WO2011078305A1 - Electroconductive film, method of manufacturing same, and touch panel - Google Patents

Electroconductive film, method of manufacturing same, and touch panel Download PDF

Info

Publication number
WO2011078305A1
WO2011078305A1 PCT/JP2010/073277 JP2010073277W WO2011078305A1 WO 2011078305 A1 WO2011078305 A1 WO 2011078305A1 JP 2010073277 W JP2010073277 W JP 2010073277W WO 2011078305 A1 WO2011078305 A1 WO 2011078305A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
metal nanowire
metal
producing
axis length
Prior art date
Application number
PCT/JP2010/073277
Other languages
French (fr)
Japanese (ja)
Inventor
規 宮城島
直井 憲次
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2010800525705A priority Critical patent/CN102667969A/en
Publication of WO2011078305A1 publication Critical patent/WO2011078305A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a conductive film having greatly improved transparency and conductivity without causing film peeling, a method for producing the conductive film, and a touch panel.
  • a conductive film is formed by preparing a silver nanowire dispersion liquid, applying the silver nanowire dispersion liquid and drying it, and obtaining conductivity by reducing the interface between fine particles.
  • the amount of metal can be reduced, and a transparent conductive film can be formed.
  • An object of the present invention is to provide a conductive film, a method for producing the conductive film, and a touch panel that have greatly improved transparency and conductivity without causing film peeling.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A metal nanowire-containing film production process for producing a metal nanowire-containing film containing a metal nanowire and a dispersant, An immersion step of immersing the metal nanowire-containing film in an immersion liquid. ⁇ 2> The method for producing a conductive film according to ⁇ 1>, wherein the immersion liquid is a solvent capable of dissolving the dispersant in the metal nanowire-containing film. ⁇ 3> The method for producing a conductive film according to any one of ⁇ 1> to ⁇ 2>, wherein the immersion liquid is at least one selected from ethanol, ethylene glycol, methanol, and water.
  • ⁇ 4> The method for producing a conductive film according to any one of ⁇ 1> to ⁇ 3>, wherein the dispersant is an ionic surfactant.
  • ⁇ 5> The method for producing a conductive film according to ⁇ 4>, wherein the ionic surfactant is a quaternary alkyl ammonium salt.
  • ⁇ 6> The method for producing a conductive film according to any one of ⁇ 1> to ⁇ 5>, wherein the metal nanowire contains silver.
  • All metal nanowires having an average minor axis length of 50 nm or less, an average major axis length of 5 ⁇ m or more, a minor axis length of 50 nm or less, and a major axis length of 5 ⁇ m or more It is a manufacturing method of the electrically conductive film in any one of said ⁇ 1> to ⁇ 6> which contains 50 mass% or more of metal amount in a metal particle.
  • ⁇ 8> The method for producing a conductive film according to any one of ⁇ 1> to ⁇ 7>, wherein the coefficient of variation of the minor axis length of the metal nanowire is 40% or less.
  • ⁇ 9> The method for producing a conductive film according to any one of ⁇ 1> to ⁇ 8>, wherein the cross-sectional shape of the metal nanowire is a shape with rounded corners.
  • the production of a metal nanowire-containing film is performed by applying a metal nanowire dispersion liquid containing a metal nanowire and a dispersant onto a substrate and drying the film. It is a manufacturing method of the electrically conductive film of description.
  • ⁇ 12> A conductive film manufactured by the method for manufacturing a conductive film according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> A touch panel using the conductive film according to ⁇ 12>.
  • ⁇ 14> A display element using the conductive film according to ⁇ 12>.
  • ⁇ 15> An integrated solar cell using the conductive film according to ⁇ 12>.
  • a conductive film a method for producing the conductive film, and a touch panel, which can solve the above-mentioned conventional problems, and have greatly improved transparency and conductivity without causing film peeling. be able to.
  • FIG. 1 is an explanatory diagram showing a method for determining the sharpness of metal nanowires.
  • FIG. 2 is a schematic cross-sectional view showing an example of a touch panel.
  • FIG. 3 is a schematic explanatory diagram illustrating another example of the touch panel.
  • FIG. 4 is a schematic plan view showing an example of arrangement of conductive films in the touch panel shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing still another example of the touch panel.
  • the manufacturing method of the electrically conductive film of this invention contains a metal nanowire containing film
  • the electrically conductive film of this invention is manufactured by the manufacturing method of the electrically conductive film of this invention.
  • the details of the conductive film of the present invention will be clarified through the description of the method of manufacturing the conductive film of the present invention.
  • membrane preparation process is a process of producing the metal nanowire containing film
  • the metal nanowire-containing film is produced by applying a metal nanowire dispersion liquid containing at least metal nanowires and a dispersing agent on a substrate and drying it.
  • the said metal nanowire dispersion liquid contains a metal nanowire and a dispersing agent at least, and contains a solvent and also another component as needed.
  • the metal nanowire has an average minor axis length (diameter) of 50 nm or less and an average major axis length (length) of 5 ⁇ m or more.
  • Metal nanowires having such a diameter and length are all The metal particles contain 50% by mass or more of metal.
  • the metal nanowire means metal fine particles having an aspect ratio (length / diameter) of 30 or more.
  • the average minor axis length of the metal nanowire is 50 nm or less, preferably 35 nm or less, and more preferably 20 nm or less. Note that if the average minor axis length is too small, the oxidation resistance deteriorates and the durability may deteriorate. Therefore, the minor axis length is preferably 5 nm or more. On the other hand, if the average minor axis length exceeds 50 nm, sufficient transparency may not be obtained because of scattering due to metal nanowires.
  • the average major axis length of the metal nanowire is 5 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or more.
  • the length of the major axis of the metal nanowire is too long, it may be entangled during the production of the metal nanowire, or an aggregate may be generated in the production process, so the length of the major axis is 1 mm or less. Is preferred. If the average major axis length is less than 5 ⁇ m, it may be difficult to form a dense network, or sufficient conductivity may not be obtained.
  • the average minor axis length and the average major axis length of the metal nanowire can be determined by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) and an optical microscope. In the present invention, the short axis length and the long axis length of the metal nanowires are obtained by observing 300 metal nanowires with a transmission electron microscope (TEM) and calculating the average value thereof.
  • TEM transmission electron microscope
  • metal nanowires having a minor axis length of 50 nm or less and a major axis length of 5 ⁇ m or more are contained in all metal particles in an amount of 50% by mass or more, and 60% by mass or more. Is preferable, and 75 mass% or more is more preferable.
  • appropriate wire-forming ratio When the proportion of metal nanowires having a short axis length of 50 nm or less and a long axis length of 5 ⁇ m or more (hereinafter also referred to as “appropriate wire-forming ratio”) is less than 50% by mass,
  • the conductivity may decrease due to a decrease in the amount of metal that contributes to the resistance, and at the same time, voltage concentration may occur because a dense wire network cannot be formed, or durability may decrease.
  • the appropriate wire formation rate is obtained by filtering the silver nanowire aqueous dispersion to separate the silver nanowire and other particles, and an ICP emission spectrometer By measuring the amount of Ag remaining on the filter paper and the amount of Ag transmitted through the filter paper, respectively, an appropriate wire formation rate can be obtained.
  • the short axis length is 50 nm or less and the long axis length Is a metal nanowire having a thickness of 5 ⁇ m or more.
  • the filter paper has a short axis length of 50 nm or less in a TEM image and the longest axis of particles other than metal nanowires having a long axis length of 5 ⁇ m or more, and is 5 times or more of the longest axis. And it is preferable to use the thing of the diameter below 1/2 of the shortest length of a wire major axis.
  • the coefficient of variation of the short axis length (diameter) of the metal nanowire of the present invention is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less. If the coefficient of variation exceeds 40%, the voltage may be concentrated on a wire having a short axis length, or the durability may deteriorate.
  • the coefficient of variation of the short axis length of the metal nanowire is, for example, by measuring the short axis length of 300 nanowires from a transmission electron microscope (TEM) image, and calculating the standard deviation and average value thereof. Can be sought.
  • TEM transmission electron microscope
  • the shape of the metal nanowire of the present invention for example, a columnar shape, a rectangular parallelepiped shape, a columnar shape having a polygonal cross section, and the like, a columnar shape or A cross-sectional shape with rounded corners is preferable.
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners.
  • the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness.
  • the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line.
  • a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners.
  • the sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like.
  • the lower limit of the sharpness is preferably 30%, more preferably 40%.
  • metal in the said metal nanowire Any metal may be used, 2 or more types of metals may be used in combination other than 1 type of metal, and it can also be used as an alloy. . Among these, those formed from metals or metal compounds are preferable, and those formed from metals are more preferable.
  • the metal is preferably at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC 1991), and at least one selected from Groups 2 to 14 More preferably, at least one metal selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, Group 14 is more preferable, It is particularly preferable to include it as a main component.
  • the metal examples include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, lead, Or these alloys etc. are mentioned.
  • copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
  • the content of the metal nanowire in the metal nanowire dispersion liquid is preferably 0.1% by mass to 99% by mass, and more preferably 0.3% by mass to 95% by mass.
  • the content is less than 0.1% by mass, the load in the drying process is great during production, and when it exceeds 99% by mass, particle aggregation may easily occur.
  • ionic surfactants such as a quaternary alkyl ammonium salt
  • Amino group containing compound, thiol group containing compound, sulfide group containing Examples thereof include compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, natural polymers derived from polysaccharides, synthetic polymers, and polymers such as gels derived therefrom.
  • a quaternary alkyl ammonium salt is particularly preferable because it can be easily washed at the time of immersion.
  • quaternary alkyl ammonium salt examples include hexadecyl trimethyl ammonium bromide (HTAB), hexadecyl trimethyl ammonium chloride, stearyl trimethyl ammonium bromide (STAB), stearyl trimethyl ammonium chloride, tetradecyl trimethyl ammonium bromide, tetradecyl trimethyl ammonium chloride. , Dilauryldimethylammonium bromide, dilauryldimethylammonium chloride and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, hexadecyltrimethylammonium bromide (HTAB) is particularly preferable.
  • HTAB hexadecyltrimethylammonium bromide
  • polymers examples include a protective colloid polymer such as gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, partial alkyl ester of polyacrylic acid, polyvinylpyrrolidone (PVP), and polyvinylpyrrolidone copolymer. , Etc.
  • a protective colloid polymer such as gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, partial alkyl ester of polyacrylic acid, polyvinylpyrrolidone (PVP), and polyvinylpyrrolidone copolymer. , Etc.
  • PVP polyvinylpyrrolidone
  • Etc polyvinylpyrrolidone copolymer.
  • Etc for the structure that can be used as the dispersant, for example, the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asshoin Co., Ltd
  • the content of the dispersant in the metal nanowire dispersion liquid can be determined by the following formula 1, and is not particularly limited as long as the metal nanowires can be dispersed, and can be appropriately selected according to the purpose. 20% by mass to 95% by mass is preferable, and 40% by mass to 90% by mass is more preferable.
  • ⁇ Formula 1> Content of dispersing agent in metal nanowire dispersion (mass%) (Metal content in metal nanowire dispersion) / (Metal content in metal nanowire dispersion + content of dispersant) ⁇ 100
  • the method for producing metal nanowires of (2) includes a step of adding and heating a metal complex solution in an aqueous solvent containing at least a halogen compound and a reducing agent, and preferably a desalting treatment step. Other steps are included as necessary.
  • a silver complex is especially preferable.
  • the ligand of the silver complex include CN ⁇ , SCN ⁇ , SO 3 2 ⁇ , thiourea, and ammonia.
  • a silver ammonia complex is particularly preferable.
  • the metal complex is preferably added after the dispersant and the halogen compound. Probably because the wire core can be formed with high probability, there is an effect of increasing the proportion of metal nanowires having an appropriate minor axis length (diameter) and major axis length in the present invention.
  • the solvent is preferably a hydrophilic solvent
  • examples of the hydrophilic solvent include water, alcohols such as methanol, ethanol, propanol, isopropanol, and butanol; ethers such as dioxane and tetrahydrofuran; ketones such as acetone; And cyclic ethers such as dioxane.
  • the heating temperature is preferably 150 ° C. or lower, more preferably 20 ° C. or higher and 130 ° C. or lower, further preferably 30 ° C. or higher and 100 ° C. or lower, and particularly preferably 40 ° C. or higher and 90 ° C. or lower. If necessary, the temperature may be changed during the grain formation process, and changing the temperature during the process may have the effect of controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. . If the heating temperature exceeds 150 ° C., the transmittance in the evaluation of the coating film may be low because the cross-sectional angle of the nanowire becomes steep.
  • borohydride metal salts such as sodium borohydride and potassium borohydride
  • Lithium aluminum hydride, hydrogen Aluminum hydride salts such as potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, magnesium aluminum hydride, calcium aluminum hydride
  • alkanolamines such as diethylaminoethanol, ethanolamine, propanolamine, triethanolamine, dimethylaminopropanol
  • propylamine Aliphatic amines such as tilamine, dipropyleneamine, ethylenediamine and triethylenepentamine; heterocyclic
  • the timing of addition of the reducing agent may be before or after the addition of the dispersant, and may be before or after the addition of the halogen compound.
  • a halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose.
  • a halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose.
  • alkali halides such as potassium bromide, potassium chloride, and potassium iodide
  • the timing of adding the halogen compound may be before or after the addition of the dispersant, and may be before or after the addition of the reducing agent.
  • Some halogen compound species may function as a dispersant, but can be preferably used in the same manner.
  • metal halide fine particles may be used, or both a halogen compound and metal halide fine particles may be used.
  • the dispersant and the halogen compound or metal halide fine particles may be used in the same substance.
  • the compound in which the dispersant and the halogen compound are used in combination include, for example, hexadecyltrimethylammonium bromide (HTAB) containing amino group and bromide ion, stearyltrimethylammonium bromide (STAB), hexadecyltrimethylammonium containing amino group and chloride ion.
  • HTAC hexadecyltrimethylammonium bromide
  • the metal nanowire it is preferable to add a dispersant.
  • the shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
  • the step of adding the dispersant may be added before preparing the particles and may be added in the presence of the dispersed polymer, or may be added for controlling the dispersion state after adjusting the particles.
  • the amount needs to be changed according to the required length of the wire. This is considered to be due to the length of the wire by controlling the amount of core metal particles.
  • the dispersant those described above can be used.
  • the desalting treatment can be performed by a method such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation after forming metal nanowires.
  • a dispersion solvent in the metal nanowire dispersion liquid water is mainly used, and an organic solvent miscible with water can be used in a proportion of 80% by volume or less.
  • an organic solvent for example, an alcohol compound having a boiling point of 50 ° C. to 250 ° C., more preferably 55 ° C. to 200 ° C. is suitably used. By using such an alcohol compound in combination, it is possible to improve the coating in the coating process and reduce the drying load.
  • the alcohol compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • These may be used individually by 1 type and may use 2 or more types together.
  • the metal nanowire dispersion liquid preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions.
  • the electrical conductivity of the metal nanowire dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
  • the viscosity of the metal nanowire dispersion at 20 ° C. is preferably 0.5 mPa ⁇ s to 100 mPa ⁇ s, and more preferably 1 mPa ⁇ s to 50 mPa ⁇ s.
  • a binder In the metal nanowire dispersion liquid, a binder, various additives, for example, a surfactant, a polymerizable compound, an antioxidant, an anti-sulfurizing agent, a corrosion inhibitor, a viscosity modifier, an antiseptic, etc., if necessary Can be contained.
  • a surfactant for example, a surfactant, a polymerizable compound, an antioxidant, an anti-sulfurizing agent, a corrosion inhibitor, a viscosity modifier, an antiseptic, etc., if necessary Can be contained.
  • the binder is not particularly limited and may be appropriately selected depending on the intended purpose.
  • gelatin, gelatin derivatives, casein, agar, starch, polyvinyl alcohol, polyacrylic acid copolymer, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl Examples include pyrrolidone and dextran. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the binder in the metal nanowire dispersion liquid is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 parts by mass to 10 parts by mass with respect to 1 part by mass of silver. 0.1 to 5 parts by mass is more preferable.
  • the corrosion inhibitor is not particularly limited and may be appropriately selected depending on the intended purpose, and azoles are preferred.
  • the azoles include benzotriazole, tolyltriazole, mercaptobenzothiazole, mercaptobenzotriazole, mercaptobenzotetrazole, (2-benzothiazolylthio) acetic acid, 3- (2-benzothiazolylthio) propionic acid, and these And at least one selected from alkali metal salts, ammonium salts, and amine salts.
  • coats the said metal nanowire dispersion liquid there is no restriction
  • a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plat
  • the thickness of the metal nanowire-containing film produced as described above is preferably 0.02 ⁇ m to 1 ⁇ m, and more preferably 0.03 ⁇ m to 0.3 ⁇ m.
  • the immersion step is a step of immersing the metal nanowire-containing film in an immersion liquid.
  • the immersion is not particularly limited as long as the entire metal nanowire-containing film can be immersed in the immersion liquid, and can be appropriately selected depending on the purpose.
  • (1) the immersion liquid is placed in a container, And a method of immersing the metal nanowire-containing film in (2), a method of passing the coated material through the immersion liquid, and the like.
  • the immersion liquid is not particularly limited as long as it can dissolve the dispersant in the metal nanowire-containing film, and can be appropriately selected according to the purpose.
  • water, methanol, ethanol, ethylene glycol, acetone Etc for example, water, methanol, ethanol, and ethylene glycol are preferable, and water, ethanol, and ethylene glycol are particularly preferable.
  • the dipping conditions in the dipping step are not particularly limited and can be appropriately selected according to the purpose.
  • the dipping solution is ethanol
  • a range of 5 ° C. to 40 ° C. for 1 second to 30 minutes is preferable. More preferably, it is in the range of 10 ° C. to 30 ° C. for 3 seconds to 3 minutes.
  • the dispersant was removed from the metal nanowire-containing film, for example, when an ionic surfactant is used as the dispersant, after the immersion treatment This can be confirmed by measuring the conductivity of the immersion liquid.
  • the electrically conductive film of this invention is manufactured by the manufacturing method of the electrically conductive film of this invention.
  • the surface resistance of the conductive film of the present invention is preferably 1 ⁇ 10 7 ⁇ / ⁇ or less, more preferably 1 ⁇ 10 3 ⁇ / ⁇ or less.
  • the surface resistance can be measured by, for example, a four-terminal method.
  • the light transmittance of the conductive film of the present invention is preferably 70% or more, and more preferably 80% or more.
  • the transmittance can be measured by, for example, a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
  • the conductive film of the present invention can greatly improve transparency and conductivity without causing film peeling, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic or inorganic EL display electrode, an electronic paper, It is widely applied to flexible display electrodes, integrated solar cells, display elements, and other various devices. Among these, a touch panel, a display element, and an integrated solar cell are particularly preferable.
  • a liquid crystal display element as a display element used in the present invention includes an element substrate provided with the conductive film of the present invention patterned on a substrate as described above, and a color filter substrate as a counter substrate. Are combined by heat treatment, injecting liquid crystal, and sealing the injection port. At this time, the conductive film of the present invention is also preferably used for the conductive film formed on the color filter. Further, after the liquid crystal is spread on the element substrate, the liquid crystal display element may be manufactured by superimposing the substrates and sealing the liquid crystal so as not to leak.
  • Integrated solar cell There is no restriction
  • GaAs gallium arsenide
  • InP indium phosphorus
  • Group III-V compound semiconductor solar cell devices II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned.
  • CdTe cadmium telluride
  • CIS system copper / indium / selenium system
  • So-called CIGS-based copper / indium / gallium / selenium system
  • I-III-VI group compound semiconductor solar cell devices dye-sensitized solar cell devices, organic solar cell devices, etc.
  • the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
  • CIS system copper / indium / selenium system
  • CIGS-based copper / indium / gallium / A selenium-based
  • I-III-VI group compound semiconductor solar cell device is preferable.
  • amorphous silicon solar cell device composed of a tandem structure type, etc.
  • amorphous silicon, a microcrystalline silicon thin film layer, a thin film containing Ge in these, and a tandem structure of these two or more layers is a photoelectric conversion layer Used as For film formation, plasma CVD or the like is used.
  • the transparent conductive layer as the conductive film of the present invention used for the solar cell can be applied to all the solar cell devices.
  • the transparent conductive layer may be included in any part of the solar cell device, but is preferably adjacent to the photoelectric conversion layer.
  • the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this.
  • the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood.
  • A Substrate—Transparent conductive layer (Invention product) —Photoelectric conversion layer
  • B Substrate—Transparent conductive layer (Invention product) —Photoelectric conversion layer—Transparent conductive layer (Invention product)
  • C Substrate-electrode-photoelectric conversion layer-transparent conductive layer (product of the present invention)
  • D Back electrode-photoelectric conversion layer-transparent conductive layer (product of the present invention)
  • the transparent conductive layer used in the solar cell has high infrared wavelength transmittance and low sheet resistance, so that the solar cell has high absorption with respect to the infrared wavelength, for example, amorphous silicon composed of a tandem structure type or the like.
  • Solar cells copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGSS), etc. It is suitably used for I-III-VI group compound semiconductor solar cells.
  • Touch panel When the conductive film of the present invention is used as a transparent conductor of a touch panel, it is excellent in visibility due to improved transmittance, and a character with at least one of a bare hand, a gloved hand, an indicator, etc. due to improved conductivity, etc.
  • a touch panel having excellent responsiveness to input or screen operation can be manufactured. Examples of the touch panel include widely known touch panels, and the conductive film of the present invention can be applied to what is known as a so-called touch sensor and touch pad.
  • the touch panel is not particularly limited as long as it has the conductive film, and can be appropriately selected according to the purpose.
  • a surface capacitive touch panel for example, a projection capacitive touch panel, a resistive touch panel, etc. Is mentioned.
  • the touch panel 10 includes a transparent conductive film 12 so as to uniformly cover the surface of the transparent substrate 11, and an external detection circuit (not shown) is formed on the transparent conductive film 12 at the end of the transparent substrate 11.
  • the electrode terminal 18 for electrical connection is formed.
  • reference numeral 13 denotes a transparent conductive film serving as a shield electrode
  • reference numerals 14 and 17 denote protective films
  • reference numeral 15 denotes an intermediate protective film
  • reference numeral 16 denotes an antiglare film.
  • the transparent conductive film 12 When an arbitrary point on the transparent conductive film 12 is touched with a finger or the like, the transparent conductive film 12 is grounded through the human body at the touched point, and changes to a resistance value between each electrode terminal 18 and the ground line. Occurs. The change of the resistance value is detected by the external detection circuit, and the coordinates of the touched point are specified.
  • the touch panel 20 includes a transparent conductive film 22 and a transparent conductive film 23 arranged to cover the surface of the transparent substrate 21, and an insulating layer 24 that insulates the transparent conductive film 22 and the transparent conductive film 23.
  • the insulating cover layer 25 that generates a capacitance between the contact object such as a finger and the transparent conductive film 22 or the transparent conductive film 23 detects the position of the contact object such as the finger.
  • the transparent conductive films 22 and 23 may be integrated.
  • the touch panel 20 as a projection capacitive touch panel will be schematically described through an arrangement in which the transparent conductive film 22 and the transparent conductive film 23 are viewed from the plane.
  • the touch panel 20 is provided with a plurality of transparent conductive films 22 capable of detecting positions in the X-axis direction and a plurality of transparent conductive films 23 in the Y-axis direction so as to be connectable to external terminals.
  • the transparent conductive film 22 and the transparent conductive film 23 are in contact with a plurality of contact objects such as fingertips, and contact information can be input at multiple points.
  • contact information can be input at multiple points.
  • the coordinates in the X-axis direction and the Y-axis direction are specified with high positional accuracy.
  • the structure of the said surface type capacitive touch panel can be selected suitably, and can be applied.
  • the example of the pattern of the transparent conductive film by the some transparent conductive film 22 and the some transparent conductive film 23 was shown in the touch panel 20, the shape, arrangement
  • the touch panel 30 can be in contact with the transparent conductive film 32 via the substrate 31 on which the transparent conductive film 32 is disposed, the spacers 36 disposed on the transparent conductive film 32, and the air layer 34.
  • a transparent conductive film 33 and a transparent film 35 disposed on the transparent conductive film 33 are supported and configured.
  • the touch panel 30 is touched from the transparent film 35 side, the transparent film 35 is pressed, the pressed transparent conductive film 32 and the transparent conductive film 33 come into contact with each other, and a potential change at this position is not illustrated.
  • the coordinates of the touched point are specified.
  • TEM transmission electron microscope
  • Each silver nanowire aqueous dispersion is filtered to separate silver nanowires and other particles, and the amount of Ag remaining on the filter paper using an ICP emission spectrometer (ICPS-8000, manufactured by Shimadzu Corporation), The amount of Ag permeated through the filter paper is measured, and the amount of metal in all metal particles of the silver nanowire (appropriate wire) whose minor axis length (diameter) is 50 nm or less and whose major axis length is 5 ⁇ m or more. (Mass%) was determined.
  • the appropriate silver wire separation for obtaining an appropriate wire conversion rate was performed using a membrane filter (Millipore, FALP02500, pore size: 1.0 ⁇ m).
  • the cross-sectional shape of the silver nanowire was obtained by applying a silver nanowire aqueous dispersion on a substrate, observing the cross section with a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and about 300 cross sections. Then, the outer peripheral length of the cross section and the total length of each side of the cross section were measured, and the sharpness, which is the ratio of the “outer peripheral length of the cross section” to the total length of “each side of the cross section”, was obtained. When the sharpness is 75% or less, the cross-sectional shape is rounded.
  • a silver nanowire aqueous dispersion was prepared as follows. 410 mL of pure water was placed in a three-necked flask, and 82.5 mL of additive solution H and 206 mL of additive solution G were added using a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of additive solution A was added at a flow rate of 2.0 mL / min and a stirring rotation speed of 800 rpm (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 75 ° C. at 3 ° C./min. Then, the stirring rotation speed was reduced to 200 rpm and heated for 5 hours.
  • an ultrafiltration module SIP1013 manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000
  • a magnet pump a magnet pump
  • a stainless steel cup was connected with a silicone tube to obtain an ultrafiltration device.
  • the silver nanowire dispersion (aqueous solution) was put into a stainless steel cup, and ultrafiltration was performed by operating a pump.
  • the filtrate from the module reached 50 mL
  • 950 mL of distilled water was added to the stainless steel cup for washing.
  • concentration is performed.
  • a silver nanowire aqueous dispersion of 101 was prepared.
  • the obtained sample No. Table 1 shows the average minor axis length (diameter), average major axis length, appropriate wire formation rate, variation coefficient of silver nanowire diameter, and sharpness of the cross-sectional angle of 101 silver nanowires.
  • Preparation Example 2 Sample No. Preparation of 102
  • sample No. 1 was prepared in the same manner as in Preparation Example 1, except that the initial temperature 20 ° C. of the first stage mixed solution was changed to 30 ° C.
  • a silver nanowire aqueous dispersion of 102 was prepared.
  • the obtained sample No. Table 1 shows the average minor axis length (diameter) of 102 silver nanowires, the average major axis length, the appropriate wire formation rate, the variation coefficient of the silver nanowire diameter, and the sharpness of the cross-sectional angle.
  • Preparation Example 3 (Preparation Example 3) -Sample No. Preparation of 103-
  • the same procedure as in Preparation Example 1 was conducted except that the amount of the additive liquid H added in the first stage was changed from 82.5 mL to 65.0 mL.
  • a silver nanowire aqueous dispersion of 103 was prepared.
  • the obtained sample No. Table 1 shows the average minor axis length (diameter) of 103 silver nanowires, the average major axis length, the appropriate wire formation rate, the coefficient of variation of the silver nanowire diameter, and the sharpness of the cross-sectional angle.
  • Preparation Example 4 Sample No. 1 was prepared in the same manner as in Preparation Example 1, except that hexadecyltrimethylammonium bromide (HTAB) added to additive liquid H was replaced with equimolar stearyltrimethylammonium bromide (STAB). 104 aqueous silver nanowire dispersions were prepared.
  • the obtained sample No. Table 1 shows the average minor axis length (diameter), average major axis length, appropriate wire formation rate, variation coefficient of silver nanowire diameter, and sharpness of the cross-sectional angle of 104 silver nanowires.
  • Example 1 Formation of undercoat layer-
  • a commercially available biaxially stretched heat-fixed polyethylene terephthalate (PET) substrate having a thickness of 100 ⁇ m is subjected to a corona discharge treatment of 8 W / m 2 ⁇ min, and a coating liquid for an undercoat layer having the following composition is applied to a dry thickness of 0.8 ⁇ m.
  • a subbing layer was formed.
  • the surface of the undercoat layer was subjected to a corona discharge treatment of 8 W / m 2 ⁇ min, and hydroxyethyl cellulose was coated as a hydrophilic polymer layer so that the dry thickness was 0.2 ⁇ m.
  • sample No. 101 silver nanowire aqueous dispersion was applied onto the hydrophilic polymer layer and dried.
  • the amount of coated silver was measured with a fluorescent X-ray analyzer (SEA1100, manufactured by SII), the amount of coated silver was adjusted to 0.02 g / m 2, and a silver nanowire-containing coated film having a thickness of 0.1 ⁇ m was obtained. Formed.
  • ⁇ Immersion treatment> About the produced silver nanowire containing coating film, the immersion process was performed on the following immersion conditions. -Immersion conditions- Ethanol was used as the dipping solution, dipped at a temperature of 25 ° C., and held for 15 seconds.
  • ⁇ Surface resistance (conductive) of coating film The surface resistance of the obtained metal nanowire-containing film (conductive film) after the immersion treatment was measured using a surface resistance meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation). evaluated. ⁇ Evaluation criteria ⁇ A: The surface resistance is less than 100 ⁇ / ⁇ , which is a practically acceptable level. ⁇ : The surface resistance is less than 500 ⁇ / ⁇ , which is a level that is not problematic in practice. (Triangle
  • Examples 2 to 11 and Comparative Examples 1 to 8 In Example 1, except that the silver nanowire-containing coating film (sample No. 101 to sample No. 106) shown in Table 2 was changed to the presence or absence of immersion treatment, the immersion liquid, and the presence or absence of centrifugation. Similarly, a silver nanowire-containing coating film after the immersion treatment was prepared, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2. In addition, the centrifugation in Examples 10 and 11 and Comparative Examples 7 and 8 is sample No. 101 and sample no. After producing 106, before coating, it was performed at 4,500 rpm for 10 minutes.
  • Example 12 -Fabrication of touch panel- Using the conductive film produced in Example 1, "Latest Touch Panel Technology” (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, “Touch Panel Technology and Development”, CM Publishing (2004) Published in December), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292”, etc., were used to produce a touch panel. When using the manufactured touch panel, it improves visibility by improving transmittance, and responds to input of characters, etc. or screen operations with at least one of bare hands, hands with gloves, or pointing tools by improving conductivity It was found that a touch panel with excellent performance can be produced.
  • the conductive film manufactured by the conductive film manufacturing method of the present invention has greatly improved transparency and conductivity without causing film peeling, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic or inorganic EL display It is widely used for electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, display elements, and other various devices.

Abstract

Disclosed are an electroconductive film, a method of manufacturing the electroconductive film, and a touch panel, whereupon transparency and conductivity are significantly improved, and the film does not peel. The method of manufacturing the electroconductive film comprises the steps of creating a film containing metallic nanowires, the film thus created containing metallic nanowires and a dispersant; and immersing the film containing metallic nanowires in a bath.

Description

導電膜及びその製造方法、並びにタッチパネルConductive film, method for manufacturing the same, and touch panel
 本発明は、膜はがれを起こすことなく、透明性及び導電性が大幅に向上した導電膜、及び該導電膜の製造方法、並びにタッチパネルに関する。 The present invention relates to a conductive film having greatly improved transparency and conductivity without causing film peeling, a method for producing the conductive film, and a touch panel.
 従来より、導電性微粒子を含有する分散液を塗布してなる導電膜について数多くの提案がなされている。しかし、これらの提案では、微粒子分散に必要な分散剤が微粒子間界面に存在するためか、高温処理を行わないと均一かつ十分な導電性を得ることが困難であるという問題がある。
 このため、微粒子間界面を減少させる観点から、ポリオール法を用いて調製された銀ナノワイヤー分散液を、遠心分離工程を経て溶媒置換し、銀ナノワイヤー分散液を製造する方法が提案されている(特許文献1及び2参照)。これらの提案では、銀ナノワイヤー分散液を調製し、該銀ナノワイヤー分散液を塗布し、乾燥させることにより、導電膜の形成を行っており、微粒子間界面の減少により導電性を得るための金属量を減らすことができ、透明導電膜の形成も可能となるものである。
 しかし、これらの提案では、分散液中に銀ナノワイヤー以外の金属微粒子などが存在するためか、十分な透明性を得ることが困難であり、また、分散剤が塗布膜中に残存するためか、十分な導電性が得られないという課題がある。
 したがって、膜はがれを起こすことなく、十分満足できる導電性及び透明性を兼ね備えた導電膜及び該導電膜の製造方法の速やかな提供が望まれているのが現状である。
Conventionally, many proposals have been made on a conductive film formed by applying a dispersion containing conductive fine particles. However, in these proposals, there is a problem that it is difficult to obtain uniform and sufficient conductivity unless high temperature treatment is performed, because a dispersant necessary for fine particle dispersion exists at the interface between the fine particles.
For this reason, from the viewpoint of reducing the interface between the fine particles, a method of producing a silver nanowire dispersion by replacing the silver nanowire dispersion prepared using the polyol method with a solvent through a centrifugation step has been proposed. (See Patent Documents 1 and 2). In these proposals, a conductive film is formed by preparing a silver nanowire dispersion liquid, applying the silver nanowire dispersion liquid and drying it, and obtaining conductivity by reducing the interface between fine particles. The amount of metal can be reduced, and a transparent conductive film can be formed.
However, in these proposals, it is because metal fine particles other than silver nanowires are present in the dispersion, or it is difficult to obtain sufficient transparency, and the dispersant remains in the coating film. There is a problem that sufficient conductivity cannot be obtained.
Therefore, the present situation is that there is a demand for prompt provision of a conductive film having sufficiently satisfactory conductivity and transparency and a method for producing the conductive film without causing peeling of the film.
米国特許出願公開第2005/0056118号明細書US Patent Application Publication No. 2005/0056118 米国特許出願公開第2007/0074316号明細書US Patent Application Publication No. 2007/0074316
 本発明は、膜はがれを起こすことなく、透明性及び導電性が大幅に向上した導電膜及び該導電膜の製造方法、並びにタッチパネルを提供することを目的とする。 An object of the present invention is to provide a conductive film, a method for producing the conductive film, and a touch panel that have greatly improved transparency and conductivity without causing film peeling.
 前記課題を解決するため本発明者らが鋭意検討を重ねた結果、金属ナノワイヤー及び分散剤を含有する金属ナノワイヤー含有膜を浸漬液中に浸漬することにより、金属ナノワイヤー含有膜中の分散剤や余分な粒子などが除去でき、膜はがれを起こすことなく、透明性及び導電性が向上した導電膜が得られることを知見した。 As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, by dispersing a metal nanowire-containing film containing metal nanowires and a dispersant in an immersion liquid, dispersion in the metal nanowire-containing film is performed. It has been found that a conductive film having improved transparency and conductivity can be obtained without removing the agent and excess particles and causing film peeling.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 金属ナノワイヤー及び分散剤を含有する金属ナノワイヤー含有膜を作製する金属ナノワイヤー含有膜作製工程と、
 前記金属ナノワイヤー含有膜を浸漬液中に浸漬する浸漬工程と、を含むことを特徴とする導電膜の製造方法である。
 <2> 浸漬液が、金属ナノワイヤー含有膜中の分散剤を溶解可能な溶媒である前記<1>に記載の導電膜の製造方法である。
 <3> 浸漬液が、エタノール、エチレングリコール、メタノール及び水から選択される少なくとも1種である前記<1>から<2>のいずれかに記載の導電膜の製造方法である。
 <4> 分散剤がイオン性界面活性剤である前記<1>から<3>のいずれかに記載の導電膜の製造方法である。
 <5> イオン性界面活性剤が第4級アルキルアンモニウム塩である前記<4>に記載の導電膜の製造方法である。
 <6> 金属ナノワイヤーが、銀を含有する前記<1>から<5>のいずれかに記載の導電膜の製造方法である。
 <7> 金属ナノワイヤーが、平均短軸長さ50nm以下でありかつ平均長軸長さ5μm以上であり、短軸長さ50nm以下でありかつ長軸長さ5μm以上である金属ナノワイヤーを全金属粒子中に金属量で50質量%以上含む前記<1>から<6>のいずれかに記載の導電膜の製造方法である。
 <8> 金属ナノワイヤーの短軸長さの変動係数が40%以下である前記<1>から<7>のいずれかに記載の導電膜の製造方法である。
 <9> 金属ナノワイヤーの断面形状が、角が丸まった形状である前記<1>から<8>のいずれかに記載の導電膜の製造方法である。
 <10> 金属ナノワイヤーの断面形状の鋭利度が75%以下である前記<1>から<9>のいずれかに記載の導電膜の製造方法である。
 <11> 金属ナノワイヤー含有膜の作製が、金属ナノワイヤー及び分散剤を含む金属ナノワイヤー分散液を基材上に塗布し、乾燥させて行われる前記<1>から<10>のいずれかに記載の導電膜の製造方法である。
 <12> 前記<1>から<11>のいずれかに記載の導電膜の製造方法により製造されたことを特徴とする導電膜である。
 <13> 前記<12>に記載の導電膜を用いたことを特徴とするタッチパネルである。
 <14> 前記<12>に記載の導電膜を用いたことを特徴とする表示素子である。
 <15> 前記<12>に記載の導電膜を用いたことを特徴とする集積型太陽電池である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A metal nanowire-containing film production process for producing a metal nanowire-containing film containing a metal nanowire and a dispersant,
An immersion step of immersing the metal nanowire-containing film in an immersion liquid.
<2> The method for producing a conductive film according to <1>, wherein the immersion liquid is a solvent capable of dissolving the dispersant in the metal nanowire-containing film.
<3> The method for producing a conductive film according to any one of <1> to <2>, wherein the immersion liquid is at least one selected from ethanol, ethylene glycol, methanol, and water.
<4> The method for producing a conductive film according to any one of <1> to <3>, wherein the dispersant is an ionic surfactant.
<5> The method for producing a conductive film according to <4>, wherein the ionic surfactant is a quaternary alkyl ammonium salt.
<6> The method for producing a conductive film according to any one of <1> to <5>, wherein the metal nanowire contains silver.
<7> All metal nanowires having an average minor axis length of 50 nm or less, an average major axis length of 5 μm or more, a minor axis length of 50 nm or less, and a major axis length of 5 μm or more It is a manufacturing method of the electrically conductive film in any one of said <1> to <6> which contains 50 mass% or more of metal amount in a metal particle.
<8> The method for producing a conductive film according to any one of <1> to <7>, wherein the coefficient of variation of the minor axis length of the metal nanowire is 40% or less.
<9> The method for producing a conductive film according to any one of <1> to <8>, wherein the cross-sectional shape of the metal nanowire is a shape with rounded corners.
<10> The method for producing a conductive film according to any one of <1> to <9>, wherein the sharpness of the cross-sectional shape of the metal nanowire is 75% or less.
<11> The production of a metal nanowire-containing film is performed by applying a metal nanowire dispersion liquid containing a metal nanowire and a dispersant onto a substrate and drying the film. It is a manufacturing method of the electrically conductive film of description.
<12> A conductive film manufactured by the method for manufacturing a conductive film according to any one of <1> to <11>.
<13> A touch panel using the conductive film according to <12>.
<14> A display element using the conductive film according to <12>.
<15> An integrated solar cell using the conductive film according to <12>.
 本発明によれば、従来の前記諸問題を解決することができ、膜はがれを起こすことなく、透明性及び導電性が大幅に向上した導電膜及び該導電膜の製造方法、並びにタッチパネルを提供することができる。 According to the present invention, there are provided a conductive film, a method for producing the conductive film, and a touch panel, which can solve the above-mentioned conventional problems, and have greatly improved transparency and conductivity without causing film peeling. be able to.
図1は、金属ナノワイヤーの鋭利度を求める方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method for determining the sharpness of metal nanowires. 図2は、タッチパネルの一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a touch panel. 図3は、タッチパネルの他の一例を示す概略説明図である。FIG. 3 is a schematic explanatory diagram illustrating another example of the touch panel. 図4は、図3に示すタッチパネルにおける導電膜の配置例を示す概略平面図である。FIG. 4 is a schematic plan view showing an example of arrangement of conductive films in the touch panel shown in FIG. 図5は、タッチパネルの更に他の一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing still another example of the touch panel.
(導電膜及び導電膜の製造方法)
 本発明の導電膜の製造方法は、金属ナノワイヤー含有膜作製工程と、浸漬工程とを少なくとも含み、更に必要に応じてその他の工程を含んでなる。
 本発明の導電膜は、本発明の導電膜の製造方法により製造される。
 以下、本発明の導電膜の製造方法の説明を通じて本発明の導電膜の詳細についても明らかにする。
(Conductive film and method for producing conductive film)
The manufacturing method of the electrically conductive film of this invention contains a metal nanowire containing film | membrane preparation process and an immersion process at least, and also includes another process as needed.
The electrically conductive film of this invention is manufactured by the manufacturing method of the electrically conductive film of this invention.
Hereinafter, the details of the conductive film of the present invention will be clarified through the description of the method of manufacturing the conductive film of the present invention.
<金属ナノワイヤー含有膜作製工程>
 前記金属ナノワイヤー含有膜作製工程は、少なくとも金属ナノワイヤー及び分散剤を含有する金属ナノワイヤー含有膜を作製する工程である。
 この場合、前記金属ナノワイヤー含有膜の作製が、少なくとも金属ナノワイヤー及び分散剤を含む金属ナノワイヤー分散液を基材上に塗布し、乾燥させて行われることが好ましい。
<Metal nanowire-containing film production process>
The said metal nanowire containing film | membrane preparation process is a process of producing the metal nanowire containing film | membrane containing a metal nanowire and a dispersing agent at least.
In this case, it is preferable that the metal nanowire-containing film is produced by applying a metal nanowire dispersion liquid containing at least metal nanowires and a dispersing agent on a substrate and drying it.
<<金属ナノワイヤー分散液>>
 前記金属ナノワイヤー分散液は、少なくとも金属ナノワイヤー及び分散剤を含み、溶媒、更に必要に応じてその他の成分を含有してなる。
<< Metal nanowire dispersion >>
The said metal nanowire dispersion liquid contains a metal nanowire and a dispersing agent at least, and contains a solvent and also another component as needed.
-金属ナノワイヤー-
 前記金属ナノワイヤーは、平均短軸長さ(直径)が50nm以下でありかつ平均長軸長さ(長さ)が5μm以上であり、このような直径及び長さを有する金属ナノワイヤーが、全金属粒子中に金属量で50質量%以上含まれているものである。
 本発明において、前記金属ナノワイヤーとは、アスペクト比(長さ/直径)が30以上である金属微粒子を意味する。
-Metal nanowires-
The metal nanowire has an average minor axis length (diameter) of 50 nm or less and an average major axis length (length) of 5 μm or more. Metal nanowires having such a diameter and length are all The metal particles contain 50% by mass or more of metal.
In the present invention, the metal nanowire means metal fine particles having an aspect ratio (length / diameter) of 30 or more.
 前記金属ナノワイヤーの平均短軸長さは50nm以下であり、35nm以下が好ましく、20nm以下がより好ましい。なお、前記平均短軸長さが、小さすぎると耐酸化性が悪化し、耐久性が悪くなることがあるため、前記短軸長さは5nm以上であることが好ましい。一方、前記平均短軸長さが50nmを超えると、金属ナノワイヤー起因の散乱が生じるためか、十分な透明性を得ることができないことがある。
 前記金属ナノワイヤーの平均長軸長さは、5μm以上であり、10μm以上が好ましく、30μm以上がより好ましい。なお、金属ナノワイヤーの長軸の長さが長すぎると金属ナノワイヤー製造時に絡まるためか、製造過程で凝集物が生じてしまうことがあるため、前記長軸の長さは1mm以下であることが好ましい。前記平均長軸長さが、5μm未満であると、密なネットワークを形成することが難しいためか、十分な導電性を得ることができないことがある。
 ここで、前記金属ナノワイヤーの平均短軸長さ及び平均長軸長さは、例えば、透過型電子顕微鏡(TEM)と光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができ、本発明においては、金属ナノワイヤーの短軸長さ及び長軸長さは、透過型電子顕微鏡(TEM)により300個の金属ナノワイヤーを観察し、その平均値から求めたものである。
The average minor axis length of the metal nanowire is 50 nm or less, preferably 35 nm or less, and more preferably 20 nm or less. Note that if the average minor axis length is too small, the oxidation resistance deteriorates and the durability may deteriorate. Therefore, the minor axis length is preferably 5 nm or more. On the other hand, if the average minor axis length exceeds 50 nm, sufficient transparency may not be obtained because of scattering due to metal nanowires.
The average major axis length of the metal nanowire is 5 μm or more, preferably 10 μm or more, and more preferably 30 μm or more. In addition, if the length of the major axis of the metal nanowire is too long, it may be entangled during the production of the metal nanowire, or an aggregate may be generated in the production process, so the length of the major axis is 1 mm or less. Is preferred. If the average major axis length is less than 5 μm, it may be difficult to form a dense network, or sufficient conductivity may not be obtained.
Here, the average minor axis length and the average major axis length of the metal nanowire can be determined by observing a TEM image or an optical microscope image using, for example, a transmission electron microscope (TEM) and an optical microscope. In the present invention, the short axis length and the long axis length of the metal nanowires are obtained by observing 300 metal nanowires with a transmission electron microscope (TEM) and calculating the average value thereof.
 本発明においては、短軸長さが50nm以下でありかつ長軸長さが5μm以上である金属ナノワイヤーが、全金属粒子中に金属量で50質量%以上含まれており、60質量%以上が好ましく、75質量%以上がより好ましい。
 前記短軸長さが50nm以下であり長軸長さが5μm以上である金属ナノワイヤーの割合(以下、「適切ワイヤー化率」と称することもある)が、50質量%未満であると、伝導に寄与する金属量が減少するためか伝導性が低下してしまうことがあり、同時に密なワイヤーネットワークを形成できないために電圧集中が生じるためか、耐久性が低下してしまうことがある。また、ナノワイヤー以外の形状の粒子が球形などのプラズモン吸収が強い場合には透明度を悪化してしまうことがある。
 ここで、前記適切ワイヤー化率は、例えば金属ナノワイヤーが銀ナノワイヤーである場合には、銀ナノワイヤー水分散液をろ過して銀ナノワイヤーとそれ以外の粒子を分離し、ICP発光分析装置を用いて、ろ紙に残っているAg量と、ろ紙を透過したAg量とを各々測定することで、適切ワイヤー化率を求めることができる。ろ紙に残っている金属ナノワイヤーをTEMで観察し、300個の金属ナノワイヤーの短軸長さを観察し、その分布を調べることにより、短軸長さが50nm以下でありかつ長軸長さが5μm以上である金属ナノワイヤーであることを確認する。なお、ろ紙は、TEM像で短軸長さが50nm以下であり、かつ長軸長さが5μm以上である金属ナノワイヤー以外の粒子の最長軸を計測し、その最長軸の5倍以上でありかつワイヤー長軸の最短長の1/2以下の径のものを用いることが好ましい。
In the present invention, metal nanowires having a minor axis length of 50 nm or less and a major axis length of 5 μm or more are contained in all metal particles in an amount of 50% by mass or more, and 60% by mass or more. Is preferable, and 75 mass% or more is more preferable.
When the proportion of metal nanowires having a short axis length of 50 nm or less and a long axis length of 5 μm or more (hereinafter also referred to as “appropriate wire-forming ratio”) is less than 50% by mass, The conductivity may decrease due to a decrease in the amount of metal that contributes to the resistance, and at the same time, voltage concentration may occur because a dense wire network cannot be formed, or durability may decrease. Moreover, when particles having a shape other than nanowires have strong plasmon absorption such as a spherical shape, the transparency may be deteriorated.
Here, for example, when the metal nanowire is a silver nanowire, the appropriate wire formation rate is obtained by filtering the silver nanowire aqueous dispersion to separate the silver nanowire and other particles, and an ICP emission spectrometer By measuring the amount of Ag remaining on the filter paper and the amount of Ag transmitted through the filter paper, respectively, an appropriate wire formation rate can be obtained. By observing the metal nanowires remaining on the filter paper with a TEM, observing the short axis length of 300 metal nanowires and examining their distribution, the short axis length is 50 nm or less and the long axis length Is a metal nanowire having a thickness of 5 μm or more. Note that the filter paper has a short axis length of 50 nm or less in a TEM image and the longest axis of particles other than metal nanowires having a long axis length of 5 μm or more, and is 5 times or more of the longest axis. And it is preferable to use the thing of the diameter below 1/2 of the shortest length of a wire major axis.
 本発明の金属ナノワイヤーの短軸長さ(直径)の変動係数は、40%以下が好ましく、35%以下がより好ましく、30%以下が更に好ましい。
 前記変動係数が、40%を超えると、短軸長さの短いワイヤーに電圧が集中してしまうためか、耐久性が悪化することがある。
 前記金属ナノワイヤーの短軸長さの変動係数は、例えば透過型電子顕微鏡(TEM)像から300個のナノワイヤーの短軸長さを計測し、その標準偏差と平均値を計算することにより、求めることができる。
The coefficient of variation of the short axis length (diameter) of the metal nanowire of the present invention is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less.
If the coefficient of variation exceeds 40%, the voltage may be concentrated on a wire having a short axis length, or the durability may deteriorate.
The coefficient of variation of the short axis length of the metal nanowire is, for example, by measuring the short axis length of 300 nanowires from a transmission electron microscope (TEM) image, and calculating the standard deviation and average value thereof. Can be sought.
 本発明の金属ナノワイヤーの形状としては、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状や断面の多角形の角が丸まっている断面形状であることが好ましい。
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 前記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前記「断面の各辺」の合計長さに対する前記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図1に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前記鋭利度は60%以下が好ましく、50%以下がより好ましい。前記鋭利度が75%を超えると、該角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。前記鋭利度の下限は、30%が好ましく、40%がより好ましい。
As the shape of the metal nanowire of the present invention, for example, a columnar shape, a rectangular parallelepiped shape, a columnar shape having a polygonal cross section, and the like, a columnar shape or A cross-sectional shape with rounded corners is preferable.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 1, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. The lower limit of the sharpness is preferably 30%, more preferably 40%.
 前記金属ナノワイヤーにおける金属としては、特に制限はなく、いかなる金属であってもよく、1種の金属以外にも2種以上の金属を組み合わせて用いてもよく、合金として用いることも可能である。これらの中でも、金属又は金属化合物から形成されるものが好ましく、金属から形成されるものがより好ましい。
 前記金属としては、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2~14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
There is no restriction | limiting in particular as a metal in the said metal nanowire, Any metal may be used, 2 or more types of metals may be used in combination other than 1 type of metal, and it can also be used as an alloy. . Among these, those formed from metals or metal compounds are preferable, and those formed from metals are more preferable.
The metal is preferably at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC 1991), and at least one selected from Groups 2 to 14 More preferably, at least one metal selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, Group 14 is more preferable, It is particularly preferable to include it as a main component.
 前記金属としては、例えば銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、又はこれらの合金などが挙げられる。これらの中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム又はこれらの合金が好ましく、パラジウム、銅、銀、金、白金、錫及びこれらの合金がより好ましく、銀又は銀を含有する合金が特に好ましい。 Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, lead, Or these alloys etc. are mentioned. Among these, copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
 前記金属ナノワイヤーの前記金属ナノワイヤー分散液における含有量は、0.1質量%~99質量%が好ましく、0.3質量%~95質量%がより好ましい。前記含有量が、0.1質量%未満であると、製造時、乾燥工程における負荷が多大となり、99質量%を超えると、粒子の凝集が起こりやすくなることがある。 The content of the metal nanowire in the metal nanowire dispersion liquid is preferably 0.1% by mass to 99% by mass, and more preferably 0.3% by mass to 95% by mass. When the content is less than 0.1% by mass, the load in the drying process is great during production, and when it exceeds 99% by mass, particle aggregation may easily occur.
-分散剤-
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば第4級アルキルアンモニウム塩等のイオン性界面活性剤;アミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子類、などが挙げられる。これらの中でも、浸漬時に洗浄することが容易であるため第4級アルキルアンモニウム塩が特に好ましい。
-Dispersant-
There is no restriction | limiting in particular as said dispersing agent, According to the objective, it can select suitably, For example, ionic surfactants, such as a quaternary alkyl ammonium salt; Amino group containing compound, thiol group containing compound, sulfide group containing Examples thereof include compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, natural polymers derived from polysaccharides, synthetic polymers, and polymers such as gels derived therefrom. Among these, a quaternary alkyl ammonium salt is particularly preferable because it can be easily washed at the time of immersion.
 前記第4級アルキルアンモニウム塩としては、例えばヘキサデシルトリメチルアンモニウムブロミド(HTAB)、ヘキサデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド(STAB)、ステアリルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムクロリド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ヘキサデシルトリメチルアンモニウムブロミド(HTAB)が特に好ましい。 Examples of the quaternary alkyl ammonium salt include hexadecyl trimethyl ammonium bromide (HTAB), hexadecyl trimethyl ammonium chloride, stearyl trimethyl ammonium bromide (STAB), stearyl trimethyl ammonium chloride, tetradecyl trimethyl ammonium bromide, tetradecyl trimethyl ammonium chloride. , Dilauryldimethylammonium bromide, dilauryldimethylammonium chloride and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, hexadecyltrimethylammonium bromide (HTAB) is particularly preferable.
 前記高分子類としては、例えば保護コロイド性のあるポリマーでゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプルピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン(PVP)、ポリビニルピロリドン共重合体、などが挙げられる。
 前記分散剤として使用可能な構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝書院発行、2000年)の記載を参照できる。
Examples of the polymers include a protective colloid polymer such as gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, partial alkyl ester of polyacrylic acid, polyvinylpyrrolidone (PVP), and polyvinylpyrrolidone copolymer. , Etc.
For the structure that can be used as the dispersant, for example, the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asshoin Co., Ltd., 2000) can be referred to.
 前記分散剤の前記金属ナノワイヤー分散液における含有量は、下記数式1により求めることができ、金属ナノワイヤーを分散できていれば特に制限はなく、目的に応じて適宜選択することができるが、20質量%~95質量%が好ましく、40質量%~90質量%がより好ましい。
<数式1>
 分散剤の金属ナノワイヤー分散液における含有量(質量%)=
  (金属ナノワイヤー分散液中の金属含有量)/(金属ナノワイヤー分散液中の金属含有量+分散剤の含有量)×100
The content of the dispersant in the metal nanowire dispersion liquid can be determined by the following formula 1, and is not particularly limited as long as the metal nanowires can be dispersed, and can be appropriately selected according to the purpose. 20% by mass to 95% by mass is preferable, and 40% by mass to 90% by mass is more preferable.
<Formula 1>
Content of dispersing agent in metal nanowire dispersion (mass%) =
(Metal content in metal nanowire dispersion) / (Metal content in metal nanowire dispersion + content of dispersant) × 100
<<金属ナノワイヤーの製造方法>>
 前記金属ナノワイヤーの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば(1)ポリオール法(米国特許出願公開第2005/0056118号明細書、米国特許出願公開第2007/0074316号明細書参照)、(2)少なくともハロゲン化合物、及び還元剤を含む水溶媒中に、金属錯体溶液を添加して加熱する工程と、好ましくは脱塩処理工程とを含む金属ナノワイヤーの製造方法、などが挙げられる。これらの中でも、前記(2)の金属ナノワイヤーの製造方法が特に好ましい。
<< Production Method of Metal Nanowire >>
There is no restriction | limiting in particular as a manufacturing method of the said metal nanowire, According to the objective, it can select suitably, For example, (1) polyol method (US Patent application publication 2005/0056118 specification, US patent application publication number 1) 2007/0074316), (2) a metal nanowire comprising a step of adding and heating a metal complex solution in an aqueous solvent containing at least a halogen compound and a reducing agent, and preferably a desalting treatment step And the like. Among these, the manufacturing method of the metal nanowire of (2) is particularly preferable.
<<前記(2)の金属ナノワイヤーの製造方法>>
 前記(2)の金属ナノワイヤーの製造方法は、少なくともハロゲン化合物、及び還元剤を含む水溶媒中に、金属錯体溶液を添加して加熱する工程と、好ましくは脱塩処理工程とを含み、更に必要に応じてその他の工程を含んでなる。
<< Method for Producing (2) Metal Nanowire >>
The method for producing metal nanowires of (2) includes a step of adding and heating a metal complex solution in an aqueous solvent containing at least a halogen compound and a reducing agent, and preferably a desalting treatment step. Other steps are included as necessary.
-金属錯体-
 前記金属錯体としては、特に制限はなく、目的に応じて適宜選択することができるが、銀錯体が特に好ましい。前記銀錯体の配位子としては、例えばCN、SCN、SO 2-、チオウレア、アンモニアなどが挙げられる。これらについては、“The Theory of the Photographic Process 4th Edition”Macmillan Publishing、T.H.James著の記載を参照することができる。これらの中でも、銀アンモニア錯体が特に好ましい。
 前記金属錯体の添加は、分散剤とハロゲン化合物の後に添加することが好ましい。ワイヤー核を高い確率で形成できるためか、本発明における適切な短軸長さ(直径)や長軸長さの金属ナノワイヤーの割合を高める効果がある。
-Metal complex-
There is no restriction | limiting in particular as said metal complex, Although it can select suitably according to the objective, A silver complex is especially preferable. Examples of the ligand of the silver complex include CN , SCN , SO 3 2− , thiourea, and ammonia. For these, "The Theory of the Photographic Process 4 th Edition" Macmillan Publishing, reference may be made to the description of the THJames al. Among these, a silver ammonia complex is particularly preferable.
The metal complex is preferably added after the dispersant and the halogen compound. Probably because the wire core can be formed with high probability, there is an effect of increasing the proportion of metal nanowires having an appropriate minor axis length (diameter) and major axis length in the present invention.
 前記溶媒としては、親水性溶媒が好ましく、該親水性溶媒としては、例えば水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール類;ジオキサン、テトラヒドロフラン等のエーテル類;アセトン等のケトン類;テトラヒドロフラン、ジオキサン等の環状エーテル類、などが挙げられる。 The solvent is preferably a hydrophilic solvent, and examples of the hydrophilic solvent include water, alcohols such as methanol, ethanol, propanol, isopropanol, and butanol; ethers such as dioxane and tetrahydrofuran; ketones such as acetone; And cyclic ethers such as dioxane.
 加熱温度は、150℃以下が好ましく、20℃以上130℃以下がより好ましく、30℃以上100℃以下が更に好ましく、40℃以上90℃以下が特に好ましい。必要であれば、粒子形成過程で温度を変更してもよく、途中での温度変更は核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果があることがある。
 前記加熱温度が、150℃を超えると、ナノワイヤーの断面の角が急峻になるためか、塗布膜評価での透過率が低くなることがある。また、前記加熱温度が低くなる程、核形成確率が下がり金属ナノワイヤーが長くなりすぎたためか、金属ナノワイヤーが絡みやすく、分散安定性が悪くなることがある。この傾向は20℃以下で顕著となる。
The heating temperature is preferably 150 ° C. or lower, more preferably 20 ° C. or higher and 130 ° C. or lower, further preferably 30 ° C. or higher and 100 ° C. or lower, and particularly preferably 40 ° C. or higher and 90 ° C. or lower. If necessary, the temperature may be changed during the grain formation process, and changing the temperature during the process may have the effect of controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. .
If the heating temperature exceeds 150 ° C., the transmittance in the evaluation of the coating film may be low because the cross-sectional angle of the nanowire becomes steep. In addition, the lower the heating temperature, the lower the nucleation probability and the longer the metal nanowires are, or the metal nanowires are more likely to get entangled and the dispersion stability may deteriorate. This tendency becomes remarkable at 20 ° C. or less.
 前記加熱の際には還元剤を添加して行うことが好ましい。該還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等;ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノール等のアルカノールアミン;プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミン等の脂肪族アミン;ピペリジン、ピロリジン、Nメチルピロリジン、モルホリン等のヘテロ環式アミン;アニリン、N-メチルアニリン、トルイジン、アニシジン、フェネチジン等の芳香族アミン;ベンジルアミン、キシレンジアミン、N-メチルベンジルアミン等のアラルキルアミン;メタノール、エタノール、2-プロパノール等のアルコール;エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、糖アルコール類(ソルビトール等)などが挙げられる。これらの中でも、還元糖類、還元糖類の誘導体としての糖アルコール類が特に好ましい。
 なお、還元剤種によっては機能として分散剤としても働く場合があり、同様に好ましく用いることができる。
It is preferable to add a reducing agent during the heating. There is no restriction | limiting in particular as this reducing agent, It can select suitably from what is normally used, for example, borohydride metal salts, such as sodium borohydride and potassium borohydride; Lithium aluminum hydride, hydrogen Aluminum hydride salts such as potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, magnesium aluminum hydride, calcium aluminum hydride; sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, citric acid or salts thereof, amber Acids or salts thereof, ascorbic acid or salts thereof, etc .; alkanolamines such as diethylaminoethanol, ethanolamine, propanolamine, triethanolamine, dimethylaminopropanol; propylamine, Aliphatic amines such as tilamine, dipropyleneamine, ethylenediamine and triethylenepentamine; heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine and morpholine; aromatics such as aniline, N-methylaniline, toluidine, anisidine and phenetidine Amines; aralkylamines such as benzylamine, xylenediamine and N-methylbenzylamine; alcohols such as methanol, ethanol and 2-propanol; ethylene glycol, glutathione, organic acids (citric acid, malic acid, tartaric acid, etc.), reducing sugars ( Glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose), sugar alcohols (sorbitol, etc.) and the like. Among these, reducing sugars and sugar alcohols as derivatives of reducing sugars are particularly preferable.
Depending on the type of reducing agent, it may function as a dispersant as a function and can be preferably used in the same manner.
 前記還元剤の添加のタイミングは、分散剤の添加前でも添加後でもよく、ハロゲン化合物の添加前でも添加後でもよい。 The timing of addition of the reducing agent may be before or after the addition of the dispersant, and may be before or after the addition of the halogen compound.
 本発明の金属ナノワイヤー製造の際にはハロゲン化合物を添加して行うことが好ましい。
 前記ハロゲン化合物としては、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウムなどのアルカリハライドや下記の分散剤と併用できる物質が好ましい。ハロゲン化合物の添加タイミングは、分散剤の添加前でも添加後でもよく、還元剤の添加前でも添加後でもよい。
 なお、ハロゲン化合物種によっては、分散剤として機能するものがありうるが、同様に好ましく用いることができる。
In producing the metal nanowire of the present invention, it is preferable to add a halogen compound.
The halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose. For example, sodium bromide, sodium chloride, sodium iodide, potassium iodide Further, preferred are alkali halides such as potassium bromide, potassium chloride, and potassium iodide, and substances that can be used in combination with the following dispersants. The timing of adding the halogen compound may be before or after the addition of the dispersant, and may be before or after the addition of the reducing agent.
Some halogen compound species may function as a dispersant, but can be preferably used in the same manner.
 前記ハロゲン化合物の代替としてハロゲン化金属微粒子を使用してもよいし、ハロゲン化合物とハロゲン化金属微粒子を共に使用してもよい。
 分散剤とハロゲン化合物、又はハロゲン化金属微粒子は同一物質で併用してもよい。分散剤とハロゲン化合物を併用した化合物としては、例えば、アミノ基と臭化物イオンを含むヘキサデシルトリメチルアンモニウムブロミド(HTAB)、ステアリルトリメチルアンモニウムブロミド(STAB)、アミノ基と塩化物イオンを含むヘキサデシルトリメチルアンモニウムクロリド(HTAC)などが挙げられる。
As an alternative to the halogen compound, metal halide fine particles may be used, or both a halogen compound and metal halide fine particles may be used.
The dispersant and the halogen compound or metal halide fine particles may be used in the same substance. Examples of the compound in which the dispersant and the halogen compound are used in combination include, for example, hexadecyltrimethylammonium bromide (HTAB) containing amino group and bromide ion, stearyltrimethylammonium bromide (STAB), hexadecyltrimethylammonium containing amino group and chloride ion. And chloride (HTAC).
 前記金属ナノワイヤー製造の際には分散剤を添加して行うことが好ましい。なお、使用する分散剤の種類によって得られる金属ナノワイヤーの形状を変化させることができる。
 前記分散剤を添加する段階は、粒子調製する前に添加し、分散ポリマー存在下で添加してもよいし、粒子調整後に分散状態の制御のために添加しても構わない。分散剤の添加を二段階以上に分けるときには、その量は必要とするワイヤーの長さにより変更する必要がある。これは核となる金属粒子量の制御によるワイヤーの長さに起因しているためと考えられる。
 前記分散剤としては、上述したものを用いることができる。
In producing the metal nanowire, it is preferable to add a dispersant. In addition, the shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
The step of adding the dispersant may be added before preparing the particles and may be added in the presence of the dispersed polymer, or may be added for controlling the dispersion state after adjusting the particles. When the addition of the dispersing agent is divided into two or more steps, the amount needs to be changed according to the required length of the wire. This is considered to be due to the length of the wire by controlling the amount of core metal particles.
As the dispersant, those described above can be used.
 前記脱塩処理は、金属ナノワイヤーを形成した後、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により行うことができる。 The desalting treatment can be performed by a method such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation after forming metal nanowires.
 前記金属ナノワイヤー分散液における分散溶媒としては、主として水が用いられ、水と混和する有機溶媒を80容量%以下の割合で併用することができる。
 前記有機溶媒としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール系化合物が好適に用いられる。このようなアルコール系化合物を併用することにより、塗布工程での塗り付け良化、乾燥負荷の低減をすることができる。
 前記アルコール系化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えばメタノール、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1-エトキシ-2-プロパノール、エタノールアミン、ジエタノールアミン、2-(2-アミノエトキシ)エタノール、2-ジメチルアミノイソプロパノール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
As a dispersion solvent in the metal nanowire dispersion liquid, water is mainly used, and an organic solvent miscible with water can be used in a proportion of 80% by volume or less.
As the organic solvent, for example, an alcohol compound having a boiling point of 50 ° C. to 250 ° C., more preferably 55 ° C. to 200 ° C. is suitably used. By using such an alcohol compound in combination, it is possible to improve the coating in the coating process and reduce the drying load.
The alcohol compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, methanol, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300, glycerin, propylene glycol, Dipropylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine, 2- (2- Aminoethoxy) ethanol, 2-dimethylaminoisopropanol, and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記金属ナノワイヤー分散液は、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。
 前記金属ナノワイヤー分散液の電気伝導度は、1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
 前記金属ナノワイヤー分散液の20℃における粘度は、0.5mPa・s~100mPa・sが好ましく、1mPa・s~50mPa・sがより好ましい。
The metal nanowire dispersion liquid preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions.
The electrical conductivity of the metal nanowire dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
The viscosity of the metal nanowire dispersion at 20 ° C. is preferably 0.5 mPa · s to 100 mPa · s, and more preferably 1 mPa · s to 50 mPa · s.
 前記金属ナノワイヤー分散液には、必要に応じて、バインダー、各種の添加剤、例えば、界面活性剤、重合性化合物、酸化防止剤、硫化防止剤、腐食防止剤、粘度調整剤、防腐剤などを含有することができる。 In the metal nanowire dispersion liquid, a binder, various additives, for example, a surfactant, a polymerizable compound, an antioxidant, an anti-sulfurizing agent, a corrosion inhibitor, a viscosity modifier, an antiseptic, etc., if necessary Can be contained.
 前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えばゼラチン、ゼラチン誘導体、ガゼイン、寒天、でんぷん、ポリビニルアルコール、ポリアクリル酸共重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、デキストラン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記バインダーの前記金属ナノワイヤー分散液における含有量は、特に制限はなく、目的に応じて適宜選択することができるが、銀1質量部に対し、0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。
The binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, gelatin, gelatin derivatives, casein, agar, starch, polyvinyl alcohol, polyacrylic acid copolymer, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl Examples include pyrrolidone and dextran. These may be used individually by 1 type and may use 2 or more types together.
The content of the binder in the metal nanowire dispersion liquid is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 parts by mass to 10 parts by mass with respect to 1 part by mass of silver. 0.1 to 5 parts by mass is more preferable.
 前記腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、アゾール類が好適である。前記アゾール類としては、例えばベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾール、メルカプトベンゾトリアゾール、メルカプトベンゾテトラゾール、(2-ベンゾチアゾリルチオ)酢酸、3-(2-ベンゾチアゾリルチオ)プロピオン酸、及びこれらのアルカリ金属塩、アンモニウム塩、並びにアミン塩から選ばれる少なくとも1種が挙げられる。前記腐食防止剤を含有することで、優れた防錆効果を発揮することができる。 The corrosion inhibitor is not particularly limited and may be appropriately selected depending on the intended purpose, and azoles are preferred. Examples of the azoles include benzotriazole, tolyltriazole, mercaptobenzothiazole, mercaptobenzotriazole, mercaptobenzotetrazole, (2-benzothiazolylthio) acetic acid, 3- (2-benzothiazolylthio) propionic acid, and these And at least one selected from alkali metal salts, ammonium salts, and amine salts. By containing the corrosion inhibitor, an excellent rust prevention effect can be exhibited.
-基材-
 前記金属ナノワイヤー分散液を塗布する基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス基板;ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂製シート、フィルム又は基板;アルミニウム板、銅板、ニッケル板、ステンレス板等の金属基板;その他セラミック板、光電変換素子を有する半導体基板などを挙げることができる。これらの基板には所望により、シランカップリング剤等の薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などの前処理を行うことができる。
-Base material-
There is no restriction | limiting in particular as a base material which apply | coats the said metal nanowire dispersion liquid, According to the objective, it can select suitably, For example, transparent glass substrates, such as white plate glass, blue plate glass, a silica coat blue plate glass; Polycarbonate, Polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide synthetic resin sheet, film or substrate; aluminum substrate, copper plate, nickel plate, stainless steel plate or other metal substrate; other ceramics A board, a semiconductor substrate having a photoelectric conversion element, and the like can be given. If necessary, these substrates can be subjected to a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
 以上のようにして作製された金属ナノワイヤー含有膜の厚みは、0.02μm~1μmが好ましく、0.03μm~0.3μmがより好ましい。 The thickness of the metal nanowire-containing film produced as described above is preferably 0.02 μm to 1 μm, and more preferably 0.03 μm to 0.3 μm.
<浸漬工程>
 前記浸漬工程は、前記金属ナノワイヤー含有膜を浸漬液中に浸漬する工程である。
 前記浸漬は、金属ナノワイヤー含有膜全体が浸漬液中に浸かることができれば特に制限はなく、目的に応じて適宜選択することができ、例えば(1)容器中に浸漬液を入れ、浸漬液中に金属ナノワイヤー含有膜を浸漬する方法、(2)塗布物を浸漬液中に通過させる方法などが挙げられる。
 前記浸漬液としては、金属ナノワイヤー含有膜中の分散剤を溶解可能なものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば水、メタノール、エタノール、エチレングリコール、アセトンなどが挙げられる。これらの中でも、水、メタノール、エタノール、エチレングリコールが好ましく、水、エタノール、エチレングリコールが特に好ましい。
<Immersion process>
The immersion step is a step of immersing the metal nanowire-containing film in an immersion liquid.
The immersion is not particularly limited as long as the entire metal nanowire-containing film can be immersed in the immersion liquid, and can be appropriately selected depending on the purpose. For example, (1) the immersion liquid is placed in a container, And a method of immersing the metal nanowire-containing film in (2), a method of passing the coated material through the immersion liquid, and the like.
The immersion liquid is not particularly limited as long as it can dissolve the dispersant in the metal nanowire-containing film, and can be appropriately selected according to the purpose. For example, water, methanol, ethanol, ethylene glycol, acetone Etc. Among these, water, methanol, ethanol, and ethylene glycol are preferable, and water, ethanol, and ethylene glycol are particularly preferable.
 前記浸漬工程における浸漬の条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば浸漬液がエタノールであれば、5℃~40℃の範囲で1秒間~30分間が好ましく、10℃~30℃の範囲で3秒間~3分間がより好ましい。 The dipping conditions in the dipping step are not particularly limited and can be appropriately selected according to the purpose. For example, when the dipping solution is ethanol, a range of 5 ° C. to 40 ° C. for 1 second to 30 minutes is preferable. More preferably, it is in the range of 10 ° C. to 30 ° C. for 3 seconds to 3 minutes.
 前記金属ナノワイヤー含有膜を浸漬液中に浸漬することにより、金属ナノワイヤー含有膜から分散剤が除去されたことは、例えば分散剤としてイオン性界面活性剤を用いた場合には、浸漬処理後の浸漬液の導電度を測定することにより確認することができる。 By immersing the metal nanowire-containing film in the immersion liquid, the dispersant was removed from the metal nanowire-containing film, for example, when an ionic surfactant is used as the dispersant, after the immersion treatment This can be confirmed by measuring the conductivity of the immersion liquid.
 本発明の導電膜は、本発明の導電膜の製造方法により製造される。
 本発明の導電膜の表面抵抗は、1×10Ω/□以下が好ましく、1×10Ω/□以下がより好ましい。
 ここで、前記表面抵抗は、例えば四端子法により測定することができる。
 本発明の導電膜の光透過率は、70%以上が好ましく、80%以上がより好ましい。
 ここで、前記透過率は、例えば自記分光光度計(UV2400-PC、島津製作所製)により測定することができる。
The electrically conductive film of this invention is manufactured by the manufacturing method of the electrically conductive film of this invention.
The surface resistance of the conductive film of the present invention is preferably 1 × 10 7 Ω / □ or less, more preferably 1 × 10 3 Ω / □ or less.
Here, the surface resistance can be measured by, for example, a four-terminal method.
The light transmittance of the conductive film of the present invention is preferably 70% or more, and more preferably 80% or more.
Here, the transmittance can be measured by, for example, a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
 本発明の導電膜は、膜はがれを起こすことなく、透明性と導電性を大幅に向上させることができるので、例えばタッチパネル、ディスプレイ用電極、電磁波シールド、有機又は無機ELディスプレイ用電極、電子パーパー、フレキシブルディスプレイ用電極、集積型太陽電池、表示素子、その他の各種デバイスなどに幅広く適用される。これらの中でも、タッチパネル、表示素子、集積型太陽電池が特に好ましい。 Since the conductive film of the present invention can greatly improve transparency and conductivity without causing film peeling, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic or inorganic EL display electrode, an electronic paper, It is widely applied to flexible display electrodes, integrated solar cells, display elements, and other various devices. Among these, a touch panel, a display element, and an integrated solar cell are particularly preferable.
<表示素子>
 本発明で用いられる表示素子としての液晶表示素子は、上記のようにして基板上にパターニングされた本発明の前記導電膜が設けられた素子基板と、対向基板であるカラーフィルター基板とを、位置を合わせて圧着後、熱処理して組み合わせ、液晶を注入し、注入口を封止することによって製作される。このとき、カラーフィルター上に形成される導電膜も、本発明の前記導電膜を用いることが好ましい。
 また、前記素子基板上に液晶を散布した後、基板を重ね合わせ、液晶が漏れないように密封して液晶表示素子が製作されてもよい。
 なお、前記液晶表示素子に用いられる液晶、即ち液晶化合物及び液晶組成物については特に制限はなく、いずれの液晶化合物及び液晶組成物をも使用することができる。
<Display element>
A liquid crystal display element as a display element used in the present invention includes an element substrate provided with the conductive film of the present invention patterned on a substrate as described above, and a color filter substrate as a counter substrate. Are combined by heat treatment, injecting liquid crystal, and sealing the injection port. At this time, the conductive film of the present invention is also preferably used for the conductive film formed on the color filter.
Further, after the liquid crystal is spread on the element substrate, the liquid crystal display element may be manufactured by superimposing the substrates and sealing the liquid crystal so as not to leak.
In addition, there is no restriction | limiting in particular about the liquid crystal used for the said liquid crystal display element, ie, a liquid crystal compound, and a liquid crystal composition, Any liquid crystal compound and liquid crystal composition can be used.
<集積型太陽電池>
 本発明で用いられる集積型太陽電池(以下、太陽電池デバイスと称することもある)としては、特に制限はなく、太陽電池デバイスとして一般的に用いられるものを使用することができる。例えば、単結晶シリコン系太陽電池デバイス、多結晶シリコン系太陽電池デバイス、シングル接合型、又はタンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池デバイス、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池デバイス、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイス、色素増感型太陽電池デバイス、有機太陽電池デバイスなどが挙げられる。これらの中でも、本発明においては、上記太陽電池デバイスが、タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、及び銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイスであることが好ましい。
<Integrated solar cell>
There is no restriction | limiting in particular as an integrated solar cell (henceforth a solar cell device) used by this invention, What is generally used as a solar cell device can be used. For example, a single crystal silicon solar cell device, a polycrystalline silicon solar cell device, an amorphous silicon solar cell device composed of a single junction type or a tandem structure type, gallium arsenide (GaAs), indium phosphorus (InP), etc. Group III-V compound semiconductor solar cell devices, II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned. Among these, in the present invention, the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
 タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイスの場合、アモルファスシリコン、微結晶シリコン薄膜層、また、これらにGeを含んだ薄膜、更に、これらの2層以上のタンデム構造が光電変換層として用いられる。成膜はプラズマCVD等を用いる。 In the case of an amorphous silicon solar cell device composed of a tandem structure type, etc., amorphous silicon, a microcrystalline silicon thin film layer, a thin film containing Ge in these, and a tandem structure of these two or more layers is a photoelectric conversion layer Used as For film formation, plasma CVD or the like is used.
 前記太陽電池に用いられる本発明の導電膜としての透明導電層は、前記全ての太陽電池デバイスに関して適用できる。前記透明導電層は、太陽電池デバイスのどの部分に含まれてもよいが、光電変換層に隣接していることが好ましい。光電変換層との位置関係に関しては下記の構成が好ましいが、これに限定されるものではない。また、下記に記した構成は太陽電池デバイスを構成する全ての部分を記載しておらず、前記透明導電層の位置関係が分かる範囲の記載としている。
(A)基板-透明導電層(本発明品)-光電変換層
(B)基板-透明導電層(本発明品)-光電変換層-透明導電層(本発明品)
(C)基板-電極-光電変換層-透明導電層(本発明品)
(D)裏面電極-光電変換層-透明導電層(本発明品)
The transparent conductive layer as the conductive film of the present invention used for the solar cell can be applied to all the solar cell devices. The transparent conductive layer may be included in any part of the solar cell device, but is preferably adjacent to the photoelectric conversion layer. Although the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this. Moreover, the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood.
(A) Substrate—Transparent conductive layer (Invention product) —Photoelectric conversion layer (B) Substrate—Transparent conductive layer (Invention product) —Photoelectric conversion layer—Transparent conductive layer (Invention product)
(C) Substrate-electrode-photoelectric conversion layer-transparent conductive layer (product of the present invention)
(D) Back electrode-photoelectric conversion layer-transparent conductive layer (product of the present invention)
 また、前記太陽電池に用いられる透明導電層は、赤外波長の透過率が高く、かつシート抵抗が小さいため、赤外波長に対する吸収の大きな太陽電池、例えばタンデム構造型等で構成されるアモルファスシリコン系太陽電池、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池などに好適に用いられる。 In addition, the transparent conductive layer used in the solar cell has high infrared wavelength transmittance and low sheet resistance, so that the solar cell has high absorption with respect to the infrared wavelength, for example, amorphous silicon composed of a tandem structure type or the like. Solar cells, copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGSS), etc. It is suitably used for I-III-VI group compound semiconductor solar cells.
(タッチパネル)
 本発明の導電膜をタッチパネルの透明導電体として使用した場合、透過率の向上により視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作することができる。
 前記タッチパネルとしては、広く公知のタッチパネルが挙げられ、いわゆるタッチセンサー及びタッチパッドとして知られているものに対して、本発明の導電膜を適用することができる。
(Touch panel)
When the conductive film of the present invention is used as a transparent conductor of a touch panel, it is excellent in visibility due to improved transmittance, and a character with at least one of a bare hand, a gloved hand, an indicator, etc. due to improved conductivity, etc. A touch panel having excellent responsiveness to input or screen operation can be manufactured.
Examples of the touch panel include widely known touch panels, and the conductive film of the present invention can be applied to what is known as a so-called touch sensor and touch pad.
 前記タッチパネルとしては、前記導電膜を有する限り特に制限はなく、目的に応じて適宜選択することができ、例えば、表面型静電容量方式タッチパネル、投射型静電容量方式タッチパネル、抵抗膜式タッチパネルなどが挙げられる。 The touch panel is not particularly limited as long as it has the conductive film, and can be appropriately selected according to the purpose. For example, a surface capacitive touch panel, a projection capacitive touch panel, a resistive touch panel, etc. Is mentioned.
 前記表面型静電容量方式タッチパネルの一例について図2を用いて説明する。この図2において、タッチパネル10は、透明基板11の表面を一様に覆うように透明導電膜12を配してなり、透明基板11の端部の透明導電膜12上に、図示しない外部検知回路との電気接続のための電極端子18が形成されている。
 なお、図2中13は、シールド電極となる透明導電膜を示し、14、17は、保護膜を示し、15は、中間保護膜を示し、16は、グレア防止膜を示す。
 透明導電膜12上の任意の点を指でタッチ等すると、前記透明導電膜12は、タッチされた点で人体を介して接地され、各電極端子18と接地ラインとの間の抵抗値に変化が生じる。この抵抗値の変化を前記外部検知回路によって検知し、タッチした点の座標が特定される。
An example of the surface capacitive touch panel will be described with reference to FIG. In FIG. 2, the touch panel 10 includes a transparent conductive film 12 so as to uniformly cover the surface of the transparent substrate 11, and an external detection circuit (not shown) is formed on the transparent conductive film 12 at the end of the transparent substrate 11. The electrode terminal 18 for electrical connection is formed.
In FIG. 2, reference numeral 13 denotes a transparent conductive film serving as a shield electrode, reference numerals 14 and 17 denote protective films, reference numeral 15 denotes an intermediate protective film, and reference numeral 16 denotes an antiglare film.
When an arbitrary point on the transparent conductive film 12 is touched with a finger or the like, the transparent conductive film 12 is grounded through the human body at the touched point, and changes to a resistance value between each electrode terminal 18 and the ground line. Occurs. The change of the resistance value is detected by the external detection circuit, and the coordinates of the touched point are specified.
 前記表面型静電容量方式タッチパネルの他の一例を図3を用いて説明する。この図3においてタッチパネル20は、透明基板21の表面を覆うように配された透明導電膜22と透明導電膜23と、該透明導電膜22と該透明導電膜23とを絶縁する絶縁層24と、指等の接触対象と透明導電膜22又は透明導電膜23の間に静電容量を生じる絶縁カバー層25からなり、指等の接触対象に対して位置検知する。構成によっては、透明導電膜22,23を一体として構成することもできる。また、絶縁層24又は絶縁カバー層25を空気層として構成してもよい。
 絶縁カバー層25を指等でタッチすると、指等と透明導電膜22又は透明導電膜23の間の静電容量の値が変化に変化が生じる。この静電容量値の変化を前記外部検知回路によって検知し、タッチした点の座標が特定される。
 また、図4により、投射型静電容量方式タッチパネルとしてのタッチパネル20を透明導電膜22と透明導電膜23とを平面から視た配置を通じて模式的に説明する。
 タッチパネル20は、X軸方向の位置を検出可能とする複数の透明導電膜22と、Y軸方向の複数の透明導電膜23とが、外部端子に接続可能に配されている。透明導電膜22と透明導電膜23とは、指先等の接触対象に対し複数接触して、接触情報が多点で入力されることを可能とされる。
 このタッチパネル20上の任意の点を指でタッチ等すると、X軸方向及びY軸方向の座標が位置精度よく特定される。
 なお、透明基板、保護層等のその他の構成としては、前記表面型静電容量方式タッチパネルの構成を適宜選択して適用することができる。また、タッチパネル20において、複数の透明導電膜22と、複数の透明導電膜23とによる透明導電膜のパターンの例を示したが、その形状、配置等としては、これらに限られない。
Another example of the surface capacitive touch panel will be described with reference to FIG. In FIG. 3, the touch panel 20 includes a transparent conductive film 22 and a transparent conductive film 23 arranged to cover the surface of the transparent substrate 21, and an insulating layer 24 that insulates the transparent conductive film 22 and the transparent conductive film 23. The insulating cover layer 25 that generates a capacitance between the contact object such as a finger and the transparent conductive film 22 or the transparent conductive film 23 detects the position of the contact object such as the finger. Depending on the configuration, the transparent conductive films 22 and 23 may be integrated. Moreover, you may comprise the insulating layer 24 or the insulating cover layer 25 as an air layer.
When the insulating cover layer 25 is touched with a finger or the like, the capacitance value between the finger and the transparent conductive film 22 or the transparent conductive film 23 changes. This change in capacitance value is detected by the external detection circuit, and the coordinates of the touched point are specified.
Further, with reference to FIG. 4, the touch panel 20 as a projection capacitive touch panel will be schematically described through an arrangement in which the transparent conductive film 22 and the transparent conductive film 23 are viewed from the plane.
The touch panel 20 is provided with a plurality of transparent conductive films 22 capable of detecting positions in the X-axis direction and a plurality of transparent conductive films 23 in the Y-axis direction so as to be connectable to external terminals. The transparent conductive film 22 and the transparent conductive film 23 are in contact with a plurality of contact objects such as fingertips, and contact information can be input at multiple points.
When an arbitrary point on the touch panel 20 is touched with a finger, the coordinates in the X-axis direction and the Y-axis direction are specified with high positional accuracy.
In addition, as other structures, such as a transparent substrate and a protective layer, the structure of the said surface type capacitive touch panel can be selected suitably, and can be applied. Moreover, although the example of the pattern of the transparent conductive film by the some transparent conductive film 22 and the some transparent conductive film 23 was shown in the touch panel 20, the shape, arrangement | positioning, etc. are not restricted to these.
 前記抵抗膜式タッチパネルの一例について図5を参照して説明する。この図5において、タッチパネル30は、透明導電膜32が配された基板31と、該透明導電膜32上に複数配されたスペーサ36と、空気層34を介して、透明導電膜32と接触可能な透明導電膜33と、該透明導電膜33上に配される透明フィルム35とが支持されて構成される。
 このタッチパネル30に対して、透明フィルム35側からタッチすると、透明フィルム35が押圧され、押し込まれた透明導電膜32と透明導電膜33とが接触し、この位置での電位変化を図示しない外部検知回路で検出することで、タッチした点の座標が特定される。
An example of the resistive touch panel will be described with reference to FIG. In FIG. 5, the touch panel 30 can be in contact with the transparent conductive film 32 via the substrate 31 on which the transparent conductive film 32 is disposed, the spacers 36 disposed on the transparent conductive film 32, and the air layer 34. A transparent conductive film 33 and a transparent film 35 disposed on the transparent conductive film 33 are supported and configured.
When the touch panel 30 is touched from the transparent film 35 side, the transparent film 35 is pressed, the pressed transparent conductive film 32 and the transparent conductive film 33 come into contact with each other, and a potential change at this position is not illustrated. By detecting with a circuit, the coordinates of the touched point are specified.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 以下の例において、銀ナノワイヤーの平均短軸長さ(直径)及び平均長軸長さ、銀ナノワイヤー短軸長さ(直径)の変動係数、適切ワイヤー化率、及び銀ナノワイヤーの断面角の鋭利度は、以下のようにして測定した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the following examples, the average minor axis length (diameter) and average major axis length of silver nanowires, coefficient of variation of silver nanowire minor axis length (diameter), appropriate wire formation rate, and cross-sectional angle of silver nanowires The sharpness of was measured as follows.
<銀ナノワイヤーの平均短軸長さ(直径)及び平均長軸長さ>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の銀ナノワイヤーを観察し、その平均値から銀ナノワイヤーの平均短軸長さ(直径)及び平均長軸長さ求めた。
<Average minor axis length (diameter) and average major axis length of silver nanowires>
Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 silver nanowires were observed, and the average minor axis length (diameter) and average major axis of the silver nanowires from the average value. I asked for the length.
<銀ナノワイヤー短軸長さ(直径)の変動係数>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の銀ナノワイヤーを観察し、その平均値から銀ナノワイヤーの短軸長さ(直径)を計測し、その標準偏差と平均値を計算することにより変動係数を求めた。
<Coefficient of variation of silver nanowire minor axis length (diameter)>
Using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX), 300 silver nanowires were observed, and the short axis length (diameter) of the silver nanowires was measured from the average value. The coefficient of variation was determined by calculating the standard deviation and the average value.
<適切ワイヤー化率>
 各銀ナノワイヤー水分散液をろ過して銀ナノワイヤーとそれ以外の粒子を分離し、ICP発光分析装置(株式会社島津製作所製、ICPS-8000)を用いてろ紙に残っているAg量と、ろ紙を透過したAg量を各々測定し、短軸長さ(直径)が50nm以下であり、かつ長軸長さが5μm以上である銀ナノワイヤー(適切なワイヤー)の全金属粒子中の金属量(質量%)を求めた。
 なお、適切ワイヤー化率を求める際の適切な銀ワイヤーの分離は、メンブレンフィルター(Millipore社製、FALP02500、孔径1.0μm)を用いて行った。
<Appropriate wire ratio>
Each silver nanowire aqueous dispersion is filtered to separate silver nanowires and other particles, and the amount of Ag remaining on the filter paper using an ICP emission spectrometer (ICPS-8000, manufactured by Shimadzu Corporation), The amount of Ag permeated through the filter paper is measured, and the amount of metal in all metal particles of the silver nanowire (appropriate wire) whose minor axis length (diameter) is 50 nm or less and whose major axis length is 5 μm or more. (Mass%) was determined.
In addition, the appropriate silver wire separation for obtaining an appropriate wire conversion rate was performed using a membrane filter (Millipore, FALP02500, pore size: 1.0 μm).
<銀ナノワイヤーの断面角の鋭利度>
 銀ナノワイヤーの断面形状は、基材上に銀ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)で観察し、300個の断面について、断面の外周長さと断面の各辺の合計長さを計測し、「断面の各辺」の合計長さに対する前記「断面の外周長さ」との比率である鋭利度を求めた。この鋭利度が75%以下の場合には角の丸い断面形状であるとした。
<Sharpness of cross section angle of silver nanowire>
The cross-sectional shape of the silver nanowire was obtained by applying a silver nanowire aqueous dispersion on a substrate, observing the cross section with a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and about 300 cross sections. Then, the outer peripheral length of the cross section and the total length of each side of the cross section were measured, and the sharpness, which is the ratio of the “outer peripheral length of the cross section” to the total length of “each side of the cross section”, was obtained. When the sharpness is 75% or less, the cross-sectional shape is rounded.
(調製例1)
-試料No.101の調製-
 予め、下記の添加液A、G、及びHを調製した。
〔添加液A〕
 硝酸銀粉末0.51gを純水50mLに溶解した。その後、1Nのアンモニア水を透明になるまで添加した。そして、全量が100mLになるように純水を添加した。
〔添加液G〕
 グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
〔添加液H〕
 ヘキサデシルトリメチルアンモニウムブロミド(HTAB)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
(Preparation Example 1)
-Sample No. Preparation of 101-
The following additive solutions A, G, and H were prepared in advance.
[Additive liquid A]
0.51 g of silver nitrate powder was dissolved in 50 mL of pure water. Then, 1N ammonia water was added until it became transparent. And pure water was added so that the whole quantity might be 100 mL.
[Additive liquid G]
An additive solution G was prepared by dissolving 0.5 g of glucose powder in 140 mL of pure water.
[Additive liquid H]
Additive solution H was prepared by dissolving 0.5 g of hexadecyltrimethylammonium bromide (HTAB) powder in 27.5 mL of pure water.
 次に、以下のようにして、銀ナノワイヤー水分散液を調製した。
 純水410mLを三口フラスコ内に入れ、20℃にて攪拌しながら、添加液H 82.5mL、及び添加液G 206mLをロートにて添加した(一段目)。この液に、添加液A 206mLを流量2.0mL/min、攪拌回転数800rpmで添加した(二段目)。その10分間後、添加液Hを82.5mL添加した(三段目)。その後、3℃/分で内温75℃まで昇温した。その後、攪拌回転数を200rpmに落とし、5時間加熱した。
 得られた水分散液を冷却した後、限外濾過モジュールSIP1013(旭化成株式会社製、分画分子量6,000)、マグネットポンプ、及びステンレスカップをシリコーン製チューブで接続し、限外濾過装置とした。
 銀ナノワイヤー分散液(水溶液)をステンレスカップに入れ、ポンプを稼動させて限外濾過を行った。モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。上記の洗浄を伝導度が50μS/cm以下になるまで繰り返した後、濃縮を行い、試料No.101の銀ナノワイヤー水分散液を作製した。
 得られた試料No.101の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
Next, a silver nanowire aqueous dispersion was prepared as follows.
410 mL of pure water was placed in a three-necked flask, and 82.5 mL of additive solution H and 206 mL of additive solution G were added using a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of additive solution A was added at a flow rate of 2.0 mL / min and a stirring rotation speed of 800 rpm (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 75 ° C. at 3 ° C./min. Then, the stirring rotation speed was reduced to 200 rpm and heated for 5 hours.
After cooling the obtained aqueous dispersion, an ultrafiltration module SIP1013 (manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000), a magnet pump, and a stainless steel cup were connected with a silicone tube to obtain an ultrafiltration device. .
The silver nanowire dispersion (aqueous solution) was put into a stainless steel cup, and ultrafiltration was performed by operating a pump. When the filtrate from the module reached 50 mL, 950 mL of distilled water was added to the stainless steel cup for washing. After repeating the above washing until the conductivity is 50 μS / cm or less, concentration is performed. A silver nanowire aqueous dispersion of 101 was prepared.
The obtained sample No. Table 1 shows the average minor axis length (diameter), average major axis length, appropriate wire formation rate, variation coefficient of silver nanowire diameter, and sharpness of the cross-sectional angle of 101 silver nanowires.
(調製例2)
-試料No.102の調製-
 調製例1において、一段目の混合溶液の初期温度20℃を30℃に変えた以外は、調製例1と同様にして、試料No.102の銀ナノワイヤー水分散液を作製した。
 得られた試料No.102の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
(Preparation Example 2)
-Sample No. Preparation of 102
In Preparation Example 1, sample No. 1 was prepared in the same manner as in Preparation Example 1, except that the initial temperature 20 ° C. of the first stage mixed solution was changed to 30 ° C. A silver nanowire aqueous dispersion of 102 was prepared.
The obtained sample No. Table 1 shows the average minor axis length (diameter) of 102 silver nanowires, the average major axis length, the appropriate wire formation rate, the variation coefficient of the silver nanowire diameter, and the sharpness of the cross-sectional angle.
(調製例3)
-試料No.103の調製-
 調製例1において、一段目で添加する添加液Hの量を82.5mLから65.0mLに変えた以外は、調製例1と同様にして、試料No.103の銀ナノワイヤー水分散液を作製した。
 得られた試料No.103の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
(Preparation Example 3)
-Sample No. Preparation of 103-
In Preparation Example 1, the same procedure as in Preparation Example 1 was conducted except that the amount of the additive liquid H added in the first stage was changed from 82.5 mL to 65.0 mL. A silver nanowire aqueous dispersion of 103 was prepared.
The obtained sample No. Table 1 shows the average minor axis length (diameter) of 103 silver nanowires, the average major axis length, the appropriate wire formation rate, the coefficient of variation of the silver nanowire diameter, and the sharpness of the cross-sectional angle.
(調製例4)
-試料No.104の調製-
 調製例1において、添加液Hに添加するヘキサデシルトリメチルアンモニウムブロミド(HTAB)を等モルのステアリルトリメチルアンモニウムブロミド(STAB)に代えた以外は、調製例1と同様にして、試料No.104の銀ナノワイヤー水分散液を調製した。
 得られた試料No.104の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
(Preparation Example 4)
-Sample No. Preparation of 104
In Preparation Example 1, sample No. 1 was prepared in the same manner as in Preparation Example 1, except that hexadecyltrimethylammonium bromide (HTAB) added to additive liquid H was replaced with equimolar stearyltrimethylammonium bromide (STAB). 104 aqueous silver nanowire dispersions were prepared.
The obtained sample No. Table 1 shows the average minor axis length (diameter), average major axis length, appropriate wire formation rate, variation coefficient of silver nanowire diameter, and sharpness of the cross-sectional angle of 104 silver nanowires.
(調製例5)
-試料No.105の調製-
 エチレングリコール30mlを三口フラスコに入れ160℃に加熱した。その後、36mMのポリビニルピロリドン(PVP)(K-55、和光純薬工業株式会社製)、3μMのアセチルアセトナート鉄、60μMの塩化ナトリウムエチレングリコール溶液18mlと、24mMの硝酸銀エチレングリコール溶液18mlを毎分1mlの速度で添加した。160℃で60分間加熱後室温まで冷却した。水を加えて遠心分離し、伝導度が50μS/cm以下になるまで精製し、試料No.105の銀ナノワイヤーの水分散液を得た。
 得られた試料No.105の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
(Preparation Example 5)
-Sample No. Preparation of 105-
30 ml of ethylene glycol was placed in a three-necked flask and heated to 160 ° C. Thereafter, 36 mM polyvinylpyrrolidone (PVP) (K-55, manufactured by Wako Pure Chemical Industries, Ltd.), 3 μM acetylacetonate iron, 60 μM sodium chloride ethylene glycol solution 18 ml, and 24 mM silver nitrate ethylene glycol solution 18 ml per minute Added at a rate of 1 ml. The mixture was heated at 160 ° C. for 60 minutes and then cooled to room temperature. Add water and centrifuge and purify until the conductivity is 50 μS / cm or less. An aqueous dispersion of 105 silver nanowires was obtained.
The obtained sample No. Table 1 shows the average minor axis length (diameter) of 105 silver nanowires, the average major axis length, the appropriate wire formation rate, the coefficient of variation of the silver nanowire diameter, and the sharpness of the cross-sectional angle.
(調製例6)
-試料No.106の調製-
 調製例5において、添加するポリビニルピロリドン(PVP)(K-55、和光純薬工業株式会社製)を72mMに変えた以外は、調製例5と同様にして、試料No.106の銀ナノワイヤー水分散液を作製した。
 得られた試料No.106の銀ナノワイヤーの平均短軸長さ(直径)、平均長軸長さ、適切ワイヤー化率、銀ナノワイヤー直径の変動係数、及び断面角の鋭利度を表1に示す。
(Preparation Example 6)
-Sample No. Preparation of 106-
Sample No. 5 was prepared in the same manner as in Preparation Example 5 except that polyvinyl pyrrolidone (PVP) (K-55, Wako Pure Chemical Industries, Ltd.) to be added was changed to 72 mM in Preparation Example 5. A silver nanowire aqueous dispersion of 106 was prepared.
The obtained sample No. Table 1 shows the average minor axis length (diameter), average major axis length, appropriate wire formation rate, variation coefficient of silver nanowire diameter, and sharpness of the cross-sectional angle of 106 silver nanowires.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
-下引き層の形成-
 市販の二軸延伸熱固定済の厚み100μmのポリエチレンテレフタレート(PET)基板に8W/m・分のコロナ放電処理を施し、下記組成の下引き層用塗布液を塗布して乾燥厚み0.8μmの下引き層を形成した。
-下引き層用塗布液の組成-
 ・ブチルアクリレート・・・40質量%
 ・スチレン・・・20質量%
 ・グリシジルアクリレート・・・・40質量%
 上記組成からなる共重合体ラテックスに、ヘキサメチレン-1,6-ビス(エチレンウレア)を0.5質量%含有させて、下引き層用塗布液を調製した。
Example 1
-Formation of undercoat layer-
A commercially available biaxially stretched heat-fixed polyethylene terephthalate (PET) substrate having a thickness of 100 μm is subjected to a corona discharge treatment of 8 W / m 2 · min, and a coating liquid for an undercoat layer having the following composition is applied to a dry thickness of 0.8 μm. A subbing layer was formed.
-Composition of coating solution for undercoat layer-
・ Butyl acrylate: 40% by mass
・ Styrene ... 20% by mass
・ Glycidyl acrylate ・ ・ ・ 40% by mass
An undercoat layer coating solution was prepared by adding 0.5% by mass of hexamethylene-1,6-bis (ethyleneurea) to the copolymer latex having the above composition.
 次に、下引き層の表面に8W/m・分のコロナ放電処理を施して、ヒドロキシエチルセルロースを親水性ポリマー層として乾燥厚みが0.2μmになるように塗設した。 Next, the surface of the undercoat layer was subjected to a corona discharge treatment of 8 W / m 2 · min, and hydroxyethyl cellulose was coated as a hydrophilic polymer layer so that the dry thickness was 0.2 μm.
 次に、ドクターコーターを用いて、試料No.101の銀ナノワイヤー水分散液を親水性ポリマー層上に塗布し、乾燥した。塗布銀量を蛍光X線分析装置(SII社製、SEA1100)にて測定し、0.02g/mとなるように塗布銀量を調節し、厚み0.1μmの銀ナノワイヤー含有塗布膜を形成した。 Next, using a doctor coater, sample No. 101 silver nanowire aqueous dispersion was applied onto the hydrophilic polymer layer and dried. The amount of coated silver was measured with a fluorescent X-ray analyzer (SEA1100, manufactured by SII), the amount of coated silver was adjusted to 0.02 g / m 2, and a silver nanowire-containing coated film having a thickness of 0.1 μm was obtained. Formed.
<浸漬処理>
 作製した銀ナノワイヤー含有塗布膜について、以下の浸漬条件により、浸漬処理を行った。
-浸漬条件-
 浸漬液としてエタノールを用い、温度25℃下で浸漬し、15秒間保持した。
<Immersion treatment>
About the produced silver nanowire containing coating film, the immersion process was performed on the following immersion conditions.
-Immersion conditions-
Ethanol was used as the dipping solution, dipped at a temperature of 25 ° C., and held for 15 seconds.
 次に、浸漬処理後の銀ナノワイヤー含有塗布膜(導電膜)について、以下のようにして諸特性を評価した。結果を表2に示す。 Next, the characteristics of the silver nanowire-containing coating film (conductive film) after the immersion treatment were evaluated as follows. The results are shown in Table 2.
<塗布膜の透過率(透明性)>
 得られた浸漬処理後の銀ナノワイヤー含有塗布膜(導電膜)を、島津製作所製UV-2550を用いて、400nm~800nmの透過率を測定し、下記基準で評価した。
〔評価基準〕
  ◎:透過率が90%以上で、実用上問題ないレベルである。
  ○:透過率が80%以上90%未満で、実用上問題ないレベルである。
  △:塗布膜がやや黄色味を帯び、透過率が75%以上80%未満で、実用上問題ないレベルである。
  ×:塗布膜が黄色味を帯び、透過率が0%以上75%未満で、実用上問題あるレベルである。
<Transmissivity of coating film (transparency)>
The obtained silver nanowire-containing coating film (conductive film) after the immersion treatment was measured for transmittance of 400 nm to 800 nm using UV-2550 manufactured by Shimadzu Corporation, and evaluated according to the following criteria.
〔Evaluation criteria〕
A: The transmittance is 90% or more, which is a level with no practical problem.
A: The transmittance is 80% or more and less than 90%, which is a level that is not problematic in practice.
(Triangle | delta): A coating film is a little yellowish and the transmittance | permeability is 75% or more and less than 80%, and is a level which is satisfactory practically.
X: The coating film is yellowish and the transmittance is 0% to less than 75%, which is a practically problematic level.
<塗布膜の表面抵抗(導電性)>
 得られた浸漬処理後の金属ナノワイヤー含有膜(導電膜)を、表面抵抗計(三菱化学株式会社製、Loresta-GP MCP-T600)を用いて表面抵抗を測定し、下記基準で導電性を評価した。
〔評価基準〕
  ◎:表面抵抗が100Ω/□未満で、実用上問題ないレベルである。
  ○:表面抵抗が500Ω/□未満で、実用上問題ないレベルである。
  △:表面抵抗が1,000Ω/□未満で、実用上問題ないレベルである。
  ×:表面抵抗が1,000Ω/□以上で、実用上問題あるレベルである。
<Surface resistance (conductive) of coating film>
The surface resistance of the obtained metal nanowire-containing film (conductive film) after the immersion treatment was measured using a surface resistance meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation). evaluated.
〔Evaluation criteria〕
A: The surface resistance is less than 100 Ω / □, which is a practically acceptable level.
○: The surface resistance is less than 500Ω / □, which is a level that is not problematic in practice.
(Triangle | delta): Surface resistance is a level which is satisfactory practically less than 1,000 ohms / square.
X: The surface resistance is 1,000Ω / □ or more, which is a practically problematic level.
<塗布膜の膜はがれの評価>
 銀ナノワイヤー含有塗布膜を浸漬液から引き上げて乾燥させた後、1cmあたり一点の膜厚を測定し、浸漬させる前との平均膜厚減少率を求めて、下記基準で評価した。
〔評価基準〕
  ◎:平均膜厚減少率が90%以上である。
  ○:平均膜厚減少率が75%以上である。
  △:平均膜厚減少率が50%以上である。
  ×:平均膜厚減少率が50%未満である。
<Evaluation of coating film peeling>
After the silver nanowire-containing coating film was pulled up from the dipping solution and dried, the film thickness at one point per 1 cm 2 was measured, and the average film thickness reduction rate before dipping was determined and evaluated according to the following criteria.
〔Evaluation criteria〕
A: Average film thickness reduction rate is 90% or more.
A: Average film thickness reduction rate is 75% or more.
Δ: Average film thickness reduction rate is 50% or more.
X: Average film thickness reduction rate is less than 50%.
(実施例2~11及び比較例1~8)
 実施例1において、表2に示す銀ナノワイヤー含有塗布膜(試料No.101~試料No.106)、浸漬処理の有無、浸漬液、及び遠心分離の有無に変えた以外は、実施例1と同様にして、浸漬処理後の銀ナノワイヤー含有塗布膜を作製し、実施例1と同様にして、諸特性を評価した。結果を表2に示す。
 なお、実施例10、11及び比較例7、8における遠心分離は、試料No.101及び試料No.106を作製した後、塗布を行う前に4,500rpmで10分間の条件で行った。
(Examples 2 to 11 and Comparative Examples 1 to 8)
In Example 1, except that the silver nanowire-containing coating film (sample No. 101 to sample No. 106) shown in Table 2 was changed to the presence or absence of immersion treatment, the immersion liquid, and the presence or absence of centrifugation. Similarly, a silver nanowire-containing coating film after the immersion treatment was prepared, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
In addition, the centrifugation in Examples 10 and 11 and Comparative Examples 7 and 8 is sample No. 101 and sample no. After producing 106, before coating, it was performed at 4,500 rpm for 10 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例12)
-タッチパネルの作製-
 実施例1で作製した導電膜を用いて、『最新タッチパネル技術』(2009年7月6日発行、株式会社テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004年12月発行)、「FPD International 2009 Forum T-11講演テキストブック」、「Cypress Semiconductor Corporation アプリケーションノートAN2292」等に記載の方法により、タッチパネルを作製した。
 作製したタッチパネルを使用した場合、透過率の向上により視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作できることが分かった。
(Example 12)
-Fabrication of touch panel-
Using the conductive film produced in Example 1, "Latest Touch Panel Technology" (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, "Touch Panel Technology and Development", CM Publishing (2004) Published in December), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292”, etc., were used to produce a touch panel.
When using the manufactured touch panel, it improves visibility by improving transmittance, and responds to input of characters, etc. or screen operations with at least one of bare hands, hands with gloves, or pointing tools by improving conductivity It was found that a touch panel with excellent performance can be produced.
 本発明の導電膜の製造方法により製造された導電膜は、膜はがれを起こすことなく、透明性及び導電性が大幅に向上したので、例えばタッチパネル、ディスプレイ用電極、電磁波シールド、有機又は無機ELディスプレイ用電極、電子パーパー、フレキシブルディスプレイ用電極、集積型太陽電池、表示素子、その他の各種デバイスなどに幅広く用いられる。 Since the conductive film manufactured by the conductive film manufacturing method of the present invention has greatly improved transparency and conductivity without causing film peeling, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic or inorganic EL display It is widely used for electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, display elements, and other various devices.
   10、20、30   タッチパネル
   11、21、31   透明基板
   12、13、22、23、32、33   透明導電膜
   24   絶縁層
   25   絶縁カバー層
   14、17   保護膜
   15   中間保護膜
   16   グレア防止膜
   18   電極端子
   34   空気層
   35   透明フィルム
   36   スペーサ
10, 20, 30 Touch panel 11, 21, 31 Transparent substrate 12, 13, 22, 23, 32, 33 Transparent conductive film 24 Insulating layer 25 Insulating cover layer 14, 17 Protective film 15 Intermediate protective film 16 Antiglare film 18 Electrode terminal 34 Air layer 35 Transparent film 36 Spacer

Claims (13)

  1.  金属ナノワイヤー及び分散剤を含有する金属ナノワイヤー含有膜を作製する金属ナノワイヤー含有膜作製工程と、
     前記金属ナノワイヤー含有膜を浸漬液中に浸漬する浸漬工程と、を含むことを特徴とする導電膜の製造方法。
    A metal nanowire-containing film production process for producing a metal nanowire-containing film containing a metal nanowire and a dispersant;
    A dipping step of dipping the metal nanowire-containing film in a dipping solution.
  2.  浸漬液が、金属ナノワイヤー含有膜中の分散剤を溶解可能な溶媒である請求項1に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein the immersion liquid is a solvent capable of dissolving the dispersant in the metal nanowire-containing film.
  3.  浸漬液が、エタノール、エチレングリコール、メタノール及び水から選択される少なくとも1種である請求項1から2のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein the immersion liquid is at least one selected from ethanol, ethylene glycol, methanol, and water.
  4.  分散剤がイオン性界面活性剤である請求項1から3のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein the dispersant is an ionic surfactant.
  5.  イオン性界面活性剤が第4級アルキルアンモニウム塩である請求項4に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 4, wherein the ionic surfactant is a quaternary alkyl ammonium salt.
  6.  金属ナノワイヤーが、銀を含有する請求項1から5のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein the metal nanowire contains silver.
  7.  金属ナノワイヤーが、平均短軸長さ50nm以下でありかつ平均長軸長さ5μm以上であり、短軸長さ50nm以下でありかつ長軸長さ5μm以上である金属ナノワイヤーを全金属粒子中に金属量で50質量%以上含む請求項1から6のいずれかに記載の導電膜の製造方法。 The metal nanowire has an average minor axis length of 50 nm or less, an average major axis length of 5 μm or more, a minor axis length of 50 nm or less, and a major axis length of 5 μm or more in all metal particles. The manufacturing method of the electrically conductive film in any one of Claim 1 to 6 which contains 50 mass% or more in metal amount in this.
  8.  金属ナノワイヤーの短軸長さの変動係数が40%以下である請求項1から7のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 7, wherein the coefficient of variation of the minor axis length of the metal nanowire is 40% or less.
  9.  金属ナノワイヤーの断面形状が、角が丸まった形状である請求項1から8のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 8, wherein the cross-sectional shape of the metal nanowire is a shape with rounded corners.
  10.  金属ナノワイヤーの断面形状の鋭利度が75%以下である請求項1から9のいずれかに記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 9, wherein the sharpness of the cross-sectional shape of the metal nanowire is 75% or less.
  11.  金属ナノワイヤー含有膜の作製が、金属ナノワイヤー及び分散剤を含む金属ナノワイヤー分散液を基材上に塗布し、乾燥させて行われる請求項1から10のいずれかに記載の導電膜の製造方法。 The production of the conductive film according to any one of claims 1 to 10, wherein the production of the metal nanowire-containing film is performed by applying a metal nanowire dispersion liquid containing metal nanowires and a dispersant onto a substrate and drying the dispersion. Method.
  12.  請求項1から11のいずれかに記載の導電膜の製造方法により製造されたことを特徴とする導電膜。 A conductive film produced by the method for producing a conductive film according to claim 1.
  13.  請求項12に記載の導電膜を用いたことを特徴とするタッチパネル。 A touch panel using the conductive film according to claim 12.
PCT/JP2010/073277 2009-12-25 2010-12-24 Electroconductive film, method of manufacturing same, and touch panel WO2011078305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800525705A CN102667969A (en) 2009-12-25 2010-12-24 Electroconductive film, method of manufacturing same, and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295318 2009-12-25
JP2009295318 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078305A1 true WO2011078305A1 (en) 2011-06-30

Family

ID=44195830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073277 WO2011078305A1 (en) 2009-12-25 2010-12-24 Electroconductive film, method of manufacturing same, and touch panel

Country Status (5)

Country Link
JP (1) JP2011151014A (en)
KR (1) KR20120098695A (en)
CN (1) CN102667969A (en)
TW (1) TW201131582A (en)
WO (1) WO2011078305A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531133A (en) * 2010-07-02 2013-08-01 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Process for producing silver nanowires
WO2013146509A1 (en) * 2012-03-26 2013-10-03 富士フイルム株式会社 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell
JP2013201007A (en) * 2012-03-23 2013-10-03 Fujifilm Corp Conductive member and manufacturing method of the same, and touch panel
JP2013225499A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, method for producing the same, touch panel, and solar cell
CN103843074A (en) * 2011-09-29 2014-06-04 富士胶片株式会社 Transparent conductive coating film, transparent conductive ink, and touch panel using transparent conductive coating film or transparent conductive ink
CN105382265A (en) * 2015-11-13 2016-03-09 云南常道科技股份有限公司 Method for preparing high-dispersion silver powder for photoetching touch screen silver paste
US20210046544A1 (en) * 2018-06-07 2021-02-18 Nuovo Film Suzhou China Inc. Preparation Method of Silver Nanowire with Circular Cross Section

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512624B2 (en) * 2011-09-21 2014-06-04 日本写真印刷株式会社 Capacitive touch sensor and display device having the same
KR102065327B1 (en) * 2012-03-21 2020-01-13 린텍 가부시키가이샤 Thermoelectric conversion material and method for manufacturing same
JP2013225296A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, touch panel using the same, display device, and input device
KR101414560B1 (en) * 2013-01-09 2014-07-04 한화케미칼 주식회사 method for producing conductive film
TWI500048B (en) * 2013-12-30 2015-09-11 Ind Tech Res Inst Transparent conductive film composite and transparent conductive film
CN103680766B (en) * 2013-12-31 2016-08-17 复旦大学 The preparation method of conductive film
CN104299721B (en) * 2014-09-05 2018-01-23 中国科学院合肥物质科学研究院 A kind of method that metal nanometer line transparent conductive film optical property is improved by cleaning treatment
KR102277621B1 (en) * 2016-03-14 2021-07-15 유니티카 가부시끼가이샤 Nanowires and manufacturing method thereof, nanowire dispersion, and transparent conductive film
CN107342115A (en) * 2016-05-03 2017-11-10 上海大学 A kind of electrically conducting transparent and low-launch-rate microgrid and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055422A1 (en) * 2005-11-10 2007-05-18 Sumitomo Metal Mining Co., Ltd. Indium nanowire, oxide nanowire, electroconductive oxide nanowire, and production process thereof
JP2009242880A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Silver nanowire, production method thereof, and aqueous dispersion, and transparent conductor
JP2009252014A (en) * 2008-04-08 2009-10-29 Kuraray Co Ltd Touch panel
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055422A1 (en) * 2005-11-10 2007-05-18 Sumitomo Metal Mining Co., Ltd. Indium nanowire, oxide nanowire, electroconductive oxide nanowire, and production process thereof
JP2009242880A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Silver nanowire, production method thereof, and aqueous dispersion, and transparent conductor
JP2009252014A (en) * 2008-04-08 2009-10-29 Kuraray Co Ltd Touch panel
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531133A (en) * 2010-07-02 2013-08-01 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Process for producing silver nanowires
CN103843074A (en) * 2011-09-29 2014-06-04 富士胶片株式会社 Transparent conductive coating film, transparent conductive ink, and touch panel using transparent conductive coating film or transparent conductive ink
JP2013201007A (en) * 2012-03-23 2013-10-03 Fujifilm Corp Conductive member and manufacturing method of the same, and touch panel
JP2013225499A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, method for producing the same, touch panel, and solar cell
WO2013146509A1 (en) * 2012-03-26 2013-10-03 富士フイルム株式会社 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell
CN105382265A (en) * 2015-11-13 2016-03-09 云南常道科技股份有限公司 Method for preparing high-dispersion silver powder for photoetching touch screen silver paste
US20210046544A1 (en) * 2018-06-07 2021-02-18 Nuovo Film Suzhou China Inc. Preparation Method of Silver Nanowire with Circular Cross Section
US11920216B2 (en) * 2018-06-07 2024-03-05 Nuovo Film Suzhou China Inc. Preparation method of silver nanowire with circular cross section

Also Published As

Publication number Publication date
KR20120098695A (en) 2012-09-05
JP2011151014A (en) 2011-08-04
TW201131582A (en) 2011-09-16
CN102667969A (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011078305A1 (en) Electroconductive film, method of manufacturing same, and touch panel
JP7120973B2 (en) Metal nanowire inks for formation of transparent conductive films with fused networks
JP5306760B2 (en) Transparent conductor, touch panel, and solar cell panel
WO2013002195A1 (en) Conductive film, method for producing same, and touch panel
KR101512220B1 (en) Metal nanowires, method for producing same, transparent conductor and touch panel
WO2013047197A1 (en) Transparent conductive coating film, transparent conductive ink, and touch panel using transparent conductive coating film or transparent conductive ink
WO2011078170A1 (en) Electroconductive composition, and transparent electric conductor, touch panel and solar cell which are made using same
US10133414B2 (en) Layered body for touch panel, and touch panel
TWI512763B (en) Conductive film, method for producing the same, touch panel and integrated solar battery
JP2017063046A (en) Reliable and durable conductive films comprising metal nanostructures
US20140345921A1 (en) Nano wire composition and method for fabrication transparent electrode
CN105102555A (en) Fused metal nanostructured networks and fusing solutions with reducing agents
JPWO2010082429A1 (en) Pattern electrode manufacturing method and pattern electrode
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JP2011108460A (en) Electrically and thermally conductive composition
JP2013008512A (en) Conductive composition, transparent conductor prepared using the same, and touch panel and solar cell including the transparent conductor
JP5639463B2 (en) Conductive composition, and transparent conductor, touch panel and solar cell using the same
WO2017159537A1 (en) Nanowire, process for producing nanowires, nanowire dispersion, and transparent electroconductive film
WO2012023553A1 (en) Electrically conductive material, touch panel, and solar cell
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5450863B2 (en) Dispersion for forming conductive layer and transparent conductor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052570.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127012478

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839535

Country of ref document: EP

Kind code of ref document: A1