WO2012150804A2 - Method for preparing nano powder using supporter - Google Patents
Method for preparing nano powder using supporter Download PDFInfo
- Publication number
- WO2012150804A2 WO2012150804A2 PCT/KR2012/003422 KR2012003422W WO2012150804A2 WO 2012150804 A2 WO2012150804 A2 WO 2012150804A2 KR 2012003422 W KR2012003422 W KR 2012003422W WO 2012150804 A2 WO2012150804 A2 WO 2012150804A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier
- nanoparticles
- metal
- vapor
- stirring
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/223—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/02—Particle morphology depicted by an image obtained by optical microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Definitions
- the present invention relates to a method for producing nanopowder using a carrier.
- Nanoparticles are formed by the chemical process in the initial process of converting metal ions into metal solid particles by adding a reducing agent and a dispersant to the metal ions present in an aqueous solution.
- Such chemical method is not easy to control the nanoparticle size and separation of the nanoparticles, and the characteristics of the nanoparticles vary depending on the type of redox agent, dispersant, PH, temperature, etc., the flammability side in the production of nanoparticles Has many problems.
- a method of physically making nanoparticles by using a metal atom vapor which rapidly converts a metal atom vapor into a gas at a high temperature and expands it to a low temperature.
- the method uses a high temperature to the metal or metal compound to produce a vapor, or by using a DC sputtering, DC-RF sputter, ECR, laser beam sputtering (electron or energy)
- the atomic vapor generated by irradiating a solid having a particle with a solid is injected into a gas of a low temperature or passed through a region of a low temperature so that the atomic vapor is rapidly condensed to form nano-sized particles.
- Another physical method is a mechanical grinding method in which a mechanical force is applied to the material to grind the material into fine particles. In order to process the material into nano particles having a size of 10 nm, a long grinding process is required.
- the physical methods are 80 to 90% of the particles in the powder is formed in a micrometer size significantly larger than the nanoparticles, when the nano-particles are made by the physical method using the vacuum equipment, the particle size is uneven and productivity is low due to low productivity There is a problem falling.
- the present invention provides a nano-powder manufacturing method characterized by generating nano-particle vapor using physical vapor deposition, and depositing nanoparticles on a carrier
- a nano-powder manufacturing method characterized by generating nano-particle vapor using physical vapor deposition, and depositing nanoparticles on a carrier
- an object of the present invention is to provide a method for producing a nano-powder that can effectively control the size and content of the nanoparticles by controlling the growth of the nanoparticles.
- a vacuum deposition tank a stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a nanopowder manufacturing apparatus attached to a carrier, which is provided on the stirring vessel in the vacuum deposition tank and constitutes a deposition source for generating steam particles for forming nanoparticles.
- the nanoparticles can be uniformly formed on the carrier, so that nanoparticles attached to the carrier can be prepared with a uniform size.
- Figure 1 is a schematic diagram showing that the movement of the nanoparticle vapor in the method of manufacturing nanopowder of the present invention using the average free path.
- FIG. 2 is a photograph before (left) and after (right) the formation of silver nanopowders of about 40 ppm concentration on a salt carrier.
- 3A is a photograph of before (left) and after (right) formation of silver nanoparticles on a hydroxyl ethyl cellulose (HEC) carrier.
- HEC hydroxyl ethyl cellulose
- 3B is a photograph of a solution in which silver nanoparticles are uniformly dispersed, obtained by dissolving HEC carrier to which silver nanoparticles are attached.
- FIG. 4 is a photograph before (left) and after (right) before forming silver nanoparticles on a sand support.
- FIG. 6 is a photograph of before (left) and after (right) the formation of gold nanoparticles on a sugar carrier.
- Figure 7 is a gold nanoparticles / sugar made in Figure 6 is dissolved in water. It can be seen that the gold nanoparticles are completely dispersed to form colloids.
- FIG. 10 is a photograph when Pd / glucose is dissolved in water in FIG. 8. It can be seen that a gray colloid is formed as a whole.
- FIG. 11 is a photograph of the formation of silver nanoparticles on the PET plastic grains (left) and melting them at 180 degrees Celsius (right). As you can see in the picture, the silver nanoparticles are completely dissolved in PET plastic polymer and yellow.
- the present invention a vacuum deposition tank, a stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And using a nano-powder manufacturing apparatus attached to the carrier, consisting of a deposition source which is provided on the stirring tank in the vacuum deposition tank and generates vapor particles for forming nanoparticles,
- Nano powder production method of the present invention a vacuum deposition tank, the stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a deposition source provided on the stirring vessel in the vacuum deposition tank and configured to generate vapor particles for forming nanoparticles, wherein the powder manufacturing apparatus attached to the carrier is used.
- Nanoparticle manufacturing method characterized in that for controlling the vacuum degree of the vacuum deposition tank to 10 "4 to 1 torr.
- the vacuum degree of the vacuum deposition tank to 10 "4 to 1 torr.
- vapor particles for forming nanoparticles Two vapor particles for nanoparticle formation are deposited on the carrier near the evaporation source, but as the carriers move away from the evaporation source, the average free path of vapor particles decreases so that the vapor particles do not deposit on the carrier. do.
- the vaporization direction of the atomized vapor is opposite to the carrier so that the metal vapor is scattered upwards, but the vacuum degree is 10 _4 to 1 torr, so that a layer stone is formed between the metal vapor particles and the inert gas particles due to the inert gas filled therein.
- the path is shortened so that the metal vapor particles move downward by gravity and are deposited on the stirred carrier to form nanoparticles.
- the vacuum degree of the vacuum deposition tank is controlled by including an inert gas, and the inert gas may be argon (Ar), ne (Ne), N 2 , 0 2 , CH 4, etc., but is not limited thereto.
- the step of generating steam particles for forming nanoparticles using the deposition source may use physical vapor deposition, for example, resistance heating, plasma heating, induction heating. , Thermal deposition such as laser heating, DC sputtering, DC RF sputtering, laser sputtering, electron beam deposition (E-Beam Evaproation), and the like, but are not necessarily limited thereto.
- metals, metal compounds, organic materials, and the like may be used, but are not necessarily limited thereto.
- Cobalt, copper, silver, nickel, manganese, palladium, indium, iron, tungsten, titanium, alloys thereof may be used as the metal, but is not necessarily limited thereto.
- the metal compound may be a metal oxide, a metal nitride, a metal carbide, or a metal carbon nitride, but is not limited thereto.
- the metal compound examples include alumina (A1 2 0 3 ), a metal oxide, tungsten carbide (WC), a metal carbide, nitrogen aluminum (A1N), a metal nitride, and titanium carbonitride (TiCN), a metal carbon nitride. It is not necessarily limited thereto.
- the carrier may be activated carbon, a hydrocarbon compound, alumina (A1 2 0 3 ), tungsten carbide (WC), glass, sand, or a material soluble in water or a solvent, such as glucose, sugar, Salt, PMMA, hydroxyl ethyl cellulose (HEC), PET, PTFE and the like can be used.
- a hydrocarbon compound such as alumina (A1 2 0 3 ), tungsten carbide (WC), glass, sand, or a material soluble in water or a solvent, such as glucose, sugar, Salt, PMMA, hydroxyl ethyl cellulose (HEC), PET, PTFE and the like can be used.
- stirring speed is less than 1 rpm, there is a problem that the steam particles are not uniformly adhered to the surface of the carrier because the stirring is not made sufficiently, there is a problem that the stirred carrier is scattered when the stirring speed exceeds 200 rpm.
- a method for manufacturing nanopowders may control the growth of nanoparticles by controlling the degree of vacuum degree of a deposition screw and the like, thereby effectively controlling the size and content of the nanopowders.
- Nanoparticle manufacturing method characterized in that it comprises the step of depositing vapor particles on the carrier to form nanoparticles.
- vapor particles for forming nanoparticles are deposited on the carrier to form a nucleus for forming the nanoparticles, and then the nucleus further forms the vapor particles.
- the carrier is stirred and rotated to mix, and vapor particles are deposited on a new carrier on which no vapor particles are deposited or on a carrier site on which no vapor particles are deposited, thereby providing a uniform size. Nanoparticles can be formed.
- the vapor particles for forming the nanoparticles are deposited on the carrier at a thickness of 1 A to 10 per unit area per minute.
- further reaction may be performed to synthesize the final male material. That is, the carrier and the vapor particles to be deposited can react to form oxide, nitride, carbide or carbonitride nanopowders.
- nitrogen aluminum (A1N), alumina (A1 2 0 3 ), metal carbide, metal nitride, and the like which have been conventionally synthesized at a high temperature / high pressure, are manufactured at low temperature according to the manufacturing method of the present invention. Can be synthesized and coated.
- tungsten carbide (WC) or cobalt (Co) is doped by forming tungsten nanoparticles on an activated carbon carrier or cobalt (Co) nanoparticles on a tungsten powder and then carbonizing in an inert gas atmosphere.
- Nano tungsten carbide can be synthesized.
- the male product can be manufactured by subsequent treatment.
- a substance that is well soluble in water, a polar organic solvent and a non-polar organic solvent is used as a carrier, and after the nanoparticles are formed on such a carrier, the carrier is dissolved and removed. It can also be recovered.
- the salt is agitated by a rotating screw provided in the stirring vessel, wherein the stirring speed of the salt by the screw is maintained below lOOrpm.
- the silver vapor was deposited on a salt carrier to prepare a salt-silver nanopowder in which silver nanoparticles were attached to salt at a concentration of about 40 ppm.
- Example 1 except that the use of hydroxyl ethyl cellulose (HEC) as a carrier and silver as a deposition source was carried out in the same manner as in Example 1, HEC-silver nano Powder was prepared.
- HEC hydroxyl ethyl cellulose
- Example 1 except that water is used as a carrier and silver is used as a deposition source, the water-silver nanopowder was prepared in the same manner as in Example 1.
- Example 1 except that sand is used as a carrier and silver is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sand ⁇ nanopowder.
- Example 1 except that salt is used as a carrier and Si is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a salt-Si nano powder.
- Example 1 except that sugar is used as a carrier and gold is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sugar-gold nanopowder.
- Example 1 except that sugar is used as a carrier and platinum is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sugar-platinum nano powder.
- Example 8 Preparation of Glucose-Pd Nanopowder
- glucose was used as a carrier and Pd was used as a deposition source
- the same procedure as in Example 1 was performed to prepare glucose-Pd nanopowder.
- PET-silver nanopowder was prepared in the same manner as in Example 1 except for using PET as a carrier and silver as a deposition source.
- Example 1 PTFE-silver nanopowder was prepared in the same manner as in Example 1 except that PTFE (Teflon) was used as the carrier and silver was used as the deposition source. In Examples 1 to 10, the appearance change of the carrier was visually observed.
- Figure 2 is a photograph before and after making the silver nano powder of about 40ppm concentration on a salt carrier. As shown in the picture, the initial salt color was white, but it turned to pale yellow, which shows that silver nanoparticles were formed.
- FIG. 3A is a photograph before and after forming silver nanoparticles on a hydroxyl ethyl cellulose (HEC) carrier.
- HEC hydroxyl ethyl cellulose
- sand has a bright color before forming silver nanoparticles, and then turned to a light dark color after forming silver nanoparticles.
- 5 is a photograph of before (left) and after (right) the formation of Si nanoparticles on a salt carrier. As shown in the picture, the salt carrier was white before the formation of the nanoparticles, but after the Si nanoparticles were formed on the salt carrier, it was found to be pale yellow green.
- 6 is a photograph of before (left) and after (right) the formation of gold nanoparticles on a sugar carrier. As shown in the picture, the sugar carrier has a deep purple color, which is inherent in the gold nanoparticles, after the gold nanoparticles are formed.
- FIG. 7 shows the gold nanoparticles / sugar made in FIG. 6 dissolved in water. It can be seen that the gold nanoparticles are completely dispersed to form colloids.
- FIG 8 is a photograph of before (left) and after (right) the formation of platinum nanoparticles on a sugar carrier. As shown in the picture, it can be seen that the sugar carrier has gray, which is intrinsic color of the platinum nanoparticles after the formation of the platinum nanoparticles.
- FIG. 9 is a photograph of before (left) and after (right) the formation of Pd nanoparticles on a glucose carrier. As shown in the photo, glucose is gray after Pd nanoparticles are formed on the glucose carrier , because Pd becomes nanoparticles.
- FIG. 10 is a photograph when Pd / glucose is dissolved in water in FIG. 8. It can be seen that a gray colloid is formed as a whole.
- FIG. 11 is a photograph of silver nanoparticles formed on PET plastic grains (left) and melted at 180 degrees Celsius (right). As you see in the picture
- the silver nanoparticles are completely dissolved in the PET plastic polymer and are yellow in general.
- FIG. 12 is a photograph of silver nanoparticles formed on PTFE (teflon) powder (left) and melted at 250 ° C. high temperature (right). As you can see in the picture, the yellow nanoparticles appear to be uniformly mixed with Teflon polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
The present invention relates to a method for preparing nano powder attached to a supporter, the method using a device for preparing nano powder attached to a supporter, and the device comprising: a vacuum evaporation vessel; an agitating vessel provided inside the vacuum evaporation vessel; a screw provided inside the agitating vessel, for agitating a supporter; and an evaporation source provided on the upper portion of the agitating vessel inside the vacuum evaporation vessel, for generating a vapor particle for forming a nano particle, and the method comprising the steps of: a) including an inert gas in the vacuum evaporation vessel so that the degree of vacuum of the vacuum evaporation vessel becomes 10-4-1 torr; b) generating the vapor particle for forming the nano particle using the evaporation source; c) agitating the supporter with the speed of the screw adjusted at 1-200rpm; and d) forming the nano particle by evaporating the vapor particle on the supporter.
Description
【명세서】 【Specification】
담체를 이용한 나노 파우더 제조 방법 Nano powder manufacturing method using carrier
【기술분야】 Technical Field
본 발명은 담체를 이용한 나노 파우더 제조 방법에 관한 것이다. 본 출원은 2011년 5월 2일에 한국 특허청에 제출된 한국 특허 출원 제 1으2011ᅳ 0041584호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다. 【배경기술】 The present invention relates to a method for producing nanopowder using a carrier. This application claims the benefit of the application date of Korean Patent Application No. 1 2011 # 0041584 filed with the Korea Patent Office on May 2, 2011, the entire contents of which are incorporated herein. Background Art
나노 입자는 화학적 방법으로는, 수용액 상태에서 존재하는 금속 이온들에 환원제와 분산제를 첨가함으로써 금속이온들이 금속고체입자로 전환되는 초기 과정에서 형성된다. Nanoparticles are formed by the chemical process in the initial process of converting metal ions into metal solid particles by adding a reducing agent and a dispersant to the metal ions present in an aqueous solution.
상기와 같은 화학적 방법은, 나노 입자 크기의 제어 및 나노 입자의 분리가 용이하지 않고, 산화 환원제의 종류, 분산제, PH, 온도 등에 따라 나노 입자의 특성이 달라지므로, 나노 입자의 제조에 있어서 재연성 측면에서 많은 문제점을 가지고 있다. Such chemical method is not easy to control the nanoparticle size and separation of the nanoparticles, and the characteristics of the nanoparticles vary depending on the type of redox agent, dispersant, PH, temperature, etc., the flammability side in the production of nanoparticles Has many problems.
또한, 상기와 같은 화학적 방법은, 금속을 산이나 염기에 먼저 녹여 이온 형태로 산화시키고 이를 다시 환원제를 사용하여 금속원소로 환원시키는 과정에서 많은 산화환원시약을 사용해야 하므로 사용한 시약 폐기물의 처리를 위한 추가적 비용이 많이 발생한다. In addition, the above chemical method, because the redox first dissolved in the acid or base to oxidize to ionic form, and then to the metal element using a reducing agent again, a number of redox reagents must be used for the treatment of the reagent waste used. It costs a lot.
또한, 상기와 같은 화학적 방법^로 나노 입자를 제조할 경우, 산업에 이용하기 위해서는 흔합제, 안정화제, 유기용매, 상용화제 등 다른 화학약품의 처리가 필요한 데, 그 결과 다른 화학약품들과의 예기치 않은 반웅이 진행되어, 최종 제품의 변색이 일어나 상품성이 떨어지고, 초기의 분산제가 최종 제품의 화학물질들간의 연계성이 떨어져서 분산제가 해리되며, 나노 입자들 간에도 서로 뭉쳐져 크기가 커지게 되어 나노 입자의 효과를 얻을 수 없는 문제점이 발생하기 때문에, 나노 입자의 산업에의 웅용이 제한되고 있다. In addition, in the case of manufacturing nanoparticles by the chemical method described above, in order to use in industry, it is necessary to treat other chemicals such as a mixture, stabilizer, organic solvent, compatibilizer, and as a result Unexpected reactions occur, discoloration of the final product results in poor commerciality, dispersant dissociates because the initial dispersant loses linkages between the chemicals in the final product, and the nanoparticles aggregate together to increase in size. Since the problem which cannot obtain an effect arises, the use of nanoparticles in the industry is restrict | limited.
상기 화학적 방법과는 달리, 물리적으로 금속원자 증기 (vapor)의 웅축을 이용하여 나노 입자를 만드는 방법이 있는데, 이는 금속이나 금속화합물을 고온에서 기체로 만들고 이를 낮은 온도로 팽창시키면서 금속원자 증기를 급속하게 웅축시켜 나노 입자를 형성하는 것이다.
상기 방법은 금속이나 금속화합물에 고온을 가하여 증기를 만들거나, 디시 스퍼터링 (DC sputtering), 디시-알에프 스퍼터링 (DC-RF sputter), ECR, 레이저 빔 스퍼터링 (laser beam sputter)을 이용하여 전자나 에너지를 가진 입자를 고체에 조사함으로써 발생하는 원자증기를 낮은 온도의 기체에 분사하거나 낮은 온도의 영역을 통과하게 하여 상기 원자증기들이 급속히 웅축되어 나노 크기의 입자를 형성하게 하는 것이다. Unlike the chemical method, there is a method of physically making nanoparticles by using a metal atom vapor, which rapidly converts a metal atom vapor into a gas at a high temperature and expands it to a low temperature. To form nanoparticles. The method uses a high temperature to the metal or metal compound to produce a vapor, or by using a DC sputtering, DC-RF sputter, ECR, laser beam sputtering (electron or energy) The atomic vapor generated by irradiating a solid having a particle with a solid is injected into a gas of a low temperature or passed through a region of a low temperature so that the atomic vapor is rapidly condensed to form nano-sized particles.
상기 물리적인 방법들은 금속 그 자체를 증기로 만들어 이를 다시 금속 나노 입자로 만들기 때문에 화학적 방법과는 달리 막대한 양의 시약 사용 문제 및 이로 인한 폐수처리문제가 발생하지 않아 공정이 단순한 장점이 있다. Since the physical methods make the metal itself into a vapor and make it into metal nanoparticles, unlike the chemical method, a problem of using a large amount of reagents and a waste water treatment caused by this does not occur, so the process is simple.
또 다른 물리적 방법으로는 기계적인 힘을 재료에 가하여 재료를 미세한 입자로 분쇄하는 기계적 분쇄 방식이 있는데, 재료를 10 nm 사이즈의 나노 입자로 가공하기 위해선 장시간의 분쇄공정이 필요하다. Another physical method is a mechanical grinding method in which a mechanical force is applied to the material to grind the material into fine particles. In order to process the material into nano particles having a size of 10 nm, a long grinding process is required.
상기 물리적 방법들은 분말 중 80 ~ 90%의 입자가 나노 입자보다 상당히 큰 마이크로미터 크기로 형성되며, 이러한 진공 설비를 이용한 물리적 방법으로 나노 입자를 만들 경우, 입자의 크기가 불균일하고 생산성이 낮아 경제성이 떨어지는 문제점이 있다. The physical methods are 80 to 90% of the particles in the powder is formed in a micrometer size significantly larger than the nanoparticles, when the nano-particles are made by the physical method using the vacuum equipment, the particle size is uneven and productivity is low due to low productivity There is a problem falling.
따라서, 최근에는 진공상태에서 물리적인 방법으로 금속 또는 금속산화물을 증기화하고, 교반되는 담체 위에 금속■ 또는 산화물 증기를 증착시켜 나노 입자를 형성하는 방법이 시도되고 있다. Therefore, recently, a method of screen vapor a metal or metal oxide by a physical method in vacuum, and depositing a metal oxide or ■ steam over a stirred carriers form nanoparticles been attempted.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 [Technical problem]
상기 종래 기술의 문제점을 해결하기 위하여, 본 발명은 물리적 기상증착법 (physical vapor deposition)을 이용하여 나노 입자 증기를 발생시키고, 담체 상에 나노 입자를 증착하는 것을 특징으로 하는 나노 파우더 제조 방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art, the present invention provides a nano-powder manufacturing method characterized by generating nano-particle vapor using physical vapor deposition, and depositing nanoparticles on a carrier For the purpose of
또한, 본 발명은 나노 입자의 성장을 제어하여 나노 입자의 크기와 함량을 효과적으로 제어할 수 있는 나노 파우더 제조 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing a nano-powder that can effectively control the size and content of the nanoparticles by controlling the growth of the nanoparticles.
【기술적 해결방법】
상기 목적을 달성하기 위하여 , 본 발명은, 진공 증착조, 상기 진공 증착조 내에 구비 된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내에 교반조 상부에 구비 되고 나노입자 형성을 위한 증기 입자를 발생시 키는 증착원으로 구성되는, 담체에 부착된 나노 파우더 제조 장치를 사용하고, Technical Solution In order to achieve the above object, the present invention, a vacuum deposition tank, a stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a nanopowder manufacturing apparatus attached to a carrier, which is provided on the stirring vessel in the vacuum deposition tank and constitutes a deposition source for generating steam particles for forming nanoparticles.
a) 상기 진공 증착조의 진공도가 10—4 내지 1 torr 가 되도록 불활성 기체를 진공 증착조에 포함시 키는 단계 ; b) 상기 증착원을 이용하여 나노입자 형성을 위 한 증기 입자를 발생시키는 단계 ; c) 상기 스크류의 속도를 1 내지 200rpm 으로 조절하여 담체를 교반하는 단계 ; 및 d) 상기 담체 상에 증기 입자를 증착하여 나노입자를 형성하는 단계를 포함하는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법을 제공한다. a) incorporating an inert gas into the vacuum deposition tank such that the vacuum degree of the vacuum deposition tank is from 10 to 4 to 1 torr; b) generating steam particles to form nanoparticles using the deposition source; c) stirring the carrier by adjusting the speed of the screw to 1 to 200 rpm; And d) depositing vapor particles on the carrier to form nanoparticles.
【유리 한 효과】 [Favorable effect]
본 발명에 따르면, 담체에 균일하게 나노 입자를 형성시 킬 수 있어 균일한 크기 의, 담체에 부착된 나노 파우더를 제조할 수 있다. According to the present invention, the nanoparticles can be uniformly formed on the carrier, so that nanoparticles attached to the carrier can be prepared with a uniform size.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 본 발명 의 나노 파우더 제조 방법에서 나노 입자 증기의 이동은 평균자유경로를 이용함을 나타낸 모식도이다. Figure 1 is a schematic diagram showing that the movement of the nanoparticle vapor in the method of manufacturing nanopowder of the present invention using the average free path.
도 2 는 소금 담체 상에 약 40ppm 농도의 은 나노 파우더를 형성하기 전 (좌측)과 후 (우측)의 사진이다. FIG. 2 is a photograph before (left) and after (right) the formation of silver nanopowders of about 40 ppm concentration on a salt carrier.
도 3a 는 히드록실 에 틸 셀를로오스 (hydroxyl ethyl cellulose, HEC) 담체 상에 은 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 3A is a photograph of before (left) and after (right) formation of silver nanoparticles on a hydroxyl ethyl cellulose (HEC) carrier.
도 3b 는 은 나노 입자가 부착된 HEC 담체를 물에 용해시켜 수득한 은 나노 입자가 균일하게 분산된 용액의 사진이다. 3B is a photograph of a solution in which silver nanoparticles are uniformly dispersed, obtained by dissolving HEC carrier to which silver nanoparticles are attached.
도 4 는 모래 담체 상에 은 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 4 is a photograph before (left) and after (right) before forming silver nanoparticles on a sand support.
도 5 는 소금 담체 상에 Si 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 5 is a photograph of before (left) and after (right) the formation of Si nanoparticles on a salt carrier.
도 6 은 설탕 담체 상에 금 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다.
도 7은 도 6에서 만든 금 나노 입자 /설탕을 물에 녹인 것이다. 금 나노 입자가 완전히 분산되어 콜로이드를 형성한 것을 볼 수 있다. 6 is a photograph of before (left) and after (right) the formation of gold nanoparticles on a sugar carrier. Figure 7 is a gold nanoparticles / sugar made in Figure 6 is dissolved in water. It can be seen that the gold nanoparticles are completely dispersed to form colloids.
도 8 은 설탕 담체 상에 백금 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 사진에서 보듯이 나노 입자 형성 후 백금 나노 입자의 고유색인 회색을 띄고 있는 것을 볼 수 있다. 8 is a photograph of before (left) and after (right) the formation of platinum nanoparticles on a sugar carrier. As shown in the picture, it can be seen that after the nanoparticles are formed, gray, which is an intrinsic color of the platinum nanoparticles, is present.
도 9 은 포도당 담체 상에 Pd 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 형성 후 엷은 회색을 띄는데 Pd 가 나노 입자가 될 경우 입자 회색을 띄기 때문이다. 9 is a photograph of before (left) and after (right) the formation of Pd nanoparticles on a glucose carrier. It is pale gray after formation because it becomes particle gray when Pd becomes nanoparticles.
도 10 는 도 8 에서 Pd/포도당을 물에 녹였을 때의 사진이다. 전체적으로 회색의 콜로이드 (colloid)를 형성한 것을 볼 수 있다. FIG. 10 is a photograph when Pd / glucose is dissolved in water in FIG. 8. It can be seen that a gray colloid is formed as a whole.
도 11 은 PET 폴라스틱 알갱이들 위에 은 나노 입자를 형성한 것 (좌측)과, 이를 섭씨 180 도에서 녹인 것 (우측)의 사진이다. 사진에서 보듯이 PET 플라스틱 고분자에 은 나노 입자들이 완전히 녹아 전체적으로 노란색을 띄는 것을 볼 수 있다. 11 is a photograph of the formation of silver nanoparticles on the PET plastic grains (left) and melting them at 180 degrees Celsius (right). As you can see in the picture, the silver nanoparticles are completely dissolved in PET plastic polymer and yellow.
도 12은 PTFE (테프론) 분말에 은 나노 입자를 형성한 것 (좌측)과, 이를 12 shows silver nanoparticles formed on PTFE (teflon) powder (left), and
250 °C 고온에서 녹인 것 (우측)의 사진이다. It is a photograph of what melted at 250 ° C high temperature (right).
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하에서, 본 발명을 더욱 상세히 설명하도록 한다. Hereinafter, the present invention will be described in more detail.
본 발명은, 진공 증착조, 상기 진공 증착조 내에 구비된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내에 교반조 상부에 구비되고 나노입자 형성을 위한 증기 입자를 발생시키는 증착원으로 구성되는, 담체에 부착된 나노 파우더 제조 장치를 사용하고, The present invention, a vacuum deposition tank, a stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And using a nano-powder manufacturing apparatus attached to the carrier, consisting of a deposition source which is provided on the stirring tank in the vacuum deposition tank and generates vapor particles for forming nanoparticles,
a) 상기 진공 증착조의 진공도가 10—4 내지 1 torr 가 되도톡 불활성 기체를 진공 증착조에 포함시키는 단계; b) 상기 증착원을 이용하여 나노입자 형성을 위한 증기 입자를 발생시키는 단계; c) 상기 스크류의 속도를 1 내지 200rpm 으로 조절하여 담체를 교반하는 단계; 및 d) 상기 담체 상에 증기 입자를 증착하여 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법을 제공한다.
본 발명의 나노 파우더 제조 방법은, 진공 증착조, 상기 진공 증착조 내에 구비된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내에 교반조 상부에 구비되고 나노입자 형성을 위한 증기 입자를 발생시키는 증착원으로 구성되는, 담체에 부착된 파우더 제조 장치를 사용하는 것을 특징으로 한다. a) incorporating an inert gas into the vacuum deposition vessel such that the vacuum degree of the vacuum deposition vessel is from 10 to 4 to 1 torr; b) generating steam particles for forming nanoparticles using the deposition source; c) stirring the carrier by adjusting the speed of the screw to 1 to 200 rpm; And d) depositing vapor particles on the carrier to form nanoparticles. Nano powder production method of the present invention, a vacuum deposition tank, the stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a deposition source provided on the stirring vessel in the vacuum deposition tank and configured to generate vapor particles for forming nanoparticles, wherein the powder manufacturing apparatus attached to the carrier is used.
본 발명에 따른 나노 파우더 제조 방법은, 상기 진공 증착조의 진공도를 10"4 내지 1 torr 로 조절하는 것을 특징으로 한다. 상기 진공도가 1요4 torr 이하의 저진공에선 나노입자 형성을 위한 증기 입자가 발생되는 증착원으로부터 가까운 담체쪽에는 나노입자 형성을 위한 증기 입자가 두¾게 증착되지만, 담체들이 증착원에서 멀어질수록 증기 입자들의 평균 자유 행적의 거리가 짧아져서 증기 입자는 담체에 증착되지 않게 된다. Nanoparticle manufacturing method according to the invention, characterized in that for controlling the vacuum degree of the vacuum deposition tank to 10 "4 to 1 torr. In the low vacuum having a vacuum degree of less than 1 to 4 torr vapor particles for forming nanoparticles Two vapor particles for nanoparticle formation are deposited on the carrier near the evaporation source, but as the carriers move away from the evaporation source, the average free path of vapor particles decreases so that the vapor particles do not deposit on the carrier. do.
본 발명에서는 원자화된 증기의 비산 방향이 담체 반대 방향이어서 금속 증기는 상방으로 비산하지만 진공도가 10_4 내지 1 torr 이기 때문에 내부에 채워진 불활성 가스로 인한 금속 증기 입자와 불활성 가스 입자간의 층돌이 일어나 평균자유경로가 짧아져서 금속 증기 입자가 중력에 의해 하향방향으로 이동하여 교반되는 담체 상에 증착됨으로써 나노 입자를 형성한다. In the present invention, the vaporization direction of the atomized vapor is opposite to the carrier so that the metal vapor is scattered upwards, but the vacuum degree is 10 _4 to 1 torr, so that a layer stone is formed between the metal vapor particles and the inert gas particles due to the inert gas filled therein. The path is shortened so that the metal vapor particles move downward by gravity and are deposited on the stirred carrier to form nanoparticles.
상기 진공 증착조의 진공도는 불활성 가스를 포함시켜 조절하며, 상기 불활성 가스는 아르곤 (Ar), 네은 (Ne), N2, 02, CH4 등일 수 있으나, 반드시 이에 제한되지는 않는다. The vacuum degree of the vacuum deposition tank is controlled by including an inert gas, and the inert gas may be argon (Ar), ne (Ne), N 2 , 0 2 , CH 4, etc., but is not limited thereto.
본 발명에 따른 나노 파우더 제조 방법에서, 상기 증착원을 이용하여 나노입자 형성을 위한 증기입자를 발생시키는 단계는, 물리적 기상증착법을 사용할 수 있으며, 그 예로 저항 가열법, 플라즈마 가열법, 유도가열법, 레이저 가열법 등의 열 증착, 디시 스퍼터링 (DC Sputtering), 디시 알에프 스퍼터링 (DO RF Sputtering), 레이저 스퍼터링, 전자 빔 증착 (E-Beam Evaproation) 등을 들 수 있으나, 반드시 이에 제한되는 것은 아니다. In the method for producing nanopowder according to the present invention, the step of generating steam particles for forming nanoparticles using the deposition source may use physical vapor deposition, for example, resistance heating, plasma heating, induction heating. , Thermal deposition such as laser heating, DC sputtering, DC RF sputtering, laser sputtering, electron beam deposition (E-Beam Evaproation), and the like, but are not necessarily limited thereto.
상기 나노 입자의 원재료로는 금속, 금속화합물, 유기물 등을 사용할 수 있으나, 반드시 이에 제한되지는 않는다. As the raw material of the nanoparticles, metals, metal compounds, organic materials, and the like may be used, but are not necessarily limited thereto.
상기 금속으로는 코발트, 구리, 은, 니켈, 망간, 팔라듐, 인듐, 철, 텅스텐, 티타늄, 이들의 합금을 사용할 수 있으나, 반드시 이에 제한되지는 않는다.
상기 금속화합물은 금속 산화물, 금속 질화물, 금속 탄화물, 금속 탄 질화물일 수 있으나, 반드시 이에 제한되지는 않는다. Cobalt, copper, silver, nickel, manganese, palladium, indium, iron, tungsten, titanium, alloys thereof may be used as the metal, but is not necessarily limited thereto. The metal compound may be a metal oxide, a metal nitride, a metal carbide, or a metal carbon nitride, but is not limited thereto.
상기 금속화합물의 예로, 금속 산화물인 알루미나 (A1203), 금속 탄화물인 텅스텐 카바이드 (WC), 금속 질화물인 질소 알루미늄 (A1N), 금속 탄 질화물인 탄질화 티타늄 (TiCN)을 들 수 있으나, 반드시 이에 제한되지는 않는다. Examples of the metal compound include alumina (A1 2 0 3 ), a metal oxide, tungsten carbide (WC), a metal carbide, nitrogen aluminum (A1N), a metal nitride, and titanium carbonitride (TiCN), a metal carbon nitride. It is not necessarily limited thereto.
본 발명의 바람직 한 실시 예에 따르면, 상기 담체로는 활성탄, 탄화수소 화합물, 알루미나 (A1203), 텅스텐 카바이드 (WC), 유리 , 모래, 또는 물이나 용매에 녹는 물질, 예컨대 포도당, 설탕, 소금, PMMA, 히드록실 에 틸 셀를로오스 (hydroxyl ethyl cellulose, HEC), PET, PTFE 등을 사용할 수 있다. According to a preferred embodiment of the present invention, the carrier may be activated carbon, a hydrocarbon compound, alumina (A1 2 0 3 ), tungsten carbide (WC), glass, sand, or a material soluble in water or a solvent, such as glucose, sugar, Salt, PMMA, hydroxyl ethyl cellulose (HEC), PET, PTFE and the like can be used.
또한, 본 발명에 따른 나노 파우더 제조 방법은, 상기 스크류의 속도를 In addition, the nano-powder manufacturing method according to the invention, the speed of the screw
1 내지 200 rpm 으로 조절하는 것을 특징으로 한다. It is characterized by adjusting at 1 to 200 rpm.
상기 교반속도가 1 rpm 미만일 경우에는 교반이 충분히 이루어지지 않아 증기 입자가 담체 표면에 균일하게 부착되지 못하는 문제점 이 있으며, 교반 속도가 200 rpm 을 초과할 경우에는 교반되는 담체가 비산되는 문제점 이 있다. If the stirring speed is less than 1 rpm, there is a problem that the steam particles are not uniformly adhered to the surface of the carrier because the stirring is not made sufficiently, there is a problem that the stirred carrier is scattered when the stirring speed exceeds 200 rpm.
본 발명에 따른 나노 파우더 제조 방법은, 증착조의 진공도 스크류의 속도 등을 조절함으로써 나노 입자의 성 장을 제어하여 나노 파우더의 크기와 함량을 효과적으로 제어할 수 있다. According to the present invention, a method for manufacturing nanopowders may control the growth of nanoparticles by controlling the degree of vacuum degree of a deposition screw and the like, thereby effectively controlling the size and content of the nanopowders.
본 발명에 따른 나노 파우더 제조 방법은, 상기 담체 상에 증기 입자를 증착하여 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 한다. Nanoparticle manufacturing method according to the invention, characterized in that it comprises the step of depositing vapor particles on the carrier to form nanoparticles.
상기 담체 상에 증기 입자를 증착하여 나노 입자를 형성하는 단계에서는, 나노입자 형성을 위 한 증기 입자가 담체 상에 증착되어 나노 입자를 형성하기 위한 핵을 형성하며, 이후 상기 핵이 증기 입자의 추가적 인 증착에 의해 나노 입자를 형성 한 후에 담체가 교반, 회 전되 어 흔합되며 , 증기 입자가 증착되지 않은 새로운 담체 상, 또는 증기 입자가 증착되지 않은 담체 부위에 증기 입자가 증착됨으로써 , 균일한 크기 의 나노 입자를 형성할 수 있다. In the step of depositing vapor particles on the carrier to form nanoparticles, vapor particles for forming nanoparticles are deposited on the carrier to form a nucleus for forming the nanoparticles, and then the nucleus further forms the vapor particles. After the nanoparticles are formed by phosphorus deposition, the carrier is stirred and rotated to mix, and vapor particles are deposited on a new carrier on which no vapor particles are deposited or on a carrier site on which no vapor particles are deposited, thereby providing a uniform size. Nanoparticles can be formed.
바람직하게는, 상기 나노입자 형성을 위 한 증기 입자는 담체 상에 분당 단위면적 당 1 A 내지 10 두께로 증착된다. Preferably, the vapor particles for forming the nanoparticles are deposited on the carrier at a thickness of 1 A to 10 per unit area per minute.
본 발명에 따라 제조된 담체에 부착된 나노 파우더 에 대해, 추가적 인 반웅을 진행하여 최종 웅용 물질을 합성할 수 있다.
즉, 담체와, 증착되는 증기 입자는 반웅하여 산화물 (oxide), 질화물 (nitride), 탄화물 (carbide) 또는 질탄화물 (carbonitride) 나노 파우더를 형성할 수 있다. With respect to the nano powder attached to the carrier prepared according to the present invention, further reaction may be performed to synthesize the final male material. That is, the carrier and the vapor particles to be deposited can react to form oxide, nitride, carbide or carbonitride nanopowders.
예를 들어, 기존에 고온 /고압에서 합성되던 질소 알루미늄 (A1N), 알루미나 (A1203), 메탈 카바이드 (Metal carbide), 메탈 나이트라이드 (Metal nitride) 등을 본 발명의 제조방법에 따라 저온에서 합성 및 코팅할 수 있다. For example, nitrogen aluminum (A1N), alumina (A1 2 0 3 ), metal carbide, metal nitride, and the like, which have been conventionally synthesized at a high temperature / high pressure, are manufactured at low temperature according to the manufacturing method of the present invention. Can be synthesized and coated.
또한, 본 발명에 따르면, 담체로 웅용제품의 한 종류 이상의 화합물 또는 최종 웅용 제품의 한 성분을 사용하고 이러한 담체 상에 형성된 나노 입자를 포함한 응용 제품들을 제조할 수 있다. In addition, according to the present invention, it is possible to produce applications using one or more kinds of compounds of the end product or one component of the final end product and including nanoparticles formed on such a carrier.
예를 들어, 활성탄 담체 상에 텅스텐 나노 입자를 형성하거나, 텅스텐 분말 상에 코발트 (Co)를 나노 입자로 형성한 후 불활성 가스 분위기에서 탄화처리하여 텅스텐 카바이드 (WC) 또는 코발트 (Co)가 도핑된 나노 텅스텐 카바이드를 합성할 수 있다. 이와 같이 담체로 기능성 재료를 사용하고 담체 상에 나노 입자를 형성한 후, 후속 처리를 통해 웅용 제품을 제조할 수 있다. For example, tungsten carbide (WC) or cobalt (Co) is doped by forming tungsten nanoparticles on an activated carbon carrier or cobalt (Co) nanoparticles on a tungsten powder and then carbonizing in an inert gas atmosphere. Nano tungsten carbide can be synthesized. As described above, after the functional material is used as the carrier and the nanoparticles are formed on the carrier, the male product can be manufactured by subsequent treatment.
또한, 본 발명에 따르면, 담체로 물, 극성 유기용매, 비극성 유기용메에 잘 녹는 물질을 사용하고 이러한 담체 상에 나노 입자를 형성한 후 담체를 용해시켜 제거한 후, 금속 또는 금속화합물의 나노 파우더만 회수할 수도 있다. In addition, according to the present invention, a substance that is well soluble in water, a polar organic solvent and a non-polar organic solvent is used as a carrier, and after the nanoparticles are formed on such a carrier, the carrier is dissolved and removed. It can also be recovered.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 통해 본 발명을 설명하도록 한다. 이들 실시예는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다. Hereinafter, the present invention will be described through embodiments of the present invention with reference to the accompanying drawings. These examples are merely exemplary and do not limit the technical scope of the present invention.
<실시예 > <Example>
〈실시예 1〉 소금-은 나노 파우더의 제조 Example 1 Preparation of Salt-Silver Nano Powder
진공조에 아르곤 (Ar)을 주입하여 진공도를 10-3torr 로 조절한 후, 은을 증착원으로 하여 직류 스퍼터 (DC Sputter)로 은 증기를 발생시켰다. 이 때, 상기 은 증기가 비산되는 방향은 담체인 소금이 담겨있는 교반조의 반대 방향, 즉 상향 방향이 되도톡 장치하였다. In then injected into the argon (Ar) to adjust the degree of vacuum in the vacuum tank 10- 3 torr, DC sputtering to a deposition source is a (DC Sputter) is steam was generated. At this time, the silver vapor is scattered in the opposite direction of the stirring vessel containing the carrier salt, that is, the upward direction.
상기 소금은 교반조에 구비된 회전 스크류에 의하여 교반되며, 이 때 스크류에 의한 소금의 교반속도는 lOOrpm이하가 유지되도록 하였다.
상기 은 증기를 소금 담체에 증착시켜 약 40ppm 의 농도로 은 나노 입자가 소금에 붙은, 소금-은 나노 파우더를 제조하였다. The salt is agitated by a rotating screw provided in the stirring vessel, wherein the stirring speed of the salt by the screw is maintained below lOOrpm. The silver vapor was deposited on a salt carrier to prepare a salt-silver nanopowder in which silver nanoparticles were attached to salt at a concentration of about 40 ppm.
〈실시예 2> HEC-은 나노 파우더의 제조 Example 2 Preparation of HEC-Silver Nano Powder
상기 실시예 1 에서, 담체로 히드록실 에틸 셀롤로오스 (hydroxyl ethyl cellulose(HEC))을 사용하고 은을 증착원으로 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여, HEC-은 나노 파우더를 제조하였다. In Example 1, except that the use of hydroxyl ethyl cellulose (HEC) as a carrier and silver as a deposition source was carried out in the same manner as in Example 1, HEC-silver nano Powder was prepared.
〈실시예 3> 물-은 나노 파우더의 제조 Example 3 Preparation of Water-Silver Nano Powder
상기 실시예 1 에서, 담체로 물을 사용하고 은을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 물-은 나노 파우더를 제조하였다. In Example 1, except that water is used as a carrier and silver is used as a deposition source, the water-silver nanopowder was prepared in the same manner as in Example 1.
<실시예 4〉 모래-은 나노 파우더의 제조 Example 4 Preparation of Sand-Silver Nanopowders
상기 실시예 1 에서, 담체로 모래를 사용하고 은을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 모래ᅳ은 나노 파우더를 제조하였다. In Example 1, except that sand is used as a carrier and silver is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sand 나노 nanopowder.
〈실시예 5> 소금 -Si 나노 파우더의 제조 Example 5 Preparation of Salt-Si Nanopowders
상기 실시예 1에서, 담체로 소금을 사용하고 Si를 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 소금 -Si 나노 파우더를 제조하였다. In Example 1, except that salt is used as a carrier and Si is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a salt-Si nano powder.
<실시예 6〉 설탕ᅳ금 나노 파우더의 제조 Example 6 Preparation of Sugar Platinum Nano Powder
상기 실시예 1 에서, 담체로 설탕을 사용하고 금을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 설탕-금 나노 파우더를 제조하였다. In Example 1, except that sugar is used as a carrier and gold is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sugar-gold nanopowder.
〈실시예 7> 설탕 -백금 나노 파우더의 제조 Example 7 Preparation of Sugar-Platinum Nanopowders
상기 실시예 1 에서, 담체로 설탕을 사용하고 백금을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 설탕 -백금 나노 파우더를 제조하였다. In Example 1, except that sugar is used as a carrier and platinum is used as a deposition source, it was carried out in the same manner as in Example 1, to prepare a sugar-platinum nano powder.
〈실시예 8> 포도당 -Pd 나노 파우더의 제조
상기 실시예 1 에서, 담체로 포도당을 사용하고 Pd 를 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, 포도당 -Pd 나노 파우더를 제조하였다. Example 8 Preparation of Glucose-Pd Nanopowder In Example 1, except that glucose was used as a carrier and Pd was used as a deposition source, the same procedure as in Example 1 was performed to prepare glucose-Pd nanopowder.
〈실시예 9>PET-은 나노 파우더의 제조 Example 9 Preparation of PET-Silver Nanopowders
상기 실시예 1에서, 담체로 PET를 사용하고 은을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, PET-은 나노 파우더를 제조하였다. In Example 1, PET-silver nanopowder was prepared in the same manner as in Example 1 except for using PET as a carrier and silver as a deposition source.
〈실시예 10>PTFE-은 나노 파우더의 제조 Example 10 Preparation of PTFE-Silver Nanopowders
상기 실시예 1 에서, 담체로 PTFE (테프론)를 사용하고 은을 증착원으로 사용하는 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여, PTFE-은 나노 파우더를 제조하였다. 상기 실시예 1 내지 10에서 담체의 외관 변화를 육안으로 관찰하였다. 도 2 는 소금 담체 상에 약 40ppm 농도의 은 나노 파우더를 만들기 전과 후의 사진이다. 사진에서 보듯이 초기 소금의 색은 흰색이었지만 엷은 노란색으로 변화하여 은 나노 입자가 형성된 것을 확인할 수 있다. In Example 1, PTFE-silver nanopowder was prepared in the same manner as in Example 1 except that PTFE (Teflon) was used as the carrier and silver was used as the deposition source. In Examples 1 to 10, the appearance change of the carrier was visually observed. Figure 2 is a photograph before and after making the silver nano powder of about 40ppm concentration on a salt carrier. As shown in the picture, the initial salt color was white, but it turned to pale yellow, which shows that silver nanoparticles were formed.
도 3a 는 히드록실 에틸 셀를로오스 (hydroxyl ethyl cellulose, HEC) 담체 상에 은나노 입자를 형성하기 전 후의 사진이다. 도 3b 에서 보듯이 은 나노 입자가 부착된 HEC담체에 물을 첨가하여 은 나노 입자가 완전하게 분산된 용액을 얻을 수 있다. 3A is a photograph before and after forming silver nanoparticles on a hydroxyl ethyl cellulose (HEC) carrier. As shown in FIG. 3b, water may be added to the HEC carrier to which the silver nanoparticles are attached to obtain a solution in which the silver nanoparticles are completely dispersed.
도 4 는 모래에 은 나노 입자를 형성 하기 전 후의 사진이다. 사진에서 보듯이 모래는 은 나노 입자를 형성하기 전 밝은 색을 띄다가 은 나노 입자를 형성한 후 옅은 진한 색으로 변한 것을 확인할 수 있다. 4 is a photograph before and after forming silver nanoparticles in sand. As shown in the photo, sand has a bright color before forming silver nanoparticles, and then turned to a light dark color after forming silver nanoparticles.
도 5 는 소금 담체 상에 Si 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 사진에서 보듯이 소금 담체는 나노 입자 형성 전 백색을 띄고 있었지만 소금 담체 상에 Si 나노 입자가 형성된 후 엷은 연두색을 띄는 것을 볼 수 있다.
도 6 은 설탕 담체 상에 금 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 사진에서 보듯이 설탕 담체는 금 나노 입자가 형성된 후 금 나노 입자의 고유색인 진한 보라색을 띄고 있는 것을 볼 수 있다. 5 is a photograph of before (left) and after (right) the formation of Si nanoparticles on a salt carrier. As shown in the picture, the salt carrier was white before the formation of the nanoparticles, but after the Si nanoparticles were formed on the salt carrier, it was found to be pale yellow green. 6 is a photograph of before (left) and after (right) the formation of gold nanoparticles on a sugar carrier. As shown in the picture, the sugar carrier has a deep purple color, which is inherent in the gold nanoparticles, after the gold nanoparticles are formed.
도 7 은 도 6 에서 만든 금나노 입자 /설탕을 물에 녹인 것이다. 금 나노 입자가 완전히 분산되어 콜로이드를 형성한 것을 볼 수 있다. FIG. 7 shows the gold nanoparticles / sugar made in FIG. 6 dissolved in water. It can be seen that the gold nanoparticles are completely dispersed to form colloids.
도 8 은 설탕 담체 상에 백금 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 사진에서 보듯이 설탕 담체는 백금 나노 입자 형성 후 백금 나노 입자의 고유색인 회색을 띄고 있는 것을 볼 수 있다. 8 is a photograph of before (left) and after (right) the formation of platinum nanoparticles on a sugar carrier. As shown in the picture, it can be seen that the sugar carrier has gray, which is intrinsic color of the platinum nanoparticles after the formation of the platinum nanoparticles.
도 9 은 포도당 담체 상에 Pd 나노 입자를 형성하기 전 (좌측)과 후 (우측)의 사진이다. 사진에서 보듯이 포도당 담체 상에 Pd 나노 입자가 형성된 후 포도당은 ^은 회색을 띄는데 이는 , Pd 가 나노 입자가 될 경우 회색을 띄기 때문이다. 9 is a photograph of before (left) and after (right) the formation of Pd nanoparticles on a glucose carrier. As shown in the photo, glucose is gray after Pd nanoparticles are formed on the glucose carrier , because Pd becomes nanoparticles.
도 10 는 도 8 에서 Pd/포도당을 물에 녹였을 때의 사진이다. 전체적으로 회색의 콜로이드 (colloid)를 형성한 것을 볼 수 있다. FIG. 10 is a photograph when Pd / glucose is dissolved in water in FIG. 8. It can be seen that a gray colloid is formed as a whole.
도 11 은 PET 플라스틱 알갱이들 위에 은 나노 입자를 형성한 것 (좌측)과, 이를 섭씨 180 도에서 녹인 것 (우측)의 사진이다. 사진에서 보듯이 FIG. 11 is a photograph of silver nanoparticles formed on PET plastic grains (left) and melted at 180 degrees Celsius (right). As you see in the picture
PET 플라스틱 고분자에 은 나노 입자들이 완전히 녹아 전체적으로 노란색을 띄는 것을 볼 수 있다. It can be seen that the silver nanoparticles are completely dissolved in the PET plastic polymer and are yellow in general.
도 12은 PTFE (테프론) 분말에 은 나노 입자를 형성한 것 (좌측)과, 이를 섭씨 250 도 고온에서 녹인 것 (우측)의 사진이다. 사진에서 보듯이 전체적으로 노란색을 띄어 은 나노 입자들이 균일하게 테프론 고분자와 섞여 있는 것을 볼 수 있다.
FIG. 12 is a photograph of silver nanoparticles formed on PTFE (teflon) powder (left) and melted at 250 ° C. high temperature (right). As you can see in the picture, the yellow nanoparticles appear to be uniformly mixed with Teflon polymer.
Claims
【청구항 1】 [Claim 1]
진공 증착조, 상기 진공 증착조 내에 구비된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내에 교반조 상부에 구비되고 나노입자 형성을 위한 증기 입자를 발생시키는 증착원으로 구성되는, 담체에 부착된 나노 파우더 제조 장치를 사용하고 A vacuum deposition tank and a stirring vessel provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And an evaporation source provided on the stirring vessel in the vacuum evaporation tank and configured to generate vapor particles for forming nanoparticles.
a) 상기 진공 증착조의 진공도가 1(Γ4 내지 1 torr 가 되도록 불활성 기체를 진공 증착조에 포함시키는 단계; a) incorporating an inert gas into the vacuum deposition tank such that the vacuum degree of the vacuum deposition tank is 1 (Γ 4 to 1 torr);
b) 상기 증착원을 이용하여 나노입자 형성을 위한 증기 입자를 발생시키는 단계; b) generating steam particles for forming nanoparticles using the deposition source;
c) 상기 스크류의 속도를 1 내지 200rpm 으로 조절하여 담체를 교반하는 단계; 및 c) stirring the carrier by adjusting the speed of the screw to 1 to 200 rpm; And
d) 상기 담체 상에 증기 입자를 증착하여 나노 입자를 형성하는 단계를 포함하는 것을 특징으로 하는 담체에 부착된 나노 파우더 제조 방법. d) depositing vapor particles on the carrier to form nanoparticles, comprising the steps of forming nanoparticles.
【청구항 2】 [Claim 2]
청구항 1 에 있어서, 상기 증착원을 이용하여 나노입자 형성을 위한 증기 입자를 발생시키는 단계는, 저항 가열법, 플라즈마 가열법, 유도가열법, 레이저 가열법, 디시 스퍼터링, 디시 알에프 스퍼터링, 레이저 스퍼터링, 또는 전자 빔 증착을 사용하는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법. The method of claim 1, wherein the generating of vapor particles for forming nanoparticles using the deposition source comprises: resistive heating, plasma heating, induction heating, laser heating, dish sputtering, dish sputtering, laser sputtering, Or electron beam evaporation.
【청구항 3】 [Claim 3]
청구항 1 에 있어서, 상기 나노 입자의 원재료는 금속, 금속화합물 또는 유기물인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법. The method of claim 1, wherein the raw material of the nanoparticles is a metal, a metal compound, or an organic material.
【청구항 4】 [Claim 4]
청구항 3 에 있어서, 상기 금속은 코발트, 구리, 은, 니켈, 망간, 팔라듐, 인듐, 철, 텅스텐, 티타늄 및 이들의 합금으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법. The method of claim 3, wherein the metal is selected from the group consisting of cobalt, copper, silver, nickel, manganese, palladium, indium, iron, tungsten, titanium, and alloys thereof. .
【청구항 5】
청구항 3 에 있어서, 상기 금속화합물은 금속 산화물, 금속 질화물, 금속 탄화물 또는 금속 탄 질화물인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . [Claim 5] The method of claim 3, wherein the metal compound is a metal oxide, a metal nitride, a metal carbide, or a metal carbon nitride.
【청구항 6】 [Claim 6]
청구항 5 에 있어서 , 상기 금속화합물은 알루미나 (A1203), 텅스텐 카바이드 (WC), 질소 알루미늄 (A1N) 또는 탄질화 티 타늄 (TiCN)인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . The method of claim 5, wherein the metal compound is alumina (A1 2 0 3 ), tungsten carbide (WC), nitrogen aluminum (A1N), or titanium carbonitride (TiCN). .
【청구항 7】 [Claim 7]
청구항 1 에 있어서 , 상기 담체는 최종 웅용 제품의 한 종류 이상의 화합물 또는 최종 웅용 제품의 하나 이상의 성분인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . The method of claim 1, wherein the carrier is at least one compound of the final male product or at least one component of the final male product.
【청구항 8】 [Claim 8]
청구항 1 에 있어서, 상기 담체는 물, 극성 유기용매 , 비극성 유기용매에 잘 녹는 물질인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . The method of claim 1, wherein the carrier is a substance that is well soluble in water, a polar organic solvent, and a nonpolar organic solvent.
【청구항 9】 [Claim 9]
청구항 1 에 있어서, 상기 담체는 활성 탄, 탄화수소 화합물, 알루미나 (A1203), 텅스텐 카바이드 (WC), 유리, 모래 , 포도당, 설탕, 소금, PMMA 및 히드록실 에 틸 셀를로오스로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . The method of claim 1, wherein the carrier is a group consisting of activated carbon, a hydrocarbon compound, alumina (A1 2 0 3 ), tungsten carbide (WC), glass, sand, glucose, sugar, salt, PMMA and hydroxyl ethyl cellulose. Method for producing a nano-powder attached to the carrier, characterized in that one selected from.
【청구항 10】 [Claim 10]
청구항 1 에 있어서, 상기 나노 입자 증기를 담체 상에 분당 단위 면적 당 1 A 내지 10 두께로 증착하는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 . The method of claim 1, wherein the nanoparticle vapor is deposited on the carrier at a thickness of 1 A to 10 per unit area per minute.
【청구항 11】 [Claim 11]
청구항 1 에 있어서, 상기 담체와, 증착되는 나노 입자 증기 가 반웅하여 산화물 (oxide), 질화물 (nitride), 탄화물 (carbide) 또는 질탄화물 (carbonitride) 나노 파우더를 형성하는 것을 특징으로 하는, 담체에 부착된 나노 파우더 제조 방법 .
The method of claim 1, wherein the carrier and the deposited nanoparticle vapors react to form oxide, nitride, carbide or carbonitride nanopowders. Method for producing nanopowders.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0041584 | 2011-05-02 | ||
KR1020110041584A KR20120123940A (en) | 2011-05-02 | 2011-05-02 | Manufacturing method for nano-powder using supporter |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012150804A2 true WO2012150804A2 (en) | 2012-11-08 |
WO2012150804A3 WO2012150804A3 (en) | 2013-03-21 |
Family
ID=47108128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/003422 WO2012150804A2 (en) | 2011-05-02 | 2012-05-02 | Method for preparing nano powder using supporter |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20120123940A (en) |
WO (1) | WO2012150804A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102157222B1 (en) * | 2020-04-21 | 2020-09-17 | 박정덕 | Method, Device and Food for supplementing food with minerals |
KR102400125B1 (en) * | 2021-03-09 | 2022-06-23 | 주식회사 삼우엠스 | Antibacterial non-woven fabric comprising calcium carbonate deposited with antibacterial agent, manufacturing method thereof, and product using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070044879A (en) * | 2005-10-26 | 2007-05-02 | 주식회사 피앤아이 | Manufacture method of powder and the device that metal, alloy and ceramic nano particle is vacuum-metallized evenly |
KR100835207B1 (en) * | 2007-05-31 | 2008-06-09 | 대한민국(관리부서:농촌진흥청장) | Process for preparation of natural silk including ag nano-particle |
JP2009079251A (en) * | 2007-09-26 | 2009-04-16 | Ulvac Japan Ltd | Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus |
KR20100086907A (en) * | 2009-01-23 | 2010-08-02 | 세종대학교산학협력단 | Powder agitator in vacuum for dry deposition process |
-
2011
- 2011-05-02 KR KR1020110041584A patent/KR20120123940A/en not_active Application Discontinuation
-
2012
- 2012-05-02 WO PCT/KR2012/003422 patent/WO2012150804A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070044879A (en) * | 2005-10-26 | 2007-05-02 | 주식회사 피앤아이 | Manufacture method of powder and the device that metal, alloy and ceramic nano particle is vacuum-metallized evenly |
KR100835207B1 (en) * | 2007-05-31 | 2008-06-09 | 대한민국(관리부서:농촌진흥청장) | Process for preparation of natural silk including ag nano-particle |
JP2009079251A (en) * | 2007-09-26 | 2009-04-16 | Ulvac Japan Ltd | Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus |
KR20100086907A (en) * | 2009-01-23 | 2010-08-02 | 세종대학교산학협력단 | Powder agitator in vacuum for dry deposition process |
Also Published As
Publication number | Publication date |
---|---|
KR20120123940A (en) | 2012-11-12 |
WO2012150804A3 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Size-controlled preparation of silver nanoparticles by a modified polyol method | |
Guo et al. | Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution | |
KR101699274B1 (en) | Manufacturing method for nano-powder using supporter | |
Kim et al. | Growth pathways of silver nanoplates in kinetically controlled synthesis: bimodal versus unimodal growth | |
JP4748989B2 (en) | Method for the synthesis of metal nanoparticles | |
Mohajerani et al. | Self-assembled zinc oxide nanostructures via a rapid microwave-assisted route | |
Ding et al. | Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films | |
JP4774214B2 (en) | Method for synthesizing metal nanoparticles | |
Choi et al. | Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 C | |
Wu et al. | Solvothermal synthesis of uniform bismuth nanospheres using poly (N-vinyl-2-pyrrolidone) as a reducing agent | |
EP2222883B1 (en) | Synthesis of au, pd, pt or ag nano- or microcrystals via reduction of metal salts by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride | |
Zhang et al. | Convenient synthesis of Ag nanowires with tunable length and morphology | |
Hu et al. | Mesoporous Colloidal Superparticles of Platinum‐Group Nanocrystals with Surfactant‐Free Surfaces and Enhanced Heterogeneous Catalysis | |
Alahmad et al. | Preparation of colloidal silver nanoparticles and structural characterization | |
Nie et al. | Morphology modulation and application of Au (I)–thiolate nanostructures | |
JP7011835B2 (en) | Method for manufacturing high crystalline silver fine particles | |
JP5397602B2 (en) | Method for producing graphite-coated metal nanoparticles and method for thinning graphite-coated metal nanoparticles | |
Park et al. | One-step synthesis of silver nanoplates with high aspect ratios: Using coordination of silver ions to enhance lateral growth | |
Wang et al. | Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes | |
WO2012150804A2 (en) | Method for preparing nano powder using supporter | |
Liu et al. | Experimental study on the preparation of monodisperse nano-silver by hydrothermal synthesis | |
KR20130129345A (en) | Manufacturing device for nano particle attached to support | |
Byrappa | Novel hydrothermal solution routes of advanced high melting nanomaterials processing | |
Alavi et al. | An investigation on electroless nickel coating on yttria stabilized zirconia nanoparticles via single step surface activation methods | |
WO2005092784A1 (en) | Synthesis of platinum and palladium quantum well size nano-particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12779944 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/02/2014) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12779944 Country of ref document: EP Kind code of ref document: A2 |