用部材などがある。カーボンナノチューブは、これらの部材に、制電性、導電性、電波吸収性、電磁波遮蔽性、近赤外カット性などを付与するのに用いられる。カーボンナノチューブは、アスペクト比が高く、少量で導電パスを形成できるため、従来のカーボンブラック等の導電性微粒子と比べ、光透過性および耐脱落性に優れた導電性材料となりうる。例えば、カーボンナノチューブを用いた光学用透明導電性フィルムが公知である(特許文献1)。カーボンナノチューブを用いて光透過性に優れた導電性フィルムを得るには、数10本のカーボンナノチューブからなる太いバンドル(束)や強固な凝集を解し、カーボンナノチューブを高分散させ、少ないカーボンナノチューブの本数で効率良く導電パスを形成する必要がある。このような導電性フィルムを得る手段としては、例えばカーボンナノチューブを溶媒中に高分散させた分散液を基材に塗布する方法などが知られている。カーボンナノチューブを溶媒中に高分散させるためには、分散剤を用いて分散させる手法がある(特許文献1、2)。中でも、カーボンナノチューブをより高度に分散させるためには、水性溶媒中、水に親和性のある親水性基およびカーボンナノチューブと親和性の高い疎水性基をもつ分散剤を用いて分散させることが好適である(特許文献2)。
特開2006-269311号公報 特開2009-163959号公報
 これらの分散液は、液中ではカーボンナノチューブの高分散性を維持しているが、基材と接触し溶媒が除去される過程で再びカーボンナノチューブが凝集し、効率のよい導電パスの形成が困難となる。そのため基材上でのカーボンナノチューブの高分散性を維持できる分散液が求められてきた。
 本発明は、上記のような事情に鑑みなされたものであり、分散液中でのカーボンナノチューブの分散性が良く、カーボンナノチューブの切断を抑制することができ、分散液を基材に塗布した際に基材上でのカーボンナノチューブの分散性に優れ、透明導電性の良い導電性成形体を製造可能なカーボンナノチューブ含有組成物の分散液を得ることを課題とする。
 本発明者らは、鋭意検討を行った結果、特定の分子量の分散剤を用いて、カーボンナノチューブ含有組成物を水系溶媒に分散させることにより、基材上でのカーボンナノチューブ含有組成物の凝集径が小さい分散液が得られることを見いだし、本発明に至ったものである。
 すなわち本発明は、カーボンナノチューブ含有組成物、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が0.5万以上6万以下である分散剤および水系溶媒を含むカーボンナノチューブ含有組成物の分散液である。
 また本発明は、基材上に導電層が形成された導電性成形体であって、該導電層がカーボンナノチューブ含有組成物およびゲルパーミエーションクロマトグラフィーで測定した重量平均分子量0.5万以上6万以下の範囲である分散剤を含み、該カーボンナノチューブ含有組成物の凝集径が1nm以上4.5nm以下であり、かつ、該カーボンナノチューブ含有組成物の平均長さが3.5μm以上6μm以下である導電性成形体である。
 また本発明は、上記のカーボンナノチューブ含有組成物の分散液を基材に塗布した後、水系溶媒を除去する導電性成形体の製造方法である。
 本発明によれば、分散液中でのカーボンナノチューブの分散性が良く、カーボンナノチューブの切断が抑制され、かつ、基材上に塗布した際の分散性に優れたカーボンナノチューブ含有組成物の分散液を得ることができる。そしてこのようなカーボンナノチューブの分散液を用いて得られる導電性成形体は、透明かつ導電性が高いものが得られる。
図1は分散剤の重量平均分子量とカーボンナノチューブの基材上の凝集径およびカーボンナノチューブの平均長さの関係を示した図である。
 本発明では、導電性材料としてカーボンナノチューブを用いる。本発明においてカーボンナノチューブ含有組成物とは、複数のカーボンナノチューブを含む総体を意味する。カーボンナノチューブ含有組成物中の、カーボンナノチューブの存在形態は、特に限定されず、それぞれが独立、束状、あるいは絡まり合うなどの形態あるいはこれらの混合形態で存在していてもよい。また、種々の層数または直径のものが含まれていてもよい。また、分散液や他の成分を配合した組成物中、あるいは他の成分と複合した複合体中に含まれる場合でも、複数のカーボンナノチューブが含まれていれば、カーボンナノチューブ含有組成物が含まれていると解する。カーボンナノチューブ含有組成物には、カーボンナノチューブ製造法由来の不純物(例えば触媒やアモルファスカーボン)を含み得る。
 カーボンナノチューブは、グラファイトの1枚面を巻いて筒状にした形状を有しており、1層に巻いたものを単層カーボンナノチューブ、2層に巻いたものを2層カーボンナノチューブ、多層に巻いたものを多層カーボンナノチューブという。
 本発明のカーボンナノチューブ含有組成物の分散液および導電性成形体には、求められる用途特性に応じて、単層、2層および多層のいずれのカーボンナノチューブも用いることができる。単層~5層と層数の少ないカーボンナノチューブを用いれば、導電性がより高く、光透過性も高い導電性成形体を得ることができる。2層以上のカーボンナノチューブを用いれば、光学特性において、光波長依存性の少ない導電性成形体を得ることができる。光透過性の高い導電性成形体を得るには、好ましくは、カーボンナノチューブ100本中、層数が単層から5層であるカーボンナノチューブが50本以上含まれることが好ましく、2~5層カーボンナノチューブが100本中50本以上含まれることがさらに好ましく、特に2層カーボンナノチューブがカーボンナノチューブ100本中50本以上であると導電性ならびに分散性が極めて高く好ましい。6層以上の多層カーボンナノチューブは、一般に結晶化度が低く導電性が低いうえ、直径が太く導電層中のカーボンナノチューブ単位量あたりの接点数が小さくなり、導電性成形体の透明導電性が低くなる。
 カーボンナノチューブの層数は、例えば以下のようにサンプルを作成し、測定できる。カーボンナノチューブ含有組成物が、溶媒中に分散された組成物である場合、溶媒が水系の場合は、組成物を水で見えやすい濃度に適宜希釈し、コロジオン膜上に数μL滴下し風乾させた後、直接透過型電子顕微鏡を用いてコロジオン膜上のカーボンナノチューブ含有組成物を調べる。溶媒が非水系の場合は、一度乾燥により溶媒を除去した後、再度水中で分散させてから適宜希釈してコロジオン膜上に数μL滴下し風乾させた後、透過型電子顕微鏡で観察する。導電性成形体中のカーボンナノチューブの層数は、塗布前の組成物を同様にして観察することができる。導電性成形体からカーボンナノチューブ含有組成物を採取する際は、導電性成形体をエポキシ樹脂で包埋した後、ミクロトームなどを用いて0.1μm以下に薄く切断した切片を観察することによって、透過型電子顕微鏡で調べることができる。また、導電性成形体から、溶媒でカーボンナノチューブ含有組成物を抽出し、組成物の場合と同様にして高分解能透過型電子顕微鏡で観察することもできる。コロジオン膜上に滴下する液のカーボンナノチューブ含有組成物の濃度は、カーボンナノチューブを一本一本観察できる濃度であればよいが、例えば0.001重量%である。
 上記カーボンナノチューブの層数の測定は、例えば、次のようにして行う。透過型電子顕微鏡を用いて40万倍で観察し、75nm四方の視野の中で、視野面積の10%以上がカーボンナノチューブである視野中から任意に抽出した100本のカーボンナノチューブについて層数を測定する。一つの視野中で100本のカーボンナノチューブの測定ができない場合は、100本になるまで複数の視野から測定する。このとき、カーボンナノチューブ1本とは、視野中で一部カーボンナノチューブが見えていれば1本と計上し、必ずしも両端が見えている必要はない。また視野中で2本と認識されても視野外でつながって1本となっていることもあり得るが、その場合は2本と計上する。
 カーボンナノチューブの直径は、特に限定はないが,上記好ましい範囲の層数のカーボンナノチューブの直径は1nm~10nmであり、特に1~3nmの範囲内であるものが好ましく用いられる。
 カーボンナノチューブは表面や末端が官能基やアルキル基で修飾されていてもよく、またアルカリ金属やハロゲンでドーピングされていてもよい。例えば、カーボンナノチューブを酸中で加熱することにより、カルボキシル基、水酸基で官能基化させてもよい。また、カーボンナノチューブをドーピングすることにより、カーボンナノチューブの導電性が向上し好ましい。
 カーボンナノチューブの長さは、短すぎると効率的に導電性パスを形成できないため、平均長さが3.5μm以上であることが好ましい。また、カーボンナノチューブが.長すぎると分散性が低下する傾向にあるため、平均長さは6μm以下であることが好ましい。
 分散液中のカーボンナノチューブの平均長さは、後述するように原子間力顕微鏡を用いて調べることができる。組成物の場合には、マイカ基板上に数μL滴下し風乾させた後、原子間力顕微鏡で調べることができる。滴下するカーボンナノチューブ含有組成物の濃度は、カーボンナノチューブが一本一本観察できる濃度の適宜希釈すれば良い。例えば0.003重量%である。
 カーボンナノチューブの平均長さについては、上記方法で試料を作成し、原子間力顕微鏡で観察し、30μm四方の1視野の中で10本以上のカーボンナノチューブが含まれるところで写真を撮り、視野中から任意に抽出した各カーボンナノチューブの長さを長さ方向に沿って測定する。一つの視野中で100本の測定ができない場合は、100本になるまで複数の視野から測定する。合計100本のカーボンナノチューブについて長さを測定することによって100本中に含まれるカーボンナノチューブの長さとその本数を確認することができる。
 長さが0.5μm以下の範囲にあるカーボンナノチューブが100本中30本以下であれば、接点抵抗を低減でき、光透過率を向上することができ好ましく、さらに1μm以下の範囲にあるカーボンナノチューブが100本中30本以下であるとより好ましい。さらに、長さが10μm以上の範囲にあるカーボンナノチューブが100本中30本以下であると分散性が向上でき好ましい。
 また、透明導電性に優れた導電性成形体を得るには、結晶化度の高い高品質のカーボンナノチューブを用いることが好ましい。結晶化度の高いカーボンナノチューブは、それ自体電気伝導性に優れる。しかし、このような高品質のカーボンナノチューブは、結晶化度の低いカーボンナノチューブと比べ、より強固にバンドルや凝集体を形成しているため、一本一本を解し、安定に高分散させるのは非常に困難である。そのため、結晶化度の高いカーボンナノチューブを用いて、より導電性の高い導電性成形体を得るには、カーボンナノチューブの分散技術が非常に重要である。
 本発明で用いるカーボンナノチューブは、特に限定されないが、直線性があり結晶化度が高いカーボンナノチューブであることが導電性が高く好ましい。直線性のよいカーボンナノチューブとは、欠陥が少なくカーボンナノチューブ結晶化度が高いカーボンナノチューブである。カーボンナノチューブの結晶化度は、ラマン分光分析法により評価が可能である。ラマン分光分析法で使用するレーザー波長は種々あるが、532nmを利用する。ラマンスペクトルにおいて1590cm-1付近に見られるラマンシフトは、グラファイト由来のGバンドと呼ばれ、1350cm-1付近に見られるラマンシフトはアモルファスカーボンやグラファイトの欠陥に由来のDバンドと呼ばれる。すなわち、GバンドとDバンドのピーク高さの比であるG/D比が高いカーボンナノチューブほど、直線性および結晶化度が高く、高品質である。
 G/D比は高いほど良いが、30以上であれば高品質カーボンナノチューブ含有組成物と言うことができる。好ましくは40以上、さらに好ましくは50以上である。上限は特にないが、通常200以下である。また固体のラマン分光分析法は、サンプリングによって測定値がばらつくことがある。そこで少なくとも3カ所、異なる場所をラマン分光分析し、その相加平均をとるものとする。
 ラマン分光分析は、共鳴ラマン分光計(ホリバ ジョバンイボン製 INF-300)に粉末試料を設置し、532nmのレーザー波長を用いて測定を行う。測定に際しては3ヶ所、別の場所にて分析を行い、Gバンド、Dバンドの高さを測定し、それぞれの高さの比でG/D比を求め、その相加平均を表す。
 カーボンナノチューブ含有組成物は、例えば以下のように製造される。
 マグネシアに鉄を担持した粉末状の触媒を、縦型反応器中、反応器の水平断面方向全面に存在させ、該反応器内にメタンを鉛直方向に流通させ、メタンと上記触媒を500~1200℃で接触させ、カーボンナノチューブを含む生成物を得た後、該生成物をさらに酸化処理することにより、単層~5層のカーボンナノチューブを含有するカーボンナノチューブ含有組成物を得ることができる。
 酸化処理としては、例えば、酸化処理前のカーボンナノチューブ含有組成物を、硝酸、過酸化水素、混酸から選ばれた酸化剤で処理することが挙げられる。カーボンナノチューブ含有組成物を硝酸で処理するとは、上記カーボンナノチューブ含有組成物を、例えば市販の硝酸(40~80重量%)中に、濃度0.001重量%~10重量%になるように混合し、60~150℃の温度にて0.5~50時間反応させることを意味する。カーボンナノチューブ含有組成物を過酸化水素で処理するとは、酸化処理前のカーボンナノチューブ含有組成物を、例えば市販の34.5%過酸化水素水中に濃度0.001重量%~10重量%になるように混合し、0~100℃の温度にて0.5~50時間反応させることを意味する。またカーボンナノチューブ含有組成物を混酸で処理するとは、酸化処理前のカーボンナノチューブ含有組成物を、例えば、濃硫酸(98重量%)/濃硝酸(40~80重量%)(=3/1)混合溶液中に濃度0.001重量%~10重量%になるように混合し、0~100℃の温度にて0.5~50時間反応させることを意味する。混酸の混合比としては、生成物中の単層カーボンナノチューブの量に応じて濃硫酸/濃硝酸の比を1/10~10/1とすることも可能である。
 このような酸化処理を行うことで、生成物中のアモルファスカーボンなどの不純物および耐熱性の低い単層CNTを選択的に除去することが可能となり、単層から5層、特に2層~5層カーボンナノチューブの純度を向上することができる。それと同時にカーボンナノチューブの表面が官能基化されることにより、分散媒および添加剤との親和性が向上するため分散性が向上する。これらの酸化処理のなかでも、硝酸を用いて処理することが特に好ましい。 
 本発明のカーボンナノチューブ含有組成物の分散液は、分散剤として、ポリマー系分散剤を使用する。これはポリマー系分散剤の使用によりカーボンナノチューブを溶液中で高度に分散でき、さらに高剪断力を与えても安定な分散液を得ることができるためである。このとき分散剤の分子量が小さすぎると、分散剤とカーボンナノチューブの相互作用が弱まるためにカーボンナノチューブのバンドルを十分に解すことができない。一方、分散剤の分子量が大きすぎると、カーボンナノチューブのバンドル間への侵入が難しくなる。そのため分散処理において、バンドルが解する前にカーボンナノチューブの切断が進行してしまう。本発明では、分散剤の重量平均分子量を0.5万以上6万以下にすることで、カーボンナノチューブを溶液中で高度に分散できるだけでなく、分散処理においてカーボンナノチューブの切断を抑制する効果もあることを見出した。重量平均分子量が0.5万以上6万以下の範囲の分散剤を用いることで、分散時にカーボンナノチューブ間の隙間に分散剤が入りやすくなる。そのため、より少ないエネルギーでカーボンナノチューブの分散が可能となり、カーボンナノチューブを高分散できるとともに、カーボンナノチューブの切断が抑制される。さらに基材上に塗布したとき、カーボンナノチューブの基材上での凝集も抑制されるため、得られる導電性成形体の導電性と透明性が両立できる。分散剤の量が少なくても良好な分散性が得られることから、分散剤の重量平均分子量の範囲は1万以上6万以下であることが好ましく、1万以上4万以下であることがさらに好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて算出された重量平均分子量を指す。
 重量平均分子量が0.5万以上6万以下の分散剤は、重量平均分子量の範囲がこの範囲になるように合成したり、より高分子量の分散剤を加水分解などの方法で低分子量化することで得ることができる。
 カーボンナノチューブ含有組成物の分散液の高剪断力に対する安定性の評価方法として、例えばレオメーターを用い、継続的に高剪断をかけた場合の分散液の安定性を評価する方法がある。装置としてレオメーター(アントンパール社製MCR501)を用い、平滑ローター(PP25)使用時のステージ/ローター間ギャップを0.01mmに設定して、測定する分散液0.3mLをロードする。この分散液に剪断速度200000s-1、30分間高剪断力を与えた後のローター部を目視で観察し、カーボンナノチューブ含有組成物の分散液に凝集が見られない場合、高剪断力を与えても凝集せず安定であると判断することができる。
 分散液に含まれる分散剤の量は、カーボンナノチューブに吸着される量より多く、かつ、導電性を阻害しない量であることが好ましい。具体的にはカーボンナノチューブ含有組成物100重量部に対して分散剤が200重量部以上500重量部以下であることが好ましく、さらに200重量部以上400重量部以下であることが好ましい。
 分散剤の種類としては、合成高分子、天然高分子などから選択できる。合成高分子としては、ポリアクリル酸、ポリスチレンスルホン酸およびその誘導体から選択したポリマーが好ましい。天然高分子としては、多糖類であるアルギン酸、コンドロイチン硫酸、ヒアルロン酸、セルロースおよびそれらの誘導体から選択したポリマーが好ましい。誘導体とは、前述のポリマーのエステル化物、エーテル化物、塩などを意味する。これらの中でも特に多糖類を用いることが分散性向上の点から好ましい。分散剤は、1種を用いても、2種以上を混合して用いてもよい。分散性のよい分散剤を用いることで、カーボンナノチューブのバンドルを解して透明導電性を向上させることができる点から、分散剤としては、イオン性高分子が好ましく用いられる。中でも、スルホン酸基やカルボン酸基などのイオン性官能基を持つものが、分散性および導電性が高くなるため好ましい。イオン性高分子としては、ポリスチレンスルホン酸、コンドロイチン硫酸、ヒアルロン酸、カルボキシメチルセルロースおよびそれらの誘導体から選ばれたポリマーが好ましい。特にイオン性官能基を有する多糖類であるカルボキシメチルセルロースおよびその誘導体から選ばれたポリマーが最も好ましい。誘導体としては塩が好ましい。
 重量平均分子量が6万以下のカルボキシメチルセルロースは市販されていないため、重量平均分子量が0.5万以上6万以下のカルボキシメチルセルロースを得るためには、重量平均分子量が6万より大きいカルボキシメチルセルロースを加水分解などの方法で低分子量化する。原料として用いるカルボキシメチルセルロースは、特に制限はないが、可能な限り低分子量の市販品のカルボキシメチルセルロースを用いることが好ましい。具体的には、重量平均分子量が6万より大きく50万以下のカルボキシメチルセルロースが好ましい。重量平均分子量が50万を超えるカルボキシメチルセルロースは加水分解反応に時間がかかり、カルボキシメチルセルロースの酸化分解物が多量に発生するため、精製が困難となるためである。
 また、加水分解により得られるカルボキシメチルセルロースのエーテル化度は、0.4以上1以下が好ましい。エーテル化度が0.4より小さいと、カルボキシメチルセルロースが水に不溶になるため好ましくない。カルボキシメチルセルロースが分子量の場合は、カーボンナノチューブ含有組成物への相互作用が小さくなる。そのためカルボキシメチルセルロースのエーテル化度が1以上では分散剤としての効果が不十分な場合がある。カルボキシメチルセルロースの加水分解反応は、βグリコシド結合を加水分解するため、反応の前後においてエーテル化度に変化はない。そのため、原料として用いる加水分解後のカルボキシメチルセルロースのエーテル化度についても0.4以上1以下の範囲が好ましい。
 カルボキシメチルセルロースの加水分解反応は、水中で酸加水分解法を用いて行うことが好ましい。加水分解反応はpH3以下、温度は100℃以上で行うことが好ましい。100℃より低い温度では加水分解反応が進行しないためである。密閉した耐圧容器中で反応させる場合は、pH3より大きくpH7以下の条件で、120℃以上で加熱することも可能である。酸が少なくても加圧することによって加水分解反応が進行するためである。反応の際の雰囲気は、特に限定しないが、必要であれば、窒素、アルゴン、ヘリウムなどでガス置換することが好ましい。反応時間は、低分子量化の程度に応じて異なる。pHと反応時間を調整することにより、所望する分子量のカルボキシメチルセルロースを得ることが可能である。用いる酸は特に制限はないが、硫酸、硝酸、塩酸、過酸化水素、酢酸などが好ましい。加熱条件の関係より、揮発しにくい硫酸が特に好ましい。また反応停止の際にはpH7以上になるまでアルカリを加える。アルカリは、特に種類の制限はないが、用いる酸が強酸の場合には、弱塩基を用いることが好ましい。具体的にはアンモニア、炭酸水素ナトリウム、エチルアミン、トリエチルアミン、プロピルアミン、イソプロピルアミンなどがある。好ましくは金属イオンや有機物を含まないアンモニアである。
 加水分解反応停止後のカルボキシメチルセルロース水溶液は、着色していることが多い。これは加熱下で加水分解を行うため、カルボキシメチルセルロースの一部が酸化され、構造変化を起こしてしまうからである。そのため加水分解反応後、透析膜法を用いて副生成物と反応停止の際に生じた塩を除去することが好ましい。例えば、加水分解反応後の水溶液をチューブ状の透析膜に入れ、イオン交換水中に室温で一晩浸漬する。本来、透析膜法は脱塩が目的であるが、副生成物であるカルボキシメチルセルロースの酸化分解物も、分画分子量以下であるため除去され、色が希薄になる。なお、透析膜は、所望の低分子量カルボキシメチルセルロースより小さい分画分子量の膜を用いる。低分子量カルボキシメチルセルロースと分画分子量の差が大きいほど効率のよい精製が可能となる。具体的には分画分子量が100~10000の範囲の透析膜が好ましい。分画分子量はさらに好ましくは1000~5000である。
 上記のように透析膜処理して得られた低分子量カルボキシメチルセルロースの紫外可視吸収スペクトルで波長280nmの吸光度を測定した場合、原料となる市販のカルボキシメチルセルロースの280nmでの吸光度を1とした際の透析膜処理後の吸光度の比率は10以下であることが好ましい。該吸光度の比率が10以下であれば、カルボキシメチルセルロースは、ほぼ無色透明となり、分散剤として使用して透明導電体などを形成する際に透明性を維持することができる。
 加水分解前後のカルボキシメチルセルロースの分子量分布(Mw/Mn)は、原料となるカルボキシメチルセルロースからほとんど変化しない。分散剤として使用する場合の、カーボンナノチューブ含有組成物の分散安定性の観点から分子量分布は2以下が好ましい。 
 本発明ではカーボンナノチューブ含有組成物、分散剤および水系溶媒を用いてカーボンナノチューブ分散液を調製する。分散液は、液体状でも、ペーストやゲルのような半固形状でもかまわないが、液体状が好ましい。分散液は、目視において沈降物や凝集物がなく、少なくとも24時間静置後においても目視において沈降物や凝集物がないことが好ましい。
 水系溶媒とは、水または水と混和する有機溶媒である。分散剤が溶解し、カーボンナノチューブが分散するものであれば用いることができる。水と混和する有機溶媒としては、エーテル類(ジオキサン、テトラヒドロフラン、メチルセロソルブ等)、エーテルアルコール(エトキシエタノール、メトキシエトキシエタノール等)、アルコール類(エタノール、イソプロパノール、フェノール等)、低級カルボン酸(酢酸等)、アミン類(トリエチルアミン、トリメタノールアミン等)、窒素含有極性溶媒(N,N-ジメチルホルムアミド、ニトロメタン、N-メチルピロリドン、アセトニトリル等)、硫黄化合物類(ジメチルスルホキシド等)などを用いることができる。
 これらのなかでも特に、水、アルコール、エーテルおよびそれらを組み合わせた溶媒を含有することがカーボンナノチューブの分散性から好ましい。さらに好ましくは水である。カーボンナノチューブ含有組成物の分散液のpHは、アルカリ性であることが好ましく、さらにpH8~12であることが好ましく、特にpH9~11であることが好ましい。分散液のpHをアルカリ性にすることにより、分散剤あるいはカーボンナノチューブ間の静電反発が増大し、分散性および高剪断力に対する安定性が向上すると考えられる。pH調整は、アルカリ性溶液を添加することにより行うことができる。アルカリ性溶液としては、アンモニアや有機アミンの溶液を用いる。有機アミンとしては、エタノールアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ヘキサメチレンジアミン、ヒドラジン、ピリジン、ピペリジン、ヒドロキシピペリジンなどが好ましい。これらアンモニアおよび有機アミンの中で最も好ましいのはアンモニアである。これら有機アミンやアンモニアを溶解する溶媒としては、水を用いることが好ましい。pHはpHメーター(東亜電波工業社製、HM-30S)により測定される。
 カーボンナノチューブ含有組成物の分散液調製時のカーボンナノチューブ含有組成物の濃度は、特に制限はないが、0.1質量%から0.3質量%の範囲が好ましい。濃度が0.1質量%より小さいと、分散時にカーボンナノチューブ含有組成物へのエネルギー照射が大きくなり、カーボンナノチューブの切断を促進してしまう。また濃度が0.3質量%より大きいと、分散時のエネルギーがカーボンナノチューブ含有組成物へ十分に照射されず、分散が困難になる。
 カーボンナノチューブ含有組成物の分散液の調製方法としては、カーボンナノチューブ含有組成物と分散剤および溶媒を、塗料製造用の一般的な混合分散機(例えば振動ミル、遊星ミル、ボールミル、ビーズミル、サンドミル、ジェットミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、アトライター、デゾルバー、ペイントシェーカー等)を用いて混合分散する方法を用いることができる。中でも、超音波ホモジナイザーを用いて分散すると、カーボンナノチューブ含有組成物の分散性が向上し好ましい。分散させるカーボンナノチューブ含有組成物は、乾燥状態であっても、溶媒を含んだ状態でもよいが、精製後乾燥させずに溶媒を含んだ状態で分散させることが、分散性が向上するために好ましい。
 カーボンナノチューブ含有組成物の分散液は、上記分散剤、カーボンナノチューブ含有組成物および溶媒以外に、例えば界面活性剤、導電性高分子、非導電性高分子など各種高分子材料等をその他の添加剤として、本発明の効果を阻害しない範囲で含んでいてもかまわない。
 本発明のカーボンナノチューブ含有組成物の分散液は、後述の方法により基材に塗布することにより、カーボンナノチューブ含有組成物を含む導電層が、基材上に形成された導電性成形体を形成することができる。
 基材としては、カーボンナノチューブ分散液が塗布でき、得られる導電層が固定できれば、形状、サイズ、および材質は特に限定されず、目的とする用途によって選択できる。例えばフィルム、シート、板、紙、繊維、粒子などが挙げられる。基材の材質は、例えば、有機材料であれば、ポリエステル、ポリカーボネート、ポリアミド、アクリル、ポリウレタン、ポリメチルメタクリレート、セルロース、トリアセチルセルロース、非晶質ポリオレフィンなどの樹脂から選択できる。無機材料であればステンレス、アルミ、鉄、金、銀などの金属、ガラスおよび炭素材料等から選択できる。基材として樹脂フィルムを用いた場合、接着性、延伸追従性および柔軟性に優れた導電性フィルムを得ることができ好ましい。その際の好ましい基材の厚みは、特に限定されないが、例えば、約1~約1000μmの間の厚さとしうる。好ましい実施形態では、基材の厚さは約5~約500μmである。さらに好ましい実施形態では、基材の厚さは約10~約200μmである。
 基材は、必要に応じ、コロナ放電処理、オゾン処理やグロー放電等の表面親水化処理を施してあってもよい。あるいはアンダーコート層を設けてあっても良い。アンダーコート層の材料としては、親水性の高い材料が好ましい。
 基材としては、カーボンナノチューブ分散液を塗布する反対面に耐摩耗性、高表面硬度、耐溶剤性、耐汚染性、耐指紋性等を付与したハードコート処理が施されているものも用いることができる。
 基材として透明性がある基材を用いることにより、透明性および導電性に優れた導電性成形体を得ることができ好ましい。透明性がある基材とは、全光線透過率が50%以上であることを示す。
 本発明のカーボンナノチューブ分散液を基材に塗布して導電性成形体を形成後、カーボンナノチューブを含む導電層を、さらにバインダー材料でオーバーコーティングすることも好ましい。オーバーコーティングは、電荷の分散や移動に効果的である。
 また、カーボンナノチューブ分散液中にバインダー材料を含有させ、基材に塗布後、必要により加熱して、バインダー材料の乾燥ないし焼付(硬化)を行っても良い。その際の加熱条件は、バインダー材料に応じて設定する。バインダーが光硬化性または放射線硬化性の場合には、加熱硬化ではなく、塗布後、塗膜に光または放射線を照射することにより塗膜を硬化させる。放射線としては電子線、紫外線、X線、ガンマー線等のイオン化性放射線が使用できる。照射線量はバインダー材料に応じて決定する。
 上記バインダー材料としては、導電性塗料に使用されるものであれば特に制限はなく、各種の透明な無機ポリマーまたはその前駆体(以下「無機ポリマー系バインダー」と称する場合もある)または透明な有機ポリマーまたはその前駆体(以下「有機ポリマー系バインダー」と称する場合もある)が使用できる。
 無機ポリマー系バインダーの例としては、シリカ、酸化錫、酸化アルミニウム、酸化ジルコニウム等の金属酸化物のゾル、あるいは該無機ポリマーの前駆体となる加水分解性または熱分解性の有機金属化合物(有機リン化合物、有機ボロン化合物、有機シラン化合物、有機チタン化合物、有機ジルコニウム化合物、有機鉛化合物、有機アルカリ土類金属化合物など)がある。加水分解性または熱分解性の有機金属化合物の具体的例は、金属アルコキシドまたはその部分加水分解物、酢酸金属塩などの低級カルボン酸塩、アセチルアセトン錯体などの金属錯体である。
 これらの無機ポリマー系バインダーを焼成すると、酸化物または複合酸化物からなる無機ポリマーの透明被膜もしくはマトリックスを形成することができる。無機ポリマーは、一般にガラス質であり、高硬度で耐擦過性に優れ、透明性も高い。
 有機ポリマー系バインダーは、熱可塑性、熱硬化性、あるいは紫外線、電子線などの放射線硬化性など、種類を問わない。適当な有機バインダーの例としては、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリアミド(ナイロン6、ナイロン11、ナイロン66、ナイロン6,10等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、シリコーン樹脂、ビニル樹脂(ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリレート、ポリスチレン誘導体、ポリ酢酸ビニル、ポリビニルアルコール等)、ポリケトン、ポリイミド、ポリカーボネート、ポリスルホン、ポリアセタール、フッ素樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリウレタン、セルロース系ポリマー、蛋白質類(ゼラチン、カゼイン等)、キチン、ポリペプチド、多糖類、ポリヌクレオチドなどの有機ポリマー、ならびにこれらのポリマーの前駆体(モノマーまたはオリゴマー)がある。これらは単に溶剤の蒸発により、あるいは熱硬化または放射線照射による硬化により、透明被膜もしくはマトリックスを形成することができる。
 有機ポリマー系バインダーとして好ましいのは、放射線によりラジカル重合硬化可能な不飽和結合を有する化合物、すなわちビニル基ないしビニリデン基を有するモノマー、オリゴマー、あるいはポリマーである。この種のモノマーとしては、スチレン誘導体(スチレン、メチルスチレン等)、アクリル酸もしくはメタクリル酸またはそれらの誘導体(アルキルアクリートもしくはメタクリレート、アリルアクリレートもしくはメタクリレート等)、酢酸ビニル、アクリロニトリル、イタコン酸等がある。オリゴマーあるいはポリマーは、主鎖に二重結合を有する化合物または直鎖の両末端にアクリロイルもしくはメタクリロイル基を有する化合物が好ましい。この種のラジカル重合硬化性バインダーは、高硬度で耐擦過性に優れ、透明度の高い被膜もしくはマトリックスを形成することができる。
 バインダーの使用量は、オーバーコートをするのに十分な量、もしくは、分散液中に配合する場合には塗布に適した粘性を得るのに十分な量であればよい。少なすぎると塗布がうまくいかず、多すぎても導電性を阻害し良くない。
 カーボンナノチューブ分散液を基材に塗布する方法は、特に限定されない。公知の塗布方法、例えばマイクログラビアコーティング、ワイヤーバーコーティング、ダイコーティング、スプレーコーティング、ディップコーティング、ロールコーティング、スピンコーティング、ドクターナイフコーティング、キスコーティング、スリットコーティング、スリットダイコーティング、グラビアコーティング、ブレードコーティング、押出コーティングや、スクリーン印刷、グラビア印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。また塗布は、何回行ってもよく、異なる2種類の塗布方法を組み合わせても良い。最も好ましい塗布方法は、マイクログラビアコーティング、ダイコーティングおよびワイヤーバーコーティングから選ばれた方法である。
 カーボンナノチューブ分散液の好ましい塗布厚み(ウェット厚)は、分散液の濃度にも依存するため、望む導電性が得られれば特に限定されない。しかしその中でも0.01μm~50μmであることが好ましい。さらに好ましくは0.1μm~20μmである。
 カーボンナノチューブ分散液を基材に塗布した後、風乾、加熱、減圧などの方法により溶媒を除去することにより導電層を形成する。それによりカーボンナノチューブは、3次元編目構造を形成し、基材に固定化される。このようにして、基材上にカーボンナノチューブを含む導電層が形成された導電性成形体が形成される。溶媒を除去する方法としては、加熱による乾燥が好ましい。乾燥温度は、溶媒が除去可能であり基材の耐熱温度以下であればよい。樹脂製基材の場合は、好ましくは0℃~250℃であり、さらに好ましくは、15℃~150℃である。
 乾燥後のカーボンナノチューブを含む導電層の好ましい塗布厚み(ドライ厚)は、望む導電性が得られれば規定はないが、好ましくは、0.001μm~5μmである。さらに好ましくは、0.001~1μmである。ドライ厚は、導電性成形体断面を観察することで測定できる。例えば、透過型顕微鏡を用いて観察でき、必要であれば測定試料を染色してもよい。
 本発明の導電性成形体は、基材上に導電層が形成された導電性成形体であって、該導電層がカーボンナノチューブ含有組成物およびゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量が0.5万以上6万以下の範囲である分散剤を含み、該カーボンナノチューブ含有組成物の凝集径が1nm以上4.5nm以下であり、かつ、該カーボンナノチューブ含有組成物の平均長さが3.5μm以上6μm以下である。
 本発明の導電性成形体は、本発明のカーボンナノチューブ含有組成物の分散液を基材に塗布することにより得られる。本発明の導電性成形体は、カーボンナノチューブ分散液が基材と接触し、溶媒が除去される過程での、カーボンナノチューブの凝集抑制されている。本発明では、カーボンナノチューブ含有組成物、ゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量が0.5万以上6万以下の範囲である分散剤および水系溶媒を含む分散液を用いることにより、カーボンナノチューブを高分散化させ、基材表面上でのカーボンナノチューブの凝集を防ぐことができる。
 また、カーボンナノチューブ分散液を塗布する基材表面に高い親水性を有するアンダーコート層を設けることも、基材表面上でのカーボンナノチューブの凝集を防ぐために好ましい方法である。アンダーコート層の材質としては、具体的には、親水性無機酸化物を用いることが好ましい。より好ましくは、シリカ、アルミナおよびチタニアから選ばれた無機酸化物である。これらの物質は、表面に親水基であるヒドロキシル基を有しており、高い親水性が得られるため好ましい。さらにアンダーコート層は、これらの無機酸化物と樹脂の複合体でも良く、例えばシリカ微粒子とポリシリケートの複合物が挙げられる。基材表面を親水性にすることで、分散液中の高分散化したカーボンナノチューブを基材表面に転写することができ、カーボンナノチューブの高分散性を維持できる。
 また、前述のように、カーボンナノチューブを含む導電層を、さらにバインダー材料でオーバーコーティングし、導電層上にオーバーコート層を形成することも好ましい。オーバーコーティングは、電荷の分散や移動に効果的である。
 また、前述のように、カーボンナノチューブ含有組成物分散液中にバインダー材料を含有させてもよい。この場合、バインダー材料は、カーボンナノチューブ含有組成物および分散剤と共に導電層を形成する。
 凝集抑制の確認については、測定精度の観点から、カーボンナノチューブ含有組成物の基材上の凝集径の測定を、金属を蒸着することなく観察可能な走査型電子顕微鏡を用いることが好ましい。凝集径を測定する際のカーボンナノチューブ層の厚みについては特に限定はないが、カーボンナノチューブ密度の観点より、全光線透過率が87±1%の範囲での凝集径を測定することが好ましい。
 本発明では、基材上のカーボンナノチューブ含有組成物の凝集径が1nm以上4.5nm以下の範囲であることが好ましい。2層カーボンナノチューブでは約2nmが1本分に相当するので、4.5nmは、カーボンナノチューブ約2.3本分に相当する。基材上で測定したカーボンナノチューブ含有組成物の凝集径は、分散液中のカーボンナノチューブ含有組成物の分散径とほぼ同等となる。なお、分散液中のカーボンナノチューブ含有組成物の分散径の測定方法は、前述したカーボンナノチューブ含有組成物の長さの測定と同様の原子間力顕微鏡を用いた方法で行う。
 基材上のカーボンナノチューブ含有組成物の平均長さが3.5μm以上6μm以下の範囲であることが好ましい。カーボンナノチューブ含有組成物の平均長さは、短すぎると効率的に導電性パスを形成できないため3.5μm以上であることが好ましい。また、カーボンナノチューブ含有組成物の平均長さは、長すぎると分散性が低下する傾向にあるため、6μm以下であることが好ましい。基材上のカーボンナノチューブ含有組成物の平均長さは、塗布前のカーボンナノチューブ含有組成物分散液を用いて、前記のようにして観察することができる。
 本発明では、分散剤の重量平均分子量を0.5万以上6万以下にすることで、分散時にカーボンナノチューブを高分散できるとともに、カーボンナノチューブの切断が抑制される。さらに基材上に塗布したとき、カーボンナノチューブの基材上での凝集も抑制されるため、上記のカーボンナノチューブ含有組成物の凝集径の範囲、および、平均長さの範囲を達成できる。本発明の導電性成形体は、導電層中のカーボンナノチューブが十分に分散されているために、少量のカーボンナノチューブで十分な導電性を示すことから、優れた導電性および透明性を有する。
 透明性のある基材を用いた場合、導電性成形体の全光線透過率は50%以上である。導電性成形体の全光線透過率は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が最も好ましい。
 導電性成形体の表面抵抗値は、好ましくは10~10Ω/□であり、さらに好ましくは10~10Ω/□である。
 なお、全光線透過率は、導電性成形体をヘイズメーター(日本電飾工業 NDH4000)に装填し、全光線透過率を測定して得られる値である。
 また、表面抵抗値は、JIS K7194(1994年度制定)準処の4探針法を用い、ロレスタ(登録商標)EP MCP-T360((株)ダイアインスツルメンツ社製)を用いて得られる値である。
 カーボンナノチューブ分散液の基材への塗布量が多いと、表面抵抗は低くなり、塗布量が少ないと表面抵抗は高くなる傾向にあるため、塗布量により導電性成形体の表面抵抗値も容易に調整可能である。ただし、光透過率と表面抵抗値は、光透過率をあげるために塗布量を減らすと表面抵抗値が上昇し、表面抵抗値を下げるために塗布量を増やすと光透過率が減少するといった、相反する値である。本発明のカーボンナノチューブ含有組成物の分散液は、カーボンナノチューブの分散性を維持しつつ、導電層の表面抵抗値を減少させることができるため、優れた導電性および透明性を有する導電性成形体が得られる。その結果表面抵抗値が10~10Ω/□以下、かつ、550nmにおける光透過率が70%以上である導電性成形体を得ることが可能である。さらに表面抵抗値が10~10Ω/□以下、かつ、全光線透過率が80%以上である導電性成形体を得ることも可能である。
 本発明のカーボンナノチューブ含有組成物の分散液を塗布して得られた導電性成形体は、高導電性であり、制電靴や、制電板などのクリーンルーム用部材や、電磁波遮蔽材、近赤外カット材、透明電極、タッチパネル、電波吸収材などのディスプレイ用部材および自動車用部材として使える。中でも主に表面の平滑性が要求されるタッチパネル、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の透明電極として、特に優れた性能を発揮する。
 以下、実施例をあげて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 実施例における評価方法は以下のとおりである。
 <分散剤の評価>
 [分散剤の重量平均分子量の測定]

 分散剤の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。
装置:株式会社島津製作所製 LC-10Aシリーズ
カラム:昭和電工株式会社製 GF-7M HQ
移動相:10mmol/L 臭化リチウム水溶液
流速:1.0ml/min
検出:示差屈折率計
カラム温度:25℃。
 [紫外可視吸収スペクトル] 分散剤(カルボキシメチルセルロースナトリウム)の吸光度の測定は、以下のようにして行った。カルボキシメチルセルロースナトリウムをイオン交換水に溶解して0.1%水溶液を調製し、吸光度測定を行った。この際に観測される波長280nmにおける吸光度の値を用いた。加水分解前の原料となるカルボキシメチルセルロースナトリウムの1%水溶液を用いた場合の吸光度を1とし、それに対する加水分解後のカルボキシメチルセルロースナトリウムの吸光度の割合を評価した。
 [エーテル化度測定方法]
 分散剤(カルボキシメチルセルロースナトリウム)のエーテル化度は以下のようにして測定した。カルボキシメチルセルロースナトリウム1gとイオン交換水200gを三角フラスコに量り取り、これに0.05mol/L硫酸(和光純薬工業(株)社製)5mLを加えて10分間煮沸した。これを冷却した後、1.0wt%フェノールフタレインエタノール溶液(和光純薬工業(株)社製)を3滴加え、0.1mol/L水酸化カリウム水溶液(和光純薬工業(株)社製)で滴定した。また、同時にカルボキシメチルセルロースナトリウムを加えずに上記と同様の操作を行う空試験を行い、以下の式によってアルカリ度または酸度を算出した。
アルカリ度=(B-S)f
 B:空試験時の0.1mol/L水酸化カリウム水溶液の滴下量(mL)
 S:カルボキシメチルセルロースナトリウムを含む場合の0.1mol/L水酸化カリウム水溶液の滴下量(mL)
 f:0.1mol/L水酸化カリウム水溶液の力価
 なお、(B-S)f値がマイナスのときはアルカリ度を酸度とした。
 次に、カルボキシメチルセルロースナトリウム0.7gをろ紙で包み、磁製ルツボに入れ、700℃で1時間加熱した。冷却した後、この磁製ルツボをビーカーに移し、イオン交換水250gと0.05mol/L硫酸(和光純薬工業(株)社製)35mLを加えて30分間煮沸した。これを再度冷却した後、1.0wt%フェノールフタレインエタノール溶液(和光純薬工業(株)社製)を3滴加え、0.1mol/L水酸化カリウム(和光純薬工業(株)社製)で逆滴定して以下の式によってエーテル化度を算出した。
エーテル化度=162xA/(10000-80A)
A=(35xf-bf)/0.7-アルカリ度(または+酸度)
 b:0.1mol/L水酸化カリウム水溶液の滴下量(ml)
 f:0.1mol/L水酸化カリウム水溶液の力価
 f:0.05mol/L硫酸の力価。
 <カーボンナノチューブ含有組成物の評価>
 [熱分析]
 約1mgの試料を、示差熱分析装置(島津製作所製 DTG-60)に設置し、50ml/分の空気供給量、10℃/分の昇温速度にて室温から900℃まで昇温した。そのときのDTA曲線から発熱による燃焼ピーク温度を読みとった。
 [ラマン分光分析]
 共鳴ラマン分光計(ホリバ ジョバンイボン製 INF-300)に粉末試料を設置し、532nmのレーザー波長を用いて測定を行った。G/D比の測定に際しては、サンプルの異なる3ヶ所について分析を行い、その相加平均を求めた。
 [高分解能透過型電子顕微鏡写真]
 カーボンナノチューブ含有組成物1mgをエタノール1mLに入れて、約15分間超音波バスを用いて分散処理を行った。分散した試料をグリッド上に数滴滴下し、乾燥した。このように試料の塗布されたグリッドを透過型電子顕微鏡(日本電子社製 JEM-2100)に設置し、測定を行った。測定倍率は5万倍から50万倍で行い、カーボンナノチューブの外径分布および層数分布の観察は40万倍で行った。加速電圧は120kVである。
 <カーボンナノチューブ含有組成物ペーストの評価>
[カーボンナノチューブ含有組成物ペースト中のカーボンナノチューブ含有組成物の粒径測定]
 カーボンナノチューブ含有組成物ペーストを水で50倍希釈し、粒度分布測定装置(大塚電子(株)ELS-Z2)を用いてカーボンナノチューブ含有組成物の粒径を測定した。その際、水の屈折率および粘度をあらかじめ入力し、25℃設定で3回測定を行った。キュムラント法による解析を行い、得られた3回の測定の平均値を粒径とした。
 <カーボンナノチューブ含有組成物の分散液の評価>
 [原子間力顕微鏡によるカーボンナノチューブ分散液におけるカーボンナノチューブの平均直径測定]
 カーボンナノチューブの濃度を0.003質量%に調整したカーボンナノチューブ含有組成物の分散液30μLをマイカ基板上に置き、回転数3000rpmで60秒間スピンコートしたのち、原子間力顕微鏡((株)島津製作所社製、SPM9600M)により、ランダムに100本のバンドル状あるいは孤立したカーボンナノチューブの直径を測定し、算術平均して平均直径を算出した。
 [原子間力顕微鏡によるカーボンナノチューブ分散液におけるカーボンナノチューブの平均長さ測定]
 カーボンナノチューブの濃度を0.003質量%に調整したカーボンナノチューブ含有組成物の分散液30μLをマイカ基板上に置き、回転数3000rpmで60秒間スピンコートしたのち、原子間力顕微鏡((株)島津製作所社製、SPM9600M)により、カーボンナノチューブの直径が前記透過型電子顕微鏡で測定した平均直径以下の場合を孤立状態のカーボンナノチューブとみなし、それに該当する約100本のカーボンナノチューブの長さを測定し、算術平均をして平均長さを算出した。
 <導電性成形体の評価>
 [透明基材上におけるバンドル径測定]
 波長550nmにおける光透過率が87±1%の範囲のサンプルを、金属を蒸着することなく観察可能な走査型電子顕微鏡(Hitachi,SU8000)を用いて、加速電圧2.0kV,100,000倍で5視野観察した。得られた顕微鏡像を、縦方向に3本の線を引いて4等分した後、該3本の線と交差して存在するカーボンナノチューブの凝集径を80~100本測定し、その平均値を算出した。3本の線上のカーボンナノチューブが50本に満たない場合は、上記の3本の線の中間に4本の線を増やして同様に測定する。
 [光透過率測定]
 光透過率は、カーボンナノチューブ分散液塗布フィルムをヘイズメーター(日本電飾工業 NDH4000)に装填し、全光線透過率を測定した。
 [表面抵抗測定]
 表面抵抗値は、JIS K7149(1994年12月制定)準処の4端子4探針法を用い、ロレスタ(登録商標)EP MCP-T360((株)ダイアインスツルメンツ社製)を用いて行った。高抵抗測定の際は、ハイレスター(登録商標)UP MCP-HT450(ダイアインスツルメンツ製、10V、10秒)を用いて測定した。
 (参考例1)カーボンナノチューブ含有組成物の製造
 (触媒調製)
 約24.6gのクエン酸鉄(III)アンモニウム(和光純薬工業社製)をイオン交換水6.2kgに溶解した。この溶液に、酸化マグネシウム(岩谷社製MJ-30)を約1000g加え、撹拌機で60分間激しく撹拌処理した後に、懸濁液を10Lのオートクレーブ容器中に導入した。この時、洗い込み液としてイオン交換水0.5kgを使用した。密閉した状態で懸濁液を160℃に加熱し、6時間保持した。その後、オートクレーブ容器を放冷し、容器からスラリー状の白濁物質を取り出し、過剰の水分を吸引濾過により濾別した。濾取物中に少量含まれる水分は、120℃の乾燥機中で加熱乾燥し、除去した。得られた固形分は乳鉢で細粒化しながら、篩いにかけ、10~20メッシュの範囲の粒径の触媒体を回収した。左記の顆粒状の触媒体を電気炉中に導入し、大気下600℃で3時間加熱した。得られた触媒体のかさ密度は0.32g/mLであった。また、前記の吸引濾過における濾液をエネルギー分散型X線分析装置(EDX)により分析したところ鉄は検出されなかった。このことから、添加したクエン酸鉄(III)アンモニウムは、全量酸化マグネシウムに担持されたことが確認できた。さらに触媒体のEDX分析結果から、触媒体に含まれる鉄含有量は0.39wt%であった。
 (カーボンナノチューブの製造)
 上記の触媒を用い、カーボンナノチューブを合成した。固体触媒132gをとり、鉛直方向に設置した反応管の中央部の石英焼結板上に導入することで、触媒体層を形成した。反応管内温度が約860℃になるまで、触媒体層を加熱しながら、反応器底部から反応器上部方向へ向けて窒素ガスを16.5L/minで供給し、触媒体層を通過するように流通させた。その後、窒素ガスを供給しながら、さらにメタンガスを0.78L/minで60分間導入して触媒体層を通過するように通気し、反応させた。その後、メタンガスの導入を止め、窒素ガスを16.5L/min通気させながら、反応管を室温まで冷却して触媒付きカーボンナノチューブ組成物を得た。この触媒付きカーボンナノチューブ組成物129gを4.8Nの塩酸水溶液2000mL中で1時間撹拌することで触媒金属である鉄とその担体である酸化マグネシウムを溶解した。得られた黒色懸濁液を濾過した後、濾取物を、酸化マグネシウムを取り除くため、再度4.8Nの塩酸水溶液400mLに投入した後、濾過した。この操作を3回繰り返し、触媒が除去されたカーボンナノチューブ含有組成物を得た。
 (カーボンナノチューブの酸化処理)
 上記のようにして得られたカーボンナノチューブ含有組成物を、約300倍の重量の濃硝酸(和光純薬工業社製 1級 Assay 60~61%)に添加した。その後、約140℃のオイルバスで24時間攪拌しながら加熱還流した。加熱還流後、カーボンナノチューブ含有組成物を含む硝酸溶液をイオン交換水で2倍に希釈して吸引ろ過した。イオン交換水で濾取物の懸濁液が中性となるまで水洗後、水を含んだウェット状態のままカーボンナノチューブ含有組成物を保存した。このカーボンナノチューブ含有組成物の平均外径を高分解能透過型電子顕微鏡で観察したところ、1.7nmであった。また2層カーボンナノチューブの割合は90%であり、波長532nmで測定したラマンG/D比は80であり、燃焼ピーク温度は725℃であった。
 (参考例2)重量平均分子量35000のカルボキシメチルセルロースの製造
 10質量%カルボキシメチルセルロースナトリウム(第一工業製薬(株)社製、セロゲン(登録商標)5A(重量平均分子量:8万))水溶液500gを三口フラスコに加えて、1級硫酸(キシダ化学(株)社製)を用いて、水溶液をpH2に調整した。この容器を120℃に昇温したオイルバス中に移し、加熱還流下で水溶液を攪拌しながら9時間加水分解反応を行った。三口フラスコを放冷後、28%アンモニア水溶液(キシダ化学(株)社製)を用いて、水溶液をpH10に調整し、反応停止した。加水分解後のカルボキシメチルセルロースナトリウムの重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。その結果、重量平均分子量は約35000であり、分子量分布(Mw/Mn)は1.5であった。また収率は97%であった。
 また、必要に応じて上記操作で得られたカルボキシメチルセルロースナトリウム中の硫酸アンモニウムを除去することも可能である。10質量%カルボキシメチルセルロースナトリウム(重量平均分子量:35000)水溶液20gを30cmに切断した透析チューブ(スペクトラムラボラトリーズ(株)社製、Biotech CE透析チューブ(分画分子量:3500-5000D、16mmφ))に入れ、この透析チューブをイオン交換水1000gが入ったビーカーに浮かべて2時間透析を行った。その後、ビーカーの水を、新しいイオン交換水1000gと入れ替えて再度2時間透析を行った。この操作を3回繰り返した後、新しいイオン交換水1000gが入ったビーカー中で12時間透析を行った。透析チューブから取り出したカルボキシメチルセルロースナトリウム水溶液をエバポレーターを用いて減圧濃縮した後、凍結乾燥機を用いて乾燥した結果、粉末状のカルボキシメチルセルロースナトリウムが70%の収率で得られた。ゲルパーミエーションクロマトグラフィー法による重量平均分子量は透析前と同等であった。また、ゲルパーミエーションクロマトグラフィースペクトルにおけるピーク面積について、透析前のカルボキシメチルセルロースナトリウムのピーク面積が57%であったのに対し、透析後では硫酸アンモニウムのピーク面積が減少し、カルボキシメチルセルロースナトリウムのピーク面積が91%に向上した。また紫外可視吸収スペクトルによる波長280nmの吸光度が、原料であるカルボキシメチルセルロースナトリウム(第一工業製薬(株)社製、セロゲン(登録商標)5A(重量平均分子量:8万))の0.1重量%水溶液の場合を1としたとき、透析前では20であったのに対して、透析後では2であった。カルボキシメチルセルロースナトリウムのエーテル化度は、加水分解前後で変わらず0.7であった。
 (参考例3)重量平均分子量45000のカルボキシメチルセルロースの製造
 参考例2において加水分解反応時間を6時間に変更し、重量平均分子量45000のカルボキシメチルセルロースを得た。
 (参考例4)重量平均分子量54000のカルボキシメチルセルロースの製造
 参考例2において加水分解反応時間を3時間に変更し、重量平均分子量54000のカルボキシメチルセルロースを得た。
 (参考例5)重量平均分子量18000のカルボキシメチルセルロースの製造方法
 参考例2において加水分解反応時のpHを1、反応時間を6時間に変更し、重量平均分子量18000であり、分子量分布(Mw/Mn)が1.5のカルボキシメチルセルロースを得た。収率は96%であった。
 (参考例6)重量平均分子量8000のカルボキシメチルセルロースの製造方法
 参考例2において、加水分解反応時のpHを0.5、反応時間を3時間に変更し、重量平均分子量8000であり、分子量分布(Mw/Mn)が1.5のカルボキシメチルセルロースを得た。収率は96%であった。 
 (参考例7)導電性成形体の製造
 (アンダーコート層作製)
 以下の操作により、基材上に、ポリシリケートをバインダーとし、直径30nmの親水シリカ微粒子が表出するアンダーコート層を作製した。約30nmの親水シリカ微粒子とポリシリケートを固形分濃度で1質量%含むメガアクア(登録商標)親水DMコート((株)菱和社製、DM―30―26G―N1)をアンダーコート層作製用塗液として用いた。ワイヤーバー#4を用いてポリエチレンテレフタレート(PET)フィルム(東レ(株)社製(ルミラー(登録商標) U46)上に前記塗液を塗布した。塗布後、120℃の乾燥機内で1分間乾燥させた。
 (実施例1)
 参考例1で得られたウェット状態のカーボンナノチューブ含有組成物(乾燥重量換算で25mg)、参考例2で得られたカルボキシメチルセルロースナトリウム(重量平均分子量:3.5万)の3.5質量%水溶液1.8g、および、ジルコニアビーズ(東レ(株)社製、トレセラム(登録商標)、ビーズサイズ:0.8mm)13.3gを容器に加え、28%アンモニア水溶液(キシダ化学(株)社製)を用いてpH10に調整した。この容器を振動ボールミル((株)入江商会社製、VS-1、振動数:1800cpm(60Hz))を用いて2時間振盪させ、カーボンナノチューブ含有組成物ペーストを調製した。得られたカーボンナノチューブ含有組成物ペースト中のカーボンナノチューブ含有組成物の粒径は2.9μmであった。
 次に、このカーボンナノチューブ含有組成物ペーストを、カーボンナノチューブ含有組成物の濃度が0.15質量%となるようにイオン交換水で希釈し、その希釈液10gを、28%アンモニア水溶液を用いてpH10に調整した。その水溶液を超音波ホモジナイザー(家田貿易(株)社製、VCX-130)を用いて、出力20W、1.5分間(2kW・min/g)、氷冷下分散処理した。分散処理中、液温が10℃以下となるようにした。得られた液を高速遠心分離機((株)トミー精工、MX-300)にて10000G、15分遠心処理し、カーボンナノチューブ含有組成物分散液9gを得た。AFMにより測定したこの分散液中のカーボンナノチューブ含有組成物の平均直径は1.7nmであった。高分解能透過型電子顕微鏡で任意に抽出した100本のカーボンナノチューブの外径を測定したときの算術平均値1.7nmと一致していたことから、カーボンナノチューブ含有組成物は、孤立分散していると考えられる。また、カーボンナノチューブ含有組成物の平均長さは3.8μmであった。
 この分散液に、水を添加して終濃度でカーボンナノチューブ含有組成物の濃度が0.035質量%となるように調製して、フィルム塗布液とした。前記のアンダーコート層を施したポリエチレンテレフタレート(PET)フィルム(東レ(株)社製(ルミラー(登録商標) U46)、光透過率91.3%、15cm×10cm)上にバーコーターを用いてこの塗布液を塗布して風乾した後、120℃乾燥機内で1分間乾燥させ、カーボンナノチューブ含有組成物を固定化した。得られた導電性フィルムの表面抵抗値は3.5×10Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は、走査型電子顕微鏡による測定で4.0nmであった。基材状でのカーボンナノチューブの平均長さは、分散液における平均長さと同等であると考えられる。
 (実施例2)
 分散剤として、参考例3で得られたカルボキシメチルセルロースナトリウム(重量平均分子量:4.5万)を用いた以外は、実施例1と同様の操作で、カーボンナノチューブ含有組成物ペーストを得た。該ペースト中のカーボンナノチューブ含有組成物の粒径は2.6μmであった。このカーボンナノチューブ含有組成物ペーストを用いて、実施例1と同様の操作で、カーボンナノチューブ含有組成物分散液9gを得た。この分散液中のAFMにより測定したときのカーボンナノチューブ含有組成物の分散体の平均直径は1.7nmであった。高分解能透過型電子顕微鏡で任意に抽出した100本のカーボンナノチューブの外径を測定したときの算術平均値1.7nmと一致していたことから孤立分散していた。また、カーボンナノチューブ含有組成物の平均長さは3.9μmであった。
 その後、このカーボンナノチューブ含有組成物分散液を、実施例1と同様の操作で、フィルム上に塗布した。得られた導電性フィルムの表面抵抗値は3.7×10Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は走査型電子顕微鏡による測定で4.1nmであった。
 (実施例3)
 分散剤として、参考例4で得られたカルボキシメチルセルロースナトリウム(重量平均分子量:5.4万)を用いた以外は、実施例1と同様の操作で、カーボンナノチューブ含有組成物ペーストを得た。該ペースト中のカーボンナノチューブ含有組成物の粒径は2.4 μmであった。このカーボンナノチューブ含有組成物ペーストを用いて、実施例1と同様の操作で、カーボンナノチューブ含有組成物分散液9gを得た。この分散液中のAFMにより測定したときのカーボンナノチューブ含有組成物の分散体の平均直径は2.8nmであった。また、カーボンナノチューブ含有組成物の平均長さは3.8μmであった。
 その後、このカーボンナノチューブ含有組成物分散液を、実施例1と同様の操作で、フィルム上に塗布した。得られた導電性フィルムの表面抵抗値は4.1×10Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は走査型電子顕微鏡による測定で4.4nmであった。
 (実施例4)
 分散剤として、参考例5で得られたカルボキシメチルセルロースナトリウム(重量平均分子量:1.8万)を用いた以外は、実施例1と同様の操作で、カーボンナノチューブ含有組成物ペーストを得た。該ペースト中のカーボンナノチューブ含有組成物の粒径は3.9μmであった。このカーボンナノチューブ含有組成物ペーストを用いて、実施例1と同様の操作で、カーボンナノチューブ含有組成物分散液9gを得た。この分散液中のAFMにより測定したときのカーボンナノチューブ含有組成物の分散体の平均直径は1.7nmであった。また、カーボンナノチューブ含有組成物の平均長さは3.9μmであった。
 その後、このカーボンナノチューブ含有組成物分散液を、実施例1と同様の操作で、フィルム上に塗布した。得られた導電性フィルムの表面抵抗値は3.5×10Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は走査型電子顕微鏡による測定で4.0nmであった。
 (実施例5)
 参考例1で得られたウェット状態のカーボンナノチューブ含有組成物(乾燥重量換算で15mg)、および、参考例6で得られたカルボキシメチルセルロースナトリウム(重量平均分子量:8000)1wt%水溶液6.0gを量りとった。イオン交換水を加え10gにし、アンモニアを用いてpHを10に合わせ、超音波ホモジナイザー出力20W、1.5分間で氷冷下分散処理し、カーボンナノチューブ含有組成物分散液を調製した。得られた液を高速遠心分離機((株)トミー精工、MX-300)にて10000G、15分遠心処理し、カーボンナノチューブ分散液9gを得た。AFMにより測定しこの分散液中のたカーボンナノチューブ含有組成物の分散体の平均直径は1.7nmであった。また、カーボンナノチューブ含有組成物の平均長さは3.8μmであった。
 その後、このカーボンナノチューブ含有組成物分散液を、実施例1と同様の操作で、フィルム上に塗布した。得られた導電性フィルムの表面抵抗値は3.2×10Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は走査型電子顕微鏡による測定で4.0nmであった。基材状でのカーボンナノチューブの平均長さは、分散液における平均長さと同等であると考えられる。
 (比較例1)
 分散剤として、カルボキシメチルセルロースナトリウム(第一工業製薬(株)社製、セロゲン(登録商標)5A(重量平均分子量:7.8万)を用いた以外は、実施例1と同様の操作で、カーボンナノチューブ含有組成物ペーストを調製した。このカーボンナノチューブ含有組成物ペースト中のカーボンナノチューブ含有組成物の粒径は4.5μmであった。
 次にこのカーボンナノチューブ含有組成物ペーストを用いて、実施例1と同様の操作で、カーボンナノチューブ含有組成物分散液9gを得た。AFMにより測定したこの分散液中のカーボンナノチューブ含有組成物の分散体の平均直径は2.7nmであった。また、カーボンナノチューブ含有組成物の平均長さは3.3μmであった。
 その後、このカーボンナノチューブ含有組成物分散液を、実施例1と同様の操作で、フィルム上に塗布した。得られた導電性フィルムの表面抵抗値は4.8×102 Ω/□、光透過率は88.0%(透明導電性フィルム88.0%/PETフィルム91.3%=0.96)であった。
 この時、基材上のカーボンナノチューブ含有組成物の凝集径は走査型電子顕微鏡による測定で4.8nmであった。
 図1に実施例1から5、比較例1で用いた分散剤の重量平均分子量に対する、得られた導電性フィルムにおける基材上のカーボンナノチューブ含有組成物の凝集径および平均長さの関係を示した。分散剤の重量平均分子量が小さいと、凝集径が小さく、カーボンナノチューブの平均長さが長くなる傾向にある。分散剤の重量平均分子量が6万を超えると、カーボンナノチューブ含有組成物の凝集径が大きくなり、カーボンナノチューブ含有組成物の分散性が低下していることを示している。また、分散剤の重量平均分子量が6万を超えると、カーボンナノチューブ含有組成物の平均長さが短くなり、分散処理において、カーボンナノチューブが切断されていることを示している。
 本発明のカーボンナノチューブ分散液を塗布して得られた導電性成形体は、高導電性であり、制電靴や、制電板などのクリーンルーム用部材や、電磁波遮蔽材、近赤外カット材、透明電極、タッチパネル、電波吸収材などのディスプレイ用部材および自動車用部材として使える。中でも主に表面の平滑性が要求されるタッチパネル、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の透明電極として、特に優れた性能を発揮する。

Claims (13)

  1. カーボンナノチューブ含有組成物、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が0.5万以上6万以下である分散剤および水系溶媒を含むカーボンナノチューブ含有組成物の分散液。
  2. 前記分散剤がイオン性高分子である請求項1に記載のカーボンナノチューブ含有組成物の分散液。
  3. 前記分散剤が多糖類である請求項1または請求項2に記載のカーボンナノチューブ含有組成物の分散液。
  4. 前記分散剤がカルボキシメチルセルロースまたはその塩である請求項1から請求項3のいずれかに記載のカーボンナノチューブ含有組成物の分散液。
  5. 前記カーボンナノチューブ含有組成物において、カーボンナノチューブ100本中、2層カーボンナノチューブが50本以上である請求項1から請求項4のいずれかに記載のカーボンナノチューブ含有組成物の分散液。
  6. 基材上に導電層が形成された導電性成形体であって、該導電層がカーボンナノチューブ含有組成物およびゲルパーミエーションクロマトグラフィーで測定した重量平均分子量0.5万以上6万以下の範囲である分散剤を含み、該カーボンナノチューブ含有組成物の凝集径が1nm以上4.5nm以下であり、かつ、該カーボンナノチューブ含有組成物の平均長さが3.5μm以上6μm以下である導電性成形体。
  7. 前記カーボンナノチューブ含有組成物において、カーボンナノチューブ100本中、2層カーボンナノチューブが50本以上である請求項6記載の導電性成形体。
  8. 分散剤がイオン性高分子である請求項6または請求項7に記載の導電性成形体。
  9. 分散剤が多糖類である請求項6から請求項8のいずれかに記載の導電性成形体。
  10. 分散剤がカルボキシメチルセルロースまたはその塩である請求項6から請求項9のいずれかに記載の導電性成形体。
  11. 全光線透過率が70%以上であり、かつ表面抵抗値が10Ω/□以上10Ω/□以下である請求項6から請求項10のいずれかに記載の導電性成形体。
  12. 全光線透過率が80%以上であり、かつ表面抵抗値が10Ω/□以上10Ω/□以下である請求項6から請求項11のいずれかに記載の導電性成形体。
  13. 請求項1から請求項5のいずれかに記載のカーボンナノチューブ含有組成物の分散液を基材に塗布した後、水系溶媒を除去する導電性成形体の製造方法。
PCT/JP2013/067059 2012-06-26 2013-06-21 カーボンナノチューブ含有組成物の分散液および導電性成形体 WO2014002885A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147036260A KR20150028780A (ko) 2012-06-26 2013-06-21 카본 나노 튜브 함유 조성물의 분산액 및 도전성 성형체
CN201380034221.4A CN104411632B (zh) 2012-06-26 2013-06-21 含碳纳米管组合物的分散液及导电性成型体
US14/404,440 US20150111025A1 (en) 2012-06-26 2013-06-21 Dispersion liquid of carbon nanotube-containing composition and conductive molded body
JP2013528450A JP6217395B2 (ja) 2012-06-26 2013-06-21 カーボンナノチューブ含有組成物の分散液および導電性成形体
EP13810402.1A EP2865645A4 (en) 2012-06-26 2013-06-21 DISPERSION LIQUID FROM A CARBON NANOTIC COMPOSITE COMPOSITION AND CONDUCTIVE FORM BODY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-142656 2012-06-26
JP2012142656 2012-06-26
JP2012142657 2012-06-26
JP2012-142657 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014002885A1 true WO2014002885A1 (ja) 2014-01-03

Family

ID=49783042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067059 WO2014002885A1 (ja) 2012-06-26 2013-06-21 カーボンナノチューブ含有組成物の分散液および導電性成形体

Country Status (7)

Country Link
US (1) US20150111025A1 (ja)
EP (1) EP2865645A4 (ja)
JP (1) JP6217395B2 (ja)
KR (1) KR20150028780A (ja)
CN (1) CN104411632B (ja)
TW (1) TWI597237B (ja)
WO (1) WO2014002885A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104946142A (zh) * 2014-03-31 2015-09-30 苏州汉纳材料科技有限公司 基于碳纳米管的透明防静电压敏胶结构及其应用
JP2016204203A (ja) * 2015-04-23 2016-12-08 東レ株式会社 カーボンナノチューブ含有組成物の分散液および導電性成形体
JPWO2015115670A1 (ja) * 2014-02-03 2017-03-23 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
JP2017171887A (ja) * 2016-02-19 2017-09-28 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 伝導性樹脂組成物及びこれを利用したプラスチック成型品
JP2017179371A (ja) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 電気伝導性樹脂組成物及びその成型品
JP2017210563A (ja) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 光応答性分散剤と高結晶・長尺カーボンナノチューブを主要成分とする導電膜形成用インクおよびその薄膜
EP3263521A4 (en) * 2015-02-25 2018-11-07 Toray Industries, Inc. Carbon nanotube dispersion and method for manufacturing conductive film
JP2020021700A (ja) * 2018-08-03 2020-02-06 ナガセケムテックス株式会社 透明導電積層体
WO2020054844A1 (ja) * 2018-09-13 2020-03-19 国立大学法人大阪大学 導電性インク及びカーボン配線基板

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654718B2 (en) * 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
US10082830B2 (en) * 2014-01-05 2018-09-25 Vorbeck Materials Corp. Wearable electronic devices
KR102399680B1 (ko) * 2015-08-19 2022-05-19 에스케이이노베이션 주식회사 탄소나노튜브 품질 평가 방법
EP3257955B1 (en) * 2016-06-13 2022-09-07 TFL Ledertechnik GmbH Process for pretanning or retanning leather using carboxymethylcellulose and its salts
US10631975B2 (en) * 2016-09-23 2020-04-28 Biosense Webster (Israel) Ltd. Detection of leakage in implants
SG10201708777XA (en) * 2016-10-25 2018-05-30 Agency Science Tech & Res A Coating Formulation
JP7022525B2 (ja) * 2017-07-04 2022-02-18 第一工業製薬株式会社 電極塗工液組成物、該電極塗工液組成物を用いて作製された蓄電デバイス用電極、および該電極を備える蓄電デバイス
US10767069B2 (en) 2018-05-01 2020-09-08 Xerox Corporation Aqueous carbon nanoparticle ink composition for resistors
JP6590034B1 (ja) 2018-06-28 2019-10-16 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
KR20200010806A (ko) * 2018-07-23 2020-01-31 삼성전자주식회사 연마 슬러리 및 그 제조 방법과 반도체 소자의 제조 방법
JP7190694B2 (ja) * 2018-12-06 2022-12-16 株式会社マルアイ Rfidの導電性パターンの製造方法
CN109704320B (zh) * 2018-12-28 2020-11-13 新奥石墨烯技术有限公司 功能化碳材料及其制备方法、分散液及其应用
JP6656450B1 (ja) * 2019-04-25 2020-03-04 株式会社マルアイ 電子部品搬送トレイ・キャリアテープ用のシートとそれを用いた電子部品搬送トレイ・キャリアテープ
CN110473653B (zh) * 2019-07-26 2021-01-05 深圳烯湾科技有限公司 高碳含量的碳纳米管导电浆料及其制备方法
CN112694081B (zh) * 2021-01-18 2024-02-06 陕西科技大学 一种高浓度碳纳米管浆料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063307A (ja) * 2004-07-27 2006-03-09 Ezaki Glico Co Ltd カーボンナノチューブ含有溶液、フィルムおよび繊維
JP2006269311A (ja) 2005-03-25 2006-10-05 Toray Ind Inc 金属を担持した担体と炭素含有化合物を接触させて得たカーボンナノチューブを含む透明導電性フィルム
JP2006292495A (ja) * 2005-04-08 2006-10-26 Toray Ind Inc カーボンナノチューブ組成物、バイオセンサーおよびそれらの製造方法
JP2007534588A (ja) * 2004-04-07 2007-11-29 エイコス・インコーポレーテッド カーボンナノチューブ組成物用一時的粘度及び安定調整剤
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
JP2008201626A (ja) * 2007-02-20 2008-09-04 Toray Ind Inc カーボンナノチューブ集合体、その製造方法
JP2008230935A (ja) * 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法
JP2009163959A (ja) 2007-12-28 2009-07-23 Toray Ind Inc 透明導電性フィルム、その製造方法
JP2010254546A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP2012056788A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc カーボンナノチューブ水分散液

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315678B2 (en) * 2006-01-20 2016-04-19 Ezaki Glico Co., Ltd. Affinity of hardly soluble or insoluble substance solvent by water-soluble xylan
JP5301793B2 (ja) * 2007-05-07 2013-09-25 国立大学法人北海道大学 再分散用微細炭素繊維集合塊およびその製造方法
EP2404873A4 (en) * 2009-03-04 2016-04-06 Toray Industries COMPOSITION CONTAINING CARBON NANOTUBES, CATALYST FOR THE PRODUCTION OF CARBON NANOTUBES, AND AQUEOUS DISPERSION OF CARBON NANOTUBES
WO2011004864A1 (ja) * 2009-07-08 2011-01-13 日産化学工業株式会社 カーボンナノチューブ分散剤
JP5607482B2 (ja) * 2010-09-30 2014-10-15 国立大学法人九州大学 透明導電性体およびその製造方法
JP5605373B2 (ja) * 2010-10-29 2014-10-15 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534588A (ja) * 2004-04-07 2007-11-29 エイコス・インコーポレーテッド カーボンナノチューブ組成物用一時的粘度及び安定調整剤
JP2006063307A (ja) * 2004-07-27 2006-03-09 Ezaki Glico Co Ltd カーボンナノチューブ含有溶液、フィルムおよび繊維
JP2006269311A (ja) 2005-03-25 2006-10-05 Toray Ind Inc 金属を担持した担体と炭素含有化合物を接触させて得たカーボンナノチューブを含む透明導電性フィルム
JP2006292495A (ja) * 2005-04-08 2006-10-26 Toray Ind Inc カーボンナノチューブ組成物、バイオセンサーおよびそれらの製造方法
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
JP2008201626A (ja) * 2007-02-20 2008-09-04 Toray Ind Inc カーボンナノチューブ集合体、その製造方法
JP2008230935A (ja) * 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法
JP2009163959A (ja) 2007-12-28 2009-07-23 Toray Ind Inc 透明導電性フィルム、その製造方法
JP2010254546A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
JP2012056788A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc カーボンナノチューブ水分散液

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROBERT C. TENENT ET AL.: "Ultrasmooth, large- area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying", ADVANCED MATERIALS, vol. 21, no. 31, 21 August 2009 (2009-08-21), pages 3210 - 3216, XP002610583 *
See also references of EP2865645A4
TERUO TAKAHASHI ET AL.: "Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 43, no. 6A, 9 June 2004 (2004-06-09), pages 3636 - 3639, XP055164128 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115670A1 (ja) * 2014-02-03 2017-03-23 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
CN104946142A (zh) * 2014-03-31 2015-09-30 苏州汉纳材料科技有限公司 基于碳纳米管的透明防静电压敏胶结构及其应用
EP3263521A4 (en) * 2015-02-25 2018-11-07 Toray Industries, Inc. Carbon nanotube dispersion and method for manufacturing conductive film
JP2016204203A (ja) * 2015-04-23 2016-12-08 東レ株式会社 カーボンナノチューブ含有組成物の分散液および導電性成形体
JP2017171887A (ja) * 2016-02-19 2017-09-28 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 伝導性樹脂組成物及びこれを利用したプラスチック成型品
JP2017179371A (ja) * 2016-03-30 2017-10-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. 電気伝導性樹脂組成物及びその成型品
JP2017210563A (ja) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 光応答性分散剤と高結晶・長尺カーボンナノチューブを主要成分とする導電膜形成用インクおよびその薄膜
JP2020021700A (ja) * 2018-08-03 2020-02-06 ナガセケムテックス株式会社 透明導電積層体
WO2020054844A1 (ja) * 2018-09-13 2020-03-19 国立大学法人大阪大学 導電性インク及びカーボン配線基板

Also Published As

Publication number Publication date
CN104411632A (zh) 2015-03-11
JP6217395B2 (ja) 2017-10-25
TW201410600A (zh) 2014-03-16
KR20150028780A (ko) 2015-03-16
TWI597237B (zh) 2017-09-01
US20150111025A1 (en) 2015-04-23
EP2865645A4 (en) 2015-12-09
EP2865645A1 (en) 2015-04-29
CN104411632B (zh) 2016-12-28
JPWO2014002885A1 (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6217395B2 (ja) カーボンナノチューブ含有組成物の分散液および導電性成形体
JP6274309B2 (ja) カーボンナノチューブ分散液および導電性フィルムの製造方法
JP6079138B2 (ja) カーボンナノチューブ分散液
JP5605373B2 (ja) カーボンナノチューブ集合体分散液の製造方法
JP5924103B2 (ja) カーボンナノチューブ分散液の製造方法
WO2017188175A1 (ja) カーボンナノチューブ分散液、その製造方法および導電性成形体
JP6354583B2 (ja) カーボンナノチューブ集合体の製造方法
JP2010163568A (ja) 導電性組成物および導電性複合体
JP2014028935A (ja) カルボキシメチルセルロースの製造方法、カルボキシメチルセルロースおよびカーボンナノチューブ含有組成物の分散剤
JP2016204203A (ja) カーボンナノチューブ含有組成物の分散液および導電性成形体
JP6398344B2 (ja) カーボンナノチューブ集合体およびその製造方法
JP2016122570A (ja) 導電性複合体およびその製造方法
JP2012240889A (ja) カーボンナノチューブ膜およびカーボンナノチューブ膜の製造方法
JP2014029831A (ja) 透明導電体およびその製造方法
JP2016012159A (ja) 導電性積層体の製造方法
JP5570446B2 (ja) 導電体およびその製造方法
JP2016134215A (ja) 導電積層体および導電積層体の製造方法
JPWO2014148287A1 (ja) 導電積層体およびその製造方法
JP2014029841A (ja) 透明導電体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013528450

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013810402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404440

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036260

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE