WO2013131235A1 - 一类以萘为母体的双光子荧光探针、其制备方法及应用 - Google Patents

一类以萘为母体的双光子荧光探针、其制备方法及应用 Download PDF

Info

Publication number
WO2013131235A1
WO2013131235A1 PCT/CN2012/071940 CN2012071940W WO2013131235A1 WO 2013131235 A1 WO2013131235 A1 WO 2013131235A1 CN 2012071940 W CN2012071940 W CN 2012071940W WO 2013131235 A1 WO2013131235 A1 WO 2013131235A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
compound
photon
hours
fluorescent probe
Prior art date
Application number
PCT/CN2012/071940
Other languages
English (en)
French (fr)
Inventor
彭孝军
仉华
樊江莉
王静云
宋锋玲
孙世国
Original Assignee
大连理工大学
大连科荣生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 大连科荣生物技术有限公司 filed Critical 大连理工大学
Priority to PCT/CN2012/071940 priority Critical patent/WO2013131235A1/zh
Priority to JP2014541508A priority patent/JP5997288B2/ja
Priority to US14/383,000 priority patent/US9182350B2/en
Priority to EP20120870663 priority patent/EP2778161B1/en
Publication of WO2013131235A1 publication Critical patent/WO2013131235A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers

Definitions

  • the present invention relates to a two-photon fluorescent probe using naphthalene as a parent, a process for the preparation thereof, and the use of such a fluorescent probe compound in tumor cell or tissue markers. Background technique
  • the existing methods of imaging of markup books mainly include: X-ray detection technology, ultrasonic detection technology, CT detection technology, magnetic resonance (MRI) detection technology, infrared thermal image detection technology, near-infrared scanning detection technology, PET-CT detection Technology, etc.
  • Two-photon fluorescence microscopy has become the most important imaging tool in life science research.
  • Two-photon fluorescence microscopy has significant advantages over traditional single-photon fluorescence confocal microscopy, including near-infrared excitation, dark-field imaging, avoidance of fluorescent bleaching and phototoxicity, target excitation, high lateral resolution and vertical resolution, and reduced Biological tissue absorbance and reduction of tissue autofluorescence interference (Helmchen F, Svoboda K, Denk W et al. Nature, 1999, 2: 989-996. Maiti S, Shear JB, Williams RM et al. Science, 1997, 275: 530. Ventelon L, Charier S, Moreaux L et al.
  • two-photon microscopy imaging provides a new platform for bioimaging.
  • the development of a uniquely labeled tumor two-photon fluorescent probe is a two-photon tumor imaging method. The essential. Summary of the invention
  • the invention provides a two-photon fluorescent probe with naphthalene as a precursor, the fluorescent probe having the structure of the general formula I (with the accompanying drawing
  • X is selected from the group consisting of Xi, x 2 , X 3 and X 4 ; X is linked to the formula I by a dashed bond;
  • Ri and R 2 are each independently selected from -OCH 3 , -OCOCH 3 and halogen;
  • R 3 is selected from the group consisting of -CH 2 -, - (CH 2 ) 2 -, -(CH 2 ) 3 -, -(CH 2 ) 4 -, -(CH 2 ) 5 -, -(CH 2 ) 6 -, - (CH 2 ) 7 - and -CH 3 ) 8 -; selected from C 1-6 alkyl, HOCH 2 -, HO(CH 2 ) 2 -, HO(CH 2 ) 3 -, HO(CH 2 ) 4 -, HO(CH 2 ) 5 - and HO(CH 2 ) 6 - ;
  • R 5 is selected from the group consisting of -H, -CN, -COOH, -NH 2 , -N0 2 , -OH and -SH.
  • Another aspect of the invention provides a method for preparing the two-photon fluorescent probe using naphthalene as a precursor, the method comprising the following: 1) 4-bromo-1,8-naphthalic anhydride and R4-NH 3 molar ratio 1: 1 1 : 5 reaction, preparation of compound V:
  • the reaction temperature is 70-150 ° C, the reaction time is 1-12 hours, and the reaction solvent is selected from the group consisting of dichloromethane, ethanol, ethyl acetate, acetic acid or a mixture thereof;
  • the reaction temperature is 70-150 ° C, the reaction time is 1-12 hours, and the reaction solvent is selected from the group consisting of dichloromethane, ethanol, acetic acid acetic acid or a mixture thereof;
  • the reaction temperature is 70-150 ° C, the reaction time is 1-12 hours, and the reaction solvent is selected from the group consisting of dichloromethane, ethanol, acetic acid acetic acid or a mixture thereof;
  • Compound VIII is prepared by reacting hydrazine, malononitrile and dimethyl sulfoxide in a molar ratio of 1:1:5:
  • reaction temperature is gradually raised and controlled at 70-180 ° C, and the reaction is carried out at the reaction temperature for 4-12 hours, and the reaction solvent is dimethyl sulfoxide, tetrahydrofuran or they are reacted with a mixture of water
  • the reaction temperature is 100-175 ° C
  • the reaction time is 1-7 hours
  • the reaction solvent is ethanol, ethylene glycol monomethyl ether or a mixture thereof.
  • Compound I is prepared by reacting compound IX, X, XI, XII with formula ii in a molar ratio of 1:1 to 1:3:
  • the reaction temperature is 0-100 ° C
  • the reaction time is 12-48 hours
  • the reaction solvent is dichloromethane, ethanol, ethyl acetate or a mixture thereof
  • the reaction is carried out in the presence of an organic base, and 4-dimethylaminopyridine is used. catalyst.
  • the present invention provides the use of the above two-photon fluorescent probes using naphthalene as a parent in biological sample labeling, particularly tumor cells and tissue markers.
  • the invention improves the performance of the existing tumor-labeled fluorescent probes, designs and synthesizes two-photon excitation, and is suitable for effective and specific two-photon fluorescent probes for labeling cancer living cells and cancerous tissues.
  • These two-photon fluorescent dyes have a low fluorescence background in non-tumor cells and tissues, have strong fluorescent signals in tumor cells and tissues, and have strong specific markers for tumor cells and tissues.
  • Such compounds have a certain level of water solubility while having good cell membrane permeability. It also has a large effective two-photon absorption cross section.
  • Such compounds of the invention also have low biotoxicity, phototoxicity, photobleachability.
  • the spectral range is sufficiently different from the spectral range of the biological sample.
  • Fig. 1 is a structural formula I of a two-photon fluorescent probe of naphthalene as a precursor of the present invention.
  • FIG. 2 is a two-photon confocal imaging image of tumor cells and non-tumor cells characterizing the fluorescent probe compound of the present invention in Example 2.
  • 4 L of 4 ⁇ M A ⁇ DMSO solution was added to Hela cells and HEK293 cells, and incubated at 37 ° C, 5% C0 2 for 60 minutes, representative regions were selected, and observed with oil mirror (100 ⁇ ), repeated three times. .
  • the picture collection band is 500-550 nm.
  • Figure 2 (a) shows hela tumor cells
  • Figure 2 (b) shows HEK293 tumor cells.
  • Fig. 3 is a graph showing the results of measurement of a two-photon absorption cross section in different solvents of the fluorescent probe compound of the present invention in Example 3.
  • the solvent was determined to be: dimethyl sulfoxide.
  • the measurement method is as follows: using a femtosecond two-photon-induced fluorescence method, using a fluorescein NaOH solution (pH ll) as a reference, the solution concentration is 1 ⁇ 10 - 4 ⁇ , the laser pulse width is 70 fs, the repetition frequency is 80 MHz, the laser The average output power is 1.5W (780nm) and the tunable wavelength range is 700 ⁇ 980 nm. In the experiment, the femtosecond laser wavelength is adjusted to the required test wavelength.
  • FIG. 4 is a double light of tumor cells and non-tumor cells which characterize the fluorescent probe compound A 2 of the present invention in Example 5.
  • Sub-confocal imaging images 4 L of A 2 -DMSO solution was added to Hela cells and HEK293 cells, and incubated at 37 ° C under 5% C0 2 for 60 minutes. Representative regions were selected and observed with oil mirror (100 ⁇ ). .
  • the picture collection band is 500-550 nm.
  • Figure 4 (a) shows hela tumor cells
  • Figure 4 (b) shows HEK293 tumor cells.
  • Fig. 5 is a graph showing the water solubility characterization of the fluorescent probe compound octa 2 of the present invention in Example 6. 2 using eight different aqueous concentrations of compounds, the absorbance was measured at a maximum absorption wavelength. repeat three times.
  • Fig. 6 is a graph showing the solvation effect characterization of the fluorescent probe compound A 3 of the present invention in Example 8.
  • Compound A 3 was added to dimethyl sulfoxide or tetrahydrofuran, respectively.
  • the ultraviolet absorption spectrum (a) and the fluorescence emission spectrum (b) in different solvents were measured.
  • Figure 7 is a graph showing the results of two-photon absorption cross-section characterization of the fluorescent probe compound A 3 of the present invention in Example 9 in Example 9.
  • the detection solvent is: dimethyl sulfoxide, tetrahydrofuran.
  • the measurement method is as follows: a femtosecond two-photon induced fluorescence method is used, and a fluorescein NaOH solution (pH ll) is used as a reference.
  • the concentration of the A 3 solution used is 1 ⁇ 10 - 4 ⁇
  • the laser pulse width is 70 fs
  • the repetition frequency is 80 MHz
  • the laser is used.
  • the average output power is 1.5W (780nm) and the tunable wavelength range is 700 980 nm.
  • the femtosecond laser wavelength is adjusted to the required test wavelength.
  • Figure 8 is a two-photon confocal imaging image of the mouse lung tumor tissue and mouse lung non-tumor tissue characterizing the fluorescent probe compound A 4 of the present invention in Example 11.
  • 4 L of A 4 -DMSO solution with a concentration of ⁇ was added to the lung tissue sections of the mice and non-tumor sections of the lungs of the mice, and representative regions were selected and observed with an oil microscope (100 ⁇ ) and repeated three times.
  • Figure 8 (al) and (a2) are focused images of lung tumor tissue sections of mice after the addition of probe A 4
  • Figures 8 (bl) and (b2) are non-tumor tissues of mouse lungs after addition of probe A 4 Sliced focused picture.
  • the acquisition band of Figure 8 (al) and Figure 8 (bl) is 500-550nm
  • the acquisition band of Figure 8 (a2) and Figure 8 (b2) is 570-650nm.
  • FIG 9 is a fluorescent probe compound in Example 12 of the present invention, the water solubility of the results of characterization of eight 4.
  • the absorbance at the maximum absorption wavelength was determined using an aqueous solution of Compound A 4 in various concentrations. repeat three times.
  • Figure 10 is a two-photon confocal imaging image of tumor cells and non-tumor cells characterizing the fluorescent probe compound A 5 of the present invention in Example 14. 4 L of A 5 -DMSO solution was added to Hela cells and HEK293 cells, and incubated at 37 ° C 5% C0 2 for 60 minutes. Representative regions were selected and observed with oil mirror (100 ⁇ ). .
  • Figure 10 (al) and Figure 10 (a2) are hela cells
  • Figure 10 (bl) and Figure 10 (b2) are HEK293 cells
  • the acquisition bands of Figure 10 (al) and Figure 10 (bl) are 500-550 nm
  • the acquisition band of Figure 10 (a2) and Figure 10 (b2) is 570-650.
  • Figure 11 is a two-photon confocal imaging image showing the fluorescent probe compound A 5 of the present invention in mouse lung tumor tissue and mouse lung non-tumor tissue in Example 15. 4 L of A 5 -DMSO solution with a concentration of ⁇ was added to the lung tissue sections of the mice and non-tumor sections of the lungs of the mice, and representative regions were selected and observed with an oil microscope (100 ⁇ ) and repeated three times.
  • Figure 11 (al) and Figure 11 (a2) are mouse lung tumor tissues
  • Figure 11 (bl) and Figure 11 (b2) are mouse lung non-tumor tissues
  • the acquisition band is 500-550nm
  • the acquisition band of Figure 11 (a2) and Figure 11 (b2) is 570-650nm.
  • Figure 12 is a graph showing the solvation effect characterization of the fluorescent probe compound A 6 of the present invention in Example 17.
  • the detection solvent is Dimethyl sulfoxide. The ultraviolet absorption spectrum and the fluorescence emission spectrum in different solvents were measured.
  • Fig. 13 is a graph showing the results of measurement of the two-photon absorption cross section in different solvents of the fluorescent probe compound A 6 of the present invention in Example 18.
  • the solvent was determined to be: dimethyl sulfoxide or tetrahydrofuran.
  • the measurement method is as follows: using a femtosecond two-photon-induced fluorescence method, using a fluorescein NaOH solution (pH ll) as a reference, the solution concentration is 1 ⁇ 10 - 4 ⁇ , the laser pulse width is 70 fs, and the repetition frequency is 80 MHz.
  • the average output power of the laser is 1.5W (780nm) and the tunable wavelength range is 700 ⁇ 980 nm.
  • the femtosecond laser wavelength is adjusted to the required test wavelength. detailed description
  • alkyl as used herein includes both straight chain alkyl and branched alkyl groups.
  • the shell IJ refers only to a linear alkyl group, and when referring to a single branched alkyl group such as “isopropyl”, it is specifically referred to as a branched alkyl group.
  • d- 6 alkyl includes CM alkyl, d- 3 alkyl, methyl, ethyl, n-propyl, isopropyl and t-butyl. Similar rules apply to the other groups used in this specification.
  • halogen as used herein includes fluoro, chloro, bromo and iodo.
  • R 2 are each independently selected from -OCH 3 , -OCOCH 3 and a halogen; in a preferred embodiment, and R 2 are each independently selected from -OCH 3 or a halogen; More preferably, and R 2 are each independently selected from -OCH 3 or -C1; most preferably, lU-OCH 3 , R 2 are both -Cl.
  • R 3 is preferably -(CH 2 ) 3 ⁇ 7 - ; most preferably -(CH 2 ) 5 - and -(CH 2 ) 6 -.
  • R 4 is d 6 alkyl; most preferably, R 4 is d 4 alkyl.
  • R 5 is selected from the group consisting of -H, -CN, -COOH, -NH 2 , -N0 2 , -OH and -SH; preferably -H, -CN, -COOH, -NH 2 and -N0 2 ; More preferably, -H, -CN, -COOH, and -N0 2 ; most preferably -H and -N0 2 .
  • the present invention provides a method for preparing a two-photon fluorescent probe having naphthalene as a precursor according to the present invention, which comprises the following steps:
  • the reaction temperature is 70-150 ° C, the reaction time is 1-12 hours, and the reaction solvent is selected from the group consisting of dichloromethane, ethanol, ethyl acetate, acetic acid or a mixture thereof;
  • the reaction temperature is 80-140 ° C
  • the reaction time is 2-10 hours
  • the reaction solvent is selected from the group consisting of ethanol, ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalic anhydride and R4 -NH 3 moles is 1: 1- 1 : 4
  • the reaction temperature is 90-120 ° C
  • the reaction time is 3-10 hours
  • the reaction solvent is selected from ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalene anhydride and R4- NH 3 moles are 1:1 - 1:3;
  • the reaction temperature is 95-110 ° C
  • the reaction time is 4-8 hours
  • the reaction solvent is selected from the group consisting of acetic acid, 4-bromo-1,8-naphthalene anhydride and R4-NH 3 moles are 1:1. -1:2;
  • the reaction temperature is 70-150 ° C, the reaction time is 1-12 hours, and the reaction solvent is selected from the group consisting of dichloromethane, ethanol, ethyl acetate, acetic acid or a mixture thereof;
  • the reaction temperature is 80-140 ° C
  • the reaction time is 2-10 hours
  • the reaction solvent is selected from the group consisting of ethanol, ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalic anhydride and R4 -NH 3 moles is 1:1 - 1:4;
  • the reaction temperature is 90-120 ° C
  • the reaction time is 3-10 hours
  • the reaction solvent is selected from ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalene anhydride and R4- NH 3 moles are 1:1 - 1:3;
  • the reaction temperature is 95-110 ° C
  • the reaction time is 4-8 hours
  • the reaction solvent is selected from the group consisting of acetic acid, 4-bromo-1,8-naphthalene anhydride and R4-NH 3 moles are 1:1. -1:2;
  • reaction temperature is 70-150 ° C
  • reaction time is 1-12 hours
  • reaction solvent is selected from the group consisting of dichloromethane, ethanol, ethyl acetate, acetic acid or a mixture thereof;
  • the reaction temperature is 80-140 ° C
  • the reaction time is 2-10 hours
  • the reaction solvent is selected from the group consisting of ethanol, ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalic anhydride and R4 -NH 3 molar ratio is 1:1 - 1:4;
  • the reaction temperature is 90-120 ° C
  • the reaction time is 3-10 hours
  • the reaction solvent is selected from ethyl acetate, acetic acid or a mixture thereof, 4-bromo-1,8-naphthalene anhydride and R4- NH 3 moles are 1:1 - 1:3;
  • the reaction temperature is 95-110 ° C
  • the reaction time is 4-8 hours
  • the reaction solvent is selected from the group consisting of acetic acid, 4-bromo-1,8-naphthalene anhydride and R4-NH 3 moles are 1:1. -1:2;
  • Compound VIII is prepared by reacting hydrazine, malononitrile and dimethyl sulfoxide in a molar ratio of 1:1:5:
  • reaction temperature is gradually raised and controlled at 70-180 ° C, and the reaction is carried out at the reaction temperature for 4-12 hours, and the reaction solvent is dimethyl sulfoxide, tetrahydrofuran or they are reacted with a mixture of water;
  • the reaction is first carried out at room temperature for 0.5 hour, the reaction temperature is gradually increased and controlled at 80-160 ° C, and the reaction is carried out for 4-10 hours at the reaction temperature, and the reaction solvent is dimethyl amide.
  • the reaction solvent is dimethyl amide. a sulfone, tetrahydrofuran or a mixture thereof with water;
  • the reaction is first carried out at room temperature for 0.5 hours, the reaction temperature is gradually increased and controlled at 90-140 ° C, and the reaction is carried out at the reaction temperature for 4-8 hours, and the reaction solvent is dimethyl a sulfoxide or a mixture thereof with water;
  • the reaction is first carried out at room temperature for 0.5 hours, the reaction temperature is gradually increased and controlled at 100-120 ° C, and the reaction is carried out at the reaction temperature for 4-6 hours, and the reaction solvent is dimethyl.
  • the reaction temperature is 100-175 ° C, the reaction time is 1-7 hours, and the reaction solvent is ethanol, ethylene glycol monomethyl ether or a mixture thereof;
  • the reaction temperature is 100-165 ° C
  • the reaction time is 1-6 hours
  • the reaction solvent is ethanol, ethylene glycol monomethyl ether or a mixture thereof
  • the compounds V, VI, VII, VIII and NH 2 are respectively R 3 NH 2 molar is 1: 1 : 1 : 2.5;
  • the reaction temperature is 100-150 ° C, the reaction time is 1-5 hours, the reaction solvent is ethanol, ethylene glycol monomethyl ether or a mixture thereof, and the compounds V, VI, VII, VIII and NH are respectively 2 R 3 NH 2 molar is 1: 1 : 1; In a most preferred embodiment, the reaction temperature is 100-130 ° C, the reaction time is 1-4 hours, and the reaction solvent is ethylene glycol. Monomethyl ether, compounds V, VI, VII, VIII and NH 2 R 3 NH 2 moles are respectively 1: 1 - 1: 1.5;
  • the reaction temperature is 0-100 ° C
  • the reaction time is 12-48 hours
  • the reaction solvent is dichloromethane, ethanol, ethyl acetate or a mixture thereof
  • the reaction is carried out in the presence of an organic base to a 4-dimethylaminopyridine catalyst. .
  • the reaction temperature is 10-80 ° C
  • the reaction time is 12-32 hours
  • the reaction solvent is dichloromethane, ethanol, ethyl acetate or a mixture thereof
  • the reaction is carried out in the presence of an organic base to 4 - dimethylaminopyridine catalyst, the compound IX, X, XI, XII and the formula ii molar is 1: 1 : 1;
  • the reaction temperature is 20-70 ° C
  • the reaction time is 12-24 hours
  • the reaction solvent is dichloromethane, ethyl acetate or a mixture thereof
  • the reaction is carried out in the presence of an organic base to 4-
  • the dimethylaminopyridine catalyst, the compound IX, X, XI, XII and the formula ii mole is 1: 1 : 1; 2.5;
  • the reaction temperature is 25-40 ° C
  • the reaction time is 12-24 hours
  • the reaction solvent is dichloromethane
  • the reaction is carried out in the presence of an organic base, using a 4-dimethylaminopyridine catalyst, a compound IX, X, XI, ⁇ and formula ii moles are 1: 1 : 1 : 1.5;
  • the two-photon fluorescent probe compound synthesized by the above method using the above method is confirmed by a nuclear magnetic resonance spectrum or a mass spectrometer, and is complemented by a carbon spectrum and a melting point test to confirm the structure.
  • the compound introduces a specific targeting point, which enhances the specificity and specificity of tumor cell and tissue markers; the compound has excellent two-photon performance and has low biophotobleaching when applied to biological samples. , photodamage and biological toxicity, and the resulting fluorescent signal can penetrate deeper biological tissues;
  • the partial emission of the compound has a fluorescence emission wavelength of more than 600 nm, and can be used for living body imaging of animals;
  • the molecule with a nitro group in the compound can be used as a proportional probe for labeling tumor cells and tissues, can achieve good quantitative labeling, and can avoid interference of external environmental factors on fluorescence intensity;
  • the two-photon fluorescent probe compound of the present invention can be used for tumor cell and tissue markers.
  • compositions containing the two-photon fluorescent probe compounds of the present invention can also be used for staining of tumor cells and tissues.
  • One of the two-photon fluorescent probe compounds provided by the present invention should be included in the composition in an effective amount.
  • other components required for dyeing biological samples such as solvents, pH adjusters, and the like, may also be included. These components are known in the industry.
  • the above composition may be present in the form of an aqueous solution or may be present in other suitable forms which are formulated as solutions in water prior to use.
  • the present invention also provides a method of labeling tumor cells and tissue biological samples using the two-photon fluorescent probe compound of the present invention described above, the method comprising the step of contacting the compound with a biological sample.
  • contacting as used herein may include contacting in a solution or a solid phase.
  • Example 1 The following non-limiting examples are provided to enable a person of ordinary skill in the art to understand the invention, but not to limit the invention in any way.
  • Example 1
  • Example 1 Compound A synthesized in Example 1 was added to HeLa cells and HEK293 cells in 4 ⁇ L of A DMSO solution at a concentration of 4 ⁇ M, and Hela cells and HEK293 cells to which probes were added were cultured at 37 ° C, 5% CO 2 . Incubate for 60 minutes in the base. Then, PBS was shaken and rinsed for 5 minx3, then cell culture medium was added, and two-photon laser confocal imaging was performed. Representative areas were selected and observed with an oil mirror (lOOx) and repeated three times. Imaging showed strong fluorescent signals in HeLa cells and no fluorescent signal in HEK293 cells.
  • Fig. 2(a) is a focused picture of Hela cells after the probe is added
  • Fig. 2(b) is a focused picture of Hela cells after the probe is added. The picture collection band is 500-550 nm.
  • Example 3 Example 3
  • C is the concentration of the solution
  • n is the refractive index of the solvent, which can be obtained by looking up the table.
  • F is the upconversion fluorescence intensity, as measured by the experiment.
  • is a two-photon absorption cross section. The physical quantities of the reference solution are indicated by the subscript r.
  • the excitation source of the two-photon excited fluorescence spectrum is a mode-locked femtosecond titanium sapphire laser with a laser pulse width of 70 fs and a repetition rate of 80 MHz.
  • the average output power of the laser is 1.5W (780nm) and the adjustable wavelength range is 700 ⁇ 980 nm.
  • the femtosecond laser wavelength was adjusted to the desired test wavelength.
  • Example 4 The compound A 2 synthesized in the above Example 4 was added to water, and the absorbance at the maximum absorption wavelength of the aqueous solution of different concentrations of A 2 was measured. The test results showed that when the concentration of the compound A 2 was 5 ⁇ , the absorbance value did not shift, that is, the solubility of the compound ⁇ 2 in water was 5 ⁇ .
  • Figure 5 is the absorbance at the maximum absorption wavelength of the different probe ⁇ 2 concentrations.
  • the instruments used were the Agilent 8453 UV Spectrophotometer.
  • the compound A 3 synthesized in the above Example 7 is separately added to a solvent such as methanol, ethanol, acetone, acetonitrile, dioxane, dimethyl sulfoxide, tetrahydrofuran, N,N-dimethylformamide or water.
  • a solvent such as methanol, ethanol, acetone, acetonitrile, dioxane, dimethyl sulfoxide, tetrahydrofuran, N,N-dimethylformamide or water.
  • the ultraviolet absorption spectrum and the fluorescence emission spectrum in different solvents were measured. The test results show that as the polarity of the solvent changes, the maximum absorption wavelength in the ultraviolet absorption spectrum has a corresponding shift, and the fluorescence emission spectrum also has the movement of the maximum emission wavelength.
  • Figure 6 (a) shows the ultraviolet absorption spectrum of probe A 3 in different solvents
  • Figure 6 (b) shows the fluorescence emission spectrum of probe A 3 in different solvents.
  • the instruments used
  • the probe compound A 3 synthesized in the above Example 7 was separately added to methanol, ethanol, acetone, acetonitrile, and dioxane.
  • the two-photon absorption cross-section value can be obtained.
  • the two-photon effective absorption cross section ( ⁇ ⁇ ) in different solvents and different wavelengths is used.
  • the excitation source of the two-photon excitation fluorescence spectrum is a mode-locked femtosecond titanium sapphire laser.
  • the laser pulse width is 70 fs
  • the repetition frequency is 80 MHz
  • the average output power of the laser is 1.5 W (780 nm)
  • the adjustable wavelength range is 700 ⁇ 980 nm.
  • the femtosecond laser wavelength is adjusted to the required test wavelength.
  • the mouse lung tumor tissue sections and the mouse lung non-tumor tissue sections were respectively immersed in the ⁇ PBS solution of the compound 4 synthesized in the above Example 10, taken out after 30 minutes, loaded, sealed, and subjected to two-photon laser confocal imaging. Fluorescent picture. Two-photon laser confocal imaging showed strong fluorescence signals in tumor tissue sections of mouse lungs, and no fluorescence signal was collected in non-tumor tissue sections of mouse lungs.
  • Figure 8 (al) and (a2) are the focused images of the lung tumor tissue sections of mice after the addition of probe A 4
  • Figures 8 (bl) and (b2) are the non-tumor tissues of the lungs of mice after the addition of probe A 4 Sliced focused picture.
  • the acquisition bands of Figure 8 (al) and Figure 8 (bl) are 500-550 nm
  • the acquisition bands of Figure 8 (a2) and Figure 8 (b2) are 570-650 nm.
  • Example 15
  • mice lung tumor tissue sections and the mouse lung non-tumor tissue sections were respectively immersed in the PBS solution of the compound A 5 synthesized in the above Example 13 (concentration ⁇ ), taken out after 30 minutes, loaded, sealed, two-photon Laser confocal shooting of fluorescent pictures.
  • Two-photon laser confocal imaging showed strong fluorescence signals in tumor tissue sections of mouse lungs, and no fluorescence signal was collected in non-tumor tissue sections of mouse lungs.
  • the acquisition band is 500-550 nm, and the acquisition band of Figure 11 (a2) and Figure 11 (b2) is 570-650 nm.
  • Example 16 The compound A 6 synthesized in the above Example 16 was separately added to a solvent such as methanol, ethanol, acetone, acetonitrile, dioxane, dimethyl sulfoxide, tetrahydrofuran, N,N-dimethylformamide or water.
  • a solvent such as methanol, ethanol, acetone, acetonitrile, dioxane, dimethyl sulfoxide, tetrahydrofuran, N,N-dimethylformamide or water.
  • the ultraviolet absorption spectrum and the fluorescence emission spectrum in different solvents were measured. The test results show that as the polarity of the solvent changes, the maximum absorption wavelength in the ultraviolet absorption spectrum has a corresponding shift, and the fluorescence emission spectrum also has the movement of the maximum emission wavelength.
  • FIG. 12 (a) is the eight probes 6 in the ultraviolet absorption spectra in different solvents
  • FIG. 12 (b) the emission spectrum of the fluorescent probe A 6 in different solvents
  • the excitation source of the two-photon excited fluorescence spectrum is a mode-locked femtosecond titanium sapphire laser with a laser pulse width of 70 fs, repetition rate. At 80 MHz, the laser has an average output power of 1.5 W (780 nm) and a tunable wavelength range of 700 to 980 nm. In the experiment, the femtosecond laser wavelength is adjusted to the desired test wavelength.
  • the above is in connection with the specific preferred embodiment of the present invention.
  • the detailed description of the present invention is not intended to be limited to the description. It is to be understood that those skilled in the art can make some simple deductions or substitutions without departing from the inventive concept. It should be considered as belonging to the scope of protection of the present invention.
  • fluorescent dye is a use of the novel compound of the present invention, it cannot be considered
  • the compounds of the invention are only used in fluorescent dyes, and one of ordinary skill in the art can also make a number of simple inferences based on the same mechanism of action of the compounds of the invention as fluorescent dyes. Other uses of the compounds of the invention are considered to be within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Materials Engineering (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一类以萘为母体的双光子荧光探针,所述荧光探针具有通式I的结构(附图1),式I中:X选自式Χ1、X2、X3和X4;该类双光子荧光染料在非肿瘤细胞和组织内具有较低的荧光背景,在肿瘤细胞和组织内具有较强的荧光信号,且对肿瘤细胞和组织具有很强的专一性标记。这类化合物具有一定水平的水溶性,同时具有良好的细胞膜通透性。并且还具有较大的有效的双光子吸收截面。本发明的这类化合物同时还具有较低的生物毒性、光毒性、光漂白性。其光谱范围与生物样品的光谱范围有足够大的差异。

Description

一类以萘为母体的双光子荧光探针、 其制备方法及应用
技术领域
本发明涉及一类以萘为母体的双光子荧光探针、 其制备方法, 以及利用该类荧光探针化 合物在肿瘤细胞或组织标记中的应用。 背景技术
当前, 癌症发病率正处于 "井喷"说前期。 世界卫生组织国际癌症研究中心公布的 《世界 癌症报告》 中说明, 根据目前癌症的发病趋势, 到 2020 年全世界癌症发病率将比现在增加 50% ,全球每年新增癌症患者人数将达到 1500万人。所以建立一种简便的、快速的、有效的、 灵敏的癌症标记技术是一项重要的工作。 现有的标记书成像的方法主要有: X线检测技术、 超 声波检测技术、 CT检测技术、 磁磁共振 (MRI)检测技术、 红外热像图检测技术、 近红外线 扫描检测技术、 PET-CT检测技术等。但上述方法在实际成像应用中存在以下缺陷: 缺乏成像 专一性, 具有大的放射性损伤, 无法独立标记诊断肿瘤, 无法对肿瘤进行深度成像等等。 荧 光标记的光学分子成像的出现为现存的问题提供了一种很好的解决方法。 目前, 菲啶类 (EB、 PI) 吖啶类 (AO)、 咪唑类 (Hoechst、 DAPI)和花菁家族类 (Cy、 TOTO、 SYTO)等商品化荧光 染料在基因组学技术、 核酸定量检测、 血细胞分析等领域中都起到了重要的作用。 然而, 用 于肿瘤细胞及组织标记的荧光染料与探针还相对较少, 且标记性能较差。
随着双光子技术的发展, 双光子荧光显微镜在生命科学的研究中已经成为最重要的成像 工具。 与传统的单光子荧光共聚焦显微镜相比, 双光子荧光显微镜具有显著优势, 包括近红 外激发、 暗场成像、 避免荧光漂白和光致毒、 定靶激发、 高横向分辨率与纵向分辨率、 降低 生物组织吸光系数及降低组织自发荧光干扰等 (Helmchen F, Svoboda K, Denk W et al. Nature, 1999, 2:989-996. Maiti S, Shear J B, Williams R M et al. Science, 1997, 275:530. Ventelon L, Charier S, Moreaux L et al. Angewandte Chemie International Edition, 2001, 40: 2098. ), 因此双 光子显微成像技术为生物成像提供了一个崭新的平台。 而对肿瘤标记成像、 其活体内分布成 像以及肿瘤深度成像的专一性双光子荧光探针还相对较少, 开发专一性好的标记肿瘤的双光 子荧光探针是实现双光子肿瘤成像的关键。 发明内容
本发明提供一类以萘为母体的双光子荧光探针, 所述荧光探针具有通式 I的结构 (附图
Figure imgf000003_0001
其巾:
X选自 Xi、 x2、 X3和 X4; X通过虚线键与通式 I相连;
Figure imgf000003_0002
Ri和 R2各自独立地选自 -OCH3、 -OCOCH3和卤素;
R3选自 - CH2-、 - (CH2)2-、 -(CH2)3-、 -(CH2)4-、 -(CH2)5-、 -(CH2)6-、 -(CH2)7-禾口 -(CH2)8-; 选自 C1-6烷基、 HOCH2-、 HO(CH2)2-、 HO(CH2)3-、 HO(CH2)4-、 HO(CH2)5-和 HO(CH2)6-; R5选自 -H、 -CN、 -COOH、 -NH2、 -N02、 -OH和 -SH。
发明另一方面提供所述以萘为母体的双光子荧光探针的制备方法, 所述方法包括如下 1) 4-溴 -1,8-萘酐与 R4-NH3按摩尔比 1 :1- 1 :5反应, 制备化合物 V:
Figure imgf000003_0003
V
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酯、 醋酸或其混合物;
2) 4-溴 -1,8-萘酐与式 i的化合物按照摩尔比 1 :1- 1 :5反应, 制备化合物 VI:
Figure imgf000003_0004
VI 反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酷 醋酸或其混合物;
3) 4-溴苊醌与式 i的化合物 备化合物 VII:
Figure imgf000004_0001
VII
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酷 醋酸或其混合物;
4)使苊醌、 丙二腈、 二甲基亚砜按照摩尔比 1 :1 :5反应, 制备化合物 VIII:
Figure imgf000004_0002
VIII
反应先在室温下进行 0.5小时后, 逐渐升高反应温度并控制在 70-180°C, 在该反应温度 下反应进行为 4-12小时, 反应溶剂为二甲基亚砜、 四氢呋喃或它们与水组成的混合物
5)将步骤 1)-4)中制备得到的化合物 V, VI, VII, VIII分别与 NH2R3NH2按照摩尔比 1 :1- 1 :2.5反应, 制备化合物 IX, X, XI, XII:
Figure imgf000004_0003
XI XII
反应温度为 100-175°C, 反应时间为 1-7小时, 反应溶剂为乙醇、 乙二醇单甲醚或其混合
6) 使化合物 IX, X, XI, XII与式 ii按照摩尔比 1 :1- 1 :3反应, 制备化合物 I:
Figure imgf000005_0001
反应温度为 0-100°C, 反应时间为 12-48小时, 反应溶剂为二氯甲烷、 乙醇、 乙酸乙酯 或其混合物, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶为催化剂。
上述对本发明的以萘为母体的双光子荧光探针制备方法的描述中, 各个取代基的定义, 即对 、 R2、 R3、 R4和 R5的定义, 均与上述对化合物的描述中的定义相同。
再一方面, 本发明提供上述以萘为母体的双光子荧光探针在生物样品标记、尤其是肿瘤 细胞和组织标记中的应用。
本发明改进现有的肿瘤标记荧光探针性能上的不足, 设计并合成出双光子激发、适用于 有效的、 专一的标记癌症活细胞和癌变组织的双光子荧光探针。 该类双光子荧光染料在非肿 瘤细胞和组织内具有较低的荧光背景, 在肿瘤细胞和组织内具有较强的荧光信号, 且对肿瘤 细胞和组织具有很强的专一性标记。 这类化合物具有一定水平的水溶性, 同时具有良好的细 胞膜通透性。 并且还具有较大的有效的双光子吸收截面。 本发明的这类化合物同时还具有较 低的生物毒性、 光毒性、 光漂白性。 其光谱范围与生物样品的光谱范围有足够大的差异。 附图说明
本发明附图 13幅:
图 1是本发明的以萘为母体的双光子荧光探针的结构通式 I。
图 2是实施例 2中表征本发明的荧光探针化合物 的在肿瘤细胞与非肿瘤细胞的双光 子共聚焦成像图片。将 4 L浓度为 4μΜ的 A^DMSO溶液分别加入到的 Hela细胞和 HEK293 细胞, 在 37°C, 5% C02下孵育 60分钟, 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 图片收集波段 500-550nm。 图 2 (a) 为 hela肿瘤细胞, 图 2 (b) 为 HEK293肿瘤细胞。
图 3是实施例 3中本发明的荧光探针化合物 的不同溶剂中双光子吸收截面的测定结 果。 测定溶剂为: 二甲基亚砜。 测定方法为: 采用飞秒双光子诱导荧光方法, 利用荧光素的 NaOH溶液 (pH l l ) 作为参比, 所用 溶液浓度都为 1χ10—4 Μ, 激光脉冲宽 70 fs, 重复频 率 80 MHz, 激光器的平均输出功率 1.5W (780nm) , 可调波长范围 700〜980 nm, 在实验中 飞秒激光波长调至所需测试波长。
图 4是实施例 5中表征本发明的荧光探针化合物 A2的在肿瘤细胞与非肿瘤细胞的双光 子共聚焦成像图片。将 4 L浓度为 4μΜ的 A2-DMSO溶液分别加入到的 Hela细胞和 HEK293 细胞, 在 37°C 5% C02下孵育 60分钟, 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 图片收集波段 500-550nm。 图 4 (a) 为 hela肿瘤细胞, 图 4 (b) 为 HEK293肿瘤细胞。
图 5是实施例 6中本发明的荧光探针化合物八2的水溶解性表征结果。使用化合物八2不 同浓度的水溶液, 测定其在最大吸收波长下吸光度。 重复三次。
图 6是实施例 8中本发明的荧光探针化合物 A3的溶剂化效应表征结果。将化合物 A3分 别加入到的二甲基亚砜、四氢呋喃。测定不同溶剂中的紫外吸收光谱(a)和荧光发射光谱(b)。
图 7是实施例 9中本发明的荧光探针化合物 A3在不同溶剂中双光子吸收截面表征结果。 检测溶剂为: 二甲基亚砜、 四氢呋喃。 测定方法为: 采用飞秒双光子诱导荧光方法, 利用荧 光素的 NaOH溶液 (pH ll) 作为参比, 所用 A3溶液浓度都为 1χ10—4Μ, 激光脉冲宽 70 fs 重复频率 80 MHz, 激光器的平均输出功率 1.5W (780nm) , 可调波长范围 700 980 nm, 在 实验中飞秒激光波长调至所需测试波长。
图 8是实施例 11中表征本发明的荧光探针化合物 A4的在小鼠肺部肿瘤组织与小鼠肺部 非肿瘤组织的双光子共聚焦成像图片。 将 4 L浓度为 ΙΟμΜ的 A4-DMSO溶液分别加入到的 小鼠肺部肿瘤组织切片和小鼠肺部非肿瘤组织切片, 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 图 8 (al)和(a2)为加入探针 A4后小鼠肺部肿瘤组织切片的聚焦图片, 图 8 (bl) 和 (b2)为加入探针 A4后小鼠肺部非肿瘤组织切片的聚焦图片。其中图 8 (al)与图 8 (bl) 的采集波段为 500-550nm, 图 8 (a2) 与图 8 (b2) 的采集波段为 570-650nm
图 9是实施例 12中本发明的荧光探针化合物八4的水溶解性表征结果。 使用化合物 A4 不同浓度的水溶液, 测定其在最大吸收波长下吸光度。 重复三次。
图 10是实施例 14中表征本发明的荧光探针化合物 A5的在肿瘤细胞与非肿瘤细胞的双 光子共聚焦成像图片。将 4 L浓度为 4μΜ的 A5-DMSO溶液分别加入到的 Hela细胞和 HEK293 细胞, 在 37°C 5% C02下孵育 60分钟, 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 图 10 (al) 与图 10 (a2) 是 hela细胞, 图 10 (bl) 与图 10 (b2) 是 HEK293细胞, 其中图 10 (al) 与图 10 (bl) 的采集波段为 500-550nm, 图 10 (a2) 与图 10 (b2) 的采集波段为 570-650
图 11是实施例 15中表征本发明的荧光探针化合物 A5的在小鼠肺部肿瘤组织与小鼠肺 部非肿瘤组织的双光子共聚焦成像图片。 将 4 L浓度为 ΙΟμΜ的 A5-DMSO溶液分别加入到 的小鼠肺部肿瘤组织切片和小鼠肺部非肿瘤组织切片, 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 图 11 (al) 与图 11 (a2) 是小鼠肺部肿瘤组织, 图 11 (bl) 与图 11 (b2) 是小 鼠肺部非肿瘤组织, 其中图 11 (al) 与图 11 (bl) 的采集波段为 500-550nm, 图 11 (a2) 与 图 11 (b2) 的采集波段为 570-650nm
图 12是实施例 17中本发明的荧光探针化合物 A6的溶剂化效应表征结果。 检测溶剂为 二甲基亚砜。 测定不同溶剂中的紫外吸收光谱和荧光发射光谱。
图 13是实施例 18中本发明的荧光探针化合物 A6的不同溶剂中双光子吸收截面的测定 结果。 测定溶剂为: 二甲基亚砜、 四氢呋喃。 测定方法为: 采用飞秒双光子诱导荧光方法, 利用荧光素的 NaOH 溶液 (pH l l ) 作为参比, 所用 溶液浓度都为 1 χ 10—4 Μ, 激光脉冲宽 70 fs,重复频率 80 MHz,激光器的平均输出功率 1.5W ( 780nm),可调波长范围 700〜980 nm, 在实验中飞秒激光波长调至所需测试波长。 具体实施方式
除另有说明外, 本文中使用的术语具有以下含义。
本文中使用的术语 "烷基"包括直链烷基和支链烷基。 如提及单个烷基如"丙基", 贝 IJ只 特指直链烷基, 如提及单个支链烷基如 "异丙基" , 则只特指支链烷基。 例如, "d_6烷基" 包括 CM烷基、 d_3烷基、 甲基、 乙基、 正丙基、 异丙基和叔丁基。 类似的规则也适用于本 说明书中使用的其它基团。
本文中使用的术语 "卤素"包括氟、 氯、 溴和碘。
在本发明的通式化合物中,所述及的 和 R2各自独立地选自 -OCH3、 -OCOCH3和卤素; 优选的技术方案中, 和 R2各自独立地选自 -OCH3或卤素; 更优选 和 R2各自独立选自 -OCH3或 -C1; 最优选地, lU-OCH3, R2均为 -Cl。
所述及的 R3优选 -(CH2)3~7-; 最优选 -(CH2)5-和 -(CH2)6-。
所述及的 选自 C1-6烷基、 HOCH2-、 HO(CH2)2-、 HO(CH2)3-、 HO(CH2)4-、 HO(CH2)5- 和 HOCCH2)6-; 优选的技术方案中, R4 为 d_6烷基; 最为优选地, R4为 d_4烷基。
所述及的 R5选自 -H、 -CN、 -COOH、 -NH2、 -N02、 -OH禾口 -SH; 优选 -H、 -CN、 -COOH、 -NH2和 -N02; 更优选 -H、 -CN、 -COOH禾口 -N02; 最优选 -H和 -N02
另一方面, 本发明提供了上述本发明以萘为母体的双光子荧光探针的制备方法, 包括如 下步骤:
1) 4-溴 -1,8-萘酐与 R4-NH3按摩尔比 1 : 1- 1 :5 , 制备化合物 V:
Figure imgf000007_0001
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酯、 醋酸或其混合物;
优选的实施方式中, 反应温度为 80-140°C, 反应时间为 2-10小时, 反应溶剂选自乙醇、 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1 : 1- 1 :4; 进一步优选的实施方式中, 反应温度为 90-120°C, 反应时间为 3-10小时, 反应溶剂选自 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:3;
最优选的实施方式中, 反应温度为 95-110°C, 反应时间为 4-8小时, 反应溶剂选自醋酸, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:2;
2) 4-溴 -1,8-萘酐与式 i的化合物按照摩尔比 1:1- 1:5反应, 制备化合物 VI:
Figure imgf000008_0001
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酯、 醋酸或其混合物;
优选的实施方式中, 反应温度为 80-140°C, 反应时间为 2-10小时, 反应溶剂选自乙醇、 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:4;
进一步优选的实施方式中, 反应温度为 90-120°C, 反应时间为 3-10小时, 反应溶剂选自 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:3;
最优选的实施方式中, 反应温度为 95-110°C, 反应时间为 4-8小时, 反应溶剂选自醋酸, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:2;
3) 4-溴苊醌与式 i的化合物 备化合物 VII:
Figure imgf000008_0002
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酯、 醋酸或其混合物;
优选的实施方式中, 反应温度为 80-140°C, 反应时间为 2-10小时, 反应溶剂选自乙醇、 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔比为 1:1-1:4;
进一步优选的实施方式中, 反应温度为 90-120°C, 反应时间为 3-10小时, 反应溶剂选自 乙酸乙酯、 醋酸或其混合物, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:3;
最优选的实施方式中, 反应温度为 95-110°C, 反应时间为 4-8小时, 反应溶剂选自醋酸, 4-溴 -1,8-萘酐与 R4-NH3摩尔为 1:1-1:2;
4) 使苊醌、 丙二腈、 二甲基亚砜按照摩尔比 1:1:5反应, 制备化合物 VIII:
Figure imgf000009_0001
VIII
反应先在室温下进行 0.5小时后, 逐渐升高反应温度并控制在 70-180°C, 在该反应温度 下反应进行为 4-12小时, 反应溶剂为二甲基亚砜、 四氢呋喃或它们与水组成的混合物;
优选的实施方式中, 反应先在室温下进行 0.5 小时后, 逐渐升高反应温度并控制在 80-160 °C , 在该反应温度下反应进行为 4-10小时, 反应溶剂为二甲基亚砜、 四氢呋喃或它们 与水组成的混合物;
进一步优选的实施方式中, 反应先在室温下进行 0.5 小时后, 逐渐升高反应温度并控制 在 90-140°C, 在该反应温度下反应进行为 4-8小时, 反应溶剂为二甲基亚砜或它与水组成的 混合物;
最优选的实施方式中, 反应先在室温下进行 0.5 小时后, 逐渐升高反应温度并控制在 100-120 °C , 在该反应温度下反应进行为 4-6小时, 反应溶剂为二甲基亚砜;
5)将步骤 1)-4)中制备得到的化合物 V, VI, VII, VIII分别与 NH2R3NH2按照摩尔比 1 :1- 1 :2.5反应, 制备化合物 IX, X, XI, XII:
Figure imgf000009_0002
XI XII
反应温度为 100-175°C, 反应时间为 1-7小时, 反应溶剂为乙醇、 乙二醇单甲醚或其混合 物;
优选的实施方式中, 反应温度为 100-165 °C, 反应时间为 1-6小时, 反应溶剂为乙醇、 乙 二醇单甲醚或其混合物, 化合物 V, VI, VII, VIII分别与 NH2R3NH2摩尔为 1 :1- 1 :2.5;
进一步优选的实施方式中, 反应温度为 100-150°C, 反应时间为 1-5小时, 反应溶剂为乙 醇、 乙二醇单甲醚或其混合物, 化合物 V, VI, VII, VIII分别与 NH2R3NH2摩尔为 1 :1- 1 :2; 最优选的实施方式中, 反应温度为 100-130°C, 反应时间为 1-4小时, 反应溶剂为乙二醇 单甲醚, 化合物 V, VI, VII, VIII分别与 NH2R3NH2摩尔为 1: 1 - 1: 1.5;
6) 使化 - 1 :3反应, 制备化合物 I:
Figure imgf000010_0001
反应温度为 0-100°C, 反应时间为 12-48小时, 反应溶剂为二氯甲烷、 乙醇、 乙酸乙酯 或其混合物, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶催化剂。
优选的实施方式中,反应温度为 10-80°C,反应时间为 12-32小时,反应溶剂为二氯甲烷、 乙醇、 乙酸乙酯或其混合物, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶催化剂, 化 合物 IX, X, XI, XII与式 ii摩尔为 1 :1- 1 :3;
进一步优选的实施方式中, 反应温度为 20-70°C, 反应时间为 12-24小时, 反应溶剂为二 氯甲烷、 乙酸乙酯或其混合物, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶催化剂, 化合物 IX, X, XI, XII与式 ii摩尔为 1 :1- 1 :2.5;
最优选的实施方式中, 反应温度为 25-40°C, 反应时间为 12-24小时, 反应溶剂为二氯甲 烷, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶催化剂, 化合物 IX, X, XI, ΧΠ与式 ii 摩尔为 1 :1- 1 :1.5;
上述对本发明的以萘为母体的双光子荧光探针制备方法的描述中, 各个取代基 ( 、 R2、 R3、 R4和 R5) 的定义及优选, 均与本发明中对化合物的描述中的定义及优选相同。
对本发明采用上述方法合成的双光子荧光探针化合物, 采用核磁共振谱图或质谱来确认 其结构, 并且辅以碳谱、 熔点测试来辅助确认其结构。
本发明所述的以萘为母体的双光子荧光探针具备以下优点:
所述化合物引入了专一性靶向点, 提高了对肿瘤细胞和组织标记的专一性、 特异性; 所述化合物具有优异的双光子性能, 应用于生物样品成像时具有低的生物光漂白、 光损 伤和生物毒性, 并且产生的荧光信号可以穿透较深的生物组织;
所述化合物部分分子的荧光发射波长大于 600nm, 可用于动物活体成像;
所述化合物中带有硝基的分子可作为比例型探针用于肿瘤细胞和组织的标记, 可以实现 很好的定量标记, 并能避免外在的环境因素对荧光强度的干扰;
所述化合物毒副性小, 原料易得, 结构简单, 易于之辈, 易产业化; 鉴于此, 本发明所述的双光子荧光探针化合物可用于肿瘤细胞和组织标记。 除了以本文 中所述的形式直接用于肿瘤细胞和组织的染色外, 含有本发明的双光子荧光探针化合物的组 合物也可以用于肿瘤细胞和组织的染色。 所述组合物中应当包含有效量的本发明所提供的双 光子荧光探针化合物之一。 另外, 还可以包含生物样品染色所需要的其它组分, 例如溶剂、 pH调节剂等。 这些组分都是本行业内已知的。 上述组合物可以以水溶液形式存在, 或者可以 以临用前用水配制为溶液的其它合适形式存在。
本发明还提供使用上述本发明的双光子荧光探针化合物标记肿瘤细胞和组织生物样品的 方法, 该方法包括使所述化合物与生物样品接触的步骤。 本文中使用的术语 "接触"可包括 在溶液或固相中接触。
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方 式限制本发明。 实施例 1
制 八工
Figure imgf000011_0001
( 1 ) 中间体 1的合成
将 20mmol 4-溴 -1, 8-萘酐和 25mmol 甲胺加入到含有 10ml醋酸溶液的圆底烧瓶中, 氮 气保护。 反应加热 100°C回流持续反应 2h后停止。 混合物倒入冰水中, 沉淀析出, 抽滤得白 色固体粉末粗产品, 中间产物 1, 收率 96%。
(2) 中间体 2的合成
将上步 20mmol粗产品 1和 30mmol己二胺加入到含有 20ml 乙二醇单甲醚溶液的圆底烧 瓶中, 氮气保护。 反应加热 125 °C回流持续反应 5h后停止。 混合物倒入冰水中, 黄色沉淀析 出, 抽滤得黄色固体粉末粗产品, 柱色谱分离得黄色固体粉末中间体 2, 收率 55%。
( 3 ) 探针化合物 的合成
将 20mmol黄色固体粉末中间体 2, 25mmol吲哚美辛, 25mmol 1-( 二甲氨基丙基 )-3-乙 基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 24小 时, 停止反应, 减压蒸出大部分溶剂, 柱色谱分离得亮黄色产品, 收率 84%。
图 1为化合物 核磁图, 1H NMR (400 MHz, DMSO) δ 8.69 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.03 (s, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 4.22 (s, 1H), 3.74 (s, 3H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J = 1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 2
探针化合物 1对肿瘤细胞与非肿瘤细胞的标记试验
使用实施例 1合成的化合物 A 以浓度为 4μΜ的 A DMSO溶液 4 L分别加入到的 Hela 细胞和 HEK293细胞, 在 37°C, 5% C02下将加入探针 的 Hela细胞和 HEK293细胞于培 养基中孵育 60分钟。 然后, PBS震荡漂洗 5 minx3, 再加入细胞培养基, 双光子激光共聚焦 成像。 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 成像显示 Hela细胞中的有强荧光信 号, HEK293细胞中无荧光信号。 图 2(a)为加入探针 后 Hela细胞的聚焦图片, 图 2(b)为加 入探针 后 Hela细胞的聚焦图片。 图片收集波段 500-550nm。 实施例 3
探针 的双光子有效吸收截面检测试验:
采用飞秒双光子诱导荧光方法, 利用荧光素的 NaOH溶液 (pH 11 ) 作为参比, 将实施 例 1合成的化合物 分别加入到的甲醇、 乙醇、 丙酮、 乙腈、 二氧六环、 二甲基亚砜、 四氢 呋喃、 N,N-二甲基甲酰胺、 水等溶剂中双光子吸收截面的测试, 所用溶液浓度都为 lxlO—4 M, 用计算公式如下所示:
公式中的 C为溶液的浓度, n是溶剂的折射率, 可查表得到。 F 是上转换荧光强度, 由 实验测得。 δ是双光子吸收截面。 参比溶液的物理量均用下标 r表示。
测定不同溶剂中、 不同波长下双光子有效吸收截面 (Φ δ ) 图 3。 双光子激发荧光光 谱的激发源是一台锁模飞秒钛蓝宝石激光器 , 激光脉冲宽 70 fs, 重复频率 80 MHz, 激光器 的平均输出功率 1.5W (780nm) , 可调波长范围 700〜980 nm, 在实验中飞秒激光波长调至所 需测试波长。 实施例 4
制备探针化合物 A2:
Figure imgf000013_0001
Figure imgf000013_0002
( 1 ) 中间体 1的合成
将 20mmol 4-溴 -1, 8-萘酐和 25mmol邻苯二胺加入到含有 10ml醋酸溶液的圆底烧瓶中, 氮气保护。 反应加热 95°C回流持续反应 4h后停止。 混合物倒入冰水中, 沉淀析出, 抽滤得 黄色固体粉末粗产品, 中间产物 1, 收率 90%。
(2) 中间体 2的合成
将上步 20mmol粗产品 1和 25mmol己二胺加入到含有 20ml 乙二醇单甲醚溶液的圆底烧 瓶中, 氮气保护。 反应加热 125°C回流持续反应 5h后停止。 混合物倒入冰水中, 黄色沉淀析 出, 抽滤得黄色固体粉末粗产品, 柱色谱分离得黄色固体粉末中间体 2, 收率 63%。
(3 ) 探针 A2的合成
将 20mmol黄色固体粉末中间体 2, 25mmol吲哚美辛, 25mmol 1-( 二甲氨基丙基 )-3-乙 基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 24小 时, 停止反应, 减压蒸出大部分溶剂, 柱色谱分离得深黄色产品 A2, 收率 84%。 1H NMR (400 MHz, DMSO) δ 8.99 (d, J = 7.2 Hz, 2H), 8.69 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 6.3 Hz, 2H), 8.03 (s, 1H), 7.85(d, J = 4.6 Hz, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 4.22 (s, 1H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J = 1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 5
探针化合物 2对肿瘤组织与非肿瘤组织的标记试验
分别将小鼠肺部肿瘤组织切片和小鼠肺部非肿瘤组织切片浸泡于上述实施例 4合成的化 合物 A2的 ΙΟμΜ PBS溶液中, 30分钟后取出, 装片, 封存, 双光子激光共聚焦拍摄荧光图 片。 双光子激光共聚焦成像显示在小鼠肺部肿瘤组织切片中有强荧光信号, 在小鼠肺部非肿 瘤组织切片中未收集到荧光信号。图 4(a)为加入探针 Α2后小鼠肺部肿瘤组织切片的聚焦图片, 图 4(b)为加入探针 A2后小鼠肺部非肿瘤组织切片的聚焦图片。 图片收集波段 500-550nm。 实施例 6
探针化合物 A2的水溶解性检测试验
使用上述实施例 4合成的化合物 A2加入到水中, 测定在不同浓度 A2水溶液的最大吸收 波长下吸光度。 测试结果显示当化合物 A2浓度为 5μΜ时, 吸光度值未发生偏移, 即化合物 Α2在水中的溶解度为 5μΜ 。 图 5为不同探针 Α2浓度的最大吸收波长下吸光度。 所用仪器分 别是 Agilent 8453 紫外分光光度计。 实施例 7
A3
Figure imgf000014_0001
( 1 ) 中间体 1的合成
将 20mmol 4-溴 -1, 8-萘酐和 25mmol4-硝基邻苯二胺加入到含有 10ml醋酸溶液的圆底烧 瓶中, 氮气保护。 反应加热 105°C回流持续反应 3h后停止。 混合物倒入冰水中, 沉淀析出, 抽滤得黄色固体粉末粗产品, 中间产物 1, 收率 87%。
(2) 中间体 2的合成
将上步 20mmol粗产品 1和 25mmol己二胺加入到含有 20ml 乙二醇单甲醚溶液的圆底烧 瓶中, 氮气保护。 反应加热 125°C回流持续反应 4h后停止。 混合物倒入冰水中, 橙红色沉淀 析出, 抽滤得橙红色固体粉末粗产品, 柱色谱分离得红色固体粉末中间体 2, 收率 54%。
(3 ) 探针 A3的合成
将 20mmol橙红色固体粉末中间体 2, 25mmol吲哚美辛, 25mmol 1-( 二甲氨基丙基 )-3- 乙基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 28 小时,停止反应,减压蒸出大部分溶剂,柱色谱分离得橘红色产品 A3,收率 84%。 1H NMR (400 MHz, DMSO) δ 8.99 (d, J = 7.2 Hz, 1H), 8.69 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 6.3 Hz, 1H), 8.03 (s, 1H), 7.85(d, J = 4.6 Hz, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 4.22 (s, 1H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J = 1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 8
探针化合物 A3的溶剂化效应检测试验
使用上述实施例 7合成的化合物 A3分别加入到的甲醇、 乙醇、 丙酮、 乙腈、 二氧六环、 二甲基亚砜、 四氢呋喃、 N,N-二甲基甲酰胺、 水等溶剂中, 测定不同溶剂中的紫外吸收光谱 和荧光发射光谱。 测试结果显示, 随着溶剂极性的改变, 紫外吸收光谱中的最大吸收波长有 相应的移动, 荧光发射光谱也同样存在着最大发射波长的移动。 图 6(a)为探针 A3在不同溶剂 中的紫外吸收光谱, 图 6(b)为探针 A3在不同溶剂中的荧光发射光谱。所用仪器分别是 Agilent 8453 紫外分光光度计和 Agilent Cary Eclipse荧光分光光度计。 实施例 9
探针化合物 A3的双光子有效吸收截面检测试验
采用飞秒双光子诱导荧光方法, 利用荧光素的 NaOH溶液 (pH 1 1 ) 作为参比, 将上述 实施例 7合成的探针化合物 A3分别加入到的甲醇、 乙醇、 丙酮、 乙腈、 二氧六环、 二甲基亚 砜、 四氢呋喃、 N,N-二甲基甲酰胺、 水等溶剂中双光子吸收截面的测试, 所用溶液浓度都为 l x lO"4 M, 用计算公式 2.2所示, 就能得到双光子吸收截面值。 使用, 测定不同溶剂中、 不同 波长下双光子有效吸收截面 ( Φ δ ) 图 7。 双光子激发荧光光谱的激发源是一台锁模飞秒 钛蓝宝石激光器 ,激光脉冲宽 70 fs,重复频率 80 MHz,激光器的平均输出功率 1.5W( 780nm), 可调波长范围 700〜980 nm, 在实验中飞秒激光波长调至所需测试波长。 实施例 10
Figure imgf000015_0001
( 1 ) 中间体 1的合成 在单口烧瓶中加入 33mmol的苊醌, 180mmol液溴, 搅拌下, 缓慢升温至 65°C, 并恒温 搅拌 3h。 反应停止倒入 300ml含有少量 H2S04的蒸馏水中析出黄色固体, 水溶液呈深黄色, 加热沸腾去除溴及溴化氢, 直到液体呈无色。 过滤并多次溶解使滤液呈中性, 干燥后得到粗 产品, 中间体 1, 粗收率 90%。 M.p.236-238°C。
(2) 中间体 2的合成
将 20mmol 中间体 1和 25mmol邻苯二胺加入到含有 10ml醋酸溶液的圆底烧瓶中, 氮 气保护。 反应加热 100°C回流持续反应 6h后停止。 混合物倒入冰水中, 沉淀析出, 抽滤得黄 色固体粉末粗产品, 中间产物 2, 收率 79%。
(3 ) 中间体 3的合成
将上步 20mmol中间产物 2和 25mmol己二胺加入到含有 20ml 乙二醇单甲醚溶液的圆底 烧瓶中, 氮气保护。 反应加热 125°C回流持续反应 6h后停止。 混合物倒入冰水中, 黄色沉淀 析出, 抽滤得黄色固体粉末粗产品, 柱色谱分离得黄色固体粉末中间体 3, 收率 66%。
(4) 探针 A4的合成
将 20mmol黄色固体粉末中间体 3, 30mmol吲哚美辛, 25mmol 1-(3-二甲氨基丙基 )-3-乙 基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 25小 时,停止反应,减压蒸出大部分溶剂,柱色谱分离得黄色产品 A4,收率 74%。 1H NMR (400 MHz, DMSO) δ 8.86 (d, J = 7.9 Hz, 2H) 8.69 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.17 (d, J = 6.3 Hz, 2H), 8.03 (s, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0,
2.5 Hz, 1H), 4.22 (s, 1H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J =
1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 11
探针 A4在对肿瘤组织与非肿瘤组织的标记试验
分别将小鼠肺部肿瘤组织切片和小鼠肺部非肿瘤组织切片浸泡于上述实施例 10 合成的 化合物 4的 ΙΟμΜ PBS溶液中, 30分钟后取出, 装片, 封存, 双光子激光共聚焦拍摄荧光 图片。 双光子激光共聚焦成像显示在小鼠肺部肿瘤组织切片中有强荧光信号, 在小鼠肺部非 肿瘤组织切片中未收集到荧光信号。 图 8 (al ) 和 (a2) 为加入探针 A4后小鼠肺部肿瘤组织 切片的聚焦图片, 图 8 (bl ) 和 (b2) 为加入探针 A4后小鼠肺部非肿瘤组织切片的聚焦图 片。 其中图 8 (al ) 与图 8 (bl ) 的采集波段为 500-550nm, 图 8 (a2) 与图 8 (b2) 的采集 波段为 570-650nm。 实施例 12
探针 A4的水溶解性检测试验 使用上述合成的化合物 A4加入到水中, 测定在不同化合物 A4浓度的最大吸收波长下吸 光度。 测试结果显示当化合物 浓度为 24μΜ时, 吸光度值未发生偏移, 即化合物 Α4在水 中的溶解度为 24μΜ。 图 9 为不同探针 Α4浓度的最大吸收波长下吸光度。 所用仪器分别是 Agilent 8453 紫外分光光度计。 实施例 13
A5
Figure imgf000017_0001
( 1 ) 中间体 1的合成
在单口烧瓶中加入 33mmol的苊醌, 180mmol液溴, 搅拌下, 缓慢升温至 65°C, 并恒温 搅拌 3h。 反应停止倒入 300ml含有少量 H2S04的蒸馏水中析出黄色固体, 水溶液呈深黄色, 加热沸腾去除溴及溴化氢, 直到液体呈无色。 过滤并多次溶解使滤液呈中性, 干燥后得到粗 产品, 中间体 1, 粗收率 90%。 M.p.236-238°C。
(2) 中间体 2的合成
将 20mmol 中间体 1和 30mmol邻苯二胺加入到含有 10ml醋酸溶液的圆底烧瓶中, 氮 气保护。 反应加热 100°C回流持续反应 5h后停止。 混合物倒入冰水中, 沉淀析出, 抽滤得红 色固体粉末粗产品, 中间产物 2, 收率 83%。
(3 ) 中间体 3的合成
将上步 20mmol中间产物 2和 25mmol己二胺加入到含有 20ml 乙二醇单甲醚溶液的圆底 烧瓶中, 氮气保护。 反应加热 125°C回流持续反应 5.5h后停止。 混合物倒入冰水中, 橙红色 沉淀析出, 抽滤得黄色固体粉末粗产品, 柱色谱分离得橙红色固体粉末中间体 3, 收率 72%。
(4) 探针 A5的合成
将 20mmol橙红色固体粉末中间体 3, 30mmol吲哚美辛, 25mmol 1-( 二甲氨基丙基 )-3- 乙基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 25 小时,停止反应,减压蒸出大部分溶剂,柱色谱分离得橙红色产品 A5,收率 69%。 1H NMR (400 MHz, DMSO) δ 8.86 (d, J = 7.9 Hz, 1H) 8.69 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 6.9 Hz, 1H),8.18 (d, J = 6.3 Hz, 1H), 8.03 (s, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 4.22 (s, 1H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J = 1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 14
探针 A5对肿瘤细胞与非肿瘤细胞的标记试验 I
使用实施例 13合成的化合物 A5, 以浓度为 4μΜ的 A5-DMSO溶液 4 L分别加入到的 Hela细胞和 HEK293细胞, 在 37°C, 5% C02下将加入探针 A5的 Hela细胞和 HEK293细胞 于培养基中孵育 60分钟。 然后, PBS震荡漂洗 5 minx3, 再加入细胞培养基, 双光子激光共 聚焦成像。 选取代表性区域, 用油镜 (lOOx)观察, 重复三次。 成像显示 Hela细胞中的有强荧 光信号, HEK293细胞中无荧光信号。 图 10 (al ) 与图 10 (a2) hela细胞, 图 10 (bl ) 与图 10 (b2) HEK293细胞, 其中图 10 (al )与图 10 (bl ) 的采集波段为 500-550nm, 图 10 ( a2) 与图 8 (b2) 的采集波段为 570-650nm。 实施例 15
探针 5对肿瘤组织与非肿瘤组织的标记试验 II
分别将小鼠肺部肿瘤组织切片和小鼠肺部非肿瘤组织切片浸泡于上述实施例 13合成的 化合物 A5的 PBS溶液中 (浓度 ΙΟμΜ) , 30分钟后取出, 装片, 封存, 双光子激光共聚焦 拍摄荧光图片。 双光子激光共聚焦成像显示在小鼠肺部肿瘤组织切片中有强荧光信号, 在小 鼠肺部非肿瘤组织切片中未收集到荧光信号。 图 11 (al ) 与图 11 (a2) 小鼠肺部肿瘤组织, 图 11 (bl ) 与图 11 (b2) 小鼠肺部非肿瘤组织, 其中图 11 (al ) 与图 11 (bl ) 的采集波段 为 500-550nm, 图 11 (a2) 与图 11 (b2) 的采集波段为 570-650nm。 实施例 16
合成探针化合物 A6
Figure imgf000018_0001
( 1 ) 中间体 1的合成
0.5克苊醌, 0.2克丙二睛溶解于 50毫升的二氯甲烷中, 直接加入到短、 粗硅胶柱中 (直 径 50毫米, 装有硅胶高度为约 100毫米) , 连续快速用二氯甲烷冲柱, 收集 Rf=0.8的成色 谱带, 蒸出二氯甲烷, 得到橙红色固体中间产物 1。 收率 >97%。
(2) 中间体 2的合成
1克中间产物 1, 0.2克碳酸钾, 加入到 20毫升, 加热回流, 数分钟后有大量棕色晶体出 现。 冷却过滤, 水洗除去碳酸钾及溶剂, 干燥的纯中间产物 2。 收率 >93%。
( 3 ) 中间体 3的合成
将上步 20mmol中间产物 2和 25mmol己二胺加入到含有 20ml乙腈溶液的圆底烧瓶中, 常温搅拌反应 lh后停止。 减压蒸去溶剂, 硅胶柱分离, 收集 Rf=0.25的红色谱带, 蒸去溶剂 的纯中间产物 3。 收率 73%。
(4) 探针 A6的合成
将 20mmol红色固体粉末中间体 3, 20mmol吲哚美辛, 25mmol 1-(3-二甲氨基丙基 )-3-乙 基碳二亚胺 (EDC)以及少许 4-甲基吡啶加入到无水的二氯甲烷溶液中, 室温下搅拌反应 24小 时,停止反应,减压蒸出大部分溶剂,柱色谱分离得红色产品 A6,收率 69%。 1H NMR (400 MHz, DMSO) δ 8.95 (d, J = 7.6 Hz, 1H), 8.58 (d, J = 7.2 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.88 (t, J = 7.8 Hz, 1H), 7.72 (d, J = 3.5 Hz, 2H), 7.64 (dt, J = 20.8, 6.4 Hz, 5H), 7.12 (d, J = 2.4 Hz, 1H), 7.03 (d, J = 9.2 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 4.22 (s, 1H), 3.48 (s, 2H), 3.37 - 3.12 (m, 16H), 3.08 (d, J = 6.1 Hz, 2H), 2.51 (d, J = 1.6 Hz, 6H), 2.22 (s, 3H), 1.71 - 1.57 (m, 3H), 1.37 (ddd, J = 24.7, 14.6, 6.8 Hz, 8H), 1.23 (s, 1H)。 实施例 17
探针化合物 A6的溶剂化效应检测试验
使用上述实施例 16合成的化合物 A6分别加入到的甲醇、 乙醇、 丙酮、 乙腈、 二氧六环、 二甲基亚砜、 四氢呋喃、 N,N-二甲基甲酰胺、 水等溶剂中, 测定不同溶剂中的紫外吸收光谱 和荧光发射光谱。 测试结果显示, 随着溶剂极性的改变, 紫外吸收光谱中的最大吸收波长有 相应的移动, 荧光发射光谱也同样存在着最大发射波长的移动。 图 12(a)为探针八6在不同溶 剂中的紫外吸收光谱, 图 12(b)为探针 A6在不同溶剂中的荧光发射光谱。 所用仪器分别是 Agilent 8453 紫外分光光度计和 Agilent Cary Eclipse荧光分光光度计。 实施例 18
探针化合物 A6的双光子有效吸收截面检测试验
采用飞秒双光子诱导荧光方法, 利用荧光素的 NaOH溶液 (pH 11 ) 作为参比, 进行上 述实施例 16合成的化合物 A6分别加入到的甲醇、 乙醇、 丙酮、 乙腈、 二氧六环、 二甲基亚 砜、 四氢呋喃、 N,N-二甲基甲酰胺、 水等溶剂中双光子吸收截面的测试, 所用溶液浓度都为 l x l O"4 M, 用计算公式 2.2所示, 就能得到双光子吸收截面值。 使用, 测定不同溶剂中、 不同 波长下双光子有效吸收截面 ( Φ δ 图 13。 双光子激发荧光光谱的激发源是一台锁模飞秒钛 蓝宝石激光器 ,激光脉冲宽 70 fs,重复频率 80 MHz ,激光器的平均输出功率 1.5W ( 780nm), 可调波长范围 700〜980 nm, 在实验中飞秒激光波长调至所需测试波长。 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明 的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱离本 发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。 作为荧光染料是本发明新化合物的一种用途, 不能认定本发明的化合物仅用于荧光染料, 对 于本发明所属技术领域的普通技术人员来说, 在基于本发明化合物用作荧光染料的相同作用 机理的考虑下, 还可以做出若干简单推理, 得出本发明的化合物的其他应用用途, 都应当视 为属于本发明的保护范围。

Claims

Figure imgf000021_0001
X2、 X3和 X4 ; X通过虚线键与通式 I相连;
Figure imgf000021_0002
X
Ri和 R2各自独立地选自 -OCH3、 -OCOCH3和卤素;
R3选自 - CH2-、 - (CH2)2-、 -(CH2)3-、 -(CH2)4-、 -(CH2)5-、 -(CH2)6-、 -(CH2)7-禾口 -(CH2)8-; 选自 C1-6烷基、 HOCH2-、 HO(CH2)2-、 HO(CH2)3-、 HO(CH2)4-、 HO(CH2)5-和 HO(CH2)6-; R5选自 -H、 -CN、 -COOH、 -NH2、 -N02、 -OH和 -SH。
2. 权利要求 1所述的以萘为母体的双光子荧光探针, 其特征在于: 所述的 和 各自 独立地选自 -OCH3或卤素。
3. 权利要求 1所述的以萘为母体的双光子荧光探针, 其特征在于: 所述的 R3为 -(CH2)5- 或 -(CH2)6-。
4.权利要求 1所述的以萘为母体的双光子荧光探针, 其特征在于: 所述的 R4选自 d_4 焼基。
5. 权利要求 1所述的以萘为母体的双光子荧光探针, 其特征在于: 所述的 R5选自 -H、 -CN、 -COOH或 -N02
6. 权利要求 1所述的以萘为母体的双光子荧光探针, 选自化合物 Ar A6:
Figure imgf000022_0001
A
Figure imgf000022_0002
A A4
Figure imgf000022_0003
A- Afi
7. 权利要求 1所述的以萘为母体的双光子荧光探针的制备方法, 包括如下步骤:
1)4-溴 -1,8-萘酐与 R4-NH3按摩尔比 1:1- 1:5反应, 制备化合物 V:
Figure imgf000022_0004
V
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酯、 醋酸或其混合物;
2) 4-溴 -1,8-萘酐与式 i的化合物按照摩尔比 1:1- 1:5反应, 制备化合物 VI:
Figure imgf000022_0005
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酷 醋酸或其混合物;
3) 4-溴苊醌与式 i的化合物 备化合物 VII:
Figure imgf000023_0001
VII
反应温度为 70-150°C, 反应时间为 1-12小时, 反应溶剂选自二氯甲烷、 乙醇、 乙酸乙酷 醋酸或其混合物;
4) 使苊醌、 丙二腈、 二甲基亚砜按照摩尔比 1 :1 :5反应, 制备化合物 VIII:
Figure imgf000023_0002
VIII
反应先在室温下进行 0.5小时后, 逐渐升高反应温度至 70-180°C, 并在该反应温度下反 应 4-12小时, 反应溶剂为二甲基亚砜、 四氢呋喃或它们与水组成的混合物;
5)将步骤 1)-4)中制备得到的化合物 V, VI, VII, VIII分别与 NH2R3NH2按照摩尔比 1 :1- 1 :2.5反应, 制备化合物 IX, X, XI, XII:
Figure imgf000023_0003
XI XII
反应温度为 100-175°C, 反应时间为 1-7小时, 反应溶剂为乙醇、 乙二醇单甲醚或其混合
6) 使化合物 IX, X, XI, XII与式 ii按照摩尔比 1 :1- 1 :3反应, 制备化合物 I:
Figure imgf000024_0001
反应温度为 0-100°C, 反应时间为 12-48小时, 反应溶剂为二氯甲烷、 乙醇、 乙酸乙酯 或其混合物, 反应在有机碱存在条件下进行, 以 4-二甲氨基吡啶为催化剂。
8. 根据权利要求 6所述的方法, 其特征在于所述步骤 4) 中的水与二甲基亚砜或四氢呋 喃的摩尔比分别为 1 : 1-1 :1.25。
9. 权利要求 1-5 中任一权利要求所述的以萘为母体的双光子荧光探针在生物样品标记 中的应用。
10. 权利要求 9所述的以萘为母体的双光子荧光探针在生物样品标记中的应用, 其特征 在于所述的生物样品是肿瘤组织或肿瘤细胞。
PCT/CN2012/071940 2012-03-05 2012-03-05 一类以萘为母体的双光子荧光探针、其制备方法及应用 WO2013131235A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/071940 WO2013131235A1 (zh) 2012-03-05 2012-03-05 一类以萘为母体的双光子荧光探针、其制备方法及应用
JP2014541508A JP5997288B2 (ja) 2012-03-05 2012-03-05 ナフタレンを基本骨格とする二光子蛍光プローブ、その製造方法及びその利用方法
US14/383,000 US9182350B2 (en) 2012-03-05 2012-03-05 Naphthalene-based two-photon fluorescent probes, preparation method and use thereof
EP20120870663 EP2778161B1 (en) 2012-03-05 2012-03-05 Two-photon fluorescent probe using naphthalene as matrix and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071940 WO2013131235A1 (zh) 2012-03-05 2012-03-05 一类以萘为母体的双光子荧光探针、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2013131235A1 true WO2013131235A1 (zh) 2013-09-12

Family

ID=49115853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071940 WO2013131235A1 (zh) 2012-03-05 2012-03-05 一类以萘为母体的双光子荧光探针、其制备方法及应用

Country Status (4)

Country Link
US (1) US9182350B2 (zh)
EP (1) EP2778161B1 (zh)
JP (1) JP5997288B2 (zh)
WO (1) WO2013131235A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479396B (zh) * 2014-11-20 2016-08-24 河南师范大学 氨基酸类双光子荧光染料
CN104610228B (zh) * 2015-01-21 2016-10-19 济南大学 一种三价铬离子荧光探针化合物及其制备与应用
CN113444047B (zh) * 2016-07-20 2023-06-16 纳莹(上海)生物科技有限公司 一种荧光探针及其制备方法和用途
CN110658172A (zh) * 2019-11-27 2020-01-07 济南大学 一种比率型双光子荧光探针对硫化氢快速灵敏检测的应用
CN111925316B (zh) * 2020-08-19 2023-08-04 安徽大学 一种基于4-氟苯乙炔基的双光子荧光极性探针及其制备方法和用途
KR102427539B1 (ko) * 2021-02-04 2022-08-01 아주대학교산학협력단 사이클로옥시게나아제-2 검출용 이광자 형광 프로브 및 이의 용도
CN115028562B (zh) * 2022-05-30 2023-12-22 太原理工大学 一种多硫芳香化合物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896074A (zh) * 2006-04-12 2007-01-17 齐齐哈尔大学 荧光分子探针及其在过渡金属和重金属离子检测中的应用
CN101786985A (zh) * 2010-02-05 2010-07-28 苏州大学 萘酰亚胺衍生物及其作为荧光探针应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022524A1 (en) * 1994-02-22 1995-08-24 Merrell Pharmaceuticals Inc. Novel indole derivatives useful to treat estrogen-related neoplasms and disorders
JP2005145819A (ja) * 2003-11-11 2005-06-09 Konica Minolta Medical & Graphic Inc 蛍光造影剤および体外蛍光造影方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896074A (zh) * 2006-04-12 2007-01-17 齐齐哈尔大学 荧光分子探针及其在过渡金属和重金属离子检测中的应用
CN101786985A (zh) * 2010-02-05 2010-07-28 苏州大学 萘酰亚胺衍生物及其作为荧光探针应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HELMCHEN F; SVOBODA K; DENK W ET AL., NATURE, vol. 2, 1999, pages 989 - 996
MAITI S; SHEAR J B; WILLIAMS R M ET AL., SCIENCE, vol. 275, 1997, pages 530
See also references of EP2778161A4
VENTELON L; CHARIER S; MOREAUX L ET AL., ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 40, 2001, pages 2098

Also Published As

Publication number Publication date
US9182350B2 (en) 2015-11-10
EP2778161B1 (en) 2015-05-06
JP5997288B2 (ja) 2016-09-28
EP2778161A4 (en) 2014-10-08
JP2014534241A (ja) 2014-12-18
US20150079625A1 (en) 2015-03-19
EP2778161A1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2013131235A1 (zh) 一类以萘为母体的双光子荧光探针、其制备方法及应用
WO2021103700A1 (zh) 一种可响应硝基还原酶的乏氧探针化合物及其制备与应用
CN110498799B (zh) 一种荧光探针及其制备方法和用途
CN108864056B (zh) 具有aie性能的近红外荧光化合物及其制备方法和应用
CN107118586A (zh) 含氮杂环基取代的烯类化合物的用途
WO2018206126A1 (en) Imaging agents and methods
CN103820104B (zh) 一类以尼罗蓝为母体的近红外荧光探针、其制法及应用
Xu et al. Two-photon absorption and cell imaging of two multi-branched dyes based on curcumin
CN106634964B (zh) 噁嗪类化合物在制备近红外荧光探针中的应用
CN102617554B (zh) 一类以萘为母体的双光子荧光探针、其制备方法及应用
Patel et al. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near‐Infrared Cyanine‐like Dyes
CN108774249B (zh) 噁嗪类化合物及其应用
CN109503550B (zh) 2-氮杂芳基-6-取代氨基喹唑啉酮化合物及其制备方法和应用
CN114249696B (zh) 一种鲁米诺类化合物及其制备方法和应用、药物组合物
CN111849196B (zh) 一种近红外二区染料及其合成方法
Liu et al. Two-photon AIEgen based on dicyanoisophorone derivative: Synthesis, characterization and cells imaging
CN109678888B (zh) 噁嗪类化合物及其用途
WO2020189721A1 (ja) 細胞および組織内脂質滴の蛍光イメージング試薬
CN104479396B (zh) 氨基酸类双光子荧光染料
CN110128402B (zh) 含吡唑环的支状荧光染料化合物
CN112341411B (zh) 一种类罗非昔布衍生物、制备的有机荧光染料骨架及用途
CN114058369B (zh) 基于苯乙烯噁唑酮类化合物的荧光探针及其生物应用
CN105802273A (zh) 基于尼罗蓝母体的荧光识别染料、其制备方法及应用
CN118271279A (zh) 一种近红外罗丹明染料及其制备方法和应用
JP2021059527A (ja) 蛍光標識剤およびフタロシアニン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541508

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012870663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14383000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE