WO2013132813A1 - 光学素子、光学装置および表示装置 - Google Patents

光学素子、光学装置および表示装置 Download PDF

Info

Publication number
WO2013132813A1
WO2013132813A1 PCT/JP2013/001291 JP2013001291W WO2013132813A1 WO 2013132813 A1 WO2013132813 A1 WO 2013132813A1 JP 2013001291 W JP2013001291 W JP 2013001291W WO 2013132813 A1 WO2013132813 A1 WO 2013132813A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
refractive index
optical element
metal layer
Prior art date
Application number
PCT/JP2013/001291
Other languages
English (en)
French (fr)
Inventor
慎 冨永
雅雄 今井
昌尚 棗田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/382,817 priority Critical patent/US20150022784A1/en
Publication of WO2013132813A1 publication Critical patent/WO2013132813A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Definitions

  • the present invention relates to an optical element, an optical device, and a display device that convert random polarized light into a specific polarization state.
  • the LED projector includes an LED, an illumination optical system into which light emitted from the LED is incident, a modulation element that modulates and emits light from the illumination optical system according to a video signal, and projects light from the modulation element onto a screen. And a projection optical system.
  • the etendue obtained by the product of the light emitting area and the radiation angle of the light source has an acquisition angle determined by the light receiving area of the modulation element and the F number of the illumination optical system. Must be less than product value.
  • a modulation element having polarization dependency such as a liquid crystal panel may be used.
  • the emitted light of the LED is random polarized light
  • Patent Document 1 A technique for converting random polarization into a specific polarization state is disclosed in Patent Document 1.
  • the flat illumination device described in Patent Document 1 includes a light guide 10, a polarization direction changing member 13 provided on the lower surface of the light guide 10, a step-like microprism 14,
  • the light guide plate 3 includes a reflection plate 6, a polarization separation film 11 provided on the top surface of the light guide 10, and a top cover 12 provided on the top surface of the polarization separation film 11.
  • the polarization separation film 11 has a configuration in which a metal thin film is sandwiched between a first low refractive index transparent medium and a second low refractive index transparent medium.
  • the light emitted from the LED 2 enters the light guide 10 and propagates through the light guide 10 while being converted in angle by the microprism 14.
  • the first boundary which is the boundary between the light guide 10 and the first low-refractive-index transparent medium
  • surface plasmons are excited in the metal thin film by the evanescent wave generated at that time.
  • a transition process opposite to the surface plasmon excitation process occurs at the second boundary, which is the boundary between the second low-refractive-index transparent medium and the top cover 12, and the second Light is generated at the boundary.
  • the light generated at the second boundary is emitted through the top cover 12.
  • the light that excites the surface plasmon out of the light incident on the first boundary is only P-polarized light whose electric field component is parallel to the first boundary.
  • the light generated at the second boundary is generated by the reverse process of the excitation process of the surface plasmon, and thus has the same P polarization as the light that excites the surface plasmon. Therefore, the flat illumination device can emit random polarized light after converting it into a specific polarization state.
  • An object of the present invention is to provide an optical element, an optical device, and a display device capable of converting random polarized light into a specific polarization state in which the etendue is low and the emission direction is set in a specific direction. There is.
  • the optical element of the present invention includes a first dielectric layer, a second dielectric layer, and a first metal layer disposed between the first dielectric layer and the second dielectric layer.
  • the first dielectric layer has a different refractive index in the first direction and in a second direction intersecting the first direction.
  • random polarized light can be converted into a specific polarization state that is a low etendue state in which the emission direction is set to a specific direction.
  • FIG. 1 is a perspective view schematically showing an optical element according to a first embodiment of the present invention. It is explanatory drawing for demonstrating operation
  • FIG. 1 is a perspective view schematically showing an optical element 101 according to a first embodiment of the present invention.
  • the thickness of each layer is very thin, and the difference in thickness between the layers is large. Therefore, it is difficult to illustrate each layer with an accurate scale and ratio. For this reason, in the drawings, the layers are not schematically drawn but are shown schematically.
  • a light source (not shown) is disposed on the outer periphery of the optical element 101 and emits randomly polarized light to the optical element 101.
  • the light source may be disposed at a position away from the optical element 101, may be disposed so as to be in contact with the optical element 101, or optically through the light guide member such as a light pipe. May be connected.
  • the optical element 101 has a light guide layer 102, a low refractive index layer 103, a metal layer 104, a birefringent layer 105, and a cover layer 106.
  • the light guide layer 102, the low refractive index layer 103, the birefringent layer 105, and the cover layer 106 correspond to dielectric layers.
  • the metal layer 104 corresponds to a metal layer.
  • the light guide layer 102 is a sixth dielectric layer
  • the low refractive index layer 103 is a second dielectric layer
  • the birefringent layer 105 is a first dielectric layer
  • the cover layer 106 is a first dielectric layer.
  • 5 is a dielectric layer.
  • the metal layer 104 is a first metal layer.
  • the dielectric layer of the present invention is made of a transparent material that transmits at least visible light, and serves as a medium for propagating light.
  • the dielectric layer according to the embodiment of the present invention has a specific refractive index described later with respect to visible light.
  • the birefringent layer according to the embodiment of the present invention has optical anisotropy with respect to at least visible light. Furthermore, when the optical anisotropy of the birefringent layer according to the embodiment of the present invention is caused by the birefringent material included in the birefringent layer, the birefringent layer has at least two different refractive indexes.
  • Two refractive index directions (first direction and second direction) of the birefringent layer according to the embodiment of the present invention are not parallel to the z-axis direction that is the stacking direction, but are at least orthogonal to the z-axis direction. It has components in the x-axis direction and the y-axis direction, which are inward directions.
  • the first direction and the second direction do not necessarily have to be orthogonal to each other and only need to intersect within the xy plane. In the present invention, such a relationship between the first direction and the second direction is referred to as substantially orthogonal.
  • the metal layer of the present invention is made of a material that does not transmit at least visible light, and the single metal layer reflects light.
  • the metal layer according to the embodiment of the present invention is formed of a metal capable of exciting surface plasmons on the surface by evanescent light.
  • the light guide layer 102 receives light emitted from the light source and propagates the incident light inside.
  • the light guide layer 102 is formed of, for example, a dielectric having a refractive index of about 2.5 or more and about 3.0 or less with respect to visible light.
  • An example is TiO 2 (titanium oxide).
  • the refractive index of the light guide layer 102 may be 2.2 or more, and preferably about 2.5 or more and 3.0 or less. If the thickness of the light guide layer 102 is about 0.5 mm as a guide, it will function without problems. However, the thickness of the light guide layer 102 is not particularly limited.
  • the light guide layer 102 may have birefringence or may not have birefringence.
  • shape of the light guide layer 102 is a flat plate shape in the present embodiment, it is not limited to a flat plate shape in practice, and may be a wedge shape or a sawtooth shape.
  • the numerical range of the refractive index shown in the description of the optical element of the embodiment of the present invention is a range in which the effect can be confirmed by the RCWA method (Rigorous Coupled Wave Analysis method) used in the simulation of the examples described later.
  • the low refractive index layer 103 is a layer having a refractive index smaller than that of the light guide layer 102 or the cover layer 106.
  • the refractive index of the low refractive index layer 103 may be in the range of 1.6 to 2.1.
  • the low refractive index layer 103 is formed of a dielectric having a refractive index of about 1.9 with respect to visible light, for example.
  • An example is Y 2 O 3 (yttrium oxide). Note that the refractive index of the low refractive index layer 103 is not limited to about 1.9.
  • the surface plasmon 113 is excited to the interface between the low refractive index layer 103 and the metal layer 104.
  • the refractive index of the low refractive index layer 103 may be different from 1.9.
  • the thickness of the low refractive index layer 103 is about 50 nm, it functions without any problem.
  • the thickness of the low refractive index layer 103 may be about 50 nm or more. More specifically, it is sufficient that the energy of evanescent 112 generated in the low refractive index layer 103 described later reaches the metal layer 104.
  • the metal layer 104 is formed of a metal capable of exciting surface plasmons on the surface by visible light evanescent.
  • An example is Ag (silver).
  • the thickness of the metal layer 104 is about 50 nm.
  • the metal layer 104 is not limited to Ag, and may be Al (aluminum) or Au (gold). More specifically, the surface plasmon 113 may be excited at the interface between the low refractive index layer 103 and the metal layer 104 described later. Further, the metal layer 104 may include any of Ag, Al, and Au.
  • the thickness of the metal layer 104 may be 200 nm or less, and is preferably in the range of 30 to 100 nm. More specifically, the energy of the surface plasmon 113 generated at the interface between the low refractive index layer 103 and the metal layer 104, which will be described later, only needs to be thin enough to reach the interface between the metal layer 104 and the birefringent layer 105. Moreover, it should just be thick so that the S-polarized light which does not excite the surface plasmon mentioned later may be interrupted.
  • the thickness of the metal layer (Ag layer) shown in the description of the optical element of the embodiment of the present invention is a thickness whose effect has been confirmed by the RCWA method (Rigorous Coupled Wave Analysis method) used in the simulation of the examples.
  • the light guide layer 102, the low refractive index layer 103, and the metal layer 104 constitute a surface plasmon excitation means.
  • the surface plasmon excitation means of the first embodiment has a so-called Otto arrangement.
  • the light propagating in the light guide layer 102 is low-refractive by the evanescent 112 generated when the light is totally reflected at the interface between the light guide layer 102 and the low-refractive index layer 103.
  • the surface plasmon 112 is excited at the interface between the rate layer 103 and the metal layer 104.
  • the birefringent layer 105 only needs to have optical anisotropy, and a birefringent material and other materials may be mixed. However, in order to give the birefringent layer 105 optical anisotropy, it is desirable that the birefringent layer 105 is made of only a birefringent material.
  • an anisotropic medium including optical anisotropy such as a birefringent material In general, in an anisotropic medium including optical anisotropy such as a birefringent material, light travels at different speeds depending on the direction of the vibration surface of the light. Therefore, the light incident on the medium containing the birefringent material is refracted in two directions. The light refracted in the two directions is divided into a normal light beam that oscillates perpendicular to the main cross section formed by the optical axis and the wavefront normal line, and an extraordinary light beam that oscillates in parallel. Normal light rays are emitted almost on the optical axis, whereas extraordinary rays are emitted with a deviation from the optical axis. Magnitude of birefringence is usually able to detect the phase difference between the ray and the extraordinary ray, the refractive index n e for extraordinary ray becomes larger the difference between the refractive index n o for ordinary rays is large significantly.
  • the birefringent layer 105 has two different refractive indexes.
  • Birefringent layer 105 for example, the refractive index n o of the normal rays of visible light is about 1.9, the refractive index n e with respect to extraordinary rays is formed by 2.2 about dielectric
  • the An example is YVO 4 (yttrium vanadate) crystal.
  • the thickness of the birefringent layer 105 is about 50 nm.
  • n o of the birefringent layer 105 is the same as the refractive index of the low refractive index layer 103.
  • the dielectric constant relationship between the low refractive index layer 103 and the metal layer 104 and the dielectric constant relationship between the metal layer 104 and the dielectric constant of the birefringent layer 105 with respect to normal light coincide with each other.
  • the dielectric constant relationships are matched in this way, the energy of the surface plasmon 113 generated at the interface between the low refractive index layer 103 and the metal layer 104 is efficiently converted into the surface plasmon 114 at the interface between the birefringent layer 105 and the metal layer 104. Can be generated.
  • the refractive index of n o and the low refractive index layer 103 of birefringent layer 105 does not have to match exactly.
  • n o of the birefringent layer 105 may be different from the refractive index of the low refractive index layer 103. More specifically, the energy of the surface plasmon 113 generated at the interface between the low refractive index layer 103 and the metal layer 104 described later is such that the surface plasmon 114 is generated at the interface between the birefringent layer 105 and the metal layer 104. May be different.
  • n e of the birefringent layer 105 is not limited to 2.2, it may be different. More specifically, the energy of the surface plasmon 113 generated at the interface between the low refractive index layer 103 and the metal layer 104, which will be described later, differs to such an extent that no surface plasmon is generated at the interface between the birefringent layer 105 and the metal layer 104. May be.
  • the thickness of the birefringent layer 105 may be about 50 nm or more. More specifically, the light 116 may be thin enough to generate light 116 in the cover layer 106 from the surface plasmon 114 generated at the interface between the birefringent layer 105 and the metal layer 104, which will be described later, via the evanescent 115.
  • the cover layer 106 only needs to have a refractive index of 2.2 or more with respect to visible light, and is preferably formed of a dielectric material having a refractive index of 2.5 to 3.0.
  • a dielectric material having a refractive index of 2.5 to 3.0.
  • An example is TiO 2 (titanium oxide). Note that the cover layer 106 may have birefringence or may not have birefringence.
  • the refractive index of the cover layer 106 is desirably the same as the refractive index of the light guide layer 102. By doing so, the refractive index relationship between the light guide layer 102 and the low refractive index layer 103 matches the refractive index relationship between the refractive index of the cover layer 106 and the birefringent layer 105 with respect to ordinary light. When the refractive index relations match in this way, light 116 can be efficiently generated from the surface plasmon 114 generated at the interface between the birefringent layer 105 and the metal layer 104.
  • the refractive index of the cover layer 106 is not limited to match the refractive index of the light guide layer 102 at all. The refractive index of the cover layer 106 and the refractive index of the light guide layer 102 need only be approximately equal to the extent that light 116 can be generated from the surface plasmon 114.
  • the metal layer 104, the birefringent layer 105, and the cover layer 106 form a light generating means.
  • the light generating means generates and extracts light 116 by the surface plasmon 114 generated at the interface between the metal layer 104 and the birefringent layer 105.
  • each of the low refractive index layer, the light guide layer, and the cover layer may contain either TiO 2 or Y 2 O 3 .
  • the optical element 101 can be manufactured, for example, by the following procedure.
  • the manufacturing method of the optical element 101 of the first embodiment is not limited to the vapor deposition method or the bonding method.
  • FIG. 2A and 2B are diagrams for explaining the operation of the optical element 101 shown in FIG. 1 in detail.
  • FIG. 2A shows a cross section orthogonal to the y-axis of the optical element 101.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • the refractive index in the zx plane of the birefringent layer 105 is n o.
  • FIG. 2B shows a cross section orthogonal to the x-axis of the optical element 101.
  • the light C indicates P-polarized light, that is, light whose electric field vibration direction is parallel to the yz plane
  • the light D indicates S-polarized light, that is, the electric field vibration direction is yz plane. Shows orthogonal light.
  • the refractive index in the yz plane of the birefringent layer 105 is n e.
  • Surface plasmons are dense waves of a group of electrons that propagate through the interface between metal and dielectric.
  • the dispersion relationship which is the relationship between the wave number of the surface plasmon and the angular frequency, is determined from the dielectric constant of the interface metal and dielectric.
  • the ATR method (total reflection attenuation method) is known as a method for exciting surface plasmons by changing the light dispersion relationship.
  • the ATR method will be described.
  • the light propagating through the high refractive index region is totally reflected at the interface between the high refractive index region and the low refractive index region, and the low refractive index region is divided into a high refractive index region and a low refractive index region.
  • Evanescent due to the magnitude relationship of the refractive index is generated.
  • the wave number of the evanescent and the surface plasmon at the interface between the low refractive index region and the metal coincides, the low refractive index region and the metal enter the interface between the low refractive index region and the metal.
  • the incident light that can excite the surface plasmon has an oscillation direction of the electric field on the incident surface at the interface between the high refractive index region and the low refractive index region.
  • Parallel P-polarized light In contrast, S-polarized light whose electric field oscillation direction is perpendicular to the incident surface at the interface between the high refractive index region and the low refractive index region excites surface plasmons at the low refractive index region / metal interface. Instead, it is totally reflected at the interface between the high refractive index region and the low refractive index region, or is blocked and reflected by the metal.
  • the light A in FIG. 2A is generated between the low refractive index layer 103 and the metal layer 104 via the evanescent 112 at a specific incident angle with respect to the interface between the light guide layer 102 and the low refractive index layer 103.
  • the surface plasmon 113 propagating in the x direction is excited at the interface.
  • this transition process is called a forward process.
  • the energy of the surface plasmon 113 generated at the interface between the low refractive index layer 103 and the metal layer 104 reaches the interface between the metal layer 104 and the birefringent layer 105 because the metal layer 104 is sufficiently thin.
  • the refractive index of the zx plane of the birefringent layer 105 is n o, and the same as the refractive index of the low refractive index layer 103. Therefore, the relationship between the dielectric constant between the light guide layer 102, the low refractive index layer 103, and the metal layer 104 is equal to the relationship between the dielectric constant between the cover layer 106, the birefringent layer 105, and the metal layer 104. The opposite process of the forward process occurs.
  • the surface plasmon 114 having the same wave number as the surface plasmon 113 is generated at the interface between the metal layer 104 and the birefringent layer 105, and the light A is transmitted to the cover layer 106 via the evanescent 115.
  • the light B is S-polarized light
  • no surface plasmon is generated at the interface between the light guide layer 102 and the low refractive index layer 103, and the light B is totally reflected at the interface between the light guide layer 102 and the low refractive index layer 103.
  • the light passes through the low refractive index layer 103 and is reflected by the metal layer 104.
  • the surface plasmon 123 propagating in the y direction is excited at the interface.
  • the energy of the surface plasmon 123 reaches the interface between the metal layer 104 and the birefringent layer 105 because the metal layer 104 is sufficiently thin.
  • the dielectric between the refractive index n e of the yz plane of the birefringent layer 105 is different from the refractive index of the low refractive index layer 103, a light guiding layer 102 and the low refractive index layer 103 and the metal layer 104
  • the relationship between the refractive index and the dielectric constant among the cover layer 106, the birefringent layer 105, and the metal layer 104 is different. For this reason, the wave number of the surface plasmon 123 and the wave number of the surface plasmon 124 do not match, and no energy is transferred.
  • the light D is S-polarized light
  • no surface plasmon is generated at the interface between the light guide layer 102 and the low refractive index layer 103, and the light D is totally reflected at the interface between the light guide layer 102 and the low refractive index layer 103.
  • the light passes through the low refractive index layer 103 and is reflected by the metal layer 104.
  • the presence of the birefringent layer 105 allows light to be extracted only from surface plasmons having a specific wave number in the x direction, and therefore, the output component mainly includes a polarization component propagating in the zx plane, which is the specific direction. You can get light.
  • the light guide layer 102, the low refractive index layer 103, the metal layer 104, the birefringent layer 105, and the cover layer 106 may be stacked in a predetermined direction, and light is transmitted to the light guide layer 102. It suffices that the layers are stacked so that light is emitted from the cover layer 106 when incident.
  • the incident angle of the projection light obtained by projecting the light on the zx plane is the surface plasmon. If the angle satisfies the excitation condition, light having a specific polarization component can be obtained.
  • the surface plasmon having a specific wave number in the x direction is excited at the interface between the low refractive index layer 103 and the metal layer 104 by the polarization component parallel to the x direction. Further, energy reaches the interface between the metal layer 104 and the birefringent layer 105 and is extracted as light having a specific polarization component in the x direction into the cover layer 106.
  • FIG. 3 is a perspective view schematically showing an optical element 201 according to the second embodiment of the present invention.
  • the optical element 201 shown in FIG. 3 has a low refractive index layer 205 instead of the birefringent layer 105 and a birefringent layer instead of the cover layer 106, as compared with the optical element 101 of the first embodiment shown in FIG. 206.
  • the light guide layer 202, the low refractive index layers 203 and 205, and the birefringent layer 206 correspond to dielectric layers.
  • the metal layer 204 corresponds to a metal layer.
  • the light guide layer 202 is a second dielectric layer
  • the low refractive index layer 203 is a fourth dielectric layer
  • the low refractive index layer 205 is a third dielectric layer
  • the birefringent layer 206 Is the first dielectric layer.
  • the metal layer 204 is a first metal layer.
  • the light guide layer 202 has the same configuration as that of the first embodiment.
  • the light guide layer 202 may have a refractive index of 1.9 or more.
  • the light guide layer 202 is formed of, for example, a dielectric having a refractive index of about 2.2 with respect to visible light.
  • An example is CeO 2 (cerium oxide).
  • the refractive index of the light guide layer 202 is not limited to about 2.2.
  • the low refractive index layer 203 has the same configuration as in the first embodiment.
  • the refractive index of the low refractive index layer 203 may be in the range of 1.5 to 2.1.
  • it is formed of a dielectric having a refractive index of about 1.7 with respect to visible light.
  • the low refractive index layer 203 is, for example, Al 2 O 3 (aluminum oxide).
  • the refractive index of the low refractive index layer 203 is not limited to about 1.7.
  • the thickness of the low refractive index layer 203 is about 50 nm, it functions without problems. Further, the thickness of the low refractive index layer 203 may be about 50 nm or more. More specifically, it is sufficient that the energy of evanescent 212 generated in the low refractive index layer 203 described later reaches the metal layer 204.
  • the low refractive index layer 205 is made of the same material or material as the low refractive index layer 203.
  • the dielectric constant relationship between the low refractive index layer 203 and the metal layer 204 and the dielectric constant between the low refractive index layer 205 and the metal layer 204 are obtained.
  • the rate relationship agrees.
  • the refractive index of the low refractive index layer 205 is desirably the same as the refractive index of the low refractive index layer 203, but is not limited to be exactly the same.
  • the refractive index of the low-refractive index layer 205 and the refractive index of the low-refractive index layer 203 need only be approximately equal to the extent that the surface plasmon 214 can be excited.
  • the thickness of the low refractive index layer 205 is about 50 nm, it functions without any problem. Further, the thickness of the low refractive index layer 203 may be about 50 nm or more. More specifically, it is sufficient that the light 216 is generated from the surface plasmon 214 generated at the interface between the low refractive index layer 205 and the metal layer 204 described later via the evanescent 215.
  • the birefringent layer 206 has two different refractive indexes. Birefringent layer 206, the refractive index n o of the normal rays of visible light is about 1.9, the refractive index n e with respect to an extraordinary ray are formed at 2.2 degree of the dielectric. As an example, YVO 4 crystals can be used.
  • n o of the birefringent layer 206 is not limited to 1.9, it may be different. More specifically, the energy of the surface plasmon 213 generated at the interface between the low refractive index layer 203 and the metal layer 204 described later is such that the surface plasmon is not generated at the interface between the low refractive index layer 205 and the metal layer 204. May be different.
  • n e of the birefringent layer 206 is not limited to 2.2, it may be different. More specifically, the energy of surface plasmon 213 generated at the interface between low refractive index layer 203 and metal layer 204, which will be described later, generates surface plasmon 214 at the interface between low refractive index layer 205 and metal layer 204. May be different.
  • 4A and 4B are diagrams for explaining the operation of the optical element 201 shown in FIG. 3 in detail.
  • FIG. 4A shows a cross section orthogonal to the y-axis of the optical element 201.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • the refractive index in the zx plane of the birefringent layer 206 is n e.
  • FIG. 4B shows a cross section orthogonal to the x-axis of the optical element 201.
  • the light C is P-polarized light, that is, light in which the vibration direction of the electric field is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • the refractive index in the yz plane of the birefringent layer 206 is n o.
  • the energy of the surface plasmon 213 reaches the interface between the metal layer 204 and the low refractive index layer 205 because the metal layer 204 is sufficiently thin.
  • the refractive index of the zx plane of the birefringent layer 206 is n e, is the same as the refractive index of the light guiding layer 202. Therefore, the relationship between the dielectric constants among the light guide layer 202, the low refractive index layer 203, and the metal layer 204 is equal to the relationship between the dielectric constants between the birefringent layer 206, the low refractive index layer 205, and the metal layer 204. Thus, the opposite process of the forward process occurs. Note that the reverse process of the second embodiment is the same as the reverse process of the first embodiment.
  • the surface plasmon 214 having the same wave number as the surface plasmon 213 is generated at the interface between the metal layer 204 and the low-refractive index layer 205, and the birefringent layer 206 is formed via the evanescent 215.
  • Light 216 propagating in the zx plane is generated.
  • the refractive index of n e and the light guide layer 202 of the birefringent layer 206 does not have to match exactly.
  • Refractive index of n e and the light guide layer 202 of the birefringent layer 206 may be substantially equal to the extent that the surface plasmon 214 generate light 216 through evanescent 215.
  • the B light C passes through the evanescent 222 at the specific incident angle with respect to the interface between the light guide layer 202 and the low refractive index layer 203, and the interface between the low refractive index layer 203 and the metal layer 204.
  • the surface plasmon 223 propagating in the y direction is excited at the same time.
  • the energy of the surface plasmon 223 generated at the interface between the low refractive index layer 203 and the metal layer 204 reaches the interface between the metal layer 204 and the low refractive index layer 205 because the metal layer 204 is sufficiently thin.
  • the refractive index in the yz plane of the birefringent layer 206 is n o, differs from the refractive index of the light guiding layer 202. Therefore, the dielectric constant relationship among the light guide layer 202, the low refractive index layer 203, and the metal layer 204 is different from the dielectric constant relationship among the birefringent layer 206, the low refractive index layer 205, and the metal layer 204. . Therefore, light cannot be generated from the surface plasmon 224 generated at the interface between the low refractive index layer 205 and the metal layer 204 via evanescent.
  • the presence of the birefringent layer 206 allows light to be extracted only from surface plasmons having a specific wave number in the x direction, and therefore, the output component mainly includes a polarization component propagating in the zx plane, which is the specific direction. It can be obtained as incident light.
  • the cover layer 106 and the birefringent layer 105 of the first embodiment are replaced with the birefringent layer 206 and the low-refractive index layer 205, respectively, but the same as in the first embodiment.
  • light 216 having high angle selectivity and polarization selectivity and having a polarization component in a specific direction is obtained.
  • FIG. 5 is a perspective view schematically showing an optical element 301 according to a third embodiment of the present invention.
  • the optical element 301 shown in FIG. 5 includes a birefringent layer 303 instead of the low refractive index layer 103 as compared with the optical element 101 of the first embodiment shown in FIG.
  • the light guide layer 302, the birefringent layers 303 and 305, and the cover layer 306 correspond to dielectric layers.
  • the metal layer 304 corresponds to a metal layer.
  • the light guide layer 302 is a sixth dielectric layer
  • the birefringent layer 303 is a second dielectric layer
  • the birefringent layer 305 is a first dielectric layer
  • the cover layer 306 is a fifth dielectric layer. It is a dielectric layer.
  • the metal layer 304 is a first metal layer.
  • the birefringent layers 303 and 305 have two different refractive indexes.
  • the birefringent layer 303 is made of the same material or material as the birefringent layer 305. Note that the birefringent layer 303 may be different from the birefringent layer 305. More specifically, the surface plasmon 313 is excited at the interface between the birefringent layer 303 and the metal layer 304 with the P-polarized light A in the zx plane, which will be described later, and the birefringent layer 303 with the P-polarized light C in the yz plane. And the metal layer 304 may be different to the extent that surface plasmons are not excited.
  • 6A and 6B are diagrams for explaining the operation of the optical element 301 shown in FIG. 5 in detail.
  • FIG. 6A shows a cross section orthogonal to the y-axis of the optical element 301.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • the refractive index in the zx plane of the birefringent layer 303 and 305 is n o.
  • FIG. 6B shows a cross section orthogonal to the x-axis of the optical element 301.
  • the light C indicates P-polarized light, that is, light in which the vibration direction of the electric field is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • the refractive index in the yz plane of the birefringent layer 303 and 305 is n e.
  • the wave number of the evanescent 322 and the interface between the birefringent layer 303 and the metal layer 304 are generated.
  • the wave number of surface plasmon does not match. Therefore, the light C does not excite the surface plasmon and returns to the light guide layer 302 or passes through the birefringent layer 303 and is reflected by the metal layer 304.
  • the presence of the birefringent layers 303 and 305 allows light to be extracted only from surface plasmons having a specific wave number in the x direction, so that the polarization component propagating in the zx plane that is the specific direction is the main component. Can be obtained.
  • the optical element 301 of the third embodiment can reduce the loss by suppressing excitation of surface plasmons that do not contribute to light extraction, as compared to the optical element 101 of the first embodiment. For this reason, the light utilization efficiency can be increased when used in combination with a phase modulation means or a reflection means described later.
  • the low refractive index layer 103 in the first embodiment is replaced with the birefringent layer 303.
  • high angle selectivity and polarization selectivity are achieved.
  • a light 316 having a polarization component in a specific direction is obtained.
  • FIG. 7 is a perspective view schematically showing an optical element 401 according to a fourth embodiment of the present invention.
  • the optical element 401 shown in FIG. 7 includes a birefringent layer 402 instead of the light guide layer 202, as compared with the optical element 201 of the second embodiment shown in FIG.
  • the birefringent layers 402 and 406 and the low refractive index layers 403 and 405 correspond to dielectric layers.
  • the metal layer 404 corresponds to a metal layer.
  • the birefringent layer 402 is a second dielectric layer
  • the low refractive index layer 403 is a fourth dielectric layer
  • the low refractive index layer 405 is a third dielectric layer
  • the birefringent layer 406. Is the first dielectric layer.
  • the metal layer 404 is a first metal layer.
  • the birefringent layers 402 and 406 have two different refractive indexes.
  • the birefringent layer 402 is made of the same material or material as the birefringent layer 406. Note that the birefringent layer 402 may be different from the birefringent layer 406. More specifically, the surface plasmon 413 is excited at the interface between the low refractive index layer 403 and the metal layer 404 with P-polarized light A in the zx plane, which will be described later, and the low refractive index is generated with P-polarized light C in the yz plane. They may be different to the extent that surface plasmons are not excited at the interface between the layer 403 and the metal layer 404.
  • 8A and 8B are diagrams for explaining the operation of the optical element 401 shown in FIG. 7 in detail.
  • FIG. 8A shows a cross section orthogonal to the y-axis of the optical element 401.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • the refractive index in the zx plane of the birefringent layer 402, 406 is n e.
  • FIG. 8B shows a cross section orthogonal to the x-axis of the optical element 401.
  • the light C is P-polarized light, that is, light in which the vibration direction of the electric field is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • the refractive index in the yz plane of the birefringent layer 402, 406 is n o.
  • the birefringent layers 402 and 406 are present, light can be extracted only from surface plasmons propagating in the x direction, and therefore, a polarization component propagating in the zx plane that is a specific direction can be obtained as outgoing light. it can.
  • the loss can be reduced by suppressing the excitation of surface plasmons that do not contribute to light extraction, as compared to the optical element 202 of the second embodiment. Therefore, as in the third embodiment, the light utilization efficiency can be increased when used in combination with a phase modulation unit and a reflection unit described later.
  • the light guide layer 202 in the second embodiment is replaced with the birefringence 402
  • high angle selectivity and polarization selectivity are obtained.
  • a light 416 having a polarization component in a specific direction is obtained.
  • FIG. 9 is a perspective view schematically showing an optical element 501 according to a fifth embodiment of the present invention. Unlike the optical elements of the first to fourth embodiments, the optical element of the fifth embodiment shown in FIG. 9 includes two layers made of metal.
  • a light source (not shown) is disposed on the outer periphery of the optical element 501 and emits randomly polarized light to the optical element 501.
  • the light source may be disposed at a position away from the optical element 501, may be disposed so as to be in contact with the optical element 501, or optically the optical element 501 through a light guide member such as a light pipe. May be connected.
  • the optical element 501 includes a light guide layer 502, a metal layer 503, a low refractive index layer 504, a metal layer 505, and a birefringent layer 506.
  • the light guide layer 502, the low refractive index layer 504, and the birefringent layer 506 correspond to dielectric layers. Further, the dielectric layer includes a metal layer 505 between the low refractive index layer 504 and the birefringent layer 506.
  • the metal layer 503 corresponds to a metal layer.
  • the light guide layer 502 is a second dielectric layer
  • the low refractive index layer 504 is an eighth dielectric layer
  • the birefringent layer 506 is a first dielectric layer.
  • the metal layer 503 is a third metal layer
  • the metal layer 505 is a first metal layer.
  • the light guide layer 502 has the same configuration as that of the first embodiment, and the light emitted from the light source is incident and propagates the incident light inside.
  • the refractive index of the light guide layer 502 may be 2.1 or more.
  • the light guide layer 502 is formed of a dielectric having a refractive index of about 2.2 with respect to visible light, for example. Examples are CeO 2.
  • the refractive index of the light guide layer 502 is not limited to about 2.2.
  • the light guide layer 502 may have birefringence or may not have birefringence.
  • the shape of the light guide layer 502 is a flat plate shape in the present embodiment, the shape is not limited to a flat plate shape in practice, and may be a wedge shape or a sawtooth shape.
  • the metal layers 503 and 505 are formed of a metal capable of exciting surface plasmons on the surface by visible light evanescent, as in the first embodiment.
  • An example is Ag (silver).
  • the metal layers 503 and 505 are not limited to Ag, and may be Al (aluminum) or Au (gold). More specifically, the surface plasmon 513 may be excited at the interface between the metal layer 503 and the low refractive index layer 504 described later.
  • the thickness of the metal layer 503 may be 100 nm or less, and more preferably in the range of 12.5 to 50 nm.
  • the thickness of the metal layer 505 may be 50 nm or less, and more preferably 25 nm or less.
  • the effect of embodiment of this invention can be acquired if the thickness of the metal layers 503 and 505 is about 25 nm. More specifically, the energy of the surface plasmon 513 generated at the interface between the metal layer 503 and the low refractive index layer 504, which will be described later, reaches the interface between the low refractive index layer 504 and the metal layer 505, and enters the birefringent layer 506.
  • the metal layers 503 and 505 need only be thin enough to generate light 516. Alternatively, it is sufficient that the dielectric constants of the metal layer 503 and the metal 505 are close enough to generate the light 516 described above.
  • the thickness of the metal layers 503 and 505 may be about 10 nm. Specifically, the metal layers 503 and 505 may be thick enough to block S-polarized light that does not excite surface plasmons, which will be described later. Alternatively, the dielectric constants of the metal layer 503 and the metal layer 505 may be different to the extent that the S-polarized light is blocked.
  • the metal layer 503 and the metal layer 505 may be different.
  • the dielectric constant of the metal layer 503 and the dielectric constant of the metal layer 505 may be approximately equal to the extent that the surface plasmon 514 is excited by the surface plasmon 513 as will be described later.
  • the low refractive index layer 504 is a layer having a refractive index smaller than that of the light guide layer 502.
  • the refractive index of the low refractive index layer 504 may be in the range of 1.6 to 1.8.
  • the low refractive index layer 504 is formed of, for example, a dielectric having a refractive index of about 1.7 with respect to visible light.
  • An example is Al 2 O 3 .
  • the refractive index of the low refractive index layer 504 is not limited to about 1.7. More specifically, it is sufficient that surface plasmons are excited through the evanescent 513 at the interface between the metal layer 503 and the low refractive index layer 504 described later.
  • the thickness of the low refractive index layer 504 is about 50 nm, the effect of the embodiment of the present invention can be obtained. Note that the thickness of the low refractive index layer 504 may be about 50 nm or more. More specifically, if the thickness of the surface plasmon 513 generated at the interface between the metal layer 503 and the low refractive index layer 504, which will be described later, reaches the interface between the low refractive index layer 504 and the metal layer 505, Good.
  • the light guide layer 502, the metal layer 503, and the low refractive index layer 504 form a surface plasmon excitation means.
  • the surface plasmon excitation means of the fifth embodiment has a so-called Kretschmann arrangement.
  • Surface plasmon 513 is formed at the interface between the metal layer 503 and the low refractive index layer 504 by the evanescent 512 generated when light propagating in the light guide layer 502 is totally reflected at the interface between the light guide layer 502 and the metal layer 503. Excited.
  • the birefringent layer 506 has two different refractive indexes.
  • the birefringent layer 506 has a refractive index n o of the normal rays of visible light is about 1.9, the refractive index n e with respect to extraordinary rays is formed by 2.2 about dielectric
  • n o refractive index
  • n e with respect to extraordinary rays is formed by 2.2 about dielectric
  • YVO 4 (yttrium vanadate) crystal yttrium vanadate
  • n o of the birefringent layer 506 may be different not limited to about 1.9. More specifically, the energy of the surface plasmon 514 generated at the interface between the low refractive index layer 504 and the metal layer 505, which will be described later, may be different to the extent that light 516 is generated in the birefringent layer 506.
  • n e of the birefringent layer 506 is not limited to 2.2, it may be different. More specifically, the energy of the surface plasmon 514 generated at the interface between the low refractive index layer 504 and the metal layer 505 may be different to the extent that light is not generated in the birefringent layer 506.
  • the low refractive index layer 504, the metal layer 505, and the birefringent layer 506 form a light generating means.
  • the light generating means generates and extracts light 516 by the surface plasmon 514 generated at the interface between the low refractive index layer 504 and the metal layer 505.
  • the optical element 501 can be manufactured, for example, by the following procedure.
  • the manufacturing method of the optical element 501 of the fifth embodiment is not limited to the vapor deposition method or the bonding method.
  • FIG. 10A and 10B are diagrams for explaining the operation of the optical element 501 shown in FIG. 9 in detail.
  • FIG. 10A shows a cross section orthogonal to the y-axis of the optical element 501.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • Refractive index in zx plane of the birefringent layer 506 is n o.
  • FIG. 10B shows a cross section orthogonal to the x-axis of the optical element 501.
  • the light C indicates P-polarized light, that is, light in which the vibration direction of the electric field is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • Refractive index in the yz plane of the birefringent layer 506 is n e.
  • the light A in FIG. 10A is generated at the interface between the metal layer 503 and the low refractive index layer 504 via the evanescent 512 at a specific incident angle with respect to the interface between the light guide layer 502 and the metal layer 503.
  • the surface plasmon 513 propagating in the direction is excited.
  • this transition process is called a forward process.
  • the energy of the surface plasmon 513 generated at the interface between the metal layer 503 and the low refractive index layer 504 reaches the interface between the low refractive index layer 504 and the metal layer 505 because the low refractive index layer 504 is sufficiently thin.
  • the metal layer 503 and the metal layer 505 are the same material, the relationship between the dielectric constant between the light guide layer 502, the metal layer 503, and the low refractive index layer 504, and the birefringent layer 506, the metal layer 505, and the low refractive index.
  • the dielectric constant relationship with the rate layer 504 is equal, and the reverse process of the forward process is reversed.
  • a surface plasmon 514 having the same wave number as the surface plasmon 513 is generated at the interface between the low refractive index layer 504 and the metal layer 505, and the birefringent layer 506 is passed through the evanescent 515.
  • Light 516 propagating in the zx plane is generated.
  • the refractive index of n e and the light guide layer 502 of the birefringent layer 506 need not exactly match.
  • Refractive index of n e and the light guide layer 502 of the birefringent layer 506, to the extent that can be surface plasmon 514 excited by the surface plasmon 513 generates the light 516 through the evanescent 515 may be substantially equal.
  • the light B is S-polarized light, it is reflected by the metal layer 503 without generating surface plasmon at the interface between the metal layer 503 and the low refractive index layer 504.
  • the energy of the surface plasmon 523 reaches the interface between the low refractive index layer 504 and the metal layer 505 and excites the surface plasmon 524 because the low refractive index layer 504 is sufficiently thin.
  • the dielectric constant between the refractive index in the yz plane of the birefringent layer 506 is n o, it is different from the refractive index of the light guide layer 502, the light guiding layer 502 and the metal layer 503 and the low refractive index layer 504 And the dielectric constant relationship among the birefringent layer 506, the metal layer 505, and the low refractive index layer 504 is different. Therefore, light cannot be generated from the surface plasmon 524.
  • the surface plasmon is not generated at the interface between the light guide layer 502 and the metal layer 503 and is reflected by the metal layer 503.
  • the birefringent layer 506 since the birefringent layer 506 is present, light can be extracted only from surface plasmons propagating in the x direction, and thus output light whose main component is a polarization component propagating in the zx plane, which is a specific direction, is obtained. be able to.
  • the incident angle of the projected light obtained by projecting the light on the zx plane is an angle that satisfies the excitation condition of the surface plasmon. If there is, light having a polarization component in a specific direction can be obtained. In that case, first, similarly to the light A, the surface plasmon having a specific wave number in the x direction is excited at the interface between the metal layer 503 and the low refractive index layer 504 by the polarization component parallel to the x direction. As a result, energy reaches the interface between the low refractive index layer 504 and the metal layer 505 and is extracted as light having a specific polarization component in the x direction into the birefringent layer 506.
  • the optical element 501 of the fifth embodiment is composed of two metal layers, but has a high angle selectivity as in the first embodiment. And light 516 having a polarization component in a specific direction.
  • FIG. 11 is a perspective view schematically showing an optical element 601 according to a sixth embodiment of the present invention.
  • the optical element 601 shown in FIG. 11 has a birefringent layer 604 instead of the low refractive index layer 504 and a cover layer instead of the birefringent layer 506, as compared with the optical element 501 of the fifth embodiment shown in FIG. 606.
  • the light guide layer 602, the birefringent layer 604, and the cover layer 606 correspond to a dielectric layer.
  • the dielectric layer includes a metal layer 605 between the birefringent layer 604 and the cover layer 606.
  • the metal layer 503 corresponds to a metal layer.
  • the light guide layer 602 is a second dielectric layer
  • the birefringence layer 604 is a first dielectric layer
  • the cover layer 606 is a seventh dielectric layer.
  • the metal layer 603 is a first metal layer
  • the metal layer 605 is a second metal layer.
  • the birefringent layer 604 has two different refractive indexes.
  • the refractive index n o of the normal rays of visible light is about 1.9
  • the refractive index n e with respect to extraordinary rays is formed by 2.2 about dielectric
  • the An example is a YVO 4 crystal.
  • n o of the birefringent layer 604 is not limited to 1.9, it may be different. More specifically, the energy of the surface plasmon 613 generated at the interface between the metal layer 603 and the birefringent layer 604, which will be described later, differs to such an extent that the surface plasmon 614 is generated at the interface between the metal layer 605 and the cover layer 604. Also good.
  • n e of the birefringent layer 604 is not limited to 2.2, it may be different. More specifically, it may be different to the extent that no surface plasmon is generated at the interface between the metal layer 603 and the birefringent layer 604 described later.
  • the thickness of the birefringent layer 604 may be about 50 nm or more. More specifically, the thickness of the surface plasmon 613 generated at the interface between the metal layer 603 and the birefringent layer 604, which will be described later, may be a thickness that can reach the interface between the birefringent layer 604 and the metal layer 605.
  • the cover layer 606 is made of the same material or material as the light guide layer 602. By doing so, the refractive index relationship between the light guide layer 602 and the birefringent layer 604 matches the refractive index relationship between the cover layer 606 and the birefringent layer 604. Therefore, light 616 can be efficiently generated from the surface plasmon 614 generated at the interface between the birefringent layer 604 and the metal layer 605.
  • the refractive index of the cover layer 606 is greater than n o of the birefringent layer 604. Note that the refractive index of the cover layer 606 is not limited to be the same as the refractive index of the light guide layer 602.
  • the refractive index of the cover layer 606 and the refractive index of the light guide layer 602 generate light 616 from the surface plasmon 614. It is only necessary to be approximately equal to the extent that can be achieved.
  • the refractive index of the light guide layer 602 and the cover layer 606 may be 2.6 or more.
  • the thickness of the metal layer 603 may be 100 nm or less, and more preferably in the range of 12.5 to 50 nm.
  • the thickness of the metal layer 605 may be 50 nm or less, and more preferably 25 nm or less.
  • 12A and 12B are diagrams for explaining the operation of the optical element 601 shown in FIG. 11 in detail.
  • FIG. 12A shows a cross section orthogonal to the y-axis of the optical element 601.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • Refractive index in zx plane of the birefringent layer 604 is n o.
  • FIG. 12B shows a cross section orthogonal to the x-axis of the optical element 601.
  • the light C is P-polarized light, that is, light in which the vibration direction of the electric field is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • Refractive index in the yz plane of the birefringent layer 604 is n e.
  • the light A in FIG. 12A passes through the evanescent 612 at the specific incident angle with respect to the interface between the light guide layer 602 and the metal layer 603, and in the x direction at the interface between the metal layer 603 and the birefringent layer 604. Exciting surface plasmon 613 propagating to. Here, this transition process is called a forward process.
  • the energy of the surface plasmon 613 reaches the interface between the birefringent layer 604 and the metal layer 605 because the birefringent layer 604 is sufficiently thin.
  • the refractive index of the light guide layer 602 is the same as the refractive index of the cover layer 606, the relationship between the dielectric constant among the light guide layer 602, the metal layer 603, and the birefringent layer 604, and the cover layer 606 and the metal.
  • the dielectric constant relationship between the layer 605 and the birefringent layer 604 is equal, and the reverse process opposite to the forward process occurs.
  • a surface plasmon 614 having the same wave number as the surface plasmon 613 is generated at the interface between the birefringent layer 604 and the metal layer 605, and the light A is transmitted to the cover layer 606 through the evanescent 615.
  • the dielectric constant of the metal layer 603 and the dielectric constant of the metal layer 605 do not need to be completely the same.
  • the dielectric constant of the metal layer 603 and the dielectric constant of the metal layer 605 may be approximately equal to the extent that the surface plasmon 614 is excited by the surface plasmon 613.
  • the wave number of the surface plasmon does not coincide with the surface plasmon, and the surface plasmon is not excited and is reflected by the metal layer 603.
  • the loss can be reduced by suppressing the excitation of the surface plasmon that does not contribute to the light extraction, and when used in combination with the phase modulation means and the reflection means described later, Use efficiency can be increased.
  • the birefringent layer 604 since the birefringent layer 604 is present, light can be extracted only from surface plasmons propagating in the x direction, so that outgoing light whose main component is a polarization component propagating in the zx plane, which is a specific direction, is obtained. be able to.
  • the light guide layer 602 and the cover layer 606 may be birefringent.
  • the sixth embodiment replaces the low refractive index layer 504 and the birefringent layer 506 of the fifth embodiment with the cover layer 606 and the birefringent layer 604, respectively.
  • light 616 having high angle selectivity and polarization selectivity and having a polarization component in a specific direction is obtained.
  • FIG. 13 is a perspective view schematically showing an optical element 701 according to a seventh embodiment of the present invention.
  • the optical element 701 shown in FIG. 13 includes a birefringent layer 702 instead of the light guide layer 502, as compared with the optical element 501 of the fifth embodiment shown in FIG.
  • the birefringent layers 702 and 706 and the low refractive layer 704 correspond to dielectric layers. Further, the dielectric layer includes a metal layer 705 between the low refractive layer 704 and the birefringent layer 706.
  • the metal layer 703 corresponds to a metal layer.
  • the birefringent layer 702 is a second dielectric layer
  • the low refractive index layer 704 is an eighth dielectric layer
  • the birefringent layer 706 is a first dielectric layer.
  • the metal layer 703 is a third metal layer
  • the metal layer 705 is a first metal layer.
  • the birefringent layer 702 has two different refractive indexes.
  • the birefringent layer 706 is made of the same material or material. Note that the birefringent layer 702 may be different from the birefringent layer 706. More specifically, the surface plasmon 713 is excited at the interface between the metal layer 703 and the low refractive index layer 704 with P-polarized light A in the zx plane, which will be described later, and the metal layer 703 with P-polarized light C in the yz plane. May be different to the extent that surface plasmons are not excited at the interface between the low refractive index layer 704 and the low refractive index layer.
  • 14A and 14B are diagrams for explaining the operation of the optical element 701 shown in FIG. 13 in detail.
  • FIG. 14A shows a cross section orthogonal to the y-axis of the optical element 701.
  • the light A is P-polarized light, that is, light whose electric field vibration direction is parallel to the zx plane.
  • the light B is S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the zx plane.
  • Refractive index in zx plane of the birefringent layer 702 and 706 is n e.
  • FIG. 14B shows a cross section orthogonal to the x-axis of the optical element 701.
  • the light C is P-polarized light, that is, light whose electric field vibration direction is parallel to the yz plane.
  • the light D represents S-polarized light, that is, light in which the vibration direction of the electric field is orthogonal to the yz plane.
  • Refractive index in the yz plane of the birefringent layer 702 and 706 is n o.
  • the loss can be reduced by suppressing the excitation of the surface plasmon that does not contribute to the light extraction, and when used in combination with the phase modulation means and the reflection means described later, Use efficiency can be increased.
  • the birefringent layers 702 and 706 are present, light can be extracted only from surface plasmons propagating in the x direction, and therefore, the emitted light whose main component is a polarization component propagating in the zx plane that is a specific direction. Can be obtained.
  • the optical elements of the first to seventh embodiments it is possible to obtain a polarization component in a specific direction, which is in a low etendue state in which the random polarization is defined as a specific direction. Further, in the optical elements of the third, fourth, sixth and seventh embodiments, the excitation of surface plasmons that do not contribute to light extraction can be suppressed, so that the light utilization efficiency can be further improved.
  • FIG. 15 is a perspective view schematically showing an optical apparatus 800 according to an eighth embodiment of the present invention.
  • the light source 810 is disposed on the outer periphery of the optical element 801 and emits randomly polarized light to the optical element 801.
  • the light source 810 may be disposed at a position away from the optical element 801 or may be disposed so as to be in contact with the optical element 801. Further, the light source 810 may be optically connected to the optical element 801 through a light guide member such as a light pipe.
  • the optical device 800 includes a reflection unit 809, a phase modulation layer 808, an optical element 801, and an angle conversion unit 807.
  • the reflection means 809 reflects light incident from a phase modulation layer 808 described later so that the incident angle and the reflection angle are not equal in a plane parallel to the metal layer.
  • the reflecting means 809 may be a diffuse reflector in which particles are embedded, or may have a sawtooth shape.
  • the phase modulation layer 808 modulates the phase state of the incident light.
  • An example is a ⁇ / 4 plate.
  • any one of the optical elements 101, 201, 301, 401, 501, 601, and 701 of the first to seventh embodiments can be used.
  • the optical device may be used as illumination.
  • the angle conversion means 807 converts the propagation angle of the emitted light. That is, the traveling direction of light is changed. Examples are diffraction gratings, holograms, and photonic crystals.
  • the phase modulation layer 808 and the reflecting means 809 can improve the light utilization efficiency by converting the light B, C, D into the optical element 801 after converting the polarization state and the propagation angle and reusing them.
  • the angle conversion means 807 propagates light having a polarization component in the + x direction caused by surface plasmons propagating in the + x direction and light having a polarization component in the ⁇ x directions caused by surface plasmons propagating in the ⁇ x direction. You can change the angle to align in the same direction.
  • random polarized light emitted from a light source can be converted into a specific polarization state that is a low etendue state in which the emission direction is set to a specific direction. Further, since the angle conversion means 807 can align the propagation direction of the emitted light, etendue can be further reduced. Furthermore, since the phase modulation layer 808 and the reflection means 809 are provided, the light use efficiency can be improved.
  • FIG. 16 is a perspective view schematically showing an optical apparatus 900 according to a ninth embodiment of the present invention.
  • the optical device 900 shown in FIG. 16 includes an entrance 920 that is an incident region where light is incident from the light source 910, an upper surface that is a light exit surface, and reflecting means. Reflecting means 909 is added to the outer wall surface (that is, the side surface of the optical element 800) excluding the lower surface provided with 809.
  • the reflecting means 909 can suppress light from being emitted from the side surface of the optical element 901, the light utilization efficiency can be increased as compared with the optical device 800 shown in FIG.
  • the reflection means 909 was provided in all the side surfaces except the entrance 920, you may be provided only in the one part surface among the side surfaces.
  • the reflection means 909 may be a diffuse reflector that diffuses and reflects light, or may have a saw shape.
  • the optical device 900 of the ninth embodiment By using the optical device 900 of the ninth embodiment, the same effect as that of the eighth embodiment can be obtained. Furthermore, in the ninth embodiment, since the reflecting means is also provided on the outer wall surface or the like, light can be prevented from leaking from the side surface. Therefore, the light use efficiency is improved as compared with the eighth embodiment.
  • the number of light sources is not limited to one, and a plurality of light sources may be arranged, and the plurality of light sources may emit light having different wavelengths. More specifically, the wavelengths of the plurality of light sources may be different to such an extent that surface plasmons are excited on the metal surface.
  • FIG. 17 is a layout diagram illustrating an example of the configuration of the display device of the present embodiment.
  • a projector 1011 which is a projection type image display device includes light sources 1012a, 1012b and 1012c, optical elements 1013a, 1013b and 1013c, liquid crystal panels 1014a, 1014b and 1014c, a cross dichroic prism 1015, and a projection optical system. 1016.
  • the light source 1012a and the optical element 1013a, the light source 1012b and the optical element 1013b, and the light source 1012c and the optical element 1013c constitute the optical device 800 or 900.
  • Each of the light sources 1012a, 1012b, and 1012c generates light having different wavelengths.
  • red light is emitted from the light source 1012a
  • green light is emitted from the light source 1012b
  • blue light is emitted from the light source 1012c.
  • Each of the optical elements 1013a, 1013b, and 1013c is obtained by removing the light sources of the optical devices 800 and 900 described in the eighth and ninth embodiments.
  • the liquid crystal panels 1014a, 1014b, and 1014c modulate each incident color light in a two-dimensional manner in accordance with a video signal so that each color light carries an image, and spatial light that emits each color light carrying the image. It is a modulation element.
  • the spatial light modulation element may be a digital micromirror device.
  • the cross dichroic prism 1015 synthesizes and outputs the modulated lights emitted from the liquid crystal panels 1014a, 1014b, and 1014c.
  • the projection optical system 1016 projects the combined light emitted from the cross dichroic prism 1015 onto the screen 1017 and displays an image corresponding to the video signal on the screen 1017.
  • the light use efficiency is changed because the emission direction is converted into a low etendue state defined in the specific direction. Can be improved.
  • FIG. 18 is a layout view showing another example of the configuration of the display device of the tenth embodiment.
  • a projector 1111 includes light sources 1112a, 1112b, and 1112c, an optical element 1113, a liquid crystal panel 1114, and a projection optical system 1116.
  • the optical element 1113 has the same configuration as the optical elements 1013a, 1013b to 1013c described in the tenth embodiment. Therefore, the light sources 1112a, 1112b, 1111c, and the optical element 1113 are optical devices having the same configuration as that in the case where the number of light sources in the optical device 800 or 900 described in the tenth embodiment is three.
  • the liquid crystal panel 1114 is a light modulation element that modulates incident combined light according to a video signal and emits the modulated light.
  • the projection optical system 1116 projects the modulated light emitted from the liquid crystal panel 1114 onto the screen 1117 and displays an image corresponding to the video signal on the screen 1117.
  • the liquid crystal panel is used as the light modulation element.
  • the light modulation element is not limited to the liquid crystal panel and can be changed as appropriate.
  • the projector shown in FIG. 18 may use a digital micromirror device instead of the liquid crystal panel 1114.
  • the same effect as that of the tenth embodiment can be obtained. Further, as compared with the tenth embodiment, since the optical device can be integrated, the configuration becomes simpler. Therefore, the projector can be further downsized.
  • the surface of the display device is configured to be substantially perpendicular to the polarization component in a specific direction such as the + x direction.
  • the optical system can be omitted because the light can be efficiently condensed on the projection optical system without using an optical system such as a mirror or a lens.
  • the above modification only shows the applicability of the present invention, and does not limit the present invention.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration. Examples according to the embodiments of the present invention will be given below. The following examples are merely examples and are not intended to limit the present invention.
  • Example 1 The effect of the operation of the first embodiment was confirmed by simulation (Example 1). The simulation is performed for an example of the first embodiment and does not limit the present invention.
  • FIG. 19 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 101 according to the first embodiment.
  • Example 1 In the simulation of Example 1, a two-dimensional exact coupled wave analysis method was used.
  • the exact coupled wave analysis method is also called RCWA method.
  • the horizontal axis of FIG. 19 is the incident angle from the light guide layer 101 to the low refractive index layer 102, and the vertical axis is the light transmittance to the cover layer 106.
  • the light guide layer 102 and the cover layer 106 were TiO 2 (anatase) having a refractive index of 2.5.
  • the low refractive index layer 103 is Y 2 O 3 having a refractive index of 1.9 and a thickness of 50 nm.
  • the metal layer 104 was made of Ag with a thickness of 50 nm.
  • the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • Example 1 it was confirmed that by using the birefringent layer 105, light having high angle selectivity and polarization selectivity and having a polarization component in a specific direction was obtained.
  • Example 2 The effect of the operation of the second embodiment was confirmed by simulation (Example 2). Note that this simulation is performed for an example of the second embodiment, and does not limit the present invention.
  • FIG. 20 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 201 according to the second embodiment.
  • the two-dimensional RWCA method was used in the same manner as in Example 1. Note that the horizontal axis of FIG. 20 is the incident angle from the light guide layer 202 to the low refractive index layer 203, and the vertical axis is the light transmittance to the birefringent layer 206.
  • the light guide layer 202 was CeO 2 having a refractive index of 2.2.
  • the low refractive index layers 203 and 205 are Al 2 O 3 having a refractive index of 1.7 and a thickness of 50 nm.
  • the metal layer 204 is made of Ag and has a thickness of 50 nm.
  • the transmittance of the P-polarized component in the zx plane is 62%
  • the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • Example 2 it was confirmed that by using the birefringent layer 206, light having high angle selectivity and polarization selectivity and having a polarization component in a specific direction can be obtained.
  • Example 3 The effect of the operation of the third embodiment was confirmed by simulation (Example 3). Note that this simulation is performed for one example of the third embodiment, and does not limit the present invention.
  • FIG. 21 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 301 according to the third embodiment.
  • the two-dimensional RWCA method was used in the same manner as in Example 3. Note that the horizontal axis in FIG. 21 is the incident angle from the light guide layer 302 to the birefringent layer 303, and the vertical axis is the light transmittance to the cover layer 306.
  • the metal layer 304 is made of Ag and has a thickness of 50 nm.
  • the peak value of the transmittance of the P-polarized component in the zx plane is 55%
  • the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • no clear peak is observed in the P-polarized component in the yz plane as compared with Examples 1 and 2, it can be confirmed that the excitation of surface plasmons that do not contribute to light extraction can be suppressed.
  • Example 3 although the low refractive index layer 103 in Example 1 was replaced with the birefringent layer 303, as in Example 1, it has high angle selectivity and polarization selectivity and has a specific direction. It was confirmed that light having a polarization component of 2 was obtained.
  • Example 4 The effect of the operation of the fourth embodiment was confirmed by simulation (Example 4). Note that this simulation is performed for an example of the fourth embodiment, and does not limit the present invention.
  • FIG. 22 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 401 according to the fourth embodiment.
  • the two-dimensional RCWA method was used as in the first embodiment. Note that the horizontal axis of FIG. 22 is the incident angle from the birefringent layer 402 to the low refractive index layer 403, and the vertical axis is the light transmittance to the birefringent layer 406.
  • the low refractive index layers 403 and 405 are Al 2 O 3 having a refractive index of 1.7 and a thickness of 50 nm.
  • the metal layer 404 was made of Ag with a thickness of 50 nm.
  • the full width at half maximum of the transmittance of the P-polarized light component in the zx plane is about 25.7 deg, it can be confirmed that light having high angle selectivity can be obtained compared to the LED. Further, when the peak value of the transmittance of the P-polarized component is compared between the zx plane and the yz plane, the transmittance in the zx plane is more than three times larger, so that the light whose propagation direction is set in a specific direction is It can be confirmed that it is obtained.
  • the peak value of the transmittance of the P-polarized component in the zx plane is 62%
  • the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • the third embodiment since no clear peak is observed in the P-polarized component in the yz plane, it can be confirmed that excitation of surface plasmons that do not contribute to light extraction can be suppressed.
  • Example 4 although the light guide layer 202 in Example 2 was replaced with birefringence 402, similarly to Example 2, it has high angle selectivity and polarization selectivity, and polarized light in a specific direction. It was confirmed that light having components was obtained.
  • Example 5 The effect of the operation of the fifth embodiment was confirmed by simulation (Example 5). This simulation is performed for an example of the fifth embodiment, and does not limit the present invention.
  • FIG. 23 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 501 of the example.
  • the two-dimensional RCWA method was used as in the first embodiment. Note that the horizontal axis in FIG. 23 is the incident angle from the light guide layer 502 to the metal layer 503, and the vertical axis is the light transmittance to the birefringent layer 506.
  • the light guide layer 502 is CeO 2 having a refractive index of 2.2.
  • the metal layer 503 is made of Ag and has a thickness of 25 nm
  • the metal layer 505 is made of Ag and has a thickness of 12.5 nm.
  • the low refractive index layer 504 is Al 2 O 3 having a refractive index of 1.7 and has a thickness of 50 nm.
  • the full width at half maximum of the transmittance of the P-polarized light component in the zx plane is about 39.7 deg, it can be confirmed that light having high angle selectivity can be obtained as compared with the LED. Further, when the peak value of the transmittance of the P-polarized component is compared between the zx plane and the yz plane, the transmittance in the zx plane is about twice as large, so that the light whose propagation direction is set in a specific direction is It can be confirmed that it is obtained.
  • the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • the optical element 501 of Example 5 is composed of two metal layers unlike the optical element 101 of Example 1, but has high angle selectivity and polarization selectivity as in Example 1. And it has confirmed that the light which has a polarization component of a specific direction was obtained.
  • Example 6 The effect of the operation of the third embodiment was confirmed by simulation (Example 6). This simulation is performed for an example of the sixth embodiment, and does not limit the present invention.
  • FIG. 24 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 601 of the sixth embodiment.
  • the two-dimensional RCWA method was used as in the first embodiment. Note that the horizontal axis in FIG. 24 is the incident angle from the light guide layer 602 to the metal layer 603, and the vertical axis is the light transmittance to the cover layer 606.
  • the light guide layer 602 and the cover layer 606 were made of TiO 2 (rutile) having a refractive index of 2.7.
  • the metal layer 603 was made of Ag and the thickness was 25 nm, and the metal layer 605 was made of Ag and the thickness was 12.5 nm.
  • the full width at half maximum of the transmittance of the P-polarized light component in the zx plane is about 35.6 deg, it can be confirmed that light having high angle selectivity can be obtained as compared with the LED. Further, when the peak value of the transmittance of the P-polarized component is compared between the zx plane and the yz plane, the transmittance in the zx plane is about 1.7 times larger, so the propagation direction is set to a specific direction. It can be confirmed that light is obtained.
  • the low-refractive index layer 504 and the birefringent layer 506 of Example 5 were replaced with the cover layer 606 and the birefringent layer 604, respectively. It was confirmed that light having high angle selectivity and polarization selectivity and having a polarization component in a specific direction can be obtained.
  • FIG. 25 is a graph illustrating an example of a simulation result for confirming the effect of the optical element 701 according to the seventh embodiment. Note that this simulation is performed for an example of the seventh embodiment, and does not limit the present invention.
  • the metal layer 703 is made of Ag and has a thickness of 25 nm
  • the metal layer 705 is made of Ag and has a thickness of 12.5 nm.
  • the low refractive index layer 704 is Al 2 O 3 having a refractive index of 1.7 and has a thickness of 50 nm.
  • the full width at half maximum of the transmittance of the P-polarized light component in the zx plane is about 39.7 deg, it can be confirmed that light having high angle selectivity can be obtained compared to the LED.
  • the peak value of the transmittance of the P-polarized component is compared between the zx plane and the yz plane, the transmittance in the zx plane is more than twice as large. It can be confirmed that it is obtained.
  • the peak value of the transmittance of the P-polarized component in the zx plane is 60%, the transmittance of the S-polarized component at the same incident angle is so small that it can be ignored, so that light having high polarization selectivity is obtained. Can be confirmed.
  • the light guide layer 502 of the fifth embodiment is replaced with the birefringent layer 702.
  • a high angle is obtained. It was confirmed that light 716 having selectivity and polarization selectivity and having a polarization component in a specific direction was obtained.
  • the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • (Supplementary note 1) having a first dielectric layer, a second dielectric layer, and a first metal layer disposed between the first dielectric layer and the second dielectric layer.
  • the first dielectric layer is an optical element having a different refractive index in a first direction and in a second direction intersecting the first direction.
  • (Supplementary note 2) The optical element according to supplementary note 1, wherein the first dielectric layer includes a birefringent material.
  • (Supplementary note 3) The optical element according to supplementary note 2, wherein the birefringent material is made of YVO 4 (yttrium vanadate) crystal.
  • the first direction and the second direction are different from the lamination direction in which the first dielectric layer, the first metal layer, and the second dielectric layer are laminated. 4.
  • the optical element according to any one of 3. The optical element according to any one of supplementary notes 1 to 4, wherein the second direction is a direction substantially orthogonal to the first direction.
  • the optical element according to any one of supplementary notes 1 to 5 further comprising a third dielectric layer disposed between the first dielectric layer and the first metal layer.
  • a refractive index of the first dielectric layer is larger than a refractive index of the third dielectric layer.
  • Additional remark 8 The optical element of Additional remark 6 or 7 which has a 4th dielectric material layer arrange
  • the optical element according to supplementary note 8 wherein a refractive index of the second dielectric layer is larger than a refractive index of the fourth dielectric layer.
  • (Supplementary note 26) The optical element according to supplementary note 24 or 25, wherein a refractive index of the second dielectric layer is larger than a refractive index of the eighth dielectric layer.
  • (Supplementary note 27) The optical element according to any one of supplementary notes 24 to 26, wherein the second dielectric layer includes a refractive index substantially equal to any refractive index of the first dielectric layer.
  • (Supplementary note 28) The optical element according to any one of supplementary notes 24 to 27, wherein a dielectric constant of the first metal layer is substantially equal to a dielectric constant of the third metal layer.
  • (Supplementary note 29) The optical element according to any one of supplementary notes 18 to 23, wherein the thickness of the second metal layer is 50 nm or less.
  • (Supplementary note 30) The optical element according to any one of supplementary notes 18 to 23 and 29, wherein the thickness of the second metal layer is 25 nm or less.
  • (Supplementary note 31) The optical element according to any one of supplementary notes 18 to 23, 29, and 30, wherein the second metal layer includes one of Ag, Al, and Au.
  • (Supplementary note 32) The optical element according to any one of supplementary notes 24 to 28, wherein the thickness of the third metal layer is 50 nm or less.
  • (Supplementary note 33) The optical element according to any one of supplementary notes 24 to 28, 32, wherein the thickness of the third metal layer is 25 nm or less.
  • (Supplementary note 34) The optical element according to any one of supplementary notes 24 to 28, 32, and 33, wherein the third metal layer includes one of Ag, Al, and Au.
  • (Supplementary note 35) The optical element according to any one of supplementary notes 1 to 34, wherein the thickness of the first metal layer is 200 nm or less.
  • (Supplementary note 36) The optical element according to any one of supplementary notes 1 to 35, wherein the thickness of the first metal layer is 30 nm to 100 nm.
  • (Supplementary note 37) The optical element according to any one of supplementary notes 1 to 36, wherein the first metal layer includes one of Ag, Al, and Au.
  • the optical element according to any one of supplementary notes 6 to 11, 24 to 28, and 32 to 34 disposed in (Additional remark 41) It has the angle conversion means to change the advancing direction of light, and the said 5th dielectric layer is located between the said angle conversion means and the said 1st dielectric material layer in the said angle conversion means.
  • phase modulation means for modulating the phase of light
  • the phase modulation means is arranged such that the sixth dielectric layer is located between the phase modulation means and the second dielectric layer.
  • the said light source is an optical apparatus of Additional remark 52 arrange
  • the present invention relates to an optical element, an optical device, and a display device that convert random polarized light into a specific polarization state.
  • the optical element and the optical device of the present invention can be used for a light source unit such as a liquid crystal projector.
  • the display device of the present invention can constitute a liquid crystal projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の光学素子は、第1の誘電体層と、第2の誘電体層と、第1の誘電体層と第2の誘電体層との間に配置された第1の金属層とを有し、第1の誘電体層は、第1の方向と、第1の方向と交差する第2の方向において異なる屈折率を有することを特徴とする。

Description

光学素子、光学装置および表示装置
 本発明は、ランダム偏光を特定の偏光状態に変換する光学素子、光学装置および表示装置に関する。
 近年、LED(Light Emitting Diode)を光源としたLEDプロジェクタが注目されている。LEDプロジェクタは、LEDと、LEDの出射光が入射される照明光学系と、照明光学系からの光を映像信号に応じて変調して出射する変調素子と、変調素子からの光をスクリーンに投射する投射光学系とを備えている。
 上記のLEDプロジェクタでは、投射画像の輝度を高めるために、光源の出射光を効率良く投射光として利用することが求められている。光源の出射光が効率よく投射光として利用されるためには、光源の発光面積と放射角との積で求められるエテンデューを、変調素子の受光面積と照明光学系のFナンバーで決まる取り込み角の積の値以下にする必要がある。
 また、上記のLEDプロジェクタでは、液晶パネルなどの偏光依存性を有する変調素子が使用されることがある。この場合、LEDの出射光はランダム偏光なので、光源の出射光を効率良く投射光として利用するためには、ランダム偏光を、特定の偏光状態に変換する必要がある。
 ランダム偏光を特定の偏光状態に変換する技術は、特許文献1に開示されている。
 特許文献1に記載の平面照明装置は、図26に示したように、導光体10と、導光体10の下面に設けられた偏光方向変更部材13と、階段状のマイクロプリズム14と、反射板6と、導光体10の上面に設けられた偏光分離膜11と、偏光分離膜11の上面に設けられた上面カバー12によって構成される導光板3を備える。また、偏光分離膜11は、第1の低屈折率透明媒質と第2の低屈折率透明媒質とで金属薄膜を挟んだ構成を有する。
 上記の平面照明装置では、LED2の出射光は、導光体10に入射され、マイクロプリズム14にて角度変換されながら導光体10の内部を伝播する。導光体10と第1の低屈折率透明媒質との境界である第1の境界において、入射光が全反射すると、そのときに生じるエバネッセント波によって、金属薄膜に表面プラズモンが励起される。金属薄膜に表面プラズモンが励起されると、第2の低屈折率透明媒質と上面カバー12との境界である第2の境界において、表面プラズモンの励起過程と逆の遷移過程が生じ、その第2の境界で光が発生する。第2の境界で発生した光は、上面カバー12を介して出射される。
 また、上記の平面照明装置では、第1の境界に入射される光のうち、表面プラズモンを励起する光は、電界成分が第1の境界に平行なP偏光のみである。第2の境界で発生する光は、表面プラズモンの励起過程と逆の過程によって生じるので、表面プラズモンを励起する光と同じP偏光となる。したがって、上記の平面照明装置は、ランダム偏光を、特定の偏光状態に変換して出射できる。
特開2003-295183号公報
 特許文献1の平面照明装置では、導光体10内を進行する光は、特定の方向だけではなく、様々な方向に伝播され、第1の境界面内に様々な方向から入射する。その結果、金属薄膜表面の面内において様々な方向に伝播する表面プラズモンが生じ、第2の境界で発生する光も様々な方向に出射される。このため、エテンデューが低い状態であって、出射方向を特定の方向に既定した特定の偏光状態の光を得ることが難しいという課題があった。
 本発明の目的は、ランダム偏光を、エテンデューが低い状態であって、出射方向を特定の方向に既定した特定の偏光状態に変換することが可能となる光学素子、光学装置および表示装置を提供することにある。
 本発明の光学素子は、第1の誘電体層と、第2の誘電体層と、第1の誘電体層と第2の誘電体層との間に配置された第1の金属層とを有し、第1の誘電体層は、第1の方向と、第1の方向と交差する第2の方向において異なる屈折率を有する。
 本発明によれば、ランダム偏光を、出射方向を特定の方向に既定したエテンデューの低い状態である特定の偏光状態に変換することが可能になる。
本発明の第1の実施形態の光学素子を模式的に示す斜視図である。 本発明の第1の実施形態の光学素子の動作を説明するための説明図である。 本発明の第1の実施形態の光学素子の動作を説明するための説明図である。 本発明の第2の実施形態の光学素子を模式的に示す斜視図である。 本発明の第2の実施形態の光学素子の動作を説明するための説明図である。 本発明の第2の実施形態の光学素子の動作を説明するための説明図である。 本発明の第3の実施形態の光学素子を模式的に示す斜視図である。 本発明の第3の実施形態の光学素子の動作を説明するための説明図である。 本発明の第3の実施形態の光学素子の動作を説明するための説明図である。 本発明の第4の実施形態の光学素子を模式的に示す斜視図である。 本発明の第4の実施形態の光学素子の動作を説明するための説明図である。 本発明の第4の実施形態の光学素子の動作を説明するための説明図である。 本発明の第5の実施形態の光学素子を模式的に示す斜視図である。 本発明の第5の実施形態の光学素子の動作を説明するための説明図である。 本発明の第5の実施形態の光学素子の動作を説明するための説明図である。 本発明の第6の実施形態の光学素子を模式的に示す斜視図である。 本発明の第6の実施形態の光学素子の動作を説明するための説明図である。 本発明の第6の実施形態の光学素子の動作を説明するための説明図である。 本発明の第7の実施形態の光学素子を模式的に示す斜視図である。 本発明の第7の実施形態の光学素子の動作を説明するための説明図である。 本発明の第7の実施形態の光学素子の動作を説明するための説明図である。 本発明の第8の実施形態の光学装置を模式的に示す斜視図である。 本発明の第9の実施形態の光学装置を模式的に示す斜視図である。 本発明の第10の実施形態の表示装置を模式的に示す上面図である。 本発明の第11の実施形態の表示装置を模式的に示す斜視図である。 本発明の第1の実施形態に係る実施例1のシミュレーション結果のグラフである。 本発明の第2の実施形態に係る実施例2のシミュレーション結果のグラフである。 本発明の第3の実施形態に係る実施例3のシミュレーション結果のグラフである。 本発明の第4の実施形態に係る実施例4のシミュレーション結果のグラフである。 本発明の第5の実施形態に係る実施例5のシミュレーション結果のグラフである。 本発明の第6の実施形態に係る実施例6のシミュレーション結果のグラフである。 本発明の第7の実施形態に係る実施例7のシミュレーション結果のグラフである。 特許文献1の平面照明装置の動作を説明する説明図である。
 以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 〔第1の実施形態〕図1は、本発明の第1の実施形態の光学素子101を模式的に示す斜視図である。なお、実際の光学素子では、各層の厚さが非常に薄く、また各層の厚さの違いが大きいので、各層を正確なスケールや比率で図示するのは困難である。このため、図面では各層が実際の比率通りに描かれておらず、模式的に示されている。
 〔構造の説明〕図示しない光源は、光学素子101の外周部に配置され、光学素子101にランダム偏光を出射する。光源は、光学素子101から離れた位置に配置されてもよいし、光学素子101と接触するように配置されてもよいし、ライトパイプのような導光部材を介して光学的に光学素子101と接続されてもよい。
 光学素子101は、導光層102と、低屈折率層103と、金属層104と、複屈折層105と、カバー層106を有する。
 なお、導光層102、低屈折率層103、複屈折層105およびカバー層106が誘電体層に相当する。また、金属層104が金属層に相当する。例えば、導光層102は第6の誘電体層であり、低屈折率層103は第2の誘電体層であり、複屈折層105は第1の誘電体層であり、カバー層106は第5の誘電体層である。また、例えば、金属層104は第1の金属層である。
 本発明の誘電体層は、少なくとも可視光を透過する透明な材料からなり、光を伝播する媒質となる。また、本発明の実施形態の誘電体層は、可視光に対して後述する特定の屈折率を有する。
 本発明の実施形態の複屈折層は、少なくとも可視光に対して光学異方性を有する。さらに、本発明の実施形態の複屈折層のもつ光学異方性が、複屈折層に含まれる複屈折材料に起因する場合、複屈折層は少なくとも異なる2つの屈折率を有する。
 本発明の実施形態の複屈折層が有する2つの屈折率の方向(第1の方向と第2の方向)は、積層方向であるz軸方向に平行ではなく、少なくともz軸方向に直交する面内方向であるx軸方向およびy軸方向に成分を有することとする。また、第1の方向と第2の方向は必ずしも直交しなくてもよく、xy面内で交差すればよい。なお、本発明においては、このような第1の方向と第2の方向の関係を略直交とよぶ。
 本発明の金属層は、少なくとも可視光を透過しない材料からなり、金属層単層では、光を反射する。また、後述するように、本発明の実施形態の金属層は、可視光のエバネッセントによって、表面に表面プラズモンを励起可能な金属で形成される。
 導光層102は、光源から出射された光が入射され、その入射された光を内部で伝播する。導光層102は、例えば、可視光に対して、屈折率が2.5程度以上3.0程度以下の誘電体で形成される。例としては、TiO2(酸化チタン)である。
 なお、導光層102の屈折率は、2.2以上あればよく、好ましくは2.5程度以上3.0程度以下であればよい。導光層102の厚みは、目安として0.5mm程度であれば問題なく機能する。ただし、導光層102の厚みには、特に限定は加えない。なお、導光層102は、複屈折性を有してもよいし、複屈折性を有さなくてもよい。なお、導光層102の形状は、本実施形態では平板状としているが、実際には平板状に限定されるものではなく、楔形状や鋸波形状などでもよい。
 なお、本発明の実施形態の光学素子の説明において示す屈折率の数値範囲は、後述する実施例のシミュレーションで用いるRCWA法(Rigorous Coupled Wave Analysis法)によって効果が確認できた範囲である。
 低屈折率層103は、導光層102やカバー層106の屈折率よりも小さい屈折率をもつ層である。低屈折率層103の屈折率は1.6~2.1の範囲にあればよい。低屈折率層103は、例えば、可視光に対して屈折率が1.9程度の誘電体で形成される。例としては、Y23(酸化イットリウム)である。なお、低屈折率層103の屈折率は1.9程度に限定するわけではない。より詳細には、後述する低屈折率層103に発生するエバネッセント112のエネルギーが金属層104に到達した際に、低屈折率層103と金属層104との界面に表面プラズモン113を励起する程度に、低屈折率層103の屈折率は1.9と異なってもよい。
 低屈折率層103の厚みは50nm程度であれば問題なく機能する。また、低屈折率層103の厚みは50nm程度以上あってもよい。より詳細には、後述する低屈折率層103に発生するエバネッセント112のエネルギーが金属層104に到達する程度であればよい。
 金属層104は、可視光のエバネッセントによって表面に表面プラズモンを励起可能な金属で形成される。例としては、Ag(銀)である。金属層104の厚みは、50nm程度である。
 なお、金属層104は、Agに限定されず、Al(アルミニウム)、Au(金)でもよい。より詳細には、後述する低屈折率層103と金属層104との界面において表面プラズモン113を励起すればよい。また、金属層104は、Ag、Al、Auのいずれかを含むものであっても良い。
 なお、金属層104の厚みは200nm以下であればよく、さらに30~100nmの範囲にあることが好ましい。より詳細には、後述する低屈折率層103と金属層104との界面で発生する表面プラズモン113のエネルギーが、金属層104と複屈折層105との界面に到達する程度に薄ければよい。また、後述する表面プラズモンを励起しないS偏光の光を遮断する程度に厚ければよい。
 なお、本発明の実施形態の光学素子の説明において示す金属層(Ag層)の厚みは、実施例のシミュレーションで用いるRCWA法(Rigorous Coupled Wave Analysis法)によって効果が確認できた厚みである。
 導光層102と、低屈折率層103と、金属層104とで、表面プラズモン励起手段をなす。第1の実施形態の表面プラズモン励起手段は、いわゆるオットー配置と呼ばれる構成である。第1の実施形態の表面プラズモン励起手段では、導光層102内を伝播する光が、導光層102と低屈折率層103との界面で全反射する際に発生するエバネッセント112によって、低屈折率層103と金属層104との界面に表面プラズモン112を励起する。
 また、複屈折層105は、光学異方性をもちさえすればよく、複屈折材料とそれ以外の材料が混合されていても良い。ただし、複屈折層105に光学異方性を持たせるために、複屈折層105は複屈折材料のみからなるのが望ましい。
 一般に、複屈折材料などの光学異方性を含む非等方性の媒質中において、光は、その光の振動面の向きに応じて異なる速度で進行する。そのため、複屈折材料を含む媒質に入射した光は、2つの方向に屈折される。2つの方向に屈折された光は、光学軸と波面法線によってできる主断面に垂直に振動する通常光線と、平行に振動する異常光線に分かれる。通常光線は、ほぼ光軸上に出射されるのに対し、異常光線は、光軸からずれて出射される。複屈折の大きさは、通常光線と異常光線の位相差から検出でき、異常光線に対する屈折率neと、通常光線に対する屈折率noとの差が大きいほど大きくなる。
 複屈折層105は、異なる2つの屈折率をもつ。複屈折層105は、例えば、可視光の通常光線に対しての屈折率noが1.9程度であり、異常光線に対しての屈折率neが2.2程度の誘電体で形成される。例としては、YVO4(イットリウム・バナデート)結晶である。複屈折層105の厚みは50nm程度である。
 なお、複屈折層105のnoは、低屈折率層103の屈折率と同じである。このようにすることで、低屈折率層103と金属層104との間の誘電率関係と、複屈折層105の通常光線に対する誘電率と金属層104との間の誘電率関係とが一致する。このように誘電率関係が一致すると、低屈折率層103と金属層104との界面で発生した表面プラズモン113のエネルギーが、複屈折層105と金属層104との界面において、効率よく表面プラズモン114を発生させることができる。なお、複屈折層105のnoと低屈折率層103の屈折率は完全に一致する必要はない。複屈折層105のnoと低屈折率層103の屈折率は、表面プラズモン113のエネルギーによって、表面プラズモン114を発生させることができる程度に略等しければよい。
 なお、複屈折層105のnoは、低屈折率層103の屈折率と異なってもよい。より詳細には、後述する低屈折率層103と金属層104との界面で発生した表面プラズモン113のエネルギーが、複屈折層105と金属層104との界面において、表面プラズモン114を発生させる程度に異なってもよい。
 また、複屈折層105のneは、2.2に限定されず、異なってもよい。より詳細には、後述する低屈折率層103と金属層104との界面で発生した表面プラズモン113のエネルギーが、複屈折層105と金属層104との界面において、表面プラズモンを発生させない程度に異なってもよい。
 なお、複屈折層105の厚みは、50nm程度以上あってもよい。より詳細には、後述する複屈折層105と金属層104との界面で発生した表面プラズモン114からエバネッセント115を介してカバー層106内に光116を発生させる程度に薄ければよい。
 カバー層106は、可視光に対しての屈折率が2.2以上あればよく、好ましくは2.5以上3.0程度以下の誘電体で形成される。例としては、TiO2(酸化チタン)である。なお、カバー層106は複屈折性を有してもよいし、複屈折性を有さなくてもよい。
 なお、カバー層106の屈折率は、導光層102の屈折率と同じであることが望ましい。こうすることで、導光層102と低屈折率層103との間の屈折率関係と、カバー層106と複屈折層105の通常光線に対する屈折率との間の屈折率関係とが一致する。このように屈折率関係が一致すると、複屈折層105と金属層104との界面で発生した表面プラズモン114から効率良く光116を発生させることができる。ただし、カバー層106の屈折率は、導光層102の屈折率と全く一致するとは限定しない。カバー層106の屈折率と導光層102の屈折率は、表面プラズモン114から光116を発生させることができる程度に略等しければよい。
 金属層104と複屈折層105とカバー層106とで、光発生手段をなす。光発生手段は、金属層104と複屈折層105との界面に発生する表面プラズモン114によって光116を発生させて取出す。
 なお、低屈折率層、導光層、カバー層はいずれも、TiO2、Y23のいずれかを含むものであっても良い。
 また、光学素子101は、例えば、以下のような手順で製造することができる。
 TiO2の上に、スパッタ等の蒸着法やオプティカルボンディング等の接合法でY23、Ag、YVO4、TiO2を形成する。ただし、第1の実施形態の光学素子101の製造方法は、蒸着法や接合法に限定されない。
 図2A及び図2Bは、図1に示す光学素子101の動作を詳細に説明するための図である。
 図2Aは、光学素子101のy軸に直交する断面を示す。導光層102内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。なお、複屈折層105のzx面内における屈折率はnoである。
 図2Bは、光学素子101のx軸に直交する断面を示す。導光層102内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示し、光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。なお、複屈折層105のyz面内における屈折率はneである。
 〔動作の説明〕次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 表面プラズモンは、金属と誘電体の界面を伝播する電子の集団の疎密波である。表面プラズモンの波数と角周波数の関係である分散関係は、界面の金属および誘電体の誘電率から決定される。表面プラズモンの分散関係が誘電体中を伝播する光の分散関係と一致する場合、すなわち、誘電体中の光の波数が表面プラズモンの波数と等しくなる場合、その光によって表面プラズモンが励起される。
 しかしながら、金属と誘電体との界面のみの場合、表面プラズモンの分散関係と誘電体中の光の分散関係は通常一致しない。そのため、単に光を誘電体から金属に入射しただけでは表面プラズモンは励起されない。したがって、表面プラズモンを励起させるためには、誘電体中の光の分散関係を変化させて、表面プラズモンの分散関係と誘電体中の光の分散関係とを一致させる必要がある。
 光の分散関係を変化させて表面プラズモンを励起させる方法としては、ATR法(全反射減衰法)が知られている。ここでATR法について説明する。屈折率の高い領域を伝播する光は、屈折率の高い領域と屈折率の低い領域との界面で全反射し、屈折率の低い領域に、屈折率の高い領域と屈折率の低い領域との屈折率の大小関係に起因するエバネッセントを発生させる。また、その光は、エバネッセントと、屈折率の低い領域と金属との界面での表面プラズモンとの波数が一致すると、屈折率の低い領域と金属との界面に、屈折率の低い領域と金属との誘電率の関係に起因する表面プラズモンを励起する。
 ここで、表面プラズモンは疎密波であることに起因して、表面プラズモンを励起可能な入射光は、電場の振動方向が、屈折率の高い領域と屈折率の低い領域との界面における入射面に平行なP偏光である。それに対し、電場の振動方向が、屈折率の高い領域と屈折率の低い領域との界面における入射面に垂直なS偏光の光は、屈折率の低い領域と金属との界面に表面プラズモンを励起せず、屈折率の高い領域と屈折率の低い領域との界面で全反射するか、または金属で遮断、反射される。
 したがって、図2Aの光Aは、導光層102と低屈折率層103との界面に対して特定の入射角の際に、エバネッセント112を介して、低屈折率層103と金属層104との界面にx方向に伝播する表面プラズモン113を励起する。ここで、この遷移過程を順過程と呼ぶ。
 低屈折率層103と金属層104との界面に生じた表面プラズモン113のエネルギーは、金属層104が充分に薄いために、金属層104と複屈折層105との界面に到達する。ここで、複屈折層105のzx面内の屈折率はnoで、かつ低屈折率層103の屈折率と同じである。そのため、導光層102と低屈折率層103と金属層104との間の誘電率の関係と、カバー層106と複屈折層105と金属層104との間の誘電率の関係が等しくなり、順過程の反対の逆過程が生じる。
 すなわち、逆過程が生じることによって、表面プラズモン113と同じ波数をもった表面プラズモン114が、金属層104と複屈折層105との界面に生じ、エバネッセント115を介して、カバー層106に、光Aと同じ偏光成分を有する光116を発生させる。
 また、光Bは、S偏光であるので、導光層102と低屈折率層103との界面に表面プラズモンを発生させず、導光層102と低屈折率層103との界面で全反射するか、または低屈折率層103を透過して金属層104で反射される。
 また、図2Bの光Cは、導光層102と低屈折率層103との界面に対して特定の入射角の際に、エバネッセント122を介して、低屈折率層103と金属層104との界面にy方向に伝播する表面プラズモン123を励起する。表面プラズモン123のエネルギーは、金属層104が充分に薄いために、金属層104と複屈折層105との界面に到達する。
 ここで、複屈折層105のyz面内の屈折率はneで、低屈折率層103の屈折率と異なるので、導光層102と低屈折率層103と金属層104との間の誘電率の関係と、カバー層106と複屈折層105と金属層104との間の誘電率の関係が異なる。そのため、表面プラズモン123の波数と、表面プラズモン124の波数とが一致せず、エネルギーの授受が行われない。
 また、光Dは、S偏光であるので、導光層102と低屈折率層103との界面に表面プラズモンを発生させず、導光層102と低屈折率層103との界面で全反射するか、または低屈折率層103を透過して金属層104で反射される。
 〔作用・効果の説明〕以上のことから、導光層102内に存在する光のうち、光Aだけが表面プラズモンを介してカバー層106から取出される。
 すなわち、複屈折層105が存在することにより、x方向に特定の波数を有する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光を得ることができる。
 なお、導光層102と、低屈折率層103と、金属層104と、複屈折層105と、カバー層106は所定の方向に向かって積層されていれば良く、導光層102に光が入射したときにカバー層106から光が出射される程度に重なって積層されていれば良い。
 なお、zx方向以外に伝搬する光が導光層102と低屈折率層103との界面に様々な角度で入射した場合でも、その光をzx平面に射影した射影光の入射角度が、表面プラズモンの励起条件を満たす角度であれば、特定の偏光成分を有する光を得ることができる。
 その場合、まず、光Aと同様に、x方向に平行な偏光成分によって、x方向に特定の波数を有する表面プラズモンが低屈折率層103と金属層104との界面に励起される。さらに、金属層104と複屈折層105との界面にエネルギーが到達して、カバー層106内に、x方向に特定の偏光成分を有する光として取出される。
 このように、第1の実施形態では、複屈折層105を用いることで、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光116が得られる。
 〔第2の実施形態〕図3は、本発明の第2の実施形態の光学素子201を模式的に示す斜視図である。図3に示す光学素子201は、図1に示した第1の実施形態の光学素子101と比べると、複屈折層105の代わりに低屈折率層205を、カバー層106の代わりに複屈折層206を備えている。
 なお、導光層202、低屈折率層203、205および複屈折層206が誘電体層に相当する。また、金属層204が金属層に相当する。例えば、導光層202は第2の誘電体層であり、低屈折率層203は第4の誘電体層であり、低屈折率層205は第3の誘電体層であり、複屈折層206は第1の誘電体層である。また、例えば、金属層204は第1の金属層である。
 導光層202は、第1の実施形態と同様の構成である。導光層202の屈折率は1.9以上あればよい。導光層202は、例えば、可視光に対して屈折率が2.2程度の誘電体で形成される。例としては、CeO2(酸化セリウム)である。なお、導光層202の屈折率は2.2程度に限定するわけではない。
 低屈折率層203は、第1の実施形態と同様の構成である。低屈折率層203の屈折率は1.5~2.1の範囲にあればよい。例えば、可視光に対して屈折率が1.7程度の誘電体で形成される。低屈折率層203は、例としては、Al23(酸化アルミニウム)である。なお、低屈折率層203の屈折率は1.7程度に限定するわけではない。
 低屈折率層203の厚みは50nm程度であれば問題なく機能する。また、低屈折率層203の厚みは50nm程度以上あってもよい。より詳細には、後述する低屈折率層203に発生するエバネッセント212のエネルギーが金属層204に到達する程度であればよい。
 低屈折率層205は、低屈折率層203と同じ材料や材質からなる。低屈折率層205と低屈折率層203の屈折率が一致すると、低屈折率層203と金属層204との間の誘電率関係と、低屈折率層205と金属層204との間の誘電率関係とが一致する。このように誘電率関係が一致すると、後述する金属層204と低屈折率層205との界面において、表面プラズモン214を効率良く励起することができる。なお、低屈折率層205の屈折率は、低屈折率層203の屈折率と同じであることが望ましいが、全く同じであるとは限定されない。低屈折率層205の屈折率と低屈折率層203の屈折率は、表面プラズモン214を励起することができる程度に略等しければよい。
 低屈折率層205の厚みは50nm程度であれば問題なく機能する。また、低屈折率層203の厚みは50nm程度以上あってもよい。より詳細には、後述する低屈折率層205と金属層204との界面で発生した表面プラズモン214からエバネッセント215を介して光216を発生させる程度であればよい。
 複屈折層206は、異なる2つの屈折率をもつ。複屈折層206は、可視光の通常光線に対しての屈折率noが1.9程度であり、異常光線に対しての屈折率neが2.2程度の誘電体で形成される。例としては、YVO4結晶を用いることができる。
 なお、複屈折層206のnoは、1.9に限定されず、異なってもよい。より詳細には、後述する低屈折率層203と金属層204との界面で発生した表面プラズモン213のエネルギーが、低屈折率層205と金属層204との界面において、表面プラズモンを発生させない程度に異なってもよい。
 なお、複屈折層206のneは、2.2に限定されず、異なってもよい。より詳細には、後述する低屈折率層203と金属層204との界面で発生した表面プラズモン213のエネルギーが、低屈折率層205と金属層204との界面において、表面プラズモン214を発生させる程度に異なってもよい。
 図4A及び図4Bは、図3に示す光学素子201の動作を詳細に説明するための図である。
 図4Aは、光学素子201のy軸に直交する断面を示す。導光層202内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。なお、複屈折層206のzx面内における屈折率はneである。
 図4Bは、光学素子201のx軸に直交する断面を示す。導光層202内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。なお、複屈折層206のyz面内における屈折率はnoである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図4Aの光Bと、図4Bの光Dの動作は第1の実施形態と同じであり、説明を省略する。
 図4Aの光Aは、導光層202と低屈折率層203との界面に対して特定の入射角の際に、エバネッセント212を介して、低屈折率層203と金属層204との界面にx方向に伝播する表面プラズモン213を励起する。ここで、この遷移過程を順過程と呼ぶ。なお、第2の実施形態の順過程は、第1の実施形態の順過程と同様の過程である。
 表面プラズモン213のエネルギーは、金属層204が充分に薄いために、金属層204と低屈折率層205との界面に到達する。
 ここで、複屈折層206のzx面内の屈折率はneであり、導光層202の屈折率と同じである。そのため、導光層202と低屈折率層203と金属層204との間の誘電率の関係と、複屈折層206と低屈折率層205と金属層204との間の誘電率の関係が等しくなり、順過程の反対の逆過程が生じる。なお、第2の実施形態の逆過程は、第1の実施形態の逆過程と同様の過程である。
 すなわち、逆過程が生じることによって、表面プラズモン213と同じ波数をもった表面プラズモン214が、金属層204と低屈折率層205との界面に生じ、エバネッセント215を介して、複屈折層206に、zx面内に伝播する光216を発生させる。
 なお、複屈折層206のneと導光層202の屈折率は完全に一致する必要はない。複屈折層206のneと導光層202の屈折率は、表面プラズモン214がエバネッセント215を介して光216を発生させる程度に略等しければよい。
 また、Bの光Cは、導光層202と低屈折率層203との界面に対して特定の入射角の際に、エバネッセント222を介して、低屈折率層203と金属層204との界面にy方向に伝播する表面プラズモン223を励起する。低屈折率層203と金属層204との界面に生じた表面プラズモン223のエネルギーは、金属層204が充分に薄いために、金属層204と低屈折率層205との界面に到達する。
 ここで、複屈折層206のyz面内の屈折率はnoで、導光層202の屈折率と異なる。そのため、導光層202と低屈折率層203と金属層204との間の誘電率の関係と、複屈折層206と低屈折率層205と金属層204との間の誘電率の関係が異なる。従って、低屈折率層205と金属層204との界面で発生した表面プラズモン224から、エバネッセントを介して光を発生させることができない。
 すなわち、複屈折層206が存在することにより、x方向に特定の波数を有する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光として得ることができる。
 このように、第2の実施形態では、第1の実施形態のカバー層106および複屈折層105を、それぞれ複屈折層206および低屈折率層205と置き換えたものの、第1の実施形態の同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光216が得られる。
 〔第3の実施形態〕図5は、本発明の第3の実施形態の光学素子301を模式的に示す斜視図である。図5に示す光学素子301は、図1に示した第1の実施形態の光学素子101と比べると、低屈折率層103の代わりに複屈折層303を備えている。
 なお、導光層302、複屈折層303、305およびカバー層306が誘電体層に相当する。また、金属層304が金属層に相当する。例えば、導光層302は第6の誘電体層であり、複屈折層303は第2の誘電体層であり、複屈折層305は第1の誘電体層であり、カバー層306は第5の誘電体層である。また、例えば、金属層304は第1の金属層である。
 複屈折層303、305は、異なる2つの屈折率をもつ。また、複屈折層303は、複屈折層305と同じ材料や材質からなる。なお、複屈折層303は、複屈折層305と異なってもよい。より詳細には、後述するzx面内のP偏光の光Aで複屈折層303と金属層304との界面に表面プラズモン313を励起し、yz面内のP偏光の光Cで複屈折層303と金属層304との界面に表面プラズモンを励起しない程度に異なってもよい。
 図6A及び図6Bは、図5に示す光学素子301の動作を詳細に説明するための図である。
 図6Aは、光学素子301のy軸に直交する断面を示す。導光層302内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。なお、複屈折層303、305のzx面内における屈折率はnoである。
 図6Bは、光学素子301のx軸に直交する断面を示す。導光層302内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。なお、複屈折層303、305のyz面内における屈折率はneである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図6Aの光A、光Bと、図6Bの光Dの動作は、第1の実施形態と同じであり、説明を省略する。また、図6A及び図6B中のエバネッセント312、315および表面プラズモン313、314という記載については、本実施形態中では使用していない。
 図6Bの光Cは、導光層302と複屈折層303との界面において全反射してエバネッセント322を発生させる際に、エバネッセント322の波数と、複屈折層303と金属層304との界面における表面プラズモンの波数とが一致しない。そのため、光Cは、表面プラズモンを励起せず、導光層302に戻るか、または複屈折層303を透過して金属層304で反射される。
 すなわち、複屈折層303、305が存在することにより、x方向に特定の波数を有する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光を得ることができる。
 また、第3の実施形態の光学素子301は、第1の実施形態の光学素子101に比べて、光取出しに寄与しない表面プラズモンの励起を抑制することで、損失を低下させることができる。そのため、後述する位相変調手段や反射手段と組合せて用いる際に、光利用効率を上げることができる。
 このように、第3の実施形態では、第1の実施形態における低屈折率層103を複屈折層303に置き換えたものの、第1の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光316が得られる。
 〔第4の実施形態〕図7は、本発明の第4の実施形態の光学素子401を模式的に示す斜視図である。図7に示す光学素子401は、図3に示した第2の実施形態の光学素子201と比べると、導光層202の代わりに複屈折層402を備えている。
 なお、複屈折層402、406、低屈折率層403、405が誘電体層に相当する。また、金属層404が金属層に相当する。例えば、複屈折層402は第2の誘電体層であり、低屈折率層403は第4の誘電体層であり、低屈折率層405は第3の誘電体層であり、複屈折層406は第1の誘電体層である。また、例えば、金属層404は第1の金属層である。
 複屈折層402、406は、異なる2つの屈折率をもつ。また、複屈折層402は、複屈折層406と同じ材料や材質からなる。なお、複屈折層402は、複屈折層406と異なってもよい。より詳細には、後述するzx面内のP偏光の光Aで低屈折率層403と金属層404との界面に表面プラズモン413を励起し、yz面内のP偏光の光Cで低屈折率層403と金属層404との界面に表面プラズモンを励起しない程度に異なってもよい。
 図8A及び図8Bは、図7に示す光学素子401の動作を詳細に説明するための図である。
 図8Aは、光学素子401のy軸に直交する断面を示す。複屈折層402内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。なお、複屈折層402、406のzx面内における屈折率はneである。
 図8Bは、光学素子401のx軸に直交する断面を示す。複屈折層402内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。なお、複屈折層402、406のyz面内における屈折率はnoである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図8Aの光A、光Bと、図8Bの光Dの動作は、第2の実施形態と同じであり、説明を省略する。また、図8A及び図8B中のエバネッセント412、415および表面プラズモン413、414という記載については、本実施形態中では使用していない。
 図8Bの光Cは、複屈折層402と低屈折率層403との界面において全反射してエバネッセント422を発生させる際に、エバネッセント422の波数と、低屈折率層403と金属層404との界面における表面プラズモンの波数とが一致せず、表面プラズモンを励起しない。そのため、光Cは、複屈折層402に戻るか、または低屈折率層403を透過して金属層404で反射される。
 すなわち、複屈折層402、406が存在することにより、x方向に伝播する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を出射光として得ることができる。
 また、第4の実施形態の光学素子401では、第2の実施形態の光学素子202に比べて、光取出しに寄与しない表面プラズモンの励起を抑制することで、損失を低下させることができる。そのため、第3の実施形態と同様に、後述する位相変調手段や反射手段と組合せて用いる際に、光利用効率を上げることができる。
 このように、第4の実施形態では、第2の実施形態における導光層202を複屈折402に置き換えたものの、第2の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光416が得られる。
 〔第5の実施形態〕図9は、本発明の第5の実施形態の光学素子501を模式的に示す斜視図である。図9に示す第5の実施形態の光学素子には、第1~4の実施形態の光学素子と異なり、金属からなる層が2つ含まれている。
 図示しない光源は、光学素子501の外周部に配置され、光学素子501にランダム偏光を出射する。光源は、光学素子501から離れた位置に配置されてもよいし、光学素子501と接触するように配置されてもよいし、ライトパイプのような導光部材を介して光学的に光学素子501と接続されてもよい。
 光学素子501は、導光層502と、金属層503と、低屈折率層504と、金属層505と、複屈折層506を有する。
 なお、導光層502、低屈折率層504および複屈折層506が誘電体層に相当する。さらに、上記の誘電体層は、低屈折率層504と複屈折層506との間に、金属層505を含む。また、金属層503が金属層に相当する。例えば、導光層502は第2の誘電体層であり、低屈折率層504は第8の誘電体層であり、複屈折層506は第1の誘電体層である。また、例えば、金属層503は第3の金属層であり、金属層505は第1の金属層である。
 導光層502は、第1の実施形態と同様の構成であり、光源から出射された光が入射され、その入射された光を内部で伝播する。導光層502の屈折率は、2.1以上あればよい。導光層502は、例えば、可視光に対して、屈折率が2.2程度の誘電体で形成される。例としては、CeO2である。なお、導光層502の屈折率は、2.2程度に限定するわけではない。導光層502は、複屈折性を有してもよいし、複屈折性を有さなくてもよい。なお、導光層502の形状は、本実施形態では平板状としているが、実際には平板状に限定されるものではなく、楔形状や鋸波形状などでもよい。
 金属層503、505は、第1の実施形態と同様に、可視光のエバネッセントによって表面に表面プラズモンを励起可能な金属で形成される。例としてはAg(銀)である。なお、金属層503、505は、Agに限定されず、Al(アルミニウム)、Au(金)でもよい。より詳細には、後述する金属層503と低屈折率層504との界面において表面プラズモン513を励起すればよい。
 金属層503の厚みは100nm以下であればよく、より好ましくは12.5~50nmの範囲であればよい。また、金属層505の厚みは50nm以下であればよく、より好ましくは25nm以下であればよい。なお、金属層503、505の厚みは、25nm程度であれば、本発明の実施形態の効果を得ることができる。より詳細には、後述する金属層503と低屈折率層504との界面で発生する表面プラズモン513のエネルギーが、低屈折率層504と金属層505との界面に到達し、複屈折層506に光516を発生する程度に金属層503、505の厚みが薄ければよい。または、上述の光516が発生する程度に、金属層503と金属505の誘電率が近ければよい。
 また、金属層503、505の厚みは、10nm程度であってもよい。詳細には、後述する表面プラズモンを励起しないS偏光の光を遮断する程度に金属層503、505の厚みが厚くてもよい。または、上述のS偏光の光を遮断する程度に金属層503と金属層505の誘電率が異なってもよい。
 また、金属層503と金属層505は異なってもよい。金属層503の誘電率と金属層505の誘電率は、後述するように、表面プラズモン513によって表面プラズモン514が励起される程度に略等しければよい。
 低屈折率層504は、導光層502よりも小さい屈折率をもつ層である。低屈折率層504の屈折率は、1.6~1.8の範囲にあればよい。低屈折率層504は、例えば、可視光に対して、屈折率が1.7程度の誘電体で形成される。例としては、Al23である。なお、低屈折率層504の屈折率は1.7程度に限定するわけではない。より詳細には、後述する金属層503と低屈折率層504との界面において、エバネッセント513を介して表面プラズモンが励起される程度であればよい。
 低屈折率層504の厚みは、50nm程度であれば、本発明の実施形態の効果を得ることができる。なお、低屈折率層504の厚みは50nm程度以上あってもよい。より詳細には、後述する金属層503と低屈折率層504との界面に発生する表面プラズモン513のエネルギーが、低屈折率層504と金属層505との界面に到達する程度の厚みであればよい。
 導光層502と、金属層503と、低屈折率層504とで、表面プラズモン励起手段をなす。第5の実施形態の表面プラズモン励起手段は、いわゆるクレッチマン配置と呼ばれる構成である。導光層502内を伝播する光が、導光層502と金属層503との界面で全反射する際に発生するエバネッセント512によって、金属層503と低屈折率層504との界面に表面プラズモン513を励起する。
 複屈折層506は、異なる2つの屈折率をもつ。例えば、複屈折層506は、可視光の通常光線に対しての屈折率noが1.9程度であり、異常光線に対しての屈折率neが2.2程度の誘電体で形成される。例としては、YVO4(イットリウム・バナデート)結晶である。
 なお、複屈折層506のnoは、1.9程度に限定されず異なってもよい。より詳細には、後述する低屈折率層504と金属層505との界面で発生した表面プラズモン514のエネルギーが、複屈折層506内に光516を発生させる程度に異なってもよい。
 なお、複屈折層506のneは、2.2に限定されず、異なってもよい。より詳細には、低屈折率層504と金属層505との界面で発生した表面プラズモン514のエネルギーが、複屈折層506内に光を発生させない程度に異なってもよい。
 低屈折率層504と金属層505と複屈折層506とで、光発生手段をなす。光発生手段は、低屈折率層504と金属層505との界面に発生する表面プラズモン514によって光516を発生させて取出す。
 また、光学素子501は、例えば、以下のような手順で製造することができる。
 CeO2の上に、スパッタ等の蒸着法やオプティカルボンディング等の接合法でAg、Al23、Ag、YVO4を形成する。ただし、第5の実施形態の光学素子501の製造方法は、蒸着法や接合法に限定されない。
 図10A及び図10Bは、図9に示す光学素子501の動作を詳細に説明するための図である。
 図10Aは、光学素子501のy軸に直交する断面を示す。導光層502内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。複屈折層506のzx面内における屈折率はnoである。
 図10Bは、光学素子501のx軸に直交する断面を示す。導光層502内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。複屈折層506のyz面内における屈折率はneである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図10Aの光Aは、導光層502と金属層503との界面に対して特定の入射角の際に、エバネッセント512を介して、金属層503と低屈折率層504との界面において、x方向に伝播する表面プラズモン513を励起する。ここで、この遷移過程を順過程と呼ぶ。
 金属層503と低屈折率層504との界面に生じた表面プラズモン513のエネルギーは、低屈折率層504が充分に薄いために、低屈折率層504と金属層505との界面に到達する。ここで、金属層503と金属層505は同じ材料なので、導光層502と金属層503と低屈折率層504との間の誘電率の関係と、複屈折層506と金属層505と低屈折率層504との間の誘電率の関係が等しくなり、順過程の反対の逆過程が生じる。
 すなわち、逆過程が生じることによって、表面プラズモン513と同じ波数をもった表面プラズモン514が、低屈折率層504と金属層505との界面に生じ、エバネッセント515を介して、複屈折層506に、zx面内に伝播する光516が発生する。
 なお、複屈折層506のneと導光層502の屈折率は、完全に一致する必要はない。複屈折層506のneと導光層502の屈折率は、表面プラズモン513によって励起された表面プラズモン514がエバネッセント515を介して光516を発生させることができる程度に、略等しければよい。
 また、光Bは、S偏光であるので、金属層503と低屈折率層504との界面に表面プラズモンを発生させず、金属層503で反射される。
 また、図10Bの光Cは、導光層502と金属層503との界面に対して特定の入射角の際に、エバネッセント522を介して、金属層503と低屈折率層504との界面にy方向に伝播する表面プラズモン523を励起する。
 表面プラズモン523のエネルギーは、低屈折率層504が充分に薄いために、低屈折率層504と金属層505との界面に到達し、表面プラズモン524を励起する。
 ここで、複屈折層506のyz面内の屈折率はnoで、導光層502の屈折率と異なるので、導光層502と金属層503と低屈折率層504との間の誘電率の関係と、複屈折層506と金属層505と低屈折率層504との間の誘電率の関係が異なる。そのため、表面プラズモン524から光を発生させることができない。
 また、光Dは、S偏光であるので、導光層502と金属層503との界面に表面プラズモンを発生させず、金属層503で反射される。
 以上のことから、導光層502内に存在する光のうち、光Aだけが表面プラズモンを介して取出される。
 すなわち、複屈折層506が存在することにより、x方向に伝播する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光を得ることができる。
 なお、zx方向以外に伝搬する光が導光層502と金属層503との界面に入射した場合でも、その光をzx平面に射影した射影光の入射角度が表面プラズモンの励起条件を満たす角度であれば、特定の方向の偏光成分を有する光を得ることができる。その場合、まず、光Aと同様に、x方向に平行な偏光成分によって、x方向に特定の波数を有する表面プラズモンが金属層503と低屈折率層504との界面に励起される。その結果、低屈折率層504と金属層505との界面にエネルギーが到達して、複屈折層506内に、x方向に特定の偏光成分を有する光として取出される。
 このように、第5の実施形態の光学素子501は、第1の実施形態の光学素子101とは異なり、2層の金属層からなるものの、第1の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光516が得られる。
 〔第6の実施形態〕図11は、本発明の第6の実施形態の光学素子601を模式的に示す斜視図である。図11に示す光学素子601は、図9に示した第5の実施形態の光学素子501と比べると、低屈折率層504の代わりに複屈折層604を、複屈折層506の代わりにカバー層606を備えている。
 なお、導光層602、複屈折層604およびカバー層606が誘電体層に相当する。さらに、上記の誘電体層は、複屈折層604とカバー層606の間に、金属層605を含む。また、金属層503が金属層に相当する。例えば、導光層602は第2の誘電体層であり、複屈折率層604は第1の誘電体層であり、カバー層606は第7の誘電体層である。また、例えば、金属層603は第1の金属層であり、金属層605は第2の金属層である。
 複屈折層604は、異なる2つの屈折率をもつ。例えば、複屈折層604は、可視光の通常光線に対しての屈折率noが1.9程度であり、異常光線に対しての屈折率neが2.2程度の誘電体で形成される。例としては、YVO4結晶である。
 なお、複屈折層604のnoは、1.9に限定されず、異なってもよい。より詳細には、後述する金属層603と複屈折層604との界面で発生した表面プラズモン613のエネルギーが、金属層605とカバー層604との界面において、表面プラズモン614を発生させる程度に異なってもよい。
 また、複屈折層604のneは、2.2に限定されず、異なってもよい。より詳細には、後述する金属層603と複屈折層604との界面において、表面プラズモンを発生させない程度に異なってもよい。
 なお、複屈折層604の厚みは50nm程度以上あってもよい。より詳細には、後述する金属層603と複屈折層604との界面で発生した表面プラズモン613のエネルギーが、複屈折層604と金属層605との界面に到達する程度の厚みであればよい。
 カバー層606は、導光層602と同じ材料や材質からなる。こうすることで、導光層602と複屈折層604との間の屈折率関係と、カバー層606と複屈折層604との間の屈折率関係とが一致する。そのため、複屈折層604と金属層605との界面で発生した表面プラズモン614から効率良く光616を発生させることができる。また、カバー層606の屈折率は、複屈折層604のnoよりも大きい。なお、カバー層606の屈折率は、導光層602の屈折率と同じであると限定されないカバー層606の屈折率と導光層602の屈折率は、表面プラズモン614から光616を発生させることができる程度に略等しければよい。
 導光層602およびカバー層606の屈折率は、2.6以上あればよい。
 金属層603の厚みは、100nm以下であればよく、より好ましくは12.5~50nmの範囲であればよい。また、金属層605の厚みは、50nm以下であればよく、より好ましくは25nm以下であればよい。
 図12A及び図12Bは、図11に示す光学素子601の動作を詳細に説明するための図である。
 図12Aは、光学素子601のy軸に直交する断面を示す。導光層602内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。複屈折層604のzx面内における屈折率はnoである。
 図12Bは、光学素子601のx軸に直交する断面を示す。導光層602内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。複屈折層604のyz面内における屈折率はneである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図12Aの光Bと図12Bの光Dの動作は第5の実施形態と同じであり、説明を省略する。
 図12Aの光Aは、導光層602と金属層603との界面に対して特定の入射角の際に、エバネッセント612を介して、金属層603と複屈折層604との界面において、x方向に伝播する表面プラズモン613を励起する。ここで、この遷移過程を順過程と呼ぶ。
 表面プラズモン613のエネルギーは、複屈折層604が充分に薄いために、複屈折層604と金属層605との界面に到達する。ここで、導光層602の屈折率は、カバー層606の屈折率と同じなので、導光層602と金属層603と複屈折層604との間の誘電率の関係と、カバー層606と金属層605と複屈折層604との間の誘電率の関係が等しくなり、順過程の反対の逆過程が生じる。
 すなわち、逆過程が生じることによって、表面プラズモン613と同じ波数をもった表面プラズモン614が、複屈折層604と金属層605との界面に生じ、エバネッセント615を介して、カバー層606に、光Aと同じ偏光成分を有する光616を発生させる。
 なお、金属層603の誘電率と金属層605の誘電率は、完全に一致する必要はない。金属層603の誘電率と金属層605の誘電率は、表面プラズモン613によって表面プラズモン614が励起される程度に略等しければよい。
 また、図12Bの光Cは、導光層602と金属層603との界面において全反射してエバネッセント622を発生させる際に、エバネッセント622の波数と、金属層603と複屈折層604との界面における表面プラズモンの波数とが一致せず、表面プラズモンを励起せず、金属層603で反射される。
 また、第5の実施形態に比べて、光取出しに寄与しない表面プラズモンの励起を抑制することで、損失を低下させることができ、後述する位相変調手段や反射手段と組合せて用いる際に、光利用効率を上げることができる。
 すなわち、複屈折層604が存在することにより、x方向に伝播する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光を得ることができる。
 なお、導光層602とカバー層606は複屈折性を有するものであっても良い。
 このように、第6の実施形態は、第5の実施形態の低屈折率層504および複屈折率層506を、それぞれカバー層606および複屈折層604と置き換えたものの、第5の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光616が得られる。
 〔第7の実施形態〕図13は、本発明の第7の実施形態の光学素子701を模式的に示す斜視図である。図13に示す光学素子701は、図9に示した第5の実施形態の光学素子501と比べると、導光層502の代わりに複屈折層702を備えている。
 なお、複屈折層702、706および低屈折層704が誘電体層に相当する。さらに、上記の誘電体層は、低屈折層704と複屈折層706との間に、金属層705を含む。また、金属層703が金属層に相当する。例えば、複屈折層702は第2の誘電体層であり、低屈折率層704は第8の誘電体層であり、複屈折層706は第1の誘電体層である。また、例えば、金属層703は第3の金属層であり、金属層705は第1の金属層である。
 複屈折層702は、異なる2つの屈折率をもつ。また、複屈折層706と同じ材料や材質からなる。なお、複屈折層702は、複屈折層706と異なってもよい。より詳細には、後述するzx面内のP偏光の光Aで金属層703と低屈折率層704との界面に表面プラズモン713を励起し、yz面内のP偏光の光Cで金属層703と低屈折率層704との界面に表面プラズモンを励起しない程度に異なってもよい。
 図14A及び図14Bは、図13に示す光学素子701の動作を詳細に説明するための図である。
 図14Aは、光学素子701のy軸に直交する断面を示す。複屈折層702内に存在する光のうち、光AはP偏光の光すなわち電場の振動方向がzx面に平行な光を示す。光BはS偏光の光すなわち電場の振動方向がzx面に直交する光を示す。複屈折層702、706のzx面内における屈折率はneである。
 図14Bは、光学素子701のx軸に直交する断面を示す。複屈折層702内に存在する光のうち、光CはP偏光の光すなわち電場の振動方向がyz面に平行な光を示す。光DはS偏光の光すなわち電場の振動方向がyz面に直交する光を示す。複屈折層702、706のyz面内における屈折率はnoである。
 次に、表面プラズモンが励起され、その表面プラズモンから光が発生される原理について説明する。
 図14Aの光A、光Bと、図14Bの光Dの動作は、第5の実施形態と同じであり、説明を省略する。また、図14A及び図14B中のエバネッセント712、715および表面プラズモン714という記載については、本実施形態中では使用していない。
 図14Bの光Cは、複屈折層702と金属層703との界面において全反射してエバネッセント722を発生させる際に、エバネッセント722の波数と、金属層703と低屈折率層704との界面における表面プラズモンの波数とが一致せず、表面プラズモンを励起せず、金属層703で反射される。
 また、第5の実施形態に比べて、光取出しに寄与しない表面プラズモンの励起を抑制することで、損失を低下させることができ、後述する位相変調手段や反射手段と組合せて用いる際に、光利用効率を上げることができる。
 すなわち、複屈折層702、706が存在することにより、x方向に伝播する表面プラズモンだけから光を取り出すことができるため、特定方向であるzx面内に伝播する偏光成分を主成分とする出射光を得ることができる。
 このように、第7の実施形態は、第5の実施形態の導光層502を、複屈折層702と置き換えたものの、第5の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光716が得られる。
 以上、第1~第7の実施形態の光学素子を用いることによって、ランダム偏光を、出射方向を特定の方向に既定したエテンデューの低い状態である特定方向の偏光成分を得ることができる。また、第3、第4、第6および第7の実施形態の光学素子においては、光取り出しに寄与しない表面プラズモンの励起を抑制することができるため、さらに光利用効率を向上することができる。
 以下の第8および第9の実施形態においては、第1~第7の実施形態の光学素子を用いた光学装置について説明する。
 〔第8の実施形態〕図15は、本発明の第8の実施形態の光学装置800を模式的に示す斜視図である。
 光源810は、光学素子801の外周部に配置され、光学素子801にランダム偏光を出射する。
 光源810は、光学素子801から離れた位置に配置されてもよいし、光学素子801と接触するように配置されてもよい。また、光源810は、ライトパイプのような導光部材を介して光学的に光学素子801と接続されてもよい。
 光学装置800は、反射手段809と、位相変調層808と、光学素子801と、角度変換手段807とを有する。
 反射手段809は、後述する位相変調層808から入射した光を、金属層と平行な面内において、入射角と反射角とが等しくならないように、反射する。例としては、反射手段809は、粒子が埋め込まれた拡散反射体であってもよく、鋸波形状であってもよい。
 位相変調層808は、入射した光の位相状態を変調する。例としては、λ/4板である。
 光学素子801は、第1~第7の実施形態の光学素子101、201、301、401、501、601、701のいずれか一つを用いることができる。
 光学装置は照明として用いられても良い。
 角度変換手段807は、出射光の伝播角度を変換させる。すなわち、光の進行方向を変更する。例としては、回折格子、ホログラム、フォトニック結晶である。
 位相変調層808と反射手段809は、光B、C、Dを偏光状態と伝播角度を変換して光学素子801に戻して再利用することで、光利用効率を上げることができる。
 角度変換手段807は、+x方向に伝播する表面プラズモンに起因する+x方向の偏光成分を有する光と、-x方向に伝播する表面プラズモンに起因する-x方向の偏光成分を有する光とを、伝播角度を変換して同じ方向にそろえることができる。
 第8の実施形態の光学装置800においては、光源から出射されたランダム偏光を、出射方向を特定の方向に既定したエテンデューの低い状態である特定の偏光状態に変換することができる。また、角度変換手段807によって、出射光の伝播方向をそろえることができるため、エテンデューをさらに低減することができる。さらに、位相変調層808や反射手段809が備えられているため、光利用効率を向上することができる。
 〔第9の実施形態〕図16は、本発明の第9の実施形態の光学装置900を模式的に示す斜視図である。
 図16に示す光学装置900は、図15に示した光学装置800の構成に加えて、光源910から光が入射される入射領域である入射口920と、光の出射面である上面および反射手段809が設けられた下面を除いた外壁面(つまり、光学素子800の側面)とに反射手段909を追加したものである。
 反射手段909は、光学素子901の側面から光が出射されることを抑制することができるので、図15に示した光学装置800と比べて光利用効率を上げることができる。
 なお、反射手段909は、入射口920を除いた側面の全てに設けられていたが、その側面のうち一部の面にのみ設けられていてもよい。また、反射手段部909は、光を拡散反射する拡散反射体であってもよいし、鋸形状であってもよい。
 第9の実施形態の光学装置900を用いることによって、第8の実施形態と同様の効果を得ることができる。さらに、第9の実施形態では、反射手段が外壁面などにも設けられているため、側面から光が漏れることが抑制できる。そのため、第8の実施形態よりも光利用効率が向上する。
 以上第8および第9の実施形態において、光源は、一つに限定されず、複数配置されてもよく、複数の光源がそれぞれ異なる波長の光を出射してもよい。より詳細には、複数の光源の波長が、金属表面において表面プラズモンを励起する程度に異なってもよい。
 以下の第10および第11の実施形態においては、第8および第9の実施形態の光学素子を用いた表示装置について説明する。
 〔第10の実施形態〕本実施形態では、第8、9の実施形態で説明した光学装置800、900のいずれかを備えた表示装置であるプロジェクタ1011について説明する。
 図17は、本実施形態の表示装置の構成の一例を示す配置図である。図17において、投射型画像表示装置であるプロジェクタ1011は、光源1012a、1012bおよび1012cと、光学素子1013a、1013bおよび1013cと、液晶パネル1014a、1014bおよび1014cと、クロスダイクロイックプリズム1015と、投射光学系1016とを備える。
 光源1012aと光学素子1013a、光源1012bと光学素子1013b、光源1012cと光学素子1013cが光学装置800または900を構成する。
 光源1012a、1012bおよび1012cのそれぞれは、波長がそれぞれ異なる光を発生するものとする。以下、光源1012aから赤色光が出射され、光源1012bから緑色光が出射され、光源1012cから青色光が出射されるものとする。
 光学素子1013a、1013bおよび1013cのそれぞれは、第8、9の実施形態で説明した光学装置800、900の光源を除いたものであり、各色光を所定の偏光状態に変更して液晶パネル1014a、1014bおよび1014cのそれぞれに導く。
 液晶パネル1014a、1014bおよび1014cは、入射された各色光を映像信号に応じて2次元的に変調することで、各色光に画像を担持させ、その画像を担持させた各色光を出射する空間光変調素子である。なお、ここでは空間光変調素子として液晶パネルを用いたが、空間光変調素子はデジタルマイクロミラーデバイスであっても良い。
 クロスダイクロイックプリズム1015は、液晶パネル1014a、1014bおよび1014cのそれぞれから出射された各変調光を合成して出射する。
 投射光学系1016は、クロスダイクロイックプリズム1015から出射された合成光をスクリーン1017に投射して、スクリーン1017上に映像信号に応じた画像を表示する。
 第10の実施形態のプロジェクタ1011においては、光源から出射されたランダム偏光を特定の偏光状態に変換する際に、出射方向を特定の方向に既定したエテンデューの低い状態に変換するため、光利用効率を向上することができる。
 〔第11の実施形態〕図18は、第10の実施形態の表示装置の構成の別の例を示す配置図である。図18において、プロジェクタ1111は、光源1112a、1112bおよび1112cと、光学素子1113と、液晶パネル1114と、投射光学系1116とを有する。
 光学素子1113は、第10の実施形態で説明した光学素子1013a、1013bないし1013cと同じ構成を有する。したがって、光源1112a、1112b、1111cおよび光学素子1113は、第10の実施形態で説明した光学装置800または900における光源が3つの場合と同じ構成を有する光学装置となる。
 液晶パネル1114は、入射された合成光を映像信号に応じて変調して出射する光変調素子である。
 投射光学系1116は、液晶パネル1114から出射された変調光をスクリーン1117に投射して、スクリーン1117上に映像信号に応じた映像を表示する。
 なお、第11の実施形態では、光変調素子として液晶パネルを用いたが、光変調素子は液晶パネルに限らず適宜変更可能である。例えば、図18で示したプロジェクタでは、液晶パネル1114の代わりに、デジタルマイクロミラーデバイスを用いてもよい。
 第11の実施形態のプロジェクタ1111においては、第10の実施形態と同様の効果を得ることができる。また、第10の実施形態と比較すると、光学装置を一つにすることができるため、より構成が簡単となる。そのため、プロジェクタをさらに小型化することが可能となる。
 また、第10または第11の実施形態の表示装置の変形例として、以下のような構成をしてもよい。例えば、表示装置の面を、+x方向などの特定の方向の偏光成分に対してほぼ垂直になるように構成する。このようにすると、ミラーやレンズなどの光学系を用いなくても投射光学系に効率よく集光することができるため、光学系を省略できる。以上の変形例は、本発明の適用可能性を示すのみであり、本発明に限定を加えるものではない。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。以下に、本発明の実施形態に係る実施例をあげる。なお、以下の実施例は一例であり、本発明の限定するものではない。
 〔実施例1〕第1の実施形態の動作による効果を、シミュレーションによって確認した(実施例1)。なお、本シミュレーションは、第1の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例1の光学素子の構成要素については、図1、図2Aおよび図2Bの符号を参照する。図19は、第1の実施形態の光学素子101の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 実施例1のシミュレーションには、2次元の厳密結合波解析法を用いた。なお、厳密結合波解析法は、RCWA法ともよばれる。また、図19の横軸は、導光層101から低屈折率層102への入射角であり、縦軸は、カバー層106への光の透過率である。
 実施例1のシミュレーションにおいて、導光層102およびカバー層106は、屈折率が2.5のTiO2(アナタース)とした。また、低屈折率層103は、屈折率が1.9のY23で厚みを50nmとした。金属層104は、Agで厚みを50nmとした。複屈折層105はYVO4(no=1.9、ne=2.2)で厚みを50nmとした。
 図19において、zx面内のP偏光成分の透過率の半値全幅は約23.2degであるため、LEDの様なランバーシアン分布を有する出射光の半値全幅(約45deg)に比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が2倍以上大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は55%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。
 このように、実施例1では、複屈折層105を用いることで、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例2〕第2の実施形態の動作による効果を、シミュレーションによって確認した(実施例2)。なお、本シミュレーションは第2の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例2の光学素子の構成要素については、図3、図4Aおよび図4Bの符号を参照する。図20は、第2の実施形態の光学素子201の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 シミュレーションには、実施例1と同様に、2次元のRWCA法を用いた。なお、図20の横軸は、導光層202から低屈折率層203への入射角であり、縦軸は、複屈折層206への光の透過率である。
 実施例2のシミュレーションにおいて、導光層202は、屈折率が2.2のCeO2とした。また、低屈折率層203および205は、屈折率が1.7のAl23で厚みを50nmとした。また、金属層204は、Agで厚みを50nmとした。また、複屈折層206はYVO4(ne=2.2、no=1.9)とした。
 図20において、zx面内のP偏光成分の透過率の半値全幅は約25.7degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が3倍程度大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は62%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。
 このように、実施例2では、複屈折層206を用いることで、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例3〕第3の実施形態の動作による効果を、シミュレーションによって確認した(実施例3)。なお、本シミュレーションは第3の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例3の光学素子の構成要素については、図5、図6Aおよび図6Bの符号を参照する。図21は、第3の実施形態の光学素子301の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 シミュレーションには、実施例3と同様に、2次元のRWCA法を用いた。なお、図21の横軸は、導光層302から複屈折層303への入射角であり、縦軸は、カバー層306への光の透過率である。
 実施例3のシミュレーションにおいて、導光層302およびカバー層306は、屈折率が2.5のTiO2(アナタース)とした。複屈折層303および305は、YVO4(no=1.9、ne=2.2)で厚みを50nmとした。また、金属層304は、Agで厚みを50nmとした。
 図21において、zx面内のP偏光成分の透過率の半値全幅は約23.2degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が5倍以上大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は55%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。さらに、実施例1および2と比較すると、yz面内のP偏光成分には明確なピークが見られないことから、光取出しに寄与しない表面プラズモンの励起を抑制できていることが確認できる。
 このように、実施例3では、実施例1における低屈折率層103を複屈折層303に置き換えたものの、実施例1と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例4〕第4の実施形態の動作による効果を、シミュレーションによって確認した(実施例4)。なお、本シミュレーションは第4の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例4の光学素子の構成要素については、図7、図8Aおよび図8Bの符号を参照する。図22は、実施例4の光学素子401の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 シミュレーションには、実施例1と同様に、2次元のRCWA法を用いた。なお、図22の横軸は、複屈折層402から低屈折率層403への入射角であり、縦軸は、複屈折層406への光の透過率である。
 実施例4のシミュレーションにおいて、複屈折層402および406は、YVO4(ne=2.2、no=1.9)とした。また、低屈折率層403および405は、屈折率が1.7のAl23で厚みを50nmとした。金属層404は、Agで厚みを50nmとした。
 図22において、zx面内のP偏光成分の透過率の半値全幅は約25.7degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が3倍以上大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は62%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。さらに、第3の実施形態と同様に、yz面内のP偏光成分には明確なピークが見られないことから、光取出しに寄与しない表面プラズモンの励起を抑制できていることが確認できる。
 このように、実施例4では、実施例2における導光層202を複屈折402に置き換えたものの、実施例2と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例5〕第5の実施形態の動作による効果を、シミュレーションによって確認した(実施例5)。なお、本シミュレーションは第5の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例5の光学素子の構成要素については、図9、図10Aおよび図10Bの符号を参照する。図23は、実施例の光学素子501の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 シミュレーションには、実施例1と同様に、2次元のRCWA法を用いた。なお、図23の横軸は、導光層502から金属層503への入射角であり、縦軸は、複屈折層506への光の透過率である。
 実施例5のシミュレーションにおいて、導光層502は、屈折率が2.2のCeO2とした。また、金属層503はAgで厚みを25nmとし、金属層505はAgで厚みを12.5nmとした。また、低屈折率層504は、屈折率が1.7のAl23で厚みを50nmとした。また、複屈折層506は、YVO4(ne=2.2、no=1.9)とした。
 図23において、zx面内のP偏光成分の透過率の半値全幅は約39.7degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が2倍程度大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は60%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。
 このように、実施例5の光学素子501は、実施例1の光学素子101とは異なり、2層の金属層からなるものの、実施例1と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例6〕第3の実施形態の動作による効果を、シミュレーションによって確認した(実施例6)。なお、本シミュレーションは第6の実施形態の一例について行ったものであり、本発明を限定するものではない。
 実施例6の光学素子の構成要素については、図11、図12Aおよび図12Bの符号を参照する。図24は、実施例6の光学素子601の効果を確認するためのシミュレーション結果の一例を示すグラフである。
 シミュレーションには、実施例1と同様に、2次元のRCWA法を用いた。なお、図24の横軸は、導光層602から金属層603への入射角であり、縦軸は、カバー層606への光の透過率である。
 実施例6のシミュレーションにおいて、導光層602およびカバー層606は、屈折率が2.7のTiO2(ルチル)とした。また、金属層603はAgで厚みを25nmとし、金属層605はAgで厚みを12.5nmとした。また、複屈折層604は、YVO4(no=1.9、ne=2.2)で厚みを50nmとした。
 図24において、zx面内のP偏光成分の透過率の半値全幅は約35.6degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が1.7倍程度大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は59%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。
 このように、実施例6の光学素子601は、実施例5の低屈折率層504および複屈折率層506を、それぞれカバー層606および複屈折層604と置き換えたものの、実施例5と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光が得られることを確認できた。
 〔実施例7〕以上の動作による効果を、シミュレーションによって確認した。図25は、第7の実施形態の光学素子701の効果を確認するためのシミュレーション結果の一例を示すグラフである。なお、本シミュレーションは第7の実施形態の一例について行ったものであり、本発明を限定するものではない。
 シミュレーションには、第1の実施形態と同様に、2次元のRCWA法を用いた。なお、図25の横軸は、複屈折層702から金属層703への入射角であり、縦軸は、複屈折層706への光の透過率である。
 第7の実施形態のシミュレーションにおいて、複屈折層702、706は、YVO4(ne=2.2、no=1.9)とした。また、金属層703はAgで厚みを25nmとし、金属層705はAgで厚みを12.5nmとした。また、低屈折率層704は、屈折率が1.7のAl23で厚みを50nmとした。
 図25において、zx面内のP偏光成分の透過率の半値全幅は約39.7degであるため、LEDに比べて、高い角度選択性を有する光が得られることを確認できる。また、P偏光成分の透過率のピーク値をzx面内とyz面内とで比較すると、zx面内の透過率の方が2倍以上大きいため、伝播方向が特定方向に既定された光が得られることを確認できる。また、zx面内のP偏光成分の透過率のピーク値は60%であるのに対し、同じ入射角におけるS偏光成分の透過率は無視できるほど小さいため、高い偏光選択性を有する光が得られることを確認できる。
 このように、実施例7のシミュレーションより、第7の実施形態では、第5の実施形態の導光層502を、複屈折層702と置き換えたものの、第5の実施形態と同様に、高い角度選択性と偏光選択性を有し、特定の方向の偏光成分を有する光716が得られることが確認できた。
 以上、実施例1~7のシミュレーションより、第1~第7の実施形態の光学素子を用いることによって、ランダム偏光を、出射方向を特定の方向に既定したエテンデューの低い状態である特定方向の偏光成分を得ることができることが確認できた。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)第1の誘電体層と、第2の誘電体層と、前記第1の誘電体層と前記第2の誘電体層との間に配置された第1の金属層とを有し、前記第1の誘電体層は、第1の方向と、前記第1の方向と交差する第2の方向において異なる屈折率を有する光学素子。
(付記2)前記第1の誘電体層は、複屈折材料を含む付記1に記載の光学素子。
(付記3)前記複屈折材料はYVO4(イットリウム・バナデート)結晶からなる付記2に記載の光学素子。
(付記4)前記第1の方向及び前記第2の方向は、前記第1の誘電体層、前記第1の金属層及び前記第2の誘電体層が積層された積層方向とは異なる付記1から3のいずれかに記載の光学素子。
(付記5)前記第2の方向は、前記第1の方向と略直交する方向である付記1から4のいずれかに記載の光学素子。
(付記6)前記第1の誘電体層と前記第1の金属層との間に配置された第3の誘電体層を有する付記1から5のいずれかに記載の光学素子。
(付記7)前記第1の誘電体層の屈折率が、前記第3の誘電体層の屈折率よりも大きい付記6に記載の光学素子。
(付記8)前記第2の誘電体層と前記第1の金属層との間に配置された第4の誘電体層を有する付記6または7に記載の光学素子。
(付記9)前記第2の誘電体層の屈折率が、前記第4の誘電体層の屈折率よりも大きい付記8に記載の光学素子。
(付記10)前記第3の誘電体層の屈折率と前記第4の誘電体層の屈折率とが略等しい付記8または9に記載の光学素子。
(付記11)前記第2の誘電体層は、前記第1の誘電体層が有するいずれかの屈折率と略等しい屈折率を含む付記6から10のいずれかに記載の光学素子。
(付記12)第5の誘電体層を有し、前記第5の誘電体層は、前記第5の誘電体層と前記第1の金属層との間に前記第1の誘電体層が位置するように配置されている付記1から5のいずれかに記載の光学素子。
(付記13)前記第5の誘電体層の屈折率が、前記第1の誘電体層の屈折率よりも大きい付記12に記載の光学素子。
(付記14)第6の誘電体層を有し、前記第6の誘電体層は、前記第6の誘電体層と前記第1の金属層との間に前記第2の誘電体層が位置するように配置されている付記12または13に記載の光学素子。
(付記15)前記第6の誘電体層の屈折率が前記第2の誘電体層の屈折率よりも大きい付記14に記載の光学素子。
(付記16)前記第5の誘電体層の屈折率と前記第6の誘電体層の屈折率とが略等しい付記14または15に記載の光学素子。
(付記17)前記第2の誘電体層は、前記第1の誘電体層が有するいずれかの屈折率と略等しい屈折率を含む付記12から16のいずれかに記載の光学素子。
(付記18)第2の金属層を有し、前記第2の金属層は、前記第2の金属層と前記第1の金属層との間に前記第1の誘電体層が位置するように配置されている付記1から5のいずれかに記載の光学素子。
(付記19)前記第2の誘電体層の屈折率が、前記第1の誘電体層の屈折率よりも大きい付記18に記載の光学素子。
(付記20)第7の誘電体層を有し、前記第7の誘電体層は、前記第7の誘電体層と前記第1の誘電体層との間に前記第2の金属層が位置するように配置されている付記18または19に記載の光学素子。
(付記21)前記第7の誘電体層の屈折率が、前記第1の誘電体層の屈折率よりも大きい付記20に記載の光学素子。
(付記22)前記第2の誘電体層は、前記第7の誘電体層の屈折率と略等しい屈折率を含む付記20または21に記載の光学素子。
(付記23)前記第1の金属層の誘電率と前記第2の金属層の誘電率とが略等しい付記18から22のいずれかに記載の光学素子。
(付記24)前記第1の金属層と前記第2の誘電体層との間に配置された第3の金属層と、前記第1の金属層と前記第3の金属層との間に配置された第8の誘電体層とを有する付記1から5のいずれかに記載の光学素子。
(付記25)前記第1の誘電体層の屈折率が、前記第8の誘電体層の屈折率よりも大きい付記24に記載の光学素子。
(付記26)前記第2の誘電体層の屈折率が、前記第8の誘電体層の屈折率よりも大きい付記24または25に記載の光学素子。
(付記27)前記第2の誘電体層は、前記第1の誘電体層が有するいずれかの屈折率と略等しい屈折率を含む付記24から26のいずれかに記載の光学素子。
(付記28)前記第1の金属層の誘電率と前記第3の金属層の誘電率とが略等しい付記24から27のいずれかに記載の光学素子。
(付記29)前記第2の金属層の厚みが50nm以下である付記18から23のいずれかに記載の光学素子。
(付記30)前記第2の金属層の厚みが25nm以下である付記18から23、29のいずれかに記載の光学素子。
(付記31)前記第2の金属層はAg、Al、Auのいずれかを含む付記18から23、29、30のいずれかに記載の光学素子。
(付記32)前記第3の金属層の厚みが50nm以下である付記24から28のいずれかに記載の光学素子。
(付記33)前記第3の金属層の厚みが25nm以下である付記24から28、32のいずれかに記載の光学素子。
(付記34)前記第3の金属層はAg、Al、Auのいずれかを含む付記24から28、32、33のいずれかに記載の光学素子。
(付記35)前記第1の金属層の厚みが200nm以下である付記1から34のいずれかに記載の光学素子。
(付記36)前記第1の金属層の厚みが30nm~100nmである付記1から35のいずれかに記載の光学素子。
(付記37)前記第1の金属層はAg、Al、Auのいずれかを含む付記1から36のいずれかに記載の光学素子。
(付記38)前記第2の誘電体層は、第1の方向と、前記第1の方向と交差する第2の方向において異なる屈折率を有する付記1から37のいずれかに記載の光学素子。
(付記39)前記第2の誘電体層は、TiO2、Y23のいずれかを含む付記1から37のいずれかに記載の光学素子。
(付記40)光の進行方向を変更する角度変換手段を有し、前記角度変換手段は、前記角度変換手段と前記第1の金属層との間に前記第1の誘電体層が位置するように配置されている付記6から11、24から28、32から34のいずれかに記載の光学素子。
(付記41)光の進行方向を変更する角度変換手段を有し、前記角度変換手段は、前記角度変換手段と前記第1の誘電体層との間に前記第5の誘電体層が位置するように配置されている付記12から17のいずれかに記載の光学素子。
(付記42)光の進行方向を変更する角度変換手段を有し、前記第7の誘電体層は、前記角度変換手段と前記第2の金属層との間に配置されている付記20から22のいずれかに記載の光学素子。
(付記43)前記角度変換手段は回折格子である付記40から42のいずれかに記載の光学素子。
(付記44)前記角度変換手段はホログラムである付記40から42のいずれかに記載の光学素子。
(付記45)光の位相を変調する位相変調手段を有し、前記位相変調手段は、前記位相変調手段と前記第1の金属層との間に前記第2の誘電体層が位置するように配置されている付記6から11、18から34、40、42のいずれかに記載の光学素子。
(付記46)光の位相を変調する位相変調手段を有し、前記位相変調手段は、前記位相変調手段と前記第2の誘電体層との間に前記第6の誘電体層が位置するように配置されている付記14から16のいずれかに記載の光学素子。
(付記47)前記位相変調手段は1/4波長板である付記45または46に記載の光学素子。
(付記48)光を反射する反射手段を有し、前記反射手段は、前記反射手段と前記第1の金属層との間に前記2の誘電体層が位置するように配置されている付記6から11、18から34、40、42、45のいずれかに記載の光学素子。
(付記49)光を反射する反射手段を有し、前記反射手段は、前記反射手段と前記第2の誘電体層との間に前記第6の誘電体層が位置するように配置されている付記14から16、46のいずれかに記載の光学素子。
(付記50)前記反射手段は光を拡散反射する拡散反射層である付記48または49に記載の光学素子。
(付記51)前記反射手段は鋸波形状の反射面を有する付記48または49に記載の光学素子。
(付記52)付記1から51のいずれかに記載の光学素子と、光源とを有し、前記光源は、前記光源から放射される光が前記光学素子に入射するように配置されている光学装置。
(付記53)前記光源は、前記光源から放射される光が前記光学素子の最上層または最下層に入射するように配置されている付記52に記載の光学装置。
(付記54)前記光源は、前記光源から放射される光が前記光学素子の最上層の側面または前記光学素子の最下層の側面から入射するように配置されている付記52に記載の光学装置。
(付記55)前記光源は、前記第1の誘電体層に入射した光の進行方向が、前記第1の方向及び前記第2の方向のいずれとも異なるように配置されている付記52から54のいずれかに記載の光学装置。
(付記56)付記52から55のいずれかに記載の光学装置と、前記光学装置から出射された光を変調して出射する空間光変調素子と、前記空間光変調素子から出射された光を投射する投射光学系とを有する表示装置。
(付記57)前記空間光変調素子は液晶パネルである付記56に記載の表示装置。
(付記58)前記空間光変調素子はデジタルマイクロミラーデバイスである付記56に記載の表示装置。
 以上、実施形態及び実施例を参照して本願発明を説明してきたが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2012年3月7日に出願された日本出願特願2012-50647を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、ランダム偏光を特定の偏光状態に変換する光学素子、光学装置および表示装置に関する。本発明の光学素子および光学装置は、液晶プロジェクタなどの光源部に用いることができる。また、本発明の表示装置は、液晶プロジェクタを構成することができる。
 2  LED
 3  導光板
 6  反射板
 10  導光体
 11  偏光分離膜
 12  上面カバー
 13  偏光方向変更部材
 14  マイクロプリズム
 101、201、301、401、501、601、701、801、1013a、1013b、1013c、1113  光学素子
 102、202、302、502、602  導光層
 103、203、206、403、405、504、704  低屈折率層
 104、204、304、404、503、505、603、605、703、705  金属層
 105、205、303、305、402、406、506、604、702、706  複屈折層
 106、306、606  カバー層
 112、122、212、222、312、322、412、422、512、522、612、622、712、722  エバネッセント
 115、215、315、415、515、615、715  エバネッセント
 113、123、213、223、313、413、513、523、613、713、723  表面プラズモン
 114、124、214、224、314、414、514、524、614、714  表面プラズモン
 116、216、316、416、516、616、716  光
 800、900  光学装置
 807  角度変換手段
 808  位相変調層
 809、909  反射手段
 810、910  光源
 920  入射口
 1011、1111  プロジェクタ
 1012a、1012b、1012c、1112a、1112b、1112c  光源
 1014a、1014b、1014c、1114  液晶パネル
 1015  クロスダイクロイックプリズム
 1016、1116  投射光学系
 1017、1117  スクリーン

Claims (10)

  1.  第1の誘電体層と、
     第2の誘電体層と、
     前記第1の誘電体層と前記第2の誘電体層との間に配置された第1の金属層とを有し、
     前記第1の誘電体層は、第1の方向と、前記第1の方向と交差する第2の方向において異なる屈折率を有する光学素子。
  2.  前記第1の誘電体層は、複屈折材料を含む請求項1に記載の光学素子。
  3.  前記第1の方向及び前記第2の方向は、前記第1の誘電体層、前記第1の金属層及び前記第2の誘電体層が積層された積層方向とは異なる請求項1又は2に記載の光学素子。
  4.  前記第1の誘電体層と前記第1の金属層との間に配置された第3の誘電体層を有する請求項1乃至3のいずれか一項に記載の光学素子。
  5.  第5の誘電体層を有し、
     前記第5の誘電体層は、前記第5の誘電体層と前記第1の金属層との間に前記第1の誘電体層が位置するように配置されている請求項1乃至4のいずれか一項に記載の光学素子。
  6.  第2の金属層を有し、
     前記第2の金属層は、前記第2の金属層と前記第1の金属層との間に前記第1の誘電体層が位置するように配置されている請求項1乃至3のいずれか一項に記載の光学素子。
  7.  前記第1の金属層と前記第2の誘電体層との間に配置された第3の金属層と、
     前記第1の金属層と前記第3の金属層との間に配置された第8の誘電体層とを有する請求項1乃至3のいずれか一項に記載の光学素子。
  8.  前記第2の誘電体層は、前記第1の誘電体層が有するいずれかの屈折率と略等しい屈折率を含む請求項4、5、7のいずれか一項に記載の光学素子。
  9.  請求項1乃至8のいずれか一項に記載の光学素子と、
     光源とを有し、
     前記光源は、前記光源から放射される光が前記光学素子に入射するように配置されている光学装置。
  10.  請求項9に記載の光学装置と、
     前記光学装置から出射された光を変調して出射する空間光変調素子と、
     前記空間光変調素子から出射された光を投射する投射光学系とを有する表示装置。
PCT/JP2013/001291 2012-03-07 2013-03-04 光学素子、光学装置および表示装置 WO2013132813A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/382,817 US20150022784A1 (en) 2012-03-07 2013-03-04 Optical element, optical device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050647 2012-03-07
JP2012050647 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013132813A1 true WO2013132813A1 (ja) 2013-09-12

Family

ID=49116309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001291 WO2013132813A1 (ja) 2012-03-07 2013-03-04 光学素子、光学装置および表示装置

Country Status (3)

Country Link
US (1) US20150022784A1 (ja)
JP (1) JPWO2013132813A1 (ja)
WO (1) WO2013132813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627900A (zh) * 2017-03-15 2018-10-09 Jxtg能源株式会社 光学相位差构件、偏光变换元件、模板及光学相位差构件的制造方法
WO2020179232A1 (ja) * 2019-03-05 2020-09-10 ソニー株式会社 光学素子及び投射型表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10146054B2 (en) * 2015-07-06 2018-12-04 Google Llc Adding prescriptive correction to eyepieces for see-through head wearable displays
CN106959486A (zh) * 2016-01-08 2017-07-18 京东方科技集团股份有限公司 一种导光板、背光模组及液晶显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189627A (ja) * 1988-01-26 1989-07-28 Citizen Watch Co Ltd 液晶表示装置用照明装置
JPH02128103U (ja) * 1989-03-31 1990-10-23
JPH03186822A (ja) * 1989-12-15 1991-08-14 Sharp Corp 波長変換素子
JPH07301710A (ja) * 1994-04-28 1995-11-14 Tokin Corp 偏光子の製造方法および製造装置
JP2007101991A (ja) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd 検証機能を有するステッカー、真偽判定媒体、スレッド体並びに真偽判定用紙
JP2007171370A (ja) * 2005-12-20 2007-07-05 Canon Inc 光学素子およびそれを有する撮像装置
JP2008047543A (ja) * 2007-10-04 2008-02-28 Citizen Electronics Co Ltd 液晶表示装置の平面照明装置
WO2011122555A1 (ja) * 2010-03-30 2011-10-06 日本電気株式会社 光学素子、光源装置、および投射型表示装置
WO2012026211A1 (ja) * 2010-08-24 2012-03-01 日本電気株式会社 光源および投射型表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735259B2 (ja) * 2003-06-19 2011-07-27 日本電気株式会社 フォトニック結晶の構造
US20050275944A1 (en) * 2004-06-11 2005-12-15 Wang Jian J Optical films and methods of making the same
US20050286128A1 (en) * 2004-06-24 2005-12-29 Optiva, Inc. Biaxial crystal filter for viewing devices
US20060127830A1 (en) * 2004-12-15 2006-06-15 Xuegong Deng Structures for polarization and beam control
US20070165308A1 (en) * 2005-12-15 2007-07-19 Jian Wang Optical retarders and methods of making the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189627A (ja) * 1988-01-26 1989-07-28 Citizen Watch Co Ltd 液晶表示装置用照明装置
JPH02128103U (ja) * 1989-03-31 1990-10-23
JPH03186822A (ja) * 1989-12-15 1991-08-14 Sharp Corp 波長変換素子
JPH07301710A (ja) * 1994-04-28 1995-11-14 Tokin Corp 偏光子の製造方法および製造装置
JP2007101991A (ja) * 2005-10-06 2007-04-19 Toppan Printing Co Ltd 検証機能を有するステッカー、真偽判定媒体、スレッド体並びに真偽判定用紙
JP2007171370A (ja) * 2005-12-20 2007-07-05 Canon Inc 光学素子およびそれを有する撮像装置
JP2008047543A (ja) * 2007-10-04 2008-02-28 Citizen Electronics Co Ltd 液晶表示装置の平面照明装置
WO2011122555A1 (ja) * 2010-03-30 2011-10-06 日本電気株式会社 光学素子、光源装置、および投射型表示装置
WO2012026211A1 (ja) * 2010-08-24 2012-03-01 日本電気株式会社 光源および投射型表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627900A (zh) * 2017-03-15 2018-10-09 Jxtg能源株式会社 光学相位差构件、偏光变换元件、模板及光学相位差构件的制造方法
WO2020179232A1 (ja) * 2019-03-05 2020-09-10 ソニー株式会社 光学素子及び投射型表示装置
JP7447890B2 (ja) 2019-03-05 2024-03-12 ソニーグループ株式会社 投射型表示装置

Also Published As

Publication number Publication date
JPWO2013132813A1 (ja) 2015-07-30
US20150022784A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6023775B2 (ja) 表示モジュールおよび導光装置
JP5737284B2 (ja) 光学素子、光源装置、および投射型表示装置
JP5338987B2 (ja) 光源および投射型表示装置
TWI533076B (zh) 顯示模組與光導引裝置
JP2009058594A (ja) 照明装置および画像表示装置
WO2013046921A1 (ja) 偏光子、偏光光学素子、光源および画像表示装置
JPWO2011062036A1 (ja) 光学素子、光源装置及び投射型表示装置
WO2013132813A1 (ja) 光学素子、光学装置および表示装置
WO2014010200A1 (ja) 光学素子、光学装置および表示装置
JP6988782B2 (ja) 光源装置およびプロジェクター
US20190064644A1 (en) Wavelength conversion element, wavelength conversion system, light source apparatus, and projector
JP2020101766A (ja) 光源装置およびプロジェクター
WO2014013712A1 (ja) 光学装置およびそれを用いた表示装置
JP2011077444A (ja) 光源装置、偏光変換素子及び表示装置
US10775689B2 (en) Illumination system and projection apparatus
JP2022144382A (ja) 波長変換素子、照明装置およびプロジェクター
JP2020091329A (ja) 光源装置およびプロジェクター
TWI556025B (zh) 顯示模組和導光裝置
JP4910354B2 (ja) 均一化光学素子、照明装置及びプロジェクタ
WO2013021766A1 (ja) 光学素子、照明装置および投射型画像表示装置
CN216956426U (zh) 照明***以及光机***
JP6686443B2 (ja) 波長板、偏光変換素子、およびプロジェクター
JP2020112643A (ja) 光源装置、プロジェクター及び蛍光体ロッド
JP2013190549A (ja) 偏光変換素子、照明装置およびプロジェクター
JP2009210675A (ja) 光学系およびプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014503469

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382817

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13757532

Country of ref document: EP

Kind code of ref document: A1