WO2013061756A1 - 内燃機関の燃料噴射装置 - Google Patents

内燃機関の燃料噴射装置 Download PDF

Info

Publication number
WO2013061756A1
WO2013061756A1 PCT/JP2012/075930 JP2012075930W WO2013061756A1 WO 2013061756 A1 WO2013061756 A1 WO 2013061756A1 JP 2012075930 W JP2012075930 W JP 2012075930W WO 2013061756 A1 WO2013061756 A1 WO 2013061756A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
pressure
mode
Prior art date
Application number
PCT/JP2012/075930
Other languages
English (en)
French (fr)
Inventor
川辺 敬
文昭 平石
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to EP12844189.6A priority Critical patent/EP2772641B1/en
Priority to US14/238,315 priority patent/US9835109B2/en
Publication of WO2013061756A1 publication Critical patent/WO2013061756A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/406Electrically controlling a diesel injection pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/09Fuel-injection apparatus having means for reducing noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine provided with an in-cylinder injector for injecting fuel at high pressure into a cylinder, and an intake manifold injector for injecting fuel into an intake passage, and particularly to the in-cylinder injector at high pressure.
  • the present invention relates to control for reducing noise of a high pressure pump that supplies fuel.
  • Both an in-cylinder injector for directly injecting fuel into the cylinder and an intake manifold injector for injecting fuel into the intake passage (including the intake port) are provided according to the load and rotational speed of the internal combustion engine.
  • An internal combustion engine is known which selects fuel injection from both injectors.
  • the fuel supplied to the intake manifold injector is sent to the intake manifold injector by an electric low pressure pump provided in the fuel tank, and the fuel supplied to the in-cylinder injector is attached to the internal combustion engine After being boosted by a mechanical high-pressure pump, it is sent to the in-cylinder injector.
  • the mechanical high-pressure pump slides in the cylinder by a cam and opens and closes a plunger and a fuel inlet of the cylinder, which increase the pressure (fuel pressure) of fuel in the cylinder, to meet the fuel injection amount of the in-cylinder injector.
  • an electromagnetic spill valve for controlling the discharge amount.
  • the electromagnetic spill valve includes a spring member that applies a spring force that biases the valve body to the open position, and a solenoid that is energized to move the valve body in the closing direction.
  • the operation of the electromagnetic spill valve de-energizes the solenoid to open the valve body and retracts the plunger so that the pressure chamber formed in the cylinder sucks the fuel from the suction port.
  • the solenoid is energized to close the valve body to close the pressurizing chamber, and then the plunger is extended to reduce the volume of the pressurizing chamber, thereby increasing the fuel pressure of the pressurizing chamber.
  • the check valve of the discharge port provided in the cylinder is pushed to supply the fuel to the in-cylinder injector.
  • the fuel pressure (fuel amount) supplied to the in-cylinder injector can be adjusted by adjusting the closing timing of the valve body.
  • Patent Document 1 discloses fuel injection control means for solving these two problems. This means divides idle operation into cold idle state, warm idle state and high temperature idle state according to the temperature of the internal combustion engine, without using a high pressure pump, and based on intake passage injection or in-cylinder injection by a low pressure pump. Thus, fuel injection control specific to each operating condition is performed.
  • Patent Document 2 discloses control means having the same purpose as Patent Document 1.
  • the control means comprises a noise level estimation means for estimating a noise level in a vehicle compartment, and a deposit accumulation estimation means for estimating whether the deposit is likely to deposit on the in-cylinder injector. It has a device. When the noise level estimated by this control device is lower than the set value, the boosting operation by the high pressure pump is prohibited, the estimated noise level is lower than the set value, and deposits are accumulated on the in-cylinder injector. When it is estimated that it is easy, the fuel supplied from the low pressure pump is supplied to the in-cylinder injector without boosting the pressure.
  • Patent Document 1 and Patent Document 2 need to be equipped with various sensors for detecting various operating state quantities of the internal combustion engine, and require complicated control, and the control means is high. There is a problem of cost.
  • the present invention has been made in view of the problems of the prior art, in an internal combustion engine provided with an in-cylinder injector and an intake manifold injector, an electromagnetic spill valve equipped in a high pressure pump by simple and low-cost control means.
  • the purpose is to reduce the noise caused by the electromagnetic spill valve without impairing the original function.
  • the fuel injection device for an internal combustion engine comprises an in-cylinder injector and an intake manifold injector, a low pressure pump for supplying fuel from a fuel tank to each injector, and The fuel is further boosted and supplied to the in-cylinder injector, and a high pressure pump is provided to adjust the fuel supply amount by the operation of the spill valve.
  • a load detection sensor that detects the load of the internal combustion engine
  • a rotation speed sensor that detects the rotation speed of the internal combustion engine
  • a fuel pressure sensor that detects the pressure of fuel supplied to the in-cylinder injector ing.
  • control device performs an intake manifold injection mode in which injection is performed only from the intake manifold injector according to the load and rotational speed of the internal combustion engine detected by the respective sensors, or the in-cylinder injector and the intake manifold injection
  • a storage unit for storing a fuel injection map in which a combination mode in which both injectors perform injection are set is stored, and a fuel injection mode of the internal combustion engine is selected based on the fuel injection map.
  • a spill valve operation control unit is provided to stop the operation of the spill valve when the internal combustion engine is in the intake manifold injection mode and the fuel pressure detected by the fuel pressure sensor is equal to or higher than the set value.
  • the spill valve operation control unit normally controls the spill valve when the above operating conditions are not satisfied.
  • the fuel pressure of the fuel supplied to the in-cylinder injector is set to a fuel pressure at which the responsiveness of in-cylinder injection is maintained according to the operating conditions of the internal combustion engine.
  • the spill valve is not closed, thereby reducing the number of times the spill valve is closed. Vibration and noise generated by the seating of the spill valve can be reduced. Further, since the fuel pressure of the fuel supplied to the in-cylinder injector is maintained at or above the set value, the function of high-pressure injection of fuel from the high pressure pump to the in-cylinder injector can be maintained. Even if it changes to the mode, it can respond promptly.
  • the control device can be simplified. Therefore, low cost control means can be realized.
  • a sensor for detecting the pressure in the in-cylinder combustion chamber may be provided as a sensor for detecting the load of the internal combustion engine. Then, in the fuel injection map, an intake manifold injection mode and a combined use mode may be set according to the in-cylinder pressure and the rotation speed of the internal combustion engine. Thus, the load of the internal combustion engine can be accurately grasped only by detecting the net average effective pressure (in-cylinder pressure) of the cylinder.
  • the set value of the fuel pressure is a hysteresis region, an idle region, and a hysteresis region provided in the vicinity of the boundary with the combined mode in the intake manifold injection mode based on the load and rotational speed of the internal combustion engine. It may be different depending on the area which does not belong to any of the idle area and the idle area. Thus, the responsiveness of in-cylinder injection can be maintained in accordance with the operating state of the internal combustion engine, so that it is possible to promptly cope with transition from the intake manifold injection mode to the combined mode.
  • the set value of the fuel pressure may be increased in the order of the idle region, the region not belonging to any of the hysteresis region and the idle region, and the hysteresis region.
  • the internal combustion engine is provided with a start mode sensor for detecting that the internal combustion engine is in the start mode, and the spill valve operation control unit is such that the internal combustion engine is in the intake manifold injection mode and not the start mode and the fuel pressure is a set value.
  • the operation of the spill valve may be stopped.
  • in-cylinder injection may be required because of a rapid temperature rise in the cylinder and the like. According to the above configuration, when the internal combustion engine is in the start mode, there is no possibility that the operation of the spill valve is accidentally stopped.
  • the exhaust gas purification catalyst provided in the exhaust passage of the internal combustion engine and a cooling water temperature sensor for detecting the temperature of the cooling water for cooling the internal combustion engine are provided.
  • the catalyst activity determination unit determines that the exhaust gas purification catalyst has not reached the activation temperature
  • the catalyst activation determination unit determines whether the purification catalyst has reached the activation temperature or not;
  • the controller may operate the internal combustion engine in the combined mode until the exhaust gas purification catalyst reaches the activation temperature.
  • the operation of the spill valve provided in the high-pressure pump is performed at a time when high-pressure fuel is not supplied to the in-cylinder injector. Since the stop is made, the vibration and noise generated by the seating of the spill valve can be reduced by simple and low cost means.
  • the closing operation of the spill valve is stopped while holding the fuel pressure of the high pressure chamber of the high pressure pump at the set value or more, the function capable of high pressure injection of fuel to the in-cylinder injector can be maintained. When you move to, you can move quickly.
  • FIG. 1 is an overall configuration diagram of the present embodiment.
  • the engine 10 is provided with four cylinders 12, each cylinder 12 being connected to a common header 16 via a corresponding intake manifold 14, respectively.
  • the intake air a is drawn into the header 16 via an intake and an air cleaner (not shown), etc., and is drawn from the header 16 through the intake manifold 14 into the cylinders 12.
  • each cylinder 12 The exhaust passage of each cylinder 12 is connected to a common exhaust pipe 20 via an exhaust manifold 18 corresponding to each cylinder 12.
  • a three-way catalytic converter 22 is interposed in the exhaust pipe 20 to remove harmful substances such as NO x in the exhaust gas.
  • Each cylinder 12 is provided with an in-cylinder injector 24 for injecting fuel toward the combustion chamber of the cylinder 12.
  • each intake manifold 14 is provided with an intake manifold injector 26 for injecting fuel into the intake manifold.
  • the injectors 24 and 26 are controlled by signals sent from an engine control unit (ECU) 30 which controls the drive of the entire engine.
  • the ECU 30 includes a memory 302, a spill valve operation control unit 304, and a catalyst activity determination unit 306.
  • the in-cylinder injectors 24 are connected to a common high pressure fuel distribution pipe 28, and the high pressure fuel distribution pipe 28 is connected to the discharge port of the high pressure pump 32.
  • the suction port of the high pressure pump 32 is connected to a low pressure fuel supply pipe 36 connected to the fuel tank 34.
  • a fuel filter 38, a low pressure pump 40, and a fuel pressure regulator 42 are interposed in the low pressure fuel supply pipe 36 sequentially from the upstream side in the fuel supply direction.
  • Each intake manifold injector 26 is connected to a common low pressure fuel distribution pipe 44, and the low pressure fuel distribution pipe 44 joins a low pressure fuel supply pipe 36 between the fuel pressure regulator 42 and the high pressure pump 32.
  • the fuel stored in the fuel tank 34 is pumped up by the low pressure pump 40 and sent to the engine 10.
  • the fuel drawn from the fuel tank 34 is cleaned of contaminants by the fuel filter 38.
  • the fuel pressure regulator 42 plays a role of returning part of the fuel to the fuel tank 34 and maintaining the pressure at the set pressure when the pressure of the fuel discharged from the low pressure pump 40 becomes higher than a predetermined set pressure.
  • the plunger 322 reciprocates inside the cylinder 324 as the pump cam 320 rotates.
  • An electromagnetic spill valve 330 is provided in the cylinder 12 to open and close a flow path between the suction port 326 connected to the low pressure fuel supply pipe 36 and the discharge port 328 connected to the fuel distribution pipe 28.
  • the spill valve 330 is biased to the open position by the spring force of the coil spring 332, and operates to close the flow path by the excitation of the solenoid 334.
  • the discharge port 328 is provided with a check valve 336, and a spring force of a coil spring 336a is biased in a direction to close the discharge port 328.
  • the high pressure fuel distribution pipe 28 is provided with a fuel pressure sensor 46 that generates an output voltage proportional to the fuel pressure in the high pressure fuel distribution pipe 28.
  • the cylinder block 13 forming the cylinder 12 is provided with a cooling water jacket (not shown) through which cooling water for cooling the cylinder block 13 circulates.
  • the cylinder block 13 is provided with a water temperature sensor 48 that generates an output voltage proportional to the temperature of the cooling water that cools the cylinder block 13.
  • a rotation speed sensor 50 for detecting the rotation speed of the engine 10 is provided, and a detection value of the rotation speed sensor 50 is sent to the ECU 30.
  • an in-cylinder pressure sensor 52 for detecting the pressure of the combustion chamber in each cylinder 12 is provided, and a detection value of the in-cylinder pressure sensor 52 is also sent to the ECU 30.
  • the fuel is pumped from the fuel tank 34 by the low pressure pump 40, the fuel discharged from the low pressure pump 40 is held at the set pressure by the fuel pressure regulator 42, and part of the fuel is low pressure fuel supply pipe 36 and low pressure.
  • the fuel is injected from the intake manifold injector 26 of each intake manifold 14 through the fuel distribution pipe 44.
  • the remaining fuel is supplied from the low pressure fuel supply pipe 36 to the high pressure pump 32.
  • the fuel that has passed from the suction port 326 of the high pressure pump 32 through the electromagnetic spill valve 330 and entered the inside of the cylinder 324 becomes high pressure by the plunger 322 extending after the electromagnetic spill valve 330 operates in the closed position.
  • the high-pressure fuel pushes back the check valve 336, flows into the high-pressure fuel distribution pipe 28, and is injected from the in-cylinder injector 24 provided in each cylinder 12 into the combustion chamber.
  • FIG. 2 shows the operation of the plunger 322 and the electromagnetic spill valve 330.
  • A, B and C refer to the portions of A, B and C appended in FIG. That is, A indicates the area of the suction port 326 of the high pressure pump 32, B indicates the inner area (high pressure chamber) of the cylinder 12, C indicates the discharge side of the discharge port 328, ie, the inner area of the high pressure fuel distribution pipe 28. pointing.
  • the drive signal of the electromagnetic spill valve 330 is on when the solenoid 334 is excited, and off is when the solenoid 334 is not energized.
  • a hatched area D means a section in which high pressure fuel is pressure fed from the plunger 322 to the high pressure fuel distribution pipe 28.
  • the drive of the low pressure pump 40 and the pump cam 320 and the excitation timing of the solenoid 334 are controlled by the spill valve operation control unit 306 of the ECU 30.
  • the solenoid 334 When fuel is drawn from the suction port 326 (area A) into the interior (area B) of the cylinder 324, the solenoid 334 is de-energized and the electromagnetic spill valve 330 is in the open position. In this state, the plunger 322 is retracted (lowered) to suck fuel from the suction port 326 into the cylinder 324. When the plunger 322 is extended (lifted) with the electromagnetic spill valve 330 open, fuel returns from inside the cylinder 12 to the suction port 326. Accordingly, the fuel pressure in the cylinder 324 is determined by the closing timing of the electromagnetic spill valve 330, and the amount of fuel to be returned to the suction port 326 and the amount of pumping to the high pressure fuel distribution pipe 28 are determined according to this fuel pressure. When fuel is discharged from the inside (region B) of the cylinder 324 to the high pressure fuel distribution pipe 28 (region C), the solenoid 334 is excited to extend the plunger 322 in a state where the electromagnetic spill valve 330 is closed.
  • the electromagnetic spill valve 330 maintains the closed position by the high pressure in the cylinder even if the excitation of the solenoid 334 is released.
  • the electromagnetic spill valve 330 moves to the open position.
  • an intake manifold injection (MPI) mode is performed in which fuel is injected only from the intake manifold injector 26 according to the engine speed and in-cylinder pressure, or combined mode (in-cylinder injection DI + intake manifold injection MPI It is a fuel injection map that defines whether or not to The fuel injection map is stored in advance in the memory 302 of the ECU 30.
  • a fuel injection mode of engine 10 is determined based on the fuel injection map.
  • the fuel pressure of the high-pressure fuel distribution pipe 28 is set for each operation region. For example, in the idle region I operated in the MPI mode, the fuel pressure is set to 7 MPa, and in the other MPI mode regions, the fuel pressure is set to 10 MPa.
  • a hysteresis region H is provided at the boundary E between the MPI mode region and the combined (DI + MPI) mode region, and in the hysteresis region H, the fuel pressure is set to 15 MPa.
  • the fuel pressure setting value is set to a large value in the order of the idle region I, the region not belonging to the idle region I and the hysteresis region H, and the hysteresis region H.
  • the fuel pressure is set to 15 MPa or more according to the operating condition at that time.
  • the spill valve operation control unit 304 of the ECU 30 normally controls the electromagnetic spill valve 330 (S18). It is determined based on the detection value of the rotation speed sensor 50 whether or not it is the start mode. That is, after start-up, it is assumed that the engine is in the start mode when the rotational speed of the engine 10 ⁇ (0 + ⁇ ) and not in the start mode when the rotational speed of the engine 10 exceeds (0 + ⁇ ).
  • the fuel injection mode of the engine 10 is either idle operation I (MPI mode), MPI mode, or combined mode based on the detection values of the rotation speed sensor 50 and the in-cylinder pressure sensor 52 It has been decided.
  • MPI mode it is determined whether the fuel pressure of the high-pressure fuel distribution pipe 28 is equal to or higher than the set value set in accordance with the operation region based on the detection value of the fuel pressure sensor 46 input to the ECU 30 (S14) ).
  • the spill valve operation control unit 304 turns off the drive signal of the electromagnetic spill valve 330. That is, the solenoid 334 is de-energized.
  • the electromagnetic spill valve 330 does not close, and therefore the fuel pressure does not increase inside the cylinder 324, so that the fuel is not supplied to the in-cylinder injector 24.
  • the spill valve operation control unit 304 controls the electromagnetic spill valve 330 as normal control. (S18). Then, in S20, the steps of S12 to S18 are repeated until the engine 10 is stopped.
  • the starting operation is made different depending on the detected value of the water temperature sensor 48. That is, when the detected value of the water temperature sensor 48 is equal to or higher than the set value, for example, 40 ° C. or higher, the catalyst activity determination unit 306 of the ECU 30 determines that the catalyst equipped in the three-way catalytic converter 22 has reached the activation temperature. Based on this determination, the engine 10 is started in the MPI mode, and then the idle operation is performed or the vehicle is started in the MPI mode.
  • the catalyst activity determination unit 306 determines that the catalyst added to the three-way catalytic converter 22 has not reached the activation temperature. Based on this determination, the engine 10 is started in the MPI mode, and then switched to the combined mode. In the combined mode operation, the exhaust gas of the engine 10 is rapidly raised in temperature, and the catalyst equipped in the three-way catalytic converter 22 is rapidly raised to the activation temperature. When the catalyst is heated to the activation temperature, the catalyst is switched to the MPI mode to perform idle operation or to start the vehicle.
  • the excitation signal is not transmitted from the spill valve operation control unit 306 of the ECU 30 to the solenoid 334 during the operation in the MPI mode, and the operation of the electromagnetic spill valve 330 is stopped. There is no vibration generated at the time of seating, and noise due to the vibration can be reduced. In addition, by stopping the excitation of the solenoid 334, power consumption can be reduced. Furthermore, the fuel pressure setting value of the high-pressure fuel distribution pipe 28 is set to a different value according to each fuel injection mode shown in FIG. 3, and the in-cylinder injection responsiveness can be maintained by holding this value above the fuel pressure setting value. Therefore, it is possible to promptly cope with the transition from the intake manifold injection mode to the combined mode.
  • control can be achieved by simple and low-cost control means, and the operating condition value of the engine 10 to be detected can be reduced.
  • the in-cylinder pressure sensor 52 only.
  • the fuel injection map sets the MPI mode and the combined mode according to the in-cylinder pressure and rotational speed of the internal combustion engine, the engine can be detected only by detecting the net average effective pressure (in-cylinder pressure) of the cylinder 12 Accurately understand 10 loads.
  • the fuel pressure setting value is set to a large value in the order of the idle region I, the region not belonging to the idle region I and the hysteresis region H, and the hysteresis region H, the in-cylinder injection responsiveness is maintained.
  • the possibility of driving the high pressure pump 32 is low, it is easy to stop the electromagnetic spill valve 330 and the opportunity to stop the electromagnetic spill valve 330 can be expanded.
  • a rotational speed sensor 50 is provided to detect whether or not the engine 10 is in the start mode, and the spill valve operation control unit 306 stops the operation of the electromagnetic spill valve 330 when the engine 10 is not in the start mode. Therefore, when the engine 10 is in the start mode, there is no risk of inadvertently stopping the operation of the electromagnetic spill valve 330.
  • the cooling water temperature sensor 48 and a catalyst activity determination unit 306 that determines whether the exhaust gas purification catalyst equipped in the three-way catalytic converter 22 has reached the activation temperature based on the detection value of the cooling water temperature sensor 48
  • the catalyst activity determination unit 306 determines that the exhaust gas purification catalyst has not reached the activation temperature
  • the engine 10 is operated in the combined mode until the exhaust gas purification catalyst reaches the activation temperature. Therefore, even when the exhaust gas purification catalyst is at or below the activation temperature when the engine 10 is started, the function of the exhaust gas purification catalyst can be exhibited promptly.
  • the determination of the start mode is performed in S10, the determination of the start mode is performed based on the detection value of the rotation speed sensor 50, but instead the detection value of the vehicle speed sensor or the throttle valve The open / close state may be detected, and it may be determined from these detected values whether the start mode is set.
  • the closing operation of the spill valve provided in the high-pressure pump for supplying high-pressure fuel to the in-cylinder injector is reduced, and vibration and noise generated by seating the spill valve are simplified and low cost. It can be reduced by means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

燃料タンク34の燃料を、低圧ポンプ40で低圧燃料供給管36及び低圧燃料分配管44を介して、インテーク・マニホールド14に装着された吸気通路噴射用インジェクタ26に供給する。低圧燃料供給管36には高圧ポンプ32が設けられ、燃料は高圧ポンプ32で高圧となり、高圧燃料分配管28を介して筒内噴射用インジェクタ24に供給される。吸気通路噴射(MPI)モードのとき、ソレノイド334の励磁を止め、電磁スピル弁330の作動を停止させる。これによって、電磁スピル弁330の弁座への着座による振動及び騒音を低減できる。

Description

内燃機関の燃料噴射装置
 本発明は、気筒内に高圧で燃料を噴射する筒内噴射用インジェクタと、吸気通路に燃料を噴射する吸気通路噴射用インジェクタとを備えた内燃機関に関し、特に、筒内噴射用インジェクタに高圧で燃料を供給する高圧ポンプの騒音低減のための制御に関する。
 気筒内に直接燃料を噴射する筒内噴射用インジェクタと、吸気通路(吸気ポートを含む。)に燃料を噴射する吸気通路噴射用インジェクタとの両方を備え、内燃機関の負荷や回転数に応じて、両インジェクタからの燃料噴射を選択する内燃機関が知られている。吸気通路噴射用インジェクタに供給される燃料は、燃料タンクに設けられた電動式低圧ポンプで吸気通路噴射用インジェクタに送られ、筒内噴射用インジェクタに供給される燃料は、内燃機関に取り付けられた機械式高圧ポンプで昇圧された後、筒内噴射用インジェクタに送られる。
 前記機械式高圧ポンプは、カムによりシリンダ内を摺動し、シリンダ内の燃料の圧力(燃圧)を高めるプランジャと、シリンダの燃料流入口を開閉し、筒内噴射用インジェクタの燃料噴射量に見合った吐出量に制御する電磁スピル弁とを備えている。この電磁スピル弁は、弁体を開位置に付勢するバネ力を付加するバネ部材と、励磁されて弁体を閉方向へ動作させるソレノイドとを備えている。
 電磁スピル弁の動作は、ソレノイドを非励磁にして弁体を開動作させると共に、プランジャを後退させ、シリンダ内に形成される加圧室に吸入口から燃料を吸入させる。次に、ソレノイドを励磁させて弁体を閉動作させて加圧室を閉鎖した後、プランジャを伸長させ、加圧室の容積を低減させることで、加圧室の燃圧を高める。これによって、シリンダに設けられた吐出口の逆止弁を押して、燃料を筒内噴射用インジェクタに供給する。弁体を開けると、シリンダ内の燃料は吸入側に戻る。弁体の閉鎖時期を調整することで、筒内噴射用インジェクタに供給する燃圧(燃料量)を調整できる。
 電磁スピル弁が弁座に着座する時、振動が発生する。この振動が高圧ポンプからロッカーカバーに伝わり、ロッカーカバーが振動することで、騒音が発生する。従来、吸気通路のみに燃料を送る吸気通路噴射モードのとき、電磁スピル弁の閉動作タイミングを遅らせ、プランジャの伸長時に電磁スピル弁を開放状態としておくことで、燃料を吸入口に戻すようにしていた。このように、弁体の閉動作タイミングを遅らせるだけであり、弁体の閉動作回数が減るわけではないので、閉動作による振動及び騒音を低減できなかった。
 内燃機関のアイドル運転時には、内燃機関の作動音が小さくなる。そのため、相対的に電磁スピル弁による騒音を無視できなくなる。そのため、アイドル運転時には筒内噴射用インジェクタの燃料噴射を止め、吸気通路噴射用インジェクタから燃料を噴射させ、騒音を低減する対策が考えられる。しかし、筒内噴射用インジェクタからの燃料噴射を止めると、筒内噴射用インジェクタに付着物が堆積するという問題がある。そこで、特許文献1には、これら2つの問題を解決するための燃料噴射制御手段が開示されている。この手段は、アイドル運転を、内燃機関の温度により、冷間アイドル状態、温間アイドル状態及び高温アイドル状態に区分し、高圧ポンプを使用せず、低圧ポンプによる吸気通路噴射又は筒内噴射を基本とし、夫々の運転状態に特有の燃料噴射制御を行うようにしている。
 特許文献2には、特許文献1と同様の目的をもつ制御手段が開示されている。この制御手段は、車室内の騒音レベルを推定する騒音レベル推定手段と、筒内噴射用インジェクタに付着物が堆積しやすい運転状態であるか否かを推定する付着物堆積推定手段とをもつ制御装置を備えている。この制御装置によって、推定された騒音レベルが設定値以下のとき、高圧ポンプによる昇圧動作を禁止し、推定された騒音レベルが設定値以下であり、かつ筒内噴射用インジェクタに付着物が堆積しやすいと推定されたとき、低圧ポンプから供給された燃料を昇圧せずに、筒内噴射用インジェクタに供給するようにしている。
特開2007-9815号公報 特開2010-1815号公報
 特許文献1及び特許文献2に開示された制御手段は、内燃機関の多種の運転状態量を検出するための多種のセンサーを装備する必要があると共に、複雑な制御を必要とし、制御手段が高コストになるという問題がある。
 本発明は、かかる従来技術の課題に鑑み、筒内噴射用インジェクタと吸気通路噴射用インジェクタとを備えた内燃機関において、簡易かつ低コストな制御手段によって、高圧ポンプに装備された電磁スピル弁の本来の機能を損なうことなく、電磁スピル弁に起因した騒音を低減することを目的とする。
 かかる目的を達成するため、本発明の内燃機関の燃料噴射装置は、筒内噴射用インジェクタ及び吸気通路噴射用インジェクタと、燃料タンクから各インジェクタに燃料を供給する低圧ポンプと、低圧ポンプから供給される燃料をさらに昇圧して筒内噴射用インジェクタに供給すると共に、スピル弁の動作で燃料供給量を調整する高圧ポンプとを備えていることを前提とする。かかる構成に加えて、内燃機関の負荷を検出する負荷検出センサーと、内燃機関の回転数を検出する回転数センサーと、筒内噴射用インジェクタに供給する燃料の圧力を検出する燃圧センサーとを備えている。
 また、制御装置は、前記各センサーで検出される内燃機関の負荷及び回転数に応じて、吸気通路噴射用インジェクタのみから噴射を行う吸気通路噴射モード、又は筒内噴射用インジェクタと吸気通路噴射用インジェクタの両方から噴射を行う併用モードを設定した燃料噴射マップを記憶する記憶部を備えており、この燃料噴射マップに基づいて内燃機関の燃料噴射モードを選択する。さらに、内燃機関が吸気通路噴射モードであり、かつ燃圧センサーで検出された燃圧が設定値以上のとき、スピル弁の作動を停止させるスピル弁動作制御部を備えている。該スピル弁動作制御部は、前記の運転条件を満たしていないとき、スピル弁を通常制御する。筒内噴射用インジェクタに供給する燃料の燃圧は、内燃機関の運転条件に応じて、筒内噴射の応答性が維持される燃圧に設定される。
 こうして、内燃機関が吸気通路噴射モードであり、かつ筒内噴射用インジェクタに供給される燃料の圧力が設定値以上のとき、スピル弁を閉動作させないので、スピル弁の閉動作回数を低減し、スピル弁の弁体の着座によって発生する振動及び騒音を低減できる。また、筒内噴射用インジェクタに供給する燃料の燃圧を設定値以上に維持しているので、高圧ポンプから筒内噴射用インジェクタへ燃料を高圧噴射する機能を保持できるので、吸気通路噴射モードから併用モードに移行することになっても、速やかに対応できる。
 さらに、吸気通路噴射モードであるか否か、及び燃圧が設定値以上か否かのみを条件とした簡単な制御であるので、検出すべき内燃機関の運転状態値が少なくて済み、そのため、少数のセンサーの装備で済む。また、簡易な制御であるので制御装置を簡素化できる。そのため、低コストな制御手段を実現できる。
 本発明において、内燃機関の負荷を検出するセンサーとして、気筒内燃焼室の圧力を検出するセンサーを設けるとよい。そして、燃料噴射マップは、内燃機関の筒内圧力及び回転数に応じて吸気通路噴射モード及び併用モードが設定されているとよい。これによって、気筒の正味平均有効圧(筒内圧力)を検出するだけで、内燃機関の負荷を正確に把握できる。
 本発明において、前記燃圧の設定値は、内燃機関の負荷及び回転数に基づいて、前記吸気通路噴射モードの内、前記併用モードとの境界付近に設けられたヒステリシス領域、アイドル領域、該ヒステリシス領域及びアイドル領域の何れにも属さない領域によってそれぞれ異なるようにするとよい。これによって、内燃機関の運転状態に応じて、筒内噴射の応答性を維持できるので、吸気通路噴射モードから併用モードに移行することになっても、速やかに対応できる。
 さらに、加えて、前記燃圧の設定値は、アイドル領域、ヒステリシス領域及びアイドル領域の何れにも属さない領域、ヒステリシス領域の順に大きな値にするとよい。このように設定することで、筒内噴射の応答性を維持できると共に、高圧ポンプを駆動する可能性が低い場合には、スピル弁を停止させやすくなり、スピル弁の停止機会を拡大できる。
 本発明において、内燃機関が始動モードであることを検出する始動モードセンサーを備え、スピル弁動作制御部は、内燃機関が吸気通路噴射モードであって、始動モードでなく、かつ前記燃圧が設定値以上のとき、スピル弁の作動を停止させるものであるとよい。内燃機関の始動時には、気筒内の急速昇温等のため、筒内噴射を必要とする場合がある。前記構成によって、内燃機関が始動モードであるとき、誤ってスピル弁の作動を停止させてしまうおそれがなくなる。
 本発明において、内燃機関の排気路に設けられた排ガス浄化触媒と、内燃機関を冷却する冷却水の温度を検出する冷却水温センサーを備え、制御装置は、冷却水温センサーの検出値に基づいて排ガス浄化触媒が活性温度に達しているか否かを判定する触媒活性判定部を備え、内燃機関が始動モードであって、触媒活性判定部が排ガス浄化触媒は活性温度に達していないと判定したとき、制御装置は、排ガス浄化触媒が活性温度に達するまで内燃機関を併用モードで運転させるようにするとよい。これによって、内燃機関の始動時、排ガス浄化触媒が活性温度以下であるときでも、速やかに排ガス浄化触媒の機能を発揮させることができる。
 本発明によれば、筒内噴射用インジェクタ及び吸気通路噴射用インジェクタを備えた内燃機関において、筒内噴射用インジェクタに高圧の燃料を供給しない時期に、高圧ポンプに設けられたスピル弁の作動を停止させるようにしたので、スピル弁の着座により発生する振動及び騒音を簡易かつ低コストな手段で低減できる。また、高圧ポンプの高圧室の燃圧を設定値以上に保持した状態でスピル弁の閉動作を停止させるようにしているので、筒内噴射用インジェクタへ燃料を高圧噴射できる機能を維持でき、併用モードに移行するとき、速やかに移行できる。
本発明装置の一実施形態を示す全体構成図である。 前記実施形態の高圧ポンプの動作を示す動作線図である。 前記実施形態の操作手順を示すフロー図である。 前記実施形態で用いられる燃料噴射マップを示す線図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 本発明装置を車載用直列4気筒型ガソリンエンジンに適用した一実施形態を図1~図4に基づいて説明する。図1は本実施形態の全体構成図である。エンジン10は、4つの気筒12を備え、各気筒12は、夫々対応するインテーク・マニホールド14を介して共通のヘッダー16に接続されている。吸気aは、吸気取入口及びエアクリーナ(図示省略)等を介してヘッダー16に吸入され、ヘッダー16からインテーク・マニホールド14を経て各気筒12に吸入される。
 各気筒12の排気路は、夫々各気筒12に対応したエキゾースト・マニホールド18を介して、共通の排気管20に接続されている。排気管20には、三元触媒コンバータ22が介設され、ここで排気中のNO等の有害物が除去される。
 各気筒12には、夫々気筒12の燃焼室に向けて燃料を噴射するための筒内噴射用インジェクタ24が設けられている。また、各インテーク・マニホールド14には、吸気通路内に向けて燃料を噴射するための吸気通路噴射用インジェクタ26が設けられている。これらインジェクタ24及び26は、エンジン全体の駆動を制御するエンジン・コントロール・ユニット(ECU)30から送られる信号によって制御される。ECU30は、メモリ302、スピル弁動作制御部304、及び触媒活性判定部306を備えている。
 各筒内噴射用インジェクタ24は共通の高圧燃料分配管28に接続されており、高圧燃料分配管28は高圧ポンプ32の吐出口に接続されている。高圧ポンプ32の吸入口は、燃料タンク34に接続された低圧燃料供給管36に接続されている。低圧燃料供給管36には、燃料供給方向上流側から順に燃料フィルタ38、低圧ポンプ40及び燃料圧レギュレータ42が介設されている。各吸気通路噴射用インジェクタ26は、共通した低圧燃料分配管44に接続され、低圧燃料分配管44は、燃料圧レギュレータ42と高圧ポンプ32との間の低圧燃料供給管36に合流している。
 燃料タンク34に貯留している燃料は低圧ポンプ40によって汲み上げられ、エンジン10に送られる。燃料タンク34から汲み上げられた燃料は、燃料フィルタ38で夾雑物を除去される。燃料圧レギュレータ42は、低圧ポンプ40から吐出された燃料の圧力が予め定められた設定圧より高くなると、燃料の一部を燃料タンク34に戻し、設定圧に維持する役割をもつ。
 高圧ポンプ32は、ポンプカム320が回転することで、プランジャ322がシリンダ324の内部を往復動する。シリンダ12の内部に、低圧燃料供給管36が接続した吸入口326と、燃料分配管28に接続された吐出口328との間の流路を開閉する電磁スピル弁330が設けられている。スピル弁330は、コイルバネ332のバネ力で開放位置に付勢され、ソレノイド334の励磁によって該流路を閉じる位置に動作する。吐出口328には、逆止弁336が設けられ、逆止弁336にはコイルバネ336aのバネ力が吐出口328を閉じる方向に付勢されている。
 高圧燃料分配管28には、高圧燃料分配管28内の燃圧に比例した出力電圧を発生する燃圧センサー46が設けられている。また、気筒12を形成するシリンダブロック13には、該シリンダブロック13を冷却する冷却水が循環する冷却水ジャケット(図示省略)が設けられている。シリンダブロック13に、シリンダブロック13を冷却する冷却水の温度に比例した出力電圧を発生する水温センサー48が設けられている。また、エンジン10の回転数を検出する回転数センサー50が設けられ、回転数センサー50の検出値がECU30に送られる。また、各気筒12内の燃焼室の圧力を検出する筒内圧センサー52が設けられ、筒内圧センサー52の検出値もECU30に送られる。
 かかる構成において、燃料タンク34から低圧ポンプ40によって燃料が汲み上げられ、低圧ポンプ40から吐出した燃料は、燃料圧レギュレータ42によって設定圧力に保持され、燃料の一部は、低圧燃料供給管36及び低圧燃料分配管44を経て、各インテーク・マニホールド14の吸気通路噴射用インジェクタ26から噴射する。他方、残りの燃料は、低圧燃料供給管36から高圧ポンプ32に供給される。高圧ポンプ32の吸入口326から電磁スピル弁330を通り、シリンダ324の内部に入った燃料は、電磁スピル弁330が閉鎖位置に動作した後で、プランジャ322が伸長することで高圧となる。高圧となった燃料は、逆止弁336を押し退けて、高圧燃料分配管28に流入し、各気筒12に設けられた筒内噴射用インジェクタ24から燃焼室に噴射する。
 図2は、プランジャ322及び電磁スピル弁330の動作を示す。図中、A、B及びCは、図1中に付記されたA、B及びCの部位を指す。即ち、Aは高圧ポンプ32の吸入口326の領域を指し、Bはシリンダ12の内部領域(高圧室)を指し、Cは吐出口328の吐出側、即ち、高圧燃料分配管28の内部領域を指している。図中、電磁スピル弁330の駆動信号がオンとは、ソレノイド334が励磁された時であり、オフとはソレノイド334が非励磁の時である。斜線域Dはプランジャ322から高圧の燃料が高圧燃料分配管28に圧送される区間を意味する。なお、低圧ポンプ40及びポンプカム320の駆動、及びソレノイド334の励磁時期は、ECU30のスピル弁動作制御部306によって制御される。
 吸入口326(A領域)からシリンダ324の内部(B領域)へ燃料を吸入するとき、ソレノイド334は非励磁であり、電磁スピル弁330は開放位置にある。この状態でプランジャ322を後退(下降)させ、燃料を吸入口326からシリンダ324の内部へ吸入する。電磁スピル弁330が開放状態のままプランジャ322を伸長(上昇)させると、燃料はシリンダ12内から吸入口326へ戻る。従って、電磁スピル弁330の閉鎖時期によって、シリンダ324内の燃圧が決まり、この燃圧に応じて、燃料の吸入口326への戻り量、及び高圧燃料分配管28への圧送量が決まる。シリンダ324の内部(B領域)から高圧燃料分配管28(C領域)へ燃料を吐出するとき、ソレノイド334を励磁し、電磁スピル弁330を閉じた状態で、プランジャ322を伸長させる。
 プランジャ322が伸長してシリンダ内部の燃圧を高圧とした後は、ソレノイド334の励磁を解除しても、シリンダ内部の高圧により電磁スピル弁330は閉位置を保つ。プランジャ322が伸長端から後退し始め、シリンダ内部の高圧が解除されることで、電磁スピル弁330は開放位置に移動する。
 図3は、エンジン回転数と筒内圧力に応じて、吸気通路噴射用インジェクタ26のみから燃料噴射を行う吸気通路噴射(MPI)モードとするか、あるいは併用モード(筒内噴射DI+吸気通路噴射MPI)とするかを定めた燃料噴射マップである。この燃料噴射マップが予めECU30のメモリ302に記憶されている。この燃料噴射マップに基づいて、エンジン10の燃料噴射モードが決定される。また、MPIモード時には、各運転領域毎に、高圧燃料分配管28の燃圧が設定されている。例えば、MPIモードで運転されるアイドル領域Iでは、燃圧が7MPaに設定され、その他のMPIモード領域では、燃圧が10MPaに設定されている。
 MPIモード領域と併用(DI+MPI)モード領域との境界Eにヒステリシス領域Hが設けられ、ヒステリシス領域Hでは、燃圧が15MPaに設定されている。このように、アイドル領域I、アイドル領域I及びヒステリシス領域Hの何れにも属さない領域、及びヒステリシス領域Hの順に、燃圧設定値が大きな値に設定されている。ちなみに併用モードでは、15MPa以上で、そのときの運転状態に応じた燃圧に設定されている。
 次に、本実施形態の操作手順を示す。図4において、まず、エンジン10の運転が始動モードであるとき(S10)、ECU30のスピル弁動作制御部304で、電磁スピル弁330を通常制御する(S18)。始動モードであるか否かは、回転数センサー50の検出値に基づいて判定する。即ち、始動後、エンジン10の回転数≦(0+α)のとき、始動モードであり、エンジン10の回転数が(0+α)を超えたとき、始動モードでないとする。
 エンジン10が始動モードでないとき(S10)、エンジン10がMPIモードかどうかを判定する(S12)。エンジン10の燃料噴射モードは、回転数センサー50及び筒内圧センサー52の検出値から、図3に示す燃料噴射マップに基づいて、アイドル運転I(MPIモード)か、MPIモードか、併用モードかが決められている。MPIモードであるとき(S12)、ECU30に入力される燃圧センサー46の検出値に基づいて、高圧燃料分配管28の燃圧が、運転領域に応じて設定された設定値以上かどうかをみる(S14)。ここで、設定値以上であるとき、スピル弁動作制御部304によって、電磁スピル弁330の駆動信号をオフにする。即ち、ソレノイド334を非励磁にする。
 これで電磁スピル弁330は、閉動作をしなくなり、そのため、シリンダ324の内部で燃圧が高くならないので、筒内噴射用インジェクタ24に燃料が供給されなくなる。なお、S12で、MPIモードでないと判定したとき、又はS14で高圧燃料分配管28の燃圧が設定値以上でないと判定したとき、スピル弁動作制御部304によって、電磁スピル弁330を通常制御にする(S18)。そして、S20で、エンジン10が停止するまで、S12からS18のステップを繰り返す。
 また、エンジン10の始動時に、水温センサー48の検出値によって、始動運転を異ならしめる。即ち、水温センサー48の検出値が設定値以上、例えば40℃以上のとき、ECU30の触媒活性判定部306で、三元触媒コンバータ22に装備された触媒が活性温度に達していると判定する。この判定に基づいて、エンジン10をMPIモードで始動させ、次に、MPIモードで、アイドル運転を行うか、車両を発進させる。
 水温センサー48の検出値が設定値以下、例えば40℃未満のとき、触媒活性判定部306で、三元触媒コンバータ22に増備された触媒が活性温度に達していないと判定する。この判定に基づいて、エンジン10をMPIモードで始動させ、次に、併用モードに切り替える。併用モード運転により、エンジン10の排ガスを急速昇温させ、三元触媒コンバータ22に装備された触媒を活性温度まで急速上昇させる。該触媒が活性温度に昇温したら、MPIモードに切り替え、アイドル運転を行うか、車両を発進させる。
 本実施形態によれば、MPIモードで運転中、ECU30のスピル弁動作制御部306から、ソレノイド334に励磁信号を送信しないようにし、電磁スピル弁330の作動を停止したので、電磁スピル弁330の着座時に発生する振動がなくなり、該振動に起因した騒音を低減できる。また、ソレノイド334の励磁を停止することで、電力消費を低減できる。さらに、図3に示す各燃料噴射モードに応じて、高圧燃料分配管28の燃圧設定値を異なる値に定め、この燃圧設定値以上に保持することで、筒内噴射の応答性を維持できる。そのため、吸気通路噴射モードから併用モードに移行することになっても、速やかに対応できる。
 また、かかる制御を簡易かつ低コストな制御手段で達成できると共に、検出するエンジン10の運転状態値も少なく済み、そのため、装備するセンサー類も、燃圧センサー46、冷却水温センサー48、回転数センサー50、及び筒内圧センサー52だけでよい。また、燃料噴射マップは、内燃機関の筒内圧力及び回転数に応じてMPIモード及び併用モードを設定しているので、気筒12の正味平均有効圧(筒内圧力)を検出するだけで、エンジン10の負荷を正確に把握できる。
 また、燃圧設定値を、アイドル領域I、アイドル領域I及びヒステリシス領域Hの何れにも属さない領域、及びヒステリシス領域Hの順に、大きな値に設定しているので、筒内噴射の応答性を維持できると共に、高圧ポンプ32を駆動する可能性が低い場合には、電磁スピル弁330を停止させやすくなり、電磁スピル弁330の停止機会を拡大できる。
 また、回転数センサー50を設けて、エンジン10が始動モードか否かを検出し、スピル弁動作制御部306によって、エンジン10が始動モードでないとき、電磁スピル弁330の作動を停止させるようにしているので、エンジン10が始動モードであるとき、誤って電磁スピル弁330の作動を停止させてしまうおそれがなくなる。
 また、冷却水温センサー48と、冷却水温センサー48の検出値に基づいて三元触媒コンバータ22に装備された排ガス浄化触媒が活性温度に達しているか否かを判定する触媒活性判定部306とを備え、エンジン10が始動モードであって、触媒活性判定部306が排ガス浄化触媒が活性温度に達していないと判定したとき、排ガス浄化触媒が活性温度に達するまでエンジン10を併用モードで運転させるようにしているので、エンジン10の始動時、排ガス浄化触媒が活性温度以下であるときでも、速やかに排ガス浄化触媒の機能を発揮させることができる。
 なお、本実施形態では、S10で始動モードの判定を行うとき、始動モードの判定を回転数センサー50の検出値に基づいて行っているが、代わりに、車速センサーの検出値や、スロットル弁の開閉状態を検出し、これらの検出値から始動モードであるかどうかを判定するようにしてもよい。
 本発明によれば、筒内噴射用インジェクタに高圧の燃料を供給する高圧ポンプに設けられたスピル弁の閉動作を低減して、スピル弁の着座により発生する振動及び騒音を簡易かつ低コストな手段で低減できる。

Claims (6)

  1.  燃焼室内に燃料を噴射する筒内噴射用インジェクタと、吸気通路に燃料を噴射する吸気通路噴射用インジェクタと、燃料タンクから前記各インジェクタに燃料を供給する低圧ポンプと、該低圧ポンプから供給される燃料をさらに昇圧して前記筒内噴射用インジェクタに供給すると共に、スピル弁の動作で燃料供給圧力を調整する高圧ポンプとを備えた内燃機関の燃料噴射装置において、
     内燃機関の負荷を検出する負荷検出センサーと、
     内燃機関の回転数を検出する回転数センサーと、
     前記筒内噴射用インジェクタに供給する燃料の圧力を検出する燃圧センサーと、
     内燃機関の負荷及び回転数に応じて前記吸気通路噴射用インジェクタのみから噴射を行う吸気通路噴射モード、又は前記筒内噴射用インジェクタと該吸気通路噴射用インジェクタの両方から噴射を行う併用モードを設定した燃料噴射マップを記憶する記憶部を有し、該燃料噴射マップに基づいて内燃機関の燃料噴射モードを制御する制御装置とを備え、
     前記制御装置は、内燃機関が前記吸気通路噴射モードであり、かつ前記燃圧センサーで検出された燃圧が設定値以上のとき、前記スピル弁の作動を停止させるスピル弁動作制御部を備えていることを特徴とする内燃機関の燃料噴射装置。
  2.  前記負荷検出センサーが気筒内の燃焼室の圧力を検出する筒内圧センサーであり、
    前記燃料噴射マップは、内燃機関の筒内圧力及び回転数に応じて、前記吸気通路噴射モード及び前記併用モードが設定されていることを特徴とする請求項1に記載の内燃機関の燃料噴射装置。
  3.  前記燃圧の設定値は、内燃機関の負荷及び回転数に基づいて、前記吸気通路噴射モードの内、前記併用モードとの境界付近に設けられたヒステリシス領域、アイドル領域、該ヒステリシス領域及びアイドル領域の何れにも属さない領域によってそれぞれ異なるようにしたことを特徴とする請求項1又は2に記載の内燃機関の燃料噴射装置。
  4. 前記燃圧の設定値は、前記アイドル領域、前記ヒステリシス領域及びアイドル領域の何れにも属さない領域、前記ヒステリシス領域の順に大きな値としたことを特徴とする請求項3に記載の内燃機関の燃料噴射装置。
  5.  内燃機関が始動モードであることを検出する始動モードセンサーを備え、前記制御装置のスピル弁動作制御部は、さらに内燃機関が始動モードでないとき、前記スピル弁の作動を停止させるものであることを特徴とする請求項1~4の何れか1項に記載の内燃機関の燃料噴射装置。
  6.  内燃機関の排気路に設けられた排ガス浄化触媒と、内燃機関を冷却する冷却水の温度を検出する冷却水温センサーを備え、
     前記制御装置は、前記冷却水温センサーの検出値に基づいて前記排ガス浄化触媒が活性温度に達しているか否かを判定する触媒活性判定部を備え、
     内燃機関が始動モードであって、前記触媒活性判定部が前記排ガス浄化触媒が活性温度に達していないと判定したとき、前記制御装置は、前記排ガス浄化触媒が活性温度に達するまで内燃機関を前記併用モードで運転させるものであることを特徴とする請求項5に記載の内燃機関の燃料噴射装置。
PCT/JP2012/075930 2011-10-25 2012-10-05 内燃機関の燃料噴射装置 WO2013061756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12844189.6A EP2772641B1 (en) 2011-10-25 2012-10-05 Fuel injection device for internal combustion engine
US14/238,315 US9835109B2 (en) 2011-10-25 2012-10-05 Fuel injection apparatus for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233544 2011-10-25
JP2011233544A JP5863017B2 (ja) 2011-10-25 2011-10-25 内燃機関の燃料噴射装置

Publications (1)

Publication Number Publication Date
WO2013061756A1 true WO2013061756A1 (ja) 2013-05-02

Family

ID=48167590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075930 WO2013061756A1 (ja) 2011-10-25 2012-10-05 内燃機関の燃料噴射装置

Country Status (4)

Country Link
US (1) US9835109B2 (ja)
EP (1) EP2772641B1 (ja)
JP (1) JP5863017B2 (ja)
WO (1) WO2013061756A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435286B2 (en) 2014-02-03 2016-09-06 Denso International America, Inc. Method to reduce fuel system power consumption
DE102014225321A1 (de) * 2014-12-09 2016-06-09 Robert Bosch Gmbh Verfahren, Computerprogramm, elektronisches Speichermedium und elektronisches Steuergerät zurSteuerung einer Brennkraftmaschine
WO2016162911A1 (ja) * 2015-04-06 2016-10-13 日産自動車株式会社 内燃機関の制御装置および制御方法
US9719456B2 (en) * 2015-07-02 2017-08-01 Hyundai Motor Company Method for controlling engine in various operating modes
JP6646261B2 (ja) * 2016-03-30 2020-02-14 三菱自動車工業株式会社 内燃機関
JP6965614B2 (ja) * 2017-07-21 2021-11-10 トヨタ自動車株式会社 内燃機関の制御装置
JP6784251B2 (ja) 2017-09-25 2020-11-11 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CN111749802A (zh) * 2019-03-27 2020-10-09 纬湃汽车电子(长春)有限公司 控制喷油器开启的方法以及喷油器
KR102165282B1 (ko) * 2019-06-03 2020-10-13 한국기계연구원 이중 분사 가스 엔진

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291729A (ja) * 1995-04-20 1996-11-05 Fuji Heavy Ind Ltd 筒内直噴エンジンの制御方法
JP2005248757A (ja) * 2004-03-02 2005-09-15 Toyota Motor Corp 内燃機関の燃料供給装置
JP2006097660A (ja) * 2004-09-30 2006-04-13 Honda Motor Co Ltd エンジンの仕事量を算出する装置
JP2006258039A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の燃料供給装置
WO2006100938A1 (ja) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha 2系統燃料噴射式内燃機関
JP2007009815A (ja) 2005-06-30 2007-01-18 Toyota Motor Corp 内燃機関の制御装置
JP2010001815A (ja) 2008-06-20 2010-01-07 Toyota Motor Corp 車載内燃機関の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633509A1 (de) * 1986-10-02 1988-04-14 Porsche Ag Brennkraftmaschine mit wenigstens zwei einlassventilen pro zylinder
JP2002115622A (ja) * 2000-10-12 2002-04-19 Toyota Motor Corp 高圧燃料供給装置
JP4432610B2 (ja) * 2004-05-17 2010-03-17 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP2006132517A (ja) 2004-10-07 2006-05-25 Toyota Motor Corp 内燃機関の燃料噴射装置および内燃機関の高圧燃料系統の制御装置
JP4552694B2 (ja) * 2005-03-02 2010-09-29 トヨタ自動車株式会社 車両の燃料供給装置
JP4375276B2 (ja) * 2005-04-14 2009-12-02 トヨタ自動車株式会社 車両の制御装置
JP4407827B2 (ja) * 2005-08-08 2010-02-03 株式会社デンソー 筒内噴射式の内燃機関の制御装置
US7593807B2 (en) * 2008-01-09 2009-09-22 Delphi Technologies, Inc. Method for optimizing fuel injection timing in a compression ignition engine
US8100107B2 (en) * 2010-07-21 2012-01-24 Ford Global Technologies, Llc Method and system for engine control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291729A (ja) * 1995-04-20 1996-11-05 Fuji Heavy Ind Ltd 筒内直噴エンジンの制御方法
JP2005248757A (ja) * 2004-03-02 2005-09-15 Toyota Motor Corp 内燃機関の燃料供給装置
JP2006097660A (ja) * 2004-09-30 2006-04-13 Honda Motor Co Ltd エンジンの仕事量を算出する装置
JP2006258039A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の燃料供給装置
WO2006100938A1 (ja) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha 2系統燃料噴射式内燃機関
JP2007009815A (ja) 2005-06-30 2007-01-18 Toyota Motor Corp 内燃機関の制御装置
JP2010001815A (ja) 2008-06-20 2010-01-07 Toyota Motor Corp 車載内燃機関の制御装置

Also Published As

Publication number Publication date
EP2772641A1 (en) 2014-09-03
EP2772641A4 (en) 2016-06-15
US20140250869A1 (en) 2014-09-11
US9835109B2 (en) 2017-12-05
EP2772641B1 (en) 2018-07-18
JP5863017B2 (ja) 2016-02-16
JP2013092077A (ja) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2013061756A1 (ja) 内燃機関の燃料噴射装置
JP4106663B2 (ja) 内燃機関の燃料供給装置
US7822534B2 (en) Fuel supply device and fuel supply method for internal combustion engine
JP5212546B2 (ja) 燃料供給装置
JP5131265B2 (ja) 燃料圧力制御装置
RU2727942C2 (ru) Способ разгрузки давления в топливной рампе непосредственного впрыска (варианты) и топливная система
US20140251280A1 (en) Control apparatus for internal combustion engine and control method for internal combustion engine
JP2006348908A (ja) エンジン制御装置、エンジン制御システム及びエンジン制御方法
JP5905795B2 (ja) 燃料圧力制御装置
JP2010031816A (ja) 蓄圧式燃料供給システムの制御装置
US20110179780A1 (en) Secondary air supply device for internal combustion engine and control method of the secondary air supply device
JP5989406B2 (ja) 燃料圧力制御装置
JP2013231362A (ja) 燃料圧力制御装置
WO2014119289A1 (ja) 高圧ポンプの制御装置
JP2011220114A (ja) 内燃機関の制御装置
JP3901073B2 (ja) 蓄圧式燃料噴射装置
JP6022986B2 (ja) 燃料供給システム
JP5497556B2 (ja) エンジンの制御装置
JP2009114980A (ja) 燃料供給装置
JP2004036498A (ja) 燃料噴射装置
JP5445413B2 (ja) 燃料供給装置
JP7172756B2 (ja) 高圧ポンプの制御装置
JP5382870B2 (ja) 蓄圧式燃料噴射装置の制御装置及び制御方法並びに蓄圧式燃料噴射装置
JP2003232244A (ja) 内燃機関の燃料噴射制御装置
JP6354558B2 (ja) 燃料噴射システムの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238315

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012844189

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE