WO2013042785A1 - Electroconductive fine particles and anisotropic conductive material containing same - Google Patents

Electroconductive fine particles and anisotropic conductive material containing same Download PDF

Info

Publication number
WO2013042785A1
WO2013042785A1 PCT/JP2012/074293 JP2012074293W WO2013042785A1 WO 2013042785 A1 WO2013042785 A1 WO 2013042785A1 JP 2012074293 W JP2012074293 W JP 2012074293W WO 2013042785 A1 WO2013042785 A1 WO 2013042785A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
fine particles
conductive fine
conductive
nickel
Prior art date
Application number
PCT/JP2012/074293
Other languages
French (fr)
Japanese (ja)
Inventor
木太 純子
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201280046185.9A priority Critical patent/CN103827981A/en
Priority to JP2013504044A priority patent/JP5245021B1/en
Priority to KR1020147007624A priority patent/KR20140054337A/en
Publication of WO2013042785A1 publication Critical patent/WO2013042785A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/64Insulating bodies with conductive admixtures, inserts or layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive fine particles including a nickel layer as a conductive metal layer, and particularly to conductive fine particles having excellent nickel layer flexibility.
  • An anisotropic conductive material is a material in which conductive fine particles are mixed with a binder resin, for example, anisotropic conductive paste (ACP), anisotropic conductive film (ACF), anisotropic conductive ink, anisotropic conductive.
  • ACP anisotropic conductive paste
  • ACF anisotropic conductive film
  • anisotropic conductive ink anisotropic conductive.
  • conductive fine particles used for the anisotropic conductive material metal particles or those obtained by coating the surface of resin particles serving as a substrate with a conductive metal layer are used.
  • Patent Document 1 includes base particles containing a resin and Ni or the like (excluding Ni—P alloy) formed on the surface of the base particles.
  • a conductive fine particle including a buffer layer and an Au layer formed on the buffer layer wherein the buffer layer has a crystallite diameter of 300 nm or less.
  • the buffer layer is formed by a sputtering method.
  • Ni—P layer, Ni—B layer, and Ni—P—B layer formed by electroless plating are peeled off during pressure bonding even when the crystallite diameter is 300 nm or less.
  • Patent Document 1 See Table 1.
  • the present inventor has examined the compressive deformation behavior of the conductive fine particles having a nickel layer.
  • the inflection point is It was confirmed to appear.
  • This inflection point is caused by the destruction or damage of the nickel layer itself formed on the surface of the base particle, and is considered to be a behavior that the conductive metal layer including the nickel layer shows independently.
  • the compression displacement (%) at which this inflection point is observed tends to be small and the connection resistance value tends to be high.
  • This invention is made
  • the conductive fine particles of the present invention that can solve the above-mentioned problems are conductive fine particles having base particles and a conductive metal layer that covers the surface of the base particles, and the conductive metal layer Is characterized by including a nickel plating layer and having a crystallite diameter in the [111] direction of nickel measured by a powder X-ray diffraction method of 3 nm or less.
  • the compression load value is lower than the compression load value at the breaking point (Y) at which the base particle breaks.
  • the compression deformation rate at the break point (Y) is L2
  • the compression deformation rate at the inflection point (X) is L1
  • the ratio (L1 / L2) is preferably 0.3 or more.
  • the L2 is preferably 35% to 70%.
  • the L2 is preferably 35% to 70%.
  • the crystallite diameter in the [111] direction of the nickel is preferably 1.5 nm or more.
  • the number average particle diameter of the substrate particles is preferably 50 ⁇ m or less, and the aspect in which the number average particle diameter is 3 ⁇ m or less and the aspect in which the number average particle diameter is 8 ⁇ m or more are also preferable aspects of the present invention.
  • 10% K value of the base particle is 500 N / mm 2 or more, preferably 30000 N / mm 2 or less.
  • the present invention also includes an anisotropic conductive material containing the conductive fine particles.
  • the present invention by controlling the crystallite diameter in the nickel layer, the flexibility (extensibility) of the nickel layer can be improved. Thereby, even when the nickel layer is broken, the cracks are fine, and it is easy to follow the deformation of the base material particles, and the peeling is suppressed. Therefore, the conductive fine particles of the present invention can realize a lower connection resistance value. Furthermore, since the difference between the compressive deformation rate (L1) at which the nickel layer breaks and the compressive deformation rate (L2) at which the substrate particles break down can be reduced simply by controlling the crystallite diameter, the substrate having various hardnesses. Particles can be employed, and particle design is facilitated.
  • the compression displacement curve of the electroconductive fine particles of this invention is shown.
  • the change of resistance value when the particle diameter and crystallite diameter of the electroconductive fine particles of this invention are changed is shown.
  • the conductive fine particles of the present invention have base material particles and a conductive metal layer that covers the surface of the base material particles.
  • the conductive metal layer includes a nickel layer, and the crystallite diameter perpendicular to the nickel lattice plane (111) measured by powder X-ray diffraction (hereinafter, this is expressed as the crystallite diameter in the [111] direction). And may be simply referred to as “crystallite diameter.”) Is 3 nm or less, preferably 2.9 nm or less, more preferably 2.8 nm or less. The smaller the crystallite diameter, the more flexible (extensibility) of the nickel layer.
  • the lower limit of the crystallite diameter is not particularly limited, but is preferably 1 nm or more, more preferably 1.1 nm or more, still more preferably 1.2 nm or more, and still more preferably 1 because the electric resistance value at the crystallite interface can be reduced. .5 nm or more, more preferably 1.7 nm or more. In particular, if the crystallite diameter is 1.5 nm or more, the electrical resistance value is hardly increased due to the influence of humidity in the air, and the moisture resistance of the conductive fine particles is maintained. A method for measuring the crystallite diameter will be described later.
  • the nickel layer is made of nickel or a nickel alloy.
  • the nickel content in the nickel alloy is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and still more preferably 82% by mass or more.
  • the nickel alloy include Ni—Au, Ni—Pd, Ni—Pd—Au, Ni—Ag, Ni—P, Ni—B, Ni—Zn, Ni—Sn, Ni—W, Ni—Co, and Ni—. W, Ni—Ti, and the like are preferable, and among these, a Ni—P alloy is preferable.
  • the P concentration in the nickel alloy is preferably 18% by mass or less, more preferably 16% by mass or less, still more preferably 14% by mass or less, and particularly preferably 9.5% by mass or less.
  • the lower the P concentration the lower the electrical resistance value of the nickel layer.
  • the P concentration is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 7% by mass or more.
  • concentration shows ratio (P / (P + Ni)) of P mass with respect to the total mass of Ni and P in a nickel alloy in percentage.
  • P concentration affects the hardness of the nickel layer.
  • the crystallite diameter in the [111] direction is 3 nm or less. The effect becomes more remarkable.
  • the thickness of the nickel layer is preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more, further preferably 0.07 ⁇ m or more, preferably 0.3 ⁇ m or less, more preferably 0.25 ⁇ m or less, still more preferably Is 0.2 ⁇ m or less.
  • the conductivity of the conductive fine particles becomes better.
  • the thickness of the nickel layer is 0.3 ⁇ m or less, the density of the conductive fine particles does not become too high, and sedimentation when dispersed in a binder or the like is suppressed, and the dispersion stability is improved.
  • the grain boundary structure appearing on the fracture surface in the thickness direction of the nickel layer is not particularly limited. That is, if the crystallite diameter is 3 nm or less, the flexibility of the nickel layer is improved regardless of the grain boundary structure.
  • the grain boundary structure of the nickel layer when the cross section in the thickness direction is observed at a magnification of 100000 times using a scanning electron microscope, the grain boundaries are oriented (oriented orientation), grain boundaries Are not oriented (non-oriented), and the grain boundary is not confirmed.
  • the grain boundaries are oriented, a plurality of linear grain boundaries are arranged in parallel. In this case, the direction of the straight grain boundary includes the thickness direction, the layer direction, and the oblique direction of the nickel layer.
  • a group of grain boundaries oriented in a specific direction is viewed as one series
  • Such series may be arranged in the thickness direction of the nickel layer, or may be arranged in the layer direction of the nickel layer.
  • an aspect in which the alignment direction of the series adjacent to the thickness direction is line-symmetric with respect to these boundaries as the symmetry axis.
  • the conductive fine particle is formed of only the nickel layer as a conductive metal layer is a preferred embodiment of the conductive fine particle of the present invention.
  • another conductive metal layer may be used.
  • a form in which the conductive metal layer is formed by laminating the nickel layer and another conductive metal layer is also one form of a preferred embodiment of the conductive fine particles of the present invention.
  • a metal which comprises other electroconductive metal layers For example, gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt Indium, nickel-phosphorus, nickel-boron and other metals and metal compounds, and alloys thereof.
  • the nickel layer may be formed directly on the base particle, or another conductive metal layer may be formed on the base particle surface as a base, and the nickel layer may be formed thereon. It is preferable to form directly on.
  • the conductive metal layer is preferably a combination of nickel layer-gold layer, nickel layer-palladium layer, nickel layer-palladium layer-gold layer, nickel layer-silver layer, and the like. In particular, it is preferable to have a gold layer or a palladium layer as the outermost layer.
  • the thickness of the other conductive metal layer is preferably thinner than the nickel layer. Specifically, the thickness of the other conductive metal layer is preferably 3/4 or less of the thickness of the nickel layer, more preferably 1/2 or less, and even more preferably 1/3 or less.
  • the conductive fine particles may be further subjected to surface treatment as necessary in order to prevent corrosion of the conductive metal layer, prevent oxidation, and prevent discoloration.
  • a metal oxide layer containing cerium or titanium is formed on the surface of the nickel layer; having an alkyl group having 3 to 22 carbon atoms Surface treatment with a compound; and the like.
  • the thickness of the conductive metal layer is preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more, and still more preferably 0.00. It is 0.7 ⁇ m or more, preferably 0.3 ⁇ m or less, more preferably 0.25 ⁇ m or less, and still more preferably 0.2 ⁇ m or less.
  • the thickness of the conductive metal is within the above range, conductive fine particles having excellent dispersion stability in a binder and the like and excellent conductivity can be obtained.
  • the number average particle diameter of the conductive fine particles is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, further preferably 2 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and further preferably 30 ⁇ m or less. .
  • the number-based variation coefficient (CV value) of the conductive fine particles is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the conductive fine particles of the present invention can achieve a low connection resistance value because the nickel layer has a predetermined crystallite diameter and the nickel layer is highly flexible. Therefore, the number average particle diameter is preferably less than 10 ⁇ m, more preferably 9.5 ⁇ m or less, further preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m, for the reason that the effect of the present invention becomes more remarkable. Hereinafter, it is particularly preferably 2.8 ⁇ m or less, and most preferably 2.3 ⁇ m or less. Details will be described when the number average particle diameter of the base particles is described.
  • the number average particle diameter of the conductive fine particles is preferably 3.3 ⁇ m or less, more preferably 3.0 ⁇ m or less, and even more preferably 2.7 ⁇ m or less. It is 3 ⁇ m or more, preferably 1.8 ⁇ m or more, and more preferably 2.3 ⁇ m or more.
  • the conductive fine particles having the average particle diameter of the conductive fine particles of 8.3 ⁇ m or more have a specific problem regarding the resistance value at the time of high compression connection, According to the present invention, the problem can be solved. Therefore, even when the number average particle diameter of the conductive fine particles is, for example, 8.3 ⁇ m or more, more preferably 9.3 ⁇ m or more, the effect of the present invention can be effectively used.
  • An upper limit becomes like this. Preferably it is 25 micrometers or less, More preferably, it is 18 micrometers or less, More preferably, it is 14 micrometers or less.
  • the conductive fine particles exhibit the following fracture behavior in a compression test in which the conductive fine particles are compressed at a load load rate of 2.2295 mN / sec.
  • FIG. 1 shows a compression displacement curve of the conductive fine particles of the present invention.
  • the compression displacement curve is the relationship between the load when the load applied to the particle is increased at a constant speed and compressed (ie, the cumulative load from the start of particle compression to that point) and the deformation rate of the particle Are plotted.
  • the conductive fine particles of the present invention have an inflection point (X) due to the destruction of the nickel layer at a compression load value lower than the compression load value at the break point (Y) at which the base particle breaks in the compression displacement curve. Is confirmed.
  • the ratio (L1 / L2) is 0.3 or more. Preferably, it is 0.35 or more, more preferably 0.4 or more.
  • the upper limit of the ratio (L1 / L2) is not particularly limited, but is naturally less than 1.
  • the flexibility of the nickel layer can be improved by setting the crystallite diameter within the above range. Therefore, even when using highly flexible base particles, the nickel layer can be effectively prevented from peeling. Therefore, the room for selection of substrate particles is widened, and particle design is facilitated.
  • the base material particles having high flexibility those having L2 of 35% or more are preferable, more preferably 40% or more, still more preferably 45% or more, and those having 70% or less are more preferable, and 67% are more preferable. Hereinafter, it is more preferably 65% or less.
  • the ratio (P1 / P2) is preferably 0.3 or more, More preferably, it is 0.38 or more, More preferably, it is 0.4 or more.
  • the upper limit of the ratio (P1 / P2) is not particularly limited, but is usually less than 1.
  • the conductive fine particles of the present invention are suitably used for anisotropic conductive materials such as conductive spacers for LCD, anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, and anisotropic conductive inks. Can do.
  • the base particles are preferably resin particles containing a resin component.
  • resin particles By using resin particles, conductive fine particles having excellent elastic deformation characteristics can be obtained.
  • the resin particles include amino resins such as melamine formaldehyde resin, melamine-benzoguanamine-formaldehyde resin, urea formaldehyde resin; vinyl polymers such as styrene resin, acrylic resin, styrene-acrylic resin; polyethylene, polypropylene, poly Polyolefins such as vinyl chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; polyamides; polyimides; phenol formaldehyde resin; The material which comprises these resin particles may be used independently, and 2 or more types may be used together.
  • vinyl polymers, amino resins, and organosiloxanes are preferable, and vinyl polymers and amino resins are preferable in that the effect obtained by setting the crystallite diameter of nickel in the [111] direction to 3 nm or less is more remarkable. Is more preferable, and a vinyl polymer is particularly preferable.
  • a material containing a vinyl polymer has an organic skeleton formed by polymerizing vinyl groups, and is excellent in elastic deformation during pressure connection.
  • a vinyl polymer containing divinylbenzene and / or di (meth) acrylate as a polymerization component has little decrease in particle strength after coating with a conductive metal.
  • Vinyl polymer particles are composed of a vinyl polymer.
  • Vinyl polymers can be formed by polymerizing (radical polymerization) vinyl monomers (vinyl group-containing monomers). These vinyl monomers are vinyl crosslinkable monomers and vinyl noncrosslinkable monomers. Divided into monomers.
  • the “vinyl group” includes not only a carbon-carbon double bond but also a functional group such as (meth) acryloxy group, allyl group, isopropenyl group, vinylphenyl group, isopropenylphenyl group, and polymerizable carbon- Substituents composed of carbon double bonds are also included.
  • (meth) acryloxy group “(meth) acrylate” and “(meth) acryl” are “acryloxy group and / or methacryloxy group”, “acrylate and / or methacrylate” and “acryl and / Or methacryl ".
  • the vinyl-based crosslinkable monomer has a vinyl group and can form a crosslinked structure, and specifically, a monomer (monomer having two or more vinyl groups in one molecule). (1)), or having one vinyl group and a binding functional group other than a vinyl group in one molecule (such as a carboxyl group, a protonic hydrogen-containing group such as a hydroxy group, or a terminal functional group such as an alkoxy group).
  • a monomer (monomer (2)) is mentioned.
  • Examples of the monomer (1) (monomer having two or more vinyl groups in one molecule) among the vinyl-based crosslinkable monomers include, for example, allyl (meth) acrylate such as allyl (meth) acrylate. ) Acrylates; alkanediol di (meth) acrylate (for example, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,3-butylene di (meth) acrylate, etc.), polyalkylene glycol di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, Triethylene glycol di (meth) acrylate, decaethylene glycol di (Meth) acrylate, pentade
  • (meth) acrylates (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups in one molecule and aromatic hydrocarbon crosslinking agents (especially styrene polyfunctional monomers) are included. preferable.
  • (meth) acrylates (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups in one molecule (meth) having two (meth) acryloyl groups in one molecule
  • Acrylate (di (meth) acrylate) is particularly preferable, and among them, acrylate (diacrylate) having two acryloyl groups in one molecule is preferable.
  • the styrenic polyfunctional monomers monomers having two vinyl groups in one molecule such as divinylbenzene are preferable.
  • a monomer (1) may be used independently and may use 2 or more types together.
  • the monomer (2) (monomer having one vinyl group and a binding functional group other than vinyl group in one molecule) is, for example, (meth) Monomers having a carboxyl group such as acrylic acid; hydroxy group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, p -Monomers having hydroxy groups such as hydroxy group-containing styrenes such as hydroxystyrene; alkoxy groups such as 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate and 2-butoxyethyl (meth) acrylate Containing alkoxy groups such as (meth) acrylates and alkoxystyrenes such as p-methoxystyrene And the like; monomers.
  • a monomer (2) may be used independently
  • the vinyl-based non-crosslinkable monomer is a monomer having one vinyl group in one molecule (monomer (3)) or the monomer in the case where there is no counterpart monomer (2) (monomer having one vinyl group and a binding functional group other than vinyl group in one molecule).
  • the monomer (3) (monomer having one vinyl group in one molecule) includes (meth) acrylate monofunctional monomers and styrene monofunctional monomers. Monomers are included. Examples of the (meth) acrylate monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth) acrylate.
  • Styrene monofunctional monomers include styrene; alkyl styrenes such as o-methyl styrene, m-methyl styrene, p-methyl styrene, ⁇ -methyl styrene, ethyl styrene (ethyl vinyl benzene), pt-butyl styrene, Examples include halogen group-containing styrenes such as o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene, and styrene is preferred.
  • a monomer (3) may be used independently and may use 2 or more types together.
  • the vinyl monomer preferably includes at least the vinyl crosslinkable monomer (1).
  • the vinyl crosslinkable monomer (1) and the vinyl noncrosslinkable monomer ( 3) (in particular, a copolymer of the monomer (1) and the monomer (3)) is preferable.
  • an embodiment including at least one selected from a styrene monofunctional monomer, a styrene polyfunctional monomer, and a polyfunctional (meth) acrylate as a constituent component is preferable.
  • the styrene monofunctional monomer is preferably styrene
  • the styrene polyfunctional monomer is preferably divinylbenzene
  • the polyfunctional meta (acrylate) is preferably di (meth) acrylate.
  • an embodiment having divinylbenzene and di (meth) acrylate as essential components; an embodiment having divinylbenzene and styrene as essential components; and an embodiment having di (meth) acrylate and styrene as essential components are particularly preferable.
  • the ratio of the crosslinkable monomer (total of vinyl-based crosslinkable monomer and silane-based crosslinkable monomer) in the total monomers constituting the vinyl polymer particles is excellent in elastic deformation and restoring force. Therefore, 20 mass% or more is preferable, More preferably, it is 30 mass% or more, More preferably, it is 50 mass% or more. When the ratio of the crosslinkable monomer is within the above range, the restoring force can be improved while maintaining excellent elastic deformation characteristics.
  • the upper limit of the ratio of the crosslinkable monomer is not particularly limited, but depending on the type of the crosslinkable monomer used, if the ratio of the crosslinkable monomer is too large, it becomes too hard and compressively deforms during anisotropic conductive connection.
  • the proportion of the crosslinkable monomer is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the 10% K value of the base particle can be reduced as the proportion of the crosslinkable monomer is reduced.
  • the proportion of the crosslinkable monomer may be 50% by mass or less, 40% by mass or less, and 30% by mass or less.
  • the vinyl polymer particles may contain other components to the extent that the properties of the vinyl polymer are not impaired.
  • the vinyl polymer particles preferably contain 50% by mass or more of the vinyl polymer, more preferably 60% by mass or more, and still more preferably 70% by mass or more.
  • a polysiloxane component is preferable.
  • the polysiloxane skeleton can be formed by using a silane monomer, and the silane monomer is divided into a silane crosslinkable monomer and a silane noncrosslinkable monomer. Moreover, when a silane crosslinkable monomer is used as the silane monomer, a crosslinked structure can be formed.
  • the cross-linked structure formed by the silane cross-linkable monomer includes a cross-link between a vinyl polymer and a vinyl polymer (first form); a cross-link between a polysiloxane skeleton and a polysiloxane skeleton (second In which the vinyl polymer skeleton and the polysiloxane skeleton are cross-linked (third form).
  • silane-based crosslinkable monomer that can form the first form (crosslinking between vinyl polymers) include silane compounds having two or more vinyl groups such as dimethyldivinylsilane, methyltrivinylsilane, and tetravinylsilane. Can be mentioned.
  • silane crosslinkable monomer that can form the second form (crosslink between polysiloxanes) include tetrafunctional silane single monomers such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane.
  • Examples of the polymer include trifunctional silane monomers such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • Examples of silane crosslinkable monomers that can form the third form (crosslinking between vinyl polymer and polysiloxane) include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3- (Meth) acryloyl such as acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxyethoxypropyltrimethoxysilane Di- or trialkoxysilane having a group; di- or trialkoxysilane having a vinyl group such as vinyltri
  • silane-based non-crosslinkable monomer examples include bifunctional silane-based monomers such as dimethyldimethoxysilane and dialkylsilane such as dimethyldiethoxysilane; and trialkylsilanes such as trimethylmethoxysilane and trimethylethoxysilane. And monofunctional silane-based monomers. These silane non-crosslinkable monomers may be used alone or in combination of two or more.
  • the polysiloxane skeleton is preferably a skeleton derived from a polymerizable polysiloxane having a radical-polymerizable carbon-carbon double bond (for example, a vinyl group such as a (meth) acryloyl group). That is, the polysiloxane skeleton is a silane crosslinkable monomer (preferably having a (meth) acryloyl group) capable of forming at least the third form (crosslinking between vinyl polymer and polysiloxane) as a constituent component.
  • a silane crosslinkable monomer preferably having a (meth) acryloyl group
  • it is a polysiloxane skeleton formed by hydrolysis and condensation of 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, vinyltrimethoxysilane).
  • the amount of the vinyl monomer used is preferably 100 parts by mass or more, more preferably 200 parts by mass or more with respect to 100 parts by mass of the silane monomer. More preferably, it is 300 parts by mass or more, preferably 700 parts by mass or less, more preferably 600 parts by mass or less, and still more preferably 500 parts by mass or less.
  • the vinyl polymer particles can be produced, for example, by polymerizing a vinyl monomer. Specifically, (i) a monomer composition containing a vinyl monomer as a polymerization component is used. A conventionally known method of aqueous suspension polymerization, dispersion polymerization, emulsion polymerization; (ii) after obtaining a vinyl group-containing polysiloxane using a silane monomer, the vinyl group-containing polysiloxane and the vinyl group Polymerization (radical polymerization) with a monomer; (iii) a so-called seed polymerization method in which a vinyl monomer is radically polymerized after the vinyl monomer is absorbed into the seed particles.
  • the silane compound which has vinyl groups such as the said silane compound which has two or more vinyl groups, and the di- or trialkoxysilane which has a vinyl group as a vinyl-type monomer.
  • vinyl polymer particles into which a polysiloxane skeleton is introduced can be obtained by using a silane-based crosslinkable monomer capable of forming at least the third form.
  • non-crosslinked or low-crosslinked polystyrene particles or polysiloxane particles it is preferable to use non-crosslinked or low-crosslinked polystyrene particles or polysiloxane particles as seed particles.
  • polysiloxane particles By using polysiloxane particles as seed particles, a polysiloxane skeleton can be introduced into the vinyl polymer.
  • the resulting vinyl polymer particles are particularly excellent in elastic deformation and contact pressure because the vinyl polymer and the polysiloxane skeleton are bonded via the silicon atoms constituting the polysiloxane. It will be a thing.
  • the vinyl group-containing polysiloxane particles can be produced, for example, by (co) hydrolytic condensation of a silane monomer (mixture) containing a vinyl group-containing di- or trialkoxysilane.
  • the base particles are subjected to heat treatment.
  • the heat treatment is preferably performed in an air atmosphere or an inert atmosphere, and more preferably performed in an inert atmosphere (for example, in a nitrogen atmosphere).
  • the temperature of the heat treatment is preferably 120 ° C. (more preferably 180 ° C., more preferably 200 ° C.) or more, and preferably a thermal decomposition temperature (more preferably 350 ° C., more preferably 330 ° C.) or less.
  • the heat treatment time is preferably 0.3 hours (more preferably 0.5 hours, more preferably 0.7 hours) or more, and preferably 10 hours (more preferably 5.0 hours, still more preferably 3.0 hours). The following are preferred.
  • the amino resin particles are preferably composed of a condensate of an amino compound and formaldehyde.
  • the amino compounds include benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, guanamine compounds such as spiroguanamine, and polyfunctional amino compounds such as compounds having a triazine ring structure such as melamine. .
  • polyfunctional amino compounds are preferable, compounds having a triazine ring structure are more preferable, and melamine and guanamine compounds (particularly benzoguanamine) are particularly preferable.
  • the amino compound may be used alone or in combination of two or more.
  • the amino resin particles preferably contain 10% by mass or more of a guanamine compound in the amino compound, more preferably 20% by mass or more, and still more preferably 50% by mass or more.
  • a guanamine compound in the amino compound is within the above range, the particle size distribution is sharper and the particle size is precisely controlled.
  • Amino resin particles can be obtained, for example, by reacting an amino compound and formaldehyde in an aqueous medium (addition condensation reaction). Usually, this reaction is carried out under heating (50 to 100 ° C.). Further, the degree of crosslinking can be increased by carrying out the reaction in the presence of an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid.
  • an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid.
  • Examples of the method for producing amino resin particles include, for example, JP-A No. 2000-256432, JP-A No. 2002-293854, JP-A No. 2002-293855, JP-A No. 2002-293856, and JP-A No. 2002-293857.
  • the polyfunctional amino compound and formaldehyde are reacted (addition condensation reaction) in an aqueous medium (preferably a basic aqueous medium) to form a condensate oligomer, and the condensate oligomer is dissolved or dispersed.
  • Crosslinked amino resin particles can be produced by mixing and curing an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in the aqueous medium. It is preferable that both the step of forming the condensate oligomer and the step of forming the amino resin having a crosslinked structure are carried out in a heated state at a temperature of 50 to 100 ° C.
  • amino resin particles having a sharp particle size distribution can be obtained by performing the addition condensation reaction in the presence of a surfactant.
  • Organosiloxane Particles Organopolysiloxane particles (co) hydrolyze one or more silane monomers (silane crosslinkable monomers, silane noncrosslinkable monomers) that do not contain vinyl groups. Obtained by condensation.
  • silane monomers silane crosslinkable monomers, silane noncrosslinkable monomers
  • examples of the silane monomer not containing a vinyl group include trifunctional silane monomers such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and phenyltrimethoxysilane.
  • Di- or trialkoxysilanes having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane;
  • Examples thereof include di- or trialkoxysilanes having an amino group such as propyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • 10% K value of the base material particles 500 N / mm 2 or more, preferably 30000 N / mm 2 or less. If the 10% K value of the substrate particles is too small, the connection resistance is low due to the fact that the surrounding binder cannot be sufficiently removed when used as an anisotropic conductive material, and the degree of biting into the electrode is weak. There is a possibility that the value cannot be obtained. On the other hand, if the 10% K value of the base particles is too large, there is a possibility that an electrically good contact state cannot be secured with respect to the connection site. 10% K value of the substrate particles is 1000 N / mm 2 or more, more preferably 27000N / mm 2 or less.
  • the 10% K value of the base particle is a compression elastic modulus when the particle is compressed by 10% (when the diameter of the particle is displaced by 10%).
  • a known micro compression tester manufactured by Shimadzu Corporation
  • MCT-W500 “etc.”
  • the load when the particles are deformed until the compression displacement becomes 10% of the particle diameter by applying a load at room temperature at a load load rate of 2.2295 mN / sec at room temperature.
  • the load (N) and the amount of displacement (compression displacement: mm) can be measured and determined based on the following formula.
  • E compression elastic modulus (N / mm 2 )
  • F compression load (N)
  • S compression displacement (mm)
  • R radius of particle (mm)
  • the number average particle diameter of the substrate particles is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, further preferably 2 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably. 30 ⁇ m or less.
  • the number-based variation coefficient (CV value) of the particle diameter of the substrate particles is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less. As described above, when the conductive fine particles are fine (specifically, the number average particle diameter is less than 10.0 ⁇ m), the effect of the present invention becomes more remarkable.
  • the number average particle size of the base particles is preferably less than 10.0 ⁇ m, more preferably 9.5 ⁇ m or less, further preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, and even more preferably. It is 2.8 ⁇ m or less, particularly preferably 2.6 ⁇ m or less.
  • the number average particle diameter of the base particles is preferably 3 ⁇ m or less, more preferably 2.7 ⁇ m or less, and even more preferably 2.4 ⁇ m or less.
  • the nickel layer is formed during high compression connection.
  • the lower limit of the number average particle diameter is, for example, 1 ⁇ m or more, preferably 1.5 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the 10% K value of the base particles is preferably 3000 N / mm 2 or more and 30000 or less from the viewpoint of reducing the load on the nickel layer with such a fine particle size.
  • the base particles is 4000 N / mm ⁇ 2 > or more, More preferably, it is 5000 N / mm ⁇ 2 > or more.
  • setting the base particles to a medium particle size that is, a number average particle size of 8 ⁇ m or more, more preferably 9 ⁇ m or more is also an embodiment in which the effect of the present invention can be effectively used.
  • the crystallite diameter of nickel is 3 nm or less, the nickel layer becomes flexible and can follow up to a large deformation range of the base particles (as a result, the ratio (L1 / L2) increases).
  • the 10% K value of the base particle is small from the viewpoint of enabling large deformation at such a medium particle size.
  • 10% K value when the number average particle size of the substrate particles than 8 ⁇ m for example, 6000 N / mm 2 or less, preferably 5000N / mm 2, more preferably not more than 4000 N / mm 2.
  • the conductive fine particles of the present invention can be produced by an electroless plating method.
  • an electroless plating method By controlling the kind and concentration of the complexing agent in the nickel plating solution, the temperature of the nickel plating solution, etc.
  • the diameter can be controlled.
  • Specific examples of the manufacturing method include a manufacturing method having a first electroless plating step and a second electroless plating step (aspect 1); a manufacturing method having an electroless plating step performed using a specific plating solution (aspect 2) ;
  • the manufacturing method of the aspects 1 and 2 is demonstrated.
  • the base material particles subjected to the electroless plating process are subjected to a catalytic treatment.
  • the base particle itself does not have hydrophilicity and adhesion with the conductive metal layer is not good, it is preferable to provide an etching treatment step before the catalyzing step.
  • Etching treatment In the etching treatment process, oxidizing agents such as chromic acid, chromic anhydride-sulfuric acid mixture, permanganic acid; strong acids such as hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid; strong alkaline solutions such as sodium hydroxide and potassium hydroxide Using other commercially available etching agents, etc., to impart hydrophilicity to the surface of the substrate particles and to improve the wettability to the subsequent electroless plating solution. Further, minute unevenness is formed, and the adhesion between the substrate particles after electroless plating described later and the conductive metal layer is improved by the anchor effect of the unevenness.
  • oxidizing agents such as chromic acid, chromic anhydride-sulfuric acid mixture, permanganic acid
  • strong acids such as hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid
  • strong alkaline solutions such as sodium hydroxide and potassium hydroxide
  • Catalytic treatment In the catalytic treatment, after precious metal ions are captured on the surface of the base material particles, they are reduced and supported on the surface of the base material particles, and the surface of the base material particles is subjected to electroless plating in the next step. A catalyst layer that can serve as a starting point is formed.
  • the substrate particles themselves do not have the ability to capture noble metal ions it is also preferable to perform a surface modification treatment before the catalytic conversion.
  • the surface modification treatment can be performed by bringing the substrate particles into contact with water or an organic solvent in which the surface treatment agent is dissolved.
  • the etched base particles are immersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate, and then the base particles are separated and washed with water. Subsequently, the resultant is dispersed in water, and a reducing agent is added thereto to reduce the noble metal ions.
  • a noble metal salt such as palladium chloride or silver nitrate
  • the resultant is dispersed in water, and a reducing agent is added thereto to reduce the noble metal ions.
  • the reducing agent include sodium hypophosphite, dimethylamine borane, sodium borohydride, potassium borohydride, hydrazine, formalin and the like.
  • a reducing agent may be used individually by 1 type, and may use 2 or more types together.
  • the base particles are brought into contact with the solution containing tin ions (Sn 2+ ) to adsorb the tin ions on the surface of the base particles and subjected to sensitization treatment, and then the solution containing palladium ions (Pd 2+ ) is added.
  • the solution containing tin ions Sn 2+
  • Pd 2+ palladium ions
  • a method of depositing palladium on the surface of the substrate particles by immersion may be used.
  • Aspect 1 As an example of the production method of aspect 1, a method for producing conductive fine particles in which the crystallite diameter is 3 nm or less and the grain boundary structure of the nickel plating layer has a vein shape will be described.
  • a nickel layer is formed on the base particles carrying the noble metal as described above.
  • the nickel layer is extremely thinly formed to such an extent that the surface of the base particle carrying the noble metal is smooth, and the thickness of the nickel layer is adjusted by the second electroless plating.
  • the base particles are immersed in a plating solution in which a nickel salt, a reducing agent and a complexing agent are dissolved, so that the nickel ions in the plating solution are reduced with a reducing agent, starting from a noble metal catalyst. Then, nickel is deposited on the surface of the substrate particles to form a nickel layer.
  • first, base material particles are sufficiently dispersed in water to prepare an aqueous slurry of base material particles.
  • the base material particles are sufficiently dispersed in an aqueous medium for plating.
  • a conventionally known dispersing means such as a normal stirring device, a high-speed stirring device, a shearing dispersion device such as a colloid mill or a homogenizer may be employed.
  • a sound wave or a dispersant such as a surfactant
  • the aqueous slurry of the base material particles prepared above (or the base material particle dispersion after reduction treatment) is added to the electroless plating solution containing nickel salt, reducing agent, complexing agent and various additives. And then into an aqueous suspension.
  • the electroless plating reaction starts quickly when an aqueous slurry of the catalyzed substrate particles is added to the plating solution. Moreover, since this reaction is accompanied by the generation of hydrogen gas, the electroless plating reaction may be terminated when the generation of hydrogen gas is not completely recognized.
  • the nickel salt include nickel salts such as nickel chloride, nickel sulfate, and nickel acetate.
  • the reducing agent those exemplified in the catalytic treatment step can be used.
  • the plating solution used in the first electroless plating step uses an organic carboxylic acid such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, malonic acid or a salt thereof as a complexing agent. Of these, sodium tartrate is preferably used.
  • the concentration of the complexing agent is preferably 0.001 to 10 mol / L, more preferably 0.005 to 5 mol / L, and still more preferably 0.01 to 2 mol / L.
  • the nickel salt concentration in the plating solution used in the first electroless plating step is preferably 1.0 ⁇ 10 ⁇ 4 to 1.0 mol / L, more preferably 1.0 ⁇ 10 ⁇ 3 to 0.2 mol / L. It is.
  • the concentration of the reducing agent is preferably 1.0 ⁇ 10 ⁇ 4 to 3.0 mol / L, more preferably 1.0 ⁇ 10 ⁇ 3 to 0.3 mol / L.
  • the amount of the plating solution used is preferably 200 to 2,000,000 parts by mass, more preferably 500 to 1,000,000 parts per 100 parts by mass of the base particles carrying the noble metal. 000 parts by mass.
  • the liquid temperature and dipping time for immersing the substrate particles in the plating solution may be appropriately adjusted, but the liquid temperature is preferably 50 ° C. to 95 ° C.
  • a plating solution is added to the aqueous suspension after the first electroless plating step.
  • the plating solution used in the second electroless plating step is adjusted by dividing into two solutions of a nickel ion-containing solution containing a complexing agent and a reducing agent-containing solution. It is important that the nickel ion-containing liquid contains glycine as a complexing agent. In addition, it is important to provide a concentration gradient of the complexing agent in the plating solution by sequentially adding glycine to the complexing agent used in the first electroless plating step.
  • the concentration of the glycine is preferably 0.001 to 10 mol / L, more preferably 0.01 to 10 mol / L.
  • the nickel salt concentration in the plating solution used in the second electroless plating step is preferably 0.1 to 2 mol / L, more preferably 0.5 to 1.5 mol / L.
  • the concentration of the reducing agent is preferably 0.1 to 20 mol / L, more preferably 1 to 10 mol / L.
  • the ratio of glycine used in the second electroless plating step to the complexing agent used in the first electroless plating step in the plating solution is preferably 0.2 to 2, and particularly preferably 0.3 to 1.
  • the liquid temperature and dipping time for immersing the substrate particles in the plating solution may be appropriately adjusted, but the liquid temperature is preferably 50 ° C. to 95 ° C.
  • the manufacturing method of aspect 2 includes an electroless plating process performed using a specific plating solution.
  • Electroless Plating Step a conductive metal layer is formed on the surface of the catalyst base material particles on which the palladium catalyst is adsorbed in the catalyst step.
  • the electroless plating treatment by immersing the catalyzed substrate particles in a plating solution in which a reducing agent and a desired metal salt are dissolved, starting from a palladium catalyst, metal ions in the plating solution are reduced with a reducing agent, A desired metal is deposited on the surface of the substrate particles to form a conductive metal layer.
  • a plating solution in which a reducing agent and a desired metal salt are dissolved, starting from a palladium catalyst, metal ions in the plating solution are reduced with a reducing agent, A desired metal is deposited on the surface of the substrate particles to form a conductive metal layer.
  • a nickel layer having a crystallite diameter of 3 nm or less it is necessary to use a specific plating solution.
  • plating solutions examples include “Nimden (registered trademark) KFJ-20-M”, “Nimden KFJ-20-MA”, “Nimden NKY-2-M”, “Nimden” commercially available from Uemura Kogyo Co., Ltd. Nimden NKY-2-A ”,“ Nimden LPX-5M ”,“ Nimden LPX-A ”, and“ Schumer (registered trademark) S680 ”commercially available from Kanisen Corporation.
  • the conductive fine particles can be obtained by taking out the substrate particles on which the conductive metal layer is formed from the reaction system and washing and drying as necessary.
  • the crystallite diameter can be increased by subjecting the obtained conductive fine particles to heat treatment.
  • This technique is particularly effective when it is desired to control the crystallite diameter in the range of 1.5 nm to 3 nm (preferably 1.7 nm to 3 nm).
  • the heat treatment is performed on the conductive fine particles in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include an inert atmosphere and a reducing atmosphere.
  • the inert atmosphere include an inert gas atmosphere such as nitrogen gas and argon gas.
  • the temperature of the heat treatment is 180 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, further preferably 260 ° C. or higher, and particularly preferably 280 ° C. or higher.
  • the higher the heat treatment temperature the larger the crystallite diameter.
  • the heat treatment temperature is preferably 350 ° C. or less, more preferably 330 ° C. or less, and even more preferably 300 ° C. or less.
  • the heat treatment time is preferably 0.3 hours or more, more preferably 0.5 hours or more, and even more preferably 0.7 hours or more. The longer the heat treatment time, the larger the crystallite diameter.
  • the heat treatment time is preferably 10 hours or less, more preferably 5.0 hours or less, and even more preferably 3.0 hours or less.
  • the conductive fine particles may have a smooth surface or an uneven shape, but have a plurality of protrusions in that the binder resin can be effectively removed to connect to the electrode. Is preferred. By having the protrusion, connection reliability when the conductive fine particles are used for connection between the electrodes can be improved.
  • a method of forming protrusions on the surface of the conductive fine particles (1) after obtaining base particles having protrusions on the surface using a phase separation phenomenon of a polymer in a polymerization step in base particle synthesis A method of forming a conductive metal layer by electroless plating; (2) electroless after depositing inorganic particles such as metal particles and metal oxide particles or organic particles made of an organic polymer on the surface of the substrate particles; A method of forming a conductive metal layer by plating; (3) after performing electroless plating on the surface of the substrate particles, and attaching organic particles made of inorganic particles or organic polymers such as metal particles and metal oxide particles; (4) Utilizing the self-decomposition of the plating bath during the electroless plating reaction, depositing a metal that forms the core of the protrusion on the surface of the substrate particles, and further performing the electroless plating suddenly And the like; conductive metal layer containing section a method of forming a conductive metal layer became continuous film.
  • the height of the protrusion is preferably 20 nm to 1000 nm, more preferably 30 nm to 800 nm, still more preferably 40 nm to 600 nm, and particularly preferably 50 nm to 500 nm.
  • the height of the protrusion is determined by observing 10 arbitrary conductive fine particles with an electron microscope. Specifically, for the protrusions on the periphery of the conductive fine particles to be observed, the height of any ten protrusions per conductive fine particle is measured, and the measured value is obtained by arithmetic averaging.
  • the number of the protrusions is not particularly limited, but preferably has at least one protrusion on any orthographic projection surface when the surface of the conductive fine particles is observed with an electron microscope from the viewpoint of ensuring high connection reliability. , More preferably 5 or more, still more preferably 10 or more.
  • the conductive fine particle of the present invention may be in an embodiment having an insulating layer on at least a part of the surface (insulating coated conductive fine particle). If an insulating layer is further laminated on the conductive metal layer on the surface in this way, it is possible to prevent lateral conduction that is likely to occur when a high-density circuit is formed or when a terminal is connected.
  • the thickness of the insulating layer is preferably 0.005 ⁇ m to 1 ⁇ m, more preferably 0.01 ⁇ m to 0.8 ⁇ m. When the thickness of the insulating layer is within the above range, the electrical insulation between the particles becomes good while maintaining the conduction characteristics by the conductive fine particles.
  • the insulating layer is not particularly limited as long as the insulating property between the particles of the conductive fine particles can be ensured, and the insulating layer can be easily collapsed or peeled off by a certain pressure and / or heating.
  • polyethylene or the like Polyolefins; (meth) acrylate polymers and copolymers such as polymethyl (meth) acrylate; polystyrene; thermoplastic resins such as polystyrene; and cross-linked products thereof; thermosetting resins such as epoxy resins, phenol resins, melamine resins; Examples thereof include water-soluble resins such as alcohol and mixtures thereof; organic compounds such as silicone resins; and inorganic compounds such as silica and alumina.
  • thermoplastic resin and its crosslinked material it is preferable that it is a thermoplastic resin and its crosslinked material, and it is preferable that they are a (meth) acrylate polymer, a copolymer, and its crosslinked material.
  • a crosslinkable monomer is allowed to coexist during the formation of the (meth) acrylate polymer and copolymer, a crosslinked product of the polymer can be obtained.
  • the crosslinkable monomer is not particularly limited.
  • allyl (meth) acrylates such as allyl (meth) acrylate; ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, etc.
  • Alkanediol di (meth) acrylate Alkanediol di (meth) acrylate; diethylene glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate etc. di (meth) acrylate etc. (Meth) acrylates; tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate; tetra (meth) acrylates such as pentaerythritol tetra (meth) acrylate; dipentaerythritol hexa (meth) acrylate Hexa (meth) acrylates; aromatic hydrocarbon crosslinking agents such as divinylbenzene, divinylnaphthalene and derivatives thereof (preferably styrenic polyfunctional monomers such as divinylbenzene); N, N-divinylaniline, di Examples include heteroatom-containing crosslinking agents such as vinyl ether, divinyl sulfide
  • a preferable embodiment of the insulating coating layer is a crosslinked product of an aromatic hydrocarbon-based crosslinking agent of a thermoplastic resin, and a more preferable embodiment is a crosslinked product of a (meth) acrylate polymer and a copolymer by divinylbenzene. .
  • the insulating layer may be a single layer or a plurality of layers.
  • a single or a plurality of film-like layers may be formed, or a layer in which particles having insulating, granular, spherical, lump, scale or other shapes are attached to the surface of the conductive metal layer.
  • it may be a layer formed by chemically modifying the surface of the conductive metal layer, or a combination thereof.
  • insulating particles hereinafter referred to as “insulating particles” adhere to the surface of the conductive metal layer is preferable.
  • the average particle size of the insulating particles is appropriately selected depending on the average particle size of the conductive fine particles and the use of the insulating coated conductive fine particles.
  • the average particle size of the insulating particles is preferably in the range of 0.005 ⁇ m to 1 ⁇ m, and more Preferably, it is 0.01 ⁇ m to 0.8 ⁇ m.
  • the average particle diameter of the insulating particles is smaller than 0.005 ⁇ m, the conductive layers between the plurality of conductive fine particles are easily brought into contact with each other, and when the average particle diameter is larger than 1 ⁇ m, it is exhibited when the conductive fine particles are sandwiched between the opposing electrodes. There is a possibility that the electrical conductivity should be insufficient.
  • the coefficient of variation (CV value) in the average particle diameter of the insulating particles is preferably 40% or less, more preferably 30% or less, and most preferably 20% or less. If the CV value exceeds 40%, the conductivity may be insufficient.
  • the average particle diameter of the insulating particles is preferably 1/1000 or more and 1/5 or less of the average particle diameter of the conductive fine particles.
  • the insulating particle layer can be uniformly formed on the surface of the conductive fine particles. Two or more kinds of insulating particles having different particle diameters may be used.
  • the insulating particles may have a functional group on the surface in order to improve adhesion to the conductive fine particles.
  • Examples of the functional group include amino group, epoxy group, carboxyl group, phosphoric acid group, silanol group, ammonium group, sulfonic acid group, thiol group, nitro group, nitrile group, oxazoline group, pyrrolidone group, sulfonyl group, and hydroxyl group. Can be mentioned.
  • the coverage of the insulating particles on the surface of the conductive fine particles is preferably 1% to 98%, more preferably 5% to 95%.
  • the coverage of the conductive fine particles by the insulating particles is in the above range, it is possible to reliably insulate adjacent insulating coated conductive fine particles while ensuring sufficient electrical conductivity.
  • the coverage is determined by, for example, observing the surface of any 100 insulating coated conductive fine particles using an electron microscope, and the portion of the orthographic projection surface of the insulating coated conductive fine particles coated with the insulating particles and the resin. It can be evaluated by measuring the area ratio of the uncoated part of the particles.
  • Anisotropic Conductive Material The conductive fine particles of the present invention are useful as an anisotropic conductive material.
  • the anisotropic conductive material include those obtained by dispersing the conductive fine particles in a binder resin.
  • the form of the anisotropic conductive material is not particularly limited, and examples thereof include various forms such as an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, and an anisotropic conductive ink. By providing these anisotropic conductive materials between opposing substrates or between electrode terminals, good electrical connection can be achieved.
  • the anisotropic conductive material using the conductive fine particles of the present invention includes a conductive material for a liquid crystal display element (conductive spacer and composition thereof).
  • An anisotropic conductive material in the form of paste (anisotropic conductive paste) or film (anisotropic conductive film) in which conductive fine particles are dispersed in the binder resin is LCD (Liquid Crystal Display), PDP (PDP). Widely used as a material for bonding and electrically connecting FPD (Flat Panel Display) substrates such as Plasma Display Panel (OLED) and Organic Light-Emitting Diodes (OLED) to driver ICs that send image signals to this. .
  • PWB Printed Wiring Board
  • the anisotropic conductive material of the present invention is preferably used for FOG connection of FPD, COG connection, and touch panel lead-out circuit and FPC connection.
  • the anisotropic conductive material may be in the form of a paste or a film, but is preferably in the form of a film (anisotropic conductive film) in terms of further improving connection reliability.
  • the binder resin is not particularly limited as long as it is an insulating resin.
  • thermoplastic resins such as acrylic resin, styrene resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer; epoxy resin, phenol resin And thermosetting resins such as urea resin, polyester resin, urethane resin, and polyimide resin.
  • binder resin compositions fillers, softeners, accelerators, anti-aging agents, colorants (pigments, dyes), antioxidants, various coupling agents, light stabilizers, UV absorbers, lubricants as necessary. Further, an antistatic agent, a flame retardant, a heat conduction improver, an organic solvent, and the like can be blended.
  • the anisotropic conductive material can be obtained by dispersing conductive fine particles in the binder resin to obtain a desired form.
  • the binder resin and the conductive fine particles are separately used for connection.
  • the conductive fine particles may be present together with the binder resin between the base materials and between the electrode terminals.
  • the content of the conductive fine particles may be appropriately determined according to the use.
  • the volume is preferably 0.01% by volume or more, more preferably based on the total amount of the anisotropic conductive material. Is 0.03% by volume or more, more preferably 0.05% by volume or more, preferably 50% by volume or less, more preferably 30% by volume or less, and still more preferably 20% by volume or less. If the content of the conductive fine particles is too small, it may be difficult to obtain sufficient electrical continuity. On the other hand, if the content of the conductive fine particles is too large, the conductive fine particles are in contact with each other, and anisotropy is caused. The function as a conductive material may be difficult to be exhibited.
  • the coating thickness of the paste or adhesive, the printed film thickness, etc. considering the particle diameter of the conductive fine particles to be used and the specifications of the electrodes to be connected. It is preferable to set appropriately so that the conductive fine particles are held between the electrodes to be connected and the gap between the bonding substrates on which the electrodes to be connected are formed is sufficiently filled with the binder resin layer.
  • Evaluation method 1-1 Number average particle size, coefficient of variation (CV value) Measure the particle size of 30000 particles with a particle size distribution measuring device (“Coulter Multisizer III type”, manufactured by Beckman Coulter, Inc.) to obtain the average particle size based on the number and the standard deviation of the particle size. The CV value (coefficient of variation) based on the number of diameters was calculated.
  • Particle variation coefficient (%) 100 ⁇ (standard deviation of particle diameter / number-based average particle diameter)
  • a surfactant manufactured by Daiichi Kogyo Seiyaku Co., Ltd., “Hytenol (registered trademark) N-08”
  • a dispersion liquid dispersed for 10 minutes was used as a measurement sample.
  • a dispersion obtained by hydrolysis and condensation reaction is diluted with a 1% aqueous solution of a surfactant (Daiichi Kogyo Seiyaku Co., Ltd., “Hytenol (registered trademark) N-08”). A sample was used.
  • a surfactant Daiichi Kogyo Seiyaku Co., Ltd., “Hytenol (registered trademark) N-08”.
  • Conductive metal layer cross-sectional observation 0.1 g of conductive fine particles were ground in an agate bowl and the metal layer was broken. The cross section in the thickness direction of the ground metal layer of the conductive metal layer was observed with a scanning electron microscope at a magnification of 100,000.
  • the structure of the nickel layer was evaluated as follows. A: The grain boundaries of the nickel layer are oriented in the thickness direction. B: No grain boundary is observed in the nickel layer. C: A structure in which the grain boundary of the nickel layer is both A and B is recognized. D: The grain boundary of the nickel layer forms a vein-like structure.
  • Phosphorus concentration 4 ml of aqua regia was added to 0.05 g of conductive fine particles, and the metal layer was dissolved and separated by stirring under heating. Thereafter, the contents of nickel and phosphorus in the filtrate were analyzed using an ICP emission analyzer.
  • Compression connection resistance value Measured at room temperature (25 ° C.) using a Shimadzu micro-compression tester (“MCT-W200” manufactured by Shimadzu Corporation) resistance measurement kit attachment device. Specifically, with respect to one sample particle spread on the sample stage, a constant loading speed (2.6 mN / second (0.27 gf / second)) toward the center of the particle using a circular plate indenter with a diameter of 50 ⁇ m. The measurement was performed with a load applied. The measurement was performed 10 times, and the respective average values of the resistance value (A) at 30% compression deformation and the resistance value (B) at 40% compression deformation of the particle diameter were obtained.
  • MCT-W200 Shimadzu micro-compression tester
  • the case where the 30% compression connection resistance value (A) was 80 ⁇ or less was evaluated as the initial resistance ⁇ , and the case where it was larger than 80 ⁇ was evaluated as the initial resistance ⁇ . Further, when B ( ⁇ ) / A ( ⁇ ) is 1.00 or less, the high compression resistance value is increased ⁇ , and when B ( ⁇ ) / A ( ⁇ ) is greater than 1.00 and less than 1.10, the high compression resistance value is increased. The case of less than 0.00 was evaluated as high compression resistance value increase x, and the case of 2.00 or more was evaluated as high compression resistance value increase xx.
  • An aqueous solution of dodecylbenzenesulfonic acid was added thereto as a curing catalyst, and condensation polymerization was carried out by maintaining at 50 to 60 ° C. for 3 hours to obtain an emulsion of a cured resin.
  • the paste obtained by precipitating and separating the cured resin from this emulsion was dispersed in Emulgen 430 and an aqueous dodecylbenzenesulfonic acid solution, kept at 90 ° C. for 1 hour, and then rapidly cooled.
  • a hardened spherical resin was obtained from the emulsion by sedimentation and separation (wherein the mass ratio of melamine / benzoguanamine / formaldehyde was 31.5 / 31.5 / 37).
  • HITENOL polyoxyethylene styrenated ammonium sulfate ester ammonium salt
  • DVB960 manufactured by Nippon Steel Chemical Co., Ltd., divinylbenzene content 96% by mass
  • 2,2′-azobis (2,4-dimethylvaleronitrile) (“Wako Pure Chemical Industries” “V -65 ”) 4.8 parts was added and emulsified and dispersed to prepare an emulsion of monomer components.
  • the resulting emulsion was added to the emulsion of the polysiloxane particles and further stirred.
  • the mixed liquid was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer.
  • Synthesis Example 4 Synthesis of Vinyl Polymer Particle 3
  • 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 500 parts of methanol were added to a four-necked flask.
  • a vinyl polymer particle 3 was produced in the same manner as in Synthesis Example 1 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 100 parts of methanol was added from the dropping port under stirring.
  • the number average particle diameter of the polysiloxane particles was 1.35 ⁇ m
  • the number average particle diameter of the vinyl polymer particles 3 was 2.71 ⁇ m
  • the coefficient of variation (CV value) was 3.4%.
  • Synthesis of vinyl polymer particles 4 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 550 parts of methanol were added to a four-necked flask. Then, a vinyl polymer particle 4 was produced in the same manner as in Synthesis Example 1 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 50 parts of methanol was added from the dropping port under stirring. At this time, the number average particle size of the polysiloxane particles was 1.15 ⁇ m, the number average particle size of the vinyl polymer particles 4 was 2.30 ⁇ m, and the coefficient of variation (CV value) was 3.6%.
  • Synthesis of vinyl polymer particles 5 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 600 parts of methanol were added to a four-necked flask. A vinyl polymer particle 5 was prepared in the same manner as in Synthesis Example 1, except that 100 parts of 3-methacryloxypropyltrimethoxysilane was added from the dropping port under stirring and stirring. At this time, the number average particle diameter of the polysiloxane particles was 0.99 ⁇ m, the number average particle diameter of the vinyl polymer particles 5 was 2.02 ⁇ m, and the coefficient of variation (CV value) was 3.8%.
  • Conductive fine particles 1 were obtained by using amino resin particles as base particles and subjecting them to the following plating steps (catalyzing treatment step, plating film forming step).
  • the obtained conductive fine particles 1 had a number average particle diameter of 14.2 ⁇ m, the nickel layer had a film thickness of 120 nm and a phosphorus concentration of 8.9% by mass.
  • the cross section in the thickness direction of the nickel layer of the obtained conductive fine particles was observed with a scanning electron microscope at a magnification of 100000 times, grain boundaries were observed, and the orientation direction was oriented in a vein pattern obliquely to the thickness.
  • Catalytic treatment step 40 mL of water was added to 3 g of the above base particle, and ultrasonic dispersion was performed. While stirring this dispersion at a liquid temperature of 60 ° C., 0.2 mL of palladium chloride aqueous solution (concentration: 19.5 g / L) was added and maintained for 5 minutes to activate palladium ions on the surface of the base particles. Processed. Next, the base particles were separated by filtration and washed with 70 mL of hot water at 70 ° C., and then 20 mL of water was added to prepare a slurry.
  • Electroless plating step The slurry after the reduction treatment obtained in the catalytic treatment step was heated to 75 ° C. with a plating solution (sodium tartrate concentration 16.9 g / L, nickel sulfate concentration 1.33 g / L, hypochlorous acid) Sodium phosphate concentration 1.85 g / L) was added to 180 mL with stirring. One minute after adding the slurry, 0.37 g of sodium hypophosphite was added, and stirring was continued for another minute.
  • a plating solution sodium tartrate concentration 16.9 g / L, nickel sulfate concentration 1.33 g / L, hypochlorous acid
  • the nickel ion-containing liquid (glycine concentration 40.5 g / L, nickel sulfate concentration 133.2 g / L), reducing agent-containing liquid (sodium hypophosphite) were added to the mixed liquid of the slurry and plating solution obtained above.
  • the liquid temperature was maintained at 75 ° C., and stirring was continued for 60 minutes after the generation of hydrogen gas was completed. Thereafter, solid-liquid separation was performed, and the particles were washed with ion-exchanged water and methanol, and then dried with a vacuum dryer at 100 ° C. Thereby, the electroconductive fine particles 1 which gave nickel plating were obtained.
  • the vinyl polymer particles 1 are subjected to etching treatment with sodium hydroxide, then sensitized by contact with a tin dichloride solution, and then activated by immersion in a palladium dichloride solution. Formed. After adding 10 parts of base particles having palladium nuclei to 900 parts of ion-exchanged water and carrying out ultrasonic dispersion treatment, “Nimden (registered trademark) KFJ-20-M” (Uemura) was used as the electroless plating solution. 500 parts of Kogyo Co., Ltd. and 225 parts of “Nimden KFJ-20-MA” (Uemura Kogyo Co., Ltd.) were added and heated to 70 ° C.
  • the pH of the plating solution before the plating reaction was 4.55. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 2 plated with nickel.
  • the obtained conductive fine particles 2 had a number average particle size of 6.3 ⁇ m, the nickel layer had a thickness of 130 nm and a phosphorus concentration of 12.7% by mass.
  • the pH of the plating solution before the plating reaction was 4.64. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 3 plated with nickel.
  • the obtained conductive fine particles 3 had a number average particle size of 6.3 ⁇ m, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 12.4% by mass.
  • Production Example 4 Similarly to Production Example 1, conductive fine particles 4 were obtained in the same manner as Production Example 1 except that amino resin particles were used as substrate particles and the raw materials, conditions, etc. in the plating step were changed.
  • the obtained conductive fine particles 4 had a number average particle diameter of 14.3 ⁇ m, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 9.8% by mass.
  • the conductive fine particles were heat-treated at 280 ° C. for 2 hours in a nitrogen (inert) atmosphere to obtain conductive fine particles 5 subjected to nickel plating.
  • the obtained conductive fine particles 5 had a number average particle size of 6.2 ⁇ m, the nickel layer had a thickness of 80 nm, and a phosphorus concentration of 9.5% by mass.
  • the pH of the plating solution before the plating reaction was 6.33. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 6 plated with nickel.
  • the obtained conductive fine particles had a number average particle size of 6.4 ⁇ m, the nickel layer had a thickness of 190 nm and a phosphorus concentration of 7.4% by mass.
  • Production Example 7 In the same manner as in Production Example 1, amino resin particles were used as substrate particles, and the raw materials, conditions, etc. in the plating step were changed to obtain conductive fine particles 7.
  • the obtained conductive fine particles 7 had a number average particle size of 14.3 ⁇ m, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 8.0% by mass.
  • Production Example 8 The vinyl polymer particles 1 were etched with sodium hydroxide and then sensitized by contact with a tin dichloride solution, and then immersed in a palladium dichloride solution to form palladium nuclei. After adding 10 parts of base particles with palladium nuclei to 900 parts of ion-exchanged water and carrying out ultrasonic dispersion treatment, “Nimden KLP-1-MM” (Uemura Kogyo Co., Ltd.) was used as the electroless plating solution. 750 parts and “Nimden KLP-1-MA” (Uemura Kogyo Co., Ltd.) 300 parts were added and heated to 70 ° C. to cause electroless nickel plating reaction.
  • the pH of the plating solution before the plating reaction was 6.27. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 8 plated with nickel.
  • the obtained conductive fine particles 8 had a number average particle size of 6.4 ⁇ m, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 2.8% by mass.
  • Production Example 9 Conductive fine particles 9 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 2 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.3 ⁇ m.
  • Production Example 10 The conductive fine particles 10 were prepared in the same manner as in Production Example 5 except that the vinyl polymer particles 3 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.0 ⁇ m.
  • Production Example 11 Conductive fine particles 11 were obtained in the same manner as in Production Example 2 except that the vinyl polymer particles 3 were used as base particles. The number average particle diameter of the obtained conductive fine particles was 3.0 ⁇ m.
  • Production Example 12 Conductive fine particles 12 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 4 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 ⁇ m.
  • Production Example 13 Conductive fine particles 13 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 5 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.3 ⁇ m.
  • Production Example 14 The conductive fine particles 14 were prepared in the same manner as in Production Example 5 except that the vinyl polymer particles 6 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 ⁇ m.
  • Production Example 15 Conductive fine particles 15 were produced in the same manner as in Production Example 5 except that vinyl polymer particles 7 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the nickel layer had a thickness of 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 ⁇ m.
  • Production Example 16 Conductive fine particles 16 are produced in the same manner as in Production Example 5 except that vinyl polymer particles 8 are used as base particles and the amount of electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 ⁇ m.
  • Production Example 17 Conductive fine particles 17 were prepared in the same manner as in Production Example 8 except that the vinyl polymer particles 2 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.3 ⁇ m.
  • Production Example 18 Conductive fine particles 18 were prepared in the same manner as in Production Example 8 except that the vinyl polymer particles 4 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 ⁇ m.
  • Production Example 19 Conductive fine particles 19 were produced in the same manner as in Production Example 8 except that the vinyl polymer particles 5 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.3 ⁇ m.
  • Production Example 20 Conductive fine particles 20 were produced in the same manner as in Production Example 5 except that vinyl polymer particles 9 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 10.3 ⁇ m.
  • Production Example 21 The conductive fine particles 21 were produced in the same manner as in Production Example 5 except that the vinyl polymer particles 10 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 20.3 ⁇ m.
  • Production Example 22 Conductive fine particles 22 were produced in the same manner as in Production Example 8 except that the vinyl polymer particles 10 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 20.4 ⁇ m.
  • the particle size of the resin particles (1) in this dispersion was measured with a dynamic light scattering particle size distribution measuring device (“NICOMP380” manufactured by PS Japan). The volume average particle size was 158 nm, and the variation coefficient was 11%. Met.
  • the resin particle dispersion (1) was diluted with deionized water so that the particle concentration was 5.0% by mass. To 100 parts of the obtained resin particle dispersion, 12 and 50 parts of the conductive fine particles obtained in Production Example 12 were added and dispersed uniformly, and then water was distilled off with an evaporator to remove the surface of the conductive fine particles. Insulating coated conductive fine particles (1) coated with resin particles were obtained.
  • Production Example 25 Insulating coated conductive fine particles (2) were obtained in the same manner as in Production Example 24 except that the conductive fine particles 18 obtained in Production Example 18 were used.
  • anisotropic conductive material for insulation characteristic evaluation 20 parts of insulating coated conductive fine particles (1), 65 parts of epoxy resin (“YL980” manufactured by Japan Epoxy Resin Co., Ltd.) as a binder resin, epoxy curing agent (“NOVACURE (produced by Asahi Kasei Corporation) (Registered trademark) HX3941HP ”) 35 parts and 200 parts of 1 mm ⁇ zirconia beads were mixed and subjected to bead mill dispersion for 30 minutes to obtain an anisotropic conductive adhesive (1) as an anisotropic conductive material.
  • a conductive connection structure was prepared using the obtained anisotropic conductive adhesive, and the following evaluation was performed.
  • the conductive connection structure is manufactured by first anisotropically bonding the release film (polyethylene terephthalate film having a release treatment on one side with a silicone resin) to a release treatment surface of 25 ⁇ m.
  • the adhesive layer was formed by apply
  • the release film is peeled from the obtained anisotropic conductive sheet, and only the adhesive layer is placed between two ITO-attached glass substrates on which an ITO transparent electrode film having a 150 ⁇ m wide pattern is formed on the inner surface.
  • the conductive connection structure was obtained by heating and pressing at 1 MPa and 185 ° C. for 15 seconds. Conductive connection structures were obtained in the same manner for the conductive fine particles 12 and 18 and the insulating coated conductive fine particles (2).
  • Table 1 shows the results of X-ray diffraction analysis and compression deformation characteristic evaluation of the conductive fine particles obtained in Production Examples 1 to 8.
  • the crystallite diameter of the nickel layer is 3 nm or less.
  • L1 is large. That is, it can be seen that when the crystallite diameter of the nickel layer is 3 nm, the nickel layer is more flexible and hard to break. This is because the conductive fine particles having a crystallite size of 3 nm in the nickel layer have higher adhesion to the base material particles, and it is easier to show deformation behavior linked to the deformation behavior of the base material particles during compression deformation. it is conceivable that.
  • connection resistance value is lower when the crystallite diameter of the nickel layer is 3 nm or less and the nickel layer is more flexible. Further, the effect of suppressing the resistance value when the crystallite diameter is 3 nm or less is further clarified at the time of high compression. In particular, the smaller the particle diameter, the more pronounced the effect of suppressing the resistance value. ( Figure 2)
  • amino resin particles are used as base particles.
  • the conductive fine particles of Production Example 4 having a crystallite diameter of 3 nm or less had an initial resistance of 65 ⁇ and a low electric resistance value, but the conductive fine particles of Production Example 7 having a crystallite diameter of 5.85 nm were used.
  • the initial resistance was 191 ⁇ , and the electrical resistance value was remarkably increased. Therefore, even when relatively hard amino resin particles having a 10% K value of 6775 N / mm 2 are used, the flexibility improvement effect of the nickel layer by setting the crystallite diameter to 3 nm or less, and further the electric resistance value It can be seen that a reduction effect of can be obtained.
  • Production Example 23 was conductive fine particles having protrusions, and both the 30% compression connection resistance value and the 40% compression connection resistance value were low, and the resistance value during high compression was effectively suppressed.
  • the conductive fine particles having protrusions are used as an anisotropic conductive material, the binder resin is eliminated by the protrusions, and the protrusions easily bite into the substrate, so that the connection reliability can be further improved.
  • the base particle is soft (for example, 6000 N / mm 2 or less)
  • the effect of improving the flexibility of the nickel layer by setting the crystallite diameter to 3 nm or less It can be seen that the effect of reducing the electrical resistance value becomes even more remarkable.
  • the 10% K value was as soft as 2891 N / mm 2
  • the 30% compression resistance value increased to 198 ⁇ in the conductive fine particles of Production Example 22 having a crystallite diameter of 8.64 nm.
  • the conductive fine particles of the present invention are suitable for anisotropic conductive materials such as conductive spacers for LCD, anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, anisotropic conductive inks, etc. Used.

Abstract

A purpose of the present invention is to provide an electroconductive metal layer which comprises a nickel layer having improved flexibility. The electroconductive fine particles of the present invention comprise base particles and an electroconductive metal layer with which the surface of the base particles has been coated, and are characterized in that the electroconductive metal layer comprises a nickel layer, the nickel having a [111]-direction crystallite diameter, as determined by X-ray powder diffractometry, of 3 nm or smaller.

Description

導電性微粒子及びそれを含む異方性導電材料Conductive fine particles and anisotropic conductive material containing the same
 本発明は、導電性金属層としてニッケル層を含む導電性微粒子に関し、特にニッケル層の柔軟性に優れた導電性微粒子に関する。 The present invention relates to conductive fine particles including a nickel layer as a conductive metal layer, and particularly to conductive fine particles having excellent nickel layer flexibility.
 従来、電子機器の組み立てにおいて、対向する多数の電極や配線間の電気的接続を行うために、異方性導電材料による接続方式が採用されている。異方性導電材料は、導電性微粒子をバインダー樹脂等に混合した材料であり、例えば異方性導電ペースト(ACP)、異方性導電フィルム(ACF)、異方性導電インク、異方性導電シート等がある。また、異方性導電材料に用いられる導電性微粒子としては、金属粒子や、基材となる樹脂粒子の表面を導電性金属層で被覆したものが使用されている。 Conventionally, in assembling electronic devices, a connection method using an anisotropic conductive material has been adopted in order to electrically connect a large number of opposing electrodes and wires. An anisotropic conductive material is a material in which conductive fine particles are mixed with a binder resin, for example, anisotropic conductive paste (ACP), anisotropic conductive film (ACF), anisotropic conductive ink, anisotropic conductive. There are sheets. In addition, as the conductive fine particles used for the anisotropic conductive material, metal particles or those obtained by coating the surface of resin particles serving as a substrate with a conductive metal layer are used.
 このような導電性微粒子を加圧接続に用いると、粒子を圧縮変形させた際に、導電性金属層が割れたり剥離したりして、部分的に導通不良を生じることがあった。そこで、このような問題を解決するため、例えば、特許文献1には樹脂を含む基材粒子と、基材粒子の表面に形成されたNi等(但し、Ni-P合金を除く。)を含む緩衝層と、緩衝層上に形成されたAu層を含み、前記緩衝層の結晶子径が300nm以下である導電性微粒子が提案されている。しかしながら、特許文献1の導電性微粒子では、緩衝層をスパッタリング法により形成することが前提となっている。また、無電解メッキにより形成されたNi-P層、Ni-B層、Ni-P-B層では、結晶子径が300nm以下でも、圧着時に剥離が生じることが示されている(特許文献1(表1)参照)。 When such conductive fine particles are used for pressure connection, when the particles are compressed and deformed, the conductive metal layer may break or peel off, resulting in partial conduction failure. Therefore, in order to solve such a problem, for example, Patent Document 1 includes base particles containing a resin and Ni or the like (excluding Ni—P alloy) formed on the surface of the base particles. There has been proposed a conductive fine particle including a buffer layer and an Au layer formed on the buffer layer, wherein the buffer layer has a crystallite diameter of 300 nm or less. However, in the conductive fine particles of Patent Document 1, it is assumed that the buffer layer is formed by a sputtering method. Further, it has been shown that the Ni—P layer, Ni—B layer, and Ni—P—B layer formed by electroless plating are peeled off during pressure bonding even when the crystallite diameter is 300 nm or less (Patent Document 1). (See Table 1).
特開平11-39937号公報JP-A-11-39937
 本発明者が、ニッケル層を有する導電性微粒子の圧縮変形挙動について検討したところ、測定される圧縮変位曲線において、基材粒子の破壊に由来する破壊点が観測される前に、変曲点が現れることが確認された。この変曲点は、基材粒子の表面に形成されたニッケル層自体の破壊又は損傷に起因するものであり、ニッケル層を含む導電性金属層が独立で示す挙動と考えられる。
 そして、ニッケル層の靭性が低い場合には、この変曲点が観測される圧縮変位(%)が小さくなり、接続抵抗値が高くなる傾向がある。ニッケル層は一般的に硬くて変形しにくいため、応力が蓄積されやすく、低靭性の結果、破壊に至った場合には生じるクラックが大きくなる傾向があり、また、基材粒子に追随して変形しにくく基材粒子から剥離しやすい傾向があるため、導通が断たれる部分が多くなるからと考えられる。
 本発明は上記事情に鑑みてなされたものであり、ニッケル層の柔軟性を向上させた導電性金属層を提供することを目的とする。
The present inventor has examined the compressive deformation behavior of the conductive fine particles having a nickel layer. In the measured compression displacement curve, before the break point derived from the breakage of the base particle is observed, the inflection point is It was confirmed to appear. This inflection point is caused by the destruction or damage of the nickel layer itself formed on the surface of the base particle, and is considered to be a behavior that the conductive metal layer including the nickel layer shows independently.
When the toughness of the nickel layer is low, the compression displacement (%) at which this inflection point is observed tends to be small and the connection resistance value tends to be high. Since the nickel layer is generally hard and difficult to deform, stress is likely to accumulate, and as a result of low toughness, cracks tend to increase when it breaks, and it deforms following the base particle. This is considered to be because the portion where conduction is cut off increases because it tends to be difficult to peel off from the base particles.
This invention is made | formed in view of the said situation, and it aims at providing the electroconductive metal layer which improved the softness | flexibility of the nickel layer.
 上記課題を解決することができた本発明の導電性微粒子は、基材粒子と、該基材粒子の表面を被覆する導電性金属層とを有する導電性微粒子であって、前記導電性金属層が、ニッケルメッキ層を含み、粉末X線回折法により測定されるニッケルの[111]方向の結晶子径が、3nm以下であることを特徴とする。前記導電性微粒子は、荷重負荷速度2.23mN/秒で圧縮する圧縮試験により得られた圧縮変位曲線において、基材粒子が破壊する破壊点(Y)における圧縮荷重値より低い圧縮荷重値において、前記ニッケル層の破壊に起因する変曲点(X)が確認され、前記破壊点(Y)における圧縮変形率をL2、前記変曲点(X)における圧縮変形率をL1としたとき、これらの比(L1/L2)が、0.3以上であることが好ましい。また、前記L2は、35%~70%であることが好ましい。また、前記L2は35%~70%であることが好ましい。前記ニッケルの[111]方向の結晶子径は1.5nm以上であることが好ましい。前記基材粒子の個数平均粒子径は50μm以下であることが好ましく、個数平均粒子径が3μm以下である態様、個数平均粒子径が8μm以上である態様も本発明の好ましい態様である。また、前記基材粒子の10%K値は500N/mm2以上、30000N/mm2以下であることが好ましい。
 本発明には、前記導電性微粒子を含むことを特徴とする異方性導電材料も含まれる。
The conductive fine particles of the present invention that can solve the above-mentioned problems are conductive fine particles having base particles and a conductive metal layer that covers the surface of the base particles, and the conductive metal layer Is characterized by including a nickel plating layer and having a crystallite diameter in the [111] direction of nickel measured by a powder X-ray diffraction method of 3 nm or less. In the compression displacement curve obtained by the compression test obtained by compressing the conductive fine particles at a load load rate of 2.23 mN / sec, the compression load value is lower than the compression load value at the breaking point (Y) at which the base particle breaks. When the inflection point (X) resulting from the fracture of the nickel layer is confirmed, the compression deformation rate at the break point (Y) is L2, and the compression deformation rate at the inflection point (X) is L1, The ratio (L1 / L2) is preferably 0.3 or more. The L2 is preferably 35% to 70%. The L2 is preferably 35% to 70%. The crystallite diameter in the [111] direction of the nickel is preferably 1.5 nm or more. The number average particle diameter of the substrate particles is preferably 50 μm or less, and the aspect in which the number average particle diameter is 3 μm or less and the aspect in which the number average particle diameter is 8 μm or more are also preferable aspects of the present invention. Moreover, 10% K value of the base particle is 500 N / mm 2 or more, preferably 30000 N / mm 2 or less.
The present invention also includes an anisotropic conductive material containing the conductive fine particles.
 本発明によれば、ニッケル層における結晶子径を制御することにより、ニッケル層の柔軟性(展性)を向上させることができる。これにより、ニッケル層が破壊した場合でも、クラックが微細なものとなり、また、基材粒子の変形に追随し易くなり剥離が抑制される。よって、本発明の導電性微粒子は、より低い接続抵抗値を実現できる。さらに、結晶子径を制御するだけで、ニッケル層が破壊する圧縮変形率(L1)と基材粒子が破壊する圧縮変形率(L2)との差を小さくできるため、種々の硬度を有する基材粒子が採用できるようになり、粒子設計が容易となる。 According to the present invention, by controlling the crystallite diameter in the nickel layer, the flexibility (extensibility) of the nickel layer can be improved. Thereby, even when the nickel layer is broken, the cracks are fine, and it is easy to follow the deformation of the base material particles, and the peeling is suppressed. Therefore, the conductive fine particles of the present invention can realize a lower connection resistance value. Furthermore, since the difference between the compressive deformation rate (L1) at which the nickel layer breaks and the compressive deformation rate (L2) at which the substrate particles break down can be reduced simply by controlling the crystallite diameter, the substrate having various hardnesses. Particles can be employed, and particle design is facilitated.
本発明の導電性微粒子の圧縮変位曲線を示す。The compression displacement curve of the electroconductive fine particles of this invention is shown. 本発明の導電性微粒子の粒子径及び結晶子径を変化させた時の抵抗値の変化を示す。The change of resistance value when the particle diameter and crystallite diameter of the electroconductive fine particles of this invention are changed is shown.
1.導電性微粒子
1-1.導電性金属層
 本発明の導電性微粒子は、基材粒子と、該基材粒子の表面を被覆する導電性金属層とを有している。そして、前記導電性金属層がニッケル層を含み、粉末X線回折法により測定されるニッケル格子面(111)に垂直方向の結晶子径(以下、これを[111]方向の結晶子径と表現する、また、単に「結晶子径」と称する場合がある。)が3nm以下であり、好ましくは2.9nm以下、より好ましくは2.8nm以下である。前記結晶子径が小さい程、ニッケル層の柔軟性(展性)が向上する。一方、結晶子径の下限は特に限定されないが、結晶子界面における電気抵抗値を低減できることから、1nm以上が好ましく、より好ましくは1.1nm以上、さらに好ましくは1.2nm以上、一層好ましくは1.5nm以上、より一層好ましくは1.7nm以上である。特に結晶子径が1.5nm以上であれば、空気中の湿度の影響をによる電気抵抗値の上昇が生じにくく、導電性微粒子の耐湿性が維持される。前記結晶子径の測定方法は後述する。
1. Conductive fine particles 1-1. Conductive Metal Layer The conductive fine particles of the present invention have base material particles and a conductive metal layer that covers the surface of the base material particles. The conductive metal layer includes a nickel layer, and the crystallite diameter perpendicular to the nickel lattice plane (111) measured by powder X-ray diffraction (hereinafter, this is expressed as the crystallite diameter in the [111] direction). And may be simply referred to as “crystallite diameter.”) Is 3 nm or less, preferably 2.9 nm or less, more preferably 2.8 nm or less. The smaller the crystallite diameter, the more flexible (extensibility) of the nickel layer. On the other hand, the lower limit of the crystallite diameter is not particularly limited, but is preferably 1 nm or more, more preferably 1.1 nm or more, still more preferably 1.2 nm or more, and still more preferably 1 because the electric resistance value at the crystallite interface can be reduced. .5 nm or more, more preferably 1.7 nm or more. In particular, if the crystallite diameter is 1.5 nm or more, the electrical resistance value is hardly increased due to the influence of humidity in the air, and the moisture resistance of the conductive fine particles is maintained. A method for measuring the crystallite diameter will be described later.
 前記ニッケル層は、ニッケル又はニッケル合金から構成される。ニッケル合金を使用する場合、ニッケル合金中のニッケル含有率は50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、一層好ましくは82質量%以上である。前記ニッケル合金としては、Ni-Au、Ni-Pd、Ni-Pd-Au、Ni-Ag、Ni-P、Ni-B、Ni-Zn、Ni-Sn、Ni-W、Ni-Co、Ni-W、Ni-Ti等が好ましく、これらの中でもNi-P合金が好ましい。 The nickel layer is made of nickel or a nickel alloy. When a nickel alloy is used, the nickel content in the nickel alloy is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and still more preferably 82% by mass or more. Examples of the nickel alloy include Ni—Au, Ni—Pd, Ni—Pd—Au, Ni—Ag, Ni—P, Ni—B, Ni—Zn, Ni—Sn, Ni—W, Ni—Co, and Ni—. W, Ni—Ti, and the like are preferable, and among these, a Ni—P alloy is preferable.
 前記ニッケル合金(Ni-P合金)中のP濃度は、18質量%以下が好ましく、より好ましくは16質量%以下、さらに好ましくは14質量%以下、特に好ましくは9.5質量%以下である。P濃度が低いほど、ニッケル層の電気抵抗値が低くなる。なお、P濃度が低すぎる場合、磁性による凝集が生じて、導電性微粒子を1次粒子に分散しにくくなる傾向がある。そのため、P濃度は3質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは7質量%以上である。なお、P濃度は、ニッケル合金中のNiとPとの合計質量に対するP質量の比(P/(P+Ni))を百分率で示したものである。一般に、P濃度がニッケル層の硬さに影響するといわれているが、P濃度が上記範囲(3~18質量%)である場合、[111]方向の結晶子径を3nm以下とする本発明の効果が一層顕著となる。 The P concentration in the nickel alloy (Ni—P alloy) is preferably 18% by mass or less, more preferably 16% by mass or less, still more preferably 14% by mass or less, and particularly preferably 9.5% by mass or less. The lower the P concentration, the lower the electrical resistance value of the nickel layer. In addition, when P density | concentration is too low, there exists a tendency for aggregation by magnetism to arise and to disperse | distribute electroconductive fine particles to a primary particle. Therefore, the P concentration is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 7% by mass or more. In addition, P density | concentration shows ratio (P / (P + Ni)) of P mass with respect to the total mass of Ni and P in a nickel alloy in percentage. In general, it is said that the P concentration affects the hardness of the nickel layer. When the P concentration is in the above range (3 to 18% by mass), the crystallite diameter in the [111] direction is 3 nm or less. The effect becomes more remarkable.
 前記ニッケル層の厚さは、0.02μm以上が好ましく、より好ましくは0.05μm以上、さらに好ましくは0.07μm以上であり、0.3μm以下が好ましく、より好ましくは0.25μm以下、さらに好ましくは0.2μm以下である。前記ニッケル層の厚さが上記範囲内であれば、導電性微粒子の導電性がより良好となる。特に、ニッケル層の厚さが0.3μm以下であれば、導電性微粒子の密度が高くなり過ぎず、バインダー等に分散した場合の沈降が抑制され、分散安定性が向上する。 The thickness of the nickel layer is preferably 0.02 μm or more, more preferably 0.05 μm or more, further preferably 0.07 μm or more, preferably 0.3 μm or less, more preferably 0.25 μm or less, still more preferably Is 0.2 μm or less. When the thickness of the nickel layer is within the above range, the conductivity of the conductive fine particles becomes better. In particular, when the thickness of the nickel layer is 0.3 μm or less, the density of the conductive fine particles does not become too high, and sedimentation when dispersed in a binder or the like is suppressed, and the dispersion stability is improved.
 前記ニッケル層は、その厚さ方向の破断面に現れる粒界構造は特に限定されない。すなわち、前記結晶子径が3nm以下であれば、粒界構造に拘わらず、ニッケル層の柔軟性が向上する。前記ニッケル層の粒界構造としては、走査型電子顕微鏡を使用して100000倍の拡大倍率で、その厚さ方向断面を観測したとき、粒界が配向している態様(有配向)、粒界が配向していない態様(無配向)、粒界が確認されない態様が挙げられる。前記粒界が有配向時、複数の直線状の粒界が、平行に並んでいる。この場合、直線粒界の方向は、ニッケル層の厚さ方向、層方向、斜め方向が挙げられる。また、特定の方向に配向している粒界の一群を一つの系列としてみた場合、同一又は異なる方向に配向している系列が複数存在していてもよい。このような系列は、ニッケル層の厚さ方向に並んでいてもよいし、ニッケル層の層方向に並んでいてもよい。また、厚さ方向に隣接する系列の配向方向が、これらの境界を対称軸として、線対称となっている態様(葉脈状)も好ましい。 The grain boundary structure appearing on the fracture surface in the thickness direction of the nickel layer is not particularly limited. That is, if the crystallite diameter is 3 nm or less, the flexibility of the nickel layer is improved regardless of the grain boundary structure. As the grain boundary structure of the nickel layer, when the cross section in the thickness direction is observed at a magnification of 100000 times using a scanning electron microscope, the grain boundaries are oriented (oriented orientation), grain boundaries Are not oriented (non-oriented), and the grain boundary is not confirmed. When the grain boundaries are oriented, a plurality of linear grain boundaries are arranged in parallel. In this case, the direction of the straight grain boundary includes the thickness direction, the layer direction, and the oblique direction of the nickel layer. Further, when a group of grain boundaries oriented in a specific direction is viewed as one series, there may be a plurality of series oriented in the same or different directions. Such series may be arranged in the thickness direction of the nickel layer, or may be arranged in the layer direction of the nickel layer. Also preferred is an aspect (leaf vein shape) in which the alignment direction of the series adjacent to the thickness direction is line-symmetric with respect to these boundaries as the symmetry axis.
 前記導電性微粒子は、導電性金属層として前記ニッケル層のみからなる形態は本発明の導電性微粒子における好ましい実施形態の一形態であるが、前記ニッケル層の他に、他の導電性金属層を積層してもよく、導電性金属層が前記ニッケル層と他の導電性金属層との積層した形態もまた本発明の導電性微粒子における好ましい実施形態の一形態である。
 他の導電性金属層を構成する金属としては特に限定されないが、例えば、金、銀、銅、白金、鉄、鉛、アルミニウム、クロム、パラジウム、ロジウム、ルテニウム、アンチモン、ビスマス、ゲルマニウム、スズ、コバルト、インジウム及びニッケル-リン、ニッケル-ホウ素等の金属や金属化合物、及び、これらの合金等が挙げられる。これらの中でも、金、パラジウム、銀が導電性に優れており好ましい。
 前記ニッケル層は、基材粒子に直接形成してもよいし、下地として他の導電性金属層を基材粒子表面に形成し、その上にニッケル層を形成してもよいが、基材粒子に直接形成することが好ましい。また、導電性金属層は、例えば、ニッケル層-金層、ニッケル層-パラジウム層、ニッケル層-パラジウム層-金層、ニッケル層-銀層等の組合せが好ましく挙げられる。特に最外層として金層、又はパラジウム層を有することが好ましい。
The conductive fine particle is formed of only the nickel layer as a conductive metal layer is a preferred embodiment of the conductive fine particle of the present invention. In addition to the nickel layer, another conductive metal layer may be used. A form in which the conductive metal layer is formed by laminating the nickel layer and another conductive metal layer is also one form of a preferred embodiment of the conductive fine particles of the present invention.
Although it does not specifically limit as a metal which comprises other electroconductive metal layers, For example, gold, silver, copper, platinum, iron, lead, aluminum, chromium, palladium, rhodium, ruthenium, antimony, bismuth, germanium, tin, cobalt Indium, nickel-phosphorus, nickel-boron and other metals and metal compounds, and alloys thereof. Among these, gold, palladium, and silver are preferable because of their excellent conductivity.
The nickel layer may be formed directly on the base particle, or another conductive metal layer may be formed on the base particle surface as a base, and the nickel layer may be formed thereon. It is preferable to form directly on. The conductive metal layer is preferably a combination of nickel layer-gold layer, nickel layer-palladium layer, nickel layer-palladium layer-gold layer, nickel layer-silver layer, and the like. In particular, it is preferable to have a gold layer or a palladium layer as the outermost layer.
 前記他の導電性金属層の厚さは、前記ニッケル層よりも薄いことが好ましい。具体的には、前記他の導電性金属層の厚さは、前記ニッケル層の厚さの3/4以下が好ましく、より好ましくは1/2以下、さらに好ましくは1/3以下である。 The thickness of the other conductive metal layer is preferably thinner than the nickel layer. Specifically, the thickness of the other conductive metal layer is preferably 3/4 or less of the thickness of the nickel layer, more preferably 1/2 or less, and even more preferably 1/3 or less.
 前記導電性微粒子は、導電性金属層の耐腐食性や酸化防止、変色防止を行うため、必要に応じてさらに表面処理を行ってもよい。ニッケル層の酸化を効果的に防ぐことができる方法としては、例えば、ニッケル層の表面にセリウム、又は、チタンを含有する金属酸化物層を形成させる;炭素数が3~22のアルキル基を有する化合物で表面処理を行うこと;等が挙げられる。 The conductive fine particles may be further subjected to surface treatment as necessary in order to prevent corrosion of the conductive metal layer, prevent oxidation, and prevent discoloration. As a method for effectively preventing oxidation of the nickel layer, for example, a metal oxide layer containing cerium or titanium is formed on the surface of the nickel layer; having an alkyl group having 3 to 22 carbon atoms Surface treatment with a compound; and the like.
 前記導電性微粒子は、導電性金属層の厚さ(ニッケル層と他の金属層との合計の厚さ)は、0.02μm以上が好ましく、より好ましくは0.05μm以上、さらに好ましくは0.07μm以上であり、0.3μm以下が好ましく、より好ましくは0.25μm以下、さらに好ましくは0.2μm以下である。前記導電性金属の厚さが上記範囲内であれは、バインダー等への分散安定性に優れ、且つ、導電性に優れた導電性微粒子が得られる。 In the conductive fine particles, the thickness of the conductive metal layer (total thickness of the nickel layer and other metal layers) is preferably 0.02 μm or more, more preferably 0.05 μm or more, and still more preferably 0.00. It is 0.7 μm or more, preferably 0.3 μm or less, more preferably 0.25 μm or less, and still more preferably 0.2 μm or less. When the thickness of the conductive metal is within the above range, conductive fine particles having excellent dispersion stability in a binder and the like and excellent conductivity can be obtained.
 前記導電性微粒子の個数平均粒子径は、1μm以上が好ましく、より好ましくは1.5μm以上、さらに好ましくは2μm以上であり、50μm以下が好ましく、より好ましくは40μm以下、さらに好ましくは30μm以下である。また前記導電性微粒子の粒子径の個数基準の変動係数(CV値)は、20%以下であることが好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。
 導電性微粒子が微細(具体的には、個数平均粒子径が10.0μm未満)になると、異方導電接続時の接触面積を十分とするために、導電性微粒子を高い圧縮変形率まで圧縮する必要がある。このように大きく変形した場合であっても、本発明の導電性微粒子はニッケル層が所定の結晶子径を有し、ニッケル層の柔軟性が高いため、低い接続抵抗値を達成できる。よって、本発明の効果が一層顕著となる理由から、個数平均粒子径は、10μm未満が好ましく、より好ましくは9.5μm以下、さらに好ましくは8μm以下、一層好ましくは5μm以下、より一層好ましくは3μm以下、特に好ましくは2.8μm以下、最も好ましくは2.3μm以下である。
 詳細については基材粒子の個数平均粒子径について説明する際に詳述するが、基材粒子と同様、導電性微粒子の個数平均粒子径が3.3μm以下程度の時に、高圧縮接続時の抵抗値に関して特有の課題が存在しており、本発明によればそれを解決できる。この課題解決の観点からすると、導電性微粒子の個数平均粒子径は、好ましくは3.3μm以下、より好ましくは3.0μm以下、さらに好ましくは2.7μm以下であり、下限は、例えば、1.3μm以上、好ましくは1.8μm以上、さらに好ましくは2.3μm以上である。
 一方、基材粒子と同様、導電性微粒子の個数平均粒子径が8.3μm以上である中粒子径の導電性微粒子にも、高圧縮接続時の抵抗値に関して特有の課題が存在しており、本発明によればその課題を解決できる。したがって、導電性微粒子の個数平均粒子径が、例えば8.3μm以上、より好ましくは9.3μm以上である場合にも、本発明の効果を有効に利用できる。上限は、好ましくは25μm以下、より好ましくは18μm以下、さらに好ましくは14μm以下である。
The number average particle diameter of the conductive fine particles is preferably 1 μm or more, more preferably 1.5 μm or more, further preferably 2 μm or more, preferably 50 μm or less, more preferably 40 μm or less, and further preferably 30 μm or less. . The number-based variation coefficient (CV value) of the conductive fine particles is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
When the conductive fine particles are fine (specifically, the number average particle diameter is less than 10.0 μm), the conductive fine particles are compressed to a high compressive deformation rate in order to provide a sufficient contact area during anisotropic conductive connection. There is a need. Even in such a large deformation, the conductive fine particles of the present invention can achieve a low connection resistance value because the nickel layer has a predetermined crystallite diameter and the nickel layer is highly flexible. Therefore, the number average particle diameter is preferably less than 10 μm, more preferably 9.5 μm or less, further preferably 8 μm or less, more preferably 5 μm or less, and even more preferably 3 μm, for the reason that the effect of the present invention becomes more remarkable. Hereinafter, it is particularly preferably 2.8 μm or less, and most preferably 2.3 μm or less.
Details will be described when the number average particle diameter of the base particles is described. Like the base particles, when the number average particle diameter of the conductive fine particles is about 3.3 μm or less, the resistance at the time of high compression connection. There is a particular problem with respect to values, which can be solved by the present invention. From the viewpoint of solving this problem, the number average particle diameter of the conductive fine particles is preferably 3.3 μm or less, more preferably 3.0 μm or less, and even more preferably 2.7 μm or less. It is 3 μm or more, preferably 1.8 μm or more, and more preferably 2.3 μm or more.
On the other hand, similar to the base particles, the conductive fine particles having the average particle diameter of the conductive fine particles of 8.3 μm or more have a specific problem regarding the resistance value at the time of high compression connection, According to the present invention, the problem can be solved. Therefore, even when the number average particle diameter of the conductive fine particles is, for example, 8.3 μm or more, more preferably 9.3 μm or more, the effect of the present invention can be effectively used. An upper limit becomes like this. Preferably it is 25 micrometers or less, More preferably, it is 18 micrometers or less, More preferably, it is 14 micrometers or less.
 また、前記導電性微粒子は、荷重負荷速度2.2295mN/秒で圧縮する圧縮試験において、下記の破壊挙動を示すことが好ましい。以下、導電性微粒子を圧縮試験に供したときの破壊挙動に関して、圧縮変位曲線を示すグラフを参照しながら説明する。図1は本発明の導電性微粒子の圧縮変位曲線を示している。圧縮変位曲線とは、粒子に負荷する荷重を一定速度で高めて圧縮していったときの荷重(すなわち粒子の圧縮を開始してからその時点までの累積荷重)と粒子の変形率との関係をプロットしたものである。 Further, it is preferable that the conductive fine particles exhibit the following fracture behavior in a compression test in which the conductive fine particles are compressed at a load load rate of 2.2295 mN / sec. Hereinafter, the fracture behavior when the conductive fine particles are subjected to a compression test will be described with reference to a graph showing a compression displacement curve. FIG. 1 shows a compression displacement curve of the conductive fine particles of the present invention. The compression displacement curve is the relationship between the load when the load applied to the particle is increased at a constant speed and compressed (ie, the cumulative load from the start of particle compression to that point) and the deformation rate of the particle Are plotted.
 本発明の導電性微粒子は、前記圧縮変位曲線において、基材粒子が破壊する破壊点(Y)における圧縮荷重値より低い圧縮荷重値において、前記ニッケル層の破壊に起因する変曲点(X)が確認される。そして、前記破壊点(Y)における圧縮変形率をL2、前記変曲点(X)における圧縮変形率をL1としたとき、これらの比(L1/L2)が、0.3以上であることが好ましく、より好ましくは0.35以上、さらに好ましくは0.4以上である。前記比(L1/L2)の上限は特に限定されないが、当然1未満である。 The conductive fine particles of the present invention have an inflection point (X) due to the destruction of the nickel layer at a compression load value lower than the compression load value at the break point (Y) at which the base particle breaks in the compression displacement curve. Is confirmed. When the compression deformation rate at the breaking point (Y) is L2 and the compression deformation rate at the inflection point (X) is L1, the ratio (L1 / L2) is 0.3 or more. Preferably, it is 0.35 or more, more preferably 0.4 or more. The upper limit of the ratio (L1 / L2) is not particularly limited, but is naturally less than 1.
 本発明では、結晶子径を前記範囲にすることでニッケル層の柔軟性を向上できる。そのため、柔軟性の高い基材粒子を使用する場合でも、効果的にニッケル層の剥離を抑制できる。よって、基材粒子の選択の余地が広がり、粒子設計が容易となる。柔軟性の高い基材粒子としては、前記L2が35%以上のものが好ましく、より好ましくは40%以上、さらに好ましくは45%以上であり、70%以下のものが好ましく、より好ましくは67%以下、さらに好ましくは65%以下である。 In the present invention, the flexibility of the nickel layer can be improved by setting the crystallite diameter within the above range. Therefore, even when using highly flexible base particles, the nickel layer can be effectively prevented from peeling. Therefore, the room for selection of substrate particles is widened, and particle design is facilitated. As the base material particles having high flexibility, those having L2 of 35% or more are preferable, more preferably 40% or more, still more preferably 45% or more, and those having 70% or less are more preferable, and 67% are more preferable. Hereinafter, it is more preferably 65% or less.
 前記破壊点(Y)における圧縮荷重値をP2、前記変曲点(X)における圧縮荷重値をP1としたとき、これらの比(P1/P2)が、0.3以上であることが好ましく、より好ましくは0.38以上、さらに好ましくは0.4以上である。前記比(P1/P2)の上限は特に限定されないが、通常1未満である。 When the compressive load value at the breaking point (Y) is P2, and the compressive load value at the inflection point (X) is P1, the ratio (P1 / P2) is preferably 0.3 or more, More preferably, it is 0.38 or more, More preferably, it is 0.4 or more. The upper limit of the ratio (P1 / P2) is not particularly limited, but is usually less than 1.
 本発明の導電性微粒子は、LCD用導通スペーサや、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インク等の異方性導電材料に好適に用いることができる。 The conductive fine particles of the present invention are suitably used for anisotropic conductive materials such as conductive spacers for LCD, anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, and anisotropic conductive inks. Can do.
1-2.基材粒子
 前記基材粒子は、樹脂成分を含む樹脂粒子が好ましい。樹脂粒子を用いることで、弾性変形特性に優れた導電性微粒子が得られる。前記樹脂粒子としては、例えば、メラミンホルムアルデヒド樹脂、メラミン-ベンゾグアナミン-ホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等のアミノ樹脂;スチレン系樹脂、アクリル系樹脂、スチレン-アクリル樹脂等のビニル重合体;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類;ポリカーボネート類;ポリアミド類;ポリイミド類;フェノールホルムアルデヒド樹脂;オルガノシロキサン等が挙げられる。これらの樹脂粒子を構成する材料は、単独で用いられてもよく、2種以上が併用されてもよい。これらの中でも、ニッケルの[111]方向の結晶子径を3nm以下とすることにより得られる効果がより顕著となる点で、ビニル重合体、アミノ樹脂、オルガノシロキサンが好ましく、ビニル重合体及びアミノ樹脂がより好ましく、特にビニル重合体が好ましい。ビニル重合体を含む材料は、ビニル基が重合して形成された有機系骨格を有し、加圧接続時の弾性変形に優れる。特に、ジビニルベンゼン及び/又はジ(メタ)アクリレートを重合成分として含むビニル重合体は、導電性金属被覆後の粒子強度の低下が少ない。
1-2. Base Particles The base particles are preferably resin particles containing a resin component. By using resin particles, conductive fine particles having excellent elastic deformation characteristics can be obtained. Examples of the resin particles include amino resins such as melamine formaldehyde resin, melamine-benzoguanamine-formaldehyde resin, urea formaldehyde resin; vinyl polymers such as styrene resin, acrylic resin, styrene-acrylic resin; polyethylene, polypropylene, poly Polyolefins such as vinyl chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; polyamides; polyimides; phenol formaldehyde resin; The material which comprises these resin particles may be used independently, and 2 or more types may be used together. Among these, vinyl polymers, amino resins, and organosiloxanes are preferable, and vinyl polymers and amino resins are preferable in that the effect obtained by setting the crystallite diameter of nickel in the [111] direction to 3 nm or less is more remarkable. Is more preferable, and a vinyl polymer is particularly preferable. A material containing a vinyl polymer has an organic skeleton formed by polymerizing vinyl groups, and is excellent in elastic deformation during pressure connection. In particular, a vinyl polymer containing divinylbenzene and / or di (meth) acrylate as a polymerization component has little decrease in particle strength after coating with a conductive metal.
1-2-1.ビニル重合体粒子
 ビニル重合体粒子は、ビニル重合体により構成される。ビニル重合体は、ビニル系単量体(ビニル基含有単量体)を重合(ラジカル重合)することによって形成でき、このビニル系単量体はビニル系架橋性単量体とビニル系非架橋性単量体とに分けられる。なお、「ビニル基」には、炭素-炭素二重結合のみならず、(メタ)アクリロキシ基、アリル基、イソプロペニル基、ビニルフェニル基、イソプロペニルフェニル基のような官能基と重合性炭素-炭素二重結合から構成される置換基も含まれる。なお、本明細書において「(メタ)アクリロキシ基」、「(メタ)アクリレート」や「(メタ)アクリル」は、「アクリロキシ基及び/又はメタクリロキシ基」、「アクリレート及び/又はメタクリレート」や「アクリル及び/又はメタクリル」を示すものとする。
1-2-1. Vinyl polymer particles The vinyl polymer particles are composed of a vinyl polymer. Vinyl polymers can be formed by polymerizing (radical polymerization) vinyl monomers (vinyl group-containing monomers). These vinyl monomers are vinyl crosslinkable monomers and vinyl noncrosslinkable monomers. Divided into monomers. The “vinyl group” includes not only a carbon-carbon double bond but also a functional group such as (meth) acryloxy group, allyl group, isopropenyl group, vinylphenyl group, isopropenylphenyl group, and polymerizable carbon- Substituents composed of carbon double bonds are also included. In this specification, “(meth) acryloxy group”, “(meth) acrylate” and “(meth) acryl” are “acryloxy group and / or methacryloxy group”, “acrylate and / or methacrylate” and “acryl and / Or methacryl ".
 前記ビニル系架橋性単量体とは、ビニル基を有し架橋構造を形成し得るものであり、具体的には、1分子中に2個以上のビニル基を有する単量体(単量体(1))、又は、1分子中に1個のビニル基とビニル基以外の結合性官能基(カルボキシル基、ヒドロキシ基等のプロトン性水素含有基、アルコキシ基等の末端官能基等)を有する単量体(単量体(2))が挙げられる。ただし、単量体(2)によって架橋構造を形成させるには、当該単量体(2)の結合性官能基と反応(結合)可能な相手方単量体の存在が必要である。 The vinyl-based crosslinkable monomer has a vinyl group and can form a crosslinked structure, and specifically, a monomer (monomer having two or more vinyl groups in one molecule). (1)), or having one vinyl group and a binding functional group other than a vinyl group in one molecule (such as a carboxyl group, a protonic hydrogen-containing group such as a hydroxy group, or a terminal functional group such as an alkoxy group). A monomer (monomer (2)) is mentioned. However, in order to form a crosslinked structure with the monomer (2), it is necessary to have a counterpart monomer capable of reacting (binding) with the binding functional group of the monomer (2).
 前記ビニル系架橋性単量体のうち前記単量体(1)(1分子中に2個以上のビニル基を有する単量体)の例として、例えば、アリル(メタ)アクリレート等のアリル(メタ)アクリレート類;アルカンジオールジ(メタ)アクリレート(例えば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,3-ブチレンジ(メタ)アクリレート等)、ポリアルキレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート、ペンタコンタヘクタエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等)等のジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート類;ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート類;ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族炭化水素系架橋剤(好ましくはジビニルベンゼン等のスチレン系多官能モノマー);N,N-ジビニルアニリン、ジビニルエーテル、ジビニルサルファイド、ジビニルスルホン酸等のヘテロ原子含有架橋剤;等が挙げられる。 Examples of the monomer (1) (monomer having two or more vinyl groups in one molecule) among the vinyl-based crosslinkable monomers include, for example, allyl (meth) acrylate such as allyl (meth) acrylate. ) Acrylates; alkanediol di (meth) acrylate (for example, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,3-butylene di (meth) acrylate, etc.), polyalkylene glycol di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, Triethylene glycol di (meth) acrylate, decaethylene glycol di (Meth) acrylate, pentadecaethylene glycol di (meth) acrylate, pentacontactor ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate Di (meth) acrylates such as trimethylolpropane tri (meth) acrylate; tetra (meth) acrylates such as pentaerythritol tetra (meth) acrylate; dipentaerythritol hexa (meth) ) Hexa (meth) acrylates such as acrylates; aromatic hydrocarbon crosslinking agents such as divinylbenzene, divinylnaphthalene, and derivatives thereof (preferably divinylbenzene Styrene-based polyfunctional monomer); N, N-divinyl aniline, divinyl ether, divinyl sulfide, hetero atom-containing crosslinking agents such as divinyl sulfonic acid; and the like.
 これらの中でも、1分子中に2個以上の(メタ)アクリロイル基を有する(メタ)アクリレート類(多官能(メタ)アクリレート)や、芳香族炭化水素系架橋剤(特にスチレン系多官能モノマー)が好ましい。前記1分子中に2個以上の(メタ)アクリロイル基を有する(メタ)アクリレート類(多官能(メタ)アクリレート)の中でも、前記1分子中に2個の(メタ)アクリロイル基を有する(メタ)アクリレート(ジ(メタ)アクリレート)が特に好ましく、さらにその中でも、1分子中に2個のアクリロイル基を有するアクリレート(ジアクリレート)が好ましい。前記スチレン系多官能モノマーの中では、ジビニルベンゼンのように1分子中に2個のビニル基を有する単量体が好ましい。単量体(1)は単独で使用してもよいし、2種以上を併用してもよい。 Among these, (meth) acrylates (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups in one molecule and aromatic hydrocarbon crosslinking agents (especially styrene polyfunctional monomers) are included. preferable. Among (meth) acrylates (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups in one molecule, (meth) having two (meth) acryloyl groups in one molecule Acrylate (di (meth) acrylate) is particularly preferable, and among them, acrylate (diacrylate) having two acryloyl groups in one molecule is preferable. Among the styrenic polyfunctional monomers, monomers having two vinyl groups in one molecule such as divinylbenzene are preferable. A monomer (1) may be used independently and may use 2 or more types together.
 前記ビニル系架橋性単量体のうち前記単量体(2)(1分子中に1個のビニル基とビニル基以外の結合性官能基を有する単量体)としては、例えば、(メタ)アクリル酸等のカルボキシル基を有する単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレート類、p-ヒドロキシスチレン等のヒドロキシ基含有スチレン類等のヒドロキシ基を有する単量体;2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート等のアルコキシ基含有(メタ)アクリレート類、p-メトキシスチレン等のアルコキシスチレン類等のアルコキシ基を有する単量体;等が挙げられる。単量体(2)は単独で使用してもよいし、2種以上を併用してもよい。 Among the vinyl-based crosslinkable monomers, the monomer (2) (monomer having one vinyl group and a binding functional group other than vinyl group in one molecule) is, for example, (meth) Monomers having a carboxyl group such as acrylic acid; hydroxy group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, p -Monomers having hydroxy groups such as hydroxy group-containing styrenes such as hydroxystyrene; alkoxy groups such as 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate and 2-butoxyethyl (meth) acrylate Containing alkoxy groups such as (meth) acrylates and alkoxystyrenes such as p-methoxystyrene And the like; monomers. A monomer (2) may be used independently and may use 2 or more types together.
 前記ビニル系非架橋性単量体としては、1分子中に1個のビニル基を有する単量体(単量体(3))か、もしくは相手方単量体が存在しない場合の前記単量体(2)(1分子中に1個のビニル基とビニル基以外の結合性官能基を有する単量体)が挙げられる。 The vinyl-based non-crosslinkable monomer is a monomer having one vinyl group in one molecule (monomer (3)) or the monomer in the case where there is no counterpart monomer (2) (monomer having one vinyl group and a binding functional group other than vinyl group in one molecule).
 前記ビニル系非架橋性単量体のうち前記単量体(3)(1分子中に1個のビニル基を有する単量体)には、(メタ)アクリレート系単官能モノマーやスチレン系単官能モノマーが含まれる。(メタ)アクリレート系単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;シクロプロピル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、シクロウンデシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、フェネチル(メタ)アクリレート等の芳香環含有(メタ)アクリレート類が挙げられ、メチル(メタ)アクリレート等のアルキル(メタ)アクリレートが好ましい。スチレン系単官能モノマーとしては、スチレン;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、エチルスチレン(エチルビニルベンゼン)、p-t-ブチルスチレン等のアルキルスチレン類、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等のハロゲン基含有スチレン類等が挙げられ、スチレンが好ましい。単量体(3)は単独で使用してもよいし、2種以上を併用してもよい。 Among the vinyl non-crosslinkable monomers, the monomer (3) (monomer having one vinyl group in one molecule) includes (meth) acrylate monofunctional monomers and styrene monofunctional monomers. Monomers are included. Examples of the (meth) acrylate monofunctional monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth) acrylate. , Hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Alkyl (meth) acrylates such as: cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, cyclo Cycloalkyl (meth) acrylates such as ndecyl (meth) acrylate, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate , Aromatic ring-containing (meth) acrylates such as tolyl (meth) acrylate and phenethyl (meth) acrylate, and alkyl (meth) acrylates such as methyl (meth) acrylate are preferred. Styrene monofunctional monomers include styrene; alkyl styrenes such as o-methyl styrene, m-methyl styrene, p-methyl styrene, α-methyl styrene, ethyl styrene (ethyl vinyl benzene), pt-butyl styrene, Examples include halogen group-containing styrenes such as o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene, and styrene is preferred. A monomer (3) may be used independently and may use 2 or more types together.
 前記ビニル系単量体としては、少なくとも前記ビニル系架橋性単量体(1)を含む態様が好ましく、中でも前記ビニル系架橋性単量体(1)と前記ビニル系非架橋性単量体(3)とを含む態様(特に単量体(1)と単量体(3)との共重合体)が好ましい。具体的には、構成成分として、スチレン系単官能モノマー、スチレン系多官能モノマー、多官能(メタ)アクリレートから選ばれる少なくとも1種を含む態様が好ましい。さらに好ましくは、スチレン系多官能モノマー及び多官能(メタ)アクリレートを必須構成成分とする態様;スチレン系多官能モノマー及びスチレン系単官能モノマーを必須構成成分とする態様;多官能(メタ)アクリレート及びスチレン系単官能モノマーを必須構成成分とする態様;である。上記態様において、スチレン系単官能モノマーとしてはスチレンが好ましく、スチレン系多官能モノマーとしてはジビニルベンゼンが好ましく、多官能メタ(アクリレート)としてはジ(メタ)アクリレートが好ましい。従って、ジビニルベンゼン及びジ(メタ)アクリレートを必須構成成分とする態様;ジビニルベンゼン及びスチレンを必須構成成分とする態様;ジ(メタ)アクリレート及びスチレンを必須構成成分とする態様が特に好ましい。 The vinyl monomer preferably includes at least the vinyl crosslinkable monomer (1). Among them, the vinyl crosslinkable monomer (1) and the vinyl noncrosslinkable monomer ( 3) (in particular, a copolymer of the monomer (1) and the monomer (3)) is preferable. Specifically, an embodiment including at least one selected from a styrene monofunctional monomer, a styrene polyfunctional monomer, and a polyfunctional (meth) acrylate as a constituent component is preferable. More preferably, an embodiment having a styrene polyfunctional monomer and a polyfunctional (meth) acrylate as essential constituents; an embodiment having a styrene polyfunctional monomer and a styrene monofunctional monomer as essential constituents; a polyfunctional (meth) acrylate and An embodiment having a styrene monofunctional monomer as an essential constituent. In the above embodiment, the styrene monofunctional monomer is preferably styrene, the styrene polyfunctional monomer is preferably divinylbenzene, and the polyfunctional meta (acrylate) is preferably di (meth) acrylate. Therefore, an embodiment having divinylbenzene and di (meth) acrylate as essential components; an embodiment having divinylbenzene and styrene as essential components; and an embodiment having di (meth) acrylate and styrene as essential components are particularly preferable.
 前記ビニル重合体粒子を構成する全単量体に占める架橋性単量体(ビニル系架橋性単量体及びシラン系架橋性単量体の合計)の割合は、弾性変形と復元力に優れる点から、20質量%以上が好ましく、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。架橋性単量体の割合が上記範囲内であれば、優れた弾性変形特性を維持しつつ、復元力を向上させることができる。架橋性単量体の割合の上限は、特に限定されないが、用いる架橋性単量体の種類によっては、架橋性単量体の割合が多すぎると硬くなりすぎて異方導電接続時に圧縮変形させるために高い圧力が必要となる場合がある。そのため、架橋性単量体の割合は、95質量%以下が好ましく、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。なお架橋性単量体の割合が少ないほど基材粒子の10%K値を小さくできる。目的とする10%K値によっては、架橋性単量体の割合は、50質量%以下、40質量%以下、30質量%以下にしてもよい。 The ratio of the crosslinkable monomer (total of vinyl-based crosslinkable monomer and silane-based crosslinkable monomer) in the total monomers constituting the vinyl polymer particles is excellent in elastic deformation and restoring force. Therefore, 20 mass% or more is preferable, More preferably, it is 30 mass% or more, More preferably, it is 50 mass% or more. When the ratio of the crosslinkable monomer is within the above range, the restoring force can be improved while maintaining excellent elastic deformation characteristics. The upper limit of the ratio of the crosslinkable monomer is not particularly limited, but depending on the type of the crosslinkable monomer used, if the ratio of the crosslinkable monomer is too large, it becomes too hard and compressively deforms during anisotropic conductive connection. Therefore, a high pressure may be required. Therefore, the proportion of the crosslinkable monomer is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less. The 10% K value of the base particle can be reduced as the proportion of the crosslinkable monomer is reduced. Depending on the target 10% K value, the proportion of the crosslinkable monomer may be 50% by mass or less, 40% by mass or less, and 30% by mass or less.
 前記ビニル重合体粒子は、ビニル重合体の特性を損なわない程度に、他の成分を含んでいてもよい。この場合、ビニル重合体粒子は、ビニル重合体を50質量%以上含むことが好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。
 前記他の成分としては、特に限定されないが、ポリシロキサン成分が好ましい。ビニル重合体粒子に、ポリシロキサン骨格を導入することで、加圧接続時の弾性変形に優れるものとなる。
The vinyl polymer particles may contain other components to the extent that the properties of the vinyl polymer are not impaired. In this case, the vinyl polymer particles preferably contain 50% by mass or more of the vinyl polymer, more preferably 60% by mass or more, and still more preferably 70% by mass or more.
Although it does not specifically limit as said other component, A polysiloxane component is preferable. By introducing a polysiloxane skeleton into the vinyl polymer particles, it is excellent in elastic deformation at the time of pressure connection.
 前記ポリシロキサン骨格は、シラン系単量体を用いることによって形成でき、このシラン系単量体はシラン系架橋性単量体とシラン系非架橋性単量体とに分けられる。また、シラン系単量体としてシラン系架橋性単量体を用いると、架橋構造を形成し得る。シラン系架橋性単量体により形成される架橋構造としては、ビニル重合体とビニル重合体とを架橋するもの(第一の形態);ポリシロキサン骨格とポリシロキサン骨格とを架橋するもの(第二の形態);ビニル重合体骨格とポリシロキサン骨格とを架橋するもの(第三の形態);が挙げられる。 The polysiloxane skeleton can be formed by using a silane monomer, and the silane monomer is divided into a silane crosslinkable monomer and a silane noncrosslinkable monomer. Moreover, when a silane crosslinkable monomer is used as the silane monomer, a crosslinked structure can be formed. The cross-linked structure formed by the silane cross-linkable monomer includes a cross-link between a vinyl polymer and a vinyl polymer (first form); a cross-link between a polysiloxane skeleton and a polysiloxane skeleton (second In which the vinyl polymer skeleton and the polysiloxane skeleton are cross-linked (third form).
 第一の形態(ビニル重合体間架橋)を形成し得るシラン系架橋性単量体としては、例えば、ジメチルジビニルシラン、メチルトリビニルシラン、テトラビニルシラン等の2つ以上のビニル基を有するシラン化合物が挙げられる。第二の形態(ポリシロキサン間架橋)を形成し得るシラン系架橋性単量体としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等の4官能性シラン系単量体;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等の3官能性シラン系単量体等が挙げられる。第三の形態(ビニル重合体-ポリシロキサン間架橋)を形成し得るシラン系架橋性単量体としては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシエトキシプロピルトリメトキシシラン等の(メタ)アクリロイル基を有するジ又はトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等のビニル基を有するジ又はトリアルコキシシラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基を有するジ又はトリアルコキシシラン;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノ基を有するジ又はトリアルコキシシラン;が挙げられる。これらのシラン系架橋性単量体は単独で使用してもよいし、2種以上を併用してもよい。 Examples of the silane-based crosslinkable monomer that can form the first form (crosslinking between vinyl polymers) include silane compounds having two or more vinyl groups such as dimethyldivinylsilane, methyltrivinylsilane, and tetravinylsilane. Can be mentioned. Examples of the silane crosslinkable monomer that can form the second form (crosslink between polysiloxanes) include tetrafunctional silane single monomers such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Examples of the polymer include trifunctional silane monomers such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. Examples of silane crosslinkable monomers that can form the third form (crosslinking between vinyl polymer and polysiloxane) include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3- (Meth) acryloyl such as acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxyethoxypropyltrimethoxysilane Di- or trialkoxysilane having a group; di- or trialkoxysilane having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, Di- or trialkoxysilanes having an epoxy group such as glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane And di- or trialkoxysilanes having an amino group such as These silane crosslinking monomers may be used alone or in combination of two or more.
 前記シラン系非架橋性単量体として、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルキルシラン等の2官能性シラン系単量体;トリメチルメトキシシラン、トリメチルエトキシシラン等のトリアルキルシラン等の1官能性シラン系単量体等が挙げられる。これらのシラン系非架橋性単量体は単独で使用してもよいし、2種以上を併用してもよい。 Examples of the silane-based non-crosslinkable monomer include bifunctional silane-based monomers such as dimethyldimethoxysilane and dialkylsilane such as dimethyldiethoxysilane; and trialkylsilanes such as trimethylmethoxysilane and trimethylethoxysilane. And monofunctional silane-based monomers. These silane non-crosslinkable monomers may be used alone or in combination of two or more.
 特に前記ポリシロキサン骨格は、ラジカル重合可能な炭素-炭素二重結合(例えば、(メタ)アクリロイル基等のビニル基)を有する重合性ポリシロキサン由来の骨格であることが好ましい。つまり、ポリシロキサン骨格は、構成成分として、少なくとも前記第三の形態(ビニル重合体-ポリシロキサン間架橋)を形成し得るシラン系架橋性単量体(好ましくは(メタ)アクリロイル基を有するもの、より好ましくは3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシシラン)を加水分解及び縮合することにより形成されたポリシロキサン骨格であることが好ましい。 In particular, the polysiloxane skeleton is preferably a skeleton derived from a polymerizable polysiloxane having a radical-polymerizable carbon-carbon double bond (for example, a vinyl group such as a (meth) acryloyl group). That is, the polysiloxane skeleton is a silane crosslinkable monomer (preferably having a (meth) acryloyl group) capable of forming at least the third form (crosslinking between vinyl polymer and polysiloxane) as a constituent component. More preferably, it is a polysiloxane skeleton formed by hydrolysis and condensation of 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, vinyltrimethoxysilane).
 前記ビニル重合体粒子に、ポリシロキサン骨格を導入する場合、ビニル系単量体の使用量は、シラン系単量体100質量部に対して100質量部以上が好ましく、より好ましくは200質量部以上、さらに好ましくは300質量部以上であり、700質量部以下が好ましく、より好ましくは600質量部以下、さらに好ましくは500質量部以下である。 When the polysiloxane skeleton is introduced into the vinyl polymer particles, the amount of the vinyl monomer used is preferably 100 parts by mass or more, more preferably 200 parts by mass or more with respect to 100 parts by mass of the silane monomer. More preferably, it is 300 parts by mass or more, preferably 700 parts by mass or less, more preferably 600 parts by mass or less, and still more preferably 500 parts by mass or less.
 前記ビニル重合体粒子は、例えば、ビニル系単量体を重合することによって製造することができるが、具体的には、(i)ビニル系単量体を重合成分として含む単量体組成物を用いて、従来公知の水性懸濁重合、分散重合、乳化重合する方法;(ii)シラン系単量体を用いてビニル基含有ポリシロキサンを得た後、このビニル基含有ポリシロキサンとビニル系単量体とを重合(ラジカル重合)する方法;(iii)シード粒子に、ビニル系単量体を吸収させた後、ビニル系単量体をラジカル重合する、いわゆるシード重合する方法;が好ましい。 The vinyl polymer particles can be produced, for example, by polymerizing a vinyl monomer. Specifically, (i) a monomer composition containing a vinyl monomer as a polymerization component is used. A conventionally known method of aqueous suspension polymerization, dispersion polymerization, emulsion polymerization; (ii) after obtaining a vinyl group-containing polysiloxane using a silane monomer, the vinyl group-containing polysiloxane and the vinyl group Polymerization (radical polymerization) with a monomer; (iii) a so-called seed polymerization method in which a vinyl monomer is radically polymerized after the vinyl monomer is absorbed into the seed particles.
 前記製造方法(i)では、ビニル系単量体として、前記2つ以上のビニル基を有するシラン化合物、ビニル基を有するジ又はトリアルコキシシラン等のビニル基を有するシラン化合物を併用してもよい。前記製造方法(ii)においては、少なくとも前記第三の形態を形成し得るシラン系架橋性単量体を用いることによって、ポリシロキサン骨格が導入されたビニル重合体粒子が得られる。 In the said manufacturing method (i), you may use together the silane compound which has vinyl groups, such as the said silane compound which has two or more vinyl groups, and the di- or trialkoxysilane which has a vinyl group as a vinyl-type monomer. . In the production method (ii), vinyl polymer particles into which a polysiloxane skeleton is introduced can be obtained by using a silane-based crosslinkable monomer capable of forming at least the third form.
 前記製造方法(iii)において、シード粒子としては、非架橋又は架橋度の低いポリスチレン粒子、ポリシロキサン粒子を用いることが好ましい。シード粒子にポリシロキサン粒子を用いることで、ビニル重合体にポリシロキサン骨格を導入できる。
 ポリシロキサン粒子としては、前記第三の形態(ビニル重合体-ポリシロキサン間架橋)を形成し得るシラン系架橋性単量体を含む組成物を、(共)加水分解縮合して得られるポリシロキサン粒子が好ましく、特にビニル基含有ポリシロキサン粒子が好ましい。ポリシロキサン粒子がビニル基を有する場合、得られるビニル重合体粒子が、ビニル重合体とポリシロキサン骨格がポリシロキサンを構成するケイ素原子を介して結合するため、弾性変形性及び接触圧に特に優れたものとなる。ビニル基含有ポリシロキサン粒子は、例えば、ビニル基を有するジ又はトリアルコキシシランを含むシラン系単量体(混合物)を(共)加水分解縮合することによって製造できる。
In the production method (iii), it is preferable to use non-crosslinked or low-crosslinked polystyrene particles or polysiloxane particles as seed particles. By using polysiloxane particles as seed particles, a polysiloxane skeleton can be introduced into the vinyl polymer.
Polysiloxane particles obtained by (co) hydrolytic condensation of a composition containing a silane-based crosslinkable monomer capable of forming the third form (crosslinking between vinyl polymer and polysiloxane). Particles are preferred, and vinyl group-containing polysiloxane particles are particularly preferred. When the polysiloxane particles have a vinyl group, the resulting vinyl polymer particles are particularly excellent in elastic deformation and contact pressure because the vinyl polymer and the polysiloxane skeleton are bonded via the silicon atoms constituting the polysiloxane. It will be a thing. The vinyl group-containing polysiloxane particles can be produced, for example, by (co) hydrolytic condensation of a silane monomer (mixture) containing a vinyl group-containing di- or trialkoxysilane.
 また、前記ビニル重合体粒子がポリシロキサン骨格を含む場合、基材粒子に加熱処理を施すことも好ましい態様である。前記加熱処理は空気雰囲気下又は不活性雰囲気下で行うことが好ましく、不活性雰囲気下(例えば、窒素雰囲気下)で行うことがより好ましい。前記加熱処理の温度は120℃(より好ましくは180℃、さらに好ましくは200℃)以上が好ましく、熱分解温度(より好ましくは350℃、さらに好ましくは330℃)以下が好ましい。前記加熱処理の時間は、0.3時間(より好ましくは0.5時間、さらに好ましくは0.7時間)以上が好ましく、10時間(より好ましくは5.0時間、さらに好ましくは3.0時間)以下が好ましい。 In addition, when the vinyl polymer particles include a polysiloxane skeleton, it is also a preferable aspect that the base particles are subjected to heat treatment. The heat treatment is preferably performed in an air atmosphere or an inert atmosphere, and more preferably performed in an inert atmosphere (for example, in a nitrogen atmosphere). The temperature of the heat treatment is preferably 120 ° C. (more preferably 180 ° C., more preferably 200 ° C.) or more, and preferably a thermal decomposition temperature (more preferably 350 ° C., more preferably 330 ° C.) or less. The heat treatment time is preferably 0.3 hours (more preferably 0.5 hours, more preferably 0.7 hours) or more, and preferably 10 hours (more preferably 5.0 hours, still more preferably 3.0 hours). The following are preferred.
1-2-2.アミノ樹脂
 アミノ樹脂粒子は、アミノ化合物とホルムアルデヒドとの縮合物により構成されるものが好ましい。
 前記アミノ化合物としては、例えば、ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミン等のグアナミン化合物、メラミン等のトリアジン環構造を有する化合物等の多官能アミノ化合物が挙げられる。これらの中でも、多官能アミノ化合物が好ましく、トリアジン環構造を有する化合物がより好ましく、特にメラミン、グアナミン化合物(特にベンゾグアナミン)が好ましい。前記アミノ化合物は、1種のみを用いても良いし、2種以上を併用しても良い。
1-2-2. Amino resin The amino resin particles are preferably composed of a condensate of an amino compound and formaldehyde.
Examples of the amino compounds include benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, guanamine compounds such as spiroguanamine, and polyfunctional amino compounds such as compounds having a triazine ring structure such as melamine. . Among these, polyfunctional amino compounds are preferable, compounds having a triazine ring structure are more preferable, and melamine and guanamine compounds (particularly benzoguanamine) are particularly preferable. The amino compound may be used alone or in combination of two or more.
 前記アミノ樹脂粒子は、アミノ化合物中、グアナミン化合物を10質量%以上含むことが好ましく、より好ましくは20質量%以上、さらに好ましくは50質量%以上である。アミノ化合物中のグアナミン化合物の含有割合が上記範囲であれば、より粒度分布がシャープであり、粒子径が精密にコントロールされたものとなる。なお、アミノ化合物として、グアナミン化合物のみを用いることも好ましい。 The amino resin particles preferably contain 10% by mass or more of a guanamine compound in the amino compound, more preferably 20% by mass or more, and still more preferably 50% by mass or more. When the content ratio of the guanamine compound in the amino compound is within the above range, the particle size distribution is sharper and the particle size is precisely controlled. In addition, it is also preferable to use only a guanamine compound as an amino compound.
 アミノ樹脂粒子は、例えば、水性媒体中でアミノ化合物とホルムアルデヒドを反応(付加縮合反応)させることにより得られる。通常、この反応は加熱下(50~100℃)で行う。また、ドデシルベンゼンスルホン酸、硫酸等の酸触媒の存在下で反応を行うことにより、架橋度を高めることができる。
 アミノ樹脂粒子の製造方法としては、例えば、特開2000-256432号公報、特開2002-293854号公報、特開2002-293855号公報、特開2002-293856号公報、特開2002-293857号公報、特開2003-55422号公報、特開2003-82049号公報、特開2003-138023号公報、特開2003-147039号公報、特開2003-171432号公報、特開2003-176330号公報、特開2005-97575号公報、特開2007-186716号公報、特開2008-101040号公報、特開2010-248475号公報等に記載のアミノ樹脂架橋粒子及びその製造方法を適用することが好ましい。
Amino resin particles can be obtained, for example, by reacting an amino compound and formaldehyde in an aqueous medium (addition condensation reaction). Usually, this reaction is carried out under heating (50 to 100 ° C.). Further, the degree of crosslinking can be increased by carrying out the reaction in the presence of an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid.
Examples of the method for producing amino resin particles include, for example, JP-A No. 2000-256432, JP-A No. 2002-293854, JP-A No. 2002-293855, JP-A No. 2002-293856, and JP-A No. 2002-293857. JP-A-2003-55422, JP-A-2003-82049, JP-A-2003-138823, JP-A-2003-147039, JP-A-2003-171432, JP-A-2003-176330, It is preferable to apply the amino resin crosslinked particles described in JP-A-2005-97575, JP-A-2007-186716, JP-A-2008-101040, JP-A-2010-248475, and the production method thereof.
 具体例としては、前記多官能アミノ化合物とホルムアルデヒドを、水性媒体(好ましくは塩基性の水性媒体)中で反応(付加縮合反応)させて縮合物オリゴマーを生成させ、該縮合物オリゴマーが溶解又は分散する水性媒体にドデシルベンゼンスルホン酸や硫酸等の酸触媒を混合して硬化させることによって、架橋されたアミノ樹脂粒子を製造することができる。縮合物オリゴマーを生成させる段階、架橋構造のアミノ樹脂とする段階は、いずれも、50~100℃の温度で加熱された状態で行うことが好ましい。また、付加縮合反応を、界面活性剤の存在下で行うことにより、粒度分布のシャープなアミノ樹脂粒子が得られる。 As a specific example, the polyfunctional amino compound and formaldehyde are reacted (addition condensation reaction) in an aqueous medium (preferably a basic aqueous medium) to form a condensate oligomer, and the condensate oligomer is dissolved or dispersed. Crosslinked amino resin particles can be produced by mixing and curing an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid in the aqueous medium. It is preferable that both the step of forming the condensate oligomer and the step of forming the amino resin having a crosslinked structure are carried out in a heated state at a temperature of 50 to 100 ° C. In addition, amino resin particles having a sharp particle size distribution can be obtained by performing the addition condensation reaction in the presence of a surfactant.
1-2-3.オルガノシロキサン粒子
 オルガノポリシロキサン粒子は、ビニル基を含有しないシラン系単量体(シラン系架橋性単量体、シラン系非架橋性単量体)の1種又は2種以上を(共)加水分解縮合することによって得られる。
 前記ビニル基を含有しないシラン系単量体としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン等の3官能性シラン系単量体;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基を有するジ又はトリアルコキシシラン;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノ基を有するジ又はトリアルコキシシラン等が挙げられる。
1-2-3. Organosiloxane Particles Organopolysiloxane particles (co) hydrolyze one or more silane monomers (silane crosslinkable monomers, silane noncrosslinkable monomers) that do not contain vinyl groups. Obtained by condensation.
Examples of the silane monomer not containing a vinyl group include trifunctional silane monomers such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and phenyltrimethoxysilane. Di- or trialkoxysilanes having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; Examples thereof include di- or trialkoxysilanes having an amino group such as propyltrimethoxysilane and 3-aminopropyltriethoxysilane.
 前記基材粒子の10%K値は、500N/mm2以上、30000N/mm2以下であることが好ましい。基材粒子の10%K値が小さすぎると、異方性導電材料として用いた際に、周囲のバインダーを十分に排除できないといったことや、電極への食い込み具合が弱いといったことにより、低い接続抵抗値を得ることができない虞がある。一方、基材粒子の10%K値が大きすぎると、接続部位に対して電気的に良好な接触状態を確保できない虞がある。基材粒子の10%K値は1000N/mm2以上、27000N/mm2以下であるのがより好ましい。 10% K value of the base material particles, 500 N / mm 2 or more, preferably 30000 N / mm 2 or less. If the 10% K value of the substrate particles is too small, the connection resistance is low due to the fact that the surrounding binder cannot be sufficiently removed when used as an anisotropic conductive material, and the degree of biting into the electrode is weak. There is a possibility that the value cannot be obtained. On the other hand, if the 10% K value of the base particles is too large, there is a possibility that an electrically good contact state cannot be secured with respect to the connection site. 10% K value of the substrate particles is 1000 N / mm 2 or more, more preferably 27000N / mm 2 or less.
 なお、基材粒子の10%K値は、粒子を10%圧縮したとき(粒子の直径が10%変位したとき)の圧縮弾性率であり、例えば、公知の微小圧縮試験機(島津製作所製「MCT-W500」など)を用い、室温で粒子の中心方向へ荷重負荷速度2.2295mN/秒で荷重をかけ、圧縮変位が粒子径の10%となるまで粒子を変形させたときの荷重(圧縮荷重:N)と変位量(圧縮変位:mm)を測定し、下記式に基づき求めることができる。 The 10% K value of the base particle is a compression elastic modulus when the particle is compressed by 10% (when the diameter of the particle is displaced by 10%). For example, a known micro compression tester (manufactured by Shimadzu Corporation) MCT-W500 "etc.), the load when the particles are deformed until the compression displacement becomes 10% of the particle diameter by applying a load at room temperature at a load load rate of 2.2295 mN / sec at room temperature. The load (N) and the amount of displacement (compression displacement: mm) can be measured and determined based on the following formula.
Figure JPOXMLDOC01-appb-M000001

(ここで、E:圧縮弾性率(N/mm2)、F:圧縮荷重(N)、S:圧縮変位(mm)、R:粒子の半径(mm)である。)
Figure JPOXMLDOC01-appb-M000001

(Here, E: compression elastic modulus (N / mm 2 ), F: compression load (N), S: compression displacement (mm), R: radius of particle (mm))
 前記基材粒子(樹脂粒子)の個数平均粒子径は、1μm以上が好ましく、より好ましくは1.5μm以上、さらに好ましくは2μm以上であり、50μm以下が好ましく、より好ましくは40μm以下、さらに好ましくは30μm以下である。前記基材粒子の粒子径の個数基準の変動係数(CV値)は、20%以下が好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。
 上述したように導電性微粒子が微細(具体的には、個数平均粒子径が10.0μm未満)になると、本発明の効果が一層顕著となる。よって、基材粒子の個数平均粒子径は、10.0μm未満が好ましく、より好ましくは9.5μm以下、さらに好ましくは8μm以下、一層好ましくは5μm以下、より一層好ましくは3μm以下、さらに一層好ましくは2.8μm以下、特に好ましくは2.6μm以下である。
 特にニッケルの結晶子径を3nm以下にする本発明では、基材粒子の個数平均粒子径を好ましくは3μm以下、より好ましくは2.7μm以下、さらに好ましくは2.4μm以下にしてもよい。この様に粒子径を小さくしても、高圧縮接続時に低抵抗を維持できる。より詳細に説明すると、従来の導電性微粒子(ニッケルの結晶子径が通常である導電性微粒子)では、基材粒子の個数平均粒子径を3μm以下程度にまで小さくすると、高圧縮接続時にニッケル層への負荷が大きくなり、その結果生じる導電金属層の破断により接続抵抗値が大きく上昇するという特有の不具合があったが、本発明の導電性微粒子によれば、粒子径3μm以下の場合に特有のこの課題を解決できる。なお個数平均粒子径の下限は、例えば、1μm以上、好ましくは1.5μm以上、さらに好ましくは2.0μm以上である。
 この様な微細な粒子径でのニッケル層への負荷を低減する観点から、この場合には、基材粒子の10%K値は3000N/mm2以上30000以下であることが好ましい。より好ましくは4000N/mm2以上、さらに好ましくは5000N/mm2以上である。
 一方、基材粒子を中粒子径、すなわち、個数平均粒子径を8μm以上、より好ましくは9μm以上にするのも、本発明の効果を有効に利用できる一態様である。本発明ではニッケルの結晶子径を3nm以下にしているため、ニッケル層は柔軟になり、基材粒子の変形が大きい範囲まで追随できる(その結果、前記比(L1/L2)が大きくなる)。そのため粒子径が大きなり変形量が多くなっても、ニッケルメッキ層の破壊や割れが生じることなく、接続面積を稼ぐことができ、高圧縮時の接続抵抗値を小さくできる。
 この様な中粒子径での大変形を可能にする観点から、この場合には、基材粒子の10%K値は小さい方が好ましい。基材粒子の個数平均粒子径を8μm以上にするときの10%K値は、例えば、6000N/mm2以下、好ましくは5000N/mm2以下、さらに好ましくは4000N/mm2以下である。
The number average particle diameter of the substrate particles (resin particles) is preferably 1 μm or more, more preferably 1.5 μm or more, further preferably 2 μm or more, preferably 50 μm or less, more preferably 40 μm or less, and still more preferably. 30 μm or less. The number-based variation coefficient (CV value) of the particle diameter of the substrate particles is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
As described above, when the conductive fine particles are fine (specifically, the number average particle diameter is less than 10.0 μm), the effect of the present invention becomes more remarkable. Therefore, the number average particle size of the base particles is preferably less than 10.0 μm, more preferably 9.5 μm or less, further preferably 8 μm or less, more preferably 5 μm or less, still more preferably 3 μm or less, and even more preferably. It is 2.8 μm or less, particularly preferably 2.6 μm or less.
In particular, in the present invention in which the crystallite diameter of nickel is 3 nm or less, the number average particle diameter of the base particles is preferably 3 μm or less, more preferably 2.7 μm or less, and even more preferably 2.4 μm or less. Thus, even if the particle diameter is reduced, a low resistance can be maintained during high compression connection. More specifically, in the case of conventional conductive fine particles (conductive fine particles whose nickel crystallite diameter is normal), when the number average particle diameter of the base particles is reduced to about 3 μm or less, the nickel layer is formed during high compression connection. However, according to the conductive fine particles of the present invention, it is peculiar when the particle diameter is 3 μm or less. Can solve this problem. The lower limit of the number average particle diameter is, for example, 1 μm or more, preferably 1.5 μm or more, and more preferably 2.0 μm or more.
In this case, the 10% K value of the base particles is preferably 3000 N / mm 2 or more and 30000 or less from the viewpoint of reducing the load on the nickel layer with such a fine particle size. More preferably, it is 4000 N / mm < 2 > or more, More preferably, it is 5000 N / mm < 2 > or more.
On the other hand, setting the base particles to a medium particle size, that is, a number average particle size of 8 μm or more, more preferably 9 μm or more is also an embodiment in which the effect of the present invention can be effectively used. In the present invention, since the crystallite diameter of nickel is 3 nm or less, the nickel layer becomes flexible and can follow up to a large deformation range of the base particles (as a result, the ratio (L1 / L2) increases). Therefore, even if the particle diameter is large or the amount of deformation increases, the connection area can be increased without breaking or cracking the nickel plating layer, and the connection resistance value during high compression can be reduced.
In this case, it is preferable that the 10% K value of the base particle is small from the viewpoint of enabling large deformation at such a medium particle size. 10% K value when the number average particle size of the substrate particles than 8μm, for example, 6000 N / mm 2 or less, preferably 5000N / mm 2, more preferably not more than 4000 N / mm 2.
1-3.導電性微粒子の製法
 本発明の導電性微粒子は、無電解メッキ法により製造でき、ニッケルメッキ液中の錯化剤の種類や濃度、ニッケルメッキ液の液温等を制御することにより、ニッケルの結晶子径を制御できる。製造方法の具体例としては、第1無電解メッキ工程及び第2無電解メッキ工程を有する製造方法(態様1);特定のメッキ液を用いて行う無電解メッキ工程を有する製造方法(態様2);が挙げられる。以下、態様1、2の製造方法について説明する。
1-3. Production method of conductive fine particles The conductive fine particles of the present invention can be produced by an electroless plating method. By controlling the kind and concentration of the complexing agent in the nickel plating solution, the temperature of the nickel plating solution, etc. The diameter can be controlled. Specific examples of the manufacturing method include a manufacturing method having a first electroless plating step and a second electroless plating step (aspect 1); a manufacturing method having an electroless plating step performed using a specific plating solution (aspect 2) ; Hereinafter, the manufacturing method of the aspects 1 and 2 is demonstrated.
 前記態様1、2のいずれの製造方法においても、無電解メッキ工程に供される基材粒子には、触媒化処理が施される。また、基材粒子自体が親水性を有さず、導電性金属層との密着性が良好でない場合は、触媒化工程前に、エッチング処理工程を設けることが好ましい。 In any of the production methods of the first and second aspects, the base material particles subjected to the electroless plating process are subjected to a catalytic treatment. In addition, when the base particle itself does not have hydrophilicity and adhesion with the conductive metal layer is not good, it is preferable to provide an etching treatment step before the catalyzing step.
 エッチング処理
 エッチング処理工程では、クロム酸、無水クロム酸-硫酸混合液、過マンガン酸等の酸化剤;塩酸、硫酸、フッ酸、硝酸等の強酸;水酸化ナトリウム、水酸化カリウム等の強アルカリ溶液;その他市販の種々のエッチング剤等を用いて、基材粒子の表面に親水性付与し、その後の無電解メッキ液に対する濡れ性を高める。また、微小な凹凸を形成させ、その凹凸のアンカー効果によって、後述する無電解メッキ後の基材粒子と導電性金属層との密着性の向上を図る。
Etching treatment In the etching treatment process, oxidizing agents such as chromic acid, chromic anhydride-sulfuric acid mixture, permanganic acid; strong acids such as hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid; strong alkaline solutions such as sodium hydroxide and potassium hydroxide Using other commercially available etching agents, etc., to impart hydrophilicity to the surface of the substrate particles and to improve the wettability to the subsequent electroless plating solution. Further, minute unevenness is formed, and the adhesion between the substrate particles after electroless plating described later and the conductive metal layer is improved by the anchor effect of the unevenness.
 触媒化処理
 前記触媒化処理では、基材粒子表面に貴金属イオンを捕捉させた後、これを還元して前記貴金属を基材粒子表面に担持させ、基材粒子の表面に次工程の無電解メッキの起点となりうる触媒層を形成させる。基材粒子自体が貴金属イオンの捕捉能を有さない場合、触媒化を行う前に、表面改質処理を行うことも好ましい。表面改質処理は、表面処理剤を溶解した水又は有機溶媒に、基材粒子を接触させることで行うことができる。
Catalytic treatment In the catalytic treatment, after precious metal ions are captured on the surface of the base material particles, they are reduced and supported on the surface of the base material particles, and the surface of the base material particles is subjected to electroless plating in the next step. A catalyst layer that can serve as a starting point is formed. In the case where the substrate particles themselves do not have the ability to capture noble metal ions, it is also preferable to perform a surface modification treatment before the catalytic conversion. The surface modification treatment can be performed by bringing the substrate particles into contact with water or an organic solvent in which the surface treatment agent is dissolved.
 触媒化処理は、例えば、塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に、エッチングした基材粒子を浸漬させた後、基材粒子を分離し水洗する。引き続き水に分散させて、これに還元剤を加えて貴金属イオンの還元処理を行う。前記還元剤としては、例えば、次亜リン酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジン、ホルマリン等が挙げられる。還元剤は1種を単独で使用してもよいし、2種以上を併用してもよい。 In the catalyst treatment, for example, the etched base particles are immersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate, and then the base particles are separated and washed with water. Subsequently, the resultant is dispersed in water, and a reducing agent is added thereto to reduce the noble metal ions. Examples of the reducing agent include sodium hypophosphite, dimethylamine borane, sodium borohydride, potassium borohydride, hydrazine, formalin and the like. A reducing agent may be used individually by 1 type, and may use 2 or more types together.
 また、スズイオン(Sn2+)を含有する溶液に基材粒子を接触させることによりスズイオンを基材粒子表面に吸着させ感受性化処理を施した後、パラジウムイオン(Pd2+)を含有する溶液に浸漬させることにより、基材粒子表面にパラジウムを析出させる方法(センシタイジング-アクチベーティング法)等を用いてもよい。 In addition, the base particles are brought into contact with the solution containing tin ions (Sn 2+ ) to adsorb the tin ions on the surface of the base particles and subjected to sensitization treatment, and then the solution containing palladium ions (Pd 2+ ) is added. For example, a method of depositing palladium on the surface of the substrate particles by immersion (sensitizing-activating method) may be used.
態様1
 態様1の製造方法の一例として、前記結晶子径が3nm以下であり、且つ、ニッケルメッキ層の粒界構造が葉脈状である導電性微粒子の製造方法を説明する。
 第1無電解メッキ工程及び第2無電解メッキ工程では、上記のように貴金属を担持させた基材粒子に対して、ニッケル層を形成する。なお、第1無電解メッキ工程では、貴金属を担持された基材粒子の表面が平滑となる程度に、極薄くニッケル層を形成し、第2無電解メッキによりニッケル層の厚さを調整する。これらの無電解メッキ工程では、ニッケル塩、還元剤及び錯化剤を溶解したメッキ液中に基材粒子を浸漬することにより、貴金属触媒を起点として、メッキ液中のニッケルイオンを還元剤で還元し、基材粒子表面にニッケルを析出させて、ニッケル層を形成する。
Aspect 1
As an example of the production method of aspect 1, a method for producing conductive fine particles in which the crystallite diameter is 3 nm or less and the grain boundary structure of the nickel plating layer has a vein shape will be described.
In the first electroless plating process and the second electroless plating process, a nickel layer is formed on the base particles carrying the noble metal as described above. In the first electroless plating step, the nickel layer is extremely thinly formed to such an extent that the surface of the base particle carrying the noble metal is smooth, and the thickness of the nickel layer is adjusted by the second electroless plating. In these electroless plating processes, the base particles are immersed in a plating solution in which a nickel salt, a reducing agent and a complexing agent are dissolved, so that the nickel ions in the plating solution are reduced with a reducing agent, starting from a noble metal catalyst. Then, nickel is deposited on the surface of the substrate particles to form a nickel layer.
 第1無電解メッキ工程
 第1無電解メッキ工程では、まず、基材粒子を水に十分に分散させ、基材粒子の水性スラリーを調製する。ここで、安定した導電特性を発現させるためには、基材粒子を、メッキ処理を行う水性媒体に十分分散させておくことが好ましい。基材粒子を水性媒体に分散させる手段としては、例えば、通常攪拌装置、高速攪拌装置、コロイドミル又はホモジナイザーのような剪断分散装置等従来公知の分散手段を採用すればよく、必要に応じて超音波や分散剤(界面活性剤等)を併用してもよい。なお、上記触媒化工程において、還元処理を行った基材粒子分散液をそのまま水性スラリーとして用いてもよい。
First Electroless Plating Step In the first electroless plating step, first, base material particles are sufficiently dispersed in water to prepare an aqueous slurry of base material particles. Here, in order to develop stable conductive characteristics, it is preferable that the base material particles are sufficiently dispersed in an aqueous medium for plating. As a means for dispersing the substrate particles in the aqueous medium, for example, a conventionally known dispersing means such as a normal stirring device, a high-speed stirring device, a shearing dispersion device such as a colloid mill or a homogenizer may be employed. A sound wave or a dispersant (such as a surfactant) may be used in combination. In addition, in the said catalyzing process, you may use the base material particle dispersion liquid which performed the reduction process as an aqueous slurry as it is.
 次に、ニッケル塩、還元剤、錯化剤及び各種添加剤等を含有する無電解メッキ液に、上記で調製した基材粒子の水性スラリー(あるいは還元処理後の基材粒子分散液)を添加し水性懸濁体とする。無電解メッキ反応は、メッキ液に触媒化基材粒子の水性スラリーを添加すると速やかに開始する。また、この反応には水素ガスの発生を伴うので、水素ガスの発生が完全に認められなくなった時点をもって無電解メッキ反応を終了すればよい。
 前記ニッケル塩としては、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等のニッケル塩等が挙げられる。前記還元剤としては、触媒化処理工程で例示したものが使用できる。
Next, the aqueous slurry of the base material particles prepared above (or the base material particle dispersion after reduction treatment) is added to the electroless plating solution containing nickel salt, reducing agent, complexing agent and various additives. And then into an aqueous suspension. The electroless plating reaction starts quickly when an aqueous slurry of the catalyzed substrate particles is added to the plating solution. Moreover, since this reaction is accompanied by the generation of hydrogen gas, the electroless plating reaction may be terminated when the generation of hydrogen gas is not completely recognized.
Examples of the nickel salt include nickel salts such as nickel chloride, nickel sulfate, and nickel acetate. As the reducing agent, those exemplified in the catalytic treatment step can be used.
 第1無電解メッキ工程に使用するメッキ液は、錯化剤として、クエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、マロン酸等の有機カルボン酸又はその塩を使用することが重要である。これらの中でも酒石酸ナトリウムを用いることが好ましい。前記錯化剤の濃度は、0.001~10mol/Lが好ましく、より好ましくは0.005~5mol/L、さらに好ましくは0.01~2mol/Lである。第1無電解メッキ工程に使用するメッキ液中のニッケル塩濃度は、1.0×10-4~1.0mol/Lが好ましく、より好ましくは1.0×10-3~0.2mol/Lである。また、還元剤の濃度は、1.0×10-4~3.0mol/Lが好ましく、より好ましくは1.0×10-3~0.3mol/Lである。
 第1無電解メッキ工程において、メッキ液の使用量は、貴金属を担持した基材粒子100質量部に対して、200~2,000,000質量部が好ましく、より好ましくは500~1,000,000質量部である。前記メッキ液に基材粒子を浸漬する際の液温、浸漬時間は、適宜調整すればよいが、液温は50℃~95℃が好ましい。
It is important that the plating solution used in the first electroless plating step uses an organic carboxylic acid such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, malonic acid or a salt thereof as a complexing agent. Of these, sodium tartrate is preferably used. The concentration of the complexing agent is preferably 0.001 to 10 mol / L, more preferably 0.005 to 5 mol / L, and still more preferably 0.01 to 2 mol / L. The nickel salt concentration in the plating solution used in the first electroless plating step is preferably 1.0 × 10 −4 to 1.0 mol / L, more preferably 1.0 × 10 −3 to 0.2 mol / L. It is. Further, the concentration of the reducing agent is preferably 1.0 × 10 −4 to 3.0 mol / L, more preferably 1.0 × 10 −3 to 0.3 mol / L.
In the first electroless plating step, the amount of the plating solution used is preferably 200 to 2,000,000 parts by mass, more preferably 500 to 1,000,000 parts per 100 parts by mass of the base particles carrying the noble metal. 000 parts by mass. The liquid temperature and dipping time for immersing the substrate particles in the plating solution may be appropriately adjusted, but the liquid temperature is preferably 50 ° C. to 95 ° C.
 第2無電解メッキ工程
 第2無電解メッキ工程では、前記第1無電解メッキ工程後の水性懸濁体にメッキ液を添加する。第2無電解メッキ工程に使用するメッキ液は、錯化剤を含むニッケルイオン含有液と、還元剤含有液の2液に分けて調整をする。ニッケルイオン含有液には、錯化剤として、グリシンを含有させておくことが重要である。また、第1無電解メッキ工程において使用する錯化剤に対して、グリシンを逐次添加することにより、メッキ液中に錯化剤の濃度勾配をつけることが重要である。前記グリシンの濃度は、0.001~10mol/Lが好ましく、より好ましくは0.01~10mol/Lである。第2無電解メッキ工程に使用するメッキ液中のニッケル塩濃度は、0.1~2mol/Lが好ましく、より好ましくは0.5~1.5mol/Lである。また、還元剤の濃度は、0.1~20mol/Lが好ましく、より好ましくは1~10mol/Lである。メッキ液中での第1無電解メッキ工程で用いた錯化剤に対する、第2無電解メッキ工程で用いるグリシンの比率は、0.2~2が好ましく、特に0.3~1が好ましい。
 前記メッキ液に基材粒子を浸漬する際の液温、浸漬時間は、適宜調整すればよいが、液温は50℃~95℃が好ましい。第2無電解メッキ工程終了後、水性懸濁体から導電性金属層が形成された基材粒子を取り出し、必要に応じて洗浄、乾燥を施すことにより、導電性微粒子が得られる。
Second Electroless Plating Step In the second electroless plating step, a plating solution is added to the aqueous suspension after the first electroless plating step. The plating solution used in the second electroless plating step is adjusted by dividing into two solutions of a nickel ion-containing solution containing a complexing agent and a reducing agent-containing solution. It is important that the nickel ion-containing liquid contains glycine as a complexing agent. In addition, it is important to provide a concentration gradient of the complexing agent in the plating solution by sequentially adding glycine to the complexing agent used in the first electroless plating step. The concentration of the glycine is preferably 0.001 to 10 mol / L, more preferably 0.01 to 10 mol / L. The nickel salt concentration in the plating solution used in the second electroless plating step is preferably 0.1 to 2 mol / L, more preferably 0.5 to 1.5 mol / L. The concentration of the reducing agent is preferably 0.1 to 20 mol / L, more preferably 1 to 10 mol / L. The ratio of glycine used in the second electroless plating step to the complexing agent used in the first electroless plating step in the plating solution is preferably 0.2 to 2, and particularly preferably 0.3 to 1.
The liquid temperature and dipping time for immersing the substrate particles in the plating solution may be appropriately adjusted, but the liquid temperature is preferably 50 ° C. to 95 ° C. After the second electroless plating step is completed, the base particles on which the conductive metal layer is formed are taken out of the aqueous suspension, and washed and dried as necessary to obtain conductive fine particles.
態様2
 続いて、態様2の製造方法について説明する。態様2の製造方法は、特定のメッキ液を用いて行う無電解メッキ工程を含む。
Aspect 2
Then, the manufacturing method of aspect 2 is demonstrated. The manufacturing method of aspect 2 includes an electroless plating process performed using a specific plating solution.
 無電解メッキ工程
 無電解メッキ工程では、前記触媒化工程にてパラジウム触媒を吸着させた触媒化基材粒子表面に、導電性金属層を形成する。無電解メッキ処理は、還元剤と所望の金属塩を溶解したメッキ液中に触媒化基材粒子を浸漬することにより、パラジウム触媒を起点として、メッキ液中の金属イオンを還元剤で還元し、基材粒子表面に所望の金属を析出させて、導電性金属層を形成するものである。ここで、前記結晶子径が3nm以下のニッケル層を形成するためには、特定のメッキ液を使用する必要がある。このようなメッキ液としては、例えば、上村工業社から市販されている「ニムデン(登録商標) KFJ-20-M」と「ニムデン KFJ-20-MA」、「ニムデン NKY-2-M」、「ニムデン NKY-2-A」、「ニムデン LPX-5M」、「ニムデン LPX-A」、日本カニゼン社から市販されている「シューマー(登録商標) S680」が挙げられる。無電解メッキ反応の終了後、反応系内から導電性金属層が形成された基材粒子を取り出し、必要に応じて洗浄、乾燥を施すことにより、導電性微粒子を得ることができる。
Electroless Plating Step In the electroless plating step, a conductive metal layer is formed on the surface of the catalyst base material particles on which the palladium catalyst is adsorbed in the catalyst step. In the electroless plating treatment, by immersing the catalyzed substrate particles in a plating solution in which a reducing agent and a desired metal salt are dissolved, starting from a palladium catalyst, metal ions in the plating solution are reduced with a reducing agent, A desired metal is deposited on the surface of the substrate particles to form a conductive metal layer. Here, in order to form a nickel layer having a crystallite diameter of 3 nm or less, it is necessary to use a specific plating solution. Examples of such plating solutions include “Nimden (registered trademark) KFJ-20-M”, “Nimden KFJ-20-MA”, “Nimden NKY-2-M”, “Nimden” commercially available from Uemura Kogyo Co., Ltd. Nimden NKY-2-A ”,“ Nimden LPX-5M ”,“ Nimden LPX-A ”, and“ Schumer (registered trademark) S680 ”commercially available from Kanisen Corporation. After the electroless plating reaction is completed, the conductive fine particles can be obtained by taking out the substrate particles on which the conductive metal layer is formed from the reaction system and washing and drying as necessary.
 前記態様1、2の製造方法において、得られた導電性微粒子に熱処理を施すことにより、結晶子径を大きくすることができる。この手法は、特に結晶子径を1.5nm以上3nm以下(好ましくは1.7nm以上3nm以下)の範囲に制御したい場合に特に有効である。前記熱処理は、導電性微粒子に対して、非酸化性雰囲気下で熱処理を施す。前記非酸化性雰囲気としては、不活性雰囲気又は還元性雰囲気が挙げられる。前記不活性雰囲気としては窒素ガス、アルゴンガス等の不活性ガス雰囲気が挙げられる。 In the production methods of Embodiments 1 and 2, the crystallite diameter can be increased by subjecting the obtained conductive fine particles to heat treatment. This technique is particularly effective when it is desired to control the crystallite diameter in the range of 1.5 nm to 3 nm (preferably 1.7 nm to 3 nm). The heat treatment is performed on the conductive fine particles in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an inert atmosphere and a reducing atmosphere. Examples of the inert atmosphere include an inert gas atmosphere such as nitrogen gas and argon gas.
 前記熱処理の温度は180℃以上、好ましくは200℃以上、より好ましくは230℃以上、さらに好ましくは260℃以上、特に好ましくは280℃以上である。熱処理温度が高いほど、結晶子径が大きくなる。一方、熱処理温度が高くなり過ぎると、基材粒子の熱分解が進むため、熱処理温度は350℃以下が好ましく、より好ましくは330℃以下、さらに好ましくは300℃以下である。前記熱処理の時間は、0.3時間以上が好ましく、より好ましくは0.5時間以上、さらに好ましくは0.7時間以上である。熱処理時間が長いほど、結晶子径が大きくなる。一方、熱処理時間が長くなり過ぎると、ニッケルの酸化が進む傾向があるため、熱処理時間は、10時間以下が好ましく、より好ましくは5.0時間以下、さらに好ましくは3.0時間以下である。 The temperature of the heat treatment is 180 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, further preferably 260 ° C. or higher, and particularly preferably 280 ° C. or higher. The higher the heat treatment temperature, the larger the crystallite diameter. On the other hand, if the heat treatment temperature becomes too high, the thermal decomposition of the substrate particles proceeds, so the heat treatment temperature is preferably 350 ° C. or less, more preferably 330 ° C. or less, and even more preferably 300 ° C. or less. The heat treatment time is preferably 0.3 hours or more, more preferably 0.5 hours or more, and even more preferably 0.7 hours or more. The longer the heat treatment time, the larger the crystallite diameter. On the other hand, if the heat treatment time becomes too long, nickel tends to oxidize, so the heat treatment time is preferably 10 hours or less, more preferably 5.0 hours or less, and even more preferably 3.0 hours or less.
2.突起を有する導電性微粒子
 導電性微粒子はその表面が平滑であっても凹凸状であっても良いが、バインダー樹脂を効果的に排除して電極との接続を行える点で複数の突起を有することが好ましい。突起を有することで、導電性微粒子を電極間の接続に用いた際の接続信頼性を高めることができる。
2. Conductive fine particles having protrusions The conductive fine particles may have a smooth surface or an uneven shape, but have a plurality of protrusions in that the binder resin can be effectively removed to connect to the electrode. Is preferred. By having the protrusion, connection reliability when the conductive fine particles are used for connection between the electrodes can be improved.
 導電性微粒子の表面に突起を形成させる方法としては、(1)基材粒子合成における重合工程において、高分子の相分離現象を利用して表面に突起の形成された基材粒子を得た後、無電解メッキにより導電性金属層を形成させる方法;(2)基材粒子表面に、金属粒子、金属酸化物粒子等の無機粒子或いは有機重合体からなる有機粒子を付着させた後、無電解メッキにより導電性金属層を形成させる方法;(3)基材粒子表面に無電解メッキを行った後、金属粒子、金属酸化物粒子等の無機粒子或いは有機重合体からなる有機粒子を付着させ、さらに無電解メッキを行う方法;(4)無電解メッキ反応時におけるメッキ浴の自己分解を利用して、基材粒子表面に突起の核となる金属を析出させ、さらに無電解メッキを行うことによって、突起部を含む導電性金属層が連続皮膜となった導電性金属層を形成する方法;等が挙げられる。 As a method of forming protrusions on the surface of the conductive fine particles, (1) after obtaining base particles having protrusions on the surface using a phase separation phenomenon of a polymer in a polymerization step in base particle synthesis A method of forming a conductive metal layer by electroless plating; (2) electroless after depositing inorganic particles such as metal particles and metal oxide particles or organic particles made of an organic polymer on the surface of the substrate particles; A method of forming a conductive metal layer by plating; (3) after performing electroless plating on the surface of the substrate particles, and attaching organic particles made of inorganic particles or organic polymers such as metal particles and metal oxide particles; (4) Utilizing the self-decomposition of the plating bath during the electroless plating reaction, depositing a metal that forms the core of the protrusion on the surface of the substrate particles, and further performing the electroless plating Suddenly And the like; conductive metal layer containing section a method of forming a conductive metal layer became continuous film.
 前記突起の高さは20nm~1000nmであることが好ましく、より好ましくは30nm~800nm、さらに好ましくは40nm~600nm、特に好ましくは50nm~500nmである。突起の高さが前記範囲であると、接続信頼性が一層向上する。なお、突起の高さは、任意の導電性微粒子10個を電子顕微鏡で観察して求める。具体的には、観察される導電性微粒子の周縁部の突起について、導電性微粒子1個につき任意の10個の突起高さを測定し、その測定値を算術平均することにより求められる。 The height of the protrusion is preferably 20 nm to 1000 nm, more preferably 30 nm to 800 nm, still more preferably 40 nm to 600 nm, and particularly preferably 50 nm to 500 nm. When the height of the protrusion is within the above range, the connection reliability is further improved. The height of the protrusion is determined by observing 10 arbitrary conductive fine particles with an electron microscope. Specifically, for the protrusions on the periphery of the conductive fine particles to be observed, the height of any ten protrusions per conductive fine particle is measured, and the measured value is obtained by arithmetic averaging.
 前記突起の数は特に限定されないが、高い接続信頼性を確保する点から導電性微粒子の表面を電子顕微鏡で観察したときの任意の正投影面において、少なくとも1個以上の突起を有することが好ましく、より好ましくは5個以上、さらに好ましくは10個以上である。 The number of the protrusions is not particularly limited, but preferably has at least one protrusion on any orthographic projection surface when the surface of the conductive fine particles is observed with an electron microscope from the viewpoint of ensuring high connection reliability. , More preferably 5 or more, still more preferably 10 or more.
3.絶縁被覆導電性微粒子
 本発明の導電性微粒子は、表面の少なくとも一部に絶縁層を有する態様(絶縁被覆導電性微粒子)であってもよい。このように表面の導電性金属層にさらに絶縁層が積層されていると、高密度回路の形成時や端子接続時等に生じやすい横導通を防ぐことができる。
3. Insulating Coated Conductive Fine Particle The conductive fine particle of the present invention may be in an embodiment having an insulating layer on at least a part of the surface (insulating coated conductive fine particle). If an insulating layer is further laminated on the conductive metal layer on the surface in this way, it is possible to prevent lateral conduction that is likely to occur when a high-density circuit is formed or when a terminal is connected.
 絶縁層の厚さは0.005μm~1μmが好ましく、より好ましくは0.01μm~0.8μmである。絶縁層の厚さが前記範囲内であれば、導電性微粒子による導通特性を良好に維持しつつ、粒子間の電気絶縁性が良好となる。 The thickness of the insulating layer is preferably 0.005 μm to 1 μm, more preferably 0.01 μm to 0.8 μm. When the thickness of the insulating layer is within the above range, the electrical insulation between the particles becomes good while maintaining the conduction characteristics by the conductive fine particles.
 前記絶縁層としては、導電性微粒子の粒子間における絶縁性が確保でき、一定の圧力及び/又は加熱により容易にその絶縁層が崩壊あるいは剥離するものであれば特に限定されず、例えば、ポリエチレン等のポリオレフィン類;ポリメチル(メタ)アクリレート等の(メタ)アクリレート重合体及び共重合体;ポリスチレン;等の熱可塑性樹脂やその架橋物;エポキシ樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂;ポリビニルアルコール等の水溶性樹脂及びこれらの混合物;シリコーン樹脂等の有機化合物、或いはシリカ、アルミナ等の無機化合物が挙げられる。中でも、熱可塑性樹脂やその架橋物であることが好ましく、(メタ)アクリレート重合体及び共重合体やその架橋物であることが好ましい。(メタ)アクリレート重合体及び共重合体の形成時に架橋性単量体を共存させると、前記重合体の架橋物を得ることができる。架橋性単量体としては、特に限定されないが、例えば、アリル(メタ)アクリレート等のアリル(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、等のアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート類;ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート類;ジビニルベンゼン、ジビニルナフタレン、及びこれらの誘導体等の芳香族炭化水素系架橋剤(好ましくはジビニルベンゼン等のスチレン系多官能単量体);N,N-ジビニルアニリン、ジビニルエーテル、ジビニルサルファイド、ジビニルスルホン酸等のヘテロ原子含有架橋剤等が挙げられる。中でも、芳香族炭化水素系架橋剤が好ましく、ジビニルベンゼンであることが好ましい。 The insulating layer is not particularly limited as long as the insulating property between the particles of the conductive fine particles can be ensured, and the insulating layer can be easily collapsed or peeled off by a certain pressure and / or heating. For example, polyethylene or the like Polyolefins; (meth) acrylate polymers and copolymers such as polymethyl (meth) acrylate; polystyrene; thermoplastic resins such as polystyrene; and cross-linked products thereof; thermosetting resins such as epoxy resins, phenol resins, melamine resins; Examples thereof include water-soluble resins such as alcohol and mixtures thereof; organic compounds such as silicone resins; and inorganic compounds such as silica and alumina. Especially, it is preferable that it is a thermoplastic resin and its crosslinked material, and it is preferable that they are a (meth) acrylate polymer, a copolymer, and its crosslinked material. When a crosslinkable monomer is allowed to coexist during the formation of the (meth) acrylate polymer and copolymer, a crosslinked product of the polymer can be obtained. The crosslinkable monomer is not particularly limited. For example, allyl (meth) acrylates such as allyl (meth) acrylate; ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, etc. Alkanediol di (meth) acrylate; diethylene glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate etc. di (meth) acrylate etc. (Meth) acrylates; tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate; tetra (meth) acrylates such as pentaerythritol tetra (meth) acrylate; dipentaerythritol hexa (meth) acrylate Hexa (meth) acrylates; aromatic hydrocarbon crosslinking agents such as divinylbenzene, divinylnaphthalene and derivatives thereof (preferably styrenic polyfunctional monomers such as divinylbenzene); N, N-divinylaniline, di Examples include heteroatom-containing crosslinking agents such as vinyl ether, divinyl sulfide, and divinyl sulfonic acid. Among these, an aromatic hydrocarbon crosslinking agent is preferable, and divinylbenzene is preferable.
 絶縁被覆層の好ましい態様としては、熱可塑性樹脂の芳香族炭化水素系架橋剤による架橋物であり、より好ましい態様としては、(メタ)アクリレート重合体及び共重合体のジビニルベンゼンによる架橋物である。 A preferable embodiment of the insulating coating layer is a crosslinked product of an aromatic hydrocarbon-based crosslinking agent of a thermoplastic resin, and a more preferable embodiment is a crosslinked product of a (meth) acrylate polymer and a copolymer by divinylbenzene. .
 前記絶縁層は、単層であっても、複数の層からなるものであってもよい。例えば、単一又は複数の皮膜状の層が形成されていてもよいし、絶縁性を有する粒状、球状、塊状、鱗片状その他の形状の粒子を導電性金属層の表面に付着させた層であってもよいし、さらには、導電性金属層の表面を化学修飾することにより形成された層であってもよく、又は、これらが組み合わされたものであってもよい。これらの中でも絶縁性を有する粒子(以下、「絶縁粒子」という。)が導電性金属層表面に付着した態様が好ましい。 The insulating layer may be a single layer or a plurality of layers. For example, a single or a plurality of film-like layers may be formed, or a layer in which particles having insulating, granular, spherical, lump, scale or other shapes are attached to the surface of the conductive metal layer. Further, it may be a layer formed by chemically modifying the surface of the conductive metal layer, or a combination thereof. Among these, a mode in which insulating particles (hereinafter referred to as “insulating particles”) adhere to the surface of the conductive metal layer is preferable.
 絶縁粒子の平均粒子径は導電性微粒子の平均粒子径や絶縁被覆導電性微粒子の用途によって適宜選択されるが、絶縁粒子の平均粒子径は0.005μm~1μmの範囲であることが好ましく、より好ましくは0.01μm~0.8μmである。絶縁粒子の平均粒子径が0.005μmより小さくなると、複数の導電性微粒子間の導電層どうしが接触しやすくなり、1μmより大きくなると対向する電極間に導電性微粒子が挟み込まれた際に発揮するべき導電性が不十分となる虞がある。 The average particle size of the insulating particles is appropriately selected depending on the average particle size of the conductive fine particles and the use of the insulating coated conductive fine particles. The average particle size of the insulating particles is preferably in the range of 0.005 μm to 1 μm, and more Preferably, it is 0.01 μm to 0.8 μm. When the average particle diameter of the insulating particles is smaller than 0.005 μm, the conductive layers between the plurality of conductive fine particles are easily brought into contact with each other, and when the average particle diameter is larger than 1 μm, it is exhibited when the conductive fine particles are sandwiched between the opposing electrodes. There is a possibility that the electrical conductivity should be insufficient.
 絶縁粒子の平均粒子径における変動係数(CV値)は、好ましくは40%以下、より好ましくは30%以下、最も好ましくは20%以下である。CV値が40%を超えると導通性が不十分となる虞がある。 The coefficient of variation (CV value) in the average particle diameter of the insulating particles is preferably 40% or less, more preferably 30% or less, and most preferably 20% or less. If the CV value exceeds 40%, the conductivity may be insufficient.
 絶縁粒子の平均粒子径は、導電性微粒子の平均粒子径の1/1000以上、1/5以下であることが好ましい。絶縁粒子の平均粒子径が前記範囲であると、導電性微粒子の表面に均一に絶縁粒子層を形成させることができる。また、粒子径の異なる2種類以上の絶縁粒子を使用してもよい。
 絶縁粒子はその表面に導電性微粒子への付着性を高めるため官能基を有していても良い。前記官能基としては、アミノ基、エポキシ基、カルボキシル基、リン酸基、シラノール基、アンモニウム基、スルホン酸基、チオール基、ニトロ基、ニトリル基、オキサゾリン基、ピロリドン基、スルホニル基、水酸基等が挙げられる。
The average particle diameter of the insulating particles is preferably 1/1000 or more and 1/5 or less of the average particle diameter of the conductive fine particles. When the average particle diameter of the insulating particles is within the above range, the insulating particle layer can be uniformly formed on the surface of the conductive fine particles. Two or more kinds of insulating particles having different particle diameters may be used.
The insulating particles may have a functional group on the surface in order to improve adhesion to the conductive fine particles. Examples of the functional group include amino group, epoxy group, carboxyl group, phosphoric acid group, silanol group, ammonium group, sulfonic acid group, thiol group, nitro group, nitrile group, oxazoline group, pyrrolidone group, sulfonyl group, and hydroxyl group. Can be mentioned.
 導電性微粒子表面における絶縁粒子の被覆率(絶縁被覆導電性微粒子の正投影面)は、好ましくは1%以上98%以下、より好ましくは5%以上95%以下である。絶縁粒子による導電性微粒子の被覆率が前記範囲であることにより、充分な導通性を確保しつつ、隣接する絶縁被覆導電性微粒子間を確実に絶縁することができる。なお、上記被覆率は、例えば電子顕微鏡を用いて任意の100個の絶縁被覆導電性微粒子表面を観察したときに、絶縁被覆導電性微粒子の正投影面における絶縁粒子の被覆されている部分と樹脂粒子の被覆されていない部分の面積比率を測定することにより評価できる。 The coverage of the insulating particles on the surface of the conductive fine particles (the orthographic surface of the insulating coated conductive fine particles) is preferably 1% to 98%, more preferably 5% to 95%. When the coverage of the conductive fine particles by the insulating particles is in the above range, it is possible to reliably insulate adjacent insulating coated conductive fine particles while ensuring sufficient electrical conductivity. Note that the coverage is determined by, for example, observing the surface of any 100 insulating coated conductive fine particles using an electron microscope, and the portion of the orthographic projection surface of the insulating coated conductive fine particles coated with the insulating particles and the resin. It can be evaluated by measuring the area ratio of the uncoated part of the particles.
4.異方性導電材料
 本発明の導電性微粒子は、異方性導電材料として有用である。
 前記異方性導電材料としては、前記導電性微粒子がバインダー樹脂に分散してなるものが挙げられる。異方性導電材料の形態は特に限定されず、例えば、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インク等様々な形態が挙げられる。これらの異方性導電材料を相対向する基材同士や電極端子間に設けることにより、良好な電気的接続が可能になる。なお、本発明の導電性微粒子を用いた異方性導電材料には、液晶表示素子用導通材料(導通スペーサー及びその組成物)も含まれる。
4). Anisotropic Conductive Material The conductive fine particles of the present invention are useful as an anisotropic conductive material.
Examples of the anisotropic conductive material include those obtained by dispersing the conductive fine particles in a binder resin. The form of the anisotropic conductive material is not particularly limited, and examples thereof include various forms such as an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, and an anisotropic conductive ink. By providing these anisotropic conductive materials between opposing substrates or between electrode terminals, good electrical connection can be achieved. The anisotropic conductive material using the conductive fine particles of the present invention includes a conductive material for a liquid crystal display element (conductive spacer and composition thereof).
 
 前記バインダー樹脂中に導電性微粒子が分散してなる、ペースト状(異方性導電ペースト)又はフィルム状(異方性導電フィルム)の異方性導電性材料はLCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、OLED(Organic Light-emitting Diodes)などのFPD(Flat Panel Display)の基板と、これに画像信号を送るドライバICとを接着させ、電気的に接続させる材料として広く使用されている。具体的には、パネルを駆動する信号を発信するドライバICを搭載した、TCP(Tape Carrier Package)、COF(Chip on Film)パッケージなどの信号出力電極とLCDパネルとの接続(一般的にFOGと呼ばれる)、TCP、COFなどとこれらに信号を入力するプリント基板(PWB:Printed Wiring Board)との接続(一般的にFOBと呼ばれる)、ドライバICをペアチップのままLCDパネル上に実装するCOG(Chip on Glass)方式での接続などに使用されているほか、タッチパネル引き出し回路とFPC(フレキシブルプリント配線板)との接続やカメラモジュールの接続に使用されている。
 これらの用途の中でも、本発明の異方性導電性材料はFPDのFOG接続、COG接続、ならびにタッチパネル引き出し回路とFPC接続用に好適に用いられる。異方性導電材料の形態としてはペースト状であってもフィルム状であっても良いが、接続信頼性をより高められる点でフィルム状(異方性導電フィルム)であることが好ましい。

An anisotropic conductive material in the form of paste (anisotropic conductive paste) or film (anisotropic conductive film) in which conductive fine particles are dispersed in the binder resin is LCD (Liquid Crystal Display), PDP (PDP). Widely used as a material for bonding and electrically connecting FPD (Flat Panel Display) substrates such as Plasma Display Panel (OLED) and Organic Light-Emitting Diodes (OLED) to driver ICs that send image signals to this. . Specifically, a connection between a signal output electrode such as a TCP (Tape Carrier Package) or COF (Chip on Film) package, which is equipped with a driver IC that transmits a signal for driving the panel, and the LCD panel (generally FOG and COG (Chip) which mounts the driver IC on the LCD panel as a pair chip and connection with a printed circuit board (PWB: Printed Wiring Board) that inputs signals to these, such as TCP, COF, etc. In addition to being used for on-glass connection, it is also used for connection between a touch panel lead-out circuit and an FPC (flexible printed wiring board) or camera module.
Among these uses, the anisotropic conductive material of the present invention is preferably used for FOG connection of FPD, COG connection, and touch panel lead-out circuit and FPC connection. The anisotropic conductive material may be in the form of a paste or a film, but is preferably in the form of a film (anisotropic conductive film) in terms of further improving connection reliability.
 前記バインダー樹脂としては、絶縁性の樹脂であれば特に限定されず、例えば、アクリル樹脂、スチレン樹脂、エチレン-酢酸ビニル樹脂、スチレン-ブタジエンブロック共重合体等の熱可塑性樹脂;エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、ポリイミド樹脂等の熱硬化性樹脂等が挙げられる。 The binder resin is not particularly limited as long as it is an insulating resin. For example, thermoplastic resins such as acrylic resin, styrene resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer; epoxy resin, phenol resin And thermosetting resins such as urea resin, polyester resin, urethane resin, and polyimide resin.
 バインダー樹脂組成物には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、酸化防止剤、各種カップリング剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤、熱伝導向上剤、有機溶剤等を配合することができる。 For binder resin compositions, fillers, softeners, accelerators, anti-aging agents, colorants (pigments, dyes), antioxidants, various coupling agents, light stabilizers, UV absorbers, lubricants as necessary. Further, an antistatic agent, a flame retardant, a heat conduction improver, an organic solvent, and the like can be blended.
 なお、前記異方性導電材料は、前記バインダー樹脂中に導電性微粒子を分散させ、所望の形態とすることで得られるが、例えば、バインダー樹脂と導電性微粒子とを別々に使用し、接続しようとする基材間や電極端子間に導電性微粒子をバインダー樹脂とともに存在させることによって接続してもかまわない。 The anisotropic conductive material can be obtained by dispersing conductive fine particles in the binder resin to obtain a desired form. For example, the binder resin and the conductive fine particles are separately used for connection. The conductive fine particles may be present together with the binder resin between the base materials and between the electrode terminals.
 前記異方性導電材料において、導電性微粒子の含有量は、用途に応じて適宜決定すればよいが、例えば、異方性導電材料の全量に対して0.01体積%以上が好ましく、より好ましくは0.03体積%以上、さらに好ましくは0.05体積%以上であり、50体積%以下が好ましく、より好ましくは30体積%以下、さらに好ましくは20体積%以下である。導電性微粒子の含有量が少なすぎると、充分な電気的導通が得られ難い場合があり、一方、導電性微粒子の含有量が多すぎると、導電性微粒子同士が接触してしまい、異方性導電材料としての機能が発揮され難い場合がある。 In the anisotropic conductive material, the content of the conductive fine particles may be appropriately determined according to the use. For example, the volume is preferably 0.01% by volume or more, more preferably based on the total amount of the anisotropic conductive material. Is 0.03% by volume or more, more preferably 0.05% by volume or more, preferably 50% by volume or less, more preferably 30% by volume or less, and still more preferably 20% by volume or less. If the content of the conductive fine particles is too small, it may be difficult to obtain sufficient electrical continuity. On the other hand, if the content of the conductive fine particles is too large, the conductive fine particles are in contact with each other, and anisotropy is caused. The function as a conductive material may be difficult to be exhibited.
 前記異方性導電材料におけるフィルム膜厚、ペーストや接着剤の塗工膜厚、印刷膜厚等については、使用する導電性微粒子の粒子径と、接続すべき電極の仕様とを考慮し、接続すべき電極間に導電性微粒子が狭持され、且つ接続すべき電極が形成された接合基板同士の空隙がバインダー樹脂層により充分に満たされるように、適宜設定することが好ましい。 Regarding the film thickness in the anisotropic conductive material, the coating thickness of the paste or adhesive, the printed film thickness, etc., considering the particle diameter of the conductive fine particles to be used and the specifications of the electrodes to be connected. It is preferable to set appropriately so that the conductive fine particles are held between the electrodes to be connected and the gap between the bonding substrates on which the electrodes to be connected are formed is sufficiently filled with the binder resin layer.
 本願は、2011年9月22日に出願された日本国特許出願第2011-207845号に基づく優先権の利益を主張するものである。2011年9月22日に出願された日本国特許出願第2011-207845号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2011-207845 filed on September 22, 2011. The entire contents of Japanese Patent Application No. 2011-207845 filed on September 22, 2011 are incorporated herein by reference.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
1.評価方法
1-1.個数平均粒子径、変動係数(CV値)
 粒度分布測定装置(ベックマンコールター社製、「コールターマルチサイザーIII型」)により30000個の粒子の粒子径を測定し、個数基準の平均粒子径、粒子径の標準偏差を求めるとともに、下記式に従って粒子径の個数基準のCV値(変動係数)を算出した。
  粒子の変動係数(%)=100×(粒子径の標準偏差/個数基準平均粒子径)
 なお、基材粒子では、基材粒子0.005部に界面活性剤(第一工業製薬社製、「ハイテノール(登録商標) N-08」)の1%水溶液20部を加え、超音波で10分間分散させた分散液を測定試料とした。シード粒子では、加水分解、縮合反応で得られた分散液を、界面活性剤(第一工業製薬社製、「ハイテノール(登録商標) N-08」)の1%水溶液により希釈したものを測定試料とした。
1. Evaluation method 1-1. Number average particle size, coefficient of variation (CV value)
Measure the particle size of 30000 particles with a particle size distribution measuring device (“Coulter Multisizer III type”, manufactured by Beckman Coulter, Inc.) to obtain the average particle size based on the number and the standard deviation of the particle size. The CV value (coefficient of variation) based on the number of diameters was calculated.
Particle variation coefficient (%) = 100 × (standard deviation of particle diameter / number-based average particle diameter)
In addition, in the base particle, 20 parts of a 1% aqueous solution of a surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., “Hytenol (registered trademark) N-08”) is added to 0.005 part of the base particle, and ultrasonically applied. A dispersion liquid dispersed for 10 minutes was used as a measurement sample. For seed particles, a dispersion obtained by hydrolysis and condensation reaction is diluted with a 1% aqueous solution of a surfactant (Daiichi Kogyo Seiyaku Co., Ltd., “Hytenol (registered trademark) N-08”). A sample was used.
1-2.結晶子径
 粉末X線回折装置(リガク社製、「RINT(登録商標)-TTRIII」)を使用して、導電性微粒子についてX線回折測定を行った。次いで、解析ソフトとして総合粉末X線解析ソフトウエア(リガク社製、「PDKL」)を用い、ミラー指数(111)の格子面に帰属されるピーク(回折線)の幅(積分幅)から、Scherrerの式に基づいて、該格子面に垂直方向の結晶子径Ds(111)を計算した。
1-2. Crystallite diameter Using a powder X-ray diffractometer (“RINT (registered trademark) -TTRIII” manufactured by Rigaku Corporation), X-ray diffraction measurement was performed on the conductive fine particles. Next, using comprehensive powder X-ray analysis software (“PDKL”, manufactured by Rigaku Corporation) as analysis software, Scherrer is obtained from the width (integration width) of the peak (diffraction line) attributed to the lattice plane of the Miller index (111). Based on the above formula, the crystallite diameter Ds (111) in the direction perpendicular to the lattice plane was calculated.
1-3.導電性金属層断面観察
 導電性微粒子0.1gをメノウ鉢に取りすり潰すことにより金属層を破断した。すり潰した導電性金属層の金属層の厚さ方向断面を、走査型電子顕微鏡で100000倍の拡大倍率で観察した。ニッケル層の構造を以下のように評価した。
 A:ニッケル層の粒界が厚さ方向に配向している。
 B:ニッケル層に粒界が認められない。
 C:ニッケル層の粒界がAとB両方の構造が認められる。
 D:ニッケル層の粒界が葉脈状の構造を形成している。
1-3. Conductive metal layer cross-sectional observation 0.1 g of conductive fine particles were ground in an agate bowl and the metal layer was broken. The cross section in the thickness direction of the ground metal layer of the conductive metal layer was observed with a scanning electron microscope at a magnification of 100,000. The structure of the nickel layer was evaluated as follows.
A: The grain boundaries of the nickel layer are oriented in the thickness direction.
B: No grain boundary is observed in the nickel layer.
C: A structure in which the grain boundary of the nickel layer is both A and B is recognized.
D: The grain boundary of the nickel layer forms a vein-like structure.
1-4.導電性金属層膜厚
 フロー式粒子像解析装置(シスメックス社製、「FPIA(登録商標)-3000」)を用いて、基材粒子3000個の粒子径、導電性微粒子3000個の粒子径を測定し、基材粒子の個数平均粒子径X(μm)、導電性微粒子の個数平均粒子径Y(μm)を求めた。そして、下記式に従って導電性金属層の膜厚を算出した。
  導電性金属層膜厚(μm)=(Y-X)/2
1-4. Conductive metal layer thickness Using a flow-type particle image analyzer ("FPIA (registered trademark) -3000" manufactured by Sysmex Corporation), the particle diameter of 3000 base particles and 3000 conductive particles are measured. Then, the number average particle diameter X (μm) of the base particles and the number average particle diameter Y (μm) of the conductive fine particles were determined. And the film thickness of the electroconductive metal layer was computed according to the following formula.
Conductive metal layer thickness (μm) = (Y−X) / 2
1-5.リン濃度
 導電性微粒子0.05gに王水4mlを加え、加熱下で攪拌することにより金属層を溶解しろ別した。その後、ICP発光分析装置を用いて、ろ液中のニッケル及びリンの含有量を分析した。
1-5. Phosphorus concentration 4 ml of aqua regia was added to 0.05 g of conductive fine particles, and the metal layer was dissolved and separated by stirring under heating. Thereafter, the contents of nickel and phosphorus in the filtrate were analyzed using an ICP emission analyzer.
1-6.圧縮変形特性
 導電性微粒子を試料粒子とし、島津微小圧縮試験機(島津製作所製、「MCT-W500」)を用いて、室温(25℃)において測定した。具体的には、試料台(材質:SKS平板)上に散布した試料粒子1個について、直径50μmの円形平板圧子(材質:ダイヤモンド)を用いて、粒子の中心方向へ一定の負荷速度(2.2295mN/秒(0.2275gf/秒))で荷重をかけた。図1に示すように、いずれの粒子も、予備的破壊挙動を示す変曲点Xと破壊点Yの2段階の挙動を示す。変曲点Xの圧縮荷重値P1とそのときの圧縮変形率L1(%)、及び破壊点Yの圧縮荷重値P2とそのときの圧縮変形率L2(%)を求めた。
 P1:変曲点Xの圧縮荷重値(mN)
 P2:破壊点Yの圧縮荷重値(mN)
 L1:変曲点Xの圧縮変形率(%)=圧縮変位(μm)/粒子径(μm)
 L2:破壊点Yの圧縮変形率(%)=圧縮変位(μm)/粒子径(μm)
1-6. Compressive deformation characteristics Using conductive fine particles as sample particles, measurement was performed at room temperature (25 ° C.) using a Shimadzu micro compression tester (manufactured by Shimadzu Corporation, “MCT-W500”). Specifically, with respect to one sample particle spread on a sample table (material: SKS flat plate), a constant load speed (2. The load was applied at 2295 mN / sec (0.2275 gf / sec). As shown in FIG. 1, each particle exhibits a two-stage behavior of an inflection point X and a fracture point Y indicating a preliminary fracture behavior. The compression load value P1 at the inflection point X and the compression deformation rate L1 (%) at that time, and the compression load value P2 at the break point Y and the compression deformation rate L2 (%) at that time were obtained.
P1: Compression load value at the inflection point X (mN)
P2: Compressive load value at failure point Y (mN)
L1: Compression deformation rate (%) at the inflection point X = compression displacement (μm) / particle diameter (μm)
L2: compression deformation rate (%) at fracture point Y = compression displacement (μm) / particle diameter (μm)
1-7.圧縮接続抵抗値
 島津微小圧縮試験機(島津製作所製「MCT-W200」)抵抗測定キット付属装置を用いて、室温(25℃)において測定した。具体的には、試料台上に散布した試料粒子1個について、直径50μmの円形平板圧子を用いて、粒子の中心方向へ一定の負荷速度(2.6mN/秒(0.27gf/秒))で荷重をかけて測定を行った。10回測定を行い、粒子径の30%圧縮変形時の抵抗値(A)及び40%圧縮変形時の抵抗値(B)それぞれの平均値を求めた。
 ここで、30%圧縮接続抵抗値(A)が80Ω以下の場合を初期抵抗○、80Ωより大きい場合を初期抵抗×として評価した。また、B(Ω)/A(Ω)が1.00以下の場合を高圧縮抵抗値上昇◎、1.00より大きく1.10未満の場合を高圧縮抵抗値上昇○、1.10以上2.00未満の場合を高圧縮抵抗値上昇×、2.00以上の場合を高圧縮抵抗値上昇××として評価した。
1-7. Compression connection resistance value Measured at room temperature (25 ° C.) using a Shimadzu micro-compression tester (“MCT-W200” manufactured by Shimadzu Corporation) resistance measurement kit attachment device. Specifically, with respect to one sample particle spread on the sample stage, a constant loading speed (2.6 mN / second (0.27 gf / second)) toward the center of the particle using a circular plate indenter with a diameter of 50 μm. The measurement was performed with a load applied. The measurement was performed 10 times, and the respective average values of the resistance value (A) at 30% compression deformation and the resistance value (B) at 40% compression deformation of the particle diameter were obtained.
Here, the case where the 30% compression connection resistance value (A) was 80Ω or less was evaluated as the initial resistance ◯, and the case where it was larger than 80Ω was evaluated as the initial resistance ×. Further, when B (Ω) / A (Ω) is 1.00 or less, the high compression resistance value is increased ◎, and when B (Ω) / A (Ω) is greater than 1.00 and less than 1.10, the high compression resistance value is increased. The case of less than 0.00 was evaluated as high compression resistance value increase x, and the case of 2.00 or more was evaluated as high compression resistance value increase xx.
1-8.耐湿性試験
 導電性微粒子を開放した容器に入れ、恒温恒湿器にて30℃90%RHの条件下で12時間静置したのち、30%圧縮接続抵抗値を測定した。
 ここで、耐湿性試験前後の30%圧縮接続抵抗値(Ω)の差が5Ω以下の場合を耐湿性◎、5Ωより大きく15Ω以下である場合を耐湿性○として評価した。
1-8. Moisture resistance test The conductive fine particles were put in an open container and allowed to stand for 12 hours at 30 ° C. and 90% RH in a constant temperature and humidity chamber, and then 30% compression connection resistance value was measured.
Here, the case where the difference in 30% compression connection resistance value (Ω) before and after the moisture resistance test was 5Ω or less was evaluated as the moisture resistance ◎, and the case where it was greater than 5Ω and 15Ω or less was evaluated as moisture resistance ○.
1-9.基材粒子の10%K値
 微小圧縮試験機(島津製作所製「MCT-W500」)を用いて、室温(25℃)において、試料台上に散布した試料粒子1個について、直径50μmの円形平板圧子を用いて、「標準表面検出」モードで粒子の中心方向へ一定の負荷速度(2.2295mN/秒)で荷重をかけた。そして、圧縮変位が粒子径の10%となったときの荷重(mN)を測定し、得られた圧縮荷重、粒子の圧縮変位及び粒子径から、10%K値を算出した。なお、測定は各試料について、異なる10個の粒子に対して行い、平均した値を測定値とした。
1-9. 10% K value of substrate particles A circular flat plate with a diameter of 50 μm per sample particle dispersed on a sample stage at room temperature (25 ° C.) using a micro compression tester (“MCT-W500” manufactured by Shimadzu Corporation) Using an indenter, a load was applied at a constant load speed (2.2295 mN / sec) toward the center of the particle in the “standard surface detection” mode. Then, the load (mN) when the compression displacement became 10% of the particle diameter was measured, and a 10% K value was calculated from the obtained compression load, particle compression displacement, and particle diameter. In addition, the measurement was performed on 10 different particles for each sample, and the average value was used as the measurement value.
1-10.絶縁特性の評価 
 導電接続構造体を測定試料として、隣接する電極間の絶縁抵抗を四端子法により測定した。
n=50で測定を行い、電気抵抗値が100MΩ以上となった割合(%)を求めた。
1-10. Evaluation of insulation characteristics
Using the conductive connection structure as a measurement sample, the insulation resistance between adjacent electrodes was measured by the four-terminal method.
Measurement was performed at n = 50, and the ratio (%) at which the electrical resistance value was 100 MΩ or more was determined.
2.基材粒子の準備
2-1.[合成例1]アミノ樹脂粒子の合成
 メラミン、ベンゾグアナミン、ホルマリン及び炭酸ナトリウム水溶液を含む水性媒体を攪拌しながら85℃に加熱して初期縮合物を得た。別に、ノニオン系界面活性剤(「エマルゲン(登録商標) 430」、花王社製)水溶液を攪拌しながら50℃に加熱した。この界面活性剤水溶液に、上記初期縮合物を投入し乳濁液を得た。これに硬化触媒としてドデシルベンゼンスルホン酸水溶液を加え、50~60℃で3時間保持して縮合重合し、硬化樹脂の乳濁液を得た。この乳濁液から硬化樹脂を沈降分離して得られたペーストをエマルゲン430とドデシルベンゼンスルンホン酸水溶液に分散させ、90℃で1時間保持した後急冷した。この乳濁液から、沈降分離することにより硬化球状樹脂を得た(ここで、メラミン/ベンゾグアナミン/ホルムアルデヒドの質量比率は31.5/31.5/37である。)。
 上記の硬化球状樹脂に水及び硬化触媒(「キャタニットA」、日東理研社製)を加え、オートクレーブを用いて170℃で3時間加熱加圧処理した。この処理後、粒子をろ別し純水で数回洗浄した後、160℃で4時間乾燥し、アミノ樹脂粒子を得た。
 得られたアミノ樹脂粒子の個数平均粒子径は14μm、粒子径の変動係数は4.5%であった。
2. 2. Preparation of substrate particles 2-1. [Synthesis Example 1] Synthesis of amino resin particles An aqueous medium containing melamine, benzoguanamine, formalin and an aqueous sodium carbonate solution was heated to 85 ° C with stirring to obtain an initial condensate. Separately, a nonionic surfactant (“Emulgen (registered trademark) 430”, manufactured by Kao Corporation) aqueous solution was heated to 50 ° C. with stirring. The initial condensate was added to this aqueous surfactant solution to obtain an emulsion. An aqueous solution of dodecylbenzenesulfonic acid was added thereto as a curing catalyst, and condensation polymerization was carried out by maintaining at 50 to 60 ° C. for 3 hours to obtain an emulsion of a cured resin. The paste obtained by precipitating and separating the cured resin from this emulsion was dispersed in Emulgen 430 and an aqueous dodecylbenzenesulfonic acid solution, kept at 90 ° C. for 1 hour, and then rapidly cooled. A hardened spherical resin was obtained from the emulsion by sedimentation and separation (wherein the mass ratio of melamine / benzoguanamine / formaldehyde was 31.5 / 31.5 / 37).
Water and a curing catalyst (“Catanit A”, manufactured by Nitto Riken Co., Ltd.) were added to the above-described cured spherical resin, and the mixture was heated and pressurized at 170 ° C. for 3 hours using an autoclave. After this treatment, the particles were filtered off, washed several times with pure water, and then dried at 160 ° C. for 4 hours to obtain amino resin particles.
The number average particle diameter of the obtained amino resin particles was 14 μm, and the coefficient of variation of the particle diameter was 4.5%.
2-2.[合成例2]ビニル重合体粒子1の合成
 冷却管、温度計、滴下口を備えた四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール355部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部及びメタノール245部の混合液を添加して、3-メタクリロキシプロピルトリメトキシシランの加水分解、縮合反応を行って、メタクリロイル基を有するポリシロキサン粒子(重合性ポリシロキサン粒子)の乳濁液を調製した。このポリシロキサン粒子の個数平均粒子径は3.02μmであった。
2-2. [Synthesis Example 2] Synthesis of vinyl polymer particles 1 In a four-necked flask equipped with a cooling tube, a thermometer, and a dropping port, 1800 parts of ion-exchanged water, 24 parts of 25% aqueous ammonia, and 355 parts of methanol were stirred. Below, a mixed liquid of 100 parts of 3-methacryloxypropyltrimethoxysilane and 245 parts of methanol is added from the dropping port, and hydrolysis and condensation reaction of 3-methacryloxypropyltrimethoxysilane is performed to obtain a polymethacrylate having a methacryloyl group. An emulsion of siloxane particles (polymerizable polysiloxane particles) was prepared. The number average particle size of the polysiloxane particles was 3.02 μm.
 次いで、乳化剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製「ハイテノール(登録商標)NF-08」)の20%水溶液10部をイオン交換水400部で溶解した溶液に、スチレン200部及びDVB960(新日鐡化学社製、ジビニルベンゼン含量96質量%)200部と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製「V-65」)4.8部とを加え、乳化分散させて単量体成分の乳化液を調製した。この乳化液を2時間攪拌後、得られた乳化液を、上記ポリシロキサン粒子の乳濁液中に添加して、さらに攪拌を行った。乳化液の添加から1時間後、混合液をサンプリングして顕微鏡で観察を行ったところ、ポリシロキサン粒子が単量体を吸収して肥大化していることが確認された。 Next, a solution obtained by dissolving 10 parts of a 20% aqueous solution of polyoxyethylene styrenated ammonium sulfate ester ammonium salt (“HITENOL (registered trademark) NF-08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as an emulsifier in 400 parts of ion-exchanged water 200 parts of styrene and 200 parts of DVB960 (manufactured by Nippon Steel Chemical Co., Ltd., divinylbenzene content 96% by mass) and 2,2′-azobis (2,4-dimethylvaleronitrile) (“Wako Pure Chemical Industries” “V -65 ") 4.8 parts was added and emulsified and dispersed to prepare an emulsion of monomer components. After stirring this emulsion for 2 hours, the resulting emulsion was added to the emulsion of the polysiloxane particles and further stirred. One hour after the addition of the emulsified liquid, the mixed liquid was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer.
 前記混合液に、前記ポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩の20%水溶液96部、イオン交換水500部を加え、窒素雰囲気下で65℃まで昇温させて、65℃で2時間保持し、単量体成分のラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄した後、窒素雰囲気下280℃で1時間焼成処理して重合体粒子を得、これをビニル重合体粒子とした。このビニル重合体粒子の個数平均粒子径は6.04μm、変動係数(CV値)は3.4%であった。 96 parts of 20% aqueous solution of polyoxyethylene styrenated phenyl ether sulfate ammonium salt and 500 parts of ion-exchanged water are added to the mixed solution, and the temperature is raised to 65 ° C. in a nitrogen atmosphere and maintained at 65 ° C. for 2 hours. The monomer component was radically polymerized. The emulsion after radical polymerization was subjected to solid-liquid separation, and the obtained cake was washed with ion-exchanged water and methanol, and then baked at 280 ° C. for 1 hour in a nitrogen atmosphere to obtain polymer particles. Combined particles were obtained. The number average particle diameter of the vinyl polymer particles was 6.04 μm, and the coefficient of variation (CV value) was 3.4%.
2-3.[合成例3]ビニル重合体粒子2の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール450部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン150部及びメタノール500部の混合液を添加したこと以外は、合成例1と同様にしてビニル重合体粒子2を作製した。このときポリシロキサン粒子の個数平均粒子径は1.50μmであり、このビニル重合体粒子2の個数平均粒子径は3.00μm、変動係数(CV値)は3.5%であった。
2-3. [Synthesis Example 3] Synthesis of vinyl polymer particles 2 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 450 parts of methanol were added to a four-necked flask. Then, under the stirring, vinyl polymer particles 2 were produced in the same manner as in Synthesis Example 1 except that a mixed solution of 150 parts of 3-methacryloxypropyltrimethoxysilane and 500 parts of methanol was added from the dropping port. At this time, the number average particle size of the polysiloxane particles was 1.50 μm, the number average particle size of the vinyl polymer particles 2 was 3.00 μm, and the coefficient of variation (CV value) was 3.5%.
2-4.[合成例4]ビニル重合体粒子3の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール500部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部及びメタノール100部の混合液を添加したこと以外は、合成例1と同様にしてビニル重合体粒子3を作製した。このときポリシロキサン粒子の個数平均粒子径は1.35μmであり、このビニル重合体粒子3の個数平均粒子径は2.71μm、変動係数(CV値)は3.4%であった。
2-4. Synthesis Example 4 Synthesis of Vinyl Polymer Particle 3 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 500 parts of methanol were added to a four-necked flask. Then, a vinyl polymer particle 3 was produced in the same manner as in Synthesis Example 1 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 100 parts of methanol was added from the dropping port under stirring. At this time, the number average particle diameter of the polysiloxane particles was 1.35 μm, the number average particle diameter of the vinyl polymer particles 3 was 2.71 μm, and the coefficient of variation (CV value) was 3.4%.
2-5.[合成例5]ビニル重合体粒子4の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール550部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部及びメタノール50部の混合液を添加したこと以外は、合成例1と同様にしてビニル重合体粒子4を作製した。このときポリシロキサン粒子の個数平均粒子径は1.15μmであり、このビニル重合体粒子4の個数平均粒子径は2.30μm、変動係数(CV値)は3.6%であった。
2-5. [Synthesis Example 5] Synthesis of vinyl polymer particles 4 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 550 parts of methanol were added to a four-necked flask. Then, a vinyl polymer particle 4 was produced in the same manner as in Synthesis Example 1 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 50 parts of methanol was added from the dropping port under stirring. At this time, the number average particle size of the polysiloxane particles was 1.15 μm, the number average particle size of the vinyl polymer particles 4 was 2.30 μm, and the coefficient of variation (CV value) was 3.6%.
2-6.[合成例6]ビニル重合体粒子5の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール600部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部を添加したこと以外は、合成例1と同様にしてビニル重合体粒子5を作製した。このときポリシロキサン粒子の個数平均粒子径は0.99μmであり、このビニル重合体粒子5の個数平均粒子径は2.02μm、変動係数(CV値)は3.8%であった。
2-6. [Synthesis Example 6] Synthesis of vinyl polymer particles 5 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 600 parts of methanol were added to a four-necked flask. A vinyl polymer particle 5 was prepared in the same manner as in Synthesis Example 1, except that 100 parts of 3-methacryloxypropyltrimethoxysilane was added from the dropping port under stirring and stirring. At this time, the number average particle diameter of the polysiloxane particles was 0.99 μm, the number average particle diameter of the vinyl polymer particles 5 was 2.02 μm, and the coefficient of variation (CV value) was 3.8%.
2-7.[合成例7]ビニル重合体粒子6の合成
 ポリシロキサン粒子に吸収させる単量体成分の乳化液を調製するにあたり、スチレン200部及びジビニルベンゼン(DVB960)200部の代わりに、スチレン300部とジビニルベンゼン(DVB960)100部を用いた以外は、合成例5と同様にしてビニル重合体粒子6を作製した。このビニル重合体粒子6の個数平均粒子径は2.31μm、変動係数(CV値)は3.9%であった。
2-7. [Synthesis Example 7] Synthesis of vinyl polymer particles 6 In preparing an emulsion of monomer components to be absorbed by polysiloxane particles, instead of 200 parts of styrene and 200 parts of divinylbenzene (DVB960), 300 parts of styrene and divinyl were used. Vinyl polymer particles 6 were produced in the same manner as in Synthesis Example 5 except that 100 parts of benzene (DVB960) was used. The vinyl polymer particles 6 had a number average particle size of 2.31 μm and a coefficient of variation (CV value) of 3.9%.
2-8.[合成例8]ビニル重合体粒子7の合成
 ポリシロキサン粒子に吸収させる単量体成分の乳化液を調製するにあたり、スチレン200部及びジビニルベンゼン(DVB960)200部の代わりに、スチレン400部を用いた以外は、合成例5と同様にしてビニル重合体粒子7を作製した。このビニル重合体粒子7の個数平均粒子径は2.28μm、変動係数(CV値)は3.9%であった。
2-8. [Synthesis Example 8] Synthesis of vinyl polymer particles 7 In preparing an emulsion of monomer components to be absorbed by polysiloxane particles, 400 parts of styrene was used instead of 200 parts of styrene and 200 parts of divinylbenzene (DVB960). Except for the above, vinyl polymer particles 7 were produced in the same manner as in Synthesis Example 5. The vinyl polymer particles 7 had a number average particle size of 2.28 μm and a coefficient of variation (CV value) of 3.9%.
2-9.[合成例9]ビニル重合体粒子8の合成
 ポリシロキサン粒子に吸収させる単量体成分の乳化液を調製するにあたり、スチレン200部及びジビニルベンゼン(DVB960)200部の代わりに、ジビニルベンゼン(DVB960)400部を用いた以外は、合成例5と同様にしてビニル重合体粒子8を作製した。このビニル重合体粒子8の個数平均粒子径は3.03μm、変動係数(CV値)は3.3%であった。
2-9. [Synthesis Example 9] Synthesis of vinyl polymer particles 8 In preparing an emulsion of monomer components to be absorbed by polysiloxane particles, instead of 200 parts of styrene and 200 parts of divinylbenzene (DVB960), divinylbenzene (DVB960) Vinyl polymer particles 8 were produced in the same manner as in Synthesis Example 5 except that 400 parts were used. The vinyl polymer particles 8 had a number average particle size of 3.03 μm and a coefficient of variation (CV value) of 3.3%.
2-10.[合成例10]ビニル重合体粒子9の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水24部、メタノール100部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部及びメタノール500部の混合液を添加したこと以外は、合成例8と同様にしてビニル重合体粒子9を作製した。このときポリシロキサン粒子の個数平均粒子径は5.01μmであり、このビニル重合体粒子9の個数平均粒子径は10.02μm、変動係数(CV値)は2.1%であった。
2-10. [Synthesis Example 10] Synthesis of vinyl polymer particles 9 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water, 24 parts of 25% ammonia water, and 100 parts of methanol were added to a four-necked flask. Then, under the stirring, vinyl polymer particles 9 were produced in the same manner as in Synthesis Example 8 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 500 parts of methanol was added from the dropping port. At this time, the number average particle size of the polysiloxane particles was 5.01 μm, the number average particle size of the vinyl polymer particles 9 was 10.02 μm, and the coefficient of variation (CV value) was 2.1%.
2-11.[合成例11]ビニル重合体粒子10の合成
 重合性ポリシロキサン粒子の乳濁液を調製するにあたり、四つ口フラスコに、イオン交換水1800部と、25%アンモニア水12部を入れ、攪拌下、滴下口から3-メタクリロキシプロピルトリメトキシシラン100部及びメタノール600部の混合液を添加したこと以外は、合成例8と同様にしてビニル重合体粒子10を作製した。このときポリシロキサン粒子の個数平均粒子径は10.00μmであり、このビニル重合体粒子10の個数平均粒子径は20.01μm、変動係数(CV値)は1.8%であった。
2-11. [Synthesis Example 11] Synthesis of vinyl polymer particles 10 In preparing an emulsion of polymerizable polysiloxane particles, 1800 parts of ion-exchanged water and 12 parts of 25% aqueous ammonia were placed in a four-necked flask and stirred. A vinyl polymer particle 10 was produced in the same manner as in Synthesis Example 8 except that a mixed solution of 100 parts of 3-methacryloxypropyltrimethoxysilane and 600 parts of methanol was added from the dropping port. At this time, the number average particle diameter of the polysiloxane particles was 10.00 μm, the number average particle diameter of the vinyl polymer particles 10 was 20.01 μm, and the coefficient of variation (CV value) was 1.8%.
3.導電性微粒子の製造
3-1.製造例1
 アミノ樹脂粒子を基材粒子として用い、下記に示すメッキ工程(触媒化処理工程、メッキ膜形成工程)に供することによって導電性微粒子1を得た。得られた導電性微粒子1の個数平均粒子径は14.2μm、ニッケル層は膜厚120nm、リン濃度8.9質量%であった。得られた導電性微粒子のニッケル層の厚さ方向断面を、走査型電子顕微鏡によって100000倍の拡大倍率で観察したところ、粒界が認められ、配向方向が厚みに対して斜めに葉脈状に配向していた。
3. 3. Production of conductive fine particles 3-1. Production Example 1
Conductive fine particles 1 were obtained by using amino resin particles as base particles and subjecting them to the following plating steps (catalyzing treatment step, plating film forming step). The obtained conductive fine particles 1 had a number average particle diameter of 14.2 μm, the nickel layer had a film thickness of 120 nm and a phosphorus concentration of 8.9% by mass. When the cross section in the thickness direction of the nickel layer of the obtained conductive fine particles was observed with a scanning electron microscope at a magnification of 100000 times, grain boundaries were observed, and the orientation direction was oriented in a vein pattern obliquely to the thickness. Was.
(1)触媒化処理工程
 上記基材粒子3gに水40mLを加え、超音波分散を行った。この分散液を、液温60℃で攪拌しながら、塩化パラジウム水溶液(濃度19.5g/L)0.2mLを添加し、5分間維持させ、基材粒子の表面にパラジウムイオンを捕捉させる活性化処理を行った。次いで、基材粒子をろ別し、70℃の温水70mLで洗浄した後、水20mLを加えてスラリーを調整した。このスラリーに超音波を照射した状態で、ジメチルアミンボランとホウ酸との混合水溶液(ジメチルアミンボラン濃度1g/L、ホウ酸濃度9.9g/L)2mLを加えた。常温で超音波を2分間照射して、パラジウムイオンの還元処理を行った。
(1) Catalytic treatment step 40 mL of water was added to 3 g of the above base particle, and ultrasonic dispersion was performed. While stirring this dispersion at a liquid temperature of 60 ° C., 0.2 mL of palladium chloride aqueous solution (concentration: 19.5 g / L) was added and maintained for 5 minutes to activate palladium ions on the surface of the base particles. Processed. Next, the base particles were separated by filtration and washed with 70 mL of hot water at 70 ° C., and then 20 mL of water was added to prepare a slurry. While the slurry was irradiated with ultrasonic waves, 2 mL of a mixed aqueous solution of dimethylamine borane and boric acid (dimethylamine borane concentration 1 g / L, boric acid concentration 9.9 g / L) was added. Reduction treatment of palladium ions was performed by irradiating ultrasonic waves at room temperature for 2 minutes.
(2)無電解メッキ工程
 触媒化処理工程で得られた還元処理後のスラリーを、75℃に加熱したメッキ液(酒石酸ナトリウム濃度16.9g/L、硫酸ニッケル濃度1.33g/L、次亜リン酸ナトリウム濃度1.85g/L)180mLに攪拌しながら添加した。スラリーを投入してから1分後、0.37gの次亜リン酸ナトリウムを投入し、さらに1分間攪拌を続けた。
(2) Electroless plating step The slurry after the reduction treatment obtained in the catalytic treatment step was heated to 75 ° C. with a plating solution (sodium tartrate concentration 16.9 g / L, nickel sulfate concentration 1.33 g / L, hypochlorous acid) Sodium phosphate concentration 1.85 g / L) was added to 180 mL with stirring. One minute after adding the slurry, 0.37 g of sodium hypophosphite was added, and stirring was continued for another minute.
 次に、上記で得たスラリーとメッキ液との混合液に、ニッケルイオン含有液(グリシン濃度40.5g/L、硫酸ニッケル濃度133.2g/L)、還元剤含有液(次亜リン酸ナトリウム濃度1.85g/L、水酸化ナトリウム濃度104g/L)の2液を、それぞれ3mL/分の添加速度で添加した。添加量はそれぞれ22.4mLとした。2液の添加後、液温を75℃に保持し、水素ガスの発生が終了してから60分間攪拌を続けた。その後、固液分離を行い、粒子をイオン交換水、メタノールで洗浄した後、100℃の真空乾燥機で乾燥させた。これにより、ニッケルメッキを施した導電性微粒子1を得た。 Next, the nickel ion-containing liquid (glycine concentration 40.5 g / L, nickel sulfate concentration 133.2 g / L), reducing agent-containing liquid (sodium hypophosphite) were added to the mixed liquid of the slurry and plating solution obtained above. Two liquids having a concentration of 1.85 g / L and a sodium hydroxide concentration of 104 g / L were added at an addition rate of 3 mL / min. The amount added was 22.4 mL, respectively. After the addition of the two liquids, the liquid temperature was maintained at 75 ° C., and stirring was continued for 60 minutes after the generation of hydrogen gas was completed. Thereafter, solid-liquid separation was performed, and the particles were washed with ion-exchanged water and methanol, and then dried with a vacuum dryer at 100 ° C. Thereby, the electroconductive fine particles 1 which gave nickel plating were obtained.
3-2.製造例2
 ビニル重合体粒子1に、水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬させることによりアクチベーティングして、パラジウム核を形成させた。パラジウム核を形成させた基材粒子10部をイオン交換水900部に添加し、超音波分散処理を行った後、無電解メッキ液として、「ニムデン(登録商標) KFJ-20-M」(上村工業(株)製)を500部、「ニムデン KFJ-20-MA」(上村工業(株)製)を225部加え70℃に加温して、無電解ニッケルメッキ反応を生じさせた。メッキ反応前のメッキ液のpHは4.55であった。液温を70℃で保持しながら、水素ガスの発生が終了したことを確認してから30分間攪拌した後、固液分離を行い、イオン交換水、メタノールの順で洗浄した後、100℃で2時間真空乾燥して、ニッケルメッキを施した導電性微粒子2を得た。得られた導電性微粒子2の個数平均粒子径は6.3μm、ニッケル層は膜厚130nm、リン濃度12.7質量%であった。
3-2. Production Example 2
The vinyl polymer particles 1 are subjected to etching treatment with sodium hydroxide, then sensitized by contact with a tin dichloride solution, and then activated by immersion in a palladium dichloride solution. Formed. After adding 10 parts of base particles having palladium nuclei to 900 parts of ion-exchanged water and carrying out ultrasonic dispersion treatment, “Nimden (registered trademark) KFJ-20-M” (Uemura) was used as the electroless plating solution. 500 parts of Kogyo Co., Ltd. and 225 parts of “Nimden KFJ-20-MA” (Uemura Kogyo Co., Ltd.) were added and heated to 70 ° C. to cause an electroless nickel plating reaction. The pH of the plating solution before the plating reaction was 4.55. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 2 plated with nickel. The obtained conductive fine particles 2 had a number average particle size of 6.3 μm, the nickel layer had a thickness of 130 nm and a phosphorus concentration of 12.7% by mass.
3-3.製造例3
 ビニル重合体粒子1に水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬させることによりアクチベーティングして、パラジウム核を形成させた。パラジウム核を形成させた基材粒子10部をイオン交換水900部に添加し、超音波分散処理を行った後、無電解メッキ液として、「ニムデン NKY-2-M」(上村工業(株)製)を500部、「ニムデン NKY-2-A」(上村工業(株)製)を225部を加え70℃に加温することにより、無電解ニッケルメッキ反応を生じさせた。メッキ反応前のメッキ液のpHは4.64であった。液温を70℃で保持しながら、水素ガスの発生が終了したことを確認してから30分間攪拌した後、固液分離を行い、イオン交換水、メタノールの順で洗浄した後、100℃で2時間真空乾燥して、ニッケルメッキを施した導電性微粒子3を得た。得られた導電性微粒子3の個数平均粒子径は6.3μm、ニッケル層は膜厚160nm、リン濃度12.4質量%であった。
3-3. Production Example 3
After the vinyl polymer particles 1 are etched with sodium hydroxide, they are sensitized by contact with a tin dichloride solution, and then activated by immersion in a palladium dichloride solution. Formed. After adding 10 parts of base particles with palladium nuclei to 900 parts of ion-exchanged water and carrying out ultrasonic dispersion treatment, “Nimden NKY-2-M” (Uemura Kogyo Co., Ltd.) was used as the electroless plating solution. And 225 parts of “Nimden NKY-2-A” (manufactured by Uemura Kogyo Co., Ltd.) were added and heated to 70 ° C. to cause an electroless nickel plating reaction. The pH of the plating solution before the plating reaction was 4.64. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 3 plated with nickel. The obtained conductive fine particles 3 had a number average particle size of 6.3 μm, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 12.4% by mass.
3-4.製造例4
 製造例1と同様に、アミノ樹脂粒子を基材粒子として用い、メッキ工程における原料、条件等を変更する以外は、製造例1と同様にして、導電性微粒子4を得た。得られた導電性微粒子4の個数平均粒子径は14.3μm、ニッケル層は膜厚160nm、リン濃度9.8質量%であった。
3-4. Production Example 4
Similarly to Production Example 1, conductive fine particles 4 were obtained in the same manner as Production Example 1 except that amino resin particles were used as substrate particles and the raw materials, conditions, etc. in the plating step were changed. The obtained conductive fine particles 4 had a number average particle diameter of 14.3 μm, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 9.8% by mass.
3-5.製造例5
 ビニル重合体粒子1に水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬させることによりアクチベーティングして、パラジウム核を形成させた。パラジウム核を形成させた基材粒子10部をイオン交換水400部に添加し、超音波分散処理を行った後、70℃の温浴で基材粒子懸濁液を加温した。懸濁液を加温した状態で、別途70℃に加温した無電解メッキ液(日本カニゼン社製、「シューマー(登録商標) S680」)300部を加えることにより、無電解ニッケルメッキ反応を生じさせた。液温を70℃で保持しながら、水素ガスの発生が終了したことを確認してから30分間攪拌した後、固液分離を行い、イオン交換水、メタノールの順で洗浄した後、得られた導電性微粒子を、窒素(不活性)雰囲気下、280℃で2時間熱処理を行い、ニッケルメッキを施した導電性微粒子5を得た。得られた導電性微粒子5の個数平均粒子径は6.2μm、ニッケル層は膜厚80nm、リン濃度9.5質量%であった。
3-5. Production Example 5
After the vinyl polymer particles 1 are etched with sodium hydroxide, they are sensitized by contact with a tin dichloride solution, and then activated by immersion in a palladium dichloride solution. Formed. After adding 10 parts of the base particles on which palladium nuclei were formed to 400 parts of ion-exchanged water and performing ultrasonic dispersion treatment, the base particle suspension was heated in a 70 ° C. warm bath. The electroless nickel plating reaction is caused by adding 300 parts of electroless plating solution (manufactured by Nippon Kanisen Co., Ltd., “Schumer (registered trademark) S680”) separately heated to 70 ° C. with the suspension heated. I let you. It was obtained after stirring for 30 minutes after confirming that generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., followed by solid-liquid separation and washing in the order of ion-exchanged water and methanol. The conductive fine particles were heat-treated at 280 ° C. for 2 hours in a nitrogen (inert) atmosphere to obtain conductive fine particles 5 subjected to nickel plating. The obtained conductive fine particles 5 had a number average particle size of 6.2 μm, the nickel layer had a thickness of 80 nm, and a phosphorus concentration of 9.5% by mass.
3-6.製造例6
 ビニル重合体粒子1に水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬させることによりアクチベーティングして、パラジウム核を形成させた。パラジウム核を形成させた基材粒子10部をイオン交換水400部に添加し、超音波分散処理を行った後、無電解メッキ液として、「ニムデン LPX-5M」(上村工業(株)製)を1000部、「ニムデン LPX-A」(上村工業(株)製)を225部加え70℃に加温することにより、無電解ニッケルメッキ反応を生じさせた。メッキ反応前のメッキ液のpHは6.33であった。液温を70℃で保持しながら、水素ガスの発生が終了したことを確認してから30分間攪拌した後、固液分離を行い、イオン交換水、メタノールの順で洗浄した後、100℃で2時間真空乾燥して、ニッケルメッキを施した導電性微粒子6を得た。得られた導電性微粒子の個数平均粒子径は6.4μm、ニッケル層は膜厚190nm、リン濃度7.4質量%であった。
3-6. Production Example 6
After the vinyl polymer particles 1 are etched with sodium hydroxide, they are sensitized by contact with a tin dichloride solution, and then activated by immersion in a palladium dichloride solution. Formed. After adding 10 parts of base particles with palladium nuclei to 400 parts of ion-exchanged water and performing ultrasonic dispersion treatment, “Nimden LPX-5M” (manufactured by Uemura Kogyo Co., Ltd.) was used as the electroless plating solution. And 225 parts of “Nimden LPX-A” (manufactured by Uemura Kogyo Co., Ltd.) were added and heated to 70 ° C. to cause an electroless nickel plating reaction. The pH of the plating solution before the plating reaction was 6.33. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 6 plated with nickel. The obtained conductive fine particles had a number average particle size of 6.4 μm, the nickel layer had a thickness of 190 nm and a phosphorus concentration of 7.4% by mass.
3-7.製造例7
 製造例1と同様にアミノ樹脂粒子を基材粒子として用い、メッキ工程における原料、条件等を変更して、導電性微粒子7を得た。得られた導電性微粒子7の個数平均粒子径は14.3μm、ニッケル層は膜厚160nm、リン濃度8.0質量%であった。
3-7. Production Example 7
In the same manner as in Production Example 1, amino resin particles were used as substrate particles, and the raw materials, conditions, etc. in the plating step were changed to obtain conductive fine particles 7. The obtained conductive fine particles 7 had a number average particle size of 14.3 μm, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 8.0% by mass.
3-8.製造例8
 ビニル重合体粒子1に水酸化ナトリウムによるエッチング処理を施した後、二塩化スズ溶液に接触させることによりセンシタイジングし、次いで二塩化パラジウム溶液に浸漬して、パラジウム核を形成させた。パラジウム核を形成させた基材粒子10部をイオン交換水900部に添加し、超音波分散処理を行った後、無電解メッキ液として、「ニムデン KLP-1-MM」(上村工業(株)製)を750部、「ニムデン KLP-1-MA」(上村工業(株)製)を300部を加え70℃に加温することにより、無電解ニッケルメッキ反応を生じさせた。メッキ反応前のメッキ液のpHは6.27であった。液温を70℃で保持しながら、水素ガスの発生が終了したことを確認してから30分間攪拌した後、固液分離を行い、イオン交換水、メタノールの順で洗浄した後、100℃で2時間真空乾燥して、ニッケルメッキを施した導電性微粒子8を得た。得られた導電性微粒子8の個数平均粒子径は6.4μm、ニッケル層は膜厚160nm、リン濃度2.8質量%であった。
3-8. Production Example 8
The vinyl polymer particles 1 were etched with sodium hydroxide and then sensitized by contact with a tin dichloride solution, and then immersed in a palladium dichloride solution to form palladium nuclei. After adding 10 parts of base particles with palladium nuclei to 900 parts of ion-exchanged water and carrying out ultrasonic dispersion treatment, “Nimden KLP-1-MM” (Uemura Kogyo Co., Ltd.) was used as the electroless plating solution. 750 parts and “Nimden KLP-1-MA” (Uemura Kogyo Co., Ltd.) 300 parts were added and heated to 70 ° C. to cause electroless nickel plating reaction. The pH of the plating solution before the plating reaction was 6.27. After confirming that the generation of hydrogen gas was completed while maintaining the liquid temperature at 70 ° C., the mixture was stirred for 30 minutes, solid-liquid separation was performed, and ion-exchanged water and methanol were washed in this order, and then at 100 ° C. Vacuum-dried for 2 hours to obtain conductive fine particles 8 plated with nickel. The obtained conductive fine particles 8 had a number average particle size of 6.4 μm, the nickel layer had a thickness of 160 nm and a phosphorus concentration of 2.8% by mass.
3-9.製造例9
 ビニル重合体粒子2を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子9を得た。得られた導電性微粒子の個数平均粒子径は3.3μmであった。
3-9. Production Example 9
Conductive fine particles 9 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 2 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.3 μm.
3-10.製造例10
 ビニル重合体粒子3を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子10を得た。得られた導電性微粒子の個数平均粒子径は3.0μmであった。
3-10. Production Example 10
The conductive fine particles 10 were prepared in the same manner as in Production Example 5 except that the vinyl polymer particles 3 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.0 μm.
3-11.製造例11
 ビニル重合体粒子3を基材粒子として用いたこと以外は、製造例2と同様にして、導電性微粒子11を得た。得られた導電性微粒子の個数平均粒子径は3.0μmであった。
3-11. Production Example 11
Conductive fine particles 11 were obtained in the same manner as in Production Example 2 except that the vinyl polymer particles 3 were used as base particles. The number average particle diameter of the obtained conductive fine particles was 3.0 μm.
3-12.製造例12
 ビニル重合体粒子4を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子12を得た。得られた導電性微粒子の個数平均粒子径は2.6μmであった。
3-12. Production Example 12
Conductive fine particles 12 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 4 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 μm.
3-13.製造例13
 ビニル重合体粒子5を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子13を得た。得られた導電性微粒子の個数平均粒子径は2.3μmであった。
3-13. Production Example 13
Conductive fine particles 13 are produced in the same manner as in Production Example 5 except that the vinyl polymer particles 5 are used as base particles and the amount of the electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.3 μm.
3-14.製造例14
 ビニル重合体粒子6を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子14を得た。得られた導電性微粒子の個数平均粒子径は2.6μmであった。
3-14. Production Example 14
The conductive fine particles 14 were prepared in the same manner as in Production Example 5 except that the vinyl polymer particles 6 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 μm.
3-15.製造例15
 ビニル重合体粒子7を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子15を得た。得られた導電性微粒子の個数平均粒子径は2.6μmであった。
3-15. Production Example 15
Conductive fine particles 15 were produced in the same manner as in Production Example 5 except that vinyl polymer particles 7 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the nickel layer had a thickness of 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 μm.
3-16.製造例16
 ビニル重合体粒子8を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子16を得た。得られた導電性微粒子の個数平均粒子径は2.6μmであった。
3-16. Production Example 16
Conductive fine particles 16 are produced in the same manner as in Production Example 5 except that vinyl polymer particles 8 are used as base particles and the amount of electroless nickel plating solution is adjusted so that the thickness of the nickel layer is 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 μm.
3-17.製造例17
 ビニル重合体粒子2を基材粒子として用い、無電解メッキ液の総添加量をニッケル層の膜厚が150nmとなる様に調整したこと以外は、製造例8と同様にして、導電性微粒子17を得た。得られた導電性微粒子の個数平均粒子径は3.3μmであった。
3-17. Production Example 17
Conductive fine particles 17 were prepared in the same manner as in Production Example 8 except that the vinyl polymer particles 2 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 3.3 μm.
3-18.製造例18
 ビニル重合体粒子4を基材粒子として用い、無電解メッキ液の総添加量をニッケル層の膜厚が150nmとなる様に調整したこと以外は、製造例8と同様にして、導電性微粒子18を得た。得られた導電性微粒子の個数平均粒子径は2.6μmであった。
3-18. Production Example 18
Conductive fine particles 18 were prepared in the same manner as in Production Example 8 except that the vinyl polymer particles 4 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.6 μm.
3-19.製造例19
 ビニル重合体粒子5を基材粒子として用い、無電解メッキ液の総添加量をニッケル層の膜厚が150nmとなる様に調整したこと以外は、製造例8と同様にして、導電性微粒子19を得た。得られた導電性微粒子の個数平均粒子径は2.3μmであった。
3-19. Production Example 19
Conductive fine particles 19 were produced in the same manner as in Production Example 8 except that the vinyl polymer particles 5 were used as base particles and the total amount of electroless plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 2.3 μm.
3-20.製造例20
 ビニル重合体粒子9を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子20を得た。得られた導電性微粒子の個数平均粒子径は10.3μmであった。
3-20. Production Example 20
Conductive fine particles 20 were produced in the same manner as in Production Example 5 except that vinyl polymer particles 9 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 10.3 μm.
3-21.製造例21
 ビニル重合体粒子10を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例5と同様にして、導電性微粒子21を得た。得られた導電性微粒子の個数平均粒子径は20.3μmであった。
3-21. Production Example 21
The conductive fine particles 21 were produced in the same manner as in Production Example 5 except that the vinyl polymer particles 10 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 20.3 μm.
3-22.製造例22
 ビニル重合体粒子10を基材粒子として用い、ニッケル層の膜厚が150nmとなる様に無電解ニッケルメッキ液の添加量を調整したこと以外は、製造例8と同様にして、導電性微粒子22を得た。得られた導電性微粒子の個数平均粒子径は20.4μmであった。
3-22. Production Example 22
Conductive fine particles 22 were produced in the same manner as in Production Example 8 except that the vinyl polymer particles 10 were used as base particles and the amount of electroless nickel plating solution was adjusted so that the thickness of the nickel layer was 150 nm. Got. The number average particle diameter of the obtained conductive fine particles was 20.4 μm.
4.突起導電性微粒子の製造
4-1.製造例23
 アミノ樹脂微粒子(日本触媒社製、「エポスターS」、ノギス法による平均粒子径=0.20μm、変動係数(CV)=8.0%)を、アミノ樹脂微粒子濃度が5.0質量%になるように、メタノールに分散させた。得られたエポスターS分散液100部に、合成例5で得られたビニル重合体粒子4、50部を加え、均一に分散させた後、エバポレーターでメタノールを留去し、ビニル重合体粒子4の表面にアミノ樹脂微粒子が存在してなる微粒子被覆微粒子(1)を得た。
得られた、微粒子被覆微粒子(1)用いて製造例5と同様の方法でメッキ処理を行い、突起導電性微粒子(1)を得た。
4). 4. Production of protruding conductive fine particles 4-1. Production Example 23
Amino resin fine particles (manufactured by Nippon Shokubai Co., Ltd., “Eposter S”, average particle diameter = 0.20 μm, coefficient of variation (CV) = 8.0%) by calipers method, amino resin fine particle concentration becomes 5.0 mass% So that it was dispersed in methanol. To 100 parts of the obtained Eposter S dispersion, 4 and 50 parts of the vinyl polymer particles obtained in Synthesis Example 5 were added and dispersed uniformly, and then the methanol was distilled off with an evaporator. Fine particle-coated fine particles (1) having amino resin fine particles on the surface were obtained.
Using the obtained fine particle-coated fine particles (1), plating treatment was performed in the same manner as in Production Example 5 to obtain protruding conductive fine particles (1).
5.絶縁被覆導電性微粒子の製造
5-1.製造例24
 攪拌機、温度計および冷却機を備えたステンレス製の反応釜に、脱イオン水820部およびドデシルベンゼンスルホン酸ナトリウム0.8部(有効成分60質量%;以下「DBSNa」と称する)を加え、内温を75℃まで昇温し、同温度に保った。
 他方、上記反応釜とは異なる容器で、メタクリル酸メチル(以下「MMA」と称する)140部とジビニルベンゼン(有効成分81質量%;以下「DVB」と称する)60部とを混合して、単量体組成物200部を調製した。
 上記反応釜内を窒素ガスで置換した後、上記単量体組成物20部(単量体組成物全量の10質量%)、0.4質量%過酸化水素水50部、および0.4質量%L-アスコルビン酸水溶液50部を上記反応釜内に添加して、初期重合反応を行った。
 次いで、上記単量体組成物の残部(単量体組成物全量の90質量%)180部、0.4質量%過酸化水素水450部、および0.4質量%L-アスコルビン酸水溶液450部を、各々異なる投入口より反応釜へ6時間かけて均一に滴下した。その後、内温を90℃まで昇温し、同温度で6時間保持して熟成した後、反応溶液を冷却して、樹脂粒子(1)が分散した樹脂粒子分散液(1)を得た。この分散液中の樹脂粒子(1)の粒子径について、動的光散乱粒度分布測定装置(ピーエスエスジャパン社製「NICOMP380」)で測定したところ、体積平均粒子径は158nm、変動係数は11%であった。
5. 5. Production of insulating coated conductive fine particles 5-1. Production Example 24
To a stainless steel reaction kettle equipped with a stirrer, a thermometer and a cooler, 820 parts of deionized water and 0.8 part of sodium dodecylbenzenesulfonate (active ingredient 60% by mass; hereinafter referred to as “DBSNa”) were added. The temperature was raised to 75 ° C. and kept at the same temperature.
On the other hand, in a container different from the reaction kettle, 140 parts of methyl methacrylate (hereinafter referred to as “MMA”) and 60 parts of divinylbenzene (81% by mass of active ingredient; hereinafter referred to as “DVB”) are mixed. 200 parts of the monomer composition was prepared.
After replacing the inside of the reaction kettle with nitrogen gas, 20 parts of the monomer composition (10% by mass of the total amount of the monomer composition), 50 parts of 0.4% by mass hydrogen peroxide, and 0.4% by mass An initial polymerization reaction was carried out by adding 50 parts of a% L-ascorbic acid aqueous solution to the reaction vessel.
Next, 180 parts of the remaining monomer composition (90% by mass of the total monomer composition), 450 parts by mass of 0.4% by mass hydrogen peroxide, and 450 parts by mass of 0.4% by mass L-ascorbic acid aqueous solution Were dripped uniformly into the reaction kettle over 6 hours from different inlets. Thereafter, the internal temperature was raised to 90 ° C. and held at the same temperature for 6 hours for aging, and then the reaction solution was cooled to obtain a resin particle dispersion (1) in which the resin particles (1) were dispersed. The particle size of the resin particles (1) in this dispersion was measured with a dynamic light scattering particle size distribution measuring device (“NICOMP380” manufactured by PS Japan). The volume average particle size was 158 nm, and the variation coefficient was 11%. Met.
 樹脂粒子分散液(1)を、粒子濃度が5.0質量%になるように脱イオン水で希釈した。
得られた樹脂粒子分散液100部に、製造例12で得られた導電性微粒子12、50部を加え、均一に分散させた後、エバポレーターで水を留去して、導電性微粒子の表面を樹脂粒子で被覆した絶縁被覆導電性微粒子(1)を得た。
The resin particle dispersion (1) was diluted with deionized water so that the particle concentration was 5.0% by mass.
To 100 parts of the obtained resin particle dispersion, 12 and 50 parts of the conductive fine particles obtained in Production Example 12 were added and dispersed uniformly, and then water was distilled off with an evaporator to remove the surface of the conductive fine particles. Insulating coated conductive fine particles (1) coated with resin particles were obtained.
 5-2.製造例25
 製造例18で得られた導電性微粒子18を用いたこと以外は、製造例24と同様にして、絶縁被覆導電性微粒子(2)を得た。
5-2. Production Example 25
Insulating coated conductive fine particles (2) were obtained in the same manner as in Production Example 24 except that the conductive fine particles 18 obtained in Production Example 18 were used.
6.絶縁特性評価用異方性導電材料の作製
 絶縁被覆導電性微粒子(1)20部、バインダー樹脂としてエポキシ樹脂(ジャパンエポキシレジン社製「YL980」)65部、エポキシ硬化剤(旭化成社製「ノバキュア(登録商標)HX3941HP」)35部、および1mmφのジルコニアビーズ200部を混合し、30分間ビーズミル分散を行い、異方性導電材料として異方性導電接着剤(1)を得た。得られた異方性導電接着剤を用いて導電接続構造体を作製し、下記の評価を行った。導電接続構造体の作製は、まず、離型フィルム(シリコーン樹脂により片面に離型処理が施されたポリエチレンテレフタレートフィルム)の離型処理面に、乾燥厚みが25μmとなるように異方性導電接着剤を塗布することにより接着層を形成して、離型フィルムの片面に接着剤層を備えた異方性導電シートを作製した。
 次に、得られた異方性導電シートから離型フィルムを剥がし、接着剤層のみを、150μm幅のパターンを有するITO透明電極膜が内面に形成された2枚のITO付きガラス基板の間に挟み、1MPa、185℃で15秒間加熱加圧して、導電接続構造体を得た。導電性微粒子12、18、絶縁被覆導電性微粒子(2)についても同様に導電接続構造体を得た。
6). Production of anisotropic conductive material for insulation characteristic evaluation 20 parts of insulating coated conductive fine particles (1), 65 parts of epoxy resin (“YL980” manufactured by Japan Epoxy Resin Co., Ltd.) as a binder resin, epoxy curing agent (“NOVACURE (produced by Asahi Kasei Corporation) (Registered trademark) HX3941HP ") 35 parts and 200 parts of 1 mmφ zirconia beads were mixed and subjected to bead mill dispersion for 30 minutes to obtain an anisotropic conductive adhesive (1) as an anisotropic conductive material. A conductive connection structure was prepared using the obtained anisotropic conductive adhesive, and the following evaluation was performed. The conductive connection structure is manufactured by first anisotropically bonding the release film (polyethylene terephthalate film having a release treatment on one side with a silicone resin) to a release treatment surface of 25 μm. The adhesive layer was formed by apply | coating an agent, and the anisotropic conductive sheet provided with the adhesive layer on the single side | surface of a release film was produced.
Next, the release film is peeled from the obtained anisotropic conductive sheet, and only the adhesive layer is placed between two ITO-attached glass substrates on which an ITO transparent electrode film having a 150 μm wide pattern is formed on the inner surface. The conductive connection structure was obtained by heating and pressing at 1 MPa and 185 ° C. for 15 seconds. Conductive connection structures were obtained in the same manner for the conductive fine particles 12 and 18 and the insulating coated conductive fine particles (2).
製造例1~8で得られた導電性微粒子についてのX線回折分析、圧縮変形特性評価の結果を表1に示した。 Table 1 shows the results of X-ray diffraction analysis and compression deformation characteristic evaluation of the conductive fine particles obtained in Production Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、製造例1~19、23で得られた導電性微粒子についての導電性試験の結果をX線回折分析結果とともに表2に示した。 The results of the conductivity test on the conductive fine particles obtained in Production Examples 1 to 19 and 23 are shown in Table 2 together with the X-ray diffraction analysis results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、基材となる樹脂粒子が異なる、製造例4、7、12,14~16、20~22で得られた導電性微粒子について、X線回折分析、基材粒子の10%K値および導電性試験の結果を表3に示した。 In addition, with respect to the conductive fine particles obtained in Production Examples 4, 7, 12, 14 to 16, and 20 to 22 with different resin particles as the base material, X-ray diffraction analysis, 10% K value of the base material particles, and conductivity The results of the sex test are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 同じ基材粒子を使用している製造例1、4、7又は製造例2、3、5、6、8で得られた導電性微粒子を比較すると、ニッケル層の結晶子径が3nm以下の方が、L1が大きくなっている。つまり、ニッケル層の結晶子径が3nmの方が、ニッケル層が柔軟であり割れにくくなっていることがわかる。これは、ニッケル層の結晶子径が3nmの導電性微粒子の方が、ニッケル層が基材粒子と密着性が高く、圧縮変形時において基材粒子の変形挙動に連動した変形挙動を示し易いためと考えられる。 When the conductive fine particles obtained in Production Examples 1, 4, 7 or Production Examples 2, 3, 5, 6, 8 using the same base particles are compared, the crystallite diameter of the nickel layer is 3 nm or less. However, L1 is large. That is, it can be seen that when the crystallite diameter of the nickel layer is 3 nm, the nickel layer is more flexible and hard to break. This is because the conductive fine particles having a crystallite size of 3 nm in the nickel layer have higher adhesion to the base material particles, and it is easier to show deformation behavior linked to the deformation behavior of the base material particles during compression deformation. it is conceivable that.
 表1の圧縮試験及び表2の圧縮接続抵抗値評価の結果から、ニッケル層の結晶子径が3nm以下であり、ニッケル層が柔軟である方が、接続抵抗値が低いことがわかる。また、上記結晶子径が3nm以下であると抵抗値が抑制される効果は、高圧縮時に更に明確になる。特に粒子径が小さい程、その抵抗値が抑制される効果はより顕著に発現される。(図2) From the results of the compression test in Table 1 and the compression connection resistance value evaluation in Table 2, it can be seen that the connection resistance value is lower when the crystallite diameter of the nickel layer is 3 nm or less and the nickel layer is more flexible. Further, the effect of suppressing the resistance value when the crystallite diameter is 3 nm or less is further clarified at the time of high compression. In particular, the smaller the particle diameter, the more pronounced the effect of suppressing the resistance value. (Figure 2)
 なお、製造例4、7はいずれもアミノ樹脂粒子を基材粒子として用いている。結晶子径が3nm以下である製造例4の導電性微粒子は、初期抵抗が65Ωであり、低い電気抵抗値を示していたが、結晶子径が5.85nmである製造例7の導電性微粒子は、初期抵抗が191Ωであり、電気抵抗値が著しく増大していた。このことから、10%K値が6775N/mm2と比較的硬質なアミノ樹脂粒子を用いた場合でも、結晶子径を3nm以下とすることによるニッケル層の柔軟性向上効果、さらには電気抵抗値の低減効果が得られることがわかる。 In Production Examples 4 and 7, amino resin particles are used as base particles. The conductive fine particles of Production Example 4 having a crystallite diameter of 3 nm or less had an initial resistance of 65Ω and a low electric resistance value, but the conductive fine particles of Production Example 7 having a crystallite diameter of 5.85 nm were used. The initial resistance was 191Ω, and the electrical resistance value was remarkably increased. Therefore, even when relatively hard amino resin particles having a 10% K value of 6775 N / mm 2 are used, the flexibility improvement effect of the nickel layer by setting the crystallite diameter to 3 nm or less, and further the electric resistance value It can be seen that a reduction effect of can be obtained.
 製造例23は、突起を有する導電性微粒子であり、30%圧縮接続抵抗値、40%圧縮接続抵抗値とも低く、高い圧縮時の抵抗値が効果的に抑制されていた。突起を有する導電性微粒子は、異方性導電材料に用いた場合、突起によりバインダー樹脂が排除され、また、突起が基板に食い込み易いため、より接続信頼性を高めることができる。 Production Example 23 was conductive fine particles having protrusions, and both the 30% compression connection resistance value and the 40% compression connection resistance value were low, and the resistance value during high compression was effectively suppressed. When the conductive fine particles having protrusions are used as an anisotropic conductive material, the binder resin is eliminated by the protrusions, and the protrusions easily bite into the substrate, so that the connection reliability can be further improved.
 製造例4、20~22は、いずれも基材粒子の粒子径が8μm以上の中粒子径を有する。これらの導電性微粒子において、製造例4は、10%K値が6775N/mm2であり、10%K値が3272N/mm2である製造例20、2691N/mm2である製造例21に比べて硬質である。製造例4、20、21で得られた導電性微粒子において、30%圧縮時の初期抵抗は同等であり、いずれも低い値を取っていた。中でも、軟質な基材粒子を用いている製造例20、21で得られた導電性微粒子は、30%圧縮時に比べて40%圧縮時にさらに抵抗値が低下していた。このことから、中粒子径の導電性微粒子では、基材粒子が軟質(例えば6000N/mm2以下)であると、結晶子径を3nm以下とすることによるニッケル層の柔軟性向上効果、さらには電気抵抗値の低減効果が、より一層顕著となることがわかる。
 なお、10%K値が2891N/mm2と軟質であっても、結晶子径が8.64nmである製造例22の導電性微粒子では、30%圧縮抵抗値は198Ωと増大していた。
In Production Examples 4 and 20 to 22, all of the base particles have a medium particle size of 8 μm or more. In these conductive fine particles, Production Example 4 has a 10% K value of 6775 N / mm 2 , and Production Example 20 has a 10% K value of 3272 N / mm 2 , compared with Production Example 21 which has 2691 N / mm 2. And hard. In the conductive fine particles obtained in Production Examples 4, 20, and 21, the initial resistance at the time of 30% compression was the same, and all had low values. Among them, the conductive fine particles obtained in Production Examples 20 and 21 using soft base particles had a lower resistance value at 40% compression than at 30% compression. Therefore, in the case of the conductive fine particles having a medium particle diameter, if the base particle is soft (for example, 6000 N / mm 2 or less), the effect of improving the flexibility of the nickel layer by setting the crystallite diameter to 3 nm or less, It can be seen that the effect of reducing the electrical resistance value becomes even more remarkable.
Even though the 10% K value was as soft as 2891 N / mm 2 , the 30% compression resistance value increased to 198Ω in the conductive fine particles of Production Example 22 having a crystallite diameter of 8.64 nm.
 製造例12、製造例18で得られた導電性微粒子および、製造例24、製造例25で得られた絶縁被覆導電性微粒子について絶縁性の評価を行った結果、製造例12は90%、製造例18は89%、製造例24は100%、製造例25は95%であった。このことから、本発明の結晶子径が3nm以下の導電性微粒子に絶縁被覆すると、より一層絶縁性に優れたものとなることがわかる。 As a result of evaluating the insulating properties of the conductive fine particles obtained in Production Example 12 and Production Example 18 and the insulating coated conductive fine particles obtained in Production Example 24 and Production Example 25, Production Example 12 produced 90% and produced Example 18 was 89%, Production Example 24 was 100%, and Production Example 25 was 95%. From this, it can be seen that when the conductive fine particles having a crystallite diameter of 3 nm or less of the present invention are covered with insulation, the insulating properties are further improved.
 本発明の導電性微粒子は、例えば、LCD用導通スペーサや、異方性導電フィルム、異方性導電ペースト、異方性導電接着剤、異方性導電インク等の異方性導電材料に好適に用いられる。 The conductive fine particles of the present invention are suitable for anisotropic conductive materials such as conductive spacers for LCD, anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, anisotropic conductive inks, etc. Used.
X:変曲点、Y:破壊点、L1:変曲点(X)が確認される圧縮変形率、L2:破壊点(Y)が確認される圧縮変形率、P1:変曲点(X)における圧縮荷重値、P2破壊点(Y)における圧縮荷重値 X: inflection point, Y: breaking point, L1: compression deformation rate at which the inflection point (X) is confirmed, L2: compression deformation rate at which the breaking point (Y) is confirmed, P1: inflection point (X) Compressive load value at P2, Compressive load value at P2 breaking point (Y)

Claims (9)

  1.  基材粒子と、該基材粒子の表面を被覆する導電性金属層とを有する導電性微粒子であって、
     前記導電性金属層が、ニッケル層を含み、
     粉末X線回折法により測定されるニッケルの[111]方向の結晶子径が、3nm以下であることを特徴とする導電性微粒子。
    Conductive fine particles having substrate particles and a conductive metal layer covering the surface of the substrate particles,
    The conductive metal layer includes a nickel layer;
    Conductive fine particles, wherein a crystallite diameter in the [111] direction of nickel measured by a powder X-ray diffraction method is 3 nm or less.
  2.  荷重負荷速度2.23mN/秒で圧縮する圧縮試験により得られた圧縮変位曲線において、
     基材粒子が破壊する破壊点(Y)における圧縮荷重値より低い圧縮荷重値において、前記ニッケル層の破壊に起因する変曲点(X)が確認され、
     前記破壊点(Y)における圧縮変形率をL2、前記変曲点(X)における圧縮変形率をL1としたとき、これらの比(L1/L2)が、0.3以上である請求項1に記載の導電性微粒子。
    In the compression displacement curve obtained by the compression test compressing at a load loading speed of 2.23 mN / sec,
    In a compressive load value lower than the compressive load value at the fracture point (Y) at which the substrate particles break, an inflection point (X) due to the fracture of the nickel layer is confirmed,
    The ratio (L1 / L2) is 0.3 or more, where L2 is the compression deformation rate at the breaking point (Y) and L1 is the compression deformation rate at the inflection point (X). The electroconductive fine particles as described.
  3.  前記L2が、35%~70%である請求項2に記載の導電性微粒子。 The conductive fine particles according to claim 2, wherein the L2 is 35% to 70%.
  4.  前記ニッケルの[111]方向の結晶子径が、1.5nm以上である請求項1~3のいずれかに記載の導電性微粒子。 The conductive fine particles according to any one of claims 1 to 3, wherein a crystallite diameter in the [111] direction of the nickel is 1.5 nm or more.
  5.  前記基材粒子の個数平均粒子径が50μm以下である請求項1~4のいずれかに記載の導電性微粒子。 The conductive fine particles according to any one of claims 1 to 4, wherein the base particles have a number average particle diameter of 50 µm or less.
  6.  前記基材粒子の個数平均粒子径が3μm以下である請求項1~5のいずれかに記載の導電性微粒子。 The conductive fine particles according to any one of claims 1 to 5, wherein the substrate particles have a number average particle diameter of 3 µm or less.
  7.  前記基材粒子の個数平均粒子径が8μm以上である請求項1~5のいずれかに記載の導電性微粒子。 The conductive fine particles according to any one of claims 1 to 5, wherein the base particles have a number average particle diameter of 8 μm or more.
  8.  前記基材粒子の10%K値が500N/mm2以上、30000N/mm2以下である請求項1~7のいずれかに記載の導電性微粒子。 The 10% K value of the base particle is 500 N / mm 2 or more, the conductive particle according to any one of claims 1 to 7 is 30000 N / mm 2 or less.
  9.  請求項1~8のいずれか1項に記載の導電性微粒子を含むことを特徴とする異方性導電材料。 An anisotropic conductive material comprising the conductive fine particles according to any one of claims 1 to 8.
PCT/JP2012/074293 2011-09-22 2012-09-21 Electroconductive fine particles and anisotropic conductive material containing same WO2013042785A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280046185.9A CN103827981A (en) 2011-09-22 2012-09-21 Electroconductive fine particles and anisotropic conductive material containing same
JP2013504044A JP5245021B1 (en) 2011-09-22 2012-09-21 Conductive fine particles and anisotropic conductive material containing the same
KR1020147007624A KR20140054337A (en) 2011-09-22 2012-09-21 Electroconductive fine particles and anisotropic conductive material containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207845 2011-09-22
JP2011207845 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042785A1 true WO2013042785A1 (en) 2013-03-28

Family

ID=47914543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074293 WO2013042785A1 (en) 2011-09-22 2012-09-21 Electroconductive fine particles and anisotropic conductive material containing same

Country Status (4)

Country Link
JP (1) JP5245021B1 (en)
KR (1) KR20140054337A (en)
CN (1) CN103827981A (en)
WO (1) WO2013042785A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585750B1 (en) * 2014-01-30 2014-09-10 千住金属工業株式会社 Cu core ball, solder joint, foam solder, and solder paste
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2016027558A (en) * 2014-06-24 2016-02-18 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2017188482A (en) * 2012-12-31 2017-10-12 株式会社ドクサンハイメタル Conductive particles for touch screen panel, and conductive materials including the same
EP3378917A4 (en) * 2015-11-20 2019-07-03 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11017916B2 (en) 2015-11-20 2021-05-25 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11020825B2 (en) 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Connecting material and connection structure
CN115338401A (en) * 2022-08-30 2022-11-15 广州市华司特合金制品有限公司 Powder treatment method of high-specific-gravity tungsten alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667541B2 (en) * 2011-09-26 2015-02-12 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
WO2017028020A1 (en) 2015-08-14 2017-02-23 Henkel Ag & Co. Kgaa Sinterable composition for use in solar photovoltaic cells
CN110461503B (en) * 2017-03-10 2022-01-14 东邦钛株式会社 Nickel powder and nickel paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026479A (en) * 2003-07-02 2005-01-27 Yasutaka Takahashi Electrode paste for ceramic electronic component
JP2005251612A (en) * 2004-03-05 2005-09-15 Murata Mfg Co Ltd Nickel powder for conductive paste, conductive paste, and ceramic electronic component using the same
JP2006049106A (en) * 2004-08-05 2006-02-16 Mitsui Mining & Smelting Co Ltd Silver paste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989573A (en) * 2004-08-05 2007-06-27 积水化学工业株式会社 Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
EP1796106A4 (en) * 2004-09-02 2010-04-14 Sekisui Chemical Co Ltd Electroconductive fine particle and anisotropically electroconductive material
JP4527495B2 (en) * 2004-10-22 2010-08-18 株式会社日本触媒 Polymer fine particles and method for producing the same, conductive fine particles
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP4669905B2 (en) * 2008-03-27 2011-04-13 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026479A (en) * 2003-07-02 2005-01-27 Yasutaka Takahashi Electrode paste for ceramic electronic component
JP2005251612A (en) * 2004-03-05 2005-09-15 Murata Mfg Co Ltd Nickel powder for conductive paste, conductive paste, and ceramic electronic component using the same
JP2006049106A (en) * 2004-08-05 2006-02-16 Mitsui Mining & Smelting Co Ltd Silver paste

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188482A (en) * 2012-12-31 2017-10-12 株式会社ドクサンハイメタル Conductive particles for touch screen panel, and conductive materials including the same
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
KR102187948B1 (en) 2013-05-16 2020-12-07 쇼와덴코머티리얼즈가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP5585750B1 (en) * 2014-01-30 2014-09-10 千住金属工業株式会社 Cu core ball, solder joint, foam solder, and solder paste
WO2015114771A1 (en) * 2014-01-30 2015-08-06 千住金属工業株式会社 Cu CORE BALL, SOLDER JOINT, FOAM SOLDER, AND SOLDER PASTE
JP2020053394A (en) * 2014-06-24 2020-04-02 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
JP2016027558A (en) * 2014-06-24 2016-02-18 積水化学工業株式会社 Conductive particle, conductive material, and connection structure
EP3378917A4 (en) * 2015-11-20 2019-07-03 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11017916B2 (en) 2015-11-20 2021-05-25 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11024439B2 (en) 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11020825B2 (en) 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US11027374B2 (en) 2015-11-20 2021-06-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
CN115338401A (en) * 2022-08-30 2022-11-15 广州市华司特合金制品有限公司 Powder treatment method of high-specific-gravity tungsten alloy
CN115338401B (en) * 2022-08-30 2023-09-29 广州市华司特合金制品有限公司 Powder treatment method of high-specific gravity tungsten alloy

Also Published As

Publication number Publication date
JP5245021B1 (en) 2013-07-24
KR20140054337A (en) 2014-05-08
JPWO2013042785A1 (en) 2015-03-26
CN103827981A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5245021B1 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5902717B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5140209B2 (en) Conductive fine particles, resin particles and anisotropic conductive material using the same
JP5583712B2 (en) Conductive fine particles and anisotropic conductive material using the same
TW201430865A (en) Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
JP5667557B2 (en) Conductive fine particles and anisotropic conductive materials
JP2015176824A (en) Conductive fine particle
JP6363002B2 (en) Conductive fine particles
JP6378905B2 (en) Conductive fine particles
JP5856379B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2014207193A (en) Electroconductive particulates and anisotropic electroconductive material using the same
JP5952553B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5711105B2 (en) Conductive fine particles and anisotropic conductive materials
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2013120658A (en) Conductive fine particle and anisotropic conductive material including the same
JP5951977B2 (en) Conductive fine particles
JP5917318B2 (en) Conductive fine particles
JP6117058B2 (en) Conductive fine particles
JP5883283B2 (en) Conductive particles and anisotropic conductive materials
JP2013008474A (en) Manufacturing method of conductive particulate
JP5667555B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP5970178B2 (en) Conductive fine particles
JP2016094555A (en) Polymer fine particle, conductive fine particle and anisotropic conductive material
JP5667541B2 (en) Conductive fine particles and anisotropic conductive material containing the same
JP6446514B2 (en) Conductive fine particles and anisotropic conductive material using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504044

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833722

Country of ref document: EP

Kind code of ref document: A1