WO2013146509A1 - Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell - Google Patents

Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell Download PDF

Info

Publication number
WO2013146509A1
WO2013146509A1 PCT/JP2013/057997 JP2013057997W WO2013146509A1 WO 2013146509 A1 WO2013146509 A1 WO 2013146509A1 JP 2013057997 W JP2013057997 W JP 2013057997W WO 2013146509 A1 WO2013146509 A1 WO 2013146509A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal nanowire
metal
conductive member
liquid
solution
Prior art date
Application number
PCT/JP2013/057997
Other languages
French (fr)
Japanese (ja)
Inventor
理士 小池
規 宮城島
健介 片桐
友秀 上山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013146509A1 publication Critical patent/WO2013146509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method for producing a metal nanowire dispersion, a metal nanowire dispersion, a conductive member formed using the metal nanowire dispersion, a touch panel using the conductive member, and a solar cell.
  • the present invention relates to a technique capable of obtaining a conductive member having excellent transparency.
  • ITO is widely used as a transparent conductive material for electrodes used in display devices such as liquid crystal displays, organic EL, touch panels, and solar cells.
  • display devices such as liquid crystal displays, organic EL, touch panels, and solar cells.
  • ITO indium metal reserves
  • low transmittance in the long wavelength region high temperature heat treatment is required to reduce resistance
  • there is no bending resistance Therefore, there is a problem that design properties such as a manufacturing method and a product shape are limited.
  • Patent Document 1 This is excellent in terms of transparency, low resistance, and reduction in the amount of metal used, and has high bending resistance, so that it can be used as a member that can solve the problems of the ITO transparent conductive member described above. Is growing.
  • Patent Document 2 discloses a manufacturing method for producing a wire by reducing silver ions while heating in ethylene glycol.
  • Patent Document 3 discloses a method for producing silver nanowires in which a silver complex is heated in a water solvent at a temperature not higher than the boiling point of the water solvent.
  • Patent documents 4 and 5 disclose a production method for removing impurities by purifying metal nanowires synthesized in ethylene glycol by ultrafiltration.
  • Patent Document 6 discloses a manufacturing method for extracting metal nanorods synthesized in an aqueous solvent into an organic solvent that is phase-separated from water, although it is not a metal nanowire.
  • the method for producing metal nanowires and the method for producing conductive members using the metal nanowire dispersion liquid include water or compatibility with water from the viewpoint of handling ease of production equipment such as no need for explosion-proofing and environmental impact during production. It is desired to use an aqueous solvent mixed with the solvent to be used.
  • an aqueous solvent mixed with the solvent to be used is desired.
  • the metal nanowire dispersion liquid produced by the method using an aqueous solvent disclosed in Patent Document 3 is applied to the production of a transparent conductive member, there is a problem that the resistance value of the conductive film is high. Therefore, in order to produce a low-resistance conductive member, the amount of metal nanowires to be used has to be increased, resulting in a problem that transparency is lowered.
  • the metal nanowire dispersion synthesized with an aqueous solvent was purified by the purification method disclosed in Patent Documents 4 and 5, and the obtained metal nanowire dispersion was obtained.
  • the resistance value of the transparent conductive member produced using the liquid could not be reduced.
  • Patent Document 6 synthesizes metal nanorods in an aqueous solvent, but by passing through a purification step, the dispersion medium is finally converted into a non-aqueous solvent that is phase-separated from water. Therefore, in order to produce a conductive member using the obtained dispersion, it is necessary to cope with explosion-proof production equipment, and the environmental load during production is higher than when an aqueous solvent is used. Therefore, the present invention is not applicable to the problem to be solved.
  • the present invention has been made in view of such circumstances, and a method for producing a metal nanowire dispersion capable of realizing transparency and conductivity, a metal nanowire dispersion, and a conductive member formed using the metal nanowire dispersion And it aims at providing the touch panel using the electroconductive member, and a solar cell.
  • the present inventors have earnestly studied the characteristics of conductive members formed using metal nanowires synthesized in an aqueous solvent, and as a result, obtained the following knowledge. That is, the present inventors have found that on the surface of the metal nanowire synthesized in an aqueous solvent, the low-molecular dispersant added at the time of synthesis forms micelles on the surface of the metal nanowire and adheres without spacing. . And when the electroconductive member was produced using the metal nanowire in this state, since the low molecular dispersant inhibited the contact between metal nanowires, it discovered that the surface resistance of the electroconductive member became high. Further, the present inventors have found that since the low molecular dispersant is strongly adsorbed on the surface of the metal nanowire, the low molecular dispersant cannot be sufficiently removed even if purification is performed in that state.
  • the inventors obtained further knowledge. That is, the present inventors have found that when a low molecular dispersant is replaced with a polymer dispersant, the polymer dispersant covers the surface of the metal nanowire with a gap and the surface of the metal nanowire is exposed. At this time, it was possible to efficiently replace the low molecular weight dispersant with the high molecular weight dispersant by using a remover that peels the low molecular weight dispersant.
  • the conductive members are produced using metal nanowires in which a low molecular dispersant is replaced with a polymer dispersant, the contact points between the metal nanowires increase, so that the surface resistance decreases, that is, the conductivity is low. It became high, and it discovered that transparency became high by reducing the quantity of metal nanowire, and came to this invention.
  • a method for producing a metal nanowire dispersion includes an aqueous dispersion containing metal nanowires surface-modified with a low molecular dispersant, a polymer dispersant, and the low molecular dispersant as the metal nanowire.
  • a purification step of separating and removing the low molecular weight dispersant from the mixed solution prepared in the mixing step.
  • the low molecular dispersant adsorbed on the surface of the metal nanowire is peeled and replaced with the polymer dispersant.
  • the obtained metal nanowire dispersion liquid a conductive member having low resistance and high transparency can be obtained.
  • the low molecular weight dispersant is peeled off from the surface of the metal nanowire, the low molecular weight dispersant can be easily separated and removed from the mixed solution prepared in the mixing step.
  • the mixing step includes flow mixing the stripping solution and the aqueous dispersion.
  • the polymer dispersant is any one of flow mixing using a solution containing the polymer dispersant and batch mixing using the polymer dispersant or a solution containing the polymer dispersant. Is added to at least one of the aqueous dispersion and the stripping solution.
  • the flow mixing includes performing using a T-shaped channel.
  • the purification step includes performing the cross-flow filtration.
  • the metal nanowire dispersion is produced by a method for producing a metal nanowire dispersion.
  • the metal nanowire contained in the metal nanowire dispersion liquid is a silver nanowire.
  • the metal nanowire dispersion has a conductivity of 1 mS / m or less.
  • the conductive member is manufactured using a dispersion of metal nanowires.
  • the touch panel is manufactured using a conductive member.
  • the solar cell is manufactured using a conductive member.
  • Explanatory drawing which shows the outline of a flow mixing apparatus.
  • Explanatory drawing which shows the outline of a T-shaped flow mixing apparatus.
  • Explanatory drawing which shows the outline of a Y-shaped flow mixing apparatus.
  • the disassembled perspective view which shows the outline of another flow mixing apparatus.
  • the schematic block diagram of the manufacturing flow of the mixing process in this form The schematic block diagram of the manufacturing flow of the multistage mixing process in this aspect.
  • the method for producing a metal nanowire dispersion includes (1) a dispersion containing metal nanowires surface-modified with a low-molecular dispersant synthesized in an aqueous solvent (metal nanowires surface-modified with a low-molecular dispersant) An aqueous dispersion), a polymer dispersant, and a stripping solution for stripping the low molecular dispersant from the metal nanowire, the polymer dispersant being contained in any of the dispersion and the stripping solution. And (2) a purification step for separating and removing the low molecular weight dispersant from the mixed solution prepared in the mixing step.
  • Metal nanowires There is no restriction
  • TEM scanning electron microscope
  • the metal nanowire preferably has a short axis length of 1 nm to 50 nm, more preferably 10 nm to 30 nm, and particularly preferably 15 nm to 25 nm.
  • the short axis length of the metal nanowire exceeds 50 nm, the characteristics as a conductor are improved, but there is a problem that haze due to light scattering is very conspicuous and transparency is lost.
  • the short axis length of the metal nanowire is less than 1 nm, the transparency is improved, but there is a problem that the conductivity is likely to deteriorate due to the oxidation of the metal nanowire.
  • the metal nanowire preferably has a long axis length of 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m, and particularly preferably 5 ⁇ m to 10 ⁇ m.
  • the major axis length of the metal nanowire is less than 1 ⁇ m, when the conductive layer is produced by coating, the number of metal contacts is reduced and conduction is difficult to be obtained, resulting in an increase in resistance.
  • the major axis length of the metal nanowire exceeds 30 ⁇ m, the dispersion stability may be deteriorated because the metal nanowire is easily entangled.
  • a metal which comprises the said metal nanowire there is no restriction
  • at least one metal selected from the group is at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and at least one selected from Groups 2 to 14 More preferably, the metal is at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and the second group, the eighth group, the ninth group, and the tenth group.
  • At least one metal selected from Group 11, Group 12, Group 13, and Group 14 is more preferable, and it is particularly preferable to include as a main component.
  • the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, and antimony. , Lead, or an alloy thereof.
  • copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
  • the content of silver nanowires in the metal nanowires is preferably 50% by mass or more, more preferably 80% by mass or more, and the metal nanowires are more preferably substantially silver nanowires.
  • substantially means that metal atoms other than silver inevitably mixed are allowed.
  • the aqueous solvent in this embodiment means water or a mixed medium of water and a water-soluble solvent.
  • an aqueous solvent it is preferable to use water.
  • the aqueous solvent is, for example, alcohols such as methanol, ethanol, propanol, isopropanol and butanol; ethers such as dioxane and tetrahydrofuran; ketones such as acetone; cyclic ethers such as tetrahydrofuran and dioxane; ethylene glycol
  • Water-soluble solvents such as glycols such as propylene glycol can be contained up to 50% by mass.
  • the low molecular weight dispersant in this embodiment has functions of controlling the form of metal nanowires and preventing aggregation when reducing metal ions in an aqueous solvent to synthesize metal nanowires.
  • the low molecular weight dispersant means a compound having at least one selected from the group consisting of an amino group-containing compound, a thiol group-containing compound, a sulfide group-containing compound, an amino acid or a derivative thereof, and a peptide compound having a molecular weight of 1000 or less. To do. Of these, quaternary ammonium salts are preferred.
  • the quaternary ammonium salt is composed of a cation moiety serving as a quaternary ammonium ion and an anion moiety serving as a counter ion, and is represented by the following chemical formula (Formula 1).
  • R 1 , R 2 , R 3 , and R 4 represent a substituent represented by —C n H (2n + 1) , and among these substituents, n is any one of 1 to 24. It is preferable. Further, the substituents of R 1 to R 4 may be the same substituent or different substituents.
  • Examples of the cation moiety that becomes the quaternary ammonium ion include decyltrimethylammonium, dodecyltrimethylammonium, cetyltrimethylammonium, stearyltrimethylammonium, decylethyldimethylammonium, dodecylethyldimethylammonium, cetylethyldimethylammonium, stearylethyldimethylammonium, Examples include decyldiethylmethylammonium, dodecyldiethylmethylammonium, cetyldiethylmethylammonium, stearyldiethylmethylammonium, decyltriethylammonium, dodecyltriethylammonium, cetyltriethylammonium, stearyltriethylammonium, tetrabutylammonium and the like.
  • anion portion serving as the counter ion examples include various halide ions such as bromide ion (Br ⁇ ) and chloride ion (Cl ⁇ ), hydroxy ion (OH ⁇ ), nitrate ion (NO 3 ⁇ ), and phosphoric acid. And ions (PO 4 3 ⁇ ), carbonate ions (CO 3 ⁇ ), sulfate ions (SO 4 2 ⁇ ), and the like.
  • the quaternary ammonium salts listed above can also be used in combination of two or more selected from each.
  • the metal nanowire in this embodiment is synthesized by reducing metal ions in an aqueous solvent.
  • combining metal nanowire It can select suitably from what is normally used.
  • borohydride metal salts such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium magnesium hydride, calcium aluminum hydride, etc.
  • Aluminum hydride salt sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, citric acid or its salt, succinic acid or its salt, ascorbic acid or its salt, etc .; diethylaminoethanol, ethanolamine, propanolamine, triethanolamine, Alkanolamines such as dimethylaminopropanol; aliphatics such as propylamine, butylamine, dipropyleneamine, ethylenediamine, triethylenepentamine Minor: heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine, morpholine; aromatic amines such as aniline, N-methylaniline, toluidine, anisidine, phenetidine; aralkyl such as benzylamine, xylenediamine, N-methylbenzylamine Amines; ethylene glycol, glutathione, organic acids (citric acid, malic acid, tartaric acid, etc
  • reducing sugars and sugar alcohols as derivatives thereof are particularly preferable.
  • Two or more of the reducing agents listed above can be used in combination.
  • a pH buffer used for the purpose of controlling the pH of the aqueous solvent can be used.
  • the pH buffer include, but are not limited to, ammonia, carbonic acid, boric acid, acetic acid, various amino acids such as alanine, arginine, asparagine, and glycine, and salts thereof.
  • Two or more pH buffering agents listed above can be used in combination.
  • the pH of the aqueous solvent is preferably 8.0 or more and 9.0 or less. More preferably, it is 8.2 or more and 8.6 or less.
  • the pH of the aqueous solvent is preferably 8.0 or more and 9.0 or less. More preferably, it is 8.2 or more and 8.6 or less.
  • a solution containing metal ions is added to an aqueous solvent.
  • the metal ion may form a complex ion with a ligand such as ammonia, but it exists as a free ion in an aqueous solvent. Preferably it is.
  • the solution containing a metal ion acidic it is preferable to make the solution containing a metal ion acidic.
  • organic acids such as an acetic acid other than nitric acid, a sulfuric acid, phosphoric acid, carbonic acid, can also be used.
  • organic acids such as an acetic acid other than nitric acid, a sulfuric acid, phosphoric acid, carbonic acid.
  • a reduction reaction occurs before the solution containing metal ions diffuses into the aqueous solvent, and a reaction occurs in a local region where the metal ion concentration is high.
  • the metal ions may not be consumed for the growth of the metal nanowires, and spherical particles, cubic particles, amorphous polycrystalline particles, and the like may be generated.
  • Metal nanoparticles In the synthesis of the metal nanowire of this embodiment, it is preferable to supply (add) spherical or decahedral metal nanoparticles having a particle diameter of 1 to 100 nm to an aqueous solvent prior to the reduction reaction of metal ions. Since the reduction reaction starts from the time when the pH of the solution containing metal ions increases, the metal nanoparticles may be supplied before the reduction reaction.
  • Metal nanowires can be grown on the surface of the metal nanoparticles by using the metal nanoparticles as a seed crystal by supplying the metal nanoparticles to an aqueous solvent. By using the metal nanoparticles as seed crystals, it is possible to produce metal nanowires having a uniform short axis length and a long axis length distribution.
  • metal nanowires When the metal nanowire is grown without containing the metal nanoparticles, unintended metal nanoparticles are generated in the water solvent. These metal nanoparticles have a large variation in shape between the particles. Therefore, when metal nanowires grow using these metal nanoparticles as seed crystals, there is a problem that the metal nanowires are polydispersed and form unstable.
  • metal nanowires having excellent monodispersity and a stable shape can be produced.
  • the pH of the aqueous solvent during the synthesis of the metal nanowire is too high, unintended metal nanoparticles are likely to be generated in the aqueous solvent. Therefore, the pH of the aqueous solvent should be maintained within a certain range during the production of the metal nanowire. Is preferred.
  • the polymer dispersant in this embodiment is one that adsorbs to the surface of the metal nanowire and prevents aggregation of the metal nanowire, and is particularly a dispersant that is soluble in both the aqueous solvent and the stripping solution during the synthesis of the metal nanowire.
  • a dispersant having a molecular weight of more than 1000 is preferable, a dispersant of 2000 or more is more preferable, and a dispersant of 10,000 or more is more preferable.
  • the molecular weight of the polymer dispersant is preferably 500,000 or less, more preferably 100,000 or less, and even more preferably 50,000 or less.
  • Specific examples of the polymer dispersant include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), partial alkyl ester of polyacrylic acid, methylcellulose, hydroxypropylmethylcellulose, polyalkyleneamine and the like. Can do.
  • the polymer dispersant may be added as it is to the liquid containing the metal nanowires surface-modified with the low molecular dispersant or may be added in a state dissolved in a solvent.
  • the solvent for dissolving the polymer dispersant can be used without particular limitation as long as the polymer dispersant can be dissolved, but the metal nanowire aqueous dispersion to be mixed is also preferably a solvent that can disperse and agglomerate during mixing. From the viewpoint of avoiding this, it is preferable to use the same solvent as the liquid containing the metal nanowires to be mixed.
  • the concentration at which the polymer dispersant is dissolved can be used without particular limitation as long as the polymer dispersant can be dissolved, but if the concentration is too high and the viscosity becomes high, the mixing time becomes long. For reasons such as the aggregation of metal nanowires may occur, it is preferable to adjust the viscosity of the solvent after dissolution of the polymer dispersant to 1000 cP or less, more preferably 100 cP or less, More preferably, it is 10 cP or less. Moreover, you may use the peeling solution mentioned later as a solvent.
  • a stripping solution for stripping the low molecular dispersant from the metal nanowire (hereinafter, also referred to as “stripping solution” or “low molecular dispersant stripping solution”), a mixed solvent of the solvent and stripping solution for forming the metal nanowire is used. If both the low molecular dispersant and the high molecular dispersant are dissolved, they can be used without particular limitation. Of these, methanol, ethanol, 1-propanol (n-propanol), 2-propanol, and acetone are preferred, and both the dispersant and the polymer dispersant exhibit high solubility in the mixed solvent. Propanol (n-propanol) and 2-propanol are more preferable, and 1-propanol having higher solubility is more preferable.
  • a polymer dispersant solution a solution containing a polymer dispersant in a tank containing a metal nanowire whose surface has been modified with a low-molecular dispersant (hereinafter referred to as a polymer dispersant) , Also referred to as “polymer dispersant solution”) and mixing
  • flow mixing a solution containing metal nanowires and a solution containing a polymer dispersant are mixed at a constant flow rate in a pipe, etc.
  • Any method can be carried out, but it is preferable to carry out flow mixing from the viewpoint of suppressing the occurrence of aggregation due to entanglement of metal nanowires.
  • the mixing ratio of the polymer dispersant-containing solution and the aqueous solvent is not particularly limited as long as the metal nanowires do not aggregate, but if the mixing ratio is too high, the metal is mixed. Since the concentration decreases and the total amount of the dispersion increases, it is preferably 5 or less, more preferably 1 or less, and even more preferably 0.5 or less.
  • the weight ratio of metal / (metal + polymer dispersant) becomes high and aggregation of metal nanowires occurs, so the weight ratio of metal / (metal + polymer dispersant) is Conditions of 0.9 or less are preferred, 0.5 or less are more preferred, and 0.1 or less are even more preferred.
  • a mixture of an aqueous dispersion containing a metal nanowire whose surface is modified with a low molecular dispersant and a polymer dispersant is mixed with a stripping solution for peeling the low molecular dispersant from the metal nanowire. Then, the low molecular dispersant that modifies the surface of the metal nanowire is peeled off and replaced with the polymer dispersant.
  • the mixing of the mixture of the aqueous dispersion containing the metal nanowires surface-modified with the low molecular dispersant and the polymer dispersant and the release liquid can be performed by batch mixing, flow mixing, or the like.
  • Batch mixing means adding and mixing a mixture in a certain amount of stripping solution.
  • Flow mixing means that the stripping solution and the mixed solution are continuously mixed at a constant flow rate by piping. Any method can be used for mixing in this embodiment. Among these, it is preferable to mix the stripping solution and the mixed solution by flow mixing from the viewpoint of suppressing the occurrence of aggregation due to the entanglement of the metal nanowires. By performing flow mixing, occurrence of aggregation of metal nanowires can be suppressed.
  • the mixing ratio of the stripping solution and the mixed solution is not particularly limited as long as the metal nanowires do not aggregate.
  • the mixing ratio is too high, the metal concentration becomes thin and the volume of the aqueous dispersion becomes small. Since it increases, it is not preferable from a viewpoint of productivity. Therefore, 10 or less is preferable, 1 or less is more preferable, and 0.75 or less is still more preferable.
  • the mixing ratio is too low, the metal nanowires may aggregate due to insufficient detachment of the dispersant during the formation of the metal nanoparticles. Therefore, 0.01 or more is preferable, 0.1 or more is more preferable, and 0.3 or more is still more preferable.
  • the flow mixing can reduce the amount of the stripping solution used to about 1/2 compared with the batch mixing.
  • 5 and 6 are schematic explanatory diagrams of the manufacturing flow of the mixing step.
  • FIG. 5 shows a case where a mixed solution containing a metal nanowire surface-modified with a low molecular dispersant and a polymer dispersant is mixed with a release solution of the low molecular dispersant, or the surface is modified with a low molecular dispersant.
  • a dispersion containing metal nanowires and a low molecular dispersant containing a polymer dispersant are stripped.
  • the same can be done when mixing the liquid.
  • a mixed liquid containing metal nanowires surface-modified with a low molecular dispersant and a polymer dispersant is stored in the first addition tank 201.
  • a stripping solution for stripping the low molecular dispersant from the metal nanowire is stored in the second addition tank 202.
  • the liquid mixture is fed from the first addition tank 201 to the flow mixing device 221 by the first liquid feed pump 211.
  • the stripping solution is fed from the second addition tank 202 to the flow mixing device 221 by the second feeding pump 212.
  • the mixed solution and the stripping solution are mixed.
  • the first liquid feeding pump 211 can be used without any limitation as long as it can feed a liquid containing metal nanowires. However, a pump capable of feeding liquid even at a relatively high pressure without destroying the metal nanowires. It is preferable to use it.
  • the destruction of the metal nanowire refers to the breaking, breaking, entanglement, etc. of the wire.
  • a Mono pump, a syringe pump, a plunger pump, and a diaphragm pump are desirable. From the viewpoint of production suitability, a Mono pump, a plunger pump, and a diaphragm pump capable of continuously feeding a large amount of liquid are desirable.
  • the plunger pump is preferably a triple plunger pump from the viewpoint of flow rate stability.
  • the mixing ratio of the mixed liquid to be mixed and the stripping liquid is important. Therefore, it is preferable to use a pump that can continuously supply liquid with a relatively high pressure and less pulsation as the second liquid supply pump 212, for example, a triple plunger pump, a gear pump, a diaphragm pump, or a Mono pump. It is preferable.
  • a rough dispersion liquid (hereinafter, also referred to as “metal nanowire coarse dispersion liquid”) containing metal nanowires whose surface is modified with a polymer dispersant is discharged from the flow mixing apparatus 221 and collected by the collection tank 203.
  • the recovered metal nanowire crude dispersion is then sent to the purification step.
  • the metal nanowire coarse dispersion refers to a mixed liquid in a state where a liquid containing metal nanowires surface-modified with a polymer dispersant, a stripping liquid, and the low molecular weight dispersant are mixed.
  • FIG. 6 shows a multistage mixing in which a dispersion containing metal nanowires surface-modified with a low molecular dispersant, a solution containing a polymer dispersant, and a stripping solution for peeling the low molecular dispersant from the metal nanowires are mixed in multiple stages.
  • a dispersion containing metal nanowires surface-modified with a low molecular dispersant is stored in the first addition tank 301.
  • a solution containing the polymer dispersant is stored in the second addition tank 302.
  • a stripping solution for stripping the low molecular dispersant is stored in the third addition tank 303.
  • the liquid mixture is fed from the first addition tank 301 to the first flow mixing device 321 by the first liquid feed pump 311.
  • the polymer dispersant solution is fed from the second addition tank 302 to the first flow mixing device 321 by the second liquid feeding pump 212.
  • the first flow mixing device 321 the dispersion containing the metal nanowires and the polymer dispersant solution are mixed.
  • the first liquid feed pump 311 can be used without particular limitation as long as a liquid containing metal nanowires can be fed. However, a pump capable of feeding liquid even at a relatively high pressure without destroying the metal nanowires. It is preferable to use it.
  • the destruction of the metal nanowire refers to the breaking, breaking, entanglement, etc. of the wire.
  • a Mono pump, a syringe pump, a plunger pump, and a diaphragm pump are desirable. From the viewpoint of production suitability, a Mono pump, a plunger pump, and a diaphragm pump capable of continuously feeding a large amount of liquid are desirable.
  • the plunger pump is preferably a triple plunger pump from the viewpoint of flow rate stability.
  • the mixing ratio of the mixed liquid to be mixed and the polymer dispersant solution is important. Therefore, it is preferable to use a pump that can continuously supply liquid at a relatively high pressure and less pulsation as the second liquid supply pump 312, for example, a triple plunger pump, a gear pump, a diaphragm pump, or a Mono pump. It is preferable.
  • the mixed liquid of the dispersion liquid containing the metal nanowires mixed with the first flow mixing apparatus 321 and the polymer dispersant solution is sent to the second flow mixing apparatus 322. Further, the third liquid feed pump 313 feeds the release liquid of the low molecular dispersant from the third addition tank 303 to the second flow mixing device 322. In the second flow mixing device 322, the mixed solution and the stripping solution are mixed.
  • the low molecular dispersant that modifies the surface of the metal nanowire is replaced with the high molecular dispersant.
  • the crude dispersion containing the metal nanowires surface-modified with the polymer dispersant is discharged and recovered by the recovery tank 304.
  • the recovered metal nanowire crude dispersion is then sent to the purification step.
  • the metal nanowire coarse dispersion is a mixed liquid in which a liquid containing metal nanowires surface-modified with a polymer dispersant, a stripping liquid, and the low molecular weight dispersant are mixed. Show.
  • FIG. 1 is an example of a flow mixing device applied to mix at least two fluids.
  • the flow mixing apparatus 10 is divided into two in one supply channel 12 for supplying the first fluid A so that the first fluid A can be divided into two.
  • the channel 16 is formed so as to communicate with one mixing region 18. Further, the divided supply channels 12A and 12B, the supply channel 14, and the channel 16 are arranged at equal intervals of 90 ° around the mixing region 18 in substantially the same plane.
  • the crossing angle ⁇ of the flow paths 12A, 12B, 14, and 16 arranged around the mixing region 18 is not limited to 90 ° and can be set as appropriate.
  • the number of divisions of the supply flow paths 12 and 14 is not particularly limited, but if the number is too large, the structure of the flow mixing device 10 becomes complicated, so 2 to 10 is preferable, and 2 to 5 is more preferable. preferable.
  • FIG. 2 is an explanatory view showing an outline showing the structure of one aspect of the T-shaped flow mixing device 60.
  • the T-shaped flow mixing device 60 in FIG. 2A includes a supply channel 62 that supplies the first fluid A, a supply channel 66 that supplies the second fluid B, and the first fluid A.
  • a flow path 68 that reacts and flows with the second fluid B is configured to communicate with each other in one mixing region 64.
  • FIG. 2B is a conceptual diagram showing the mixing region 64 of the T-shaped flow mixing device 60.
  • the supply channel 62, the supply channel 66, and the channel 68 have the same diameter.
  • the supply flow path 62 and the supply flow path 66 are A region where the extension line intersects the flow path 68 or a hatched area connecting the lines is the mixed region 64.
  • FIG. 3 is a conceptual diagram showing the structure of one aspect of the Y-shaped flow mixing device 70.
  • the Y-shaped flow mixing device 70 in FIG. 3A includes a supply channel 72 that supplies the first fluid A, a supply channel 76 that supplies the second fluid B, and the first fluid A.
  • a flow path 78 that performs reaction and flow with the second fluid B is configured to communicate with one mixing region 74.
  • the volume of the mixing region can be determined as follows.
  • FIG. 3B is a conceptual diagram showing a mixing region of the Y-shaped flow mixing device 70.
  • the supply flow path 72, the supply flow path 76, and the flow path 78 have the same diameter.
  • the supply flow path 72 and the supply flow path 76 are A region where the extension line intersects with the flow path 78 or a hatched region connecting the lines is a mixed region 74.
  • FIG. 4 is an exploded perspective view showing an example of another turbulent flow mixing device.
  • the flow mixing apparatus is configured by a supply element 132, a merging element 104, and a discharge element 106, each having a cylindrical shape.
  • these elements are assembled and assembled together so as to form a columnar shape.
  • bores (or holes, not shown) penetrating the cylinder may be provided at equal intervals in the periphery of each element, and these elements may be fastened together with bolts / nuts.
  • annular channels 108 and 110 having a rectangular cross section are formed concentrically on the surface of the supply element 132 facing the confluence element 104.
  • bores 134 and 114 are formed through feed element 132 in its thickness (or height) direction to the respective annular channels.
  • the confluence element 104 has a bore 116 penetrating in the thickness direction.
  • the bore 116 is such that when the elements are fastened to form a mixing device, the end 120 of the bore 116 located in the face of the merging element 104 opposite the feed element 132 opens into the annular channel 108.
  • four bores 116 are formed and are arranged at equal intervals in the circumferential direction of the annular channel 108.
  • a bore 118 is formed through the confluence element 104 in the same manner as the bore 116. As with the bore 116, the bore 118 is also formed to open to the annular channel 110. In the illustrated embodiment, the bores 118 are also arranged at equal intervals in the circumferential direction of the annular channel 110, and the bores 116 and the bores 118 are arranged alternately.
  • Channels 124 and 126 are formed on the surface 122 of the confluence element 104 facing the discharge element 106.
  • One end of this channel 124 or 126 is the opening of the bore 116 or 118, and the other end is the center 128 of the face 122, and all channels extend from the bore toward this center 128 and are centered.
  • the cross section of the channel may be rectangular, for example.
  • the discharge element 106 has a bore 130 that passes through the center thereof and penetrates in the thickness direction. Therefore, this bore 130 opens at the center 128 of the confluence element 104 at one end and opens outside the mixing device at the other end.
  • Annular channels 108 and 110 are supply channels of the flow mixing device, and fluids A and B supplied from the outside of the mixing device at the ends of the bores 134 and 114 are passed through the bores 134 and 114, respectively. Flows into 108 and 110.
  • the annular channel 108 and the bore 116 communicate with each other, and the fluid A flowing into the annular channel 108 enters the channel 124 via the bore 116.
  • the annular channel 110 and the bore 118 communicate with each other, and the fluid B flowing into the annular channel 110 enters the channel 126 via the bore 118.
  • fluids A and B are divided into four in the merge region of the merge element 104 and flow into channels 124 and 126, respectively, and then flow toward the center 128.
  • the bore 116 or 118 and the channel 124 or 126 are subchannels of the flow mixing device, and the center 128 of the merging element 104 corresponds to the merging region.
  • the central axis of the channel 124 and the central axis of the channel 126 intersect at the center 128.
  • the joined fluid is discharged as a stream C to the outside of the mixing device via the bore 130. Accordingly, the bore 130 is the discharge channel of the mixing device.
  • the flow mixing apparatus shown in the figure is manufactured by a semiconductor processing technology, particularly etching (eg, photolithography etching) processing, ultra-fine electrical discharge processing, photo molding method, mirror finishing processing technology, diffusion bonding technology, etc.
  • etching eg, photolithography etching
  • ultra-fine electrical discharge processing photo molding method
  • mirror finishing processing technology e.g., diffusion bonding technology
  • diffusion bonding technology etc.
  • a machining technique can be used, and a machining technique using a general-purpose lathe or drilling machine can also be used, which can be easily manufactured by those skilled in the art.
  • the material used for the flow mixing device is not particularly limited as long as it is a material to which the above-described processing technique can be applied and is not affected by the fluid to be joined.
  • a metal material iron, aluminum, stainless steel, titanium, various alloys, etc.
  • a resin material fluorine resin, acrylic resin, etc.
  • glass silicon, quartz, etc.
  • the purification step of the metal nanowire crude dispersion in this aspect is not particularly limited as long as the salt used during the synthesis of the metal nanowire can be removed, and more preferably, the low molecular dispersant during the metal nanowire synthesis can also be removed. More preferably, the excess of the polymer dispersant added in step 1 can be removed.
  • the means for purification can be freely selected from centrifugation, centrifugal filtration, crossflow filtration (crossflow filtration), solvent extraction, electrodialysis, and the like.
  • cross-flow filtration, solvent extraction, and electrodialysis that can be performed without increasing the metal concentration more than necessary to maintain the dispersibility of the metal nanowires are preferred, and polymer components can also be washed.
  • Cross flow filtration with a wide selection of final solvents is more preferable.
  • FIG. 7 is a schematic configuration diagram of the crossflow filtration device.
  • the cross-flow filtration apparatus includes at least a tank in which a metal nanowire coarse dispersion to be purified is stored, a filter that separates the metal nanowire coarse dispersion in the tank into a filtrate and a concentrated liquid, and a metal nanowire coarse in the tank.
  • a liquid feed pump for feeding the dispersion liquid.
  • a heat exchanger may be provided for controlling the temperature of the liquid circulating in the apparatus.
  • a pressure gauge may be provided on the upstream side of the filter and between the filter and the heat exchanger, respectively.
  • the material of the filter is not particularly limited, and a hollow fiber membrane of a polymer member selected from cellulose, polyether sulfonic acid, PTFE and the like can be used, and a porous ceramic A membrane can also be used.
  • the pore size of the filter can be freely selected without particular limitation as long as the salt can be washed, and is preferably a size that can also remove the low molecular dispersant during the synthesis of the metal nanowire, and is added in the mixing step. It is more preferable if it is a size that can remove the surplus of the polymer dispersant, and it is particularly preferable if it is a size that can remove by-product particles other than the wire shape generated during the synthesis of the metal nanowire.
  • the pore size is preferably 40 angstroms or more, more preferably 100 angstroms or more, and even more preferably 500 angstroms or more.
  • the metal nanowires may be clogged and aggregated, so the pore size is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.25 ⁇ m or less.
  • a metal nanowire coarse dispersion to be purified is put into a tank, a liquid feed pump is operated, and the inside of the apparatus is circulated.
  • the metal nanowire coarse dispersion passes through the filter, a part of the solvent is discharged out of the filter as a filtrate. Therefore, the metal nanowire coarse dispersion is concentrated more than before the filter and returns to the tank.
  • the metal nanowire coarse dispersion is concentrated by repeating the above-described steps while appropriately supplying an unpurified metal nanowire coarse dispersion into the tank.
  • a washing solvent is put into the tank to wash the concentrated metal nanowire dispersion.
  • the metal nanowire coarse dispersion and the solvent replacement can be performed while suppressing fluctuations in the concentration of the metal nanowires.
  • the filtration rate can be adjusted by applying pressure to the filter part as necessary.
  • the average pressure above and below this filter is defined as the filtration pressure. If the filtration pressure is too high, the solid content deposited on the filter is compressed, and even if the solid content is removed from the filter surface by backwashing to be described later, it may not be redispersed. Therefore, the filtration pressure is preferably 0.5 MPa or less, 0.4 MPa or less is more preferable, and 0.2 MPa or less is still more preferable. On the other hand, if the filtration pressure is too low, the filtration flow rate becomes low and the process time becomes long, so 0.01 MPa or more is preferable, 0.02 MPa or more is preferable, and 0.03 MPa or more is more preferable.
  • Backwashing is an operation of pushing the filtrate back from the filter surface in contact with the filtrate to the surface in contact with the dispersion.
  • a gas such as air may be used to pressurize the filtrate in the filtrate flow path in the direction opposite to the filtrate discharge direction.
  • the magnitude of the pressure to push back the filtrate is defined by the difference between the filtration pressure and the gas pressure for pushing back the filtrate, and this is the backwash pressure.
  • the backwash pressure is not particularly limited as long as the solid content accumulated on the filter can be removed from the filter surface. However, if the backwash pressure is too low, the solid content accumulated on the filter cannot be removed.
  • the pressure is preferably 1 MPa or more, more preferably 0.2 MPa or more, and further preferably 0.3 MPa or more.
  • the gas used for pushing back may be mixed in the dispersion, and the flow in the circulation channel may be disturbed, preferably 10 MPa or less, and preferably 5 MPa or less. More preferred is 3 MPa or less.
  • the interval for performing the backwashing is not particularly limited as long as the solid content accumulated on the filter surface can be removed.
  • the interval is too wide, the solid content cannot be removed from the filter surface. Minute intervals or less are preferable, 15 minutes intervals or less are more preferable, and 10 minutes intervals or less are more preferable.
  • the backwashing interval is too short, the process time becomes long, and therefore, the interval of 15 seconds or more is preferable, and the interval of 1 minute or more is more preferable. More preferably, the interval is 3 minutes or more.
  • the cleaning liquid can be added to purify the dispersion without excessively increasing the metal concentration.
  • the cleaning liquid any metal nanowire that does not aggregate can be used without particular limitation.
  • it is preferably a cleaning solution in which the salt to be removed, the low molecular dispersant during the synthesis of the metal nanowires, and the excess polymer dispersant added in the mixing step are dissolved.
  • the end timing of purification in the purification step can be determined without particular limitation. However, if the purification is not sufficient, the metal nanowire dispersion of the finished metal nanowire dispersion may cause a change in performance over time, or the salt remaining in the dispersion may be the durability of the conductive member prepared using the dispersion.
  • the metal nanowire dispersion liquid is preferably washed until the conductivity becomes 10 mS / m or less, more preferably 5 mS / m or less, and even more preferably 1 mS / m or less.
  • the method for measuring the conductivity of the dispersion is not particularly limited to the measuring device to be used. For example, an electrical conductivity meter ES-51 manufactured by Horiba, Ltd. can be used.
  • the measurement can be performed by immersing the sensor unit of the conductivity measurement device in either the tank portion of the crossflow filtration device or the circulation flow path. Considering the ease of maintenance of the electric conductivity meter, it is preferable to install it in the tank part. When the sensor unit is installed in the tank unit, if bubbles are attached to the sensor unit, the measured value will be affected.Therefore, the coarse dispersion liquid and the cleaning solution are put near the outlet where the liquid circulated in the circulation channel returns, or in the tank unit. It is preferable to avoid the place where there is a concern about air mixing such as the vicinity of the supply port to be supplied.
  • the electrical conductivity is measured by using a conductivity meter ES-51 manufactured by HORIBA, Ltd., with the sensor portion provided near the coarse dispersion supply port of the tank portion.
  • the metal nanowire dispersion liquid after the purification step contains metal nanowires produced by the above-described production method in a dispersion solvent.
  • the metal nanowire dispersion liquid after the purification step in this embodiment contains metal nanowires produced by the above-described production method in a dispersion solvent.
  • the metal nanowire content in the metal nanowire dispersion after the purification step is preferably 0.1% by mass to 99% by mass, and more preferably 0.3% by mass to 10% by mass.
  • the content is less than 0.1% by mass, the load in the drying process is great during production, and when it exceeds 99% by mass, particle aggregation may easily occur.
  • the dispersion solvent for the metal nanowire dispersion liquid water or an organic solvent can be used without particular limitation as long as the dispersant can be dissolved therein.
  • the organic solvent for example, an alcohol solvent having a boiling point of 50 ° C. to 250 ° C., more preferably 55 ° C. to 200 ° C. is suitably used. By using such an alcohol-based solvent in combination, it is possible to improve the coating and reduce the drying load in the coating process when producing the conductive member using the metal nanowire dispersion.
  • the alcohol solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • ethanol, 1-propanol, and isopropanol are particularly preferable.
  • the metal nanowire dispersion liquid in this embodiment preferably contains as little inorganic ions as possible such as alkali metal ions, alkaline earth metal ions, and halide ions. This is because when these ions remain, the durability of the conductive member may be deteriorated when the conductive member is produced using the metal nanowire dispersion liquid.
  • the metal nanowire dispersion contains various additives such as surfactants, polymerizable compounds, antioxidants, sulfidation inhibitors, corrosion inhibitors, viscosity modifiers, preservatives, and the like. be able to.
  • the corrosion inhibitor is not particularly limited, and can be appropriately selected according to the purpose.
  • azoles are preferable.
  • the azoles include benzotriazole, tolyltriazole, mercaptobenzothiazole, mercaptobenzotriazole, mercaptobenzotetrazole, (2-benzothiazolylthio) acetic acid, 3- (2-benzothiazolylthio) propionic acid, and these And at least one selected from alkali metal salts, ammonium salts, and amine salts.
  • the corrosion inhibitor As a method of adding the corrosion inhibitor, it is added directly in the metal nanowire aqueous dispersion in a state dissolved with a powder or a suitable solvent, or after the conductive member described later is prepared, it is immersed in a corrosion inhibitor bath. Can be granted.
  • the metal nanowire dispersion of this embodiment can be preferably used for water-based ink for ink jet printers and water-based ink for dispensers.
  • examples of the substrate on which the metal nanowire dispersion liquid is coated include paper, coated paper, and a PET film having a surface coated with a hydrophilic polymer.
  • the conductive member using the metal nanowire dispersion liquid of this embodiment has a conductive layer formed from the metal nanowire dispersion liquid.
  • the conductive member is manufactured by coating a metal nanowire dispersion on a substrate and drying. Below, a conductive member is demonstrated in detail through description of the manufacturing method of a conductive member.
  • the substrate on which the metal nanowire dispersion of this embodiment is coated is not particularly limited and can be appropriately selected depending on the purpose.
  • the transparent conductive member substrate include the following.
  • a polymer film is preferable from the viewpoint of production suitability, lightness, flexibility, optical property (polarization property), and the like, and a PET film, a TAC (triacetyl cellulose) film, and a PEN (polyethylene naphthalate) film are particularly preferable. .
  • Glasses such as quartz glass, alkali-free glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire and the like.
  • Acrylic resins such as polycarbonate and polymethyl methacrylate, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, polyarylate, polysulfone, polyethersulfone, polyimide, PET, TAC, PEN, fluororesin, Thermoplastic resins such as phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin.
  • Thermosetting resin such as epoxy resin.
  • the substrate As a material used for the substrate, a plurality of members may be used in combination as necessary. Depending on the application, the substrate material can be appropriately selected to form a flexible substrate such as a film or a rigid substrate.
  • the shape of the substrate may be any shape such as a disk shape, a card shape, and a sheet shape. Moreover, the thing laminated
  • the substrate is hydrophilized on one or both sides of the substrate for the purpose of improving the adhesion of the functional layer and improving the wettability of the coating solution. It is more preferable to perform a pretreatment such as a treatment or an uneven treatment.
  • a pretreatment such as a treatment or an uneven treatment.
  • the pretreatment include corona discharge treatment, glow discharge treatment, plasma treatment, atmospheric pressure plasma treatment, flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, chromic acid treatment (wet), and saponification treatment (wet).
  • corona discharge treatment and plasma treatment vacuum glow discharge treatment and atmospheric pressure glow discharge treatment are particularly preferred.
  • plasma treatment examples include plasma treatment by vacuum glow discharge or atmospheric pressure glow discharge, and other methods include flame plasma treatment and the like.
  • methods described in JP-A-6-123062, JP-A-11-293011, JP-A-11-5857 and the like can be used.
  • a film to be imparted with hydrophilicity is disposed between opposing electrodes, a plasma-exciting gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes, whereby the plasma treatment is performed.
  • Surface treatment can be performed by exciting the excitable gas with plasma and causing glow discharge between the electrodes. Among these, those using atmospheric pressure glow discharge are preferably used.
  • the plasma-exciting gas is not particularly limited, but is preferably chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof, argon, What added the reactive gas which can provide polar functional groups, such as a carboxyl group, a hydroxyl group, and a carbonyl group, to the surface of a plastic film to inert gas, such as neon, is preferable.
  • the reactive gas in addition to gases such as hydrogen, oxygen, and nitrogen, water vapor, ammonia, and other low-boiling organic compounds such as lower hydrocarbons and ketones can be used as necessary. From this viewpoint, gases such as hydrogen, oxygen, carbon dioxide, nitrogen, and water vapor are preferable. In the case of using water vapor, a gas obtained by bubbling other gas through water can be used. Alternatively, water vapor may be mixed.
  • the frequency of the high-frequency voltage is preferably 1 kHz or more and 100 kHz or less, more preferably 1 kHz or more and 10 kHz or less.
  • the plasma treatment by glow discharge includes a method of performing this under vacuum and a method of performing this under atmospheric pressure.
  • the corona discharge treatment may be performed by any conventionally known method, for example, Japanese Patent Publication Nos. 48-5043, 47-51905, JP-A 47-28067, 49-83767, and 51-41770. This can be achieved by the method disclosed in Japanese Patent Laid-Open No. 51-131576.
  • As the corona discharge treatment machine various commercially available corona treatment machines can be applied.
  • a corona discharge treatment machine having a multi-knife electrode of SOFTAL is composed of a large number of electrodes, and air is sent between the electrodes. This is useful because it can prevent the film from being heated and remove low molecules that appear on the film surface.
  • the corona discharge treatment of the substrate provided with the conductive layer on one side, to the surface not provided with the conductive layer is a dielectric coated electrode as a discharge electrode in order to avoid sparks between the electrode and the conductive layer. (Ceramic electrode, quartz electrode, etc.) are preferably performed using a metal roll such as stainless steel as the counter electrode.
  • the corona treatment conditions vary depending on the type of substrate used, the type of coating film matrix, the type of corona treatment machine used, etc., but in the corona surface treatment, the irradiation energy is 0.1 J / m 2 or more and 10 J / m. It is preferable to carry out in the range of 2 or less, and more preferably 0.5 J / m 2 or more and 5 J / m 2 or less.
  • the contact angle of the substrate surface with water is preferably 0 ° to 40 °, more preferably 0 ° to 20 °, and most preferably 0 °. A range of ⁇ 10 ° is preferable.
  • the conductive member after forming the conductive member, it can be preferably passed through a corrosion inhibitor bath, whereby a further excellent corrosion prevention effect can be obtained.
  • the method for forming the metal nanowire dispersion liquid of the present embodiment on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected depending on the purpose.
  • a general coating method for example, roll coating method, bar coating Method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
  • Examples of the conductive member using the metal nanowire dispersion of this embodiment include touch panels, antistatics for displays, electromagnetic wave shields, electrodes for organic or inorganic EL displays, electrodes for flexible displays / antistatics, electrodes for solar cells, and electronic paper. It is widely applied to various devices such as.
  • ⁇ Average minor axis length (average diameter) and average major axis length of metal nanowires Measures the short axis length (diameter) and long axis length of 300 metal nanowires randomly selected from metal nanowires that are magnified using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.) And the average minor-axis length (average diameter) and average major-axis length of metal nanowire were calculated
  • TEM transmission electron microscope
  • Preparation Examples 1 and 2 Synthesis of silver nanowires
  • Preparation Example 1 Preparation of silver nanowire dispersion (1)- The following additive solutions A, B, C, and D were prepared in advance.
  • additive solution B 42.0 g of silver nitrate powder was dissolved in 958 g of distilled water to obtain additive solution B.
  • additive C 75 g of 25% aqueous ammonia was mixed with 925 g of distilled water to obtain additive C.
  • additive liquid D 400 g of polyvinylpyrrolidone (PVP) (K30) was dissolved in 1.6 kg of distilled water to obtain an additive solution D.
  • PVP polyvinylpyrrolidone
  • a silver nanowire dispersion liquid (1) was prepared as follows. 1.30 g of stearyltrimethylammonium bromide powder, 33.1 g of sodium bromide powder, 1,000 g of glucose powder and 115.0 g of nitric acid (1N) were dissolved in 12.7 kg of distilled water at 80 ° C. While this liquid was kept at 80 ° C. and stirred at 500 rpm, the additive liquid A was added successively at an addition rate of 250 ml / min, the additive liquid B at 500 ml / min, and the additive liquid C at 500 ml / min. Next, the mixture was continuously heated and stirred at a stirring speed of 200 rpm and 80 ° C. for 100 minutes, and then cooled to 25 ° C. Thereafter, the stirring speed was changed to 500 rpm, and the additive solution D was added at 500 ml / min. This liquid was used as a silver nanowire dispersion liquid (1).
  • Example 1 Silver Nanowire Dispersion (11) >> The silver nanowire dispersion liquid (1) was put into the addition tank 201 of the apparatus shown in FIG. Next, n-propanol was charged into the second addition tank 202 as a peeling solution for the low molecular dispersant.
  • the first liquid feed pump 211 and the second liquid feed pump 212 are operated to feed the silver nanowire dispersion liquid (1) and n-propanol at a flow rate of 300 ml / min. It mixed with the flow mixing apparatus 221, and the obtained liquid mixture was collect
  • the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above.
  • the average minor axis length was 18.4 nm
  • the average major axis length was 8.0 ⁇ m
  • the coefficient of variation was 14.7%.
  • the average aspect ratio was 441.
  • Adhesive solution 1 -Takelac WS-4000 5.0 parts (solid content concentration 30%, manufactured by Mitsui Chemicals, Inc.) ⁇ Surfactant 0.3 part (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries) ⁇ Surfactant 0.3 part (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.) -94.4 parts of water Corona discharge treatment was performed on one surface of a 125 ⁇ m thick PET substrate. The adhesive solution 1 was applied to the surface subjected to the corona discharge treatment and dried at 120 ° C. for 2 minutes to form an adhesive layer 1 having a thickness of 0.11 ⁇ m.
  • an adhesion solution 2 was prepared with the following composition.
  • the adhesive solution 2 was applied on the adhesive layer 1 subjected to corona discharge treatment by a bar coating method, heated at 170 ° C. for 5 minutes and dried to form an adhesive layer 2 having a thickness of 4.1 ⁇ m. Thereafter, a corona discharge treatment was performed on the adhesive layer 2 to obtain a pretreated PET substrate.
  • the “PET substrate” indicates the PET substrate obtained by the pretreatment.
  • a silane coupling solution N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane 0.3% aqueous solution (trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower, A glass substrate was obtained by water shower cleaning, and hereinafter, the “glass substrate” refers to an alkali-free glass substrate obtained by the above pretreatment.
  • (Preparation Example 5) Pretreatment of polycarbonate substrate- After the surface of the polycarbonate substrate (thickness 75 ⁇ m) is subjected to corona discharge treatment, a 0.02% N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane aqueous solution is applied at a coating amount of 8.8 mg / m by the bar coating method. 2 and dried at 100 ° C. for 1 minute to obtain a surface-treated polycarbonate substrate.
  • the “polycarbonate substrate” refers to the polycarbonate substrate obtained by the pretreatment.
  • TAC substrate indicates the TAC substrate obtained by the pretreatment.
  • ⁇ Sol-gel coating solution> The following composition was stirred at 60 ° C. for 1 hour to confirm that the composition became uniform, and a sol-gel coating solution was obtained.
  • ⁇ Positive resist formulation> (Synthesis Example 1) ⁇ Synthesis of binder (A-1)> MAA (methacrylic acid, 7.79 g) and BzMA (benzyl methacrylate, 37.21 g) are used as monomer components constituting the copolymer, and AIBN (0.5 g) is used as a radical polymerization initiator.
  • a polymerization reaction was performed in a solvent PGMEA (propylene glycol monomethyl ether acetate, 55.00 g) to obtain a PGMEA solution (solid content concentration: 45% by mass) of the binder (A-1) represented by the following structural formula.
  • the polymerization temperature was adjusted from 60 ° C. to 100 ° C.
  • the molecular weight was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
  • photosensitive composition (1) 4.19 parts by weight of binder (A-1) (solid content: 40.0% by weight, PGMEA solution), TAS-200 represented by the following structural formula as a photosensitive compound (esterification rate: 66%, Toyo Gosei Co., Ltd.) 0.95 parts by mass), 0.80 part by mass of EHPE-3150 (manufactured by Daicel Chemical Industries) as a crosslinking agent, and 19.06 parts by mass of PGMEA were added and stirred to prepare a photosensitive composition (1). did.
  • the photosensitive composition (1) was apply
  • the substrate was exposed by irradiating a high pressure mercury lamp i-line (365 nm) with an intensity of 60 mJ / cm 2 (illuminance 20 mW / cm 2 ) from above the exposure mask.
  • the exposed substrate was subjected to shower development with a 2.38% tetramethylammonium hydroxide aqueous solution for 60 seconds.
  • the shower pressure was 0.04 MPa, and the time until the stripe pattern appeared was 30 seconds. After rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to prepare a conductive member (1) with a resist pattern.
  • the exposure mask had a line / space of 150/150 ⁇ m and a thin line length of 1.5 cm.
  • Etching solution (1) comprising a conductive member with a resist pattern (1), a mixed aqueous solution of 30 ° C., 1.0% nitric acid aqueous solution, 1.0% Fe (III) -EDTA, 1.0% ammonium thiosulfate After immersing in, etching and rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to prepare a patterned conductive member (1) A with a resist pattern.
  • the patterned conductive member with a resist pattern (1) A was exposed without being masked, and irradiated with a high-pressure mercury lamp i-line (365 nm) at an intensity of 100 mJ / cm 2 (illuminance 20 mW / cm 2 ).
  • the exposed substrate was subjected to shower development with a 2.38% tetramethylammonium hydroxide aqueous solution for 75 seconds.
  • the shower pressure was 0.05 MPa. After rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to produce a patterned conductive member (11).
  • Example 2 Silver Nanowire Dispersion (12) >> The silver nanowire dispersion liquid (2) was put into the first addition tank 301 of the apparatus shown in FIG. Next, a polyvinyl pyrrolidone (K30) aqueous solution was put into the second addition tank 302. Further, n-propanol was put into the third addition tank 303 as a peeling solution for the low molecular dispersant.
  • K30 polyvinyl pyrrolidone
  • n-propanol was put into the third addition tank 303 as a peeling solution for the low molecular dispersant.
  • the first liquid feed pump 311, the second liquid feed pump 312 and the third liquid feed pump 313 are operated, and the silver nanowire dispersion (2) and the polyvinylpyrrolidone (K30) aqueous solution are converted into the silver nanowire dispersion (2 )
  • a flow rate of 200 ml / min and an aqueous polyvinylpyrrolidone (K30) solution at a flow rate of 100 ml / min and mixed by the first flow mixing device 321 having a T-shaped flow path, and then n-propanol at 300 ml / min.
  • the liquid was fed at a flow rate of minutes and mixed by the second flow mixing device 322 having a T-shaped channel, and the obtained liquid mixture was recovered by the recovery tank 304 to obtain a liquid mixture (12).
  • the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above.
  • the average minor axis length was 18.5 nm
  • the average major axis length was 8.1 ⁇ m
  • the coefficient of variation was 14.6%.
  • the average aspect ratio was 439.
  • Patterned conductive member (12) In the production of the patterned conductive member (11), the patterned conductive material was prepared in the same manner as the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (12). A sex member (12) was produced.
  • Silver nanowire dispersion (13) was put into the addition tank 201 of the apparatus shown in FIG. Next, polyvinylpyrrolidone (K30) was dissolved in n-propanol and charged into the second addition tank 202.
  • the first liquid feeding pump 211 and the second liquid feeding pump 212 are operated to feed n-propanol in which silver nanowire dispersion liquid (2) and polyvinylpyrrolidone (K30) are dissolved at a flow rate of 300 ml / min.
  • the mixture was collected by a flow mixing device 221 having a T-shaped channel, and the obtained mixed solution was recovered by a recovery tank 203 to obtain a mixed solution (13).
  • the average minor axis length was 18.3 nm
  • the average major axis length was 8.1 ⁇ m
  • the variation coefficient was 14.5%
  • the average aspect ratio was 438.
  • Patterned conductive member (13) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (13). A conductive conductive member (13) was produced.
  • Example 4 Silver nanowire dispersion (14) >> While vigorously stirring n-propanol, the silver nanowire dispersion liquid (1) was added (so-called batch mixing), and stirring was continued for 3 minutes to obtain a mixed liquid (14).
  • the average minor axis length was 18.2 nm
  • the average major axis length was 8.0 ⁇ m
  • the variation coefficient was 14.4%.
  • the average aspect ratio was 440.
  • Patterned conductive member (14) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (14). A conductive conductive member (14) was produced.
  • the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above.
  • the average minor axis length was 18.4 nm
  • the average major axis length was 8.2 ⁇ m
  • the coefficient of variation was 14.5%.
  • the average aspect ratio was 438.
  • Patterned conductive member (15) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (15). A conductive conductive member (15) was produced.
  • the average minor axis length was 18.4 nm
  • the average major axis length was 8.0 ⁇ m
  • the variation coefficient was 14.4%.
  • the average aspect ratio was 437.
  • Patterned conductive member (C1) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C1). A conductive conductive member (C1) was produced.
  • the average minor axis length was 18.6 nm
  • the average major axis length was 8.1 ⁇ m
  • the variation coefficient was 14.4%.
  • the average aspect ratio was 438.
  • Patterned conductive member (C2) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C2). A conductive conductive member (C2) was produced.
  • the average minor axis length was 18.3 nm
  • the average major axis length was 8.1 ⁇ m
  • the coefficient of variation was 14.6%
  • the average aspect ratio was 440.
  • Patterned conductive member (C3) In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C3). A conductive conductive member (C3) was produced.
  • ⁇ Surface resistance value> The surface resistance of the conductive region of the conductive layer was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
  • Total light transmittance ⁇ Optical characteristics (total light transmittance)> The total light transmittance (%) of the patterned conductive member was measured using a haze guard plus manufactured by Gardner.
  • ⁇ Optical properties (haze)> The haze (%) of the patterned conductive member was measured using a haze guard plus manufactured by Gardner.
  • the patterned conductive member was exposed to an environment of 85 ° C./85% RH (relative humidity) for 120 hours, the resistance value before exposure was R0, and the resistance value after exposure was R, and the following ranking was performed. .
  • RH relative humidity
  • R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 ⁇ Migration resistance>
  • the patterned conductive member is continuously applied with a voltage of DC 3V between adjacent electrodes for 24 hours, the resistance value before application is R0, and the resistance after application The following ranking was performed with the value R.
  • RH relative humidity
  • R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 ⁇ Flexibility> Using a cylindrical mandrel bending tester (manufactured by Cortec Co., Ltd.) equipped with a cylindrical mandrel having a diameter of 10 mm, the conductive member was subjected to a bending test 20 times, and the presence or absence of cracks before and after that and the change in resistance value (bending) Surface resistance value R after test / surface resistance value R0 before bending test) was measured, and the following ranking was performed.
  • a cylindrical mandrel bending tester manufactured by Cortec Co.
  • R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 ⁇ Abrasion resistance>
  • the surface of the conductive layer of the conductive member is rubbed 50 times with a gauze (Zabina Minimax, KB Seiren) at a load of 500 g with a size of 20 mm ⁇ 20 mm, and the presence or absence of scratches before and after that and the change in resistance value (after wear) Surface resistance value R / surface resistance value R0 before wear) was measured, and the following ranking was performed.
  • a continuous load scratch tester Type 18s manufactured by Shinto Kagaku Co., Ltd. and the surface resistance value were measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation. As the surface is less scratched and the change in the surface resistance value is smaller (closer to 1), the wear resistance is superior. At rank 3 or higher, there is no practical problem.
  • R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6
  • Examples 1 to 5 had lower resistance values and higher transparency than Comparative Examples 1 to 3. Further, according to Examples 1 to 5, flow mixing is preferable as a mixing method, and cross flow filtration is preferable as purification.
  • Example 6 In the production of the patterned conductive member (11), the patterned conductive member was changed except that the substrate was changed to the glass substrate produced in Preparation Example 4, the polycarbonate substrate produced in Preparation Example 5, and the TAC substrate produced in Preparation Example 6. Patterned conductive members (21) to (23) were produced in the same manner as in (11). Tables 3 and 4 show details of the manufactured patterned conductive members.
  • Example 9 The patterned conductive member (11) was produced by a slot die coater having an extrusion coating head having a backup roller, as exemplified in JP-A-2006-95454, instead of the bar coating method.
  • a patterned conductive member (31) was prepared in the same manner as the patterned conductive member (11).
  • Example 10 -Fabrication of touch panel- Using the transparent conductive film of the patterned conductive member (21), "Latest Touch Panel Technology” (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, "Touch Panel Technology and Development", CMC A touch panel was produced by the method described in Publication (published in December 2004), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292”, and the like.
  • the manufactured touch panel When the manufactured touch panel is used, it is excellent in pattern shape visibility of the patterned conductive member, and input of characters etc. or screen operation with at least one of bare hands, hands wearing gloves, pointing tool by improving conductivity It was found that a touch panel with excellent responsiveness can be manufactured.
  • Example 11 ⁇ Production of solar cell> (Example 11) -Fabrication of amorphous solar cells (super straight type)- On the glass substrate, the electroconductive layer was formed like the patterned electroconductive member (21), and the transparent conductive film was formed. However, the patterning process was not performed, and the entire surface was made a transparent conductive film. A p-type film with a film thickness of about 16 nm, an i-type film with a film thickness of about 350 nm, and an n-type amorphous silicon film with a film thickness of about 30 nm are formed thereon by a plasma CVD method. To form a photoelectric conversion element (integrated solar cell).
  • Example 12 Fabrication of CIGS solar cells (substrate type)- On a soda lime glass substrate, a molybdenum electrode having a film thickness of about 500 nm by a direct current magnetron sputtering method, and Cu (In 0.6 Ga 0.4 ) Se which is a chalcopyrite semiconductor material having a film thickness of about 2.6 ⁇ m by a vacuum deposition method. Two thin films, a cadmium sulfide thin film having a film thickness of about 48 nm, were formed by a solution deposition method.
  • the same conductive layer as the conductive layer of the patterned conductive member (21) was formed thereon, a transparent conductive film was formed on the glass substrate, and a photoelectric conversion element (CIGS solar cell) was produced. However, a patterning process after the formation of the conductive layer was not performed, and the entire surface was made a transparent conductive film.

Abstract

This method for producing a metal nanowire dispersed liquid comprises: a mixing step wherein an aqueous dispersion which contains metal nanowires that are surface-modified with a low-molecular-weight dispersant, a high-molecular-weight dispersant, and a releasing solution that separates the low-molecular-weight dispersant from the metal nanowires are prepared, and the aqueous dispersion is mixed with the releasing solution, while having the high-molecular-weight dispersant contained either in the aqueous dispersion or in the releasing solution in advance; and a purification step wherein the low-molecular-weight dispersant is separated and removed from the liquid mixture that is obtained in the mixing step.

Description

金属ナノワイヤ分散液の製造方法、金属ナノワイヤ分散液、金属ナノワイヤ分散液を用いて形成された導電性部材、及びその導電性部材を用いたタッチパネル、及び太陽電池Method for producing metal nanowire dispersion, metal nanowire dispersion, conductive member formed using metal nanowire dispersion, touch panel using the conductive member, and solar cell
 本発明は、金属ナノワイヤ分散液の製造方法、金属ナノワイヤ分散液、金属ナノワイヤ分散液を用いて形成された導電性部材、及びその導電性部材を用いたタッチパネル、及び太陽電池に関し、特に、導電性、透明性に優れた導電性部材を得ることができる技術に関する。 The present invention relates to a method for producing a metal nanowire dispersion, a metal nanowire dispersion, a conductive member formed using the metal nanowire dispersion, a touch panel using the conductive member, and a solar cell. The present invention relates to a technique capable of obtaining a conductive member having excellent transparency.
 現在、液晶ディスプレイ・有機EL・タッチパネルなどの表示装置および太陽電池などに用いる電極用の透明導電材料としてITOが広く利用されている。しかし、インジウム金属の埋蔵量が少ないこと、長波長領域の透過率が低いことに起因する色味があること、低抵抗化するためには高温の熱処理が必要であること、および屈曲耐性がないため、製造方法や製品形状などの意匠性が限定される等の問題がある。 Currently, ITO is widely used as a transparent conductive material for electrodes used in display devices such as liquid crystal displays, organic EL, touch panels, and solar cells. However, there is a tint due to the small amount of indium metal reserves, low transmittance in the long wavelength region, high temperature heat treatment is required to reduce resistance, and there is no bending resistance Therefore, there is a problem that design properties such as a manufacturing method and a product shape are limited.
 このような状況下、金属ナノワイヤを用いた導電性部材の検討が報告された(特許文献1)。これは、透明性、低抵抗、使用金属量の低減の面で優れており、屈曲耐性が高いこと等から、前述したITO透明導電性部材の抱える問題を解決しうる部材として、代替への期待が高まっている。 Under such circumstances, studies on conductive members using metal nanowires have been reported (Patent Document 1). This is excellent in terms of transparency, low resistance, and reduction in the amount of metal used, and has high bending resistance, so that it can be used as a member that can solve the problems of the ITO transparent conductive member described above. Is growing.
 前記金属ナノワイヤを製造する方法として、いくつかの方法が知られている。例えば、特許文献2は、エチレングリコール中で加熱しながら、銀イオンを還元してワイヤを作製する製造方法を開示する。特許文献3は、水溶媒中で銀錯体を、水溶媒の沸点以下の温度で加熱する銀ナノワイヤの製造方法を開示する。特許文献4、5は、エチレングリコール中で合成された金属ナノワイヤを限外濾過により精製して不純物を除去するための製造方法を開示する。また、特許文献6は、金属ナノワイヤではないが、水溶媒中で合成された金属ナノロッドを水と相分離する有機溶媒中に抽出するための製造方法を開示する。 Several methods are known as methods for producing the metal nanowires. For example, Patent Document 2 discloses a manufacturing method for producing a wire by reducing silver ions while heating in ethylene glycol. Patent Document 3 discloses a method for producing silver nanowires in which a silver complex is heated in a water solvent at a temperature not higher than the boiling point of the water solvent. Patent documents 4 and 5 disclose a production method for removing impurities by purifying metal nanowires synthesized in ethylene glycol by ultrafiltration. Patent Document 6 discloses a manufacturing method for extracting metal nanorods synthesized in an aqueous solvent into an organic solvent that is phase-separated from water, although it is not a metal nanowire.
米国特許出願公開第2007/0074316号明細書US Patent Application Publication No. 2007/0074316 米国特許出願公開第2008/0210052号明細書US Patent Application Publication No. 2008/0210052 特開2009-242880号公報JP 2009-242880 A 特開2006-118036号公報JP 2006-118036 A 国際公開第2009/107694号公報International Publication No. 2009/107694 特開2005-270957号公報JP 2005-270957 A
 金属ナノワイヤの製造方法、および金属ナノワイヤ分散液を用いた導電性部材の製造方法としては、防爆対応不要など製造装置の取り扱いやすさ、および製造時の環境負荷の観点から、水または水と相溶する溶剤を混合した水溶媒を使用することが望まれている。しかし、特許文献3で開示されている水溶媒を使用する方法で作製した金属ナノワイヤ分散液を、透明導電性部材の製造に適用した際に、導電膜の抵抗値が高いという問題があった。そのため、低抵抗の導電性部材を作製するためには金属ナノワイヤの使用量を増やさざるを得ず、透明性が低下してしまうという問題があった。 The method for producing metal nanowires and the method for producing conductive members using the metal nanowire dispersion liquid include water or compatibility with water from the viewpoint of handling ease of production equipment such as no need for explosion-proofing and environmental impact during production. It is desired to use an aqueous solvent mixed with the solvent to be used. However, when the metal nanowire dispersion liquid produced by the method using an aqueous solvent disclosed in Patent Document 3 is applied to the production of a transparent conductive member, there is a problem that the resistance value of the conductive film is high. Therefore, in order to produce a low-resistance conductive member, the amount of metal nanowires to be used has to be increased, resulting in a problem that transparency is lowered.
 また、金属ナノワイヤの不純物を除去するために、水溶媒で合成された金属ナノワイヤ分散液を、特許文献4、5で開示されている精製方法による精製を実施しても、得られた金属ナノワイヤ分散液を用いて作製した透明導電性部材の抵抗値を低減することはできなかった。 Further, in order to remove impurities from the metal nanowires, the metal nanowire dispersion synthesized with an aqueous solvent was purified by the purification method disclosed in Patent Documents 4 and 5, and the obtained metal nanowire dispersion was obtained. The resistance value of the transparent conductive member produced using the liquid could not be reduced.
 さらに、特許文献6で開示されている方法は、水溶媒中で金属ナノロッドを合成するが、精製工程を経ることにより、最終的に分散媒が水と相分離する非水溶媒に変換される。そのため、得られた分散物を用いて導電性部材を製造するためには、製造設備の防爆対応が必要となり、また製造時の環境負荷も水溶媒を使用した場合と比較して高くなる。したがって、本発明が解決しようとする課題に適用できるものではなかった。 Furthermore, the method disclosed in Patent Document 6 synthesizes metal nanorods in an aqueous solvent, but by passing through a purification step, the dispersion medium is finally converted into a non-aqueous solvent that is phase-separated from water. Therefore, in order to produce a conductive member using the obtained dispersion, it is necessary to cope with explosion-proof production equipment, and the environmental load during production is higher than when an aqueous solvent is used. Therefore, the present invention is not applicable to the problem to be solved.
 本発明はこのような事情に鑑みてなされたもので、透明性と導電性とを実現できる金属ナノワイヤ分散液の製造方法、金属ナノワイヤ分散液、金属ナノワイヤ分散液を用いて形成された導電性部材、及びその導電性部材を用いたタッチパネル、及び太陽電池を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for producing a metal nanowire dispersion capable of realizing transparency and conductivity, a metal nanowire dispersion, and a conductive member formed using the metal nanowire dispersion And it aims at providing the touch panel using the electroconductive member, and a solar cell.
 本発明者らは、水溶媒中で合成された金属ナノワイヤを用いて形成された導電性部材の特性を鋭意研究した結果、次の知見を得た。すなわち、本発明者らは、水溶媒中で合成された金属ナノワイヤの表面では、合成時に添加した低分子分散剤が、金属ナノワイヤ表面にミセルを形成して間隔なく付着していることを見出した。そして、この状態で金属ナノワイヤを用いて導電性部材を作製した場合、低分子分散剤が金属ナノワイヤ同士の接触を阻害するため、導電性部材の表面抵抗が高くなることを見出した。また、本発明者らは、低分子分散剤が金属ナノワイヤ表面に強く吸着しているため、その状態で精製を行っても低分子分散剤を十分に除去できないことを見出した。 The present inventors have earnestly studied the characteristics of conductive members formed using metal nanowires synthesized in an aqueous solvent, and as a result, obtained the following knowledge. That is, the present inventors have found that on the surface of the metal nanowire synthesized in an aqueous solvent, the low-molecular dispersant added at the time of synthesis forms micelles on the surface of the metal nanowire and adheres without spacing. . And when the electroconductive member was produced using the metal nanowire in this state, since the low molecular dispersant inhibited the contact between metal nanowires, it discovered that the surface resistance of the electroconductive member became high. Further, the present inventors have found that since the low molecular dispersant is strongly adsorbed on the surface of the metal nanowire, the low molecular dispersant cannot be sufficiently removed even if purification is performed in that state.
 そこで、発明者らは鋭意検討を継続した結果、さらなる次の知見を得た。すなわち、本発明者らは、低分子分散剤を高分子分散剤に置換すると、高分子分散剤が間隔を開けて金属ナノワイヤの表面を覆い、金属ナノワイヤの表面が露出することを見出した。この際、低分子分散剤を剥離する剥離液を用いることで、効率的に低分子分散剤と高分子分散剤との置換を実施することができた。本発明者らは、低分子分散剤を高分子分散剤に置換した金属ナノワイヤを用いて導電性部材を作製した場合、金属ナノワイヤ同士の接触点が増えるため、表面抵抗が下がる、つまり導電性が高くなり、金属ナノワイヤの量を減らすことで透明性が高くなることを見出し、本発明に至った。 Therefore, as a result of continuing intensive studies, the inventors obtained further knowledge. That is, the present inventors have found that when a low molecular dispersant is replaced with a polymer dispersant, the polymer dispersant covers the surface of the metal nanowire with a gap and the surface of the metal nanowire is exposed. At this time, it was possible to efficiently replace the low molecular weight dispersant with the high molecular weight dispersant by using a remover that peels the low molecular weight dispersant. When the conductive members are produced using metal nanowires in which a low molecular dispersant is replaced with a polymer dispersant, the contact points between the metal nanowires increase, so that the surface resistance decreases, that is, the conductivity is low. It became high, and it discovered that transparency became high by reducing the quantity of metal nanowire, and came to this invention.
 本発明の一態様によると、金属ナノワイヤ分散液の製造方法は、低分子分散剤で表面修飾された金属ナノワイヤを含む水分散液と、高分子分散剤と、前記低分子分散剤を前記金属ナノワイヤから剥離させる剥離溶液とを準備し、前記高分子分散剤を前記水分散液、及び前記剥離溶液の少なくともいずれか一方に含ませた状態で、前記水分散液と前記剥離溶液とを混合する混合工程と、前記混合工程で作製した混合液から前記低分子分散剤を分離除去する精製工程と、を備える。 According to one aspect of the present invention, a method for producing a metal nanowire dispersion includes an aqueous dispersion containing metal nanowires surface-modified with a low molecular dispersant, a polymer dispersant, and the low molecular dispersant as the metal nanowire. A release solution to be peeled off, and mixing the aqueous dispersion and the release solution in a state where the polymer dispersant is included in at least one of the aqueous dispersion and the release solution And a purification step of separating and removing the low molecular weight dispersant from the mixed solution prepared in the mixing step.
 本態様によれば、金属ナノワイヤの表面に吸着した低分子分散剤が剥離され、高分子分散剤に置換される。得られた金属ナノワイヤ分散液を用いることにより、低抵抗で透明性の高い導電性部材が得られる。また、低分子分散剤が金属ナノワイヤの表面から剥離されるので、混合工程で作製された混合液から低分子分散剤を容易に分離除去することができる。 According to this aspect, the low molecular dispersant adsorbed on the surface of the metal nanowire is peeled and replaced with the polymer dispersant. By using the obtained metal nanowire dispersion liquid, a conductive member having low resistance and high transparency can be obtained. Moreover, since the low molecular weight dispersant is peeled off from the surface of the metal nanowire, the low molecular weight dispersant can be easily separated and removed from the mixed solution prepared in the mixing step.
 好ましくは、前記混合工程は、前記剥離溶液と前記水分散液とをフロー混合することを含む。 Preferably, the mixing step includes flow mixing the stripping solution and the aqueous dispersion.
 好ましくは、前記高分子分散剤が、前記高分子分散剤を含む溶液を用いたフロー混合、及び前記高分子分散剤又は前記高分子分散剤を含む溶液を用いたバッチ混合、のいずれかの手段により、前記水分散液、及び前記剥離溶液の少なくともいずれか一方に添加される。 Preferably, the polymer dispersant is any one of flow mixing using a solution containing the polymer dispersant and batch mixing using the polymer dispersant or a solution containing the polymer dispersant. Is added to at least one of the aqueous dispersion and the stripping solution.
 好ましくは、前記フロー混合が、T字型流路を用いて実施されることを含む。 Preferably, the flow mixing includes performing using a T-shaped channel.
 好ましくは、前記精製工程が、クロスフロー方式の濾過により実施されることを含む。 Preferably, the purification step includes performing the cross-flow filtration.
 本発明の他の態様によると、金属ナノワイヤ分散液は金属ナノワイヤ分散液の製造方法により製造される。 According to another aspect of the present invention, the metal nanowire dispersion is produced by a method for producing a metal nanowire dispersion.
 好ましくは、金属ナノワイヤ分散液に含まれる金属ナノワイヤが、銀ナノワイヤである。 Preferably, the metal nanowire contained in the metal nanowire dispersion liquid is a silver nanowire.
 好ましくは、金属ナノワイヤ分散液は電導度が1mS/m以下である。 Preferably, the metal nanowire dispersion has a conductivity of 1 mS / m or less.
 本発明の他の態様によると、導電性部材は金属ナノワイヤの分散液を用いて製造される。 According to another aspect of the present invention, the conductive member is manufactured using a dispersion of metal nanowires.
 本発明の他の態様によると、タッチパネルは導電性部材を用いて製造される。 According to another aspect of the present invention, the touch panel is manufactured using a conductive member.
 本発明の態様によると、太陽電池は導電性部材を用いて製造される。 According to an aspect of the present invention, the solar cell is manufactured using a conductive member.
 本発明によると、低抵抗であっても透明性の高い導電性部材の製造に適用可能な、金属ナノワイヤ分散液の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a metal nanowire dispersion that can be applied to the production of a highly transparent conductive member even with low resistance.
フロー混合装置の概略を示す説明図。Explanatory drawing which shows the outline of a flow mixing apparatus. T字型のフロー混合装置の概略を示す説明図。Explanatory drawing which shows the outline of a T-shaped flow mixing apparatus. Y字型のフロー混合装置の概略を示す説明図。Explanatory drawing which shows the outline of a Y-shaped flow mixing apparatus. 別のフロー混合装置の概略を示す分解斜視図。The disassembled perspective view which shows the outline of another flow mixing apparatus. 本形態のおける混合工程の製造フローの概略構成図。The schematic block diagram of the manufacturing flow of the mixing process in this form. 本態様における多段混合工程の製造フローの概略構成図。The schematic block diagram of the manufacturing flow of the multistage mixing process in this aspect. クロスフロー濾過装置の概略構成図。The schematic block diagram of a crossflow filtration apparatus.
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱することなく、多くの手法により変更を行なうことができ、本実施の形態以外の他の実施の形態を利用することができる。従って、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。また、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を含む範囲を意味する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is described by the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments than the present embodiment are utilized. be able to. Accordingly, all modifications within the scope of the present invention are included in the claims. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to”.
 (金属ナノワイヤ分散液の製造方法)
 本態様による金属ナノワイヤ分散液の製造方法は、(1)水溶媒中で合成された、低分子分散剤で表面修飾された金属ナノワイヤを含む分散液(低分子分散剤で表面修飾された金属ナノワイヤを含む水分散液)と、高分子分散剤と、前記低分子分散剤を前記金属ナノワイヤから剥離させる剥離溶液とを、前記高分子分散剤を前記分散液、及び前記剥離溶液のいずれかに含ませた状態で混合する混合工程と、(2)前記混合工程で作製した混合液から前記低分子分散剤を分離除去する精製工程と、を備える。
(Method for producing metal nanowire dispersion)
The method for producing a metal nanowire dispersion according to this embodiment includes (1) a dispersion containing metal nanowires surface-modified with a low-molecular dispersant synthesized in an aqueous solvent (metal nanowires surface-modified with a low-molecular dispersant) An aqueous dispersion), a polymer dispersant, and a stripping solution for stripping the low molecular dispersant from the metal nanowire, the polymer dispersant being contained in any of the dispersion and the stripping solution. And (2) a purification step for separating and removing the low molecular weight dispersant from the mixed solution prepared in the mixing step.
 [金属ナノワイヤ]
 前記金属ナノワイヤの形状については、特に制限はない。目的に応じて適宜選択することができ、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状を取ることができる。また、後述する短軸長さは平均短軸長さを意味し、長軸長さは平均長軸長さを意味し、金属ナノワイヤの短軸長さ、及び長軸長さは、例えば、透過型電子顕微鏡(TEM)を用い、TEM像を観察することにより求めることができる。
[Metal nanowires]
There is no restriction | limiting in particular about the shape of the said metal nanowire. It can be appropriately selected according to the purpose, and can take any shape such as a columnar shape, a rectangular parallelepiped shape, or a columnar shape with a polygonal cross section. Further, the minor axis length described later means an average minor axis length, the major axis length means an average major axis length, and the minor axis length and the major axis length of the metal nanowire are, for example, transmission It can be determined by observing a TEM image using a scanning electron microscope (TEM).
 前記金属ナノワイヤは、1nm以上50nm以下の短軸長さを有するのが好ましく、10nm以上30nm以下がより好ましく、15nm以上25nm以下が特に好ましい。金属ナノワイヤの短軸長さが、50nmを超えると、導電体としての特性は良化するが、光散乱によるヘイズが非常に目立ち、透明性が失われる問題がある。金属ナノワイヤの短軸長さが、1nm未満であると、透明性は良化するが、金属ナノワイヤの酸化により導電性が悪化しやすくなる問題がある。 The metal nanowire preferably has a short axis length of 1 nm to 50 nm, more preferably 10 nm to 30 nm, and particularly preferably 15 nm to 25 nm. When the short axis length of the metal nanowire exceeds 50 nm, the characteristics as a conductor are improved, but there is a problem that haze due to light scattering is very conspicuous and transparency is lost. When the short axis length of the metal nanowire is less than 1 nm, the transparency is improved, but there is a problem that the conductivity is likely to deteriorate due to the oxidation of the metal nanowire.
 前記金属ナノワイヤは、1μm以上30μm以下の長軸長さを有するのが好ましく、3μm以上20μm以下がより好ましく、5μm以上10μm以下が特に好ましい。金属ナノワイヤの長軸長さが、1μm未満であると、導電層を塗布により作製した場合において、金属同士の接点が少なくなり導通が取りにくくなり、結果、抵抗が高くなってしまう。金属ナノワイヤの長軸長さが、30μmを超えると、金属ナノワイヤが絡みやすくなるためか、分散安定性が悪くなってしまうことがある。 The metal nanowire preferably has a long axis length of 1 μm to 30 μm, more preferably 3 μm to 20 μm, and particularly preferably 5 μm to 10 μm. When the major axis length of the metal nanowire is less than 1 μm, when the conductive layer is produced by coating, the number of metal contacts is reduced and conduction is difficult to be obtained, resulting in an increase in resistance. When the major axis length of the metal nanowire exceeds 30 μm, the dispersion stability may be deteriorated because the metal nanowire is easily entangled.
 前記金属ナノワイヤを構成する金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属が好ましく、第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属であり、かつ、第2~14族から選ばれる少なくとも1種の金属がより好ましく、第4周期、第5周期、及び第6周期よりなる群から選ばれる少なくとも1種の金属であり、かつ、第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。 There is no restriction | limiting in particular as a metal which comprises the said metal nanowire, According to the objective, it can select suitably, For example, it consists of a 4th period, a 5th period, and a 6th period of a long periodic table (IUPAC1991). Preferably, at least one metal selected from the group is at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and at least one selected from Groups 2 to 14 More preferably, the metal is at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period, and the second group, the eighth group, the ninth group, and the tenth group. At least one metal selected from Group 11, Group 12, Group 13, and Group 14 is more preferable, and it is particularly preferable to include as a main component.
 前記金属としては、具体的には銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、又はこれらの合金などが挙げられる。これらの中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム又はこれらの合金が好ましく、パラジウム、銅、銀、金、白金、錫及びこれらの合金がより好ましく、銀又は銀を含有する合金が特に好ましい。 Specific examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, and antimony. , Lead, or an alloy thereof. Among these, copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
 前記金属ナノワイヤ中の銀ナノワイヤの含有率は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、金属ナノワイヤは実質的に銀ナノワイヤであることが更に好ましい。ここで、「実質的に」とは、不可避的に混入する銀以外の金属原子を許容することを意味する。 The content of silver nanowires in the metal nanowires is preferably 50% by mass or more, more preferably 80% by mass or more, and the metal nanowires are more preferably substantially silver nanowires. Here, “substantially” means that metal atoms other than silver inevitably mixed are allowed.
 [水溶媒]
 本態様における水溶媒とは、水、または水と水溶性溶媒の混合媒を意味する。水溶媒としては、水を用いることが好ましい。水溶媒は、水に加えて、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール類;ジオキサン、テトラヒドロフラン等のエーテル類;アセトン等のケトン類;テトラヒドロフラン、ジオキサン等の環状エーテル類;エチレングリコール、プロピレングリコール等のグリコール類などの水溶性溶媒を50質量%まで含むことができる。
[Aqueous solvent]
The aqueous solvent in this embodiment means water or a mixed medium of water and a water-soluble solvent. As an aqueous solvent, it is preferable to use water. In addition to water, the aqueous solvent is, for example, alcohols such as methanol, ethanol, propanol, isopropanol and butanol; ethers such as dioxane and tetrahydrofuran; ketones such as acetone; cyclic ethers such as tetrahydrofuran and dioxane; ethylene glycol Water-soluble solvents such as glycols such as propylene glycol can be contained up to 50% by mass.
 [低分子分散剤]
 本態様における低分子分散剤は、水溶媒中で金属イオンを還元して金属ナノワイヤを合成する際に、金属ナノワイヤの形態制御、及び凝集防止としての機能を有する。低分子分散剤としては、1000以下の分子量を有する、アミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物よりなる群から選ばれる少なくとも1種を含むものを意味する。その中で、四級アンモニウム塩が好ましい。
[Low molecular dispersant]
The low molecular weight dispersant in this embodiment has functions of controlling the form of metal nanowires and preventing aggregation when reducing metal ions in an aqueous solvent to synthesize metal nanowires. As the low molecular weight dispersant, it means a compound having at least one selected from the group consisting of an amino group-containing compound, a thiol group-containing compound, a sulfide group-containing compound, an amino acid or a derivative thereof, and a peptide compound having a molecular weight of 1000 or less. To do. Of these, quaternary ammonium salts are preferred.
 [四級アンモニウム塩]
 前記四級アンモニウム塩は、四級アンモニウムイオンとなるカチオン部とカウンターイオンとなるアニオン部とから構成され、次の化学式(化1)で表される。
[Quaternary ammonium salt]
The quaternary ammonium salt is composed of a cation moiety serving as a quaternary ammonium ion and an anion moiety serving as a counter ion, and is represented by the following chemical formula (Formula 1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R、 R、 R、 R は、-C(2n+1) で表される置換基を表し、これらの置換基のうち、n=1~24のいずれかからなる置換基であることが好ましい。また、R~Rの置換基は、それぞれ同じ置換基であってもよいし、異なる置換基であってもよい。 R 1 , R 2 , R 3 , and R 4 represent a substituent represented by —C n H (2n + 1) , and among these substituents, n is any one of 1 to 24. It is preferable. Further, the substituents of R 1 to R 4 may be the same substituent or different substituents.
 前記四級アンモニウムイオンとなるカチオン部としては、例えば、デシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、セチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、デシルエチルジメチルアンモニウム、ドデシルエチルジメチルアンモニウム、セチルエチルジメチルアンモニウム、ステアリルエチルジメチルアンモニウム、デシルジエチルメチルアンモニウム、ドデシルジエチルメチルアンモニウム、セチルジエチルメチルアンモニウム、ステアリルジエチルメチルアンモニウム、デシルトリエチルアンモニウム、ドデシルトリエチルアンモニウム、セチルトリエチルアンモニウム、ステアリルトリエチルアンモニウム、テトラブチルアンモニウムなどが挙げられる。 Examples of the cation moiety that becomes the quaternary ammonium ion include decyltrimethylammonium, dodecyltrimethylammonium, cetyltrimethylammonium, stearyltrimethylammonium, decylethyldimethylammonium, dodecylethyldimethylammonium, cetylethyldimethylammonium, stearylethyldimethylammonium, Examples include decyldiethylmethylammonium, dodecyldiethylmethylammonium, cetyldiethylmethylammonium, stearyldiethylmethylammonium, decyltriethylammonium, dodecyltriethylammonium, cetyltriethylammonium, stearyltriethylammonium, tetrabutylammonium and the like.
 前記カウンターイオンとなるアニオン部としては、例えば、臭化物イオン(Br)、塩化物イオン(Cl)等の各種ハロゲン化物イオン、ヒドロキシイオン(OH)、硝酸イオン(NO )、リン酸イオン(PO 3-)、炭酸イオン(CO )、硫酸イオン(SO 2-)などが挙げられる。以上に列挙した四級アンモニウム塩は、それぞれから選ばれる2つ以上を組み合わせて使用することも可能である。 Examples of the anion portion serving as the counter ion include various halide ions such as bromide ion (Br ) and chloride ion (Cl ), hydroxy ion (OH ), nitrate ion (NO 3 ), and phosphoric acid. And ions (PO 4 3− ), carbonate ions (CO 3 ), sulfate ions (SO 4 2− ), and the like. The quaternary ammonium salts listed above can also be used in combination of two or more selected from each.
 [還元剤]
 本態様における金属ナノワイヤは、水溶媒中で金属イオンを還元することにより合成される。金属ナノワイヤを合成する際に使用する還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができる。例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等;ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノール等のアルカノールアミン;プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミン等の脂肪族アミン;ピペリジン、ピロリジン、Nメチルピロリジン、モルホリン等のヘテロ環式アミン;アニリン、N-メチルアニリン、トルイジン、アニシジン、フェネチジン等の芳香族アミン;ベンジルアミン、キシレンジアミン、N-メチルベンジルアミン等のアラルキルアミン;エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、糖アルコール類(ソルビトール等)などが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類が特に好ましい。以上に列挙した還元剤は、2つ以上を組み合わせて使用することも可能である。また、還元力の調整のために、水溶媒のpHを制御することが好ましい。
[Reducing agent]
The metal nanowire in this embodiment is synthesized by reducing metal ions in an aqueous solvent. There is no restriction | limiting in particular as a reducing agent used when synthesize | combining metal nanowire, It can select suitably from what is normally used. For example, borohydride metal salts such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium magnesium hydride, calcium aluminum hydride, etc. Aluminum hydride salt; sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, citric acid or its salt, succinic acid or its salt, ascorbic acid or its salt, etc .; diethylaminoethanol, ethanolamine, propanolamine, triethanolamine, Alkanolamines such as dimethylaminopropanol; aliphatics such as propylamine, butylamine, dipropyleneamine, ethylenediamine, triethylenepentamine Minor: heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine, morpholine; aromatic amines such as aniline, N-methylaniline, toluidine, anisidine, phenetidine; aralkyl such as benzylamine, xylenediamine, N-methylbenzylamine Amines; ethylene glycol, glutathione, organic acids (citric acid, malic acid, tartaric acid, etc.), reducing sugars (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.), sugar alcohols (sorbitol, etc.) Can be mentioned. Among these, reducing sugars and sugar alcohols as derivatives thereof are particularly preferable. Two or more of the reducing agents listed above can be used in combination. In addition, it is preferable to control the pH of the aqueous solvent in order to adjust the reducing power.
 [pH緩衝剤]
 前記水溶媒中で金属ナノワイヤを合成する際に、水溶媒のpHを制御する目的で使用するpH緩衝剤を使用することができる。使用することができるpH緩衝剤としては、特に制限はされないが、アンモニア、炭酸、ホウ酸、酢酸の他、アラニン、アルギニン、アスパラギン、グリシンなどの各種アミノ酸とそれらの塩などが例として挙げられる。以上に列挙したpH緩衝剤は、2つ以上を組み合わせて使用することも可能である。
[PH buffer]
When the metal nanowire is synthesized in the aqueous solvent, a pH buffer used for the purpose of controlling the pH of the aqueous solvent can be used. Examples of the pH buffer that can be used include, but are not limited to, ammonia, carbonic acid, boric acid, acetic acid, various amino acids such as alanine, arginine, asparagine, and glycine, and salts thereof. Two or more pH buffering agents listed above can be used in combination.
 水溶媒のpHは、好ましくは、8.0以上9.0以下である。より好ましくは、8.2以上8.6以下である。水溶媒のpHを上記の範囲とすることで、球状の金属ナノ粒子が生成されるのを防止し、アスペクト比の大きな金属ナノワイヤを多く製造することができる。反応中のpHの変動を抑制するためにpH緩衝剤を用いることが好ましい。しかしながら、金属ナノワイヤを合成する際、水溶媒のpHを監視しながら水酸化ナトリウムなどの塩基を用いてpHを一定に保ちさえすれば、特にpH緩衝剤を用いることは必須ではない。水溶媒のpHが大きく変動すると、後述するように意図しない金属ナノ粒子が発生するため、金属ナノワイヤの合成時の水溶媒のpHの変動は小さくすることが好ましい。 The pH of the aqueous solvent is preferably 8.0 or more and 9.0 or less. More preferably, it is 8.2 or more and 8.6 or less. By setting the pH of the aqueous solvent in the above range, it is possible to prevent the formation of spherical metal nanoparticles and to manufacture a large number of metal nanowires having a large aspect ratio. In order to suppress fluctuations in pH during the reaction, it is preferable to use a pH buffer. However, when synthesizing metal nanowires, it is not essential to use a pH buffer as long as the pH is kept constant using a base such as sodium hydroxide while monitoring the pH of the aqueous solvent. If the pH of the aqueous solvent fluctuates greatly, unintended metal nanoparticles are generated as will be described later. Therefore, it is preferable to reduce the fluctuation of the pH of the aqueous solvent during the synthesis of the metal nanowires.
 [金属イオン]
 本態様の金属ナノワイヤの合成においては、金属イオンを含む溶液を水溶媒に添加する。添加する溶液中の金属イオンの形態としては、水溶性であれば、例えば金属イオンがアンモニアなどの配位子と錯イオンを形成していてもよいが、水溶媒中でフリーイオンとして存在していることが好ましい。また、金属イオンを含む溶液は酸性にしておくことが好ましい。pHの調整に用いる酸には特に制限はなく、例えば、硝酸、硫酸、リン酸、炭酸の他、酢酸などの有機酸を用いることも可能である。金属イオンを含む溶液が酸性でなければ、金属イオンを含む溶液が水溶媒中へ拡散する前に還元反応が起き、金属イオン濃度の高い局所域での反応が起こる。このことによって、金属イオンが、金属ナノワイヤの成長に消費されずに、球状粒子や立方体粒子、不定形の多結晶の粒子などが生成することがある。
[Metal ions]
In the synthesis of the metal nanowire of this embodiment, a solution containing metal ions is added to an aqueous solvent. As a form of the metal ion in the solution to be added, if it is water-soluble, for example, the metal ion may form a complex ion with a ligand such as ammonia, but it exists as a free ion in an aqueous solvent. Preferably it is. Moreover, it is preferable to make the solution containing a metal ion acidic. There is no restriction | limiting in particular in the acid used for pH adjustment, For example, organic acids, such as an acetic acid other than nitric acid, a sulfuric acid, phosphoric acid, carbonic acid, can also be used. If the solution containing metal ions is not acidic, a reduction reaction occurs before the solution containing metal ions diffuses into the aqueous solvent, and a reaction occurs in a local region where the metal ion concentration is high. As a result, the metal ions may not be consumed for the growth of the metal nanowires, and spherical particles, cubic particles, amorphous polycrystalline particles, and the like may be generated.
 [金属ナノ粒子]
 本態様の金属ナノワイヤの合成において、金属イオンの還元反応に先立って、1~100nmの粒径を有する球状もしくは十面体状の金属ナノ粒子を水溶媒に供給(添加)することが好ましい。還元反応は、金属イオンを含む溶液のpHが大きくなる時点より開始するので、還元反応の前に金属ナノ粒子が供給されれば良い。
[Metal nanoparticles]
In the synthesis of the metal nanowire of this embodiment, it is preferable to supply (add) spherical or decahedral metal nanoparticles having a particle diameter of 1 to 100 nm to an aqueous solvent prior to the reduction reaction of metal ions. Since the reduction reaction starts from the time when the pH of the solution containing metal ions increases, the metal nanoparticles may be supplied before the reduction reaction.
 金属ナノ粒子を水溶媒に供給する方法により、前記金属ナノ粒子を種晶として、前記金属ナノ粒子の表面に金属ナノワイヤを成長させることができる。前記金属ナノ粒子を種晶として使用することにより、短軸長さ及び長軸長さの分布が均一な金属ナノワイヤを製造することが可能となる。 Metal nanowires can be grown on the surface of the metal nanoparticles by using the metal nanoparticles as a seed crystal by supplying the metal nanoparticles to an aqueous solvent. By using the metal nanoparticles as seed crystals, it is possible to produce metal nanowires having a uniform short axis length and a long axis length distribution.
 前記金属ナノ粒子を含まない状態で金属ナノワイヤを成長させると、水溶媒中に意図しない金属ナノ粒子が生成される。これらの金属ナノ粒子は、粒子間での形状のバラツキが大きい。そのため、これらの金属ナノ粒子を種晶として金属ナノワイヤが成長すると、金属ナノワイヤは多分散で、形状不安定となる問題がある。 When the metal nanowire is grown without containing the metal nanoparticles, unintended metal nanoparticles are generated in the water solvent. These metal nanoparticles have a large variation in shape between the particles. Therefore, when metal nanowires grow using these metal nanoparticles as seed crystals, there is a problem that the metal nanowires are polydispersed and form unstable.
 1~100nmの粒径を有する球状もしくは十面体状の金属ナノ粒子を種晶として使用することにより、単分散性に優れ、形状の安定した金属ナノワイヤを製造することができる。また、金属ナノワイヤ合成時の水溶媒のpHが上がりすぎると、水溶媒中に意図しない金属ナノ粒子が生成されやすくなるため、金属ナノワイヤの製造中は、水溶媒のpHを一定範囲に維持することが好ましい。 By using spherical or decahedral metal nanoparticles having a particle diameter of 1 to 100 nm as seed crystals, metal nanowires having excellent monodispersity and a stable shape can be produced. In addition, if the pH of the aqueous solvent during the synthesis of the metal nanowire is too high, unintended metal nanoparticles are likely to be generated in the aqueous solvent. Therefore, the pH of the aqueous solvent should be maintained within a certain range during the production of the metal nanowire. Is preferred.
 [高分子分散剤]
 本態様における高分子分散剤は、金属ナノワイヤの表面に吸着し、金属ナノワイヤの凝集を防止するものであり、金属ナノワイヤ合成時の水溶媒と剥離溶液の両方に溶解する分散剤であれば、特に制限なく用いることができる。導電性部材に適用した際の導電性を確保する観点から、分子量が1000より大きい分散剤が好ましく、2000以上の分散剤がより好ましく、10000以上の分散剤がさらに好ましい。一方、分子量が大きすぎると、剥離溶液との混合時に金属ナノワイヤへの吸着時間がかかってしまうためか、金属ナノワイヤが凝集してしまうことがある。そのため、前記高分子分散剤の分子量は50万以下が望ましく、10万以下がより望ましく、5万以下が更に好ましい。前記高分子分散剤の種類としては、具体的には、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP) 、ポリアクリル酸の部分アルキルエステル、メチルセルロース、ヒドロキシプロピルメチルセルロース、ポリアルキレンアミン等を挙げることができる。
[Polymer dispersant]
The polymer dispersant in this embodiment is one that adsorbs to the surface of the metal nanowire and prevents aggregation of the metal nanowire, and is particularly a dispersant that is soluble in both the aqueous solvent and the stripping solution during the synthesis of the metal nanowire. Can be used without limitation. From the viewpoint of ensuring conductivity when applied to a conductive member, a dispersant having a molecular weight of more than 1000 is preferable, a dispersant of 2000 or more is more preferable, and a dispersant of 10,000 or more is more preferable. On the other hand, if the molecular weight is too large, the metal nanowires may agglomerate because it may take time to adsorb to the metal nanowires when mixed with the stripping solution. Therefore, the molecular weight of the polymer dispersant is preferably 500,000 or less, more preferably 100,000 or less, and even more preferably 50,000 or less. Specific examples of the polymer dispersant include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), partial alkyl ester of polyacrylic acid, methylcellulose, hydroxypropylmethylcellulose, polyalkyleneamine and the like. Can do.
 前記高分子分散剤は、前記低分子分散剤で表面修飾された金属ナノワイヤを含む液にそのまま添加してもよいし、溶媒中に溶解した状態で添加してもよい。前記高分子分散剤を溶解する溶媒としては、前記高分子分散剤が溶解できれば特に制限なく用いることができるが、混合する金属ナノワイヤ水分散液も分散する溶媒であることが好ましく、混合時の凝集を回避する観点で、混合する金属ナノワイヤを含む液と同じ溶媒を使用することが好ましい。前記高分子分散剤を溶解する際の濃度としては、高分子分散剤が溶解する濃度であれば特に制限無く用いることができるが、濃度が高すぎて粘度が高くなってしまうと混合時間が長くなる等の理由により、金属ナノワイヤの凝集が生じることがあるため、前記高分子分散剤溶解後の溶媒の粘度が1000cP以下となるように調整することが好ましく、100cP以下であることがより好ましく、10cP以下であることが更に好ましい。また、溶媒としては後述する剥離溶液を用いても良い。 The polymer dispersant may be added as it is to the liquid containing the metal nanowires surface-modified with the low molecular dispersant or may be added in a state dissolved in a solvent. The solvent for dissolving the polymer dispersant can be used without particular limitation as long as the polymer dispersant can be dissolved, but the metal nanowire aqueous dispersion to be mixed is also preferably a solvent that can disperse and agglomerate during mixing. From the viewpoint of avoiding this, it is preferable to use the same solvent as the liquid containing the metal nanowires to be mixed. The concentration at which the polymer dispersant is dissolved can be used without particular limitation as long as the polymer dispersant can be dissolved, but if the concentration is too high and the viscosity becomes high, the mixing time becomes long. For reasons such as the aggregation of metal nanowires may occur, it is preferable to adjust the viscosity of the solvent after dissolution of the polymer dispersant to 1000 cP or less, more preferably 100 cP or less, More preferably, it is 10 cP or less. Moreover, you may use the peeling solution mentioned later as a solvent.
 [剥離溶液]
 前記低分子分散剤を金属ナノワイヤから剥離させる剥離溶液(以下、「剥離液」、「低分子分散剤剥離液」ともいう。)としては、金属ナノワイヤ形成時の溶媒と剥離液の混合溶媒に、前記低分子分散剤と前記高分子分散剤が共に溶解すれば特に制限なく用いることができる。その中でも、前記混合溶媒に対し前記分散剤と前記高分子分散剤が共に高い溶解度を示すメタノール、エタノール、1-プロパノール(n-プロパノール)、2-プロパノール、アセトンが好ましく、特に溶解度の高い1-プロパノール(n-プロパノール)、2-プロパノールがより好ましく、更に溶解度の高い1-プロパノールが更に好ましい。
[Peeling solution]
As a stripping solution for stripping the low molecular dispersant from the metal nanowire (hereinafter, also referred to as “stripping solution” or “low molecular dispersant stripping solution”), a mixed solvent of the solvent and stripping solution for forming the metal nanowire is used. If both the low molecular dispersant and the high molecular dispersant are dissolved, they can be used without particular limitation. Of these, methanol, ethanol, 1-propanol (n-propanol), 2-propanol, and acetone are preferred, and both the dispersant and the polymer dispersant exhibit high solubility in the mixed solvent. Propanol (n-propanol) and 2-propanol are more preferable, and 1-propanol having higher solubility is more preferable.
 [混合工程]
 次に、金属ナノワイヤを含む液と、高分子分散剤と、低分子分散剤剥離液との混合工程について記載する。低分子分散剤で表面修飾された金属ナノワイヤを含む液に高分子分散剤を添加する際には、前述したように高分子分散剤をそのまま添加することもできるし、高分子分散剤を溶媒中に溶解した状態で(高分子分散剤を含む溶液を)添加することもできる。
[Mixing process]
Next, a mixing process of a liquid containing metal nanowires, a polymer dispersant, and a low molecular dispersant stripping liquid will be described. When adding a polymer dispersant to a liquid containing metal nanowires surface-modified with a low molecular dispersant, the polymer dispersant can be added as described above, or the polymer dispersant can be added in a solvent. It can also be added in a state dissolved in (a solution containing a polymer dispersant).
 高分子分散剤を溶媒中に溶解した状態で添加する際には、バッチ混合(低分子分散剤で表面修飾された金属ナノワイヤを含む液が入ったタンクに、高分子分散剤を含む溶液(以下、「高分子分散剤溶液」ともいう。)を添加して混合)、フロー混合(金属ナノワイヤを含む液と高分子分散剤を含む溶液を、配管で一定流量で混合)等により行なうことができる。いずれの方法も実施可能であるが、金属ナノワイヤの絡まりによる凝集発生を抑制する観点から、フロー混合で行なうのが好ましい。高分子分散剤を含む溶液と水溶媒の混合比率(高分子分散剤溶液/金属ナノワイヤ液)は、金属ナノワイヤの凝集が発生しない比率であれば特に制限は無いが、混合比率が高すぎると金属濃度が薄くなり分散液の総量が増えてしまうため、5以下が好ましく、1以下がより好ましく0.5以下が更に好ましい。一方、混合比率が低すぎると、金属/(金属+高分子分散剤)の重量比が高くなってしまい金属ナノワイヤの凝集が発生するため、金属/(金属+高分子分散剤)の重量比が0.9以下となる条件が好ましく、0.5以下がより好ましく、0.1以下が更に好ましい。 When adding a polymer dispersant dissolved in a solvent, batch mixing (a solution containing a polymer dispersant in a tank containing a metal nanowire whose surface has been modified with a low-molecular dispersant (hereinafter referred to as a polymer dispersant) , Also referred to as “polymer dispersant solution”) and mixing), flow mixing (a solution containing metal nanowires and a solution containing a polymer dispersant are mixed at a constant flow rate in a pipe), etc. . Any method can be carried out, but it is preferable to carry out flow mixing from the viewpoint of suppressing the occurrence of aggregation due to entanglement of metal nanowires. The mixing ratio of the polymer dispersant-containing solution and the aqueous solvent (polymer dispersing agent solution / metal nanowire liquid) is not particularly limited as long as the metal nanowires do not aggregate, but if the mixing ratio is too high, the metal is mixed. Since the concentration decreases and the total amount of the dispersion increases, it is preferably 5 or less, more preferably 1 or less, and even more preferably 0.5 or less. On the other hand, if the mixing ratio is too low, the weight ratio of metal / (metal + polymer dispersant) becomes high and aggregation of metal nanowires occurs, so the weight ratio of metal / (metal + polymer dispersant) is Conditions of 0.9 or less are preferred, 0.5 or less are more preferred, and 0.1 or less are even more preferred.
 前記混合工程の後に、低分子分散剤で表面修飾された金属ナノワイヤを含む水分散液と高分子分散剤とを混合した混合液と、低分子分散剤を金属ナノワイヤから剥離させる剥離液を混合し、金属ナノワイヤの表面を修飾する低分子分散剤を剥離し、高分子分散剤に置換する。 After the mixing step, a mixture of an aqueous dispersion containing a metal nanowire whose surface is modified with a low molecular dispersant and a polymer dispersant is mixed with a stripping solution for peeling the low molecular dispersant from the metal nanowire. Then, the low molecular dispersant that modifies the surface of the metal nanowire is peeled off and replaced with the polymer dispersant.
 低分子分散剤で表面修飾された金属ナノワイヤを含む水分散液と高分子分散剤との混合液と、剥離液との混合は、バッチ混合、フロー混合等により行なうことができる。バッチ混合とは一定量の剥離液中に混合液を添加して混合することを意味する。フロー混合とは、剥離液と混合液を配管で一定流量で連続的に混合することを意味する。本態様における混合では、いずれの方法も実施可能である。その中でも、金属ナノワイヤの絡まりによる凝集発生を抑制する観点から、フロー混合により剥離液と混合液との混合を行なうのが好ましい。フロー混合することにより、金属ナノワイヤの凝集発生を抑制することができる。剥離液と混合液との混合比率(剥離液/混合液)は、金属ナノワイヤの凝集が発生しなければ特に制限はないが、混合比率が高すぎると金属濃度が薄まり、水分散液の体積が増えるため、生産性の観点から好ましくない。そのため、10以下が好ましく、1以下がより好ましく、0.75以下が更に好ましい。一方、混合比率が低すぎると、金属ナノ粒子形成時の分散剤の脱離が十分起こらないためか、金属ナノワイヤが凝集してしまう。そのため、0.01以上が好ましく、0.1以上がより好ましく、0.3以上が更に好ましい。 The mixing of the mixture of the aqueous dispersion containing the metal nanowires surface-modified with the low molecular dispersant and the polymer dispersant and the release liquid can be performed by batch mixing, flow mixing, or the like. Batch mixing means adding and mixing a mixture in a certain amount of stripping solution. Flow mixing means that the stripping solution and the mixed solution are continuously mixed at a constant flow rate by piping. Any method can be used for mixing in this embodiment. Among these, it is preferable to mix the stripping solution and the mixed solution by flow mixing from the viewpoint of suppressing the occurrence of aggregation due to the entanglement of the metal nanowires. By performing flow mixing, occurrence of aggregation of metal nanowires can be suppressed. The mixing ratio of the stripping solution and the mixed solution (stripping solution / mixed solution) is not particularly limited as long as the metal nanowires do not aggregate. However, if the mixing ratio is too high, the metal concentration becomes thin and the volume of the aqueous dispersion becomes small. Since it increases, it is not preferable from a viewpoint of productivity. Therefore, 10 or less is preferable, 1 or less is more preferable, and 0.75 or less is still more preferable. On the other hand, if the mixing ratio is too low, the metal nanowires may aggregate due to insufficient detachment of the dispersant during the formation of the metal nanoparticles. Therefore, 0.01 or more is preferable, 0.1 or more is more preferable, and 0.3 or more is still more preferable.
 前記混合液と前記剥離液をフロー混合することにより、金属ナノワイヤが水溶媒中で凝集するのを抑制することができる。また、フロー混合は、バッチ混合と比べて前記剥離液の使用量を約1/2に減らすことができる。 It is possible to suppress the metal nanowires from aggregating in an aqueous solvent by flow mixing the mixed solution and the stripping solution. In addition, the flow mixing can reduce the amount of the stripping solution used to about 1/2 compared with the batch mixing.
 次に、混合工程の製造フローについて説明する。図5、6は、混合工程の製造フローの概略説明図である。 Next, the manufacturing flow of the mixing process will be described. 5 and 6 are schematic explanatory diagrams of the manufacturing flow of the mixing step.
 図5は、低分子分散剤で表面修飾された金属ナノワイヤと高分子分散剤を含む混合液と、低分子分散剤の剥離液とを混合する場合、もしくは、低分子分散剤で表面修飾された金属ナノワイヤを含む分散液と、高分子分散剤を含む低分子分散剤剥離液とを混合する場合の混合工程の製造フローの概略説明図である。ここでは、金属ナノワイヤと高分子分散剤とを含む混合液と、剥離液とを混合する場合を例に説明するが、金属ナノワイヤを含む分散液と、高分子分散剤を含む低分子分散剤剥離液と、を混合する場合も同様に実施することができる。低分子分散剤で表面修飾された金属ナノワイヤと高分子分散剤を含む混合液が第1の添加タンク201に貯蔵される。また、低分子分散剤を金属ナノワイヤから剥離させる剥離液が第2の添加タンク202に貯蔵される。第1の送液ポンプ211により第1の添加タンク201から混合液がフロー混合装置221に送液される。また、第2の送液ポンプ212により第2の添加タンク202から剥離液がフロー混合装置221に送液される。フロー混合装置221内で、混合液と剥離液との混合が行われる。 FIG. 5 shows a case where a mixed solution containing a metal nanowire surface-modified with a low molecular dispersant and a polymer dispersant is mixed with a release solution of the low molecular dispersant, or the surface is modified with a low molecular dispersant. It is a schematic explanatory drawing of the manufacturing flow of the mixing process in the case of mixing the dispersion liquid containing a metal nanowire, and the low molecular dispersing agent peeling liquid containing a polymer dispersing agent. Here, a case where a mixed solution containing metal nanowires and a polymer dispersant and a stripping solution are mixed will be described as an example. However, a dispersion containing metal nanowires and a low molecular dispersant containing a polymer dispersant are stripped. The same can be done when mixing the liquid. A mixed liquid containing metal nanowires surface-modified with a low molecular dispersant and a polymer dispersant is stored in the first addition tank 201. Further, a stripping solution for stripping the low molecular dispersant from the metal nanowire is stored in the second addition tank 202. The liquid mixture is fed from the first addition tank 201 to the flow mixing device 221 by the first liquid feed pump 211. Further, the stripping solution is fed from the second addition tank 202 to the flow mixing device 221 by the second feeding pump 212. In the flow mixing device 221, the mixed solution and the stripping solution are mixed.
 第1の送液ポンプ211として、金属ナノワイヤを含む液を送液することができれば特に制限無く用いることができるが、金属ナノワイヤを破壊することなく、比較的高圧でも送液することのできるポンプを使用することが好ましい。金属ナノワイヤの破壊とは、ワイヤの断裂、折れ、絡まり等のことを指す。前述したようなポンプとしては、モーノポンプ、シリンジポンプ、プランジャーポンプ、ダイヤフラムポンプが望ましい。製造適性の観点から、連続して大量の液を送液できるモーノポンプ、プランジャーポンプ、ダイヤフラムポンプが望ましい。プランジャーポンプは、流量安定性の観点から三連式のプランジャーポンプが望ましい。 The first liquid feeding pump 211 can be used without any limitation as long as it can feed a liquid containing metal nanowires. However, a pump capable of feeding liquid even at a relatively high pressure without destroying the metal nanowires. It is preferable to use it. The destruction of the metal nanowire refers to the breaking, breaking, entanglement, etc. of the wire. As the pump as described above, a Mono pump, a syringe pump, a plunger pump, and a diaphragm pump are desirable. From the viewpoint of production suitability, a Mono pump, a plunger pump, and a diaphragm pump capable of continuously feeding a large amount of liquid are desirable. The plunger pump is preferably a triple plunger pump from the viewpoint of flow rate stability.
 また、フロー混合装置221では、混合される混合液と剥離液との混合比が重要となる。したがって、第2の送液ポンプ212としては、連続的に比較的高圧に脈動少なく送液できるポンプを使用することが好ましく、例えば三連式のプランジャーポンプ、ギヤポンプ,ダイヤフラムポンプ、又はモーノポンプであることが好ましい。 In the flow mixing device 221, the mixing ratio of the mixed liquid to be mixed and the stripping liquid is important. Therefore, it is preferable to use a pump that can continuously supply liquid with a relatively high pressure and less pulsation as the second liquid supply pump 212, for example, a triple plunger pump, a gear pump, a diaphragm pump, or a Mono pump. It is preferable.
 フロー混合装置221内で低分子分散剤と高分子分散剤が置換される。フロー混合装置221から、高分子分散剤で表面修飾された金属ナノワイヤを含む粗分散液(以下、「金属ナノワイヤ粗分散液」ともいう。)が排出され、回収タンク203により回収される。回収された金属ナノワイヤ粗分散液は、次に精製工程に送液される。ここで、金属ナノワイヤ粗分散液とは、高分子分散剤で表面修飾された金属ナノワイヤを含む液と、剥離液と、前記低分子分散剤と、を混合した状態の混合液のことを示す。 In the flow mixing device 221, the low molecular dispersant and the high molecular dispersant are replaced. A rough dispersion liquid (hereinafter, also referred to as “metal nanowire coarse dispersion liquid”) containing metal nanowires whose surface is modified with a polymer dispersant is discharged from the flow mixing apparatus 221 and collected by the collection tank 203. The recovered metal nanowire crude dispersion is then sent to the purification step. Here, the metal nanowire coarse dispersion refers to a mixed liquid in a state where a liquid containing metal nanowires surface-modified with a polymer dispersant, a stripping liquid, and the low molecular weight dispersant are mixed.
 図6は、低分子分散剤で表面修飾された金属ナノワイヤを含む分散液と、高分子分散剤を含む溶液と、低分子分散剤を金属ナノワイヤから剥離させる剥離溶液と、を多段混合する多段混合工程の製造フローの概略構成図である。低分子分散剤で表面修飾された金属ナノワイヤを含む分散液が第1の添加タンク301に貯蔵される。また、高分子分散剤を含む溶液が第2の添加タンク302に貯蔵される。さらに、低分子分散剤を剥離するための剥離液が第3の添加タンク303に貯蔵される。第1の送液ポンプ311により第1の添加タンク301から混合液が第1のフロー混合装置321に送液される。また、第2の送液ポンプ212により第2の添加タンク302から高分子分散剤溶液が第1のフロー混合装置321に送液される。第1のフロー混合装置321内で、金属ナノワイヤを含む分散液と高分子分散剤溶液との混合が行われる。 FIG. 6 shows a multistage mixing in which a dispersion containing metal nanowires surface-modified with a low molecular dispersant, a solution containing a polymer dispersant, and a stripping solution for peeling the low molecular dispersant from the metal nanowires are mixed in multiple stages. It is a schematic block diagram of the manufacturing flow of a process. A dispersion containing metal nanowires surface-modified with a low molecular dispersant is stored in the first addition tank 301. In addition, a solution containing the polymer dispersant is stored in the second addition tank 302. Further, a stripping solution for stripping the low molecular dispersant is stored in the third addition tank 303. The liquid mixture is fed from the first addition tank 301 to the first flow mixing device 321 by the first liquid feed pump 311. In addition, the polymer dispersant solution is fed from the second addition tank 302 to the first flow mixing device 321 by the second liquid feeding pump 212. In the first flow mixing device 321, the dispersion containing the metal nanowires and the polymer dispersant solution are mixed.
 第1の送液ポンプ311として、金属ナノワイヤを含む液を送液することができれば特に制限無く用いることができるが、金属ナノワイヤを破壊することなく、比較的高圧でも送液することのできるポンプを使用することが好ましい。金属ナノワイヤの破壊とは、ワイヤの断裂、折れ、絡まり等のことを指す。前述したようなポンプとしては、モーノポンプ、シリンジポンプ、プランジャーポンプ、ダイヤフラムポンプが望ましい。製造適性の観点から、連続して大量の液を送液できるモーノポンプ、プランジャーポンプ、ダイヤフラムポンプが望ましい。プランジャーポンプは、流量安定性の観点から三連式のプランジャーポンプが望ましい。 The first liquid feed pump 311 can be used without particular limitation as long as a liquid containing metal nanowires can be fed. However, a pump capable of feeding liquid even at a relatively high pressure without destroying the metal nanowires. It is preferable to use it. The destruction of the metal nanowire refers to the breaking, breaking, entanglement, etc. of the wire. As the pump as described above, a Mono pump, a syringe pump, a plunger pump, and a diaphragm pump are desirable. From the viewpoint of production suitability, a Mono pump, a plunger pump, and a diaphragm pump capable of continuously feeding a large amount of liquid are desirable. The plunger pump is preferably a triple plunger pump from the viewpoint of flow rate stability.
 また、第1のフロー混合装置321では、混合される混合液と高分子分散剤溶液との混合比が重要となる。したがって、第2の送液ポンプ312としては、連続的に比較的高圧に脈動少なく送液できるポンプを使用することが好ましく、例えば三連式のプランジャーポンプ、ギヤポンプ、ダイヤフラムポンプ、又はモーノポンプであることが好ましい。 Also, in the first flow mixing device 321, the mixing ratio of the mixed liquid to be mixed and the polymer dispersant solution is important. Therefore, it is preferable to use a pump that can continuously supply liquid at a relatively high pressure and less pulsation as the second liquid supply pump 312, for example, a triple plunger pump, a gear pump, a diaphragm pump, or a Mono pump. It is preferable.
 第1のフロー混合装置321で混合された金属ナノワイヤを含む分散液と高分子分散剤溶液との混合液は、第2のフロー混合装置322に送液される。また、第3の送液ポンプ313により、第3の添加タンク303から低分子分散剤の剥離液が第2のフロー混合装置322に送液される。第2のフロー混合装置322内で、混合液と剥離液との混合が行われる。 The mixed liquid of the dispersion liquid containing the metal nanowires mixed with the first flow mixing apparatus 321 and the polymer dispersant solution is sent to the second flow mixing apparatus 322. Further, the third liquid feed pump 313 feeds the release liquid of the low molecular dispersant from the third addition tank 303 to the second flow mixing device 322. In the second flow mixing device 322, the mixed solution and the stripping solution are mixed.
 第2のフロー混合装置322内で金属ナノワイヤの表面を修飾する低分子分散剤が高分子分散剤と置換される。第2のフロー混合装置322から、高分子分散剤で表面修飾された金属ナノワイヤを含む粗分散液が排出され、回収タンク304により回収される。回収された金属ナノワイヤ粗分散液は、次に精製工程に送液される。前述したように、金属ナノワイヤ粗分散液とは、高分子分散剤で表面修飾された金属ナノワイヤを含む液と、剥離液と、前記低分子分散剤と、を混合した状態の混合液のことを示す。 In the second flow mixing device 322, the low molecular dispersant that modifies the surface of the metal nanowire is replaced with the high molecular dispersant. From the second flow mixing device 322, the crude dispersion containing the metal nanowires surface-modified with the polymer dispersant is discharged and recovered by the recovery tank 304. The recovered metal nanowire crude dispersion is then sent to the purification step. As described above, the metal nanowire coarse dispersion is a mixed liquid in which a liquid containing metal nanowires surface-modified with a polymer dispersant, a stripping liquid, and the low molecular weight dispersant are mixed. Show.
 [フロー混合装置]
 フロー混合を行なうための乱流型のフロー混合装置について説明する。図1は、少なくとも2種類の流体を混合するために適用されるフロー混合装置の一例である。図1に示すように、フロー混合装置10は、第1の流体Aを供給する1本の供給流路12の途中から分岐して第1の流体Aを2つに分割できるようにした2本の分割供給流路12A,12Bと、第2の流体Bを供給する分割していない1本の供給流路14と、第1の流体Aと第2の流体Bとの反応および流通を行なう流路16とが、1つの混合領域18で連通するように形成される。また、これら分割供給流路12A,12B、供給流路14、及び流路16は、実質的に同一の平面内で混合領域18の周りに90°の等間隔で配置される。即ち、各流路12A,12B,14、16の中心軸(一点鎖線)は混合領域18において十文字状(交差角度α=90°)に交差する。なお、図1では第1の流体Aの供給流路12のみを分割したが、第2の流体Bの供給流路14も複数に分割してもよい。また、混合領域18の周りに配置する各流路12A,12B,14、16の交差角度αは、90°に限らず適宜設定できる。また、供給流路12、14の分割数は、特に限定されるものではないが、数が多すぎるとフロー混合装置10の構造が複雑になるので、2~10が好ましく、2~5がより好ましい。
[Flow mixing equipment]
A turbulent flow mixing device for performing flow mixing will be described. FIG. 1 is an example of a flow mixing device applied to mix at least two fluids. As shown in FIG. 1, the flow mixing apparatus 10 is divided into two in one supply channel 12 for supplying the first fluid A so that the first fluid A can be divided into two. The divided supply channels 12A and 12B, the one non-divided supply channel 14 that supplies the second fluid B, and the flow that reacts and distributes the first fluid A and the second fluid B. The channel 16 is formed so as to communicate with one mixing region 18. Further, the divided supply channels 12A and 12B, the supply channel 14, and the channel 16 are arranged at equal intervals of 90 ° around the mixing region 18 in substantially the same plane. That is, the central axes (one-dot chain lines) of the flow paths 12A, 12B, 14, and 16 intersect in a cross shape (intersection angle α = 90 °) in the mixed region 18. In FIG. 1, only the first fluid A supply channel 12 is divided, but the second fluid B supply channel 14 may also be divided into a plurality. Further, the crossing angle α of the flow paths 12A, 12B, 14, and 16 arranged around the mixing region 18 is not limited to 90 ° and can be set as appropriate. Further, the number of divisions of the supply flow paths 12 and 14 is not particularly limited, but if the number is too large, the structure of the flow mixing device 10 becomes complicated, so 2 to 10 is preferable, and 2 to 5 is more preferable. preferable.
 図2は、T字型のフロー混合装置60の一態様の構造を示した概略を示す説明図である。図2(A)のT字型のフロー混合装置60は、第1の流体Aを供給する供給流路62と、第2の流体Bを供給する供給流路66と、第1の流体Aと第2の流体Bとの反応および流通を行なう流路68とが、1つの混合領域64で連通するように構成される。 FIG. 2 is an explanatory view showing an outline showing the structure of one aspect of the T-shaped flow mixing device 60. As shown in FIG. The T-shaped flow mixing device 60 in FIG. 2A includes a supply channel 62 that supplies the first fluid A, a supply channel 66 that supplies the second fluid B, and the first fluid A. A flow path 68 that reacts and flows with the second fluid B is configured to communicate with each other in one mixing region 64.
 T字型のフロー混合装置60の混合領域の体積は、以下のようにして求めることができる。図2(B)は、T字型のフロー混合装置60の混合領域64を示す概念図である。このフロー混合装置60では、供給流路62、供給流路66及び流路68は同じ径を有している。この場合、供給流路62と供給流路66との交わる点又は線(流路が円筒形の場合は点、流路が矩形の場合は線)から、供給流路62と供給流路66の延長線が流路68と交わる点又は線を結んだ斜線で示す領域が混合領域64となる。 The volume of the mixing region of the T-shaped flow mixing device 60 can be obtained as follows. FIG. 2B is a conceptual diagram showing the mixing region 64 of the T-shaped flow mixing device 60. In the flow mixing device 60, the supply channel 62, the supply channel 66, and the channel 68 have the same diameter. In this case, from the point or line where the supply flow path 62 and the supply flow path 66 intersect (a point when the flow path is cylindrical, a line when the flow path is rectangular), the supply flow path 62 and the supply flow path 66 are A region where the extension line intersects the flow path 68 or a hatched area connecting the lines is the mixed region 64.
 図3は、Y字型のフロー混合装置70の一態様の構造を示した概念図である。 FIG. 3 is a conceptual diagram showing the structure of one aspect of the Y-shaped flow mixing device 70.
 図3(A)のY字型のフロー混合装置70は、第1の流体Aを供給する供給流路72と、第2の流体Bを供給する供給流路76と、第1の流体Aと第2の流体Bとの反応および流通を行なう流路78とが、1つの混合領域74で連通するように構成される。 The Y-shaped flow mixing device 70 in FIG. 3A includes a supply channel 72 that supplies the first fluid A, a supply channel 76 that supplies the second fluid B, and the first fluid A. A flow path 78 that performs reaction and flow with the second fluid B is configured to communicate with one mixing region 74.
 Y字型のフロー混合装置70に関して、混合領域の体積は、以下のようにして求めることができる。 Regarding the Y-shaped flow mixing device 70, the volume of the mixing region can be determined as follows.
 図3(B)は、Y字型のフロー混合装置70の混合領域を示す概念図である。このフロー混合装置70では、供給流路72、供給流路76及び流路78は同じ径を有している。この場合、供給流路72と供給流路76との交わる点又は線(流路が円筒形の場合は点、流路が矩形の場合は線)から、供給流路72と供給流路76の延長線が流路78と交わる点又は線を結んだ斜線で示す領域が混合領域74となる。 FIG. 3B is a conceptual diagram showing a mixing region of the Y-shaped flow mixing device 70. In this flow mixing apparatus 70, the supply flow path 72, the supply flow path 76, and the flow path 78 have the same diameter. In this case, from the point or line where the supply flow path 72 and the supply flow path 76 intersect (a point when the flow path is cylindrical, a line when the flow path is rectangular), the supply flow path 72 and the supply flow path 76 are A region where the extension line intersects with the flow path 78 or a hatched region connecting the lines is a mixed region 74.
 図4は、別の乱流型のフロー混合装置の一例を示す分解斜視図である。図示した態様では、フロー混合装置100を構成する3つのパーツを分解した様子を斜視図にて示す。フロー混合装置は、それぞれが円柱状の形態の供給要素132、合流要素104および排出要素106により構成されている。フロー混合装置を構成するに際しては、これらの要素が円柱状となるように一体に締結して組み立てる。この組み立てには、例えば、各要素の周辺部に円柱を貫通するボア(または、穴、図示せず)を等間隔に設けてボルト/ナットでこれらの要素を一体に締結すればよい。 FIG. 4 is an exploded perspective view showing an example of another turbulent flow mixing device. In the illustrated embodiment, a perspective view of the three parts constituting the flow mixing device 100 is shown. The flow mixing apparatus is configured by a supply element 132, a merging element 104, and a discharge element 106, each having a cylindrical shape. When configuring the flow mixing device, these elements are assembled and assembled together so as to form a columnar shape. For this assembly, for example, bores (or holes, not shown) penetrating the cylinder may be provided at equal intervals in the periphery of each element, and these elements may be fastened together with bolts / nuts.
 供給要素132の合流要素104に対向する面には、断面が矩形の環状チャンネル108および110が同心状に形成されている。図示した態様では、供給要素132をその厚さ(または高さ)方向に貫通してそれぞれの環状チャンネルに到るボア134および114が形成されている。 The annular channels 108 and 110 having a rectangular cross section are formed concentrically on the surface of the supply element 132 facing the confluence element 104. In the illustrated embodiment, bores 134 and 114 are formed through feed element 132 in its thickness (or height) direction to the respective annular channels.
 合流要素104は、その厚さ方向に貫通するボア116が形成されている。このボア116は、混合装置を構成するために要素を締結した場合、供給要素132に対向する合流要素104の面に位置するボア116の端部120が環状チャンネル108に開口するようになっている。図示した態様では、ボア116は4つ形成され、これらが環状チャンネル108の周方向で等間隔に配置されている。 The confluence element 104 has a bore 116 penetrating in the thickness direction. The bore 116 is such that when the elements are fastened to form a mixing device, the end 120 of the bore 116 located in the face of the merging element 104 opposite the feed element 132 opens into the annular channel 108. . In the illustrated embodiment, four bores 116 are formed and are arranged at equal intervals in the circumferential direction of the annular channel 108.
 合流要素104には、ボア116と同様にボア118が貫通して形成されている。ボア118も、ボア116と同様に、環状チャンネル110に開口するように形成されている。図示した態様では、ボア118も環状チャンネル110の周方向で等間隔に配置され、かつ、ボア116とボア118が交互に位置するように配置されている。 A bore 118 is formed through the confluence element 104 in the same manner as the bore 116. As with the bore 116, the bore 118 is also formed to open to the annular channel 110. In the illustrated embodiment, the bores 118 are also arranged at equal intervals in the circumferential direction of the annular channel 110, and the bores 116 and the bores 118 are arranged alternately.
 合流要素104の排出要素106に対向する面122には、チャンネル124および126が形成されている。このチャンネル124または126の一端はボア116または118の開口部であり、他方の端部は、面122の中心128であり、全てのチャンネルはこの中心128に向かってボアから延在し、中心で合流している。チャンネルの断面は、例えば矩形であってよい。 Channels 124 and 126 are formed on the surface 122 of the confluence element 104 facing the discharge element 106. One end of this channel 124 or 126 is the opening of the bore 116 or 118, and the other end is the center 128 of the face 122, and all channels extend from the bore toward this center 128 and are centered. Have joined. The cross section of the channel may be rectangular, for example.
 排出要素106は、その中心を通過して厚さ方向に貫通するボア130が形成されている。従って、このボア130は、一端にて合流要素104の中心128に開口し、他端にて混合装置の外部に開口している。 The discharge element 106 has a bore 130 that passes through the center thereof and penetrates in the thickness direction. Therefore, this bore 130 opens at the center 128 of the confluence element 104 at one end and opens outside the mixing device at the other end.
 環状チャンネル108および110が、フロー混合装置の供給チャンネルであり、ボア134および114の端部にて混合装置の外部から供給される流体AおよびBは、それぞれボア134および114を経由して環状チャンネル108および110に流入する。 Annular channels 108 and 110 are supply channels of the flow mixing device, and fluids A and B supplied from the outside of the mixing device at the ends of the bores 134 and 114 are passed through the bores 134 and 114, respectively. Flows into 108 and 110.
 環状チャンネル108とボア116が連通し、環状チャンネル108に流入した流体Aは、ボア116を経由してチャンネル124に入る。また、環状チャンネル110とボア118が連通し、環状チャンネル110に流入した流体Bは、ボア118を経由してチャンネル126に入る。明らかなように、流体AおよびBは、合流要素104の合流領域において4つに分割され、それぞれチャンネル124および126に流入し、その後、中心128に向かって流れる。 The annular channel 108 and the bore 116 communicate with each other, and the fluid A flowing into the annular channel 108 enters the channel 124 via the bore 116. In addition, the annular channel 110 and the bore 118 communicate with each other, and the fluid B flowing into the annular channel 110 enters the channel 126 via the bore 118. As can be seen, fluids A and B are divided into four in the merge region of the merge element 104 and flow into channels 124 and 126, respectively, and then flow toward the center 128.
 ボア116または118およびチャンネル124または126が、フロー混合装置のサブチャンネルであり、合流要素104の中心128が、合流領域に対応する。そして、チャンネル124の中心軸とチャンネル126の中心軸は、中心128にて交差する。合流した流体は、ボア130を経由して混合装置の外部にストリームCとして排出される。従って、ボア130は、混合装置の排出チャンネルである。 The bore 116 or 118 and the channel 124 or 126 are subchannels of the flow mixing device, and the center 128 of the merging element 104 corresponds to the merging region. The central axis of the channel 124 and the central axis of the channel 126 intersect at the center 128. The joined fluid is discharged as a stream C to the outside of the mixing device via the bore 130. Accordingly, the bore 130 is the discharge channel of the mixing device.
 なお、図示するフロー混合装置、特に各要素の製造には、半導体加工技術、特にエッチング(例えばフォトリソエッチング)加工、超微細放電加工、光造型法、鏡面仕上げ加工技術、拡散接合技術等の精密機械加工技術を利用でき、また、汎用的な旋盤、ボール盤を用いる機械加工技術も利用でき、当業者であれば容易に製造できる。 It should be noted that the flow mixing apparatus shown in the figure, particularly each element, is manufactured by a semiconductor processing technology, particularly etching (eg, photolithography etching) processing, ultra-fine electrical discharge processing, photo molding method, mirror finishing processing technology, diffusion bonding technology, etc. A machining technique can be used, and a machining technique using a general-purpose lathe or drilling machine can also be used, which can be easily manufactured by those skilled in the art.
 フロー混合装置に使用する材料は、特に限定されるものではなく、上述の加工技術を適用できる材料であって、合流させるべき流体によって影響を受けないものであればよい。具体的には、金属材料(鉄、アルミニウム、ステンレススチール、チタン、各種の合金等)、樹脂材料(フッ素樹脂、アクリル樹脂等)、ガラス(シリコン、石英等)を用いることができる。 The material used for the flow mixing device is not particularly limited as long as it is a material to which the above-described processing technique can be applied and is not affected by the fluid to be joined. Specifically, a metal material (iron, aluminum, stainless steel, titanium, various alloys, etc.), a resin material (fluorine resin, acrylic resin, etc.), glass (silicon, quartz, etc.) can be used.
 [精製工程]
 本態様における金属ナノワイヤ粗分散液の精製工程としては、金属ナノワイヤの合成時に使用した塩を除去できれば特に制限はなく、金属ナノワイヤ合成時の低分子分散剤も除去することができればより好ましく、混合工程で添加した高分子分散剤の余剰分を除去することができれば更に好ましい。精製の手段としては、遠心分離、遠心濾過、クロスフロー濾過(クロスフロー方式の濾過)、溶媒抽出、電気透析など、自由に選択することができる。中でも、金属ナノワイヤの分散性を保持するためにも必要以上に金属濃度を高くすること無く洗浄を行うことのできるクロスフロー濾過、溶媒抽出、電気透析が好ましく、高分子成分も洗浄することができ最終溶媒の選択も広いクロスフロー濾過が更に好ましい。
[Purification process]
The purification step of the metal nanowire crude dispersion in this aspect is not particularly limited as long as the salt used during the synthesis of the metal nanowire can be removed, and more preferably, the low molecular dispersant during the metal nanowire synthesis can also be removed. More preferably, the excess of the polymer dispersant added in step 1 can be removed. The means for purification can be freely selected from centrifugation, centrifugal filtration, crossflow filtration (crossflow filtration), solvent extraction, electrodialysis, and the like. Among them, cross-flow filtration, solvent extraction, and electrodialysis that can be performed without increasing the metal concentration more than necessary to maintain the dispersibility of the metal nanowires are preferred, and polymer components can also be washed. Cross flow filtration with a wide selection of final solvents is more preferable.
 図7は、クロスフロー濾過装置の概略構成図である。クロスフロー濾過装置は、少なくとも精製の対象となる金属ナノワイヤ粗分散液が貯蔵されるタンクと、タンク内の金属ナノワイヤ粗分散液を濾液と濃縮液とに分離するフィルタと、タンク内の金属ナノワイヤ粗分散液を送液するための送液ポンプと、を有している。また、装置内を循環する液の温度制御のために、熱交換器を備えていてもよい。さらに、濾過条件をより正確に把握するために、フィルタの上流側と、フィルタと熱交換器との間にそれぞれ圧力計を備えていてもよい。 FIG. 7 is a schematic configuration diagram of the crossflow filtration device. The cross-flow filtration apparatus includes at least a tank in which a metal nanowire coarse dispersion to be purified is stored, a filter that separates the metal nanowire coarse dispersion in the tank into a filtrate and a concentrated liquid, and a metal nanowire coarse in the tank. A liquid feed pump for feeding the dispersion liquid. Further, a heat exchanger may be provided for controlling the temperature of the liquid circulating in the apparatus. Furthermore, in order to grasp the filtration conditions more accurately, a pressure gauge may be provided on the upstream side of the filter and between the filter and the heat exchanger, respectively.
 前記フィルタの材質としては、使用する物に特に制限はなく、セルロース系、ポリエーテルスルホン酸系、及びPTFE等から選択される高分子部材の中空糸膜を用いることもできるし、多孔質のセラミック膜を用いることもできる。 The material of the filter is not particularly limited, and a hollow fiber membrane of a polymer member selected from cellulose, polyether sulfonic acid, PTFE and the like can be used, and a porous ceramic A membrane can also be used.
 前記フィルタのポアサイズは、塩を洗浄することができれば特に制限無く自由に選択することができ、金属ナノワイヤ合成時の低分子分散剤も除去することができるサイズであればより好ましく、混合工程で添加した高分子分散剤の余剰分を除去することができるサイズであれば更に好ましく、金属ナノワイヤ合成時に生じたワイヤ形状以外の副生成粒子を除去することのできるサイズであれば特に好ましい。具体的には、ポアサイズは40オングストローム以上が好ましく、100オングストローム以上がより好ましく、500オングストローム以上が更に好ましい。また、ポアサイズが大きすぎると、金属ナノワイヤがポアに詰まって凝集してしまうことがあるため、ポアサイズは5μm以下が好ましく、1μm以下がより好ましく、0.25μm以下が更に好ましい。 The pore size of the filter can be freely selected without particular limitation as long as the salt can be washed, and is preferably a size that can also remove the low molecular dispersant during the synthesis of the metal nanowire, and is added in the mixing step. It is more preferable if it is a size that can remove the surplus of the polymer dispersant, and it is particularly preferable if it is a size that can remove by-product particles other than the wire shape generated during the synthesis of the metal nanowire. Specifically, the pore size is preferably 40 angstroms or more, more preferably 100 angstroms or more, and even more preferably 500 angstroms or more. Further, if the pore size is too large, the metal nanowires may be clogged and aggregated, so the pore size is preferably 5 μm or less, more preferably 1 μm or less, and even more preferably 0.25 μm or less.
 クロスフロー濾過による精製工程について説明する。精製対象となる金属ナノワイヤ粗分散液をタンクに投入し、送液ポンプを動作させ、装置内を循環させる。金属ナノワイヤ粗分散液がフィルタを通過する際に、フィルタ外に溶媒の一部が濾液として排出されるため、金属ナノワイヤ粗分散液はフィルタ通過前よりも濃縮されてタンクに戻る。適宜タンク内に未精製の金属ナノワイヤ粗分散液が追加供給しながら、前述した工程を繰り返すことによって、金属ナノワイヤ粗分散液の濃縮が行われる。 The purification process by crossflow filtration will be described. A metal nanowire coarse dispersion to be purified is put into a tank, a liquid feed pump is operated, and the inside of the apparatus is circulated. When the metal nanowire coarse dispersion passes through the filter, a part of the solvent is discharged out of the filter as a filtrate. Therefore, the metal nanowire coarse dispersion is concentrated more than before the filter and returns to the tank. The metal nanowire coarse dispersion is concentrated by repeating the above-described steps while appropriately supplying an unpurified metal nanowire coarse dispersion into the tank.
 金属ナノワイヤ粗分散液の濃縮終了後、タンクに洗浄溶媒を投入し、濃縮された金属ナノワイヤ粗分散液の洗浄を行う。洗浄溶媒を適宜供給しながら、フィルタからの濾液排出を繰り返すことで、金属ナノワイヤの濃度の変動を抑えた状態で、金属ナノワイヤ粗分散液の洗浄と溶媒の置換を行うことができる。 After completion of concentration of the metal nanowire crude dispersion, a washing solvent is put into the tank to wash the concentrated metal nanowire dispersion. By repeatedly discharging the filtrate from the filter while appropriately supplying the cleaning solvent, the metal nanowire coarse dispersion and the solvent replacement can be performed while suppressing fluctuations in the concentration of the metal nanowires.
 本態様における精製工程では、必要に応じてフィルタ部に圧力をかけ、濾過速度を調整することができる。このフィルタの上下での圧力の平均を濾過圧と定義する。濾過圧が高すぎると、フィルタに堆積した固形分が圧縮され、後述する逆洗でフィルタ面から固形分を除去しても再分散しないことがあるため、濾過圧は0.5MPa以下が好ましく、0.4MPa以下がより好ましく、0.2MPa以下が更に好ましい。また、濾過圧が低すぎると濾過流量が低くなり、工程時間が長くなるため、0.01MPa以上が好ましく、0.02MPa以上が好ましく、0.03MPa以上が更に好ましい。 In the purification step in this embodiment, the filtration rate can be adjusted by applying pressure to the filter part as necessary. The average pressure above and below this filter is defined as the filtration pressure. If the filtration pressure is too high, the solid content deposited on the filter is compressed, and even if the solid content is removed from the filter surface by backwashing to be described later, it may not be redispersed. Therefore, the filtration pressure is preferably 0.5 MPa or less, 0.4 MPa or less is more preferable, and 0.2 MPa or less is still more preferable. On the other hand, if the filtration pressure is too low, the filtration flow rate becomes low and the process time becomes long, so 0.01 MPa or more is preferable, 0.02 MPa or more is preferable, and 0.03 MPa or more is more preferable.
 本態様における精製工程では、フィルタへの固形分の堆積による濾過効率の低減を抑止するために、濃縮及び洗浄実施中に定期的に逆洗を行うことが望ましい。逆洗とは、濾液と接しているフィルタ面から分散液が接している面へ濾液を押し返す操作である。濾液を押し返すために、例えばエアなどのガスを用いて、濾液流路に濾液排出方向とは逆方向に濾液を加圧してもよい。濾液を押し返す圧力の大きさは、押し返すためにガスを使用する場合、前記濾過圧と濾液を押し返すためのガス圧との差で定義され、これを逆洗圧とする。逆洗圧は、フィルタに堆積した固形分をフィルタ面から除去することができれば特に制限はないが、逆洗圧が低すぎるとフィルタに堆積した固形分を除去することができなくなるため、0.1MPa以上であることが好ましく、0.2MPa以上であることがより好ましく、0.3MPa以上であることが更に好ましい。また、圧力が高すぎると押し返すために使用したガスが分散液内に混入してしまい、循環流路内の流れを乱してしまうことがあるため、10MPa以下が好ましく、5MPa以下であることがより好ましく、3MPa以下であることが更に好ましい。また、逆洗を実施する間隔としては、フィルタ面に堆積した固形分を除去することができれば特に制限はないが、間隔が広すぎるとフィルタ面から固形分を除去することができなくなるため、30分間隔以下が好ましく、15分間隔以下がより好ましく、10分間隔以下が更に好ましい。また、逆洗を実施している間は濾過が実施されないため、逆洗間隔が短すぎると、工程時間が長くなってしまうことから、15秒間隔以上が好ましく、1分間隔以上がより好ましく、3分間隔以上が更に好ましい。 In the purification process in this embodiment, it is desirable to perform regular backwashing during concentration and washing in order to suppress a reduction in filtration efficiency due to accumulation of solid content on the filter. Backwashing is an operation of pushing the filtrate back from the filter surface in contact with the filtrate to the surface in contact with the dispersion. In order to push the filtrate back, for example, a gas such as air may be used to pressurize the filtrate in the filtrate flow path in the direction opposite to the filtrate discharge direction. When the gas is used to push back the filtrate, the magnitude of the pressure to push back the filtrate is defined by the difference between the filtration pressure and the gas pressure for pushing back the filtrate, and this is the backwash pressure. The backwash pressure is not particularly limited as long as the solid content accumulated on the filter can be removed from the filter surface. However, if the backwash pressure is too low, the solid content accumulated on the filter cannot be removed. The pressure is preferably 1 MPa or more, more preferably 0.2 MPa or more, and further preferably 0.3 MPa or more. In addition, if the pressure is too high, the gas used for pushing back may be mixed in the dispersion, and the flow in the circulation channel may be disturbed, preferably 10 MPa or less, and preferably 5 MPa or less. More preferred is 3 MPa or less. Further, the interval for performing the backwashing is not particularly limited as long as the solid content accumulated on the filter surface can be removed. However, if the interval is too wide, the solid content cannot be removed from the filter surface. Minute intervals or less are preferable, 15 minutes intervals or less are more preferable, and 10 minutes intervals or less are more preferable. In addition, since filtration is not performed while backwashing is performed, if the backwashing interval is too short, the process time becomes long, and therefore, the interval of 15 seconds or more is preferable, and the interval of 1 minute or more is more preferable. More preferably, the interval is 3 minutes or more.
 前記精製工程では、金属ナノワイヤ粗分散液を濃縮した後、洗浄液を添加することにより、金属濃度を過度に上昇させることなく分散液の精製を実施することができる。洗浄液としては、金属ナノワイヤが凝集しなければ特に制限無く用いることができる。特に、除去したい塩、金属ナノワイヤ合成時の低分子分散剤、混合工程で添加した余剰の高分子分散剤が溶解する洗浄液であることが好ましい。 In the purification step, after the metal nanowire crude dispersion is concentrated, the cleaning liquid can be added to purify the dispersion without excessively increasing the metal concentration. As the cleaning liquid, any metal nanowire that does not aggregate can be used without particular limitation. In particular, it is preferably a cleaning solution in which the salt to be removed, the low molecular dispersant during the synthesis of the metal nanowires, and the excess polymer dispersant added in the mixing step are dissolved.
 前記精製工程における精製の終了タイミングは、特に制限なく決定することができる。但し、精製が十分でないと、完成した金属ナノワイヤ分散液の経時による性能変化の発生要因となったり、分散液中に残存した塩が、当該分散液を用いて作製された導電性部材の耐久性を悪化させる要因となったりすることがあるため、金属ナノワイヤ分散液の電導度が10mS/m以下となるまで洗浄することが好ましく、5mS/m以下がより好ましく、1mS/m以下がさらに好ましい。分散液の電導度の測定方法としては、使用する測定装置に特に制限されないが、例えば、堀場製作所製の電気伝導率計 ES-51等を用いることができる。クロスフロー濾過装置内で電導度を測定する際には、クロスフロー濾過装置のタンク部、もしくは循環流路内のいずれかに電導度測定装置のセンサー部を浸漬させて測定を行なうことができるが、電気伝導率計のメンテナンスの容易性を考慮すると、タンク部に設置することが好ましい。タンク部にセンサー部を設置させる場合は、センサー部に気泡が付着すると、測定値に影響が生じるため、循環流路内を循環した液が戻る出口付近や、タンク部に粗分散液および洗浄液を供給する供給口付近など、空気混入が懸念される場所を避けて設置することが好ましい。
 本発明においては、堀場製作所製の電気伝導率計 ES-51を用い、センサー部をタンク部の粗分散液供給口付近に設けて測定した数値を電導度とする。
The end timing of purification in the purification step can be determined without particular limitation. However, if the purification is not sufficient, the metal nanowire dispersion of the finished metal nanowire dispersion may cause a change in performance over time, or the salt remaining in the dispersion may be the durability of the conductive member prepared using the dispersion. The metal nanowire dispersion liquid is preferably washed until the conductivity becomes 10 mS / m or less, more preferably 5 mS / m or less, and even more preferably 1 mS / m or less. The method for measuring the conductivity of the dispersion is not particularly limited to the measuring device to be used. For example, an electrical conductivity meter ES-51 manufactured by Horiba, Ltd. can be used. When measuring the conductivity in the crossflow filtration device, the measurement can be performed by immersing the sensor unit of the conductivity measurement device in either the tank portion of the crossflow filtration device or the circulation flow path. Considering the ease of maintenance of the electric conductivity meter, it is preferable to install it in the tank part. When the sensor unit is installed in the tank unit, if bubbles are attached to the sensor unit, the measured value will be affected.Therefore, the coarse dispersion liquid and the cleaning solution are put near the outlet where the liquid circulated in the circulation channel returns, or in the tank unit. It is preferable to avoid the place where there is a concern about air mixing such as the vicinity of the supply port to be supplied.
In the present invention, the electrical conductivity is measured by using a conductivity meter ES-51 manufactured by HORIBA, Ltd., with the sensor portion provided near the coarse dispersion supply port of the tank portion.
 [精製工程後の金属ナノワイヤ分散液]
 精製工程後の金属ナノワイヤ分散液は、分散溶媒中に上述の製法により製造された金属ナノワイヤを含有する。
[Metal nanowire dispersion after purification process]
The metal nanowire dispersion liquid after the purification step contains metal nanowires produced by the above-described production method in a dispersion solvent.
 本態様における精製工程後の金属ナノワイヤ分散液は、分散溶媒中に上述の製法により製造された金属ナノワイヤを含有する。 The metal nanowire dispersion liquid after the purification step in this embodiment contains metal nanowires produced by the above-described production method in a dispersion solvent.
 前記精製工程後の金属ナノワイヤ分散液における金属ナノワイヤ含有量は、0.1質量%~99質量%が好ましく、0.3質量%~10質量%がより好ましい。前記含有量が、0.1質量%未満であると、製造時、乾燥工程における負荷が多大となり、99質量%を超えると、粒子の凝集が起こりやすくなることがある。 The metal nanowire content in the metal nanowire dispersion after the purification step is preferably 0.1% by mass to 99% by mass, and more preferably 0.3% by mass to 10% by mass. When the content is less than 0.1% by mass, the load in the drying process is great during production, and when it exceeds 99% by mass, particle aggregation may easily occur.
 前記金属ナノワイヤ分散液の分散溶媒としては、分散剤が溶解する溶媒であれば、水も有機溶媒も特に制限なく用いることができる。有機溶媒としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール系溶媒が好適に用いられる。このようなアルコール系溶媒を併用することにより、金属ナノワイヤ分散液を用いて導電性部材を作製する際の塗布工程において塗り付け良化、および乾燥負荷の低減をすることができる。 As the dispersion solvent for the metal nanowire dispersion liquid, water or an organic solvent can be used without particular limitation as long as the dispersant can be dissolved therein. As the organic solvent, for example, an alcohol solvent having a boiling point of 50 ° C. to 250 ° C., more preferably 55 ° C. to 200 ° C. is suitably used. By using such an alcohol-based solvent in combination, it is possible to improve the coating and reduce the drying load in the coating process when producing the conductive member using the metal nanowire dispersion.
 前記アルコール系溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばメタノール、エタノール、1-プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1-エトキシ-2-プロパノール、エタノールアミン、ジエタノールアミン、2-(2-アミノエトキシ)エタノール、2-ジメチルアミノイソプロパノール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、エタノール、1-プロパノール、イソプロパノールが特に好ましい。 The alcohol solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, methanol, ethanol, 1-propanol, isopropanol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300 Glycerin, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine 2- (2-aminoethoxy) ethanol, 2-dimethylaminoisopropanol, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ethanol, 1-propanol, and isopropanol are particularly preferable.
 本態様における金属ナノワイヤ分散液は、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。これらのイオンが残存すると、金属ナノワイヤ分散液を用いて導電性部材を作製した際に導電性部材の耐久性を悪化させることがあるためである。 The metal nanowire dispersion liquid in this embodiment preferably contains as little inorganic ions as possible such as alkali metal ions, alkaline earth metal ions, and halide ions. This is because when these ions remain, the durability of the conductive member may be deteriorated when the conductive member is produced using the metal nanowire dispersion liquid.
 前記金属ナノワイヤ分散液には、必要に応じて、各種の添加剤、例えば、界面活性剤、重合性化合物、酸化防止剤、硫化防止剤、腐食防止剤、粘度調整剤、防腐剤などを含有させることができる。 If necessary, the metal nanowire dispersion contains various additives such as surfactants, polymerizable compounds, antioxidants, sulfidation inhibitors, corrosion inhibitors, viscosity modifiers, preservatives, and the like. be able to.
 前記腐食防止剤としては、使用する物に特に制限はなく、目的に応じて適宜選択することができるが、中でも、アゾール類が好適である。該アゾール類としては、例えばベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾール、メルカプトベンゾトリアゾール、メルカプトベンゾテトラゾール、(2-ベンゾチアゾリルチオ)酢酸、3-(2-ベンゾチアゾリルチオ)プロピオン酸、及びこれらのアルカリ金属塩、アンモニウム塩、並びにアミン塩から選ばれる少なくとも1種が挙げられる。該腐食防止剤を含有することで、一段と優れた防錆効果を発揮することができる。腐食防止剤の添加方法としては、直接金属ナノワイヤ水分散液中に、粉末又は適した溶媒で溶解した状態で添加するか、後述する導電性部材を作製後に、これを腐食防止剤浴に浸すことで付与することができる。 The corrosion inhibitor is not particularly limited, and can be appropriately selected according to the purpose. Among them, azoles are preferable. Examples of the azoles include benzotriazole, tolyltriazole, mercaptobenzothiazole, mercaptobenzotriazole, mercaptobenzotetrazole, (2-benzothiazolylthio) acetic acid, 3- (2-benzothiazolylthio) propionic acid, and these And at least one selected from alkali metal salts, ammonium salts, and amine salts. By containing the corrosion inhibitor, a further excellent rust prevention effect can be exhibited. As a method of adding the corrosion inhibitor, it is added directly in the metal nanowire aqueous dispersion in a state dissolved with a powder or a suitable solvent, or after the conductive member described later is prepared, it is immersed in a corrosion inhibitor bath. Can be granted.
 本態様の金属ナノワイヤ分散液は、インクジェットプリンター用水性インク及びディスペンサー用水性インクにも好ましく用いることができる。インクジェットプリンターによる画像形成用途においては、金属ナノワイヤ分散液を塗設する基板としては、例えば紙、コート紙、表面に親水性ポリマーなどを塗設したPETフィルムなどが挙げられる。 The metal nanowire dispersion of this embodiment can be preferably used for water-based ink for ink jet printers and water-based ink for dispensers. In an image forming application using an inkjet printer, examples of the substrate on which the metal nanowire dispersion liquid is coated include paper, coated paper, and a PET film having a surface coated with a hydrophilic polymer.
 [導電性部材]
 本態様の金属ナノワイヤ分散液を用いた導電性部材は、前記金属ナノワイヤ分散液により形成される導電性層を有する。前記導電性部材は、金属ナノワイヤ分散液を、基板上へ塗設し、乾燥することにより製造される。以下に、導電性部材の製造方法の説明を通じて、導電性部材を詳細に説明する。
[Conductive member]
The conductive member using the metal nanowire dispersion liquid of this embodiment has a conductive layer formed from the metal nanowire dispersion liquid. The conductive member is manufactured by coating a metal nanowire dispersion on a substrate and drying. Below, a conductive member is demonstrated in detail through description of the manufacturing method of a conductive member.
 本態様の金属ナノワイヤ分散液を塗設する基板としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、透明導電体性部材用基板には、以下のものが挙げられる。これらの中でも、製造適性、軽量性、可撓性、光学性(偏光性)などの点からポリマーフィルムが好ましく、PETフィルム、TAC(トリアセチルセルロース)フィルム、PEN(ポリエチレンナフタレート)フィルムが特に好ましい。 The substrate on which the metal nanowire dispersion of this embodiment is coated is not particularly limited and can be appropriately selected depending on the purpose. Examples of the transparent conductive member substrate include the following. Among these, a polymer film is preferable from the viewpoint of production suitability, lightness, flexibility, optical property (polarization property), and the like, and a PET film, a TAC (triacetyl cellulose) film, and a PEN (polyethylene naphthalate) film are particularly preferable. .
 (1)石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックス(登録商標)ガラス、サファイア等のガラス。 (1) Glasses such as quartz glass, alkali-free glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire and the like.
 (2)ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、ポリアリレート、ポリスルフォン、ポリエーテルスルフォン、ポリイミド、PET、TAC、PEN、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の熱可塑性樹脂。 (2) Acrylic resins such as polycarbonate and polymethyl methacrylate, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, polyarylate, polysulfone, polyethersulfone, polyimide, PET, TAC, PEN, fluororesin, Thermoplastic resins such as phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin.
 (3)エポキシ樹脂等の熱硬化性樹脂。 (3) Thermosetting resin such as epoxy resin.
 前記基板に用いる材料としては、必要に応じて複数の部材を併用してもよい。用途に応じてこれらの基板材料から適宜選択して、フィルム状等の可撓性基板、又は剛性のある基板とすることができる。 As a material used for the substrate, a plurality of members may be used in combination as necessary. Depending on the application, the substrate material can be appropriately selected to form a flexible substrate such as a film or a rigid substrate.
 前記基板の形状としては、円盤状、カード状、シート状等のいずれの形状であってもよい。また、三次元的に積層されたものでもよい。更に基板のプリント配線を行なう箇所にアスペクト比1以上の細孔、または細溝を有していてもよく、これらの中に、インクジェットプリンター又はディスペンサーにより本発明の金属ナノワイヤ分散液を吐出することもできる。 The shape of the substrate may be any shape such as a disk shape, a card shape, and a sheet shape. Moreover, the thing laminated | stacked three-dimensionally may be used. Further, the substrate may be provided with fine pores or fine grooves having an aspect ratio of 1 or more at locations where printed wiring is performed, and the metal nanowire dispersion liquid of the present invention may be discharged into these through an ink jet printer or dispenser. it can.
 前記基板は、本発明の金属ナノワイヤ分散液を用いた導電性層を付与するに際し、機能性層の密着性向上および塗布液の濡れ性の向上を目的として、基板の片面又は両面に、親水化処理、凹凸処理などの前処理を施すのがより好ましい。前処理としては、コロナ放電処理、グロー放電処理、プラズマ処理、大気圧プラズマ処理、火炎処理、熱風処理、オゾン・紫外線照射処理、クロム酸処理(湿式)、ケン化処理(湿式)等が挙げられるが、コロナ放電処理、プラズマ処理(真空グロー放電処理および大気圧グロー放電処理)が特に好ましい。
[プラズマ処理]
 前記プラズマ処理としては、真空グロー放電、または大気圧グロー放電等によるプラズマ処理があり、その他の方法としてフレームプラズマ処理等の方法があげられる。これらは、例えば特開平6-123062号公報、特開平11-293011号公報、同11-5857号公報等に記載された方法を用いることが出来る。
When applying the conductive layer using the metal nanowire dispersion liquid of the present invention, the substrate is hydrophilized on one or both sides of the substrate for the purpose of improving the adhesion of the functional layer and improving the wettability of the coating solution. It is more preferable to perform a pretreatment such as a treatment or an uneven treatment. Examples of the pretreatment include corona discharge treatment, glow discharge treatment, plasma treatment, atmospheric pressure plasma treatment, flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, chromic acid treatment (wet), and saponification treatment (wet). However, corona discharge treatment and plasma treatment (vacuum glow discharge treatment and atmospheric pressure glow discharge treatment) are particularly preferred.
[Plasma treatment]
Examples of the plasma treatment include plasma treatment by vacuum glow discharge or atmospheric pressure glow discharge, and other methods include flame plasma treatment and the like. For example, methods described in JP-A-6-123062, JP-A-11-293011, JP-A-11-5857 and the like can be used.
 前記プラズマ処理は、相対する電極の間にこれらの親水性を付与しようとするフィルムを配置し、この装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加する事により、該プラズマ励起性気体をプラズマ励起させ電極間にグロー放電を行わせることにより表面処理が行える。中でも大気圧グロー放電によるものが好ましく用いられる。 In the plasma treatment, a film to be imparted with hydrophilicity is disposed between opposing electrodes, a plasma-exciting gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes, whereby the plasma treatment is performed. Surface treatment can be performed by exciting the excitable gas with plasma and causing glow discharge between the electrodes. Among these, those using atmospheric pressure glow discharge are preferably used.
 前記プラズマ励起性気体としては、使用するものに特に制限は無いが、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物が好ましく、アルゴン、ネオン等の不活性ガスに、カルボキシル基や水酸基、カルボニル基等の極性官能基をプラスチックフィルムの表面に付与できる反応性ガスを加えたものが好ましい。前記反応性ガスとしては、水素、酸素、窒素の他、水蒸気やアンモニア等のガスの他、低級炭化水素、ケトン等の低沸点の有機化合物等も必要に応じ用いることが出来るが、取り扱いの容易さの観点から、水素、酸素、二酸化炭素、窒素、水蒸気等のガスが好ましい。水蒸気を用いる場合は、他のガスを水に通しバブリングしたガスを用いることができる。或いは水蒸気を混合してもよい。  The plasma-exciting gas is not particularly limited, but is preferably chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof, argon, What added the reactive gas which can provide polar functional groups, such as a carboxyl group, a hydroxyl group, and a carbonyl group, to the surface of a plastic film to inert gas, such as neon, is preferable. As the reactive gas, in addition to gases such as hydrogen, oxygen, and nitrogen, water vapor, ammonia, and other low-boiling organic compounds such as lower hydrocarbons and ketones can be used as necessary. From this viewpoint, gases such as hydrogen, oxygen, carbon dioxide, nitrogen, and water vapor are preferable. In the case of using water vapor, a gas obtained by bubbling other gas through water can be used. Alternatively, water vapor may be mixed.
 前記高周波電圧の周波数としては、1kHz以上100kHz以下が好ましく用いられ、より好ましくは1kHz以上10kHz以下である。 The frequency of the high-frequency voltage is preferably 1 kHz or more and 100 kHz or less, more preferably 1 kHz or more and 10 kHz or less.
 前記グロー放電によるプラズマ処理には、真空下でこれを行う方法と、大気圧下でこれを行う方法がある。  The plasma treatment by glow discharge includes a method of performing this under vacuum and a method of performing this under atmospheric pressure.
 前記グロー放電による真空プラズマ放電処理においては、有効に放電を起こさせるために、その雰囲気を0.005~20torrの範囲に保つ様に前記反応性ガスを導入する必要がある。処理速度を上げるには、なるべく高圧側で高出力条件を採用することが好ましいが、電界強度を強くしすぎると基板にダメージを与える場合がある。 In the vacuum plasma discharge treatment by glow discharge, it is necessary to introduce the reactive gas so as to keep the atmosphere in the range of 0.005 to 20 torr in order to cause discharge effectively. In order to increase the processing speed, it is preferable to adopt a high output condition on the high pressure side as much as possible. However, if the electric field strength is increased too much, the substrate may be damaged.
 大気圧近傍でプラズマ放電を行う大気圧グロー放電による場合には、安定に放電を起こさせるためにヘリウムやアルゴン等の不活性ガスが必要であり、前記プラズマ励起性気体のうち60%以上を不活性ガスで占めることにより、安定に放電を起こさせることができる。しかしながら余り不活性ガスが多く、前記反応性ガスの割合が少ないと処理速度が低下する。電界強度を強くしすぎてもやはり基板にダメージを与えることがある。 In the case of atmospheric pressure glow discharge in which plasma discharge is performed in the vicinity of atmospheric pressure, an inert gas such as helium or argon is necessary to cause stable discharge, and 60% or more of the plasma-exciting gas is inactive. By occupying with the active gas, it is possible to cause a stable discharge. However, if there is too much inert gas and the proportion of the reactive gas is small, the processing speed decreases. Even if the electric field strength is increased too much, the substrate may still be damaged.
 又、大気圧近傍でプラズマ処理を行う場合でも、パルス化された電界でプラズマを発生させる場合には、上記不活性ガスは必ずしも必要でなく、反応ガス濃度を上げることが出来、反応速度を大きくする事が出来る。
[コロナ放電処理]
 前記コロナ放電処理は、従来公知のいずれの方法、例えば特公昭48-5043号公報、同47-51905号公報、特開昭47-28067号公報、同49-83767号公報、同51-41770号公報、同51-131576号公報等に開示された方法により達成することができる。コロナ放電処理機としては市販の各種コロナ処理機が適用でき、例えばSOFTAL(ソフタル)社のマルチナイフ電極を有するコロナ放電処理機は多数本の電極で構成され、電極の間に空気を送ることによりフィルムの加熱防止やフィルム表面に出てくる低分子の除去等が行えるので有用である。また、片面に導電性層を付与した基板の、導電性層を付与していない面に対するコロナ放電処理は、電極と導電性層の間のスパークを避けるために、放電電極としては誘電体被覆電極(セラミック電極、クォーツ電極など)を、対向電極としてはステンレスなどの金属ロールを用いて行うことが望ましい。
Even when plasma treatment is performed in the vicinity of atmospheric pressure, the inert gas is not necessarily required when generating plasma with a pulsed electric field, and the concentration of the reaction gas can be increased and the reaction rate can be increased. I can do it.
[Corona discharge treatment]
The corona discharge treatment may be performed by any conventionally known method, for example, Japanese Patent Publication Nos. 48-5043, 47-51905, JP-A 47-28067, 49-83767, and 51-41770. This can be achieved by the method disclosed in Japanese Patent Laid-Open No. 51-131576. As the corona discharge treatment machine, various commercially available corona treatment machines can be applied. For example, a corona discharge treatment machine having a multi-knife electrode of SOFTAL (Sophthal) is composed of a large number of electrodes, and air is sent between the electrodes. This is useful because it can prevent the film from being heated and remove low molecules that appear on the film surface. In addition, the corona discharge treatment of the substrate provided with the conductive layer on one side, to the surface not provided with the conductive layer, is a dielectric coated electrode as a discharge electrode in order to avoid sparks between the electrode and the conductive layer. (Ceramic electrode, quartz electrode, etc.) are preferably performed using a metal roll such as stainless steel as the counter electrode.
 前記コロナ処理の条件としては、使用する基板の種類、塗膜のマトリクスの種類、及び用いるコロナ処理機の種類等によって異なるが、コロナ表面処理は、照射エネルギーが0.1J/m2以上10J/m以下の範囲で行うのが好ましく、0.5J/m以上5J/m以下がより好ましい。 The corona treatment conditions vary depending on the type of substrate used, the type of coating film matrix, the type of corona treatment machine used, etc., but in the corona surface treatment, the irradiation energy is 0.1 J / m 2 or more and 10 J / m. It is preferable to carry out in the range of 2 or less, and more preferably 0.5 J / m 2 or more and 5 J / m 2 or less.
 これらの表面処理を施すことにより、基板表面を親水化処理した場合、基板表面の水に対する接触角は、好ましくは、0°~40°、より好ましくは0°~20°、最も好ましくは0°~10°の範囲であることが好ましい。 When the surface of the substrate is hydrophilized by applying these surface treatments, the contact angle of the substrate surface with water is preferably 0 ° to 40 °, more preferably 0 ° to 20 °, and most preferably 0 °. A range of ˜10 ° is preferable.
 本実施の形態においては、前記導電性部材を形成後に、腐食防止剤浴に通すことも好ましく行なうことができ、これにより、更に優れた腐食防止効果を得ることができる。 In the present embodiment, after forming the conductive member, it can be preferably passed through a corrosion inhibitor bath, whereby a further excellent corrosion prevention effect can be obtained.
 本態様の金属ナノワイヤ分散液を基板上に形成する方法としては一般的な塗布方法で行うことができ、特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。
(用途)
 本態様の金属ナノワイヤ分散液を用いた導電性部材は、例えばタッチパネル、ディスプレイ用帯電防止、電磁波シールド、有機又は無機ELディスプレイ用電極、その他フレキシブルディスプレイ用電極・帯電防止、太陽電池用電極、電子ペーパー等の各種デバイスなどに幅広く適用される。
The method for forming the metal nanowire dispersion liquid of the present embodiment on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected depending on the purpose. For example, roll coating method, bar coating Method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
(Use)
Examples of the conductive member using the metal nanowire dispersion of this embodiment include touch panels, antistatics for displays, electromagnetic wave shields, electrodes for organic or inorganic EL displays, electrodes for flexible displays / antistatics, electrodes for solar cells, and electronic paper. It is widely applied to various devices such as.
 以下、本発明の実施例を挙げ、本発明を、より詳細に説明する。但し、本発明は、これらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention. However, the present invention is not limited to these examples.
 <金属ナノワイヤの平均短軸長(平均直径)及び平均長軸長>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用いて拡大観察される金属ナノワイヤから、ランダムに選択した300本の金属ナノワイヤの短軸長(直径)と長軸長を測定し、その平均値から金属ナノワイヤの平均短軸長(平均直径)及び平均長軸長を求めた。
<Average minor axis length (average diameter) and average major axis length of metal nanowires>
Measures the short axis length (diameter) and long axis length of 300 metal nanowires randomly selected from metal nanowires that are magnified using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.) And the average minor-axis length (average diameter) and average major-axis length of metal nanowire were calculated | required from the average value.
 <金属ナノワイヤの短軸長(直径)の変動係数>
 上記電子顕微鏡(TEM)像からランダムに選択した300本のナノワイヤの短軸長(直径)を測定し、その300本についての標準偏差と平均値を計算することにより、求めた。
<Coefficient of variation of short axis length (diameter) of metal nanowires>
The short axis length (diameter) of 300 nanowires randomly selected from the electron microscope (TEM) image was measured, and the standard deviation and average value of the 300 nanowires were calculated.
 (調製例1、2:銀ナノワイヤの合成)
 (調製例1)
―銀ナノワイヤ分散液(1)の調製―
 予め、下記の添加液A、B、C、及び、Dを調製した。
(Preparation Examples 1 and 2: Synthesis of silver nanowires)
(Preparation Example 1)
-Preparation of silver nanowire dispersion (1)-
The following additive solutions A, B, C, and D were prepared in advance.
 〔添加液A〕
 ステアリルトリメチルアンモニウムクロリド60mg、ステアリルトリメチルアンモニウムヒドロキシド10%水溶液6.0g、グルコース2.0gを蒸留水120.0gに溶解させ、反応溶液A-1とした。さらに、硝酸銀粉末70mgを蒸留水2.0gに溶解させ、硝酸銀水溶液A-1とした。反応溶液A-1を25℃に保ち、激しく攪拌しながら、硝酸銀水溶液A-1を添加した。硝酸銀水溶液A-1の添加後から180分間激しく攪拌し、添加液Aとした。
[Additive liquid A]
Stearyltrimethylammonium chloride 60 mg, stearyltrimethylammonium hydroxide 10% aqueous solution 6.0 g, and glucose 2.0 g were dissolved in distilled water 120.0 g to obtain reaction solution A-1. Further, 70 mg of silver nitrate powder was dissolved in 2.0 g of distilled water to obtain an aqueous silver nitrate solution A-1. The reaction solution A-1 was kept at 25 ° C., and the aqueous silver nitrate solution A-1 was added with vigorous stirring. After the addition of the aqueous silver nitrate solution A-1, the mixture was vigorously stirred for 180 minutes to obtain additive solution A.
 〔添加液B〕
 硝酸銀粉末42.0gを蒸留水958gに溶解し、添加液Bとした。
[Additive solution B]
42.0 g of silver nitrate powder was dissolved in 958 g of distilled water to obtain additive solution B.
 〔添加液C〕
 25%アンモニア水75gを蒸留水925gと混合し、添加液Cとした。
[Additive liquid C]
75 g of 25% aqueous ammonia was mixed with 925 g of distilled water to obtain additive C.
 〔添加液D〕
 ポリビニルピロリドン(PVP)(K30)400gを蒸留水1.6kgに溶解し、添加液Dとした。
[Additive liquid D]
400 g of polyvinylpyrrolidone (PVP) (K30) was dissolved in 1.6 kg of distilled water to obtain an additive solution D.
 次に、以下のようにして、銀ナノワイヤ分散液(1)を調製した。ステアリルトリメチルアンモニウムブロミド粉末1.30gと臭化ナトリウム粉末33.1gとグルコース粉末1,000g、硝酸(1N)115.0gを80℃の蒸留水12.7kgに溶解させた。この液を80℃に保ち、500rpmで攪拌しながら、添加液Aを添加速度250ml/分、添加液Bを500ml/分、添加液Cを500ml/分で順次添加した。次いで、攪拌速度200rpm、80℃で100分間、加熱攪拌を続けた後に、25℃に冷却した。その後、攪拌速度を500rpmに変更し、添加液Dを500ml/分で添加した。この液を銀ナノワイヤ分散液(1)とした。 Next, a silver nanowire dispersion liquid (1) was prepared as follows. 1.30 g of stearyltrimethylammonium bromide powder, 33.1 g of sodium bromide powder, 1,000 g of glucose powder and 115.0 g of nitric acid (1N) were dissolved in 12.7 kg of distilled water at 80 ° C. While this liquid was kept at 80 ° C. and stirred at 500 rpm, the additive liquid A was added successively at an addition rate of 250 ml / min, the additive liquid B at 500 ml / min, and the additive liquid C at 500 ml / min. Next, the mixture was continuously heated and stirred at a stirring speed of 200 rpm and 80 ° C. for 100 minutes, and then cooled to 25 ° C. Thereafter, the stirring speed was changed to 500 rpm, and the additive solution D was added at 500 ml / min. This liquid was used as a silver nanowire dispersion liquid (1).
 (調製例2)
 ―銀ナノワイヤ分散液(2)の調製―
 銀ナノワイヤ分散液(1)の調製において、添加液Dを添加しない以外は銀ナノワイヤ分散液(1)の調整と同様にして、銀ナノワイヤ分散液(2)を調製した。
(Preparation Example 2)
-Preparation of silver nanowire dispersion (2)-
A silver nanowire dispersion liquid (2) was prepared in the same manner as the preparation of the silver nanowire dispersion liquid (1) except that the additive liquid D was not added in the preparation of the silver nanowire dispersion liquid (1).
 (実施例1)
 <<銀ナノワイヤ分散液(11)>>
 銀ナノワイヤ分散液(1)を、図5に示す装置の添加タンク201に投入した。次に、低分子分散剤の剥離溶液として、n-プロパノールを第2の添加タンク202に投入した。第1の送液ポンプ211および第2の送液ポンプ212を動作させて、銀ナノワイヤ分散液(1)とn-プロパノールを、それぞれ300ml/分の流量で送液し、T字型流路のフロー混合装置221で混合し、得られた混合液を回収タンク203で回収し、混合液(11)とした。
Example 1
<< Silver Nanowire Dispersion (11) >>
The silver nanowire dispersion liquid (1) was put into the addition tank 201 of the apparatus shown in FIG. Next, n-propanol was charged into the second addition tank 202 as a peeling solution for the low molecular dispersant. The first liquid feed pump 211 and the second liquid feed pump 212 are operated to feed the silver nanowire dispersion liquid (1) and n-propanol at a flow rate of 300 ml / min. It mixed with the flow mixing apparatus 221, and the obtained liquid mixture was collect | recovered with the collection tank 203, and it was set as the liquid mixture (11).
 <精製工程>
 混合液(11)を、分画分子量15万の限外濾過モジュールを用いて、次のとおりにクロスフロー方式での限外濾過精製を実施した。混合液(11)を4倍に濃縮した後、蒸留水とn-プロパノールの混合液(体積比=1:1)の混合液(11)への添加と濃縮を繰り返し、最終的に濃縮液の電導度が0.5mS/mになるまで精製を行った。なお、精製中は、濾過フィルタに固形分が堆積して濾過効率が低下することを防ぐため、5分間隔でフィルタの逆洗浄を実施しながら混合液の精製を行った。精製した液を回収し、銀ナノワイヤ分散液(11)とした。
<Purification process>
The mixture (11) was subjected to ultrafiltration purification by a crossflow method as follows using an ultrafiltration module having a molecular weight cut off of 150,000. After the liquid mixture (11) was concentrated 4 times, the addition and concentration of the liquid mixture of distilled water and n-propanol (volume ratio = 1: 1) to the liquid mixture (11) were repeated, and finally the liquid concentrate Purification was performed until the conductivity reached 0.5 mS / m. During purification, the mixture was purified while backwashing the filter at 5-minute intervals in order to prevent solids from being deposited on the filtration filter and reducing the filtration efficiency. The purified liquid was collected and used as a silver nanowire dispersion liquid (11).
 得られた銀ナノワイヤ分散液(11)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.4nm、平均長軸長8.0μm、変動係数が14.7%であった。平均アスペクト比は441であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (11), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.4 nm, the average major axis length was 8.0 μm, and the coefficient of variation was 14.7%. The average aspect ratio was 441.
 (調製例3~6:基板の前処理)
 (調製例3)
-PET基板の前処理-
 下記の配合で接着用溶液1を調製した。
(Preparation Examples 3 to 6: Pretreatment of substrate)
(Preparation Example 3)
-Pretreatment of PET substrate-
A bonding solution 1 was prepared with the following composition.
 [接着用溶液1]
・タケラックWS-4000                     5.0部
(固形分濃度30%、三井化学(株)製)
・界面活性剤                            0.3部
(ナローアクティHN-100、三洋化成工業(株)製)
・界面活性剤                            0.3部
(サンデットBL、固形分濃度43%、三洋化成工業(株)製)
・水                               94.4部
 厚さ125μmのPET基板の一方の面にコロナ放電処理を施した。このコロナ放電処理を施した面に、上記の接着用溶液1を塗布し120℃で2分乾燥させて、厚さが0.11μmの接着層1を形成した。
[Adhesive solution 1]
-Takelac WS-4000 5.0 parts (solid content concentration 30%, manufactured by Mitsui Chemicals, Inc.)
・ Surfactant 0.3 part (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries)
・ Surfactant 0.3 part (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.)
-94.4 parts of water Corona discharge treatment was performed on one surface of a 125 μm thick PET substrate. The adhesive solution 1 was applied to the surface subjected to the corona discharge treatment and dried at 120 ° C. for 2 minutes to form an adhesive layer 1 having a thickness of 0.11 μm.
 次に、以下の配合で、接着用溶液2を調製した。 Next, an adhesion solution 2 was prepared with the following composition.
 [接着用溶液2]
・テトラエトキシシラン                       5.0部
(KBE-04、信越化学工業(株)製)
・3-グリシドキシプロピルトリメトキシシラン            3.2部
(KBM-403、信越化学工業(株)製)
・2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン  1.8部
(KBM-303、信越化学工業(株)製)
・酢酸水溶液(酢酸濃度=0.05%、pH=5.2)        10.0部
・硬化剤                              0.8部
(ホウ酸、和光純薬工業(株)製)
・コロイダルシリカ                        60.0部
(スノーテックスO、平均粒子径10nm~20nm、固形分濃度20%、pH=2.6、日産化学工業(株)製)
・界面活性剤                            0.2部
(ナローアクティHN-100、三洋化成工業(株)製)
・界面活性剤                            0.2部
(サンデットBL、固形分濃度43%、三洋化成工業(株)製)
 接着用溶液2は、以下の方法で調製した。酢酸水溶液を激しく攪拌しながら、3-グリシドキシプロピルトリメトキシシラン(KBM-403)を、この酢酸水溶液中に3分間かけて滴下した。次に、得られた酢酸水溶液中に、これを強く攪拌しながら2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303)を3分間かけて添加した。次に、KBM-403とKBM-303とを含む酢酸水溶液中に、これを強く攪拌しながらテトラメトキシシランを、5分かけて添加し、その後2時間攪拌を続けた。次に、コロイダルシリカと、硬化剤と、界面活性剤とを順次ここに添加し、接着用溶液2を調製した。
[Adhesive solution 2]
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 3.2 parts of 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 1.8 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ Acetic acid aqueous solution (Acetic acid concentration = 0.05%, pH = 5.2) 10.0 parts ・ Curing agent 0.8 parts (Boric acid, manufactured by Wako Pure Chemical Industries, Ltd.)
Colloidal silica 60.0 parts (Snowtex O, average particle size 10 nm to 20 nm, solid content concentration 20%, pH = 2.6, manufactured by Nissan Chemical Industries, Ltd.)
・ Surfactant 0.2 parts (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries, Ltd.)
・ Surfactant 0.2 parts (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.)
The bonding solution 2 was prepared by the following method. While stirring the aqueous acetic acid solution vigorously, 3-glycidoxypropyltrimethoxysilane (KBM-403) was added dropwise to the aqueous acetic acid solution over 3 minutes. Next, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303) was added to the resulting aqueous acetic acid solution over 3 minutes while vigorously stirring. Next, tetramethoxysilane was added to the acetic acid aqueous solution containing KBM-403 and KBM-303 with vigorous stirring over 5 minutes, and then the stirring was continued for 2 hours. Next, colloidal silica, a curing agent, and a surfactant were sequentially added thereto to prepare an adhesive solution 2.
 この接着用溶液2をコロナ放電処理を施した接着層1の上にバーコート法により塗布し、170℃で5分間加熱して乾燥し、厚さ4.1μmの接着層2を形成した。その後、接着層2の上にコロナ放電処理を施し、前処理PET基板を得た。以後、「PET基板」と表記する場合は、上記前処理で得られたPET基板を示す。 The adhesive solution 2 was applied on the adhesive layer 1 subjected to corona discharge treatment by a bar coating method, heated at 170 ° C. for 5 minutes and dried to form an adhesive layer 2 having a thickness of 4.1 μm. Thereafter, a corona discharge treatment was performed on the adhesive layer 2 to obtain a pretreated PET substrate. Hereinafter, the “PET substrate” indicates the PET substrate obtained by the pretreatment.
 (調製例4)
 -ガラス基板の前処理-
 水酸化ナトリウム1%水溶液に浸漬した厚み0.7μmの無アルカリガラス基板を、超音波洗浄機で30分間超音波照射し、ついでイオン交換水で60秒間水洗した後200℃で60分間加熱処理を行った。その後、シランカップリング液(N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン0.3%水溶液(商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄してガラス基板を得た。以後、「ガラス基板」と表記する場合は、上記前処理で得られた無アルカリガラス基板を示す。
(Preparation Example 4)
-Pretreatment of glass substrate-
A 0.7-μm-thick alkali-free glass substrate immersed in a 1% aqueous solution of sodium hydroxide was subjected to ultrasonic irradiation with an ultrasonic cleaner for 30 minutes, then washed with ion-exchanged water for 60 seconds, and then heat-treated at 200 ° C. for 60 minutes. went. Thereafter, a silane coupling solution (N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane 0.3% aqueous solution (trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower, A glass substrate was obtained by water shower cleaning, and hereinafter, the “glass substrate” refers to an alkali-free glass substrate obtained by the above pretreatment.
 (調製例5)
 -ポリカーボネート基板の前処理-
 ポリカーボネート基板(厚み75μm)の表面をコロナ放電処理したのちに、0.02%のN-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン水溶液をバーコート法で塗布量8.8mg/mとなるように塗布し、100℃1分で乾燥し、表面処理されたポリカーボネート基板を得た。以後、「ポリカーボネート基板」と表記する場合は、上記前処理で得られたポリカーボネート基板を示す。
(Preparation Example 5)
-Pretreatment of polycarbonate substrate-
After the surface of the polycarbonate substrate (thickness 75 μm) is subjected to corona discharge treatment, a 0.02% N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane aqueous solution is applied at a coating amount of 8.8 mg / m by the bar coating method. 2 and dried at 100 ° C. for 1 minute to obtain a surface-treated polycarbonate substrate. Hereinafter, the “polycarbonate substrate” refers to the polycarbonate substrate obtained by the pretreatment.
 (調製例6)
 -TAC基板の前処理-
 TAC(トリアセチルセルロース)基板(厚み100μm)の表面をコロナ放電処理したのちに、0.02%のN-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン水溶液をバーコート法で塗布量8.8mg/mとなるように塗布し、100℃1分で乾燥し、表面処理されたTAC基板を得た。以後、「TAC基板」と表記する場合は、上記前処理で得られたTAC基板を示す。
(Preparation Example 6)
-Pretreatment of TAC substrate-
After the surface of a TAC (triacetylcellulose) substrate (thickness 100 μm) is corona discharge treated, 0.02% N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane aqueous solution is applied by bar coating. It apply | coated so that it might become 8.8 mg / m < 2 >, and it dried at 100 degreeC for 1 minute, and obtained the surface-treated TAC board | substrate. Hereinafter, the “TAC substrate” indicates the TAC substrate obtained by the pretreatment.
 (調製例7)
 <<導電性部材(1)の形成>>
 銀ナノワイヤ分散液(11)と、下記ゾルゲル塗布液を、質量比でAg:テトラエトキシシラン(TEOS):=1:7.2となるよう混合し、調製例3で得られたPET基板上に銀量が0.017g/mとなるようにバーコートし、120℃で3分乾燥し、導電性部材(1)を作製した。
(Preparation Example 7)
<< Formation of Conductive Member (1) >>
The silver nanowire dispersion liquid (11) and the following sol-gel coating liquid were mixed at a mass ratio of Ag: tetraethoxysilane (TEOS): = 1: 7.2, and the mixture was placed on the PET substrate obtained in Preparation Example 3. Bar coating was performed so that the amount of silver was 0.017 g / m 2, and drying was performed at 120 ° C. for 3 minutes.
 <ゾルゲル塗布液>
 下記組成物を60℃で1時間撹拌して均一になったことを確認し、ゾルゲル塗布液とした。
<Sol-gel coating solution>
The following composition was stirred at 60 ° C. for 1 hour to confirm that the composition became uniform, and a sol-gel coating solution was obtained.
 <ゾルゲル塗布液>
・テトラエトキシシラン                       5.0部
(KBE-04、信越化学工業(株)製)
・1%酢酸水溶液                         10.5部
・蒸留水                              4.0部
 <<パターン化導電性部材(11)>>
 前記導電性部材(1)に対して、下記ポジレジスト処方によりパターン化処理を実施し、パターン化導電性部材(11)を作製した。
<Sol-gel coating solution>
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
1% acetic acid aqueous solution 10.5 parts Distilled water 4.0 parts << Patterned conductive member (11) >>
The conductive member (1) was subjected to a patterning process according to the following positive resist formulation to produce a patterned conductive member (11).
 <ポジレジスト処方>
 (合成例1)
 <バインダー(A-1)の合成>
 共重合体を構成するモノマー成分として、MAA(メタクリル酸、7.79g)、BzMA(ベンジルメタクリレート、37.21g)を使用し、ラジカル重合開始剤としてAIBN(0.5g)を使用し、これらを溶剤PGMEA(プロピレングリコールモノメチルエーテルアセテート、55.00g)中において重合反応させることにより下記構造式で示されるバインダー(A-1)のPGMEA溶液(固形分濃度:45質量%)を得た。なお、重合温度は、温度60℃から100℃に調整した。
<Positive resist formulation>
(Synthesis Example 1)
<Synthesis of binder (A-1)>
MAA (methacrylic acid, 7.79 g) and BzMA (benzyl methacrylate, 37.21 g) are used as monomer components constituting the copolymer, and AIBN (0.5 g) is used as a radical polymerization initiator. A polymerization reaction was performed in a solvent PGMEA (propylene glycol monomethyl ether acetate, 55.00 g) to obtain a PGMEA solution (solid content concentration: 45% by mass) of the binder (A-1) represented by the following structural formula. The polymerization temperature was adjusted from 60 ° C. to 100 ° C.
 分子量はゲルパーミエーションクロマトグラフィ法(GPC)を用いて測定した結果、ポリスチレン換算による重量平均分子量(Mw)は30,000、分子量分布(Mw/Mn)は2.21であった。 The molecular weight was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 -感光性組成物(1)の調製-
 バインダー(A-1)4.19質量部(固形分40.0質量%、PGMEA溶液)、感光性化合物としての下記構造式で表されるTAS-200(エステル化率66%、東洋合成株式会社製)0.95質量部、架橋剤としてのEHPE-3150(ダイセル化学株式会社製)0.80質量部、及びPGMEA 19.06質量部を加え、攪拌し、感光性組成物(1)を調製した。
-Preparation of photosensitive composition (1)-
4.19 parts by weight of binder (A-1) (solid content: 40.0% by weight, PGMEA solution), TAS-200 represented by the following structural formula as a photosensitive compound (esterification rate: 66%, Toyo Gosei Co., Ltd.) 0.95 parts by mass), 0.80 part by mass of EHPE-3150 (manufactured by Daicel Chemical Industries) as a crosslinking agent, and 19.06 parts by mass of PGMEA were added and stirred to prepare a photosensitive composition (1). did.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 <<レジストパターニング工程>>
 導電性部材(1)上に、感光性組成物(1)を乾燥膜厚5μmとなるようバーコート法により塗布し、100℃のオーブンで1分間乾燥した。この基板に露光マスク上から、高圧水銀灯i線(365nm)を強度60mJ/cm(照度20mW/cm)で照射し、露光した。露光後の基板を、2.38%テトラメチルアンモニウムヒドロキシド水溶液で、60秒間シャワー現像を行った。シャワー圧は0.04MPa、ストライプパターンが出現するまでの時間は30秒であった。純水のシャワーでリンスした後、50℃で1分間乾燥し、レジストパターン付導電性部材(1)を作製した。
<< resist patterning process >>
On the electroconductive member (1), the photosensitive composition (1) was apply | coated by the bar-coat method so that it might become a dry film thickness of 5 micrometers, and it dried for 1 minute in 100 degreeC oven. The substrate was exposed by irradiating a high pressure mercury lamp i-line (365 nm) with an intensity of 60 mJ / cm 2 (illuminance 20 mW / cm 2 ) from above the exposure mask. The exposed substrate was subjected to shower development with a 2.38% tetramethylammonium hydroxide aqueous solution for 60 seconds. The shower pressure was 0.04 MPa, and the time until the stripe pattern appeared was 30 seconds. After rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to prepare a conductive member (1) with a resist pattern.
 また、露光マスクは、ライン/スペースが150/150μm、細線長さが1.5cmとした。 Further, the exposure mask had a line / space of 150/150 μm and a thin line length of 1.5 cm.
 <<エッチング工程>>
 レジストパターン付導電性部材(1)を、30℃、1.0%の硝酸水溶液、1.0%Fe(III)-EDTA、1.0%チオ硫酸アンモニウム、の混合水溶液からなるエッチング液(1)に浸漬させ、エッチングを行い、純水のシャワーでリンスした後、50℃で1分間乾燥し、レジストパターン付パターン状導電性部材(1)Aを作製した。
<< Etching process >>
Etching solution (1) comprising a conductive member with a resist pattern (1), a mixed aqueous solution of 30 ° C., 1.0% nitric acid aqueous solution, 1.0% Fe (III) -EDTA, 1.0% ammonium thiosulfate After immersing in, etching and rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to prepare a patterned conductive member (1) A with a resist pattern.
 <<レジスト剥離工程>>
 レジストパターン付パターン状導電性部材(1)Aにマスクをせず、高圧水銀灯i線(365nm)を強度100mJ/cm(照度20mW/cm)で照射し、露光を行った。露光後の基板を、2.38%テトラメチルアンモニウムヒドロキシド水溶液で75秒間シャワー現像を行った。シャワー圧は0.05MPaであった。純水のシャワーでリンスした後、50℃で1分間乾燥し、パターン化導電性部材(11)を作製した。
<< Resist stripping process >>
The patterned conductive member with a resist pattern (1) A was exposed without being masked, and irradiated with a high-pressure mercury lamp i-line (365 nm) at an intensity of 100 mJ / cm 2 (illuminance 20 mW / cm 2 ). The exposed substrate was subjected to shower development with a 2.38% tetramethylammonium hydroxide aqueous solution for 75 seconds. The shower pressure was 0.05 MPa. After rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to produce a patterned conductive member (11).
 (実施例2)
 <<銀ナノワイヤ分散液(12)>>
 銀ナノワイヤ分散液(2)を、図6に示す装置の第1の添加タンク301に投入した。次に、ポリビニルピロリドン(K30)水溶液を、第2の添加タンク302に投入した。さらに、低分子分散剤の剥離溶液として、n-プロパノールを第3の添加タンク303に投入した。第1の送液ポンプ311、第2の送液ポンプ312および第3の送液ポンプ313を動作させて、銀ナノワイヤ分散液(2)とポリビニルピロリドン(K30)水溶液を、銀ナノワイヤ分散液(2)を200ml/分の流量で、ポリビニルピロリドン(K30)水溶液を100ml/分の流量で送液してT字型流路の第1のフロー混合装置321で混合し、その後n-プロパノールを300ml/分の流量で送液してT字型流路の第2のフロー混合装置322で混合し、得られた混合液を回収タンク304で回収し、混合液(12)とした。
(Example 2)
<< Silver Nanowire Dispersion (12) >>
The silver nanowire dispersion liquid (2) was put into the first addition tank 301 of the apparatus shown in FIG. Next, a polyvinyl pyrrolidone (K30) aqueous solution was put into the second addition tank 302. Further, n-propanol was put into the third addition tank 303 as a peeling solution for the low molecular dispersant. The first liquid feed pump 311, the second liquid feed pump 312 and the third liquid feed pump 313 are operated, and the silver nanowire dispersion (2) and the polyvinylpyrrolidone (K30) aqueous solution are converted into the silver nanowire dispersion (2 ) At a flow rate of 200 ml / min and an aqueous polyvinylpyrrolidone (K30) solution at a flow rate of 100 ml / min and mixed by the first flow mixing device 321 having a T-shaped flow path, and then n-propanol at 300 ml / min. The liquid was fed at a flow rate of minutes and mixed by the second flow mixing device 322 having a T-shaped channel, and the obtained liquid mixture was recovered by the recovery tank 304 to obtain a liquid mixture (12).
 <精製工程>
 混合液(12)を、分画分子量15万の限外濾過モジュールを用いて、次のとおりにクロスフロー方式での限外濾過精製を実施した。混合液(12)を4倍に濃縮した後、蒸留水とn-プロパノールの混合液(体積比=1:1)の混合液(12)への添加と濃縮を繰り返し、最終的に濃縮液の電導度が0.5mS/mになるまで精製を行った。なお、精製中は、濾過フィルタに固形分が堆積して濾過効率が低下することを防ぐため、5分間隔でフィルタの逆洗浄を実施しながら混合液の精製を行った。精製した液を回収し、銀ナノワイヤ分散液(12)とした。
<Purification process>
The mixed solution (12) was subjected to ultrafiltration purification by a cross flow method as follows using an ultrafiltration module having a molecular weight cut off of 150,000. After the mixture (12) was concentrated 4 times, the addition and concentration of a mixture of distilled water and n-propanol (volume ratio = 1: 1) to the mixture (12) were repeated, and finally the concentrated solution Purification was performed until the conductivity reached 0.5 mS / m. During purification, the mixture was purified while backwashing the filter at 5-minute intervals in order to prevent solids from being deposited on the filtration filter and reducing the filtration efficiency. The purified liquid was collected and used as a silver nanowire dispersion liquid (12).
 得られた銀ナノワイヤ分散液(12)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.5nm、平均長軸長8.1μm、変動係数が14.6%であった。平均アスペクト比は439であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (12), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.5 nm, the average major axis length was 8.1 μm, and the coefficient of variation was 14.6%. The average aspect ratio was 439.
 <<パターン化導電性部材(12)>>
 パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(12)に変えた以外はパターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(12)を作製した。
<< Patterned conductive member (12) >>
In the production of the patterned conductive member (11), the patterned conductive material was prepared in the same manner as the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (12). A sex member (12) was produced.
 (実施例3)
 <<銀ナノワイヤ分散液(13)>>
 銀ナノワイヤ分散液(2)を、図5に示す装置の添加タンク201に投入した。次に、ポリビニルピロリドン(K30)をn-プロパノールに溶解し、第2の添加タンク202に投入した。第1の送液ポンプ211および第2の送液ポンプ212を動作させて、銀ナノワイヤ分散液(2)とポリビニルピロリドン(K30)を溶解させたn-プロパノールを、それぞれ300ml/分の流量で送液してT字型流路のフロー混合装置221で混合し、得られた混合液を回収タンク203で回収し、混合液(13)とした。
(Example 3)
<< Silver nanowire dispersion (13) >>
The silver nanowire dispersion liquid (2) was put into the addition tank 201 of the apparatus shown in FIG. Next, polyvinylpyrrolidone (K30) was dissolved in n-propanol and charged into the second addition tank 202. The first liquid feeding pump 211 and the second liquid feeding pump 212 are operated to feed n-propanol in which silver nanowire dispersion liquid (2) and polyvinylpyrrolidone (K30) are dissolved at a flow rate of 300 ml / min. The mixture was collected by a flow mixing device 221 having a T-shaped channel, and the obtained mixed solution was recovered by a recovery tank 203 to obtain a mixed solution (13).
 <精製工程>
 混合液(13)を、分画分子量15万の限外濾過モジュールを用いて、次のとおりにクロスフロー方式での限外濾過精製を実施した。混合液(13)を4倍に濃縮した後、蒸留水とn-プロパノールの混合液(体積比=1:1)の混合液(13)への添加と濃縮を繰り返し、最終的に濃縮液の電導度が0.5mS/mになるまで精製を行った。なお、精製中は、濾過フィルタに固形分が堆積して濾過効率が低下することを防ぐため、5分間隔でフィルタの逆洗浄を実施しながら混合液の精製を行った。精製した液を回収し、銀ナノワイヤ分散液(13)とした。
<Purification process>
The mixture (13) was subjected to ultrafiltration purification by a crossflow method as follows using an ultrafiltration module having a molecular weight cut off of 150,000. After the liquid mixture (13) was concentrated four times, the addition and concentration of a mixture of distilled water and n-propanol (volume ratio = 1: 1) to the liquid mixture (13) were repeated, and finally the liquid concentrate Purification was performed until the conductivity reached 0.5 mS / m. During purification, the mixture was purified while backwashing the filter at 5-minute intervals in order to prevent solids from being deposited on the filtration filter and reducing the filtration efficiency. The purified liquid was collected and used as a silver nanowire dispersion liquid (13).
 得られた銀ナノワイヤ分散液(13)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.3nm、平均長軸長8.1μm、変動係数が14.5%であった。平均アスペクト比は438であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (13), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.3 nm, the average major axis length was 8.1 μm, and the variation coefficient was 14.5%. The average aspect ratio was 438.
 <<パターン化導電性部材(13)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(13)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(13)を作製した。
<< Patterned conductive member (13) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (13). A conductive conductive member (13) was produced.
 (実施例4)
 <<銀ナノワイヤ分散液(14)>>
 n-プロパノールを激しく攪拌しながら、銀ナノワイヤ分散液(1)を添加し(いわゆるバッチ混合)、そのまま3分間攪拌を続けて、混合液(14)とした。
(Example 4)
<< Silver nanowire dispersion (14) >>
While vigorously stirring n-propanol, the silver nanowire dispersion liquid (1) was added (so-called batch mixing), and stirring was continued for 3 minutes to obtain a mixed liquid (14).
 <精製工程>
 混合液(14)を、分画分子量15万の限外濾過モジュールを用いて、次のとおりにクロスフロー方式での限外濾過精製を実施した。混合液(14)を4倍に濃縮した後、蒸留水とn-プロパノールの混合液(体積比=1:1)の混合液(14)への添加と濃縮を繰り返し、最終的に濃縮液の電導度が0.5mS/mになるまで精製を行った。なお、精製中は、濾過フィルタに固形分が堆積して濾過効率が低下することを防ぐため、5分間隔でフィルタの逆洗浄を実施しながら混合液の精製を行った。精製した液を回収し、銀ナノワイヤ分散液(14)とした。
<Purification process>
The mixed solution (14) was subjected to ultrafiltration purification by a cross flow method as follows using an ultrafiltration module having a molecular weight cut off of 150,000. After the mixture (14) was concentrated four times, the addition and concentration of the mixture of distilled water and n-propanol (volume ratio = 1: 1) to the mixture (14) were repeated, and finally the concentrated solution Purification was performed until the conductivity reached 0.5 mS / m. During purification, the mixture was purified while backwashing the filter at 5-minute intervals in order to prevent solids from being deposited on the filtration filter and reducing the filtration efficiency. The refined liquid was collect | recovered and it was set as the silver nanowire dispersion liquid (14).
 得られた銀ナノワイヤ分散液(14)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.2nm、平均長軸長8.0μm、変動係数が14.4%であった。平均アスペクト比は440であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (14), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.2 nm, the average major axis length was 8.0 μm, and the variation coefficient was 14.4%. The average aspect ratio was 440.
 <<パターン化導電性部材(14)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(14)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(14)を作製した。
<< Patterned conductive member (14) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (14). A conductive conductive member (14) was produced.
 (実施例5)
 <<銀ナノワイヤ分散液(15)>>
 前記銀ナノワイヤ分散液(11)の調製において、クロスフロー方式での限外濾過精製に代えて、混合液(1)を、遠心分離機を用いて2000rpmで20分間遠心分離を行った。上澄み液を除去した後、ここへ蒸留水とn-プロパノールの混合液(体積比=1:1)を添加した。混合液を添加後の溶液の上澄み液の電導度が0.5mS/mになるまで遠心分離を繰り返し、得られた液を回収して、銀ナノワイヤ分散液(15)とした。
(Example 5)
<< Silver nanowire dispersion (15) >>
In the preparation of the silver nanowire dispersion liquid (11), instead of the ultrafiltration purification by the cross flow method, the liquid mixture (1) was centrifuged at 2000 rpm for 20 minutes using a centrifuge. After removing the supernatant, a mixture of distilled water and n-propanol (volume ratio = 1: 1) was added thereto. Centrifugation was repeated until the conductivity of the supernatant of the solution after addition of the mixed solution reached 0.5 mS / m, and the obtained solution was collected to obtain a silver nanowire dispersion (15).
 得られた銀ナノワイヤ分散液(15)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.4nm、平均長軸長8.2μm、変動係数が14.5%であった。平均アスペクト比は438であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (15), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.4 nm, the average major axis length was 8.2 μm, and the coefficient of variation was 14.5%. The average aspect ratio was 438.
 <<パターン化導電性部材(15)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(15)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(15)を作製した。
<< Patterned conductive member (15) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (15). A conductive conductive member (15) was produced.
 (比較例1)
 <<銀ナノワイヤ分散液(C1)>>
 銀ナノワイヤ分散液(1)を、低分子分散剤の剥離液であるn-プロパノールを混合することなく、分画分子量15万の限外濾過モジュールを用いて、次のとおりにクロスフロー方式での限外濾過精製を実施した。混合液(14)を4倍に濃縮した後、蒸留水とn-プロパノールの混合液(体積比=1:1)の混合液(14)への添加と濃縮を繰り返し、最終的に濃縮液の電導度が0.5mS/mになるまで精製を行った。なお、精製中は、濾過フィルタに固形分が堆積して濾過効率が低下することを防ぐため、5分間隔でフィルタの逆洗浄を実施しながら混合液の精製を行った。精製した液を回収し、銀ナノワイヤ分散液(C1)とした。
(Comparative Example 1)
<< Silver nanowire dispersion (C1) >>
The silver nanowire dispersion (1) was mixed with a low molecular weight dispersant exfoliating liquid using an ultrafiltration module with a molecular weight cut off of 150,000, and mixed with a cross flow method as follows. Ultrafiltration purification was performed. After the mixture (14) was concentrated four times, the addition and concentration of the mixture of distilled water and n-propanol (volume ratio = 1: 1) to the mixture (14) were repeated, and finally the concentrated solution Purification was performed until the conductivity reached 0.5 mS / m. During purification, the mixture was purified while backwashing the filter at 5-minute intervals in order to prevent solids from being deposited on the filtration filter and reducing the filtration efficiency. The refined liquid was collect | recovered and it was set as the silver nanowire dispersion liquid (C1).
 得られた銀ナノワイヤ分散液(C1)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.4nm、平均長軸長8.0μm、変動係数が14.4%であった。平均アスペクト比は437であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (C1), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.4 nm, the average major axis length was 8.0 μm, and the variation coefficient was 14.4%. The average aspect ratio was 437.
 <<パターン化導電性部材(C1)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(C1)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(C1)を作製した。
<< Patterned conductive member (C1) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C1). A conductive conductive member (C1) was produced.
 (比較例2)
 <<銀ナノワイヤ分散液(C2)>>
 銀ナノワイヤ分散液(11)の作製において、添加タンク101に投入する液を前記銀ナノワイヤ分散液(1)からポリビニルピロリドンを含まない銀ナノワイヤ分散液(2)に変えた以外は銀ナノワイヤ分散液(11)の作製と同様にして、銀ナノワイヤ分散液(C2)を作製した。
(Comparative Example 2)
<< Silver nanowire dispersion (C2) >>
In the preparation of the silver nanowire dispersion liquid (11), the silver nanowire dispersion liquid (except that the liquid charged into the addition tank 101 was changed from the silver nanowire dispersion liquid (1) to the silver nanowire dispersion liquid (2) not containing polyvinylpyrrolidone) ( A silver nanowire dispersion liquid (C2) was prepared in the same manner as in 11).
 得られた銀ナノワイヤ分散液(C2)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.6nm、平均長軸長8.1μm、変動係数が14.4%であった。平均アスペクト比は438であった。 For the silver nanowire of the obtained silver nanowire dispersion liquid (C2), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.6 nm, the average major axis length was 8.1 μm, and the variation coefficient was 14.4%. The average aspect ratio was 438.
 <<パターン化導電性部材(C2)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(C2)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(C2)を作製した。
<< Patterned conductive member (C2) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C2). A conductive conductive member (C2) was produced.
 (比較例3)
 <<銀ナノワイヤ分散液(C3)>>
 銀ナノワイヤ分散液(11)の作製において、精製工程を実施せず、混合液(1)の状態のままとして、銀ナノワイヤ分散液(C3)を作製した。
(Comparative Example 3)
<< Silver nanowire dispersion (C3) >>
In the production of the silver nanowire dispersion liquid (11), the purification step was not carried out, and the silver nanowire dispersion liquid (C3) was produced in the state of the mixed liquid (1).
 得られた銀ナノワイヤ分散液(C3)の銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、銀ナノワイヤの短軸長の変動係数、平均アスペクト比を測定した。その結果、平均短軸長18.3nm、平均長軸長8.1μm、変動係数が14.6%であった。平均アスペクト比は440であった。 For the silver nanowire of the obtained silver nanowire dispersion (C3), the average minor axis length, the average major axis length, the coefficient of variation of the minor axis length of the silver nanowire, and the average aspect ratio were measured as described above. As a result, the average minor axis length was 18.3 nm, the average major axis length was 8.1 μm, and the coefficient of variation was 14.6%. The average aspect ratio was 440.
 <<パターン化導電性部材(C3)>>
 前記パターン化導電性部材(11)の作製において、銀ナノワイヤ分散液(11)を銀ナノワイヤ分散液(C3)に変えた以外は前記パターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(C3)を作製した。
<< Patterned conductive member (C3) >>
In the production of the patterned conductive member (11), a pattern was obtained in the same manner as in the production of the patterned conductive member (11) except that the silver nanowire dispersion liquid (11) was changed to the silver nanowire dispersion liquid (C3). A conductive conductive member (C3) was produced.
 <<評価>>
 得られたパターン化導電性部材について、後述の方法で抵抗値、透明性、種々耐久性を評価した。評価結果を表1~表2に示す。
<< Evaluation >>
About the obtained patterned electroconductive member, resistance value, transparency, and various durability were evaluated by the below-mentioned method. The evaluation results are shown in Tables 1 and 2.
 <表面抵抗値>
 導電性層の導電性領域の表面抵抗を、三菱化学株式会社製Loresta-GP MCP-T600を用いて測定した。
<Surface resistance value>
The surface resistance of the conductive region of the conductive layer was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
 <光学特性(全光線透過率)>
 パターン化導電性部材の全光線透過率(%)を、ガードナー社製のヘイズガードプラスを用いて測定した。
<Optical characteristics (total light transmittance)>
The total light transmittance (%) of the patterned conductive member was measured using a haze guard plus manufactured by Gardner.
 <光学特性(ヘイズ)>
 パターン化導電性部材のヘイズ(%)を、ガードナー社製のヘイズガードプラスを用いて測定した。
<Optical properties (haze)>
The haze (%) of the patterned conductive member was measured using a haze guard plus manufactured by Gardner.
 <湿熱耐久性>
 パターン化導電性部材を、85℃/85%RH(相対湿度)の環境下に120時間暴露し、暴露前の抵抗値をR0、暴露後の抵抗値をRとして、下記のランク付けを行った。なお、ランクの数字は大きいほど性能が良いことを示しており、ランク3以上では実用上問題の無いレベルである。
<Damp heat durability>
The patterned conductive member was exposed to an environment of 85 ° C./85% RH (relative humidity) for 120 hours, the resistance value before exposure was R0, and the resistance value after exposure was R, and the following ranking was performed. . In addition, it has shown that performance is so good that the number of a rank is large, and it is a level which is satisfactory practically in rank 3 or more.
 〔評価基準〕
5: R/R0が0.9以上、1.1未満
4: R/R0が1.1以上、1.2未満、または0.8以上、0.9未満
3: R/R0が1.2以上、1.3未満、または0.7以上、0.8未満
2: R/R0が1.3以上、1.5未満、または0.6以上、0.7未満
1: R/R0が1.5以上、または0.6未満
 <耐マイグレーション性>
 パターン化導電性部材を、40℃/70%RH(相対湿度)の環境下で、隣り合う電極間で直流3Vの電圧を24時間印加し続け、印加前の抵抗値をR0、印加後の抵抗値をRとして、下記のランク付けを行った。なお、ランクの数字は大きいほど性能が良いことを示しており、ランク3以上では実用上問題の無いレベルである。
〔Evaluation criteria〕
5: R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 <Migration resistance>
In the environment of 40 ° C./70% RH (relative humidity), the patterned conductive member is continuously applied with a voltage of DC 3V between adjacent electrodes for 24 hours, the resistance value before application is R0, and the resistance after application The following ranking was performed with the value R. In addition, it has shown that performance is so good that the number of a rank is large, and it is a level which is satisfactory practically in rank 3 or more.
 〔評価基準〕
5: R/R0が0.9以上、1.1未満
4: R/R0が1.1以上、1.2未満、または0.8以上、0.9未満
3: R/R0が1.2以上、1.3未満、または0.7以上、0.8未満
2: R/R0が1.3以上、1.5未満、または0.6以上、0.7未満
1: R/R0が1.5以上、または0.6未満
 <耐屈曲性>
 直径10mmの円筒マンドレルを備えた円筒形マンドレル屈曲試験器(コーテック(株)社製)を用いて、導電性部材について20回曲げ試験を行い、その前後のクラックの有無および抵抗値の変化(曲げ試験後表面抵抗値R/曲げ試験前表面抵抗値R0)を測定し、下記ランク付けを行った。クラックの有無は目視および光学顕微鏡を用い、表面抵抗値は三菱化学株式会社製Loresta-GP MCP-T600を用いて測定した。クラックが無く且つ表面抵抗値の変化が少ないものほど(1に近いほど)、屈曲性が優れる。ランクの数字は大きいほど性能が良いことを示しており、ランク3以上では実用上問題の無いレベルである。
〔Evaluation criteria〕
5: R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 <Flexibility>
Using a cylindrical mandrel bending tester (manufactured by Cortec Co., Ltd.) equipped with a cylindrical mandrel having a diameter of 10 mm, the conductive member was subjected to a bending test 20 times, and the presence or absence of cracks before and after that and the change in resistance value (bending) Surface resistance value R after test / surface resistance value R0 before bending test) was measured, and the following ranking was performed. The presence or absence of cracks was measured visually and using an optical microscope, and the surface resistance value was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation. Flexibility is better as there is no crack and the change in the surface resistance value is smaller (closer to 1). The larger the rank number, the better the performance. At rank 3 or higher, there is no practical problem.
 〔評価基準〕
5: R/R0が0.9以上、1.1未満
4: R/R0が1.1以上、1.2未満、または0.8以上、0.9未満
3: R/R0が1.2以上、1.3未満、または0.7以上、0.8未満
2: R/R0が1.3以上、1.5未満、または0.6以上、0.7未満
1: R/R0が1.5以上、または0.6未満
 <耐摩耗性>
 導電性部材の導電性層表面をガーゼ(ザビーナミニマックス、KBセーレン製)を用いて20mm×20mmのサイズで500g荷重で50往復擦り、その前後の傷の有無および抵抗値の変化(摩耗後表面抵抗値R/摩耗前表面抵抗値R0)を測定し、下記ランク付けを行った。摩耗試験には、新東科学株式会社製の連続加重引掻試験機Type18s、表面抵抗値は三菱化学株式会社製Loresta-GP MCP-T600を用いて測定した。傷が無く、表面抵抗値の変化が少ないものほど(1に近いほど)、耐摩耗性が優れる。ランク3以上では実用上問題の無いレベルである。
〔Evaluation criteria〕
5: R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6 <Abrasion resistance>
The surface of the conductive layer of the conductive member is rubbed 50 times with a gauze (Zabina Minimax, KB Seiren) at a load of 500 g with a size of 20 mm × 20 mm, and the presence or absence of scratches before and after that and the change in resistance value (after wear) Surface resistance value R / surface resistance value R0 before wear) was measured, and the following ranking was performed. For the abrasion test, a continuous load scratch tester Type 18s manufactured by Shinto Kagaku Co., Ltd. and the surface resistance value were measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation. As the surface is less scratched and the change in the surface resistance value is smaller (closer to 1), the wear resistance is superior. At rank 3 or higher, there is no practical problem.
 〔評価基準〕
5: R/R0が0.9以上、1.1未満
4: R/R0が1.1以上、1.2未満、または0.8以上、0.9未満
3: R/R0が1.2以上、1.3未満、または0.7以上、0.8未満
2: R/R0が1.3以上、1.5未満、または0.6以上、0.7未満
1: R/R0が1.5以上、または0.6未満
〔Evaluation criteria〕
5: R / R0 is 0.9 or more and less than 1.1 4: R / R0 is 1.1 or more and less than 1.2, or 0.8 or more and less than 0.9 3: R / R0 is 1.2 Or more, less than 1.3, or 0.7 or more, less than 0.8 2: R / R0 is 1.3 or more, less than 1.5, or 0.6 or more, less than 0.7 1: R / R0 is 1 .5 or more, or less than 0.6
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1,2の結果から、実施例1~5は、比較例1~3と比較して、低い抵抗値と高い透明性とを有していた。また、実施例1~5によれば、混合方式としてフロー混合が、精製としてクロスフロー濾過が好ましい。 From the results shown in Tables 1 and 2, Examples 1 to 5 had lower resistance values and higher transparency than Comparative Examples 1 to 3. Further, according to Examples 1 to 5, flow mixing is preferable as a mixing method, and cross flow filtration is preferable as purification.
 (実施例6~8)
 パターン化導電性部材(11)の作製において、基板を調製例4で作製したガラス基板、調製例5で作製したポリカーボネート基板、調製例6で作製したTAC基板に変更した以外はパターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(21)~(23)を作製した。作製したパターン化導電性部材の詳細を表3,4に示す。
(Examples 6 to 8)
In the production of the patterned conductive member (11), the patterned conductive member was changed except that the substrate was changed to the glass substrate produced in Preparation Example 4, the polycarbonate substrate produced in Preparation Example 5, and the TAC substrate produced in Preparation Example 6. Patterned conductive members (21) to (23) were produced in the same manner as in (11). Tables 3 and 4 show details of the manufactured patterned conductive members.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <<評価>>
 得られたパターン化導電性部材(21)~(23)について、前述の方法で抵抗値、透明性および種々耐久性を評価した。評価結果を表4に示す。なお、パターン化導電性部材(21)については、基板が屈曲性のないガラス基板であるため、屈曲性試験は実施していない。表3,4の結果から、基板の種類に関係なく、パターン化導電性部材が低い抵抗値と高い透明性とを有していることが分かった。
<< Evaluation >>
The patterned conductive members (21) to (23) thus obtained were evaluated for resistance, transparency and various durability by the methods described above. The evaluation results are shown in Table 4. In addition, about the patterned electroconductive member (21), since a board | substrate is a glass substrate without a flexibility, the flexibility test is not implemented. From the results of Tables 3 and 4, it was found that the patterned conductive member had a low resistance value and a high transparency regardless of the type of the substrate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (実施例9)
 パターン化導電性部材(11)の作製において、バーコート法の変わりに特開2006-95454号公報に例示される、バックアップローラを備えたエクストルージョン型の塗布ヘッドを有するスロットダイコーターにより行った以外はパターン化導電性部材(11)の作製と同様にして、パターン化導電性部材(31)を作製した。
Example 9
The patterned conductive member (11) was produced by a slot die coater having an extrusion coating head having a backup roller, as exemplified in JP-A-2006-95454, instead of the bar coating method. A patterned conductive member (31) was prepared in the same manner as the patterned conductive member (11).
 <<評価>>
 得られたパターン化導電性部材(31)について、前述の方法で抵抗値、透明性および種々耐久性を評価した。評価結果を表5に示す。
<< Evaluation >>
About the obtained patterned electroconductive member (31), resistance value, transparency, and various durability were evaluated by the above-mentioned method. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (実施例10)
 -タッチパネルの作製-
 パターン化導電性部材(21)の透明導電膜を用いて、『最新タッチパネル技術』(2009年7月6日発行、株式会社テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004年12月発行)、「FPD International 2009 Forum T-11講演テキストブック」、「Cypress Semiconductor Corporation アプリケーションノートAN2292」等に記載の方法により、タッチパネルを作製した。
(Example 10)
-Fabrication of touch panel-
Using the transparent conductive film of the patterned conductive member (21), "Latest Touch Panel Technology" (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, "Touch Panel Technology and Development", CMC A touch panel was produced by the method described in Publication (published in December 2004), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292”, and the like.
 作製したタッチパネルを使用した場合、パターン化導電性部材のパターン形状視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作できることが分かった。 When the manufactured touch panel is used, it is excellent in pattern shape visibility of the patterned conductive member, and input of characters etc. or screen operation with at least one of bare hands, hands wearing gloves, pointing tool by improving conductivity It was found that a touch panel with excellent responsiveness can be manufactured.
 <太陽電池の作製>
 (実施例11)
 -アモルファス太陽電池(スーパーストレート型)の作製-
 ガラス基板上に、パターン化導電性部材(21)と同様にして導電性層を形成し、透明導電膜を形成した。但し、パターニング処理は行わず全面均一な透明導電膜とした。その上部にプラズマCVD法により膜厚約16nmのp型、膜厚約350nmのi型、膜厚約30nmのn型アモルファスシリコンを形成し、裏面反射電極としてガリウム添加酸化亜鉛層20nm、銀層200nmを形成し、光電変換素子(集積型太陽電池)を作製した。
<Production of solar cell>
(Example 11)
-Fabrication of amorphous solar cells (super straight type)-
On the glass substrate, the electroconductive layer was formed like the patterned electroconductive member (21), and the transparent conductive film was formed. However, the patterning process was not performed, and the entire surface was made a transparent conductive film. A p-type film with a film thickness of about 16 nm, an i-type film with a film thickness of about 350 nm, and an n-type amorphous silicon film with a film thickness of about 30 nm are formed thereon by a plasma CVD method. To form a photoelectric conversion element (integrated solar cell).
 (実施例12)
 -CIGS太陽電池(サブストレート型)の作製-
 ソーダライムガラス基板上に、直流マグネトロンスパッタ法により膜厚500nm程度のモリブデン電極、真空蒸着法により膜厚約2.6μmのカルコパイライト系半導体材料であるCu(In0.6Ga0.4)Se薄膜、溶液析出法により膜厚約48nmの硫化カドミニウム薄膜、を形成した。
Example 12
-Fabrication of CIGS solar cells (substrate type)-
On a soda lime glass substrate, a molybdenum electrode having a film thickness of about 500 nm by a direct current magnetron sputtering method, and Cu (In 0.6 Ga 0.4 ) Se which is a chalcopyrite semiconductor material having a film thickness of about 2.6 μm by a vacuum deposition method. Two thin films, a cadmium sulfide thin film having a film thickness of about 48 nm, were formed by a solution deposition method.
 その上にパターン化導電性部材(21)の導電性層と同じ導電性層を形成し、ガラス基板上に透明導電膜を形成し、光電変換素子(CIGS太陽電池)を作製した。但し、導電性層形成後のパターニング処理は行わず全面均一な透明導電膜とした。 The same conductive layer as the conductive layer of the patterned conductive member (21) was formed thereon, a transparent conductive film was formed on the glass substrate, and a photoelectric conversion element (CIGS solar cell) was produced. However, a patterning process after the formation of the conductive layer was not performed, and the entire surface was made a transparent conductive film.
 <太陽電池特性(変換効率)の評価>
 実施例11および12で作製した太陽電池について、出力条件AM(エアマス)1.5、強度100mW/cmの疑似太陽光を照射することで変換効率を測定した。その結果、いずれの素子も9.0%の変換効率を示した。この結果から、本形態の導電性部材を太陽電池に用いることで、いずれの集積型太陽電池方式においても高い変換効率が得られることが分かった。
<Evaluation of solar cell characteristics (conversion efficiency)>
About the solar cell produced in Example 11 and 12, conversion efficiency was measured by irradiating the artificial sunlight of output condition AM (air mass) 1.5 and intensity | strength of 100 mW / cm < 2 >. As a result, each element showed a conversion efficiency of 9.0%. From this result, it was found that high conversion efficiency can be obtained in any integrated solar cell system by using the conductive member of this embodiment for a solar cell.
 10、60、70、100…フロー混合装置、201、301…第1の添加タンク、202、302…第2の添加タンク、211、311…第1の送液ポンプ、212、312…第2の送液ポンプ、221…フロー混合装置、303…第3の添加タンク、313…第3の送液ポンプ、321…第1のフロー混合装置、322…第2のフロー混合装置 10, 60, 70, 100 ... flow mixing device, 201, 301 ... first addition tank, 202, 302 ... second addition tank, 211, 311 ... first feed pump, 212, 312 ... second Liquid feed pump, 221... Flow mixing device, 303... Third addition tank, 313... Third liquid feed pump, 321... First flow mixing device, 322.

Claims (11)

  1.  低分子分散剤で表面修飾された金属ナノワイヤを含む水分散液と、高分子分散剤と、前記低分子分散剤を前記金属ナノワイヤから剥離させる剥離溶液とを準備し、前記高分子分散剤を前記水分散液、及び前記剥離溶液の少なくともいずれか一方に含ませた状態で、前記水分散液と前記剥離溶液とを混合する混合工程と、
     前記混合工程で作製した混合液から前記低分子分散剤を分離除去する精製工程と、を備える、金属ナノワイヤ分散液の製造方法。
    An aqueous dispersion containing metal nanowires surface-modified with a low molecular dispersant, a polymer dispersant, and a release solution for peeling the low molecular dispersant from the metal nanowires are prepared. A mixing step of mixing the aqueous dispersion and the stripping solution in a state of being included in at least one of the aqueous dispersion and the stripping solution;
    And a purification step of separating and removing the low molecular weight dispersant from the mixed solution produced in the mixing step.
  2.  前記混合工程は、前記剥離溶液と前記水分散液とをフロー混合することを含む請求項1に記載の金属ナノワイヤ分散液の製造方法。 The method for producing a metal nanowire dispersion according to claim 1, wherein the mixing step includes flow-mixing the stripping solution and the aqueous dispersion.
  3.  前記高分子分散剤が、前記高分子分散剤を含む溶液を用いたフロー混合、及び前記高分子分散剤又は前記高分子分散剤を含む溶液を用いたバッチ混合、のいずれかの手段により、前記水分散液、及び前記剥離溶液の少なくともいずれか一方に添加される、請求項1又は2に記載の金属ナノワイヤ分散液の製造方法。 The polymer dispersant is any one of flow mixing using a solution containing the polymer dispersant and batch mixing using the polymer dispersant or a solution containing the polymer dispersant. The method for producing a metal nanowire dispersion according to claim 1 or 2, which is added to at least one of an aqueous dispersion and the stripping solution.
  4.  前記フロー混合が、T字型流路を用いて実施されることを含む、請求項2又は3に記載の金属ナノワイヤ分散液の製造方法。 The method for producing a metal nanowire dispersion according to claim 2 or 3, wherein the flow mixing is performed using a T-shaped channel.
  5.  前記精製工程が、クロスフロー方式の濾過により実施されることを含む、請求項1から4のいずれか1項に記載の金属ナノワイヤ分散液の製造方法。 The method for producing a metal nanowire dispersion according to any one of claims 1 to 4, wherein the purification step is performed by cross-flow filtration.
  6.  請求項1から5のいずれか1項に記載の金属ナノワイヤ分散液の製造方法により製造された金属ナノワイヤ分散液。 A metal nanowire dispersion liquid produced by the method for producing a metal nanowire dispersion liquid according to any one of claims 1 to 5.
  7.  前記金属ナノワイヤ分散液に含まれる金属ナノワイヤが、銀ナノワイヤである、請求項6に記載の金属ナノワイヤ分散液。 The metal nanowire dispersion liquid according to claim 6, wherein the metal nanowires contained in the metal nanowire dispersion liquid are silver nanowires.
  8.  電導度が1mS/m以下である、請求項6又は7に記載の金属ナノワイヤ分散液。 The metal nanowire dispersion liquid according to claim 6 or 7, wherein the electrical conductivity is 1 mS / m or less.
  9.  請求項6から8のいずれか1項に記載の金属ナノワイヤ分散液を用いて製造された導電性部材。 A conductive member manufactured using the metal nanowire dispersion liquid according to any one of claims 6 to 8.
  10.  請求項9に記載の導電性部材を用いて製造されたタッチパネル。 A touch panel manufactured using the conductive member according to claim 9.
  11.  請求項9に記載の導電性部材を用いて製造された太陽電池。 A solar cell manufactured using the conductive member according to claim 9.
PCT/JP2013/057997 2012-03-26 2013-03-21 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell WO2013146509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069596A JP5868751B2 (en) 2012-03-26 2012-03-26 Method for producing silver nanowire dispersion
JP2012-069596 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146509A1 true WO2013146509A1 (en) 2013-10-03

Family

ID=49259766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057997 WO2013146509A1 (en) 2012-03-26 2013-03-21 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell

Country Status (2)

Country Link
JP (1) JP5868751B2 (en)
WO (1) WO2013146509A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120960A1 (en) * 2014-02-11 2015-08-20 Merck Patent Gmbh Green chemistry method of making copper nanowires
WO2015163258A1 (en) * 2014-04-21 2015-10-29 ユニチカ株式会社 Ferromagnetic metal nanowire dispersion and method for manufacturing same
WO2017098207A1 (en) * 2015-12-08 2017-06-15 Quantum Chemical Technologies (Singapore) Pte. Ltd. Methods of purifying nanostructures
CN110049837A (en) * 2016-12-08 2019-07-23 同和电子科技有限公司 Silver nanowires and its manufacturing method and silver nanowires ink
WO2020175255A1 (en) * 2019-02-26 2020-09-03 Dowaエレクトロニクス株式会社 Silver nanowires, production method therefor, silver nanowire-containing reaction solution, and silver nanowire dispersion
CN112562888A (en) * 2020-12-15 2021-03-26 哈尔滨工业大学(深圳) Preparation method of silver nanowires and preparation method of transparent conductive film
WO2024045654A1 (en) * 2022-08-31 2024-03-07 深圳市华科创智技术有限公司 Purification system and purification method for metal nanowires

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222832B2 (en) * 2014-01-14 2017-11-01 信越ポリマー株式会社 Method for producing antistatic sheet and method for producing antistatic molded body
JP2015206081A (en) * 2014-04-21 2015-11-19 昭和電工株式会社 Method for concentrating metal nanowire dispersion, and method for preparing metal nanowire ink
JP6381992B2 (en) * 2014-06-27 2018-08-29 ユニチカ株式会社 Method for producing nickel nanowire dispersion
US20170278596A1 (en) * 2014-09-05 2017-09-28 Dowa Electronics Materials Co., Ltd. Method for producing metal nanowires having improved uniformity in length distribution
JP6718687B2 (en) * 2015-01-19 2020-07-08 ユニチカ株式会社 Ferromagnetic metal nanowire
JP6019166B1 (en) * 2015-04-28 2016-11-02 信越ポリマー株式会社 Method for producing antistatic sheet and method for producing antistatic molded body
US20170236610A1 (en) * 2016-02-12 2017-08-17 Tyco Electronics Corporation Method for Enhancing Adhesion of Silver Nanoparticle Inks Using a Functionalized Alkoxysilane Additive and Primer Layer
US20220168804A1 (en) * 2019-04-03 2022-06-02 Cambrios Film Solutions Corporation Metal nanostructure purification
JPWO2021132095A1 (en) 2019-12-27 2021-07-01

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
JP2008150701A (en) * 2006-12-14 2008-07-03 Samsung Electro Mech Co Ltd Method for producing metal nanoparticle, and metal nanoparticle produced by the method
JP2009129732A (en) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc Method of manufacturing transparent conductive films using metal nanowire and transparent conductive film manufactured using it
WO2011078305A1 (en) * 2009-12-25 2011-06-30 富士フイルム株式会社 Electroconductive film, method of manufacturing same, and touch panel
WO2011077896A1 (en) * 2009-12-24 2011-06-30 富士フイルム株式会社 Metal nanowires, method for producing same, transparent conductor and touch panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060079209A (en) * 2003-09-04 2006-07-05 나노시스, 인크. Methods of processing nanocrystals, and compositions, devices and systems including same
JP4131225B2 (en) * 2003-10-29 2008-08-13 富士フイルム株式会社 Method and apparatus for continuous production of fine metal particles
JP4529160B2 (en) * 2004-07-08 2010-08-25 三菱マテリアル株式会社 METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
JP4821951B2 (en) * 2005-02-23 2011-11-24 三菱マテリアル株式会社 Wire-shaped gold fine particles, production method thereof, containing composition and use
JP5507440B2 (en) * 2008-02-27 2014-05-28 株式会社クラレ Method for producing metal nanowire, and dispersion and transparent conductive film obtained from metal nanowire
WO2011088323A2 (en) * 2010-01-15 2011-07-21 Cambrios Technologies Corporation Low-haze transparent conductors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
JP2008150701A (en) * 2006-12-14 2008-07-03 Samsung Electro Mech Co Ltd Method for producing metal nanoparticle, and metal nanoparticle produced by the method
JP2009129732A (en) * 2007-11-26 2009-06-11 Konica Minolta Holdings Inc Method of manufacturing transparent conductive films using metal nanowire and transparent conductive film manufactured using it
WO2011077896A1 (en) * 2009-12-24 2011-06-30 富士フイルム株式会社 Metal nanowires, method for producing same, transparent conductor and touch panel
WO2011078305A1 (en) * 2009-12-25 2011-06-30 富士フイルム株式会社 Electroconductive film, method of manufacturing same, and touch panel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120960A1 (en) * 2014-02-11 2015-08-20 Merck Patent Gmbh Green chemistry method of making copper nanowires
US10522274B2 (en) 2014-04-21 2019-12-31 Unitika Ltd. Ferromagnetic metal nanowire dispersion and method for manufacturing same
WO2015163258A1 (en) * 2014-04-21 2015-10-29 ユニチカ株式会社 Ferromagnetic metal nanowire dispersion and method for manufacturing same
JPWO2015163258A1 (en) * 2014-04-21 2017-04-13 ユニチカ株式会社 Ferromagnetic metal nanowire dispersion and method for producing the same
US10843273B2 (en) 2015-12-08 2020-11-24 Quantum Chemical Technologies (Singapore) Pte. Ltd. Methods of purifying nanostructures
KR20180097544A (en) * 2015-12-08 2018-08-31 퀀텀 케미컬 테크놀로지즈(싱가포르) 피티이. 리미티드 A method for purifying a nanostructure.
CN108367346A (en) * 2015-12-08 2018-08-03 量子化学技术(新加坡)股份有限公司 The method of purified nanotubes structure
WO2017098207A1 (en) * 2015-12-08 2017-06-15 Quantum Chemical Technologies (Singapore) Pte. Ltd. Methods of purifying nanostructures
KR102268498B1 (en) 2015-12-08 2021-06-23 퀀텀 케미컬 테크놀로지즈(싱가포르) 피티이. 리미티드 A method for purifying nanostructures.
CN110049837A (en) * 2016-12-08 2019-07-23 同和电子科技有限公司 Silver nanowires and its manufacturing method and silver nanowires ink
WO2020175255A1 (en) * 2019-02-26 2020-09-03 Dowaエレクトロニクス株式会社 Silver nanowires, production method therefor, silver nanowire-containing reaction solution, and silver nanowire dispersion
CN112562888A (en) * 2020-12-15 2021-03-26 哈尔滨工业大学(深圳) Preparation method of silver nanowires and preparation method of transparent conductive film
WO2024045654A1 (en) * 2022-08-31 2024-03-07 深圳市华科创智技术有限公司 Purification system and purification method for metal nanowires

Also Published As

Publication number Publication date
JP2013199690A (en) 2013-10-03
JP5868751B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5868751B2 (en) Method for producing silver nanowire dispersion
KR101644680B1 (en) Conductive member, method for producing same, touch panel, and solar cell
JP5332186B2 (en) Method for producing transparent conductive film using metal nanowire and transparent conductive film produced using the same
CN110415865B (en) Optically consistent transparent conductive film and preparation method thereof
US9070488B2 (en) Conductive composition, method of producing the same, conductive member, touch panel, and solar cell
TWI499647B (en) Transparent conductive ink and production method of transparent conductive pattern
CN101523511B (en) Composition for electrode formation and method for forming electrode by using the composition
US20140205853A1 (en) Transparent conductive coating film, transparent conductive ink, and touch panel using transparent conductive coating film or transparent conductive ink
US20150187983A1 (en) Method for forming a transparent conductive film with metal nanowires having high linearity
JP3796476B2 (en) Conductive ink
WO2012147956A1 (en) Conductive member, method for producing same, touch panel and solar cell
WO2004096470A1 (en) Method for preparing liquid colloidal dispersion of silver particles, liquid colloidal dispersion of silver particles, and silver conductive film
KR20140082667A (en) Conductive composition, conductive member and production method therefor, touch panel, and solar cell
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
JP2012132082A (en) Method for producing silver nanowire and transparent conductive film using the same
JP2012238579A (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
CN107118620A (en) A kind of preparation method of conductive silver ink
JP5485729B2 (en) Conductive pattern preparation method
WO2017208924A1 (en) Method for forming transparent conductive pattern
CN102277573B (en) Chromium etchant for liquid crystal display screens and preparation method thereof
JP2004175832A (en) Method for forming electroconductive recorded matter and electroconductive recorded matter
JP2010137220A (en) Method of forming thin film by spray and electrode formation method using the thin film
JP2011192397A (en) Substrate for forming transparent conductive film, substrate with transparent conductive film, and manufacturing method of transparent conductive film
CN115322623A (en) Reactive ink-jet printing silver ink and preparation method and application thereof
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769967

Country of ref document: EP

Kind code of ref document: A1