WO2013011673A1 - 洗浄方法、処理装置及び記憶媒体 - Google Patents

洗浄方法、処理装置及び記憶媒体 Download PDF

Info

Publication number
WO2013011673A1
WO2013011673A1 PCT/JP2012/004521 JP2012004521W WO2013011673A1 WO 2013011673 A1 WO2013011673 A1 WO 2013011673A1 JP 2012004521 W JP2012004521 W JP 2012004521W WO 2013011673 A1 WO2013011673 A1 WO 2013011673A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cleaning
chamber
wafer
gas cluster
Prior art date
Application number
PCT/JP2012/004521
Other languages
English (en)
French (fr)
Inventor
健介 井内
土橋 和也
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/232,989 priority Critical patent/US9837260B2/en
Priority to KR1020147004113A priority patent/KR101672833B1/ko
Priority to CN201280033416.2A priority patent/CN103650117B/zh
Publication of WO2013011673A1 publication Critical patent/WO2013011673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a cleaning method, a processing apparatus, and a storage medium in which the method is stored, which removes deposits such as particles attached to the surface of an object to be processed.
  • Patent Documents 1 and 2 are known as techniques for removing particles and dirt adhering to the surface of a substrate (hereinafter referred to as a “wafer”) that is an object to be processed such as a semiconductor wafer. Yes.
  • the surface of the wafer is irradiated with a gas cluster ion beam.
  • the physical shearing force is adjusted by the acceleration voltage and the ionization amount so as to overcome the adhesion force of the deposit to the wafer.
  • the device structure formed on the wafer is miniaturized, the device structure is easily damaged by the gas cluster ion beam. That is, for example, when a gas cluster ion beam is irradiated onto a pattern formed of a groove and a line formed on a wafer, the width of the line is, for example, on the order of several tens of nanometers. There is a risk that the line will collapse due to irradiation. Even if the pattern is not formed, the surface shape of the wafer is deteriorated after irradiation with the gas cluster ion beam.
  • Patent Document 3 describes a technique in which a natural oxide film on a substrate 9 is removed using a chemical solution, and then air to which ultrasonic vibration is applied is ejected, and Patent Document 4 describes a technique on the surface of the substrate. A technique for irradiating a pulsed laser is described. However, these Patent Documents 3 and 4 do not mention the removal of particles in a fine device structure or the damage received on the wafer.
  • the present invention has been made under such circumstances, the purpose thereof is a cleaning method capable of easily removing deposits such as particles adhering to the surface of the target object while suppressing damage to the target object.
  • a processing apparatus and a storage medium storing the method are provided.
  • the cleaning method of the present invention comprises: In the cleaning method for removing the deposit from the surface of the object to be deposited, A step of performing a pretreatment including an etching treatment on at least one of the surface of the object to be treated and the deposit; A cleaning gas having no reactivity with respect to the film exposed on the surface of the object to be processed is discharged from a region having a pressure higher than that of the process atmosphere in which the object to be processed is placed. Generating a gas cluster which is an assembly of atoms or molecules of the cleaning gas; Irradiating the surface of the object to be processed, which has been subjected to the pretreatment, with a gas cluster of a cleaning gas to remove deposits.
  • the pretreatment may include a modification process for at least one of the surface of the object to be processed and an attached substance, and an etching process for the modified layer modified by the modification process.
  • the step of performing the pretreatment and the step of removing the deposits may be performed simultaneously.
  • the pretreatment may include a step of irradiating a gas cluster to perform the etching process.
  • the step of irradiating the gas cluster to perform the etching process may be performed using the same generation mechanism as the generation mechanism that irradiates the gas cluster in the step of irradiating the gas cluster of the cleaning gas and removing the deposits. Good or different generation mechanisms may be used.
  • the step of irradiating the gas cluster of the cleaning gas to remove deposits and the step of irradiating the gas cluster to perform the etching process include arranging a plurality of generation mechanisms for irradiating the gas cluster, and the generation mechanism The step of irradiating the gas cluster may be used.
  • the step of irradiating the gas cluster of the cleaning gas to remove deposits and the step of irradiating the gas cluster to perform the etching process have a variable angle with respect to the object to be processed in the generation mechanism that irradiates the gas cluster. It may be performed in a state.
  • the processing apparatus of the present invention In the processing apparatus of the object to be processed, which removes the object from the surface of the object to be processed, A pretreatment chamber in which an object to be treated is placed; A pre-processing module having a pre-processing mechanism for performing a pre-processing including an etching process on at least one of a surface of an object to be processed or an attached substance placed in the pre-processing chamber; A cleaning chamber in which the object to be processed is placed; A cleaning gas that is provided in the cleaning processing chamber and has no reactivity with the film exposed on the surface of the object to be processed is processed from a region having a higher pressure than the processing atmosphere inside the cleaning processing chamber.
  • a gas cluster nozzle that discharges to the atmosphere, generates a gas cluster that is an aggregate of atoms or molecules of the cleaning gas by adiabatic expansion, and supplies the pre-processed object to remove the deposits When, And a transport mechanism for delivering an object to be processed to the pretreatment chamber and the cleaning chamber.
  • the pretreatment chamber is a normal pressure treatment chamber whose interior is maintained in a normal pressure atmosphere, and is connected to a normal pressure transfer chamber that conveys the object to be processed in a normal pressure atmosphere
  • the cleaning processing chamber is a vacuum processing chamber whose interior is maintained in a vacuum atmosphere, and is hermetically connected to a vacuum transfer chamber that transfers the object to be processed in a vacuum atmosphere.
  • a load lock chamber for switching the internal atmosphere is provided between the normal pressure transfer chamber and the vacuum transfer chamber.
  • the normal pressure transfer chamber and the vacuum transfer chamber may be provided with a normal pressure transfer mechanism and a vacuum transfer mechanism as the transfer mechanism, respectively.
  • the pretreatment chamber and the cleaning treatment chamber are vacuum treatment chambers each maintained in a vacuum atmosphere
  • a vacuum transfer chamber in which the transfer mechanism is arranged may be provided between the pretreatment chamber and the cleaning treatment chamber in an airtight manner.
  • the pretreatment chamber and the cleaning treatment chamber may be shared.
  • a vacuum processing chamber for performing a vacuum processing performed prior to the preprocessing or a vacuum processing subsequent to the removal of deposits may be airtightly connected to the vacuum transfer chamber.
  • the storage medium of the present invention is A storage medium storing a computer program used on a processing apparatus for cleaning an object to be processed and operating on a computer,
  • the computer program is characterized in that steps are set so as to implement the above-described cleaning method.
  • pretreatment including etching treatment is performed on at least one of the surface of the object to be processed and the deposit to facilitate the removal of the deposit from the surface of the object to be processed, and then exposed to the surface of the object to be processed
  • a gas cluster is generated by using a cleaning gas that is not reactive with the film being formed. Therefore, even when the gas cluster of the cleaning gas is irradiated in a non-ionized state, the deposit is easily detached and removed from the object to be processed, so that the object can be easily removed while suppressing damage to the object to be processed. There is an effect that can be removed.
  • FIG. 1 A first embodiment of the cleaning method of the present invention will be described with reference to FIGS. First, the configuration of the wafer W to which this cleaning method is applied and the outline of the cleaning method will be described.
  • the wafer W is made of silicon (Si), and a pattern 7 including, for example, a groove 5 as a concave portion and a line 6 as a convex portion is formed on the surface.
  • this cleaning method suppresses the occurrence of damage to the wafer W such as the fall of the line 6 or the film roughness of the surface of the wafer W, and the deposit 10 on the surface of the wafer W as shown in FIG. Is configured to be easily removed.
  • the deposit 10 is obtained by a plasma etching process when the pattern 7 is formed on the wafer W or a plasma ashing process performed after the plasma etching process.
  • This is a residue produced.
  • the deposit 10 includes carbon (C), which is a residue of a photoresist mask made of an inorganic material including silicon removed from the inside of the groove 5 and an organic material stacked on the upper layer of the wafer W. It is composed of organic matter.
  • C carbon
  • the deposit 10 is not simply on the surface of the wafer W, but when viewed microscopically, as shown in FIG.
  • a natural oxide film formed on the W surface Surrounded by a natural oxide film formed on the W surface, it is strongly attached. That is, for example, a natural oxide film is formed on the surface of the wafer W so as to surround the deposit 10, and the deposit 10 is thereby buried in the natural oxide film. That is, the deposit 10 is held on the wafer W through the bridge formed on the surface of the wafer W.
  • the surface of the wafer W is oxidized when the wafer W is transported in the atmosphere, for example, and becomes a natural oxide film 11 made of silicon oxide (SiO 2).
  • the thickness dimension of the natural oxide film 11 is, for example, about 1 nm.
  • a region made of silicon below the natural oxide film 11 is referred to as a base film 12 in the following description.
  • the surface of the wafer W and the deposit 10 may be chemically coupled to each other, for example, but in order to simplify the description, the wafer W and the deposit 10 are already described. It is assumed that it is held by cross-linking formed between the ten. Further, the surface shapes and dimensions of the wafer W and the deposit 10 are schematically shown in FIG. The same applies to the subsequent figures.
  • vapor of an aqueous hydrogen fluoride (HF) solution is supplied to the wafer W as a pretreatment.
  • the natural oxide film 11 described above is dissolved by the hydrogen fluoride vapor to form silicon fluoride, which is exhausted as a gas.
  • the bridge formed between the wafer W and the deposit 10 is also etched, and the surface of the wafer W recedes downward when viewed from the deposit 10, as shown in FIG. It will be exposed.
  • the adhering material 10 that is buried in the natural oxide film on the surface of the wafer W and is strongly adsorbed on the wafer W is weakened by the pretreatment. That is, the deposit 10 is exposed by etching the surface of the wafer W, and is in a state of being in slight contact with the surface of the wafer W. At this time, as described later, when the deposit 10 contains silicon oxide, the deposit 10 is also etched by the vapor of hydrogen fluoride. Here, attention is paid to the surface of the wafer W. Explained. In FIG. 4, the upper surface of the wafer W (base film 12) and the lower surface of the deposit 10 are drawn apart from each other, but actually, the base film 12 and the deposit 10 are slightly in contact with each other. Yes.
  • An apparatus for supplying hydrogen fluoride vapor to the wafer W is configured by combining a known vaporizer and a processing container, and will be described later together with a processing apparatus for performing a cleaning method.
  • FIG. 5 shows an example of the nozzle 23 for generating gas clusters.
  • the nozzle 23 includes a pressure chamber 32 formed in a substantially cylindrical shape so as to extend in the vertical direction and open at the lower end portion, and a gas diffusion portion 33 connected to the lower end portion of the pressure chamber 32.
  • the gas diffusion portion 33 is horizontally reduced in diameter from the peripheral edge of the lower end of the pressure chamber 32 toward the central portion of the pressure chamber 32 to form an orifice portion 32a, and downward from the orifice portion 32a. It is formed so as to increase in diameter as it goes.
  • the opening diameter in the orifice portion 32a and the separation distance between the orifice portion 32a and the wafer W on the mounting table 22 are, for example, about 0.1 mm and 6.5 mm, respectively.
  • a gas supply path 34 for supplying, for example, carbon dioxide (CO 2) gas into the pressure chamber 32 is connected to the upper end side of the nozzle 23.
  • the processing pressure in the processing atmosphere is set to a vacuum atmosphere of about 1 to 100 Pa, for example, and carbon dioxide gas is supplied to the nozzle 23 at a pressure of about 0.3 to 2.0 MPa, for example.
  • carbon dioxide gas is supplied to the processing atmosphere, it is cooled below the condensation temperature by abrupt adiabatic expansion, so that the molecules of each other are combined by van der Waals forces to form an aggregate gas cluster.
  • the gas cluster flow path below the gas supply path 34 and the nozzle 23 is not provided with an ionization device for ionizing the gas cluster. Irradiated vertically toward the wafer W in a non-ionized state.
  • the deposit 10 on the surface of the wafer W has a very weak adhesion with the wafer W due to the pretreatment, and is slightly in contact with the surface of the base film 12. Therefore, when the gas cluster collides with the deposit 10 on the wafer W, the deposit 10 is blown off from the surface of the wafer W by the discharge pressure of the gas cluster as shown in FIG. At this time, the gas cluster is composed of carbon dioxide gas having no reactivity with the base film 12. Further, the gas cluster is not ionized and is irradiated onto the wafer W in a non-ionized state.
  • the underlying film 12 which is the surface portion of the wafer W exposed by the above-described pretreatment is prevented from being scraped off by the irradiation of the gas cluster, and the electric wiring formed in the underlying film 12 is There is no risk of charging up. Therefore, damage to the electrical wiring does not occur or the damage is suppressed to a very low level. Therefore, the surface of the wafer W after the gas cluster irradiation remains in a state following the surface of the natural oxide film 11.
  • the deposit 10 is removed over the surface and the cleaning process is performed. Is done.
  • water is generated as a by-product of the natural oxide film 11 dissolved by the hydrogen fluoride vapor already described, the remaining water is suppressed by heating the wafer W by a temperature control mechanism to be described later. can do.
  • FIG. 6 An apparatus for supplying hydrogen fluoride vapor to the wafer W will be described with reference to FIG.
  • a processing vessel 42 in which a mounting table 41 on which a wafer W is placed is provided, and a vaporizer 43 which is a preprocessing mechanism for supplying vapor of an aqueous hydrogen fluoride solution into the processing vessel 42.
  • a pre-processing module is provided in FIG. 6, reference numeral 44 denotes a transfer port for the wafer W, and reference numeral 45 denotes a heater for suppressing the vaporization of hydrogen fluoride on the surface of the wafer W on the mounting table 41.
  • a gas supply path 46 extending from the vaporizer 43 is connected to the ceiling surface of the processing container 42 so as to face the wafer W on the mounting table 41.
  • Hydrogen fluoride vapor is supplied to the wafer W from a gas supply path 46 together with a carrier gas such as nitrogen (N2) gas.
  • N2 nitrogen
  • V and M are a valve and a flow rate adjusting unit, respectively.
  • Exhaust ports 51 for exhausting the atmosphere in the processing vessel 42 are formed in, for example, a plurality of locations on the floor surface of the processing vessel 42, and an exhaust passage 52 extending from the exhaust port 51 has a butterfly valve or the like.
  • a vacuum pump 54 is connected via the pressure adjustment unit 53.
  • this apparatus is provided with a cleaning processing chamber 21 for storing the wafer W and removing the deposits 10, and the cleaning processing chamber 21 includes a wafer processing chamber 21.
  • a mounting table 22 for mounting W is arranged.
  • a protrusion 21a that protrudes in a cylindrical shape toward the upper side is formed at the center of the ceiling surface of the cleaning chamber 21, and the nozzle 23 described above serves as a gas cluster generation mechanism in the protrusion 21a.
  • the nozzle 23 faces downward in the vertical direction.
  • reference numeral 40 denotes a transfer port
  • G denotes a gate valve that opens and closes the transfer port 40.
  • a support pin is provided so as to penetrate the through-hole formed in the mounting table 22.
  • the wafer W is moved up and down with respect to the mounting table 22 by the cooperative action of the lifting mechanism (not shown) provided on the mounting table 22 and the support pins, and a wafer transfer arm (not shown) outside the cleaning processing chamber 21.
  • the wafer W is transferred between the two.
  • One end side of an exhaust path 24 for evacuating the atmosphere in the cleaning process chamber 21 is connected to the floor surface of the cleaning process chamber 21, and a pressure such as a butterfly valve is connected to the other end side of the exhaust path 24.
  • a vacuum pump 26 is connected via the adjusting unit 25.
  • the mounting table 22 is configured to be movable in the horizontal direction in the cleaning processing chamber 21 so that the nozzle 23 is relatively scanned over the surface of the wafer W on the mounting table 22.
  • the floor surface of the cleaning chamber 21 below the mounting table 22 is configured to be movable along the X-axis rail 27 and the X-axis rail 27 extending horizontally along the X-axis direction.
  • Y-axis rail 29 is provided.
  • the mounting table 22 described above is supported above the Y-axis rail 29.
  • the mounting table 22 is provided with a temperature control mechanism (not shown) for adjusting the temperature of the wafer W on the mounting table 22.
  • One end side of a gas supply path 34 extending through the ceiling surface of the cleaning chamber 21 is connected to the upper end of the pressure chamber 32, and the other end side of the gas supply path 34 is connected to a valve 36 and a flow rate adjusting unit.
  • a gas source 37 in which carbon dioxide is stored is connected via 35.
  • the pressure chamber 32 is provided with a pressure gauge (not shown), and is configured so that the flow rate of gas supplied into the pressure chamber 32 via the pressure gauge is adjusted by a control unit 67 described later. Yes.
  • the angle and distance of the nozzle 23 with respect to the mounting table 22 may be adjusted by a driving unit (not shown).
  • the angle and distance of the nozzle 23 are adjusted in this way, the deposit 10 removed from the wafer W is prevented from reattaching to the wafer W, or damage to the pattern 7 is reduced. Furthermore, the deposit 10 attached to the bottom surface of the groove 5 is easily removed. As will be described later, even when the gas cluster is irradiated in the pretreatment, the angle and distance of the nozzle 23 may be adjusted similarly.
  • carry-in / out ports 60 for placing FOUP1 which is a sealed transfer container storing 25 wafers W
  • An atmospheric transfer chamber 61 is provided along the line 60.
  • a wafer transfer mechanism 61a constituted by an articulated arm for transferring the wafer W is provided as a normal pressure transfer mechanism.
  • An alignment chamber 62 for adjusting the orientation and positioning of the wafer W is provided on the side of the atmospheric transfer chamber 61.
  • the alignment chamber 62 is provided on the side of the atmospheric transfer chamber 61.
  • the processing container 42 described above is connected so as to face 62.
  • a load lock chamber 63 for switching the atmosphere between the atmospheric pressure atmosphere and the air atmosphere is airtightly connected to the surface of the air transfer chamber 61 opposite to the carry-in / out port 60.
  • the load lock chamber 63 is provided in two places side by side.
  • a vacuum transfer chamber 64 When viewed from the atmospheric transfer chamber 61, a vacuum transfer chamber 64 provided with a transfer arm 64a, which is a vacuum transfer mechanism for transferring the wafer W in a vacuum atmosphere, is airtight behind the load lock chambers 63 and 63. It is connected to the. In the vacuum transfer chamber 64, the above-described cleaning processing chamber 21 is airtightly provided.
  • the vacuum transfer chamber 64 includes an etching chamber 65 in which a plasma etching process for forming the pattern 7 on the wafer W is performed and an ashing chamber 66 in which a plasma ashing process for the photoresist mask is performed. It is connected to the.
  • a processing chamber for performing, for example, a CVD (Chemical Vapor Deposition) process which is a process after removing the deposit 10, may be connected to the vacuum transfer chamber 64 in an airtight manner.
  • This processing apparatus is provided with a control unit 67 composed of a computer for controlling the operation of the entire apparatus.
  • the memory of the control unit 67 stores a program for performing an etching process and an ashing process in addition to the pre-processing and the cleaning process described above.
  • This program has a set of steps so as to execute the operation of the apparatus corresponding to the processing on the wafer W.
  • the program is installed in the control unit 67 from the storage unit 68 which is a storage medium such as a hard disk, a compact disk, a magneto-optical disk, a memory card, and a flexible disk.
  • the wafer W is taken out of the FOUP 1 by the wafer transfer mechanism 61a.
  • a photoresist mask patterned so as to correspond to the pattern 7 described above is laminated.
  • the wafer W is loaded into the load lock chamber 63 set in an air atmosphere.
  • the wafer W is transferred in this order by the transfer arm 64a through the etching processing chamber 65 and the ashing processing chamber 66 to form the pattern 7 already described. Ashing processing is performed in this order.
  • the wafer W is transferred into the processing container 42 through the load lock chamber 63 and the atmospheric transfer chamber 61 and subjected to the pre-processing described above, and then transferred into the cleaning processing chamber 21 to be irradiated with the gas cluster. Is done. Thereafter, the processed wafer W is returned to the original FOUP 1 through the load lock chamber 63 and the atmospheric transfer chamber 61.
  • the deposit 10 when removing the deposit 10 adhering to the surface of the wafer W, hydrogen fluoride vapor is supplied to the wafer W as a pretreatment, and the natural oxide film on the surface of the wafer W is obtained. 11 is dissolved. For this reason, the deposit 10 is in a state of being slightly in contact with the surface of the wafer W, and the adhesion force with the surface becomes extremely weak. Therefore, the deposit 10 is easily removed by irradiating the deposit 10 with a gas cluster made of carbon dioxide gas. Therefore, when the deposit 10 is removed, even if the wafer W is formed with the fine pattern 7 as described above, for example, the irradiation rate of the gas cluster can be suppressed. Damage can be suppressed.
  • the carbon dioxide gas has no reactivity with the base film 12 of the wafer W.
  • the gas cluster is irradiated to the wafer W without being ionized. Therefore, when the gas cluster is irradiated to the wafer W, the occurrence of damage that causes the surface of the wafer W to become rough or physically scraped can be suppressed. Further, since the gas cluster is not ionized, for example, the above-described cleaning processing chamber 21 does not require a device for ionizing the gas or the gas cluster, so that the cost of the device can be suppressed.
  • the adhesion of the deposit 10 to the entire surface of the wafer W is reduced at a time by the pretreatment. Therefore, compared to an example in which the deposit 10 is removed using only a gas cluster of a conventional reactive gas, for example, it can be uniformly processed in a short time, so that the throughput can be increased. Furthermore, by combining pretreatment and gas cluster irradiation, it is possible to reduce the amount of gas or chemical used compared with the case where the deposit 10 is removed using only gas, gas cluster, or chemical. At this time, since the chemical solution is not supplied to the wafer W in both the pretreatment and the gas cluster irradiation, the cost required for the waste solution treatment can be suppressed.
  • the surface of the wafer W is changed from the non-conductive natural oxide film 11 to the conductive undercoat film 12, so that the surface has conductivity. Therefore, even if the deposit 10 and the natural oxide film 11 are adsorbed to each other by, for example, electrostatic force in addition to the above-described physical fixing force, the electrostatic force is eliminated or weakened by pretreatment.
  • the deposit 10 is easily removed from the wafer W. Even if the natural oxide film 11 and the deposit 10 are chemically bonded to each other, the bonded natural oxide film 11 is etched, so that the deposit is as described above. 10 can be easily removed.
  • the surface layer of the base film 12 is oxidized. Specifically, as shown in FIG. 9, for example, ozone gas that is an oxidizing gas is supplied to the surface of the wafer W. By this ozone gas, the surface layer of the base film 12 in contact with the deposit 10 is slightly oxidized, for example, by 1 nm, and an oxide film 13 as a modified layer is generated. Thereafter, the supply of the hydrogen fluoride vapor and the irradiation of the gas cluster made of carbon dioxide gas are performed in this order, whereby the deposit 10 is removed along with the oxide film 13 over the surface. .
  • ozone gas that is an oxidizing gas is supplied to the surface of the wafer W.
  • the pretreatment is performed by oxidizing the base film 12 with ozone gas and supplying hydrogen fluoride vapor.
  • an apparatus for supplying ozone gas to the wafer W an apparatus including an ozone gas supply source (not shown) is used instead of the vaporizer 43 in FIG.
  • ozone gas is supplied to the wafer W, but ozone water (an aqueous solution containing ozone gas) may be supplied instead of the ozone gas.
  • ozone water an aqueous solution containing ozone gas
  • FIG. 1 An example of a pretreatment module in which ozone water is supplied to the wafer W will be briefly described with reference to FIG.
  • the manner in which the base film 12 is oxidized by ozone water, the subsequent etching treatment of the oxide film 13 and the irradiation of the gas cluster are the same as in the above-described example, and thus the description thereof is omitted.
  • This apparatus is provided with a processing container 81 for supplying ozone water to the wafer W and a spin chuck 82 serving as a mounting table for mounting the wafer W thereon.
  • the spin chuck 82 is configured to support the central portion on the lower surface side of the wafer W and to be rotatable and raised and lowered around the vertical axis by the driving unit 83.
  • an ozone water nozzle 84 for discharging ozone water to the wafer W is provided as a pretreatment mechanism.
  • a lid 85 for sealing an atmosphere for pre-processing the wafer W so as to face the wafer W on the spin chuck 82 can be raised and lowered by an elevator mechanism (not shown).
  • the previously described ozone water nozzle 84 is attached to the center of the lid 85.
  • a ring-shaped exhaust path 86 is formed on the side of the spin chuck 82 so as to face the peripheral edge of the wafer W in the circumferential direction.
  • a vacuum pump 88 is connected to the lower surface side of the exhaust path 86 via a pressure adjustment mechanism 87 such as a butterfly valve.
  • 81a is a transfer port for the wafer W
  • 81b is a shutter for opening and closing the transfer port 81a.
  • the processing container 81 when ozone water is discharged from the ozone water nozzle 84 to the central portion of the wafer W that is adsorbed and held by the spin chuck 82 and rotates around the vertical axis, the ozone water is caused by centrifugal force. The film is stretched toward the peripheral edge of the wafer W to form a liquid film over the surface of the wafer W.
  • the spin chuck 82 rotates at a high speed and the ozone water is spun off to the outer edge, and then the surface of the wafer W is cleaned by a rinse liquid discharged from a rinse nozzle (not shown).
  • the example in which the pattern 7 is formed on the wafer W has been described.
  • the deposit 10 is easily removed by pretreatment and irradiation with a gas cluster made of carbon dioxide gas. That is, for example, since the source gas used when forming by the CVD method contains an organic substance, when the organic substance adheres to the surface of the wafer W as the adhering substance 10, it is removed as in the example described above.
  • the pretreatment is performed in an air atmosphere, but it may be performed in a vacuum atmosphere.
  • the processing container 42 for performing the pre-processing and the cleaning processing chamber 21 for performing the cleaning processing may be individually connected to the vacuum transfer chamber 64 shown in FIG.
  • the processing container 42 and the cleaning processing chamber 21 may be shared.
  • the vacuum transfer chamber 64 is hermetically connected to the cleaning processing chamber 21 that also serves as the processing container 42.
  • a gas source 47 in which hydrogen fluoride gas is stored is provided.
  • gas supply paths 46 extending from the gas source 47 are provided at a plurality of locations on the ceiling surface of the cleaning processing chamber 21 outside the outer edge of the protruding portion 21a. These are arranged so as to face the center of the wafer W on the mounting table 22.
  • the pressure in the cleaning processing chamber 21 is set to a processing pressure for performing the preprocessing, and the wafer W is preprocessed. Then, after the pressure in the cleaning processing chamber 21 is set to be lower than the processing pressure (high vacuum), the above-described cleaning processing is performed.
  • a base film 12 made of a germanium (Ge) film is formed on the upper side of the silicon layer 14 of the wafer W as shown in FIG.
  • the deposit 10 adheres to the surface of the base film 12.
  • the deposit 10 in this case includes a by-product generated when the base film 12 is formed by, for example, a CVD method.
  • the following preprocessing is performed.
  • ozone gas is supplied to the surface of the base film 12.
  • the ozone gas slightly oxidizes the surface layer of the base film 12 by the ozone gas, and a germanium oxide (Ge—O) film 15 is generated as a modified layer.
  • a germanium oxide (Ge—O) film 15 is generated as a modified layer.
  • the wafer W is irradiated with a gas cluster made of, for example, water vapor (H 2 O)
  • the germanium oxide film 15 is dissolved in the water vapor and etched.
  • the pretreatment by the oxidation treatment of the base film 12 with the ozone gas and the supply of the water vapor gas cluster brings the deposit 10 into a state of slight contact with the surface of the wafer W as shown in FIG. Becomes extremely weak.
  • the gas cluster made of water vapor has no reactivity with the germanium film as the base film 12. Therefore, the germanium oxide film 15 is selectively etched in a state in which damage to the base film 12 is suppressed by the gas cluster made of water vapor.
  • the wafer W is irradiated with a gas cluster made of carbon dioxide gas. Since the gas cluster of carbon dioxide gas has no reactivity with the germanium film that is the base film 12, the base film 12 is not damaged, and the germanium oxide dissolved in water vapor together with the base material 12 is not damaged. The film 15 is removed.
  • the apparatus for oxidizing the base film 12 of the second embodiment a configuration in which an ozone gas source is connected in place of the vaporizer 43 in the apparatus shown in FIG. 6 is used. Further, as an apparatus for irradiating a gas cluster made of water vapor, a pretreatment chamber having the same configuration as the above-described cleaning treatment chamber 21 is connected to the vacuum transfer chamber 64 in an airtight manner, and vaporization is performed to vaporize pure water as a gas source 37. A vessel is provided.
  • the gas supply path 46 for supplying ozone gas to the wafer W and the nozzle 23 for irradiating a gas cluster made of water vapor form a pre-processing mechanism.
  • ozone water may be supplied to the wafer W instead of ozone gas using the apparatus shown in FIG.
  • a gas cluster of ozone gas when used, it may be configured as follows. That is, as shown in FIG. 17, a gas supply path 34 for irradiating a gas cluster made of carbon dioxide gas, a gas source 37, a vaporizer 38 for vaporizing pure water, and a water vapor supply path 39 extending from the vaporizer 38 are nozzles. 23 may be connected. Therefore, in this example, the generation mechanism for generating the gas cluster in the pretreatment is the same as the generation mechanism for the gas cluster of the cleaning gas. In this case, as described above, after the base film 12 is oxidized, the supply of gas clusters made of water vapor and the supply of gas clusters made of carbon dioxide gas may be performed in this order.
  • these gas clusters may be simultaneously supplied to the wafer W to simultaneously perform the etching process of the germanium oxide film 15 and the removal of the deposits 10.
  • these gas clusters may be simultaneously supplied to the wafer W to simultaneously perform the etching process of the germanium oxide film 15 and the removal of the deposits 10.
  • water vapor as a gas or pure water as a liquid may be supplied to the wafer W.
  • pure water is used instead of the hydrogen fluoride aqueous solution or ozone water.
  • FIG. 18 an example in which the deposit 10 attached to the photoresist mask 16 for forming the pattern 7 described above on the wafer W is removed is shown. That is, after patterning by performing exposure processing and development processing on the photoresist mask 16, the organic components removed from the photoresist mask 16 by the patterning adhere to the surface of the photoresist mask 16 as the deposit 10. Therefore, the deposit 10 is removed as follows.
  • ozone gas is supplied to the surface of the wafer W in place of hydrogen fluoride vapor as a pretreatment.
  • the surface of the photoresist mask 16 is slightly oxidized and etched, so that the adhesion of the deposit 10 to the photoresist mask 16 becomes extremely weak. Therefore, when this wafer W is irradiated with a gas cluster made of carbon dioxide gas, the gas cluster has no reactivity with the photoresist mask 16 which is the underlying film 12 on the lower layer side of the surface.
  • the modified layer 18 is removed together with the deposit 10.
  • ozone water may be supplied to the wafer W instead of ozone gas.
  • a gas cluster may be generated using ozone gas, and the surface of the photoresist mask 16 may be oxidized by the gas cluster.
  • the ozone gas gas cluster and the carbon dioxide gas gas cluster may be simultaneously supplied to the wafer W, so that the pretreatment and the removal of the deposit 10 may be performed simultaneously.
  • the pretreatment may be performed by irradiating with ultraviolet rays (UV) as shown in FIG. 20 instead of supplying ozone gas. .
  • UV ultraviolet rays
  • the surface of the photoresist mask 16 is hardened due to deterioration and becomes brittle. Therefore, when a gas cluster made of carbon dioxide gas is irradiated onto the photoresist mask 16, the cured layer on the surface of the photoresist mask 16 is removed together with the deposit 10. Therefore, in this example, it can be said that the irradiation process of the gas cluster made of carbon dioxide gas also serves as part of the pretreatment (etching of the surface of the photoresist mask 16). Alternatively, as pretreatment, ozone gas supply and ultraviolet (UV) irradiation may be performed simultaneously.
  • pretreatment ozone gas supply and ultraviolet (UV) irradiation may be performed simultaneously.
  • the adhesion force of the deposit 10 becomes extremely weak due to the etching of the surface. Therefore, when the wafer W is irradiated with a gas cluster made of carbon dioxide gas, the deposit 10 is easily removed.
  • FIG. 21 An apparatus for irradiating the wafer W with ultraviolet rays will be briefly described with reference to FIG.
  • a processing container 91 and a mounting table 92 provided in the processing container 91 are arranged.
  • a transparent window 93 made of quartz or the like is airtightly attached to the ceiling surface of the processing container 91 at a position facing the mounting table 92.
  • an ultraviolet lamp 94 for irradiating the wafer W on the mounting table 92 with ultraviolet rays via the transparent window 93 is provided as a pre-processing mechanism.
  • 95 is a gas supply pipe
  • 96 is a gas source in which, for example, nitrogen gas is stored
  • 97 is a vacuum pump
  • 98 is a transfer port.
  • the processing container 91 is hermetically connected to the vacuum transfer chamber 64 described above. It should be noted that the processing container 91 for irradiating the wafer W with ultraviolet rays and the processing container 42 in FIG. 6 for supplying ozone gas to the wafer W are used in common, and ultraviolet rays are supplied to the wafer W while ozone gas is supplied. May be irradiated.
  • the 4th Embodiment of this invention is described with reference to FIG.22 and FIG.23.
  • the metal film 17 is made of, for example, tungsten (W). That is, since the source gas used when the metal film 17 is formed by the CVD method or the like contains an organic substance as described above, a residue made of the organic substance is removed from the metal film 17 as shown in FIG. In some cases, the deposit 10 may adhere to the surface. Therefore, the deposit 10 is removed as follows.
  • hydrogen chloride (HCl) gas is supplied to the wafer W as a pretreatment using the apparatus shown in FIG.
  • HCl hydrogen chloride
  • the surface layer of the metal film 17 is slightly etched and removed. Therefore, the deposit 10 has a very weak adhesion to the metal film 17. Therefore, when the wafer W is irradiated with a gas cluster made of carbon dioxide gas that is not reactive with the metal film 17 as the base film 12, the deposit 10 is easily removed.
  • a chlorine fluoride (ClF3) gas may be used as the gas used for the pretreatment instead of the hydrogen chloride gas.
  • the metal film 17 may be a titanium film instead of the tungsten film.
  • FIG. 24 shows an example where the material constituting the deposit 10 is silicon oxide, and the deposit 10 adheres to, for example, the metal film 17 which is the surface of the wafer W.
  • the surface of the deposit 10 is etched by supplying hydrogen fluoride vapor to the wafer W, so that the deposit 10 is on the surface of the wafer W. It will be in a state of just riding. Therefore, the said deposit
  • the deposit 10 is silicon oxide
  • the deposit 10 is an organic substance
  • ozone or ultraviolet rays are supplied (irradiated) to the surface of the wafer W during pre-processing
  • a chlorine-based gas is supplied during pretreatment.
  • the deposit 10 is silicon
  • the surface is pre-oxidized before etching the surface of the deposit 10 as described in the modification of the first embodiment. You may do it.
  • the inside of the deposit 10 is not uniformly formed of the same material, if the substance to be etched is included in a part of the deposit 10, the part is etched, so that In addition, the adhesion force of the deposit 10 to the surface of the wafer W can be reduced.
  • the surface of the wafer W and the surface of the deposit 10 include the same material, in this example, silicon oxide, the surface of the wafer W is etched together with the surface of the deposit 10. Therefore, the adhesion force of the deposit 10 can be further reduced.
  • Carbon dioxide gas was used for the gas cluster irradiated onto the wafer W in the cleaning chamber 21 in each of the examples described above.
  • a non-reactive gas that is not reactive with the underlying film 12 of the wafer W such as argon (Ar) gas or nitrogen (N2) gas, is used instead of carbon dioxide gas.
  • these gases may be mixed and used.
  • the gas cluster made of carbon dioxide gas has a larger size than that of the argon gas or nitrogen gas. Therefore, since the effect of removing the deposit 10 is also increased, it is preferable to generate a gas cluster using this carbon dioxide gas.
  • an etching gas having an etching action on the surface of the wafer W or the surface of the deposit 10 may be used together with the non-reactive gas. That is, a gas cluster may be generated by the non-reactive gas and the etching gas, so that the pretreatment (etching treatment) and the deposit 10 removal treatment may be performed simultaneously.
  • a plurality of nozzles 23 may be arranged.
  • a plurality of nozzles 23 are arranged in a ring shape so as to be concentric with the outer edge of the wafer W, for example, on the upper side of the wafer W.
  • an irradiation unit including a plurality of nozzles 23 arranged in a ring shape is arranged over a plurality of circumferences from the center side of the wafer W toward the outer edge.
  • a plurality of nozzles 23 are arranged, they may be arranged in a grid pattern above the wafer W.
  • the processing apparatus described above a configuration in which an apparatus for preprocessing and an apparatus for irradiating a gas cluster made of carbon dioxide gas are provided.
  • these devices are individually arranged as stand-alone devices and the wafer W is transferred between these devices by an external wafer arm.
  • the present invention falls within the scope of the right even if the gas cluster irradiated when the deposit 10 is removed is ionized, for example, ionized in a state where the degree of dissociation is weak.
  • the surface of the silica particles is etched by the hydrogen fluoride gas cluster as described above, and the adhesion to the wafer is reduced. Therefore, in the examples, the particles were easily removed even when the introduction pressure was lower than in the comparative example.
  • gas clusters are generated by using hydrogen fluoride gas together with argon gas. By mixing these gases, pretreatment and cleaning treatment are simultaneously performed. It was found that the gas was quickly removed by the gas cluster of argon gas when was etched. Therefore, even when the pretreatment and the washing treatment are separately performed in this order, it can be seen that the particles are easily removed as in this embodiment.
  • W wafer 7 pattern 10 deposit 11 natural oxide film 12 base film 13 oxide film 14 silicon layer 15 germanium oxide film 16 photoresist mask 17 metal film 23 nozzle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】被処理体の表面に形成されたパターンの倒れ、あるいは被処理体の表面の膜荒れなどの被処理体に対するダメージを抑えながら、被処理体の表面に付着したパーティクルなどの付着物を容易に除去すること。【解決手段】前処理として、フッ化水素の蒸気がウエハ(W)に供給され、ウエハ(W)の表面の自然酸化膜(11)を溶解することにより、前記自然酸化膜(11)の表面に付着している付着物(10)を表面から浮いた状態とする。その後、ウエハ(W)の置かれる雰囲気よりも圧力の高い領域から、下地膜(12)に対して反応性を持たない二酸化炭素ガスが供給され、断熱膨張により当該ガスが凝縮温度以下に冷却されてガスクラスターを発生する。そして、このガスクラスターが非イオン化の状態でウエハ(W)に照射されることにより、付着物(10)が除去される。

Description

洗浄方法、処理装置及び記憶媒体
 本発明は、被処理体の表面に付着したパーティクルなどの付着物を除去する洗浄方法、処理装置及び前記方法の記憶された記憶媒体に関する。
 半導体ウエハなどの被処理体である基板(以下「ウエハ」と言う)の表面に付着したパーティクルや汚れなどの付着物を除去する技術として、例えば特許文献1、2に記載の手法が知られている。前記特許文献1、2では、ウエハの表面にガスクラスターイオンビームが照射されている。このような技術では、付着物におけるウエハに対する付着力に打ち勝つように、例えばガスクラスターイオンビームでは加速電圧やイオン化量によって、その物理的剪断力が調整される。
 しかし、ウエハ上に形成されたデバイス構造が微細化するにつれて、ガスクラスターイオンビームにより前記デバイス構造がダメージを受けやすくなってしまう。即ち、例えばウエハ上に形成された溝とラインとからなるパターンに対してガスクラスターイオンビームが照射されると、前記ラインの幅寸法が例えば数十nmオーダーの場合には、ガスクラスターイオンビームの照射により当該ラインが倒れてしまうリスクがある。また、パターンの形成されていない場合であっても、ガスクラスターイオンビームを照射した後は、ウエハの表面形状が悪くなってしまう。
 特許文献3には、薬液を用いて基板9上の自然酸化膜を除去した後、超音波振動の付与されたエアを噴出する技術が記載されており、また特許文献4には基板の表面にパルスレーザーを照射する技術について記載されている。しかし、これら特許文献3、4には、微細なデバイス構造におけるパーティクルの除去やウエハが受けるダメージについては触れられていない。
特開2009-43975 特開2008-304737 特開2006-278387 特開2009-224721
 本発明はこのような事情の下になされたものであり、その目的は、被処理体に対するダメージを抑えながら、被処理体の表面に付着したパーティクルなどの付着物を容易に除去できる洗浄方法、処理装置及び前記方法の記憶された記憶媒体を提供することにある。
 本発明の洗浄方法は、
 付着物が付着した被処理体の表面から付着物を除去する洗浄方法において、
 被処理体の表面及び付着物の少なくとも一方に対して、エッチング処理を含む前処理を行う工程と、
 被処理体が置かれる処理雰囲気よりも圧力の高い領域から、前記被処理体の表面に露出している膜に対して反応性を持たない洗浄用ガスを処理雰囲気に吐出し、断熱膨張により前記洗浄用ガスの原子または分子の集合体であるガスクラスターを生成させる工程と、
 前記前処理が行われた被処理体の表面に、洗浄用ガスのガスクラスターを照射して、付着物を除去する工程と、を含むことを特徴とする。
 前記前処理は、被処理体の表面及び付着物の少なくとも一方に対する改質処理と、前記改質処理により改質された改質層に対するエッチング処理とを含んでいても良い。
 前記前処理を行う工程と前記付着物を除去する工程とは、同時に行われても良い。
 前記前処理は、前記エッチング処理を行うためにガスクラスターを照射する工程を含んでいても良い。
 前記エッチング処理を行うためにガスクラスターを照射する工程は、前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程においてガスクラスターを照射する生成機構と同一の生成機構を用いても良いし、異なる生成機構を用いても良い。
 前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程及び前記エッチング処理を行うためにガスクラスターを照射する工程は、ガスクラスターを照射する生成機構を複数配置して、前記生成機構からガスクラスターを照射する工程であっても良い。
 前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程及び前記エッチング処理を行うためにガスクラスターを照射する工程は、ガスクラスターを照射する生成機構における被処理体に対する角度が可変な状態で行われても良い。
 本発明の処理装置は、
 付着物が付着した被処理体の表面から付着物を除去する被処理体の処理装置において、
 内部に被処理体が載置される前処理室と、
 前記前処理室内に載置された被処理体の表面または付着物の少なくとも一方に対してエッチング処理を含む前処理を行うための前処理機構を有する前処理モジュールと、
 内部に被処理体が載置される洗浄処理室と、
 前記洗浄処理室に設けられ、前記洗浄処理室の内部の処理雰囲気よりも圧力の高い領域から、前記被処理体の表面に露出している膜に対して反応性を持たない洗浄用ガスを処理雰囲気に吐出して、断熱膨張により前記洗浄用ガスの原子または分子の集合体であるガスクラスターを生成させ、前記付着物を除去するために、前処理後の被処理体に供給するガスクラスターノズルと、
 前記前処理室及び前記洗浄処理室に対して被処理体の受け渡しを行う搬送機構と、を備えたことを特徴とする。
 前記前処理室は、内部が常圧雰囲気に保たれた常圧処理室であり、常圧雰囲気にて被処理体の搬送を行う常圧搬送室に接続され、
 前記洗浄処理室は、内部が真空雰囲気に保たれた真空処理室であり、真空雰囲気にて被処理体の搬送を行う真空搬送室に気密に接続され、
 前記常圧搬送室と前記真空搬送室との間には、内部の雰囲気の切り替えを行うためのロードロック室が設けられ、
 前記常圧搬送室及び前記真空搬送室には、前記搬送機構として常圧搬送機構及び真空搬送機構が夫々設けられていても良い。
 前記前処理室及び前記洗浄処理室は、内部が各々真空雰囲気に保たれた真空処理室であり、
 前記前処理室及び前記洗浄処理室との間には、前記搬送機構が配置された真空搬送室が気密に介在して設けられていても良い。
 前記前処理室及び前記洗浄処理室は、共通化されていても良い。
 前記真空搬送室には、前記前処理に先立って行われる真空処理あるいは付着物の除去を行った後に続く真空処理を行うための真空処理室が気密に接続されていても良い。
 本発明の記憶媒体は、
 被処理体の洗浄を行う処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
 前記コンピュータプログラムは、既述の洗浄方法を実施するようにステップが組まれていることを特徴とする。
 本発明は、被処理体の表面及び付着物の少なくとも一方に対してエッチング処理を含む前処理を行って、付着物を被処理体の表面から脱離しやすくさせ、次いで被処理体の表面に露出している膜と反応性を持たない洗浄用ガスを用いてガスクラスターを生成させている。従って、洗浄用ガスのガスクラスターがイオン化していない状態で照射されても、付着物が被処理体から容易に脱離して除去されるので、被処理体に対するダメージを抑えながら、付着物を容易に除去できる効果がある。
本発明の第1の実施の形態における洗浄方法が適用される被処理体の概要を示す模式図である。 前記被処理体の概要を示す模式図である。 前記洗浄方法の作用を示す模式図である。 前記洗浄方法の作用を示す模式図である。 前記洗浄方法の作用を示す模式図である。 前記被処理体に前処理を行う装置を示す縦断面図である。 前記洗浄方法を実施するために被処理体にガスクラスターを照射する装置を示す縦断面図である。 前記洗浄方法を実施する被処理体処理装置を示す横断平面図である。 本発明の第1の実施の形態の変形例における洗浄方法の作用を示す模式図である。 前記変形例の前処理に用いられる装置を示す縦断面図である。 前記変形例における処理装置を示す横断平面図である。 前記第3の実施の形態の前処理に用いられる装置を示す縦断面図である。 本発明の第2の実施の形態における洗浄方法が適用される被処理体の概要を示す模式図である。 前記第2の実施の形態における洗浄方法の作用を示す模式図である。 前記第2の実施の形態における洗浄方法の作用を示す模式図である。 前記第2の実施の形態における洗浄方法の作用を示す模式図である。 前記第2の実施の形態におけるガスクラスターの照射及び前処理に用いられる装置を示す縦断面図である。 本発明の第3の実施の形態における洗浄方法が適用される被処理体の概要を示す模式図である。 前記第3の実施の形態における洗浄方法の作用を示す模式図である。 前記第3の実施の形態における洗浄方法の作用を示す模式図である。 前記第3の実施の形態の前処理に用いられる装置を示す縦断面図である。 本発明の第4の実施の形態における洗浄方法が適用される被処理体の概要を示す模式図である。 前記第4の実施の形態における洗浄方法の作用を示す模式図である。 本発明の第5の実施の形態における洗浄方法が適用される被処理体の概要を示す模式図である。 前記第5の実施の形態における洗浄方法の作用を示す模式図である。 前記第5の実施の形態における洗浄方法の作用を示す模式図である。 本発明の実施例で得られた実験結果を示すSEM写真である。 本発明の実施例で得られた実験結果を示すSEM写真である。
 [第1の実施の形態:シリコン基板]
 本発明の洗浄方法における第1の実施の形態について、図1~図5を参照して説明する。始めに、この洗浄方法が適用されるウエハWの構成及び当該洗浄方法の概略について説明する。このウエハWは、図1に示すように、シリコン(Si)により構成されており、例えば凹部である溝5と凸部であるライン6とからなるパターン7が表面に形成されている。そして、この洗浄方法は、後述するように、前記ライン6の倒れやウエハWの表面の膜荒れといったウエハWに対するダメージの発生を抑制しながら、図2に示すようなウエハW表面の付着物10を容易に除去できるように構成されている。
 続いて付着物10について詳述すると、この付着物10は、例えばウエハWに対して前記パターン7が形成される際のプラズマエッチング処理や、あるいは当該プラズマエッチング処理に続いて行われるプラズマアッシング処理により生成した残渣物である。具体的には、付着物10は、前記溝5の内部から除去されたシリコンを含む無機物や、ウエハWの上層に積層されていた有機物からなるフォトレジストマスクの残渣である炭素(C)を含む有機物などにより構成されている。この時、例えばウエハWが保管中に大気に晒されることにより、付着物10は、ウエハWの表面に単に乗っている状態ではなく、微視的に見ると、図2に示すように、ウエハW表面に形成された自然酸化膜に囲まれ、強く張り付いている。即ち、ウエハWの表面には、付着物10を囲うような、例えば自然酸化膜が形成されており、それによって付着物10は、自然酸化膜に埋まった状態となっている。すなわち、ウエハWの表面に形成された架橋を介して付着物10が当該ウエハWに保持された状態となっている。
 この時、ウエハWの表面は、例えば当該ウエハWが大気中において搬送された時に酸化されて、シリコン酸化物(SiO2)からなる自然酸化膜11となっている。自然酸化膜11の厚さ寸法は、例えば1nm程度となっている。この自然酸化膜11の下方側のシリコンからなる領域について、以下の説明では下地膜12と呼ぶこととする。尚、ウエハWの表面と付着物10とが例えば化学的に結合して互いに連結されている場合もあるが、ここでは説明を簡略化するために、既述のようにこれらウエハWと付着物10間に形成された架橋によって保持されているものとしている。また、ウエハW及び付着物10の各々の表面形状及び寸法については、図1では模式的に示している。以降の図についても同様である。
 次いで、本発明の洗浄方法について詳述する。始めに、図3に示すように、前処理として、フッ化水素(HF)水溶液の蒸気がウエハWに供給される。このフッ化水素の蒸気により、既述の自然酸化膜11が溶解して、フッ化シリコンとなり、気体として排気される。この時、ウエハWと付着物10間に形成された架橋もエッチングされ、ウエハWの表面は、図4に示すように、付着物10から見ると下方側に後退し、付着物10は表面から露出した状態となる。
 従って、ウエハWの表面の自然酸化膜に埋まっており、当該ウエハWに強く吸着していた付着物10は、前処理によってウエハWとの間の付着力が弱くなる。すなわち、付着物10は、ウエハWの表面がエッチングされることによって露出し、ウエハW表面に僅かにだけ接触した状態となる。この時、後述するように、付着物10にシリコン酸化物が含まれている場合には、当該付着物10についてもフッ化水素の蒸気によりエッチングされるが、ここではウエハWの表面について着目して説明している。尚、図4では、ウエハW(下地膜12)の上面と付着物10の下面とを離間させて描画しているが、実際にはこれら下地膜12と付着物10とは僅かに接触している。また、ウエハWにフッ化水素の蒸気を供給する装置については、公知の気化器と処理容器とを組み合わせて構成されることから、洗浄方法を実施する処理装置と併せて後述する。
 続いて、ガスクラスターを用いて、ウエハWの表面から付着物10が除去される。このガスクラスターは、ウエハWが置かれる処理雰囲気よりも圧力が高い領域から処理雰囲気にガスを供給して、断熱膨張によりガスの凝縮温度まで冷却することによって、ガスの原子または分子が集合体として寄り集まって生成する物質である。図5には、ガスクラスターを発生させるためのノズル23の一例を示している。このノズル23は、上下方向に伸びると共に下端部が開口するように概略円筒形状に形成された圧力室32と、この圧力室32の下端部に接続されたガス拡散部33とを備えている。このガス拡散部33は、圧力室32の下端周縁部から当該圧力室32の中央部に向かって周方向に亘って水平に縮径してオリフィス部32aをなすと共に、このオリフィス部32aから下方に向かうにつれて拡径するように形成されている。前記オリフィス部32aにおける開口径及びオリフィス部32aと載置台22上のウエハWとの間の離間距離は、夫々例えば0.1mm及び6.5mm程度となっている。このノズル23の上端側には、圧力室32内に例えば二酸化炭素(CO2)ガスを供給するためのガス供給路34が接続されている。
 そして、処理雰囲気における処理圧力が例えば1~100Pa程度の真空雰囲気に設定されると共に、ノズル23に対して例えば0.3~2.0MPa程度の圧力で二酸化炭素ガスが供給される。この二酸化炭素ガスは、処理雰囲気に供給されると、急激な断熱膨張により凝縮温度以下に冷却されるので、互いの分子同士がファンデルワールス力により結合して、集合体であるガスクラスターとなる。この時、ガス供給路34やノズル23の下方側におけるガスクラスターの流路には、当該ガスクラスターをイオン化するためのイオン化装置が設けられておらず、従ってガスクラスターは、図5に示すように、非イオン化の状態でウエハWに向かって垂直に照射される。
 ウエハWの表面の付着物10は、既述のように前処理により当該ウエハWとの間の付着力が極めて弱くなっていて、下地膜12の表面とわずかに接触した状態となっている。そのため、ウエハW上の付着物10にガスクラスターが衝突すると、図5に示すように、このガスクラスターの吐出圧力により付着物10がウエハWの表面から吹き飛ばされて除去される。この時、ガスクラスターは、下地膜12と反応性を持たない二酸化炭素ガスにより構成されている。また、ガスクラスターはイオン化されずに、非イオン化の状態でウエハWに照射されている。そのため、既述の前処理によって露出しているウエハWの表面部である下地膜12は、ガスクラスターの照射によって削り取られることが抑えられ、また当該下地膜12の内部に形成された電気配線がチャージアップするリスクがない。従って、前記電気配線に対するダメージが起こらないか、あるいは当該ダメージが極めて低いレベルに抑えられる。そのため、ガスクラスター照射後のウエハWの表面は、自然酸化膜11の表面に倣ったままの状態となる。
 こうしてウエハWの面内に亘ってガスクラスターが照射されるように、ウエハWをノズル23に対して相対的に水平方向に移動させると、面内に亘って付着物10が除去されて洗浄処理が行われる。尚、既に述べたフッ化水素の蒸気により溶解した自然酸化膜11の副生成物として、水が発生する場合には、後述する温調機構によってウエハWを加温することで水の残留を抑制することができる。
 続いて、ウエハWに対して既述のフッ化水素水溶液の蒸気を供給する装置やガスクラスターを照射する装置を含めた処理装置について、以下に説明する。始めに、フッ化水素の蒸気をウエハWに供給する装置について図6を参照して説明する。この装置には、ウエハWを載置する載置台41が内部に設けられた処理容器42と、この処理容器42内にフッ化水素水溶液の蒸気を供給するための前処理機構である気化器43と、が設けられて前処理モジュールをなしている。図6中44はウエハWの搬送口、45は載置台41上のウエハWの表面においてフッ化水素の蒸気が凝縮することを抑えるためのヒーターである。
 載置台41上のウエハWに対向するように、処理容器42の天井面には、気化器43から伸びるガス供給路46の一端側が接続されている。フッ化水素の蒸気がガス供給路46から例えば窒素(N2)ガスなどのキャリアガスと共にウエハWに供給されるように構成されている。図6中V及びMは夫々バルブ及び流量調整部である。
 処理容器42の床面には、当該処理容器42内の雰囲気を排気するための排気口51が例えば複数箇所に形成されており、この排気口51から伸びる排気路52には、バタフライバルブなどの圧力調整部53を介して真空ポンプ54が接続されている。 
 そして、この処理容器42では、気化器43において蒸発したフッ化水素水溶液の蒸気がキャリアガスにより載置台41上のウエハWに対して供給されると、既述のように自然酸化膜11が溶解する。
 次に、ウエハWに対してガスクラスターを照射する装置について、図7を参照して説明する。この装置には、図7に示すように、ウエハWを内部に収納して付着物10の除去処理を行うための洗浄処理室21が設けられており、この洗浄処理室21内には、ウエハWを載置するための載置台22が配置されている。洗浄処理室21の天井面における中央部には、上方側に向かって円筒状に突出する突出部21aが形成されており、この突出部21aには既述のノズル23がガスクラスターの生成機構として設けられている。このノズル23は、この例では鉛直方向下方側を向いている。図7中40は搬送口であり、Gはこの搬送口40の開閉を行うゲートバルブである。
 例えば搬送口40に寄った位置における洗浄処理室21の床面には、ここでは図示を省略するが、載置台22に形成された貫通口を貫通するように配置された支持ピンが設けられている。そして、載置台22に設けられた図示しない昇降機構及び前記支持ピンの協働作用によって、載置台22に対してウエハWを昇降させて、洗浄処理室21の外部の図示しないウエハ搬送アームとの間においてウエハWが受け渡されるように構成されている。洗浄処理室21の床面には、当該洗浄処理室21内の雰囲気を真空排気するための排気路24の一端側が接続されており、この排気路24の他端側にはバタフライバルブなどの圧力調整部25を介して真空ポンプ26が接続されている。
 載置台22は、当該載置台22上のウエハWに対して面内に亘ってノズル23が相対的に走査されるように、洗浄処理室21内において水平方向に移動自在に構成されている。具体的には、載置台22の下方における洗浄処理室21の床面には、X軸方向に沿って水平に伸びるX軸レール27と、当該X軸レール27に沿って移動自在に構成されたY軸レール29と、が設けられている。そして、既述の載置台22は、Y軸レール29の上方に支持されている。尚、載置台22には、当該載置台22上のウエハWの温調を行うための図示しない温調機構が設けられている。
 圧力室32の上端部には、洗浄処理室21の天井面を貫通して伸びるガス供給路34の一端側が接続されており、このガス供給路34の他端側は、バルブ36及び流量調整部35を介して、二酸化炭素の貯留されたガス源37に接続されている。前記圧力室32には、図示しない圧力計が設けられており、後述の制御部67により、この圧力計を介して当該圧力室32内に供給されるガス流量が調整されるように構成されている。尚、載置台22に対するノズル23の角度や距離が図示しない駆動部により調整されるようにしても良い。このようにノズル23の角度や距離を調整した場合には、ウエハWから除去された付着物10が当該ウエハWに再付着することが防止され、あるいはパターン7へのダメージの低減が図られ、更には溝5の底面に付着した付着物10が除去されやすくなる。後述するように、前処理においてガスクラスターを照射する場合においても、同様にノズル23の角度や距離を調整するようにしても良い、
 続いて、処理容器42及び洗浄処理室21を備えた処理装置の全体の構成について、図8を参照して説明する。この処理装置には、例えば25枚のウエハWが収納された密閉型の搬送容器であるFOUP1を載置するための搬入出ポート60が横並びに例えば3箇所に設けられており、これら搬入出ポート60の並びに沿うように、大気搬送室61が設けられている。この大気搬送室61内には、ウエハWを搬送するための多関節アームにより構成されたウエハ搬送機構61aが常圧搬送機構として設けられている。また、大気搬送室61の側方側には、ウエハWの向きの調整及び位置合わせを行うためのアライメント室62が設けられており、この大気搬送室61の側方側には、前記アライメント室62に対向するように、既述の処理容器42が接続されている。また、大気搬送室61における搬入出ポート60の反対側の面には、常圧雰囲気と大気雰囲気との間で雰囲気の切り替えを行うためのロードロック室63が気密に接続されている。この例では、ロードロック室63は、横並びに2箇所に設けられている。
 大気搬送室61から見た時に、ロードロック室63、63よりも奥側には、真空雰囲気にてウエハWの搬送を行う真空搬送機構である搬送アーム64aの設けられた真空搬送室64が気密に接続されている。真空搬送室64には、既述の洗浄処理室21が気密に設けられている。また、真空搬送室64には、ウエハWにパターン7を形成するためのプラズマエッチング処理の行われるエッチング処理室65と、フォトレジストマスクのプラズマアッシング処理の行われるアッシング処理室66と、が夫々気密に接続されている。尚、この真空搬送室64に、付着物10を除去した後の処理である例えばCVD(Chemical Vapor Deposition)処理などを行う処理チャンバーを気密に接続しても良い。
 この処理装置には、装置全体の動作のコントロールを行うためのコンピュータからなる制御部67が設けられている。制御部67のメモリ内には、以上説明した前処理及び洗浄処理に加えて、エッチング処理及びアッシング処理を行うためのプログラムが格納されている。このプログラムは、ウエハWに対する処理に対応した装置の動作を実行するようにステップ群が組まれている。前記プログラムは、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの記憶媒体である記憶部68から制御部67内にインストールされる。
 この処理装置では、搬入出ポート60にFOUP1が載置されると、ウエハ搬送機構61aによりウエハWが当該FOUP1から取り出される。このウエハWの表面には、例えば既述のパターン7に対応するようにパターニングされたフォトレジストマスクが積層されている。次いで、アライメント室62においてウエハWのアライメントが行われた後、このウエハWは大気雰囲気に設定されたロードロック室63に搬入される。そして、ロードロック室63内の雰囲気が真空雰囲気に切り替えられた後、ウエハWは搬送アーム64aによりエッチング処理室65及びアッシング処理室66をこの順番で搬送されて、既に述べたパターン7の形成及びアッシング処理がこの順序で行われる。次いで、ウエハWは、ロードロック室63及び大気搬送室61を介して処理容器42内に搬送されて既述の前処理が行われた後、洗浄処理室21に搬入されてガスクラスターの照射処理が行われる。その後、処理済みのウエハWは、ロードロック室63及び大気搬送室61を介して元のFOUP1に戻される。
 上述の実施の形態によれば、ウエハWの表面に付着した付着物10を除去するにあたり、ウエハWに対して前処理としてフッ化水素の蒸気の供給を行い、ウエハWの表面における自然酸化膜11を溶解させている。そのため、付着物10は、ウエハWの表面とわずかにだけ接触した状態となり、当該表面との付着力が極めて弱くなる。従って、この付着物10に対して二酸化炭素ガスからなるガスクラスターを照射することにより、当該付着物10が容易に除去される。そのため、付着物10を除去する時に、既述のように微細なパターン7の形成されたウエハWであっても、例えばガスクラスターの照射速度を抑えることができるので、例えばライン6の倒れなどといったダメージの発生を抑制できる。
 この時、二酸化炭素ガスは、ウエハWの下地膜12に対して反応性を持っていない。また、ガスクラスターはイオン化されずにウエハWに照射されている。そのため、ウエハWにガスクラスターを照射した時に、当該ウエハWの表面が荒れたり、あるいは物理的に削れたりするダメージの発生が抑えられる。また、ガスクラスターをイオン化していないので、例えば既述の洗浄処理室21にはガスあるいはガスクラスターをイオン化する装置が不要になり、そのため装置のコストを抑えることができる。
 また、処理容器42内においてウエハWはフッ化水素の蒸気の雰囲気中に暴露されているので、前処理によりウエハWの全面に対して付着物10の付着力は一度に低下している。そのため、例えば従来の反応性ガスのガスクラスターだけを用いて付着物10を除去していた例と比べて、短時間で面内に亘って均一に処理できるので、スループットを高めることができる。更に、前処理とガスクラスターの照射とを組み合わせることにより、ガスやガスクラスター、あるいは薬液だけを用いて付着物10の除去を行う場合と比べて、ガスや薬液の使用量を抑えることができる。この時、前処理及びガスクラスターの照射のいずれの工程においても、ウエハWに対して薬液を供給していないので、廃液処理に要するコストを抑えることができる。
 既述の前処理を行うことによって、ウエハWの表面が導電性を持たない自然酸化膜11から導電性を持つ下地膜12となり、いわば当該表面が導電性を持つようになる。そのため、付着物10と自然酸化膜11とが既述の物理的な固着力に加えて例えば静電気力により互いに吸着している場合であっても、前処理により当該静電気力がなくなるか弱くなるので、付着物10がウエハWから除去されやすくなる。また、自然酸化膜11と付着物10とが互いに化学的に結合している場合であっても、当該結合している自然酸化膜11をエッチングしていることから、既述のように付着物10を容易に除去できる。
 [第1の実施の形態の変形例:シリコン基板の酸化]
 続いて、第1の実施の形態の変形例について、図9を参照して説明する。既述の第1の実施の形態では、ウエハWの表面の自然酸化膜11を除去する場合について説明したが、自然酸化膜11は膜厚などの制御が困難であるため、洗浄過程における制御性や再現性が必要である場合には、以下のようにして前処理が行われる。
 洗浄過程における制御性や再現性が必要な場合には、始めに当該下地膜12の表層の酸化処理を行う。具体的には、図9に示すように、ウエハWの表面に酸化ガスである例えばオゾンガスが供給される。このオゾンガスにより、付着物10と接触している下地膜12の表層が僅かに例えば1nmだけ酸化されて、改質層である酸化膜13が生成する。その後、既述のフッ化水素の蒸気の供給と、二酸化炭素ガスからなるガスクラスターの照射と、をこの順番で行うことにより、付着物10が前記酸化膜13と共に面内に亘って除去される。この例では、オゾンガスによる下地膜12の酸化処理とフッ化水素の蒸気の供給とにより前処理が行われることになる。ウエハWに対してオゾンガスを供給する装置としては、既述の図6における気化器43に代えてオゾンガス供給源(図示せず)を備えた装置が用いられる。
 ここで、ウエハWの下地膜12の酸化処理を行うにあたり、当該ウエハWにオゾンガスが供給されたが、オゾンガスに代えて、オゾン水(オゾンガスを含有した水溶液)が供給されるようにしても良い。ウエハWに対してオゾン水が供給される前処理モジュールの一例について、図10を参照して簡単に説明する。尚、オゾン水により下地膜12が酸化される様子や、その後の酸化膜13のエッチング処理やガスクラスターの照射については既述の例と同様であるため、説明を省略する。
 この装置には、ウエハWに対してオゾン水を供給するための処理容器81と、ウエハWを載置するための載置台をなすスピンチャック82と、が設けられている。スピンチャック82は、ウエハWの下面側中央部を支持すると共に、駆動部83により鉛直軸周りに回転自在及び昇降自在に構成されている。このスピンチャック82の上方には、ウエハWに対してオゾン水を吐出するためのオゾン水ノズル84が前処理機構として設けられている。スピンチャック82の上方側には、当該スピンチャック82上のウエハWに対向するように、当該ウエハWに対して前処理を行う雰囲気を密閉するための蓋体85が図示しない昇降機構により昇降自在に設けられている。既述のオゾン水ノズル84は、この蓋体85の中央部に取り付けられている。スピンチャック82の側方側には、周方向に亘ってウエハWの周縁部を臨むように配置されたリング状の排気路86が形成されている。排気路86の下面側には、バタフライバルブなどの圧力調整機構87を介して真空ポンプ88が接続されている。図10中81aはウエハWの搬送口、81bは前記搬送口81aを開閉するためのシャッターである。
 この処理容器81では、スピンチャック82に吸着保持されると共に鉛直軸周りに回転するウエハWの中央部に対して、オゾン水ノズル84からオゾン水が吐出されると、このオゾン水は遠心力によりウエハWの周縁部側に引き伸ばされ、ウエハWの面内に亘って液膜を形成する。そして、既述の酸化処理が終了すると、スピンチャック82が高速で回転してオゾン水を外縁部に振り切り、その後図示しないリンスノズルから吐出されるリンス液によりウエハWの表面が洗浄される。
 以上の第1の実施の形態及び第1の実施の形態の変形例において、ウエハW上にパターン7の形成された例について説明した。しかし、パターン7の形成されていない酸化シリコン膜やシリコン膜であっても、同様に前処理及び二酸化炭素ガスからなるガスクラスターの照射により付着物10が容易に除去される。即ち、例えばCVD法により形成する際に用いるソースガスには有機物が含まれているので、この有機物がウエハWの表面に付着物10として付着した場合には、以上説明した例と同様に除去される。
 また、以上の例では前処理を大気雰囲気において行ったが、真空雰囲気にて行っても良い。この場合には、前処理を行うための処理容器42と、洗浄処理を行う洗浄処理室21と、を夫々既述の図8に示す真空搬送室64に個別に接続しても良いし、これら処理容器42と洗浄処理室21とを共通化しても良い。具体的には、図11及び図12に示すように、真空搬送室64には、処理容器42を兼用する洗浄処理室21が気密に接続されており、この洗浄処理室21には、既述のノズル23に加えて、フッ化水素ガスの貯留されたガス源47が設けられている。この例では、突出部21aの外縁よりも外側における洗浄処理室21の天井面には、ガス源47から伸びるガス供給路46が複数箇所に設けられており、これらガス供給路46の開口端は、載置台22上のウエハWの中央部に向かうように各々配置されている。
 この図12に示す装置では、例えば洗浄処理室21内の圧力が前処理を行う処理圧力に設定されると共にウエハWに対して前処理が行われる。、次いで、洗浄処理室21内の圧力が前記処理圧力よりも低圧(高真空)に設定された後、既述の洗浄処理が行われる。
 [第2の実施の形態:ゲルマニウム膜]
 次いで、本発明の第2の実施の形態について、図13~図16を参照して説明する。この第2の実施の形態では、ウエハWのシリコン層14の上層側には、図13に示すように、ゲルマニウム(Ge)膜からなる下地膜12が形成されている。そして、この下地膜12の表面には、付着物10が付着している。この場合における付着物10は、前記下地膜12を例えばCVD法などにより形成する時に生成する副生成物などを含んでいる。この第2の実施の形態では、以下の前処理が行われる。
 具体的には、下地膜12の表面に、オゾンガスが供給される。このオゾンガスにより、下地膜12の表層には、図14に示すように、当該表層が僅かに酸化されて酸化ゲルマニウム(Ge-O)膜15が改質層として生成する。次いで、図15に示すように、このウエハWに対して例えば水蒸気(H2O)からなるガスクラスターが照射されると、酸化ゲルマニウム膜15が水蒸気に溶解してエッチングされる。そのため、これらオゾンガスによる下地膜12の酸化処理と水蒸気のガスクラスターの供給とによる前処理によって、図16に示すように、付着物10はウエハWの表面とわずかにだけ接触した状態となり、付着力が極めて弱くなる。この時、水蒸気からなるガスクラスターは、下地膜12であるゲルマニウム膜とは反応性を持っていない。そのため、水蒸気からなるガスクラスターにより、下地膜12に対するダメージが抑えられた状態で酸化ゲルマニウム膜15が選択的にエッチングされる。
 そして、このウエハWに対して二酸化炭素ガスからなるガスクラスターが照射される。二酸化炭素ガスのガスクラスターは、下地膜12であるゲルマニウム膜とは反応性を持っていないので、下地膜12にはダメージを与えずに、付着物10あるいは付着物10と共に水蒸気に溶解した酸化ゲルマニウム膜15が除去される。
 この第2の実施の形態の下地膜12を酸化する装置としては、既述の図6に示す装置において気化器43に代えてオゾンガス源の接続された構成が用いられる。また、水蒸気からなるガスクラスターを照射する装置としては、既述の洗浄処理室21と同じ構成の前処理室を真空搬送室64に気密に接続すると共に、ガス源37として純水を気化する気化器が設けられる。第2の実施の形態では、ウエハWにオゾンガスを供給するためのガス供給路46と、水蒸気からなるガスクラスターを照射するノズル23と、が前処理機構をなす。また、下地膜12を酸化するにあたり、既述の図10の装置を用いて、オゾンガスに代えてオゾン水をウエハWに供給しても良い。
 この時、オゾンガスのガスクラスターを用いる場合には、以下のように構成しても良い。即ち、図17に示すように、二酸化炭素ガスからなるガスクラスターを照射するガス供給路34やガス源37と共に、純水を気化する気化器38及びこの気化器38から伸びる水蒸気供給路39をノズル23に接続しても良い。従って、この例では、前処理におけるガスクラスターを生成する生成機構は、洗浄用ガスのガスクラスターの生成機構と同一のものである。この場合には、既に説明したように、下地膜12が酸化された後、水蒸気からなるガスクラスターの供給及び二酸化炭素ガスからなるガスクラスターの供給がこの順番で行われるようにしても良い。また、後述の実施例から分かるように、これらガスクラスターを同時にウエハWに供給して、酸化ゲルマニウム膜15のエッチング処理と付着物10の除去とを同時に行っても良い。また、酸化ゲルマニウム膜15がエッチングされる時に、水蒸気からなるガスクラスターが供給されることに代えて、気体である水蒸気あるいは液体である純水がウエハWに供給されるようにしても良い。この場合には、図6や図10の装置において、フッ化水素水溶液やオゾン水に代えて純水が用いられる。
 [第3の実施の形態:フォトレジストマスク]
 次に、本発明の第3の実施の形態について、図18及び図19を参照して説明する。この実施の形態では、図18に示すように、ウエハWに既述のパターン7を形成するためのフォトレジストマスク16に付着した付着物10が除去される例を示している。即ち、フォトレジストマスク16に対して露光処理及び現像処理を行ってパターニングした後には、当該パターニングによりフォトレジストマスク16から除去された有機成分がフォトレジストマスク16の表面に付着物10として付着する。そのため、この付着物10は以下のようにして除去される。
 具体的には、既述の図6に示す装置を用いて、ウエハWの表面に対して、前処理としてフッ化水素の蒸気に代えてオゾンガスが供給される。この処理により、図19に示すように、フォトレジストマスク16の表面は僅かに酸化し、エッチングされるので、付着物10は、フォトレジストマスク16に対する付着力が極めて弱くなる。そのため、このウエハWに対して二酸化炭素ガスからなるガスクラスターが照射されると、当該ガスクラスターは前記表面の下層側の下地膜12であるフォトレジストマスク16とは反応性を持っていないので、付着物10と共に改質層18が除去される。
 この例においても、オゾンガスに代えてオゾン水がウエハWに供給されるようにしても良い。また、前処理として、オゾンガスを用いてガスクラスターを発生させ、当該ガスクラスターによりフォトレジストマスク16の表面が酸化されるようにしても良い。この場合には、オゾンガスのガスクラスターと二酸化炭素ガスのガスクラスターとが同時にウエハWに供給されるようにして、前処理と付着物10の除去とが同時に行われるようにしても良い。
 また、フォトレジストマスク16上の付着物10を除去する場合には、前処理としては、オゾンガスの供給に代えて、図20に示すように、紫外線(UV)が照射されるようにしても良い。即ち、紫外線が照射されることによって、フォトレジストマスク16の表面が劣化により硬化して脆くなる。そのため、このフォトレジストマスク16に対して二酸化炭素ガスからなるガスクラスターが照射されると、同様に付着物10と共にフォトレジストマスク16の表面における硬化した層が除去される。従って、この例においては、二酸化炭素ガスからなるガスクラスターの照射工程は、前処理の一部(フォトレジストマスク16の表面のエッチング)を兼ねていると言える。あるいは、前処理として、オゾンガスの供給と紫外線(UV)の照射とが同時に行われるようにしても良い。この場合、既述の例と同様に、表面のエッチングによって付着物10の付着力が極めて弱くなるので、このウエハWに対して二酸化炭素ガスからなるガスクラスターが照射されると、付着物10は容易に除去される。
 ウエハWに紫外線を照射する装置について、図21を参照して簡単に説明する。この装置には、処理容器91と、この処理容器91内に設けられた載置台92とが配置されている。載置台92に対向する位置における処理容器91の天井面には、例えば石英などからなる透明窓93が気密に取り付けられている。透明窓93の上方側に、載置台92上のウエハWに対して透明窓93を介して紫外線を照射するための紫外線ランプ94が前処理機構として設けられている。図21中95はガス供給管、96は例えば窒素ガスの貯留されたガス源であり、また97は真空ポンプ、98は搬送口である。この処理容器91は、例えば既述の真空搬送室64に気密に接続される。尚、ウエハWに紫外線が照射される前記処理容器91と、ウエハWにオゾンガスが供給される既述の図6の処理容器42とを共通化して、ウエハWに対してオゾンガスが供給されながら紫外線が照射されるようにしても良い。
 [第4の実施の形態:金属膜]
 以下に、本発明の第4の実施の形態について図22及び図23を参照して説明する。この第4の実施の形態では、ウエハWのシリコン層14に積層した金属膜17あるいは既述の溝5内に埋め込んだ金属膜17上の付着物10が除去される例を示している。この例では、金属膜17は、例えばタングステン(W)により構成されている。即ち、金属膜17をCVD法などにより形成する時に用いられるソースガスには、既述のように有機物が含まれているので、図22に示すように、当該有機物からなる残渣が金属膜17の表面に付着物10として付着する場合がある。そこで、以下のようにしてこの付着物10が除去される。
 具体的には、図23に示すように、図6に示す装置を用いて、ウエハWに対して前処理として塩化水素(HCl)ガスが供給される。この塩化水素ガスにより、金属膜17の表層が僅かにエッチングされて除去されていく。そのため、付着物10は、金属膜17に対する付着力が極めて弱くなる。従って、このウエハWに対して、下地膜12である金属膜17に対して反応性を持っていない二酸化炭素ガスからなるガスクラスターが照射されると、付着物10が容易に除去される。
 この場合において前処理に用いられるガスとしては、塩化水素ガスに代えて、フッ化塩素(ClF3)ガスを用いても良い。また、金属膜17としては、タングステン膜に代えて、チタン膜であっても良い。
 [第5の実施の形態:付着物のエッチング]
 ここで、本発明の第5の実施の形態について述べる。以上の各例では、前処理としてウエハWの表面がエッチングされる例について説明したが、この第5の実施の形態では、ウエハWの表面がエッチングされることに代えて、付着物10の表面がエッチングされる。即ち、付着物10を構成する材質が既知の場合には、あるいは付着物10に含まれている材質の予測が立つ場合には、当該材質がエッチングされると、例えば付着物10の下端部は、ウエハW側から見ると上方側に後退することになる。従って、この場合にも付着物10がウエハWから脱離しやすくなり、同様に二酸化炭素ガスからなるガスクラスターにより当該付着物10が容易に除去される。
 図24は、付着物10を構成する材質が酸化シリコンである場合についての例を示しており、当該付着物10は、ウエハWの表面である例えば金属膜17に付着している。この場合には、図25に示すように、フッ化水素の蒸気がウエハWに供給されることにより、付着物10の表面がエッチングされるので、当該付着物10は、ウエハWの表面にいわば乗っているだけの状態となる。そのため、その後二酸化炭素ガスからなるガスクラスターが照射されることにより、前記付着物10は容易に除去される。
 この第5の実施の形態では、付着物10が酸化シリコンである場合について説明したが、付着物10が有機物の場合にはオゾンや紫外線が前処理時にウエハWの表面に供給(照射)され、付着物10が金属粒子の場合には塩素系のガスが前処理時に供給される。また、付着物10がシリコンである場合には、既述の第1の実施の形態の変形例で説明したように、付着物10における表面のエッチングを行う前に、当該表面が予め酸化されるようにしても良い。更に、付着物10の内部が一様に同じ材質により構成されていなくても、付着物10の一部にエッチングされる物質が含まれていれば、当該一部がエッチングされることにより、同様にウエハWの表面に対する付着物10の付着力を低下させることができる。
 また、図26に示すように、ウエハWの表面と付着物10の表面とに同じ材質この例では酸化シリコンが含まれている場合には、付着物10の表面と共にウエハWの表面についてもエッチングできるので、付着物10の付着力を更に低下させることができる。
 洗浄処理室21にてウエハWに照射するガスクラスターには、既述の各例では二酸化炭素ガスを用いた。しかし、ガスクラスターに使用するガスとしては、二酸化炭素ガスに代えて、ウエハWの下地膜12に対して反応性を持たない非反応性ガス例えばアルゴン(Ar)ガスや窒素(N2)ガスを用いても良いし、あるいはこれらガスを混合して用いても良い。この時、二酸化炭素ガスからなるガスクラスターは、ガスクラスターのサイズ、すなわちガスクラスターの運動エネルギーが前記アルゴンガスや窒素ガスよりも大きい。そのため付着物10の除去効果も大きくなるので、この二酸化炭素ガスを用いてガスクラスターを生成させることが好ましい。
 更に、後述の実施例に示すように、前記非反応性ガスと共に、ウエハWの表面または付着物10の表面に対してエッチング作用を持つエッチングガスを用いても良い。即ち、前記非反応性ガス及び前記エッチングガスによりガスクラスターを発生させ、いわば前処理(エッチング処理)と付着物10の除去処理とが同時に行われるようにしても良い。
 また、以上の各例において、洗浄工程あるいは前処理工程においてウエハWに対してガスクラスターがに照射されるノズル23については、各々一つだけ設けたが、各々複数配置しても良い。この場合には、各々のノズル23は、例えばウエハWの上方側において、当該ウエハWの外縁と同心円状となるようにリング状に複数配置される。また、このリング状に配置した複数のノズル23からなる照射部がウエハWの中心部側から外縁部に向かって複数周に亘って配置される。また、ノズル23が複数配置される場合には、ウエハWの上方側に碁盤の目状に配置されても良い。
 以上説明した処理装置としては、前処理を行う装置と二酸化炭素ガスからなるガスクラスターを照射する装置とが設けられた構成を挙げた。しかし、これら装置が互いに個別にスタンドアローンの装置として配置されると共に、これら装置間において外部のウエハアームによりウエハWが受け渡される構成を採っても良い。
 また、本発明は、付着物10が除去される時に照射されるガスクラスターがイオン化していても、例えば解離の程度が弱い状態でイオン化していても権利範囲に含まれる。
 以下に、本発明についての実験において得られた結果を説明する。この実験は、ベアシリコンウエハに対して粒径が23nmの酸化シリコン(シリカ)からなる粒子を吹き付けて当該ウエハを強制的に汚染させ、その後以下の実験条件に示す処理を行った時に、前記粒子の付着状況がどのように変化するか確認した。
 (実験条件)
 比較例
 ガスクラスターのガス:アルゴンガス100%
 ガスクラスターノズルへの導入ガス圧力:0.899MPaG(ゲージ読み値)
 実施例
 ガスクラスターのガス:アルゴンガス95%+フッ化水素5%
 ガスクラスターノズルへの導入ガス圧力:0.85MPaG(ゲージ読み値)
 比較例においてガスクラスターの照射前及び照射後において撮像したSEM(Scanning Electron Microscope)写真を図27の左側及び右側に夫々示す。図27では、アルゴンガスのガスクラスターの照射では粒子はほとんど除去されていないことが分かる。
 一方、実施例においてガスクラスターの照射前及び照射後におけるSEM写真を図28の左側及び右側に夫々示すと、ガスクラスターの照射後には、ほぼ全ての粒子が除去できていることが分かる。従って、アルゴンガスのガスクラスターだけでは、粒子とウエハとの付着力に打ち勝つことができなかったが、アルゴンガスと共にフッ化水素ガスによりガスクラスターを発生させることにより、前記粒子が容易に除去されることが分かった。
 従って、フッ化水素のガスクラスターにより、既述のようにシリカ粒子の表面がエッチングされて、ウエハへの付着力が低下していると言える。そのため、実施例では、比較例より導入圧力が低くても、粒子が容易に除去されていた。この時、実施例では、アルゴンガスと共にフッ化水素ガスを用いてガスクラスターを発生させているが、これらガスを混合させることにより、前処理と洗浄処理とが同時に行われること、詳しくはシリカ粒子がエッチングされると速やかにアルゴンガスのガスクラスターにより除去されることが分かった。そのため、前処理と洗浄処理とを別個にこの順番で行った場合であっても、この実施例と同様に粒子が容易に除去されることが分かる。
W ウエハ
7 パターン
10 付着物
11 自然酸化膜
12 下地膜
13 酸化膜
14 シリコン層
15 酸化ゲルマニウム膜
16 フォトレジストマスク
17 金属膜
23 ノズル
 
 

Claims (16)

  1.  付着物が付着した被処理体の表面から付着物を除去する洗浄方法において、
     被処理体の表面及び付着物の少なくとも一方に対して、エッチング処理を含む前処理を行う工程と、
     被処理体が置かれる処理雰囲気よりも圧力の高い領域から、前記被処理体の表面に露出している膜に対して反応性を持たない洗浄用ガスを処理雰囲気に吐出し、断熱膨張により前記洗浄用ガスの原子または分子の集合体であるガスクラスターを生成させる工程と、
     前記前処理が行われた被処理体の表面に、洗浄用ガスのガスクラスターを照射して、付着物を除去する工程と、を含むことを特徴とする洗浄方法。
  2.  前記前処理は、被処理体の表面及び付着物の少なくとも一方に対する改質処理と、前記改質処理により改質された改質層に対するエッチング処理とを含むことを特徴とする請求項1に記載の洗浄方法。
  3.  前記前処理を行う工程と前記付着物を除去する工程とは、同時に行われることを特徴とする請求項1に記載の洗浄方法。
  4.  前記前処理は、前記エッチング処理を行うためにガスクラスターを照射する工程を含むことを特徴とする請求項1に記載の洗浄方法。
  5.  前記エッチング処理を行うためにガスクラスターを照射する工程は、前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程においてガスクラスターを照射する生成機構と同一の生成機構を用いて照射する工程であることを特徴とする請求項4に記載の洗浄方法。
  6.  前記エッチング処理を行うためにガスクラスターを照射する工程は、前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程においてガスクラスターを照射する生成機構とは異なる生成機構を用いて照射する工程であることを特徴とする請求項4に記載の洗浄方法。
  7.  前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程は、ガスクラスターを照射する生成機構を複数配置して、前記生成機構からガスクラスターを照射する工程であることを特徴とする請求項1に記載の洗浄方法。
  8.  前記エッチング処理を行うためにガスクラスターを照射する工程は、ガスクラスターを照射する生成機構を複数配置して、前記生成機構からガスクラスターを照射する工程であることを特徴とする請求項4に記載の洗浄方法。
  9.  前記洗浄用ガスのガスクラスターを照射して、付着物を除去する工程は、ガスクラスターを照射する生成機構における被処理体に対する角度が可変な状態で行われることを特徴とする請求項1に記載の洗浄方法。
  10.  前記エッチング処理を行うためにガスクラスターを照射する工程は、ガスクラスターを照射する生成機構における被処理体に対する角度が可変な状態で行われることを特徴とする請求項4に記載の洗浄方法。
  11.  付着物が付着した被処理体の表面から付着物を除去する被処理体の処理装置において、
     内部に被処理体が載置される前処理室と、
     前記前処理室内に載置された被処理体の表面または付着物の少なくとも一方に対してエッチング処理を含む前処理を行うための前処理機構を有する前処理モジュールと、
     内部に被処理体が載置される洗浄処理室と、
     前記洗浄処理室に設けられ、前記洗浄処理室の内部の処理雰囲気よりも圧力の高い領域から、前記被処理体の表面に露出している膜に対して反応性を持たない洗浄用ガスを処理雰囲気に吐出して、断熱膨張により前記洗浄用ガスの原子または分子の集合体であるガスクラスターを生成させ、前記付着物を除去するために、前処理後の被処理体に供給するガスクラスターノズルと、
     前記前処理室及び前記洗浄処理室に対して被処理体の受け渡しを行う搬送機構と、を備えたことを特徴とする処理装置。
  12.  前記前処理室は、内部が常圧雰囲気に保たれた常圧処理室であり、常圧雰囲気にて被処理体の搬送を行う常圧搬送室に接続され、
     前記洗浄処理室は、内部が真空雰囲気に保たれた真空処理室であり、真空雰囲気にて被処理体の搬送を行う真空搬送室に気密に接続され、
     前記常圧搬送室と前記真空搬送室との間には、内部の雰囲気の切り替えを行うためのロードロック室が設けられ、
     前記常圧搬送室及び前記真空搬送室には、前記搬送機構として常圧搬送機構及び真空搬送機構が夫々設けられていることを特徴とする請求項11に記載の処理装置。
  13.  前記前処理室及び前記洗浄処理室は、内部が各々真空雰囲気に保たれた真空処理室であり、
     前記前処理室及び前記洗浄処理室との間には、前記搬送機構が配置された真空搬送室が気密に介在して設けられていることを特徴とする請求項11に記載の処理装置。
  14.  前記前処理室及び前記洗浄処理室は、共通化されていることを特徴とする請求項11に記載の処理装置。
  15.  前記真空搬送室には、前記前処理に先立って行われる真空処理あるいは付着物の除去を行った後に続く真空処理を行うための真空処理室が気密に接続されていることを特徴とする請求項12に記載の処理装置。
  16.  被処理体の洗浄を行う処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
     前記コンピュータプログラムは、請求項1に記載の洗浄方法を実施するようにステップが組まれていることを特徴とする記憶媒体。
     
     
PCT/JP2012/004521 2011-07-19 2012-07-12 洗浄方法、処理装置及び記憶媒体 WO2013011673A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/232,989 US9837260B2 (en) 2011-07-19 2012-07-12 Cleaning method, processing apparatus, and storage medium
KR1020147004113A KR101672833B1 (ko) 2011-07-19 2012-07-12 세정 방법, 처리 장치 및 기억 매체
CN201280033416.2A CN103650117B (zh) 2011-07-19 2012-07-12 清洗方法和处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157955A JP5776397B2 (ja) 2011-07-19 2011-07-19 洗浄方法、処理装置及び記憶媒体
JP2011-157955 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011673A1 true WO2013011673A1 (ja) 2013-01-24

Family

ID=47557874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004521 WO2013011673A1 (ja) 2011-07-19 2012-07-12 洗浄方法、処理装置及び記憶媒体

Country Status (6)

Country Link
US (1) US9837260B2 (ja)
JP (1) JP5776397B2 (ja)
KR (1) KR101672833B1 (ja)
CN (1) CN103650117B (ja)
TW (1) TWI540658B (ja)
WO (1) WO2013011673A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378898A (zh) * 2013-02-25 2016-03-02 艾克索乔纳斯公司 减少缺陷的基板处理方法
JP2015026745A (ja) * 2013-07-26 2015-02-05 東京エレクトロン株式会社 基板洗浄方法及び基板洗浄装置
JP6311236B2 (ja) * 2013-08-20 2018-04-18 東京エレクトロン株式会社 基板洗浄装置
KR101429732B1 (ko) * 2013-12-18 2014-08-12 주식회사 엔픽스 건식 박리 장치, 건식 박리를 위한 고속 입자 빔을 생성하는 노즐 및 고속 입자 빔을 이용한 건식 박리 방법.
JP6566683B2 (ja) * 2014-07-02 2019-08-28 東京エレクトロン株式会社 基板洗浄方法および基板洗浄装置
WO2016036739A1 (en) * 2014-09-05 2016-03-10 Tel Epion Inc. Process gas enhancement for beam treatment of a substrate
KR102476040B1 (ko) 2014-10-06 2022-12-08 티이엘 매뉴팩처링 앤드 엔지니어링 오브 아메리카, 인크. 극저온 유체 혼합물로 기판을 처리하는 시스템 및 방법
US10014191B2 (en) 2014-10-06 2018-07-03 Tel Fsi, Inc. Systems and methods for treating substrates with cryogenic fluid mixtures
US10625280B2 (en) 2014-10-06 2020-04-21 Tel Fsi, Inc. Apparatus for spraying cryogenic fluids
JP6545053B2 (ja) * 2015-03-30 2019-07-17 東京エレクトロン株式会社 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法
WO2017094388A1 (ja) 2015-11-30 2017-06-08 東京エレクトロン株式会社 基板処理装置のチャンバークリーニング方法
CN108369905B (zh) 2015-12-07 2022-08-23 东京毅力科创株式会社 基板清洗装置
JP6881922B2 (ja) * 2016-09-12 2021-06-02 株式会社Screenホールディングス 基板処理方法および基板処理装置
US10910253B2 (en) 2016-11-09 2021-02-02 Tel Manufacturing And Engineering Of America, Inc. Magnetically levitated and rotated chuck for processing microelectronic substrates in a process chamber
TWI765936B (zh) 2016-11-29 2022-06-01 美商東京威力科創Fsi股份有限公司 用以對處理腔室中之微電子基板進行處理的平移與旋轉夾頭
WO2018140789A1 (en) 2017-01-27 2018-08-02 Tel Fsi, Inc. Systems and methods for rotating and translating a substrate in a process chamber
US10890843B2 (en) 2017-07-28 2021-01-12 Tokyo Electron Limited Fast imprint lithography
KR20200121829A (ko) 2018-02-19 2020-10-26 티이엘 매뉴팩처링 앤드 엔지니어링 오브 아메리카, 인크. 제어 가능한 빔 크기를 갖는 처리 스프레이를 가지는 마이크로전자 처리 시스템
CN110189994A (zh) * 2018-02-23 2019-08-30 东莞新科技术研究开发有限公司 半导体表面微颗粒的处理方法
TWI776026B (zh) * 2018-06-04 2022-09-01 美商帕斯馬舍門有限責任公司 切割晶粒附接膜的方法
US11545387B2 (en) 2018-07-13 2023-01-03 Tel Manufacturing And Engineering Of America, Inc. Magnetic integrated lift pin system for a chemical processing chamber
CN109545710A (zh) * 2018-09-29 2019-03-29 东方日升新能源股份有限公司 一种降低折射率的镀膜方法
US11177150B2 (en) * 2019-03-14 2021-11-16 Taiwan Semiconductor Manufacturing Co., Ltd. Cluster tool and method using the same
CN112447496A (zh) * 2019-08-28 2021-03-05 东莞新科技术研究开发有限公司 半导体离子刻蚀清洗方法
JP7334259B2 (ja) * 2019-11-01 2023-08-28 東京エレクトロン株式会社 基板洗浄装置および基板洗浄方法
US11551942B2 (en) * 2020-09-15 2023-01-10 Applied Materials, Inc. Methods and apparatus for cleaning a substrate after processing
CN116013804A (zh) * 2021-10-22 2023-04-25 长鑫存储技术有限公司 清洗装置及其清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137797A (ja) * 1999-11-17 2001-05-22 Dasan C & I Co Ltd クラスタを利用した乾式洗浄装置及びその方法
JP2001168076A (ja) * 1999-09-29 2001-06-22 Toshiba Corp 表面処理方法
JP2008124356A (ja) * 2006-11-15 2008-05-29 Sekisui Chem Co Ltd 表面処理方法及び装置
WO2010021265A1 (ja) * 2008-08-18 2010-02-25 岩谷産業株式会社 クラスタ噴射式加工方法、半導体素子、微小電気機械素子、及び、光学部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512106A (en) * 1993-01-27 1996-04-30 Sumitomo Heavy Industries, Ltd. Surface cleaning with argon
JPH11330033A (ja) * 1998-05-12 1999-11-30 Fraser Scient Inc エネルギーを有するクラスタ・ビームを使用して汚染表面を洗浄する方法および装置
US6689284B1 (en) 1999-09-29 2004-02-10 Kabushiki Kaisha Toshiba Surface treating method
US20040157456A1 (en) * 2003-02-10 2004-08-12 Hall Lindsey H. Surface defect elimination using directed beam method
JP3816484B2 (ja) * 2003-12-15 2006-08-30 日本航空電子工業株式会社 ドライエッチング方法
JP2006278387A (ja) * 2005-03-28 2006-10-12 Dainippon Screen Mfg Co Ltd 基板洗浄装置および基板洗浄方法
JP2007242869A (ja) 2006-03-08 2007-09-20 Tokyo Electron Ltd 基板処理システム
JP2008227283A (ja) * 2007-03-14 2008-09-25 Mitsui Eng & Shipbuild Co Ltd SiCパーティクルモニタウエハの製造方法
JP5016351B2 (ja) * 2007-03-29 2012-09-05 東京エレクトロン株式会社 基板処理システム及び基板洗浄装置
JP2008304737A (ja) 2007-06-08 2008-12-18 Sii Nanotechnology Inc フォトマスクの欠陥修正方法及び異物除去方法
TW200902461A (en) * 2007-06-29 2009-01-16 Asahi Glass Co Ltd Method for removing foreign matter from glass substrate surface and method for processing glass substrate surface
JP5006134B2 (ja) 2007-08-09 2012-08-22 東京エレクトロン株式会社 ドライクリーニング方法
JP5411438B2 (ja) 2008-03-18 2014-02-12 信越化学工業株式会社 Soi基板の製造方法
US7776743B2 (en) * 2008-07-30 2010-08-17 Tel Epion Inc. Method of forming semiconductor devices containing metal cap layers
US8097860B2 (en) * 2009-02-04 2012-01-17 Tel Epion Inc. Multiple nozzle gas cluster ion beam processing system and method of operating
JP5623104B2 (ja) 2010-03-18 2014-11-12 東京エレクトロン株式会社 基板洗浄装置及び基板洗浄方法
US8440578B2 (en) * 2011-03-28 2013-05-14 Tel Epion Inc. GCIB process for reducing interfacial roughness following pre-amorphization
US8513138B2 (en) * 2011-09-01 2013-08-20 Tel Epion Inc. Gas cluster ion beam etching process for Si-containing and Ge-containing materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168076A (ja) * 1999-09-29 2001-06-22 Toshiba Corp 表面処理方法
JP2001137797A (ja) * 1999-11-17 2001-05-22 Dasan C & I Co Ltd クラスタを利用した乾式洗浄装置及びその方法
JP2008124356A (ja) * 2006-11-15 2008-05-29 Sekisui Chem Co Ltd 表面処理方法及び装置
WO2010021265A1 (ja) * 2008-08-18 2010-02-25 岩谷産業株式会社 クラスタ噴射式加工方法、半導体素子、微小電気機械素子、及び、光学部品

Also Published As

Publication number Publication date
CN103650117A (zh) 2014-03-19
JP2013026327A (ja) 2013-02-04
CN103650117B (zh) 2016-09-07
KR20140048989A (ko) 2014-04-24
JP5776397B2 (ja) 2015-09-09
KR101672833B1 (ko) 2016-11-04
TW201330139A (zh) 2013-07-16
US20140227882A1 (en) 2014-08-14
TWI540658B (zh) 2016-07-01
US9837260B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP5776397B2 (ja) 洗浄方法、処理装置及び記憶媒体
KR101671555B1 (ko) 기판 세정 장치 및 진공 처리 시스템
JP6833923B2 (ja) 反射型マスクの洗浄装置および反射型マスクの洗浄方法
TWI632002B (zh) 汙染物移除設備及方法
JP2017199909A (ja) Aleおよび選択的蒸着を用いた基板のエッチング
TW201719712A (zh) 原子層蝕刻平坦度:半導體工業內部及外部
WO2014049959A1 (ja) 基板洗浄方法、基板洗浄装置及び真空処理システム
JP2009188257A (ja) プラズマエッチング方法及びプラズマエッチング装置並びに記憶媒体
US20100214712A1 (en) Method for charge-neutralizing target substrate and substrate processing apparatus
JP5181085B2 (ja) 処理装置及び処理方法
US20230230811A1 (en) Surface modification for metal-containing photoresist deposition
US8398745B2 (en) Substrate processing apparatus and exhaust method therefor
JP4656364B2 (ja) プラズマ処理方法
JPH07142438A (ja) 洗浄装置、半導体製造装置及び半導体製造ライン
KR100743275B1 (ko) 플라즈마 처리 방법 및 후처리방법
KR20070070499A (ko) 기판을 처리하는 장치 및 방법
JP2020155603A (ja) 基板処理方法および基板処理装置
KR102113931B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP4405236B2 (ja) 基板処理方法および基板処理装置
WO2022201830A1 (ja) 基板処理方法及び基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147004113

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12814238

Country of ref document: EP

Kind code of ref document: A1