JP5151229B2 - Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method - Google Patents

Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method Download PDF

Info

Publication number
JP5151229B2
JP5151229B2 JP2007112476A JP2007112476A JP5151229B2 JP 5151229 B2 JP5151229 B2 JP 5151229B2 JP 2007112476 A JP2007112476 A JP 2007112476A JP 2007112476 A JP2007112476 A JP 2007112476A JP 5151229 B2 JP5151229 B2 JP 5151229B2
Authority
JP
Japan
Prior art keywords
dispersion
mass
electrode
metal
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007112476A
Other languages
Japanese (ja)
Other versions
JP2008235846A (en
Inventor
佳明 高田
和彦 山崎
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007112476A priority Critical patent/JP5151229B2/en
Publication of JP2008235846A publication Critical patent/JP2008235846A/en
Application granted granted Critical
Publication of JP5151229B2 publication Critical patent/JP5151229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池の電極を形成するための組成物と、この組成物を用いて電極を形成する方法並びにこの形成方法により得られた電極を用いた太陽電池の製造方法に関するものである。 The present invention relates to a composition for forming an electrode of a solar cell, a method for forming an electrode using this composition, and a method for producing a solar cell using an electrode obtained by this forming method.

従来、この種の電極の形成方法として、0.03μm以下の粒径の金属超微粒子を100〜200程度の低分子量の有機溶媒に分散させた溶液を光電変換半導体層に塗布・焼成することにより下層電極層を形成し、金属超微粒子の含有質量濃度が下層電極層の形成に用いた溶液と同じか或いは下層電極層の形成に用いた溶液より高い濃度の溶液を光電変換半導体層に塗布・焼成することにより上層電極層を形成する太陽電池の金属電極形成方法が開示されている(例えば、特許文献1参照。)。この金属電極形成方法では、金属超微粒子を分散させかつ粘度を10000cps程度に調整した溶液をスクリーン印刷法等により光電変換半導体層に塗布した後に、100〜250℃、好ましくは250℃の温度に30分以上保持して焼成することにより、金属電極(下層電極層又は上層電極層)を形成する。
このように構成された太陽電池の金属電極形成方法では、金属超微粒子を有機溶媒に分散させた溶液を光電変換半導体層に塗布した後に、100〜250℃の低温で焼結することにより、高真空プロセスを用いずに、高い反射率及び導電率を有しかつ大きな面積の金属電極を得られるようになっている。
特許第3287754号(請求項1、段落[0024]、段落[0035])
Conventionally, as a method for forming this type of electrode, a solution obtained by dispersing ultrafine metal particles having a particle size of 0.03 μm or less in an organic solvent having a low molecular weight of about 100 to 200 is applied to a photoelectric conversion semiconductor layer and fired. A lower electrode layer is formed, and a solution having a concentration of the ultrafine metal particles equal to or higher than that used for forming the lower electrode layer is applied to the photoelectric conversion semiconductor layer. A method for forming a metal electrode of a solar cell that forms an upper electrode layer by firing is disclosed (for example, see Patent Document 1). In this metal electrode forming method, a solution in which ultrafine metal particles are dispersed and the viscosity is adjusted to about 10,000 cps is applied to the photoelectric conversion semiconductor layer by a screen printing method or the like, and then the temperature is set to 100 to 250 ° C., preferably 250 ° C. A metal electrode (lower electrode layer or upper electrode layer) is formed by holding and baking for at least a minute.
In the method for forming a metal electrode of a solar cell configured in this way, after applying a solution in which metal ultrafine particles are dispersed in an organic solvent to a photoelectric conversion semiconductor layer, sintering is performed at a low temperature of 100 to 250 ° C. Without using a vacuum process, a metal electrode having a high reflectance and conductivity and a large area can be obtained.
Japanese Patent No. 3287754 (claim 1, paragraph [0024], paragraph [0035])

上記従来の特許文献1に示された太陽電池の金属電極形成方法では、焼成後の金属電極中の金属超微粒子を安定化させるために、所定の導電性を確保しながら金属超微粒子を100〜200程度の低分子量の有機物で保護する必要がある。一方、有機溶媒に分散させた金属超微粒子を低温で焼結化させるために、この金属超微粒子のサイズを小さくすると、金属超微粒子の比表面積が増大し、上記有機物の占める割合が大きくなる。このため、上記従来の特許文献1に示された太陽電池の金属電極形成方法では、有機溶媒に分散させた金属超微粒子の低温焼結化は、上記有機物を熱により脱離、或いは分解(分離・燃焼)させなければ実現できず、特に有機溶媒に分散させた金属超微粒子を220℃以下で焼成して得られた金属電極について耐候性試験を行うと、具体的には、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に金属電極を1000時間収容すると、上記有機物が変質又は劣化して、導電性及び反射率が低下してしまう問題点があった。
本発明の目的は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れた電極を得ることができる、太陽電池の電極形成用組成物及び該組成物を用いた太陽電池用電極の形成方法を提供することにある。
本発明の別の目的は、130〜400℃という低温の焼成プロセスにより、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れた電極を得ることができる、太陽電池の電極の形成方法及び該形成方法により得られた電極を用いた太陽電池の製造方法を提供することにある。
In the conventional method for forming a metal electrode of a solar cell shown in Patent Document 1, in order to stabilize the metal ultrafine particles in the fired metal electrode, the metal ultrafine particles are added in an amount of 100 to 100 while ensuring predetermined conductivity. It is necessary to protect with an organic substance having a low molecular weight of about 200. On the other hand, if the size of the metal ultrafine particles is reduced in order to sinter the metal ultrafine particles dispersed in the organic solvent at a low temperature, the specific surface area of the metal ultrafine particles increases and the proportion of the organic matter increases. For this reason, in the conventional metal electrode forming method for solar cells shown in Patent Document 1, low-temperature sintering of metal ultrafine particles dispersed in an organic solvent is performed by desorbing or decomposing (separating) the organic matter by heat. If the weather resistance test is performed on a metal electrode obtained by firing metal ultrafine particles dispersed in an organic solvent at 220 ° C. or lower, specifically, the temperature is set to 100 ° C. When the metal electrode is housed in a constant temperature and humidity chamber maintained at 50% and humidity of 50% for 1000 hours, the organic matter is altered or deteriorated, resulting in a decrease in conductivity and reflectance.
An object of the present invention is to provide a composition for forming an electrode for a solar cell, which can maintain an high conductivity and a high reflectance even when used for many years, and can obtain an electrode excellent in aging stability, and the composition. It is providing the formation method of the electrode for solar cells using this.
Another object of the present invention is that a high-conductivity and high reflectivity can be maintained even when used for many years by a low-temperature baking process of 130 to 400 ° C., and an electrode having excellent aging stability can be obtained. An object of the present invention is to provide a method for forming a solar cell electrode and a method for manufacturing a solar cell using an electrode obtained by the method .

請求項1に係る発明は、金属ナノ粒子が分散媒に分散した太陽電池の電極形成用組成物であって、金属ナノ粒子が75質量%以上の銀ナノ粒子を含有し、金属ナノ粒子は炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾され、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有し、金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100質量%に対して2.5〜95.0質量%含有し、分散媒が1質量%以上の水と2質量%以上の水と相溶する有機溶剤とを含有し、水と相溶する有機溶剤が、酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上であることを特徴とする。
この請求項1に記載された組成物では、一次粒径10〜50nmとサイズの比較的大きな金属ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、分散媒の占める割合が小さくなるため、この組成物を用いて太陽電池の電極を形成すると、上記分散媒中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。
請求項3に係る発明は、請求項1又は2記載の太陽電池の電極形成用組成物の製造方法であって、金属塩水溶液を調製する工程と、クエン酸ナトリウム、りんご酸ナトリウム又はグリコール酸ナトリウムの水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオン、りんご酸イオン又はグリコール酸イオンと、第一鉄イオンとを含有する還元剤水溶液を調製する工程と、上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合し、上記金属塩水溶液の滴下が終了した後、混合液の撹拌を更に続けて炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾された金属ナノ粒子の分散液を得る工程と、上記得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離する工程と、上記分離して得られた分離物に脱イオン水等の水を加えて分散体とし、限外ろ過により脱塩処理する工程と、上記脱塩処理した分散体を酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上である水と相溶する有機溶剤で置換洗浄して、金属の含有量を2.5〜50質量%にする工程と、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、上記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するように調製する工程と、上記金属ナノ粒子の含有量が、金属ナノ粒子及び分散媒からなる分散体100質量%に対して2.5〜95.0質量%含有し、かつ、上記分散媒が全ての分散媒100質量%に対して、1質量%以上の水と、2質量%以上の水と相溶する有機溶剤とを含有するように調整する工程とを含むことを特徴とする太陽電池の電極形成用組成物の製造方法である。
The invention according to claim 1 is a composition for forming an electrode of a solar cell in which metal nanoparticles are dispersed in a dispersion medium, wherein the metal nanoparticles contain 75% by mass or more of silver nanoparticles, and the metal nanoparticles are carbon. The skeleton is chemically modified with an organic molecular main chain protecting agent having 1 to 3 carbon atoms, and the metal nanoparticles contain 70% or more of the average number of metal nanoparticles having a primary particle size of 10 to 50 nm. The content of is 2.5 to 95.0% by mass with respect to 100% by mass of the composition comprising metal nanoparticles and the dispersion medium, and the dispersion medium is 1% by mass or more of water and 2% by mass or more of water. contains an organic solvent agent compatible, organic solvent compatible with water is methyl acetate, propylene glycol monoethyl ether, acetate 2- (1-methoxy) propyl, dimethyl sulfoxide, N- methylformamide, N- methyl -2-pyrrolidinone, Ethylene glycol monomethyl ether, and wherein the at diethylene glycol monoethyl ether and acetic acid 2- (2-ethoxyethoxy) one or more members selected from the group consisting of ethyl.
In the composition described in claim 1, since it contains a large number of metal nanoparticles having a relatively large primary particle size of 10 to 50 nm, the specific surface area of the metal nanoparticles is reduced and the proportion of the dispersion medium is reduced. Therefore, when an electrode of a solar cell is formed using this composition, organic molecules in the dispersion medium are desorbed or decomposed by heat at the time of firing, or are separated and decomposed to substantially contain organic matter. An electrode mainly composed of silver is obtained.
Invention of Claim 3 is a manufacturing method of the composition for electrode formation of the solar cell of Claim 1 or 2, Comprising: The process of preparing metal salt aqueous solution, Sodium citrate, sodium malate, or sodium glycolate In an aqueous solution of nitrogen gas or other inert gas, granular or powdered ferrous sulfate is directly added and dissolved, and citrate ions, malate ions or glycolate ions, and ferrous ions are added. The step of preparing the reducing agent aqueous solution to be contained, and stirring the reducing agent aqueous solution in the inert gas stream, the metal salt aqueous solution was added dropwise to the reducing agent aqueous solution and mixed. After completion, the mixture is further stirred to obtain a dispersion of metal nanoparticles whose carbon skeleton is chemically modified with an organic molecular main chain protecting agent having 1 to 3 carbon atoms, and the obtained dispersion The room temperature A step of separating the aggregates of the metal nanoparticles that have been allowed to settle by decantation, and adding the deionized water or the like to the separated product to form a dispersion, followed by desalting by ultrafiltration And the above desalted dispersion is treated with methyl acetate, propylene glycol monoethyl ether, 2- (1-methoxy) propyl acetate, dimethyl sulfoxide, N-methylformamide, N-methyl-2-pyrrolidinone, diethylene glycol monomethyl ether Then, it is washed by substitution with an organic solvent that is compatible with one or more kinds of water selected from the group consisting of diethylene glycol monoethyl ether and 2- (2-ethoxyethoxy) ethyl acetate, so that the metal content is 2 .5-50 mass%, and using a centrifuge, adjust the centrifugal force of this centrifuge to separate coarse particles. A step of preparing the metal nanoparticles so that the metal nanoparticles having a primary particle diameter of 10 to 50 nm contain 70% or more in number average, and the content of the metal nanoparticles is a metal nanoparticle. And 2.5 to 95.0% by mass with respect to 100% by mass of the dispersion composed of the dispersion medium, and the dispersion medium is 1% by mass or more of water with respect to 100% by mass of all the dispersion media, And a step of adjusting so as to contain an organic solvent compatible with 2% by mass or more of water. A method for producing a composition for forming an electrode of a solar cell.

請求項5に係る発明は、請求項1又は2記載の電極形成用組成物を基材上に湿式塗工法で塗工して焼成後の厚さが0.1〜2.0μmの範囲内となるように成膜する工程と、上面に成膜された基材を130〜400℃で焼成する工程とを含む太陽電池の電極の形成方法である。
この請求項5に記載された太陽電池の電極の形成方法では、130〜400℃という低温での焼成により、金属ナノ粒子の表面を保護していた分散媒中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。
In the invention according to claim 5, the electrode-forming composition according to claim 1 or 2 is applied on a substrate by a wet coating method, and the thickness after firing is in the range of 0.1 to 2.0 μm. It is the formation method of the electrode of a solar cell including the process of forming into a film so that it may become, and the process of baking the base material formed into a film at 130-400 degreeC.
In the method for forming an electrode of a solar cell according to claim 5, organic molecules in the dispersion medium that protected the surface of the metal nanoparticles are desorbed or decomposed by firing at a low temperature of 130 to 400 ° C. Alternatively, by separating and decomposing, an electrode containing silver as a main component and containing substantially no organic substance can be obtained.

以上述べたように、本発明によれば、分散媒に分散された金属ナノ粒子が75質量%以上の銀ナノ粒子を含有し、炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で金属ナノ粒子を化学修飾し、更に金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有し、金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100質量%に対して2.5〜95.0質量%含有し、更に分散媒が1質量%以上の水と2質量%以上の水と相溶する有機溶剤とを含有し、水と相溶する有機溶剤が、酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上であるので、この組成物中の金属ナノ粒子の比表面積が比較的減少し、分散媒の占める割合が小さくなる。この結果、この組成物を用いて太陽電池の電極を形成すると、上記分散媒中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。従って、上記電極の形成された太陽電池を長年使用しても、有機物が変質又は劣化するということがなく、導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。
また上記電極形成用組成物を基材上に湿式塗工法で塗工して焼成後の厚さが0.1〜2.0μmの範囲内となるように成膜し、この上面に成膜された基材を130〜400℃で焼成すれば、金属ナノ粒子の表面を保護していた分散媒中の有機分子が脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。この結果、上記と同様に、電極の形成された太陽電池を長年使用しても、導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。
As described above, according to the present invention, the metal nanoparticles dispersed in the dispersion medium contain 75% by mass or more of silver nanoparticles, and the protective agent for the organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms. The metal nanoparticles are chemically modified, and the metal nanoparticles contain 70% or more of the average number of metal nanoparticles having a primary particle size in the range of 10 to 50 nm. the composition 100% by mass composed of medium containing 2.5 to 95.0 wt%, containing an organic solvent agent further dispersion medium compatible with 1% by mass or more of water and 2 mass% or more water And organic solvents compatible with water are methyl acetate, propylene glycol monoethyl ether, 2- (1-methoxy) propyl acetate, dimethyl sulfoxide, N-methylformamide, N-methyl-2-pyrrolidinone, diethylene glycol monomethyl Ether, since it is diethylene glycol monoethyl ether and acetic acid 2- (2-ethoxyethoxy) one member selected from the group consisting of ethyl, or two or more, the specific surface area of the metal nanoparticles in the composition is relatively reduced The proportion of the dispersion medium is reduced. As a result, when an electrode of a solar cell is formed using this composition, the organic molecules in the dispersion medium are desorbed or decomposed by the heat at the time of firing, or are separated and decomposed to substantially remove the organic matter. An electrode composed mainly of silver not containing is obtained. Therefore, even if the solar cell on which the electrode is formed is used for many years, the organic matter is not deteriorated or deteriorated, and the electrical conductivity and the reflectance are maintained in a high state. Can be obtained.
In addition, the electrode forming composition is applied onto a substrate by a wet coating method, and a film is formed so that the thickness after firing is within a range of 0.1 to 2.0 μm, and the film is formed on this upper surface. If the substrate is baked at 130 to 400 ° C., the organic molecules in the dispersion medium that protected the surface of the metal nanoparticles are detached or decomposed, or separated and decomposed, so that the organic matter is substantially removed. An electrode composed mainly of silver not containing is obtained. As a result, similarly to the above, even if the solar cell on which the electrode is formed is used for many years, the conductivity and the reflectance are maintained at a high level, so that an electrode having excellent aging stability can be obtained.

次に本発明を実施するための最良の形態を説明する。
本発明の組成物は、金属ナノ粒子が分散媒に分散した太陽電池の電極形成用組成物である。上記金属ナノ粒子は75質量%以上、好ましくは80質量%以上の銀ナノ粒子を含有する。また金属ナノ粒子は炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾される。更に金属ナノ粒子は一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上、好ましくは75%以上含有する。ここで、銀ナノ粒子の含有量を全ての金属ナノ粒子100質量%に対して75質量%以上の範囲に限定したのは、75質量%未満ではこの組成物を用いて形成された太陽電池の電極の反射率が低下してしまうからである。また金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1〜3の範囲に限定したのは、炭素数が4以上であると焼成時の熱により保護剤が脱離或いは分解(分離・燃焼)し難く、上記電極内に有機残渣が多く残り、変質又は劣化して電極の導電性及び反射率が低下してしまうからである。また一次粒径10〜50nmの範囲内の金属ナノ粒子の含有量を、数平均で全ての金属ナノ粒子100%に対して70%以上の範囲に限定したのは、70質量%未満では金属ナノ粒子の比表面積が増大して有機物の占める割合が大きくなり、焼成時の熱により脱離或いは分解(分離・燃焼)し易い有機分子であっても、この有機分子の占める割合が多いため、電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下したり、或いは金属ナノ粒子の粒度分布が広くなり電極の密度が低下し易くなって、電極の導電性及び反射率が低下してしまうからである。更に上記金属ナノ粒子の一次粒径を10〜50nmの範囲内に限定したのは、統計的手法より一次粒径が10〜50nmの範囲内にある金属ナノ粒子が経時安定性(経年安定性)と相関しているからである。
Next, the best mode for carrying out the present invention will be described.
The composition of the present invention is a composition for forming an electrode of a solar cell in which metal nanoparticles are dispersed in a dispersion medium. The metal nanoparticles contain 75% by mass or more, preferably 80% by mass or more of silver nanoparticles. The metal nanoparticles are chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 1 to 3 carbon atoms. Further, the metal nanoparticles contain 70% or more, preferably 75% or more of metal nanoparticles having a primary particle size in the range of 10 to 50 nm in terms of number average. Here, the content of silver nanoparticles was limited to a range of 75% by mass or more with respect to 100% by mass of all metal nanoparticles, and less than 75% by mass of solar cells formed using this composition. This is because the reflectance of the electrode is lowered. Moreover, the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the metal nanoparticles was limited to the range of 1 to 3 because the protective agent was removed by the heat during firing if the carbon number was 4 or more. This is because separation or decomposition (separation / combustion) is difficult, and a large amount of organic residue remains in the electrode, resulting in alteration or deterioration, resulting in a decrease in the conductivity and reflectance of the electrode. In addition, the content of the metal nanoparticles in the range of the primary particle size of 10 to 50 nm is limited to the range of 70% or more with respect to 100% of all the metal nanoparticles on the number average. The specific surface area of the particles increases and the proportion of organic matter increases, and even if the organic molecule is easily desorbed or decomposed (separated or burned) by the heat during firing, the proportion of this organic molecule is large. A large amount of organic residue remains inside, and the residue is altered or deteriorated to reduce the conductivity and reflectance of the electrode, or the particle size distribution of the metal nanoparticles is widened and the density of the electrode is likely to be reduced. This is because conductivity and reflectivity are reduced. Furthermore, the primary particle size of the metal nanoparticles was limited to the range of 10 to 50 nm because the metal nanoparticles having a primary particle size within the range of 10 to 50 nm are stable over time (statistical stability). It is because it correlates.

一方、銀ナノ粒子を含む金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100質量%に対して2.5〜95.0質量%、好ましくは3.5〜90.0質量%含有する。また分散媒は、全ての分散媒100質量%に対して、1質量%以上、好ましくは2質量%以上の水と、2質量%以上、好ましくは3質量%以上の水に相溶する有機溶剤(アルコールを除く)とを含有する。例えば、分散媒が水及びこの水と相溶する有機溶剤(アルコールを除く)のみからなる場合、水を1質量%含有するときは有機溶剤を99質量%含有し、有機溶剤を2質量%含有するときは水を98質量%含有する。ここで、銀ナノ粒子を含む金属ナノ粒子の含有量を金属ナノ粒子及び分散媒からなる組成物100質量%に対して2.5〜95.0質量%の範囲に限定したのは、2.5質量%未満では特に焼成後の電極の特性には影響はないけれども、必要な厚さの電極を得ることが難しく、95.0質量%を越えると組成物の湿式塗工時にインク或いはペーストとしての必要な流動性を失ってしまうからである。また水の含有量を全ての分散媒100質量%に対して1質量%以上の範囲に限定したのは、1質量%未満では、組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまい、水と相溶する有機溶剤の含有量を全ての分散媒100質量%に対して2質量%以上の範囲に限定したのは、2質量%未満では、上記と同様に組成物を湿式塗工法により塗工して得られた膜を低温で焼結し難く、また焼成後の電極の導電性と反射率が低下してしまうからである。   On the other hand, the content of the metal nanoparticles including silver nanoparticles is 2.5 to 95.0% by mass, preferably 3.5 to 90.0% with respect to 100% by mass of the composition comprising the metal nanoparticles and the dispersion medium. Contains by mass%. The dispersion medium is an organic solvent compatible with 1% by mass or more, preferably 2% by mass or more of water and 2% by mass or more, preferably 3% by mass or more of water with respect to 100% by mass of all the dispersion media. (Excluding alcohol). For example, when the dispersion medium consists only of water and an organic solvent compatible with this water (excluding alcohol), when containing 1% by mass of water, it contains 99% by mass of organic solvent and 2% by mass of organic solvent. When doing, it contains 98 mass% of water. Here, the content of the metal nanoparticles including the silver nanoparticles was limited to the range of 2.5 to 95.0% by mass with respect to 100% by mass of the composition composed of the metal nanoparticles and the dispersion medium. If it is less than 5% by mass, the properties of the electrode after firing are not particularly affected, but it is difficult to obtain an electrode having a required thickness. If it exceeds 95.0% by mass, it can be used as an ink or paste during wet coating of the composition. This is because the necessary liquidity is lost. In addition, the content of water is limited to a range of 1% by mass or more with respect to 100% by mass of all the dispersion media. When the content is less than 1% by mass, a film obtained by applying the composition by a wet coating method is used. It is difficult to sinter at low temperature, and the conductivity and reflectance of the electrode after firing are reduced, and the content of the organic solvent compatible with water is 2% by mass or more with respect to 100% by mass of all the dispersion media. The range is limited to less than 2% by mass, and it is difficult to sinter a film obtained by applying the composition by a wet coating method at a low temperature as described above, and the conductivity and reflection of the electrode after firing. This is because the rate drops.

電極形成用組成物を基材上に塗布する工程においては、塗工性が良いことが求められる。そのためには、基材との濡れ性や乾燥速度の適正化を行うことが必要であり、具体的には、色々な濡れ性や乾燥速度を有する溶剤を溶媒として使用することにより塗工性の最適化を達成する。本発明のように色々な溶剤を分散液として使用できるということは、組成物の塗工性の幅を広げることとなり、様々な基材に対して高い塗工性を有する組成物を調整することが可能となる。   In the step of applying the electrode-forming composition onto the substrate, good coating properties are required. For that purpose, it is necessary to optimize the wettability with the substrate and the drying speed. Specifically, the coating property is improved by using a solvent having various wettability and drying speed as a solvent. Achieve optimization. The fact that various solvents can be used as a dispersion as in the present invention widens the range of coating properties of the composition, and adjusts a composition having high coating properties for various substrates. Is possible.

一方、銀ナノ粒子以外の金属ナノ粒子は、Au、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Cr、Fe及びMnからなる群より選ばれた1種又は2種以上の混合組成又は合金組成からなる金属ナノ粒子であり、この銀ナノ粒子以外の金属ナノ粒子は全ての金属ナノ粒子100質量%に対して0.02質量%以上かつ25質量%未満、好ましくは0.03質量%〜20質量%含有する。また上記水と相溶する有機溶剤(アルコールを除く)は、アセトン、酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上であることが好ましい。ここで、銀ナノ粒子以外の金属ナノ粒子の含有量を全ての金属ナノ粒子100質量%に対して0.02質量%以上かつ25質量%未満の範囲に限定したのは、0.02質量%未満では特に大きな問題はないけれども、0.02〜25質量%の範囲内においては、耐候性試験(温度100℃かつ湿度50%の恒温恒湿槽に1000時間保持する試験)後の電極の導電性及び反射率が耐候性試験前より悪化しないという特徴があり、25質量%以上では焼成直後の電極の導電性及び反射率が低下し、しかも耐候性試験後の電極が耐候性試験前の電極より導電性及び反射率が低下してしまうからである。   On the other hand, the metal nanoparticles other than silver nanoparticles are one or a mixture of two or more selected from the group consisting of Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Cr, Fe and Mn. It is a metal nanoparticle which consists of a composition or an alloy composition, and metal nanoparticles other than this silver nanoparticle are 0.02 mass% or more and less than 25 mass% with respect to 100 mass% of all metal nanoparticles, Preferably it is 0.03. It is contained in an amount of 20% to 20% by mass. The organic solvents (excluding alcohol) that are compatible with water are acetone, methyl acetate, propylene glycol monoethyl ether, 2- (1-methoxy) propyl acetate, dimethyl sulfoxide, N-methylformamide, N-methyl-2. -It is preferable that it is 1 type, or 2 or more types chosen from the group which consists of pyrrolidinone, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and 2- (2-ethoxyethoxy) ethyl acetate. Here, the content of metal nanoparticles other than silver nanoparticles is limited to 0.02% by mass or more and less than 25% by mass with respect to 100% by mass of all metal nanoparticles. However, in the range of 0.02 to 25% by mass, the conductivity of the electrode after a weather resistance test (a test held in a constant temperature and humidity chamber at a temperature of 100 ° C. and a humidity of 50% for 1000 hours). And 25% by mass or more, the conductivity and reflectance of the electrode immediately after firing are reduced, and the electrode after the weathering test is the electrode before the weathering test. This is because the conductivity and reflectance are further reduced.

このように構成された太陽電池の電極形成用組成物の製造方法を説明する。
(a) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
先ず硝酸銀を脱イオン水等の水に溶解して金属塩水溶液を調製する。一方、クエン酸ナトリウムを脱イオン水等の水に溶解させて得られた濃度10〜40%のクエン酸ナトリウム水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製する。次に上記不活性ガス気流中で上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合する。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が30〜60℃に保持されるようにすることが好ましい。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにする。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に10〜300分間続けて金属コロイドからなる分散液を調製する。この分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションや遠心分離法等により分離した後、この分離物に脱イオン水等の水を加えて分散体とし、限外ろ過により脱塩処理し、更に引き続いて水と相溶する有機溶剤(アルコールを除く)で置換洗浄して、金属(銀)の含有量を2.5〜50質量%にする。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するように調製する、即ち数平均で全ての金属ナノ粒子100%に対する一次粒径10〜50nmの範囲内の金属ナノ粒子の占める割合が70%以上になるように調整する。なお、金属ナノ粒子と記載したが、この(a)の場合では、数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が70%以上になるように調整している。
The manufacturing method of the composition for electrode formation of the solar cell comprised in this way is demonstrated.
(a) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is set to 3 First, silver nitrate is dissolved in water such as deionized water to prepare an aqueous metal salt solution. On the other hand, the aqueous solution of sodium citrate having a concentration of 10 to 40% obtained by dissolving sodium citrate in deionized water or the like is mixed with granular or powdered sulfuric acid in a stream of inert gas such as nitrogen gas. Iron is directly added and dissolved to prepare an aqueous reducing agent solution containing citrate ions and ferrous ions in a molar ratio of 3: 2. Next, the aqueous metal salt solution is added dropwise to and mixed with the reducing agent aqueous solution while stirring the reducing agent aqueous solution in the inert gas stream. Here, by adjusting the concentration of each solution so that the addition amount of the metal salt aqueous solution is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 30 to 30 even when the metal salt aqueous solution at room temperature is dropped. It is preferable to keep the temperature at 60 ° C. The mixing ratio of the two aqueous solutions is such that the molar ratio of the citrate ions and the ferrous ions in the reducing agent aqueous solution is 3 times the total valence of the metal ions in the metal salt aqueous solution. . After the dropping of the aqueous metal salt solution is completed, the mixture is further stirred for 10 to 300 minutes to prepare a dispersion composed of metal colloid. This dispersion is allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles are separated by decantation, centrifugation, etc., and then water such as deionized water is added to the separation to form a dispersion, followed by ultrafiltration. The metal (silver) content is adjusted to 2.5 to 50% by mass by subjecting to a desalting treatment and subsequent substitution washing with an organic solvent (excluding alcohol) compatible with water. Thereafter, by adjusting the centrifugal force of the centrifuge using a centrifuge and separating coarse particles, the metal nanoparticles having a primary particle diameter in the range of 10 to 50 nm are 70% or more in average number of metal nanoparticles. It adjusts so that the ratio for which the metal nanoparticle in the range of the primary particle size of 10-50 nm with respect to 100% of all the metal nanoparticles may be 70% or more may be prepared. Although described as metal nanoparticles, in the case of (a), the proportion of silver nanoparticles in the range of the primary particle size of 10 to 50 nm with respect to 100% of all silver nanoparticles is 70% or more. It is adjusted so that

数平均の測定方法は、先ず、得られた金属ナノ粒子をTEM(Transmission Electron Microscope、透過型電子顕微鏡)により約50万倍程度の倍率で撮影する。次いで、得られた画像から金属ナノ粒子200個について一次粒径を測定し、この測定結果をもとに粒径分布を作成する。次に、作成した粒径分布から、一次粒径10〜50nmの範囲内の金属ナノ粒子が全金属ナノ粒子で占める個数割合を求める。   In the number average measurement method, first, the obtained metal nanoparticles are photographed with a TEM (Transmission Electron Microscope) at a magnification of about 500,000 times. Next, a primary particle size is measured for 200 metal nanoparticles from the obtained image, and a particle size distribution is created based on the measurement result. Next, from the created particle size distribution, the ratio of the number of metal nanoparticles within the range of the primary particle size of 10 to 50 nm occupied by all metal nanoparticles is determined.

これにより銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である分散体(太陽電池の電極形成用組成物)が得られる。なお、この分散体100質量%に対する最終的な金属含有量(銀含有量)は2.5〜95質量%とするとともに、溶媒の水及び水と相溶する有機溶剤(アルコールを除く)をそれぞれ1%以上及び2%以上にそれぞれ調整する。   As a result, a dispersion (a composition for forming an electrode of a solar cell) in which the carbon skeleton of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the silver nanoparticles is obtained. The final metal content (silver content) with respect to 100% by mass of the dispersion is 2.5 to 95% by mass, and the solvent water and the organic solvent (excluding alcohol) compatible with water are respectively used. Adjust to 1% or more and 2% or more, respectively.

(b) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を2とする場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをりんご酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子を化学修飾する有機分子主鎖の炭素骨格の炭素数が2である分散体(太陽電池の電極形成用組成物)が得られる。
(c) 銀ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1とする場合
還元剤水溶液を調製するときに用いたクエン酸ナトリウムをグリコール酸ナトリウムに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子を化学修飾する有機分子主鎖の炭素骨格の炭素数が1である分散体(太陽電池の電極形成用組成物)が得られる。
(d) 銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を3とする場合
銀ナノ粒子以外の金属ナノ粒子を構成する金属としては、Au、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Fe、Cr又はMnが挙げられる。金属塩水溶液を調製するときに用いた硝酸銀を、塩化金酸、塩化白金酸、硝酸パラジウム、三塩化ルテニウム、塩化ニッケル、硝酸第一銅、二塩化錫、硝酸インジウム、塩化亜鉛、硫酸鉄、硫酸クロム又は硫酸マンガンに替えること以外は上記(a)と同様にして分散体を調製する。これにより銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が3である分散体(太陽電池の電極形成用組成物)が得られる。
なお、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数を1や2とする場合、金属塩水溶液を調製するときに用いた硝酸銀を、上記種類の金属塩に替えること以外は上記(b)や上記(c)と同様にして分散体を調製する。これにより、銀ナノ粒子以外の金属ナノ粒子を化学修飾する保護剤の有機分子主鎖の炭素骨格の炭素数が1や2である分散体(太陽電池の電極形成用組成物)が得られる。
(b) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the silver nanoparticles is 2, except that the sodium citrate used when preparing the reducing agent aqueous solution is replaced with sodium malate A dispersion is prepared in the same manner as in the above (a). As a result, a dispersion (a composition for forming an electrode for a solar cell) in which the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles has 2 carbon atoms is obtained.
(c) When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying the silver nanoparticles is 1, except that sodium citrate used when preparing the reducing agent aqueous solution is replaced with sodium glycolate A dispersion is prepared in the same manner as in the above (a). Thereby, a dispersion (composition for forming an electrode of a solar cell) in which the carbon skeleton of the organic molecular main chain that chemically modifies the silver nanoparticles has 1 is obtained.
(d) When the number of carbon atoms in the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 3, the metal constituting the metal nanoparticles other than silver nanoparticles is Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Fe, Cr, or Mn may be mentioned. The silver nitrate used to prepare the aqueous metal salt solution is chloroauric acid, chloroplatinic acid, palladium nitrate, ruthenium trichloride, nickel chloride, cuprous nitrate, tin dichloride, indium nitrate, zinc chloride, iron sulfate, sulfuric acid A dispersion is prepared in the same manner as in the above (a) except that it is replaced with chromium or manganese sulfate. As a result, a dispersion (a composition for forming an electrode for a solar cell) in which the carbon skeleton of the organic molecular main chain of the protective agent for chemically modifying metal nanoparticles other than silver nanoparticles is 3 is obtained.
In addition, when the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent that chemically modifies the metal nanoparticles other than the silver nanoparticles is 1 or 2, the silver nitrate used when preparing the metal salt aqueous solution is the above kind. A dispersion is prepared in the same manner as in the above (b) and (c) except that the metal salt is replaced. Thereby, the dispersion (composition for electrode formation of a solar cell) whose carbon number of the carbon skeleton of the organic molecular principal chain of the protective agent which chemically modifies metal nanoparticles other than silver nanoparticles is 1 or 2 is obtained.

金属ナノ粒子として、銀ナノ粒子とともに、銀ナノ粒子以外の金属ナノ粒子を含有させる場合には、上記(a)の方法で製造した銀ナノ粒子を含む分散体を第1分散体とし、上記(d)の方法で製造した銀ナノ粒子以外の金属ナノ粒子を含む分散体を第2分散体とすると、75質量%以上の第1分散体と25質量%未満の第2分散体とを第1及び第2分散体の合計含有量が100質量%となるように混合する。なお、第1分散体は、上記(a)の方法で製造した銀ナノ粒子を含む分散体に留まらず、上記(b)の方法で製造した銀ナノ粒子を含む分散体や上記(c)の方法で製造した銀ナノ粒子を含む分散体を使用しても良い。   When metal nanoparticles other than silver nanoparticles are contained together with silver nanoparticles as metal nanoparticles, a dispersion containing silver nanoparticles produced by the method of (a) is used as the first dispersion, and ( When the dispersion containing metal nanoparticles other than silver nanoparticles produced by the method of d) is defined as the second dispersion, the first dispersion of 75% by mass or more and the second dispersion of less than 25% by mass are the first. And it mixes so that the total content of a 2nd dispersion may be 100 mass%. The first dispersion is not limited to the dispersion containing the silver nanoparticles produced by the method (a), but the dispersion containing the silver nanoparticles produced by the method (b) or the above (c). You may use the dispersion containing the silver nanoparticle manufactured by the method.

このように製造された分散体(太陽電池の電極形成用組成物)を用いて電極を形成する方法を説明する。
先ず上記分散体(太陽電池の電極形成用組成物)を基材上に湿式塗工法で塗工する。この湿式塗工法での塗工は、焼成後の厚さが0.1〜2.0μm、好ましくは0.3〜1.5μmの範囲内となるように成膜する。上記基材は、シリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属からなる基板のいずれか、或いはシリコン、ガラス、透明導電材料を含むセラミックス、高分子材料及び金属からなる群より選ばれた2種以上の積層体であることができる。また基材は太陽電池素子又は透明電極付き太陽電池素子のいずれかであることが好ましい。透明電極としては、インジウム錫酸化物(Indium Tin Oxide:ITO)、アンチモンドープ酸化錫(Antimony Tin Oxide:ATO)、ネサ(酸化錫SnO2)、IZO(Indium Zic Oxide)、AZO(アルミドープZnO)等などが挙げられる。上記分散体は太陽電池素子の光電変換半導体層の表面や、透明電極付き太陽電池素子の透明電極の表面に塗布される。更に上記湿式塗工法は、スプレーコーティング法、ディスペンサコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、スクリーン印刷法、オフセット印刷法又はダイコーティング法のいずれかであることが特に好ましいが、これに限られるものではなく、あらゆる方法を利用できる。スプレーコーティング法は分散体を圧縮エアにより霧状にして基材に塗布したり、或いは分散体自体を加圧し霧状にして基材に塗布する方法であり、ディスペンサコーティング法は例えば分散体を注射器に入れこの注射器のピストンを押すことにより注射器先端の微細ノズルから分散体を吐出させて基材に塗布する方法である。スピンコーティング法は分散体を回転している基材上に滴下し、この滴下した分散体をその遠心力により基材周縁に拡げる方法であり、ナイフコーティング法はナイフの先端と所定の隙間をあけた基材を水平方向に移動可能に設け、このナイフより上流側の基材上に分散体を供給して基材を下流側に向って水平移動させる方法である。スリットコーティング法は分散体を狭いスリットから流出させて基材上に塗布する方法であり、インクジェットコーティング法は市販のインクジェットプリンタのインクカートリッジに分散体を充填し、基材上にインクジェット印刷する方法である。スクリーン印刷法は、パターン指示材として紗を用い、その上に作られた版画像を通して分散体を基材に転移させる方法である。オフセット印刷法は、版に付けた分散体を直接基材に付着させず、版から一度ゴムシートに転写させ、ゴムシートから改めて基材に転移させる、インクの撥水性を利用した印刷方法である。ダイコーティング法は、ダイ内に供給された分散体をマニホールドで分配させてスリットより薄膜上に押し出し、走行する基材の表面を塗工する方法である。ダイコーティング法には、スロットコート方式やスライドコート方式、カーテンコート方式がある。
A method for forming an electrode using the dispersion (a composition for forming an electrode of a solar cell) thus manufactured will be described.
First, the dispersion (a composition for forming an electrode of a solar cell) is coated on a substrate by a wet coating method. Coating by this wet coating method is performed so that the thickness after firing is in the range of 0.1 to 2.0 μm, preferably 0.3 to 1.5 μm. The substrate is selected from the group consisting of silicon, glass, ceramics containing a transparent conductive material, a polymer material or a metal substrate, or silicon, glass, ceramics containing a transparent conductive material, a polymer material and a metal. It can be a laminate of two or more types. Moreover, it is preferable that a base material is either a solar cell element or a solar cell element with a transparent electrode. Transparent electrodes include indium tin oxide (ITO), antimony-doped tin oxide (ATO), nesa (tin oxide SnO 2 ), IZO (Indium Zic Oxide), and AZO (aluminum-doped ZnO). Etc. The said dispersion is apply | coated to the surface of the photoelectric conversion semiconductor layer of a solar cell element, or the surface of the transparent electrode of a solar cell element with a transparent electrode. Further, the wet coating method is particularly a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an ink jet coating method, a screen printing method, an offset printing method or a die coating method. Although it is preferable, the present invention is not limited to this, and any method can be used. The spray coating method is a method in which the dispersion is atomized by compressed air and applied to the substrate, or the dispersion itself is pressurized and atomized to apply to the substrate. The dispenser coating method is, for example, a method in which the dispersion is injected into a syringe. The dispersion is discharged from the fine nozzle at the tip of the syringe and applied to the substrate by pushing the piston of the syringe. The spin coating method is a method in which a dispersion is dropped onto a rotating substrate, and the dropped dispersion is spread to the periphery of the substrate by its centrifugal force. The knife coating method leaves a predetermined gap from the tip of the knife. In this method, the substrate is provided so as to be movable in the horizontal direction, the dispersion is supplied onto the substrate upstream of the knife, and the substrate is moved horizontally toward the downstream side. The slit coating method is a method in which a dispersion is discharged from a narrow slit and applied onto a substrate, and the inkjet coating method is a method in which a dispersion is filled in an ink cartridge of a commercially available inkjet printer and ink jet printing is performed on the substrate. is there. The screen printing method is a method in which wrinkles are used as a pattern indicating material and a dispersion is transferred to a substrate through a plate image formed thereon. The offset printing method is a printing method utilizing the water repellency of ink, in which the dispersion attached to the plate is not directly attached to the substrate, but is transferred from the plate to a rubber sheet and then transferred from the rubber sheet to the substrate again. . The die coating method is a method in which a dispersion supplied in a die is distributed by a manifold and extruded onto a thin film from a slit to coat the surface of a traveling substrate. The die coating method includes a slot coat method, a slide coat method, and a curtain coat method.

次に上面に成膜された基材を大気中で130〜400℃、好ましくは140〜200℃の温度に、10分間〜1時間、好ましくは15〜40分間保持して焼成する。ここで、基材上に形成された分散体の膜厚を、焼成後の厚さが0.1〜2.0μmの範囲内となるように限定したのは、0.1μm未満では太陽電池に必要な電極の表面抵抗値が不十分となり、2.0μmを越えると特性上の不具合はないけれども、材料の使用量が必要以上に多くなって材料が無駄になるからである。また基材上に形成された分散体の膜の焼成温度を130〜400℃の範囲に限定したのは、130℃未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して導電性及び反射率が低下してしまい、400℃を越えると低温プロセスという生産上のメリットを生かせない、即ち製造コストが増大し生産性が低下してしまうからである。更に基材上に形成された分散体の膜の焼成時間を10分間〜1時間の範囲に限定したのは、10分間未満では金属ナノ粒子同士の焼結が不十分になるとともに保護剤の焼成時の熱により脱離或いは分解(分離・燃焼)し難いため、焼成後の電極内に有機残渣が多く残り、この残渣が変質又は劣化して電極の導電性及び反射率が低下してしまい、1時間を越えると特性には影響しないけれども、必要以上に製造コストが増大して生産性が低下してしまうからである。   Next, the base material formed on the upper surface is fired in the air at a temperature of 130 to 400 ° C., preferably 140 to 200 ° C., for 10 minutes to 1 hour, preferably 15 to 40 minutes. Here, the film thickness of the dispersion formed on the substrate was limited so that the thickness after firing was in the range of 0.1 to 2.0 μm. This is because the necessary surface resistance value of the electrode becomes insufficient, and if it exceeds 2.0 μm, there is no problem in characteristics, but the amount of material used is increased more than necessary and the material is wasted. In addition, the firing temperature of the dispersion film formed on the base material was limited to the range of 130 to 400 ° C. When the temperature was lower than 130 ° C., the sintering between the metal nanoparticles became insufficient and the protective agent was fired. It is difficult to desorb or decompose (separate / combust) due to the heat of heat, so that a lot of organic residue remains in the electrode after firing, and this residue is altered or deteriorated, resulting in a decrease in conductivity and reflectance. This is because the production advantage of the low-temperature process cannot be utilized, that is, the manufacturing cost increases and the productivity decreases. Furthermore, the firing time of the dispersion film formed on the base material was limited to the range of 10 minutes to 1 hour because the sintering of the metal nanoparticles became insufficient and the firing of the protective agent in less than 10 minutes. Due to the difficulty of desorption or decomposition (separation / combustion) due to the heat of the time, a lot of organic residue remains in the electrode after firing, the residue is altered or deteriorated, and the conductivity and reflectivity of the electrode decrease, This is because, if the time exceeds 1 hour, the characteristics are not affected, but the manufacturing cost is increased more than necessary and the productivity is lowered.

上記太陽電池の電極形成用組成物では、一次粒径10〜50nmとサイズの比較的大きい金属ナノ粒子を多く含むため、金属ナノ粒子の比表面積が減少し、保護剤の占める割合が小さくなる。この結果、上記組成物を用いて太陽電池の電極を形成すると、上記保護剤中の有機分子が焼成時の熱により脱離し又は分解し、或いは離脱しかつ分解することにより、実質的に有機物を含有しない銀を主成分とする電極が得られる。従って、上記電極の形成された太陽電池を長年使用しても、有機物が変質又は劣化するということがなく、電極の導電率及び反射率が高い状態に維持されるので、経年安定性に優れた電極を得ることができる。具体的には、上記電極を、温度を100℃に保ちかつ湿度を50%に保った恒温恒湿槽に1000時間収容した後であっても、波長750〜1500nmの電磁波、即ち可視光領域から赤外線領域までの電磁波を80%以上電極により反射できるとともに、電極の導電性、即ち電極の体積抵抗率を2×10-5Ω・cm(20×10-6Ω・cm)未満と極めて低い値に維持できる。このようにして形成された電極を用いた太陽電池は、長年使用しても高導電率及び高反射率を維持することができ、経年安定性に優れる。 Since the composition for forming an electrode of the solar cell contains a large amount of metal nanoparticles having a primary particle size of 10 to 50 nm and a relatively large size, the specific surface area of the metal nanoparticles is reduced and the proportion of the protective agent is reduced. As a result, when an electrode of a solar cell is formed using the composition, the organic molecules in the protective agent are desorbed or decomposed by the heat at the time of firing, or desorbed and decomposed, thereby substantially reducing the organic matter. An electrode composed mainly of silver not containing is obtained. Therefore, even if the solar cell on which the electrode is formed is used for many years, the organic matter is not deteriorated or deteriorated, and the conductivity and reflectivity of the electrode are maintained in a high state, so that the aging stability is excellent. An electrode can be obtained. Specifically, even after the electrode is accommodated for 1000 hours in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 50%, the electromagnetic wave having a wavelength of 750 to 1500 nm, that is, from the visible light region. Electromagnetic waves up to the infrared region can be reflected by 80% or more by the electrode, and the conductivity of the electrode, that is, the volume resistivity of the electrode is extremely low, less than 2 × 10 −5 Ω · cm (20 × 10 −6 Ω · cm). Can be maintained. The solar cell using the electrode formed in this way can maintain high conductivity and high reflectance even when used for many years, and is excellent in aging stability.

<実施例1>
先ず硝酸銀を脱イオン水に溶解して金属塩水溶液を調製した。一方、クエン酸ナトリウムを脱イオン水に溶解させて得られた濃度26%のクエン酸ナトリウム水溶液に、温度35℃の窒素ガス気流中で粒状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオンと第一鉄イオンを3:2のモル比で含有する還元剤水溶液を調製した。次に上記窒素ガス気流を温度35℃に保った状態で、マグネチックスターラーの撹拌子を100rpmの回転速度で回転させて上記還元剤水溶液を撹拌しながら、この還元剤水溶液に上記金属塩水溶液を滴下して混合した。ここで、金属塩水溶液の添加量は還元剤水溶液の量の1/10以下になるように、各溶液の濃度を調整することで、室温の金属塩水溶液を滴下しても反応温度が40℃に保持されるようにした。また上記両水溶液の混合比は、金属塩水溶液中の金属イオンの総原子価数に対する、還元剤水溶液中のクエン酸イオンと第一鉄イオンのモル比がいずれも3倍モルとなるようにした。金属塩水溶液の滴下が終了した後、混合液の撹拌を更に15分間続けて金属コロイドからなる分散液を得た。この分散液のpHは5.5であり、分散液中の金属粒子の化学量論的生成量は5g/リットルであった。この得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属(銀)の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で75%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの範囲内の銀ナノ粒子の占める割合が75%になるように調整した。この分散体を実施例1とした。なお、分散体100質量%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。なお、硫酸第一鉄中の鉄はプロピレングリコールモノエチルエーテルによる置換洗浄時等に除去された。
<Example 1>
First, silver nitrate was dissolved in deionized water to prepare an aqueous metal salt solution. On the other hand, granular ferrous sulfate was directly added and dissolved in a 26% concentration sodium citrate aqueous solution obtained by dissolving sodium citrate in deionized water in a nitrogen gas stream at a temperature of 35 ° C. A reducing agent aqueous solution containing ions and ferrous ions in a molar ratio of 3: 2 was prepared. Next, with the nitrogen gas stream maintained at a temperature of 35 ° C., the magnetic salt stirrer is rotated at a rotational speed of 100 rpm to stir the reducing agent aqueous solution, and the metal salt aqueous solution is added to the reducing agent aqueous solution. Dropped and mixed. Here, by adjusting the concentration of each solution so that the amount of the metal salt aqueous solution added is 1/10 or less of the amount of the reducing agent aqueous solution, the reaction temperature is 40 ° C. even when the metal salt aqueous solution at room temperature is dropped. To be retained. The mixing ratio of the two aqueous solutions was such that the molar ratio of the citrate ion and ferrous ion in the reducing agent aqueous solution to the total valence of the metal ions in the metal salt aqueous solution was 3 times as much as each other. . After the dropping of the aqueous metal salt solution was completed, the mixture was further stirred for 15 minutes to obtain a dispersion composed of metal colloid. The pH of this dispersion was 5.5, and the stoichiometric amount of metal particles in the dispersion was 5 g / liter. The obtained dispersion was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was then desalted by ultrafiltration, and then further subjected to displacement washing with propylene glycol monoethyl ether, so that the metal (silver) content was 50% by mass. did. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 75% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. Adjustment was made so that the proportion of silver nanoparticles in the range of the primary particle diameter of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was 75%. This dispersion was designated as Example 1. The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms. In addition, iron in ferrous sulfate was removed during substitution washing with propylene glycol monoethyl ether.

<実施例2>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例2とした。なお、分散体100質量%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 2>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 2. The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例3>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で100%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が100%になるように遠心分離機により調整した。この分散体を実施例3とした。なお、分散体100質量%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 3>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 100% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. It adjusted with the centrifuge so that the ratio for which silver nanoparticles with a primary particle diameter of 10-50 nm accounted for 100% of all silver nanoparticles might be 100%. This dispersion was designated as Example 3. The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例4>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてりんご酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例4とした。なお、分散体100質量%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数2の有機分子主鎖の保護剤で化学修飾された。
<Example 4>
The dispersion obtained in the same manner as in Example 1 except that sodium malate was used in place of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 4. The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 2 carbon atoms.

<実施例5>
還元剤水溶液の調製時にクエン酸ナトリウムに替えてグリコール酸ナトリウムを用いたこと以外は実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例5とした。なお、分散体100質量%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数1の有機分子主鎖の保護剤で化学修飾された。
<Example 5>
The dispersion obtained in the same manner as in Example 1 except that sodium glycolate was used instead of sodium citrate when preparing the reducing agent aqueous solution was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were decanted. Separated by. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 5. The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for the organic molecular main chain having a carbon skeleton of 1 carbon.

<実施例6>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸パラジウムに替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、パラジウムナノ粒子が一次粒径10〜50nmのパラジウムナノ粒子を数平均で90%含有するように、即ち数平均で全てのパラジウムナノ粒子100%に対する一次粒径10〜50nmのパラジウムナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が77質量%、パラジウムナノ粒子が23質量%となるように混合した。この分散体を実施例6とした。なお、分散体100質量%に対する最終的な金属(銀及びパラジウムの合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びパラジウムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 6>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with palladium nitrate, and the dispersion subjected to substitution washing with propylene glycol monoethyl ether in the same manner as in Example 2 was compared with the number of palladium nanoparticles having a primary particle size of 10 to 50 nm. It was adjusted by a centrifuge so that it contained 90% on average, that is, the ratio of palladium nanoparticles having a primary particle size of 10 to 50 nm to 90% of the total number of palladium nanoparticles was 90%. Two dispersions were obtained. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 77% by mass and the palladium nanoparticles were 23% by mass. This dispersion was designated as Example 6. The mixing ratio of final metal (total of silver and palladium), water, and propylene glycol monoethyl ether to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles and palladium nanoparticles in the dispersion were each chemically modified with a protective agent having an organic molecular main chain having a carbon skeleton of 3 carbon skeletons.

<実施例7>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を三塩化ルテニウムに替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、ルテニウムナノ粒子が一次粒径10〜50nmのルテニウムナノ粒子を数平均で90%含有するように、即ち数平均で全てのルテニウムナノ粒子100%に対する一次粒径10〜50nmのルテニウムナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が80質量%、ルテニウムナノ粒子が20質量%となるように混合した。この分散体を実施例7とした。なお、分散体100質量%に対する最終的な金属(銀及びルテニウムの合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びルテニウムナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 7>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with ruthenium trichloride, and the dispersion washed by substitution with propylene glycol monoethyl ether in the same manner as in Example 2 was replaced with ruthenium nanoparticles having a primary particle size of 10 to 50 nm. Adjust by a centrifuge so that 90% of the average number of ruthenium nanoparticles with a primary particle size of 10 to 50 nm occupy 90% of the total number of ruthenium nanoparticles. A second dispersion was obtained. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 80% by mass and the ruthenium nanoparticles were 20% by mass. This dispersion was designated as Example 7. The mixing ratio of final metal (total of silver and ruthenium), water and propylene glycol monoethyl ether to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass and 60% by mass, respectively. The silver nanoparticles and ruthenium nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms.

<実施例8>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を硝酸第一銅に替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銅ナノ粒子が一次粒径10〜50nmの銅ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銅ナノ粒子100%に対する一次粒径10〜50nmの銅ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が90質量%、銅ナノ粒子が10質量%となるように混合した。この分散体を実施例8とした。なお、分散体100質量%に対する最終的な金属(銀及び銅の合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び銅ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 8>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with cuprous nitrate, and the dispersion subjected to substitution washing with propylene glycol monoethyl ether in the same manner as in Example 2 was used to obtain a copper nanoparticle having a primary particle diameter of 10 to 50 nm. Of the copper nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of all the copper nanoparticles is 90% by a centrifuge. To obtain a second dispersion. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 90% by mass and the copper nanoparticles were 10% by mass. This dispersion was designated as Example 8. The mixing ratio of the final metal (total of silver and copper), water, and propylene glycol monoethyl ether to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles and copper nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 3 carbon atoms.

<実施例9>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を二塩化錫に替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、錫ナノ粒子が一次粒径10〜50nmの錫ナノ粒子を数平均で90%含有するように、即ち数平均で全ての錫ナノ粒子100%に対する一次粒径10〜50nmの錫ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が95質量%、錫ナノ粒子が5質量%となるように混合した。この分散体を実施例9とした。なお、分散体100質量%に対する最終的な金属(銀及び錫の合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び錫ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 9>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with tin dichloride, and the dispersion washed by substitution with propylene glycol monoethyl ether in the same manner as in Example 2 was used to prepare tin nanoparticles having a primary particle size of 10 to 50 nm. Adjust by a centrifuge so that it contains 90% in number average, that is, the proportion of tin nanoparticles with a primary particle size of 10 to 50 nm is 90% with respect to 100% of all tin nanoparticles in number average. A second dispersion was obtained. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 95% by mass and the tin nanoparticles were 5% by mass. This dispersion was designated as Example 9. The final metal (total of silver and tin), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% by mass of the dispersion were adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles and tin nanoparticles in the dispersion were each chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms.

<実施例10>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化亜鉛に替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、亜鉛ナノ粒子が一次粒径10〜50nmの亜鉛ナノ粒子を数平均で90%含有するように、即ち数平均で全ての亜鉛ナノ粒子100%に対する一次粒径10〜50nmの亜鉛ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が98質量%、亜鉛ナノ粒子が2質量%となるように混合した。この分散体を実施例10とした。なお、分散体100質量%に対する最終的な金属(銀及び亜鉛の合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及び亜鉛ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 10>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with zinc chloride, and the dispersion washed by substitution with propylene glycol monoethyl ether in the same manner as in Example 2 was used. The number of zinc nanoparticles having a primary particle size of 10 to 50 nm was several. The content was adjusted by a centrifuge so that the average content was 90%, that is, the proportion of zinc nanoparticles having a primary particle size of 10 to 50 nm was 90% with respect to 100% of all zinc nanoparticles. Two dispersions were obtained. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 98% by mass and the zinc nanoparticles were 2% by mass. This dispersion was designated as Example 10. The mixing ratio of the final metal (total of silver and zinc), water, and propylene glycol monoethyl ether to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles and zinc nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms.

<実施例11>
実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように、遠心分離機により調整して第1分散体を得た。一方、実施例2の硝酸銀を塩化ニッケルに替え、実施例2と同様にしてプロピレングリコールモノエチルエーテルで置換洗浄された分散体を、ニッケルナノ粒子が一次粒径10〜50nmのニッケルナノ粒子を数平均で90%含有するように、即ち数平均で全てのニッケルナノ粒子100%に対する一次粒径10〜50nmのニッケルナノ粒子の占める割合が90%になるように、遠心分離機により調整して第2分散体を得た。次に第1分散体と第2分散体とを銀ナノ粒子が99.5質量%、ニッケルナノ粒子が0.5質量%となるように混合した。この分散体を実施例11とした。なお、分散体100質量%に対する最終的な金属(銀及びニッケルの合計)、水及びプロピレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子及びニッケルナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤でそれぞれ化学修飾された。
<Example 11>
In the same manner as in Example 2, the dispersion washed by substitution with propylene glycol monoethyl ether was prepared so that the silver nanoparticles contained 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average, that is, in number average. The first dispersion was obtained by adjusting with a centrifuge so that the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm to 90% of all silver nanoparticles was 90%. On the other hand, the silver nitrate of Example 2 was replaced with nickel chloride, and the dispersion subjected to substitution washing with propylene glycol monoethyl ether in the same manner as in Example 2 was compared with the number of nickel nanoparticles having a primary particle size of 10 to 50 nm. The content was adjusted by a centrifuge so that the average content was 90%, that is, the ratio of the nickel nanoparticles having a primary particle diameter of 10 to 50 nm to the nickel number 100% was 90%. Two dispersions were obtained. Next, the first dispersion and the second dispersion were mixed so that the silver nanoparticles were 99.5% by mass and the nickel nanoparticles were 0.5% by mass. This dispersion was designated as Example 11. The mixing ratio of final metal (total of silver and nickel), water, and propylene glycol monoethyl ether to 100% by mass of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles and nickel nanoparticles in the dispersion were chemically modified with an organic molecular main chain protecting agent having a carbon skeleton of 3 carbon atoms, respectively.

<実施例12
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いて酢酸メチルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例12とした。なお、分散体100%に対する最終的な金属(銀)、水及び酢酸メチルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 12 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with methyl acetate to make the metal content 50 mass%. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 12 . In addition, the final metal (silver), water, and methyl acetate mixing ratio with respect to 100% of the dispersion were adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例13
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いて酢酸2−(1−メトキシ)プロピルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例13とした。なお、分散体100%に対する最終的な金属(銀)、水及び酢酸2−(1−メトキシ)プロピルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 13 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was then desalted by ultrafiltration, and then further washed by substitution with 2- (1-methoxy) propyl acetate, so that the metal content was 50% by mass. I made it. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 13 . The final mixing ratio of metal (silver), water and 2- (1-methoxy) propyl acetate to 100% dispersion was adjusted to 30% by mass, 10% by mass and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例14
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてジメチルスルホキシドで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例14とした。なお、分散体100%に対する最終的な金属(銀)、水及びジメチルスルホキシドの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 14 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with dimethyl sulfoxide to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 14 . The final mixing ratio of metal (silver), water and dimethyl sulfoxide with respect to 100% of the dispersion was adjusted to 30% by mass, 10% by mass and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例15
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてN−メチルホルムアミドで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例15とした。なお、分散体100%に対する最終的な金属(銀)、水及びN−メチルホルムアミドの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 15 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with N-methylformamide to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 15 . The final metal (silver), water, and N-methylformamide mixing ratio with respect to 100% of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例16
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてN−メチル−2−ピロリジノンで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例16とした。なお、分散体100%に対する最終的な金属(銀)、水及びN−メチル−2−ピロリジノンの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 16 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further washed with N-methyl-2-pyrrolidinone to obtain a metal content of 50% by mass. . Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 16 . The final metal (silver), water, and N-methyl-2-pyrrolidinone mixing ratio with respect to 100% dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例17
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてジエチレングリコールモノメチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例17とした。なお、分散体100%に対する最終的な金属(銀)、水及びジエチレングリコールモノメチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 17 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with diethylene glycol monomethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 17 . The final metal (silver), water, and diethylene glycol monomethyl ether mixing ratio with respect to 100% dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例18
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてジエチレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例18とした。なお、分散体100%に対する最終的な金属(銀)、水及びジエチレングリコールモノエチルエーテルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 18 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to displacement washing with diethylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 18 . The final metal (silver), water, and diethylene glycol monoethyl ether mixing ratio with respect to 100% of the dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例19
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いて酢酸2−(2−エトキシエトキシ)エチルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例19とした。なお、分散体100%に対する最終的な金属(銀)、水及び酢酸2−(2−エトキシエトキシ)エチルの混合割合を30質量%、10質量%及び60質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 19 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, which was then desalted by ultrafiltration, and then further washed by substitution with 2- (2-ethoxyethoxy) ethyl acetate to give a metal content of 50 mass. %. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 19 . The final metal (silver), water, and 2- (2-ethoxyethoxy) ethyl acetate mixing ratio with respect to 100% dispersion was adjusted to 30% by mass, 10% by mass, and 60% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例20
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例20とした。なお、分散体100%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を60質量%、1質量%及び39質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 20 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 20 . The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% of the dispersion was adjusted to 60% by mass, 1% by mass, and 39% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<実施例21
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を実施例21とした。なお、分散体100%に対する最終的な金属(銀)、水及びプロピレングリコールモノエチルエーテルの混合割合を60質量%、38質量%及び2質量%にそれぞれ調整した。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Example 21 >
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Example 21 . The final metal (silver), water, and propylene glycol monoethyl ether mixing ratio with respect to 100% of the dispersion was adjusted to 60% by mass, 38% by mass, and 2% by mass, respectively. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<比較例1>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いて、金属の含有量が50質量%になるように脱イオン水の量を調整した。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を比較例1とした。なお、分散体100%に対する最終的な金属(銀)及び水の混合割合を30質量%及び70質量%にそれぞれ調整した。即ち、この分散体には分散媒として、有機溶剤を含んでいない。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Comparative Example 1>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to this separated product to form a dispersion, and after desalting by ultrafiltration, the amount of deionized water was adjusted so that the metal content was 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Comparative Example 1. The final mixing ratio of metal (silver) and water with respect to 100% of the dispersion was adjusted to 30% by mass and 70% by mass, respectively. That is, this dispersion does not contain an organic solvent as a dispersion medium. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<比較例2>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、限外ろ過により脱塩処理した後、更に引き続いてプロピレングリコールモノエチルエーテルで置換洗浄して、金属の含有量を50質量%にした。その後、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を比較例2とした。なお、分散体100%に対する最終的な金属(銀)及びプロピレングリコールモノエチルエーテルの混合割合を30質量%及び70質量%にそれぞれ調整した。即ち、この分散体には分散媒として、水を含んでいない。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Comparative example 2>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water was added to the separated product to form a dispersion, which was desalted by ultrafiltration, and then further subjected to substitution washing with propylene glycol monoethyl ether to make the metal content 50% by mass. Thereafter, the centrifugal force of the centrifuge is adjusted using a centrifuge to separate coarse particles so that the silver nanoparticles contain 90% of silver nanoparticles having a primary particle size of 10 to 50 nm in number average. The proportion of silver nanoparticles having a primary particle size of 10 to 50 nm with respect to 100% of all prepared silver nanoparticles was adjusted to 90%. This dispersion was designated as Comparative Example 2. The final mixing ratio of metal (silver) and propylene glycol monoethyl ether to 100% of the dispersion was adjusted to 30% by mass and 70% by mass, respectively. That is, this dispersion does not contain water as a dispersion medium. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<比較例3>
実施例1と同様にして得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離した。この分離物に脱イオン水を加えて分散体とし、この分散体を遠心分離して粒度調整し、限外ろ過により脱塩処理した後に脱塩処理物を濃縮し、更に引き続いて水及びトルエンを添加し、濃縮物と混合した。前述の粒度調整では、遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、銀ナノ粒子が一次粒径10〜50nmの銀ナノ粒子を数平均で90%含有するように調製した、即ち数平均で全ての銀ナノ粒子100%に対する一次粒径10〜50nmの銀ナノ粒子の占める割合が90%になるように調整した。この分散体を比較例3とした。なお、分散体100%に対する最終的な金属(銀)、水及びトルエンの混合割合を30質量%、35質量%及び35質量%にそれぞれ調整した。即ち、この分散体には分散媒として、水と相溶する有機溶剤を含んでいない。また分散体中の銀ナノ粒子は炭素骨格が炭素数3の有機分子主鎖の保護剤で化学修飾された。
<Comparative Example 3>
The dispersion obtained in the same manner as in Example 1 was allowed to stand at room temperature, and the aggregates of the precipitated metal nanoparticles were separated by decantation. Deionized water is added to this separated product to form a dispersion, and this dispersion is centrifuged to adjust the particle size. After desalting by ultrafiltration, the desalted product is concentrated, and then water and toluene are added. Added and mixed with concentrate. In the particle size adjustment described above, by using a centrifuge and adjusting the centrifugal force of the centrifuge to separate coarse particles, the silver nanoparticles have a primary average particle diameter of 10 to 50 nm and the silver nanoparticles with a number average of 90%. In other words, the proportion of silver nanoparticles having a primary particle diameter of 10 to 50 nm with respect to 100% of all silver nanoparticles was adjusted to 90%. This dispersion was designated as Comparative Example 3. In addition, the final metal (silver), water, and toluene mixing ratio with respect to 100% of the dispersion was adjusted to 30% by mass, 35% by mass, and 35% by mass, respectively. That is, this dispersion does not contain an organic solvent compatible with water as a dispersion medium. The silver nanoparticles in the dispersion were chemically modified with a protective agent for an organic molecular main chain having a carbon skeleton of 3 carbon atoms.

<比較試験1及び評価>
実施例1〜21及び比較例1〜3の分散体を次の表3及び表4に示される基材上に、焼成後の膜厚が1μmとなるように次の表3及び表4に示される塗工法により塗布した。基材としては、ITO又はPETを用いた。塗工法としては、スピンコーティング、スプレーコーティング又はナイフコーティングを用いた。ここで分散体を基材上に塗布した塗膜について、その塗工性を目視により確認した。続いて、実施例1〜21の塗膜を、次の表3に示される温度で焼成することにより、基材上に電極を形成した。これらの電極を形成した基材について、耐候性試験を行う前に、各基材に形成された電極の反射率及び導電性を測定するとともに、耐候性試験を行った後に、各基材に形成された電極の反射率及び導電性を測定した。その結果を、表3に示す。また、比較例1〜3についての塗膜の状態を観察した。その結果を、表4に示す。
なお、耐候性試験は、電極の形成された基材を、温度を100℃に保ち湿度を50%に保った恒温恒湿槽に1000時間収容することにより行った。
また、反射率は、波長750〜1500nmの電磁波(赤外線及び可視光線)を電極に照射し、反射した電磁波を紫外可視分光光度計(V−570:日本分光社製)を用いて測定し、全照射量に対する反射量の割合(%)を算出して求めた。
また、金属ナノ粒子の一次粒径は、FE−TEM(電界放出型透過電子顕微鏡:日本電子社製)を用いて計測し、一次粒径10〜50nmの銀ナノ粒子の占める割合は、上記FE−TEMを用いて撮影した金属ナノ粒子の一次粒径の写真から画像処理により粒子径の数を計測して評価した。
また導電性は、四端子法により測定し算出した体積抵抗率(Ω・cm)として求めた。具体的には、電極の体積抵抗率は、先ず焼成後の電極の厚さをSEM(電子顕微鏡S800:日立製作所社製)を用いて電極断面から電極の厚さを直接計測し、次に四端子法による比抵抗測定器(ロレスタ:三菱化学社製)を用い、この測定器に上記実測した電極の厚さを入力して測定した。
一方、表1及び表2に、実施例1〜21及び比較例1〜3の分散体における一次粒径10〜50nmの金属ナノ粒子の占める割合と、有機分子主鎖の炭素数と、分散体(組成物)の種類及び混合割合と、異種金属(銀以外の金属)の種類及び含有率(銀と銀以外の金属の合計を100質量%としたときの異種金属の含有率)とを示した。また表3及び表4には、反射率、導電性(体積抵抗率)及び耐候性とともに、基材の種類、塗工性及び焼成温度を示した。表3及び表4の塗工性の欄において、『良好』とは、基材上に一様に塗工できた場合を示し、『不良』とは基材が塗液となる分散体を弾いたりして基材上に一様に塗工できなかった場合を示す。更に表3の耐候性の欄において、『良好』とは、反射率が80%以上でありかつ体積抵抗率が20×10-6Ω・cm未満であった場合を示し、『不良』とは反射率が80%未満でありかつ体積抵抗率が20×10-6Ω・cm未満であるか、又は反射率が80%以上でありかつ体積抵抗率が20×10-6Ω・cmを越えるか、或いは反射率が80%未満でありかつ体積抵抗率が20×10-6Ω・cmを越えた場合を示す。
<Comparative test 1 and evaluation>
The dispersions of Examples 1 to 21 and Comparative Examples 1 to 3 are shown in the following Tables 3 and 4 so that the film thickness after firing is 1 μm on the substrates shown in the following Tables 3 and 4. The coating method was applied. ITO or PET was used as the substrate. As the coating method, spin coating, spray coating or knife coating was used. Here, about the coating film which apply | coated the dispersion material on the base material, the coating property was confirmed visually. Then, the electrode was formed on the base material by baking the coating films of Examples 1 to 21 at the temperatures shown in the following Table 3. Before performing the weather resistance test on the base material on which these electrodes are formed, the reflectance and conductivity of the electrode formed on each base material are measured, and after the weather resistance test is performed, each electrode is formed on each base material. The reflectivity and conductivity of the prepared electrodes were measured. The results are shown in Table 3. Moreover, the state of the coating film about Comparative Examples 1-3 was observed. The results are shown in Table 4.
In addition, the weather resistance test was performed by accommodating the substrate on which the electrode was formed in a constant temperature and humidity chamber having a temperature of 100 ° C. and a humidity of 50% for 1000 hours.
The reflectance was measured by irradiating an electrode with electromagnetic waves (infrared rays and visible rays) having a wavelength of 750 to 1500 nm, and measuring the reflected electromagnetic waves using an ultraviolet-visible spectrophotometer (V-570: manufactured by JASCO Corporation). The ratio (%) of the reflection amount with respect to the irradiation amount was calculated and obtained.
The primary particle size of the metal nanoparticles is measured using FE-TEM (field emission transmission electron microscope: manufactured by JEOL Ltd.), and the proportion of silver nanoparticles having a primary particle size of 10 to 50 nm is determined by the above FE. -From the photograph of the primary particle diameter of the metal nanoparticles photographed using TEM, the number of particle diameters was measured and evaluated.
The conductivity was determined as a volume resistivity (Ω · cm) measured and calculated by the four probe method. Specifically, the volume resistivity of the electrode is determined by first measuring the thickness of the electrode after firing directly from the electrode cross section using an SEM (Electron Microscope S800: manufactured by Hitachi, Ltd.), Using a specific resistance measuring instrument (Loresta: manufactured by Mitsubishi Chemical Corporation) by the terminal method, the measured thickness of the electrode was input to this measuring instrument.
Meanwhile, in Table 1 and Table 2, the ratio of the metal nanoparticles of primary particle size 10~50nm in dispersion of Examples 1 21 and Comparative Examples 1 to 3, and the carbon number of the organic molecular main chain, dispersion Shows the type and mixing ratio of (composition) and the type and content of dissimilar metals (metals other than silver) (content of dissimilar metals when the total of metals other than silver and silver is 100% by mass). It was. Tables 3 and 4 show the type of substrate, coating properties, and firing temperature, as well as reflectance, conductivity (volume resistivity), and weather resistance. In the column of coating property in Table 3 and Table 4, “good” indicates a case where the coating was uniformly applied on the base material, and “bad” indicates that the base material repels the dispersion that becomes the coating liquid. The case where it was not able to apply uniformly on a base material is shown. Furthermore, in the weather resistance column of Table 3, “good” indicates a case where the reflectance is 80% or more and the volume resistivity is less than 20 × 10 −6 Ω · cm. The reflectance is less than 80% and the volume resistivity is less than 20 × 10 −6 Ω · cm, or the reflectance is 80% or more and the volume resistivity exceeds 20 × 10 −6 Ω · cm. Or the reflectance is less than 80% and the volume resistivity exceeds 20 × 10 −6 Ω · cm.

Figure 0005151229
Figure 0005151229

Figure 0005151229
Figure 0005151229

Figure 0005151229
Figure 0005151229

Figure 0005151229
表3及び表4から明らかなように、比較例1〜3では、塗工性が悪く、塗膜の状態が、斑になったり、膜に多くの穴が形成されたりと、太陽電池の電極を形成するための組成物として使用するのには不適であることが確認された。これらに対し、実施例1〜21では、基材への塗膜性はいずれも良好であり、耐候性試験前及び耐候性試験後のいずれであっても、電極の反射率が80%以上でありかつ体積抵抗率が5×10-6Ω・cm未満であり、耐候性試験前の初期特性も耐候性も十分に満足するものとなった。
Figure 0005151229
As is clear from Tables 3 and 4, in Comparative Examples 1 to 3, the coatability is poor, the state of the coating film becomes uneven, and many holes are formed in the film. It was confirmed that it was unsuitable for use as a composition for forming the. For these, in Examples 1 21 are both coating properties to the substrate was good, be any of before and after weather resistance test and weathering resistance test, in the reflectivity of the electrode is 80% or more In addition, the volume resistivity was less than 5 × 10 −6 Ω · cm, and the initial characteristics before the weather resistance test and the weather resistance were sufficiently satisfied.

Claims (8)

金属ナノ粒子が分散媒に分散した太陽電池の電極形成用組成物であって、
前記金属ナノ粒子が75質量%以上の銀ナノ粒子を含有し、
前記金属ナノ粒子は炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾され、
前記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有し、
前記金属ナノ粒子の含有量は、金属ナノ粒子及び分散媒からなる組成物100質量%に対して2.5〜95.0質量%含有し、
前記分散媒が1質量%以上の水と2質量%以上の水と相溶する有機溶剤とを含有し、
前記水と相溶する有機溶剤が、酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上である
ことを特徴とする太陽電池の電極形成用組成物。
A composition for forming an electrode of a solar cell in which metal nanoparticles are dispersed in a dispersion medium,
The metal nanoparticles contain 75% by mass or more of silver nanoparticles,
The metal nanoparticles are chemically modified with an organic molecular main chain protective agent having a carbon skeleton of 1 to 3 carbon atoms,
The metal nanoparticles contain 70% or more of average number of metal nanoparticles having a primary particle size of 10 to 50 nm,
The content of the metal nanoparticles is 2.5 to 95.0% by mass with respect to 100% by mass of the composition comprising the metal nanoparticles and the dispersion medium,
The dispersion medium contains an organic solvent agent is compatible with 1% by weight or more of water and 2 mass% or more water,
The organic solvent compatible with water is methyl acetate, propylene glycol monoethyl ether, 2- (1-methoxy) propyl acetate, dimethyl sulfoxide, N-methylformamide, N-methyl-2-pyrrolidinone, diethylene glycol monomethyl ether, diethylene glycol. A composition for forming an electrode of a solar cell, which is one or more selected from the group consisting of monoethyl ether and 2- (2-ethoxyethoxy) ethyl acetate .
Au、Pt、Pd、Ru、Ni、Cu、Sn、In、Zn、Fe、Cr及びMnからなる群より選ばれた1種又は2種以上の混合組成又は合金組成からなる金属ナノ粒子を0.02質量%以上かつ25質量%未満含有する請求項1記載の太陽電池の電極形成用組成物。   Metal nanoparticles composed of one or two or more mixed compositions or alloy compositions selected from the group consisting of Au, Pt, Pd, Ru, Ni, Cu, Sn, In, Zn, Fe, Cr, and Mn are set to 0. The composition for forming an electrode of a solar cell according to claim 1, which is contained in an amount of 02% by mass or more and less than 25% by mass. 請求項1又は2記載の太陽電池の電極形成用組成物の製造方法であって、  It is a manufacturing method of the composition for electrode formation of the solar cell of Claim 1 or 2, Comprising:
金属塩水溶液を調製する工程と、  Preparing a metal salt aqueous solution;
クエン酸ナトリウム、りんご酸ナトリウム又はグリコール酸ナトリウムの水溶液に、窒素ガス等の不活性ガスの気流中で粒状又は粉状の硫酸第一鉄を直接加えて溶解させ、クエン酸イオン、りんご酸イオン又はグリコール酸イオンと、第一鉄イオンとを含有する還元剤水溶液を調製する工程と、  To a solution of sodium citrate, sodium malate or sodium glycolate, add granular or powdered ferrous sulfate directly in an inert gas stream such as nitrogen gas and dissolve it, and citrate ions, malate ions or Preparing a reducing agent aqueous solution containing glycolate ion and ferrous ion;
前記不活性ガス気流中で前記還元剤水溶液を撹拌しながら、この還元剤水溶液に前記金属塩水溶液を滴下して混合し、前記金属塩水溶液の滴下が終了した後、混合液の撹拌を更に続けて炭素骨格が炭素数1〜3の有機分子主鎖の保護剤で化学修飾された金属ナノ粒子の分散液を得る工程と、  While stirring the reducing agent aqueous solution in the inert gas stream, the metal salt aqueous solution is dropped into and mixed with the reducing agent aqueous solution, and after the dropping of the metal salt aqueous solution is completed, the mixture is further stirred. A step of obtaining a dispersion of metal nanoparticles whose carbon skeleton is chemically modified with an organic molecular main chain protective agent having 1 to 3 carbon atoms;
前記得られた分散液を室温で放置し、沈降した金属ナノ粒子の凝集物をデカンテーションにより分離する工程と、  Allowing the obtained dispersion to stand at room temperature and separating aggregates of the precipitated metal nanoparticles by decantation;
前記分離して得られた分離物に脱イオン水等の水を加えて分散体とし、限外ろ過により脱塩処理する工程と、  Adding a dispersion such as deionized water to the separated product obtained by the separation, and performing a desalting treatment by ultrafiltration;
前記脱塩処理した分散体を酢酸メチル、プロピレングリコールモノエチルエーテル、酢酸2−(1−メトキシ)プロピル、ジメチルスルホキシド、N−メチルホルムアミド、N−メチル−2−ピロリジノン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル及び酢酸2−(2−エトキシエトキシ)エチルからなる群より選ばれた1種又は2種以上である水と相溶する有機溶剤で置換洗浄して、金属の含有量を2.5〜50質量%にする工程と、  The desalted dispersion was treated with methyl acetate, propylene glycol monoethyl ether, 2- (1-methoxy) propyl acetate, dimethyl sulfoxide, N-methylformamide, N-methyl-2-pyrrolidinone, diethylene glycol monomethyl ether, diethylene glycol monoethyl. Substitution washing with an organic solvent compatible with one or two or more kinds of water selected from the group consisting of ether and 2- (2-ethoxyethoxy) ethyl acetate, the metal content is adjusted to 2.5-50. A step of mass%,
遠心分離機を用いこの遠心分離機の遠心力を調整して粗粒子を分離することにより、前記金属ナノ粒子が一次粒径10〜50nmの範囲内の金属ナノ粒子を数平均で70%以上含有するように調製する工程と、  By adjusting the centrifugal force of this centrifuge using a centrifuge to separate coarse particles, the metal nanoparticles contain 70% or more of metal nanoparticles having a primary particle size in the range of 10 to 50 nm in terms of number average. A step of preparing to
前記金属ナノ粒子の含有量が、金属ナノ粒子及び分散媒からなる分散体100質量%に対して2.5〜95.0質量%含有し、かつ、前記分散媒が全ての分散媒100質量%に対して、1質量%以上の水と、2質量%以上の水と相溶する有機溶剤とを含有するように調整する工程と  The content of the metal nanoparticles is 2.5 to 95.0% by mass with respect to 100% by mass of the dispersion composed of the metal nanoparticles and the dispersion medium, and the dispersion medium is 100% by mass of all the dispersion media. And a step of adjusting so as to contain 1% by mass or more of water and an organic solvent compatible with 2% by mass or more of water;
を含むことを特徴とする太陽電池の電極形成用組成物の製造方法。  The manufacturing method of the composition for electrode formation of the solar cell characterized by including.
請求項1又は2記載の電極形成用組成物を基材上に湿式塗工法で塗工して太陽電池用電極を形成する方法。 A method for forming a solar cell electrode by applying the electrode-forming composition according to claim 1 or 2 onto a substrate by a wet coating method. 請求項1又は2記載の電極形成用組成物を基材上に湿式塗工法で塗工して焼成後の厚さが0.1〜2.0μmの範囲内となるように成膜する工程と、
前記上面に成膜された基材を130〜400℃で焼成する工程と
を含む太陽電池の電極の形成方法。
Applying the composition for forming an electrode according to claim 1 or 2 on a substrate by a wet coating method, and forming a film so that the thickness after firing is within a range of 0.1 to 2.0 μm; ,
And baking the substrate formed on the upper surface at 130 to 400 ° C.
基材がシリコン、ガラス、透明導電材料を含むセラミックス、高分子材料又は金属からなる基板のいずれか、或いは前記シリコン、前記ガラス、前記透明導電材料を含むセラミックス、前記高分子材料及び前記金属からなる群より選ばれた2種以上の積層体である請求項4又は5記載の太陽電池の電極の形成方法。   The substrate is made of silicon, glass, ceramics containing a transparent conductive material, a substrate made of a polymer material or a metal, or made of the silicon, the glass, a ceramic containing the transparent conductive material, the polymer material or the metal. The method for forming an electrode of a solar cell according to claim 4 or 5, which is a laminate of two or more selected from the group. 基材が太陽電池素子又は透明電極付き太陽電池素子のいずれかである請求項4又は5記載の太陽電池の電極の形成方法。   The method for forming an electrode of a solar cell according to claim 4 or 5, wherein the substrate is either a solar cell element or a solar cell element with a transparent electrode. 請求項4ないし7いずれか1項に記載の電極の形成方法により形成した電極を用いたことを特徴とする太陽電池の製造方法A method for manufacturing a solar cell , comprising using an electrode formed by the method for forming an electrode according to claim 4.
JP2007112476A 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method Expired - Fee Related JP5151229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112476A JP5151229B2 (en) 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007043638 2007-02-23
JP2007043638 2007-02-23
JP2007112476A JP5151229B2 (en) 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method

Publications (2)

Publication Number Publication Date
JP2008235846A JP2008235846A (en) 2008-10-02
JP5151229B2 true JP5151229B2 (en) 2013-02-27

Family

ID=39908240

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007112476A Expired - Fee Related JP5151229B2 (en) 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2007112477A Expired - Fee Related JP5151230B2 (en) 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007112477A Expired - Fee Related JP5151230B2 (en) 2007-02-23 2007-04-23 Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method

Country Status (1)

Country Link
JP (2) JP5151229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG178931A1 (en) * 2009-09-04 2012-04-27 Basf Se Composition for printing electrodes
JP5144857B2 (en) * 2010-03-01 2013-02-13 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
JP6132716B2 (en) 2013-09-10 2017-05-24 株式会社東芝 Metal particle paste, cured product using the same, and semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287754B2 (en) * 1996-03-01 2002-06-04 シャープ株式会社 Method for forming metal electrode of solar cell
JP3429958B2 (en) * 1996-08-28 2003-07-28 三井金属鉱業株式会社 Method for producing silver colloid liquid
JP2001210850A (en) * 2000-01-24 2001-08-03 Matsushita Battery Industrial Co Ltd Solar battery module
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film
JP2003297158A (en) * 2002-04-01 2003-10-17 Canon Inc Transparent conductive film having grid electrode and its manufacturing method
JP3796476B2 (en) * 2002-10-25 2006-07-12 バンドー化学株式会社 Conductive ink
JP2004315650A (en) * 2003-04-16 2004-11-11 Toppan Forms Co Ltd Inkjet ink containing metal particulate colloid
JP2005019028A (en) * 2003-06-23 2005-01-20 Bando Chem Ind Ltd Metal colloid liquid, and conductive ink using it
JP2005154453A (en) * 2003-11-20 2005-06-16 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive layer and transparent conductive base material
US20090053469A1 (en) * 2006-01-11 2009-02-26 Kimitaka Sato Silver Conductive Film and Production Method Thereof

Also Published As

Publication number Publication date
JP2008235847A (en) 2008-10-02
JP2008235846A (en) 2008-10-02
JP5151230B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5453813B2 (en) Metal nanoparticle dispersion and method for producing the same
JP5556176B2 (en) Particles and inks and films using them
JP5309440B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5332624B2 (en) Metal nanoparticle dispersion and method for producing the same
KR101485304B1 (en) Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
KR101570398B1 (en) Transparent conductive ink, and method for producing transparent conductive pattern
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
KR20090115854A (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP5747941B2 (en) Method for synthesizing metal nanoparticles
JP2019502022A (en) Method for synthesizing silver nanoplates and silver nanoplates coated with noble metals, and their use in transparent films
JP5868284B2 (en) Electromagnetic wave shielding composition, method for producing the same, and method for forming electromagnetic wave shielding material using the composition
JP6782409B2 (en) Capacitors and their manufacturing methods
JP5248006B2 (en) Method for forming electrode of solar cell
JP5070808B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5417900B2 (en) Method for forming conductive coating film
JP5332625B2 (en) Metal nanoparticle dispersion and method for producing the same
JP5435063B2 (en) Method for producing composition for forming electrode of solar cell and method for forming the electrode
JP2010137220A (en) Method of forming thin film by spray and electrode formation method using the thin film
JP6235828B2 (en) Method for producing a silver miniwire film
KR102495578B1 (en) Silver microparticle dispersion
JP5435088B2 (en) Method for forming solar cell electrodes
JP2011151292A (en) Conductive oxide fine particle dispersion liquid for forming transparent conductive film and transparent conductive film formed using the conductive oxide fine particle dispersion liquid, composite film, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees