JP2009079251A - Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus - Google Patents

Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus Download PDF

Info

Publication number
JP2009079251A
JP2009079251A JP2007248873A JP2007248873A JP2009079251A JP 2009079251 A JP2009079251 A JP 2009079251A JP 2007248873 A JP2007248873 A JP 2007248873A JP 2007248873 A JP2007248873 A JP 2007248873A JP 2009079251 A JP2009079251 A JP 2009079251A
Authority
JP
Japan
Prior art keywords
container
powdery
carrier
horizontal state
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248873A
Other languages
Japanese (ja)
Other versions
JP5039487B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Koichi Yamaguchi
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007248873A priority Critical patent/JP5039487B2/en
Publication of JP2009079251A publication Critical patent/JP2009079251A/en
Application granted granted Critical
Publication of JP5039487B2 publication Critical patent/JP5039487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-vapor-deposition apparatus which can uniformly make metallic nanoparticles carried on the whole surface of a powdery carrier, and to provide a method for stirring the powdery carrier. <P>SOLUTION: This stirring method includes the steps of: swinging a vessel 41 around a swing shaft 45 to a first direction (for instance, to the right) to make powdery alumina (A) slide down toward the end of the vessel 41 on the bottom face 42 of the tilted vessel 41 and thereby stir the alumina, in an interval between an operation of vapor-depositing platinum on the powdery alumina (A) in the vessel 41 placed in a vacuum chamber 11 in a horizontal state, for instance, by 100 times of vacuum arc discharges and the next intermittent similar operation of vapor deposition; and making the vessel 41 in the horizontal state by promptly reversing the direction of the swing when a collision detection sensor 47 which also serves as a collision member located in a lower part has detected that the right end of the vessel 41 has reached a predetermined angle of inclination, and simultaneously rebounding the powdery alumina (A) which has slipped down to the end toward the central side of the vessel 41 to turn the powdery alumina (A) over and stir it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は粉体状担体に金属ナノ粒子を担持させるための金属蒸着装置、および同装置における粉体状担体の撹拌方法に関するものであり、更に詳しくは、粉体状担体の全体に金属ナノ粒子を均等に担持させることができ、かつ形成される金属ナノ粒子を坦持した粉体状担体が灰色を呈し凝集した状態を示すことのない金属蒸着装置および同装置において粉体状担体を収容した容器を揺動させる撹拌方法に関するものである。   The present invention relates to a metal vapor deposition apparatus for supporting metal nanoparticles on a powdery carrier, and a method for stirring the powdery carrier in the same, and more specifically, the metal nanoparticles on the entire powdery carrier. Can be evenly supported, and the powder carrier carrying the formed metal nanoparticles is gray and does not show an agglomerated state, and the powder carrier is accommodated in the device. The present invention relates to a stirring method for swinging a container.

従来、自動車排ガス浄化用の触媒には、例えば粉末状アルミナを担体とし触媒作用を示すパラジウムを担持させたものが使用されているが、粉末状アルミナにパラジウムを担持させる方法として、粉末状アルミナを水中で撹拌して懸濁させ、そこへ硝酸パラジウムの水溶液を添加した後、蒸発乾固させ、更に焼成する方法が開示されている(特許文献1を参照)。   Conventionally, a catalyst for purifying automobile exhaust gas has been used, for example, in which powdery alumina is used as a carrier and palladium having catalytic action is supported. As a method for supporting palladium on powdery alumina, powdered alumina is used. There is disclosed a method of stirring and suspending in water, adding an aqueous solution of palladium nitrate thereto, evaporating to dryness, and further firing (see Patent Document 1).

また、燃料電池には、例えば粉末状のカーボンブラックを担体とし触媒作用を示す白金を担持させたものが使用されているが、カーボンブラックに白金を担持させる方法として、塩化白金酸イオンを含有する水溶液にジチオン酸ナトリウムを添加して、好ましくは過酸化水素を共存させて、白金コロイドを作製し、これにカーボンブラックを加えて、カーボンブラックに白金の超微粒子を担持させた後、白金触媒を担持させたカーボンブラックを濾過、乾燥する方法が開示されている(特許文献2を参照)。   In addition, for example, a fuel cell is used in which platinum having powdery carbon black as a carrier and carrying a catalytic action is used. As a method for carrying platinum on carbon black, it contains chloroplatinate ions. Sodium dithionate is added to the aqueous solution, and preferably hydrogen peroxide is allowed to coexist to produce a platinum colloid. Carbon black is added to this to support platinum ultrafine particles on the carbon black, and then a platinum catalyst is added. A method for filtering and drying the supported carbon black is disclosed (see Patent Document 2).

特開2003−120265号公報JP 2003-120265 A 特開昭54−92588号公報JP 54-92588 A

しかし上記のように、粉末状アルミナを懸濁させた水中に硝酸パラジウムの水溶液を添加して粉末状アルミナにパラジウムを坦持させる方法や、水中に白金の超微粒子が分散された状態の白金コロイドにカーボンブラックの粉末を投入して白金をカーボンブラックに担持させる方法は、パラジウムや白金の中で担体に担持されないものが多くなり易く、使用する貴金属の量が過大になるという問題がある。また、水中で坦持させたものは、触媒活性を有する貴金属ナノ粒子が長期間の使用によって凝集し性能が劣化し易く、その劣化分を考慮して当初に多めに坦持させねばならないという問題もある。その上、現在のところ貴金属は価格が高騰しており、 かつ資源としての量も限られているので、貴金属が有効に利用されない従来の担持方法とは異なる坦持方法が望まれている。   However, as described above, a method in which an aqueous solution of palladium nitrate is added to water in which powdered alumina is suspended to support palladium in powdered alumina, or a platinum colloid in which ultrafine platinum particles are dispersed in water. In the method of loading carbon black powder onto carbon black and supporting platinum on carbon black, there is a problem that palladium and platinum that are not supported on a carrier are likely to increase, and the amount of noble metal used is excessive. In addition, what is supported in water is a problem that precious metal nanoparticles having catalytic activity are likely to aggregate due to long-term use and deteriorate in performance, and the amount of deterioration must be taken into consideration at the beginning. There is also. In addition, since the price of precious metals is currently rising and the amount as a resource is limited, a supporting method different from conventional supporting methods in which precious metals are not effectively used is desired.

これに対し、本発明者等は従来のようなウエット系で貴金属を担体に担持させるのではなく、ドライ系である真空アーク蒸着法によって貴金属を担持させる方法を開発している。すなわち、以下に示すような同軸型真空アーク蒸発源を備えた金属蒸着装置によって貴金属を担体に担持させる方法である。この方法は真空下で担体に貴金属を蒸着させるので担体に対する貴金属ナノ粒子の密着性が優れており経年的な劣化を生じ難い。   On the other hand, the present inventors have developed a method of supporting a noble metal by a vacuum arc deposition method which is a dry system, instead of supporting a noble metal on a support by a conventional wet system. That is, this is a method in which a noble metal is supported on a carrier by a metal vapor deposition apparatus equipped with a coaxial vacuum arc evaporation source as described below. In this method, noble metal is vapor-deposited on the support under vacuum, so that the adhesion of the noble metal nanoparticles to the support is excellent and it is difficult to cause deterioration over time.

図7は上記の同軸型真空アーク蒸着源21を備えた金属蒸着装置10を示す断面図である。すなわち、真空チャンバ11の上部に白金を蒸発させる同軸型真空アーク蒸着源21が取り付けられており、真空チャンバ11内の底部には被蒸着材であり担体である粉体状アルミナAを収容し撹拌する容器31が配置されている。また真空チャンバ11の側壁にはバルブを介して真空チャンバ11内を排気するための真空排気系であるロータリポンプ12とターボ分子ポンプ13が取り付けられているほか、図示せずとも、バルブを介して不活性ガス(例えばアルゴンガス)のボンベが取り付けられており、真空チャンバ11内へ所定量の不活性ガスを供給し得るようになっている。   FIG. 7 is a cross-sectional view showing the metal deposition apparatus 10 provided with the coaxial vacuum arc deposition source 21 described above. That is, a coaxial vacuum arc evaporation source 21 for evaporating platinum is attached to the upper portion of the vacuum chamber 11, and the bottom of the vacuum chamber 11 accommodates a powdery alumina A which is a material to be deposited and is a carrier. A container 31 is disposed. Further, a rotary pump 12 and a turbo molecular pump 13 which are evacuation systems for exhausting the inside of the vacuum chamber 11 through a valve are attached to the side wall of the vacuum chamber 11, and although not shown, through the valve. A cylinder of an inert gas (for example, argon gas) is attached, and a predetermined amount of inert gas can be supplied into the vacuum chamber 11.

同軸型真空アーク蒸着源21は蒸発材料である白金(Pt)からなる円柱状のカソード電極22と、カソード電極22の外周面に接して同軸に設けられたハット形状の絶縁碍子23と、絶縁碍子23のハットの筒状部の外周面に接し、ハットの鍔部に上端を接して同軸に設けられた円筒状のトリガ電極24と、トリガ電極24の外周面から所定の間隔をあけて同軸に設けられた円筒状であり、下端側が真空チャンバ11内へ開口され、上端側がカソード電極22の上端から離隔した位置で閉じられているアノード電極25とからなっている。   The coaxial vacuum arc evaporation source 21 includes a cylindrical cathode electrode 22 made of platinum (Pt) as an evaporation material, a hat-shaped insulator 23 coaxially provided in contact with the outer peripheral surface of the cathode electrode 22, and an insulator. A cylindrical trigger electrode 24 that is in contact with the outer peripheral surface of the cylindrical portion of the hat 23 and is in contact with the upper end of the hat's collar and coaxially, and coaxially spaced from the outer peripheral surface of the trigger electrode 24 The cylindrical electrode is provided, the lower end side is opened into the vacuum chamber 11, and the upper end side is composed of an anode electrode 25 which is closed at a position spaced from the upper end of the cathode electrode 22.

更にトリガ電極24とカソード電極22との間にはトリガ電源26が設けられており、カソード電極22とアノード電極25との間にはアーク発生用の直流電源27が設けられている。そして、トリガ電源26のプラス端子はトリガ電極24に接続され、マイナス端子は上記直流電源27のマイナス端子と同電位とされてカソード電極22に接続されている。トリガ電源26はパルストランスからなり、入力電圧200V、パルス幅μsec単位のパルス電圧を17倍の3.4kV(数μA)に昇圧して出力する。   Further, a trigger power source 26 is provided between the trigger electrode 24 and the cathode electrode 22, and a DC power source 27 for generating an arc is provided between the cathode electrode 22 and the anode electrode 25. The positive terminal of the trigger power supply 26 is connected to the trigger electrode 24, and the negative terminal is connected to the cathode electrode 22 at the same potential as the negative terminal of the DC power supply 27. The trigger power source 26 is composed of a pulse transformer, and boosts and outputs a pulse voltage in units of 200 V and a pulse width of μsec to 3.4 kV (several μA), which is 17 times.

上述したように、アノード電極25とカソード電極22との間には電圧100V、電流が数Aであるアーク発生用の直流電源27が設けられており、同直流電源27のプラス端子は接地されてグランド電位にあり、アノード電極25に接続されている。そして、アーク発生用の直流電源27と並列に容量8800μFのアーク発生用のコンデンサユニット28が設けられており、コンデンサユニット28の一方の端子は上記直流電源27のプラス端子側に接続され、他方の端子は直流電源27のマイナス端子側に接続されている。なお、コンデンサユニット28は容量2200μF、耐圧100Vのコンデンサが4個並列に接続されているものである。コンデンサユニット28は直流電源27によって随時蓄電されるが、その蓄電に約1秒かかるので、コンデンサユニット28からの放電を繰り返す場合の放電の周期は約1Hzとなる。   As described above, an arc generating DC power supply 27 having a voltage of 100 V and a current of several A is provided between the anode electrode 25 and the cathode electrode 22, and the positive terminal of the DC power supply 27 is grounded. It is at ground potential and is connected to the anode electrode 25. An arc generating capacitor unit 28 having a capacity of 8800 μF is provided in parallel with the arc generating DC power supply 27, and one terminal of the capacitor unit 28 is connected to the plus terminal side of the DC power supply 27, and the other The terminal is connected to the negative terminal side of the DC power supply 27. The capacitor unit 28 is a unit in which four capacitors having a capacity of 2200 μF and a withstand voltage of 100 V are connected in parallel. The capacitor unit 28 is charged at any time by the DC power source 27. Since the charging takes about 1 second, the discharge cycle when the discharge from the capacitor unit 28 is repeated is about 1 Hz.

容器31内の粉体状アルミナAは以下に示すような撹拌手段によって撹拌される。すなわち、真空チャンバ11の下方の外部に設けられた回転駆動源32の回転軸33が真空チャンバ11内へ図示を省略した真空シール機構を介して挿通されており、更に真空チャンバ11内に設けられた固定台34を回転可能に挿通されている。そして、容器31は回転軸33の上端に取り付けられており、回転駆動源32によって回転される。また、固定台34に固定した支柱35に支持されている固定羽根36が容器31の底面に近い深さに位置されており、容器31を回転速度30〜100rpmで回転させることにより、容器31の内部に収容されている粉体状アルミナAが撹拌される。なお、容器31および固定羽根36は共にステンレス製である。   The powdery alumina A in the container 31 is stirred by a stirring means as described below. That is, the rotary shaft 33 of the rotary drive source 32 provided outside the vacuum chamber 11 is inserted into the vacuum chamber 11 through a vacuum seal mechanism (not shown), and further provided in the vacuum chamber 11. The fixed base 34 is rotatably inserted. The container 31 is attached to the upper end of the rotation shaft 33 and is rotated by the rotation drive source 32. Moreover, the fixed blade | wing 36 currently supported by the support | pillar 35 fixed to the fixed stand 34 is located in the depth close | similar to the bottom face of the container 31, and the container 31 is rotated by rotating the container 31 at 30-100 rpm. The powdery alumina A accommodated inside is stirred. Both the container 31 and the fixed blade 36 are made of stainless steel.

続いて、図7に示した金属蒸着装置10を使用して、容器31内の担体である粉体状アルミナAの表面に同軸型真空アーク蒸発源21のカソード電極22の構成材料であり蒸発材料である白金のナノ粒子を担持させる方法について説明する。なお、容器31内に所定量の粉体状アルミナAが収容され、容器31は回転駆動源32によって回転されて撹拌が開始されており、かつロータリポンプ12、続いてターボ分子ポンプ13を起動して真空チャンバ11内が所定の真空度まで真空排気される。その後、所定量のアルゴンガスがボンベから導入されて真空チャンバ11内は真空度10-5Paに維持されており、コンデンサユニット28はアーク発生用の直流電源27によって蓄電されているものとする。その状態で、先ずトリガ電源26からトリガ電極24へ電圧3.4kVのパルス電圧を出力してカソード電極22の下端とトリガ電極24の下端との間の絶縁碍子23の下端面に沿面放電、すなわちトリガ放電を発生させる。 Subsequently, by using the metal vapor deposition apparatus 10 shown in FIG. 7, the evaporation material is a constituent material of the cathode electrode 22 of the coaxial vacuum arc evaporation source 21 on the surface of the powdery alumina A as the carrier in the container 31. A method for supporting platinum nanoparticles as described above will be described. A predetermined amount of powdery alumina A is accommodated in the container 31, the container 31 is rotated by the rotation drive source 32 and stirring is started, and the rotary pump 12 and then the turbo molecular pump 13 are activated. Thus, the inside of the vacuum chamber 11 is evacuated to a predetermined degree of vacuum. Thereafter, it is assumed that a predetermined amount of argon gas is introduced from the cylinder, the vacuum chamber 11 is maintained at a degree of vacuum of 10 −5 Pa, and the capacitor unit 28 is charged by a DC power source 27 for generating arcs. In this state, first, a pulse voltage of 3.4 kV is output from the trigger power source 26 to the trigger electrode 24, and creeping discharge occurs on the lower end surface of the insulator 23 between the lower end of the cathode electrode 22 and the lower end of the trigger electrode 24, that is, Generate trigger discharge.

そのトリガ放電に誘起されてカソード電極22とアノード電極25との間にアーク放電が発生する。すなわち、コンデンサユニット28に蓄電されている電荷が真空アーク放電し、カソード電極22へ多量のアーク電流(2000A〜5000A)が200μsec〜550μsecの間に流入する。このアーク電流によって、カソード電極22の下端の近傍にはプラズマが形成され、かつカソード電極22を構成している白金は下端面が部分的に融解されて蒸発するが、蒸発した白金は上記プラズマ内を通過することにより電子と白金イオンとに解離される。そしてアーク電流が図7においてカソード電極22を上方へ流れることにより、カソード電極22を中心にして同心円筒状に磁場が形成される。従って、カソード電極22から放出された電子と白金イオンは磁場のローレンツ力を受けるが、電子はローレンツ力によって粉体状アルミナAの方へ飛翔する。また(電荷量/質量)比か小さい原子状の白金イオンは飛翔する電子との間のクーロン力によって、粉体状アルミナAの方へ飛翔し、容器31内で撹拌されている粉体状アルミナAに衝突し付着する。   An arc discharge is generated between the cathode electrode 22 and the anode electrode 25 by being induced by the trigger discharge. That is, the electric charge stored in the capacitor unit 28 is subjected to vacuum arc discharge, and a large amount of arc current (2000 A to 5000 A) flows into the cathode electrode 22 during 200 μsec to 550 μsec. Due to this arc current, plasma is formed in the vicinity of the lower end of the cathode electrode 22, and platinum constituting the cathode electrode 22 is partially melted at the lower end surface to evaporate. Is dissociated into electrons and platinum ions. Then, when the arc current flows upward through the cathode electrode 22 in FIG. 7, a magnetic field is formed in a concentric cylindrical shape with the cathode electrode 22 as the center. Therefore, the electrons and platinum ions emitted from the cathode electrode 22 receive a Lorentz force of the magnetic field, but the electrons fly toward the powdery alumina A by the Lorentz force. Further, atomic platinum ions having a small (charge amount / mass) ratio fly to the powdery alumina A by the Coulomb force between the flying electrons, and the powdered alumina stirred in the container 31. Collides with and adheres to A.

このようにして、粉体状アルミナAの表面に白金ナノ粒子(粒子径1nm〜10nm)を担持させることはできるが、容器31を単に連続回転させるだけでは、粉体状アルミナAの表面に白金ナノ粒子が必ずしも均等に担持されないほか、白色である粉体状アルミナAが白金ナノ粒子の担持の進行につれて灰色を呈し凝集したような状態になるという問題があった。   In this way, platinum nanoparticles (particle diameter: 1 nm to 10 nm) can be supported on the surface of the powdery alumina A, but platinum can be formed on the surface of the powdery alumina A by simply rotating the container 31 continuously. In addition to the nanoparticles not being uniformly supported, there was a problem that the powdery alumina A, which is white, became gray and aggregated as the platinum nanoparticles were supported.

本発明は上述の問題に鑑みてなされ、金属蒸着装置によって真空チャンバ内の容器に収容した粉末状担体に金属を蒸着させて金属ナノ粒子を担持させるに際し、粉末状担体の全体に金属ナノ粒子を均等に担持させることができ、かつ金属ナノ粒子を担持させた粉末状担体が灰色を呈して凝集したような状態になることのない金属蒸着装置および同装置における粉末状担体の撹拌方法を提供することを課題とする。   The present invention has been made in view of the above-described problems. When metal is deposited on a powdery carrier accommodated in a container in a vacuum chamber by a metal vapor deposition apparatus to carry metal nanoparticles, the metal nanoparticles are deposited on the entire powdery carrier. Provided are a metal vapor deposition apparatus that can be uniformly loaded and that does not become a state in which a powdery carrier carrying metal nanoparticles is gray and aggregated, and a method for stirring the powdery carrier in the device This is the issue.

上記の課題は請求項1または請求項5の構成によって解決されるが、その解決手段を説明すれば次に示す如くである。   The above problem can be solved by the structure of claim 1 or claim 5, and the solution means will be described as follows.

請求項1の金属蒸着装置は、真空チャンバと、蒸着材料であり触媒活性を有する金属を成分とするカソード電極、トリガ電極、アノード電極、トリガ電源、およびアーク発生用電源を備えた同軸型真空アーク蒸発源と、その同軸型真空アーク蒸発源と対向して真空チャンバ内に配置され被蒸着体である粉体状担体を収容する皿状の容器と、粉体状担体を撹拌する撹拌手段とを備えた金属蒸着装置であって、上記撹拌手段は容器に設けられた揺動軸の回りに容器を水平な状態から第1の方向および第1の方向とは逆の第2の方向へ揺動させる揺動機構と、容器が水平な状態から第1の方向へ所定角度の傾斜をしたことを検知する第1のセンサと、容器が水平な状態から第2の方向へ所定角度の傾斜をしたことを検知する第2のセンサとを有しており、揺動機構は第1のセンサまたは第2のセンサからの検知信号に基づいて直ちに揺動の方向を逆にして容器を水平な状態にすると共に、第1の方向または第2の方向への揺動によって傾斜された容器の底面上で一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻して撹拌する金属蒸着装置である。   The metal vapor deposition apparatus according to claim 1 is a coaxial vacuum arc comprising a vacuum chamber, a cathode electrode, a trigger electrode, an anode electrode, a trigger power source, and an arc generating power source, each of which comprises a metal having a catalytic activity as a vapor deposition material. An evaporation source, a dish-like container that is placed in a vacuum chamber facing the coaxial vacuum arc evaporation source and accommodates a powder carrier that is a deposition target, and a stirring means that stirs the powder carrier A metal vapor deposition apparatus provided, wherein the stirring means swings the container from a horizontal state around a swing shaft provided in the container in a first direction and a second direction opposite to the first direction. A swing mechanism to be moved, a first sensor for detecting that the container is inclined at a predetermined angle from the horizontal state in the first direction, and an inclination of the container from the horizontal state to the second direction at a predetermined angle. Having a second sensor to detect that The swinging mechanism immediately reverses the swinging direction based on the detection signal from the first sensor or the second sensor to bring the container into a horizontal state, and in the first direction or the second direction. This is a metal vapor deposition apparatus that stirs the powdery carrier sliding down toward the one end on the bottom surface of the container inclined by the swinging of the container by bouncing back to the center side of the container.

このような金属蒸着装置は、容器を揺動させて傾斜する容器の底面上で粉末状担体を一方の端部の方へ滑落させて粉末状担体を撹拌し、かつ容器が所定の傾斜角度に達したことが第1センサまたは第2センサによって検知されると、直ちに揺動の方向を逆にして容器を水平な状態とし、粉末状担体を容器の一方の端部から容器の中央側へ跳ね戻して撹拌することが可能であるほか、従来の装置における撹拌、すなわち固定羽根によって粉体状担体を連続的に回転する容器の底面へ押圧するような撹拌でないことから、粉末状担体の硬度が高い場合にも、粉体状担体による容器の磨損を大幅に抑制する。   Such a metal vapor deposition apparatus agitates a powder carrier by sliding the powder carrier toward one end on the bottom surface of the container inclined by swinging the container, and the container is at a predetermined inclination angle. When it is detected by the first sensor or the second sensor, the direction of swinging is immediately reversed to bring the container into a horizontal state, and the powdery carrier jumps from one end of the container toward the center of the container. In addition to being able to return and stir, it is not agitation in the conventional apparatus, that is, agitation that presses the powdery carrier to the bottom surface of the container that rotates continuously by fixed blades, so the hardness of the powdery carrier Even if it is high, the abrasion of the container due to the powder carrier is greatly suppressed.

請求項2の金属蒸着装置は、第1のセンサまたは第2のセンサが容器の両端部の何れかの衝突を検知する衝突検知センサであり、容器の衝突部材であることを兼ねている金属蒸着装置である。
このような金属蒸着装置は、衝突検知センサによって容器が所定角度に傾斜したことを検知すると共に、容器が衝突部材に衝突することにより受ける衝撃によって、傾斜した容器の底面上での粉体状担体の滑落を助長する。
The metal vapor deposition apparatus according to claim 2 is a collision detection sensor in which the first sensor or the second sensor detects a collision at either end of the container, and also serves as a collision member of the container. Device.
Such a metal vapor deposition apparatus detects that the container is inclined at a predetermined angle by the collision detection sensor, and also has a powdery carrier on the bottom surface of the inclined container due to the impact received when the container collides with the collision member. Contribute to sliding down.

請求項3の金属蒸着装置は、容器が水平状態から第1の方向または第2の方向へ揺動される揺動速度に比して、容器が所定角度に傾斜したことを第1のセンサまたは第2のセンサによって検知されて水平状態とされる速度が高速とされている金属蒸着装置である。
このような金属蒸着装置は、容器が所定角度の傾斜位置から水平な状態とされて、容器の傾斜により一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻させる撹拌を強化する。
According to a third aspect of the present invention, there is provided the metal deposition apparatus according to the first sensor or the fact that the container is inclined at a predetermined angle as compared with a swing speed at which the container is swung from the horizontal state in the first direction or the second direction. It is a metal vapor deposition apparatus in which the speed detected by the second sensor and set to the horizontal state is high.
In such a metal vapor deposition apparatus, the container is placed in a horizontal state from an inclined position of a predetermined angle, and the powdery carrier sliding down toward one end due to the inclination of the container is bounced back to the center side of the container. Strengthen the stirring.

請求項4の金属蒸着装置は、容器の底面上に揺動軸と平行に、長さ方向と直角な方向の断面が山型とされた複数本の桟が設けられている金属蒸着装置である。
このような金属蒸着装置は、容器が傾斜されて底面上を滑落する粉体状担体が桟を乗り越えることによって、粉体状担体の撹拌を助長し、かつ桟が障害となって粉体状担体の一部の滑落が阻止されることを回避し得る。
The metal vapor deposition apparatus according to claim 4 is a metal vapor deposition apparatus in which a plurality of bars having a mountain-shaped cross section in a direction perpendicular to the length direction are provided on the bottom surface of the container in parallel with the swing axis. .
In such a metal vapor deposition apparatus, the powdery carrier that slides down on the bottom surface with the container being tilted gets over the crosspiece, which facilitates the stirring of the powdery carrier, and the crosspiece becomes an obstacle to the powdery carrier. It is possible to avoid that part of the sliding is prevented.

請求項5の粉末状担体の撹拌方法は、真空チャンバと、蒸着材料であり触媒活性を有する金属を成分とするカソード電極、トリガ電極、アノード電極、トリガ電源、およびアーク発生用電源を備えた同軸型真空アーク蒸発源と、当該同軸型真空アーク蒸発源と対向して真空チャンバ内に配置され被蒸着体である粉体状担体を収容する皿状の容器と、粉体状担体を撹拌する撹拌手段とを備えた金属蒸着装置における容器内の粉体状担体の撹拌方法であって、容器を水平な状態としての所定回数の真空アーク放電による粉体状担体への金属の蒸着と間欠的な次の同様な蒸着との間において、容器に設けた揺動軸によって容器を水平な状態から揺動軸の回りに第1の方向または第1の方向と逆の第2の方向へ揺動させることにより傾斜する容器の底面上で粉体状担体を容器の一方の端部の方へ滑落させ、かつ容器が所定角度に傾斜されたことをセンサが検知すると、直ちに揺動の方向を逆にして容器を水平な状態にすると共に、一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻す撹拌方法である。   A method for stirring a powdery carrier according to claim 5 is a coaxial chamber comprising a vacuum chamber and a cathode electrode, a trigger electrode, an anode electrode, a trigger power source, and an arc generating power source comprising a metal having a catalytic activity as a deposition material. Type vacuum arc evaporation source, a dish-like container that is placed in a vacuum chamber facing the coaxial vacuum arc evaporation source and accommodates a powdery carrier that is a deposition target, and stirring that stirs the powdery carrier A method of stirring a powder carrier in a container in a metal vapor deposition apparatus comprising means for intermittently depositing metal on a powder carrier by a predetermined number of times of vacuum arc discharge with the container in a horizontal state During the next similar vapor deposition, the container is swung from a horizontal state around the rocking shaft in a first direction or a second direction opposite to the first direction by a rocking shaft provided on the container. The bottom of the container that is inclined by When the powder carrier is slid down toward one end of the container and the sensor detects that the container is tilted at a predetermined angle, the container is immediately leveled by reversing the direction of oscillation. In addition, this is a stirring method in which the powdery carrier sliding down toward one end is rebounded to the center of the container.

このような粉末状担体の撹拌方法は、容器を揺動させ傾斜する容器の底面上で粉末状担体を容器の一方の端部の方へ滑落させて撹拌し得るほか、容器がの所定の傾斜角度に達したことが検知されると直ちに揺動の方向を逆にして容器を水平な状態とすることにより、容器の一方の端部の方へ滑落している粉末状担体を容器の中央側へ跳ね戻して粉末状担体を裏返しにするように撹拌することができるほか、撹拌が間欠的に行なわれ長時間を要さないこと、粉末状担体を固定羽根で容器の底面へ押し付けて容器を連続的に回転させるような撹拌でないことから、粉末状担体の硬度が高い場合であっても、粉末状担体の撹拌による容器の摩損を大幅に低減させる。   Such a stirring method for the powdery carrier can be agitated by sliding the powdery carrier toward one end of the container on the bottom surface of the container which is tilted by swinging the container. As soon as it is detected that the angle has been reached, the direction of rocking is reversed and the container is placed in a horizontal state, so that the powdery carrier sliding down toward one end of the container is removed from the center side of the container. The powder carrier can be agitated so that it jumps back and upside down, and the agitation is performed intermittently and does not require a long time. The powder carrier is pressed against the bottom of the container with a fixed blade. Since the stirring is not continuous rotation, even when the powder carrier has a high hardness, the wear of the container due to the stirring of the powder carrier is greatly reduced.

請求項1の金属蒸着装置によれば、容器内の粉体状担体を撹拌する手段として、容器に設けられた揺動軸によって容器を水平とした状態から揺動軸の回りに第1の方向または第1の方向とは逆の第2の方向へ揺動させる揺動機構と、容器が水平な状態から第1の方向へ所定の角度に傾斜したことを検知する第1のセンサおよび第2の方向へ所定の角度に傾斜したことを検知する第2のセンサとを有しており、揺動機構は第1のセンサまたは第2のセンサによって容器が所定の角度に達したことが検知されると、直ちに揺動の方向を逆にし、容器を水平な状態にすると共に、第1の方向または第2の方向への揺動によって傾斜された容器の底面上で一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻して撹拌するので、粉体状担体の全体に金属ナノ粒子を均等に担持させる。また撹拌を間欠的に行い撹拌時間が短いので、粉末状担体の硬度が高い場合にも、金属ナノ粒子を担持させた粉体状担体に対する容器の摩損粉による汚染を大幅に低減させる。   According to the metal vapor deposition apparatus of claim 1, as a means for stirring the powdery carrier in the container, the first direction around the swing axis from the state in which the container is leveled by the swing shaft provided in the container. Alternatively, a swing mechanism that swings in a second direction opposite to the first direction, and a first sensor and a second sensor that detect that the container is tilted from the horizontal state to the first direction at a predetermined angle. And a second sensor for detecting that the container has tilted to a predetermined angle in the direction of the angle, and the swing mechanism detects that the container has reached a predetermined angle by the first sensor or the second sensor. Then, the direction of swinging is immediately reversed to bring the container into a horizontal state, and toward one end on the bottom surface of the container tilted by swinging in the first direction or the second direction. The powdery carrier that is sliding down is bounced back to the center of the container and stirred. Evenly supporting the metal nanoparticles whole. Further, since the stirring is intermittently performed and the stirring time is short, even when the powder carrier has a high hardness, contamination of the powder carrier on which the metal nanoparticles are supported by the abrasive powder of the container is greatly reduced.

請求項2の金属蒸着装置によれば、容器が衝突部材に衝突した時点で衝撃を受けて傾斜した底面上での粉体状担体の滑落が助長され、かつ容器が所定角度に傾斜したことを衝突検知センサによって検知されて直ちに揺動の方向が逆にされ、容器は水平な状態に戻され容器の端部に滑落している粉体状担体は容器の中央側へ跳ね戻されるので、粉体状担体を十分に効率的に撹拌することを可能ならしめる。   According to the metal vapor deposition apparatus of claim 2, when the container collides with the collision member, the powder carrier is slid down on the inclined bottom surface in response to the impact, and the container is inclined at a predetermined angle. The direction of swinging is immediately reversed by detection by the collision detection sensor, the container is returned to a horizontal state, and the powdery carrier sliding down on the end of the container is bounced back to the center side of the container. It makes it possible to stir the body carrier sufficiently efficiently.

請求項3の金属蒸着装置によれば、容器が水平な状態から第1の方向または第2の方向へ揺動される揺動速度に比して、容器が所定角度に傾斜したことを第1のセンサまたは第2のセンサによって検知されて水平な状態とされる速度が高速とされているので、容器が所定角度の傾斜位置から水平な状態位置とされて、容器の傾斜により一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻させることによる撹拌の度を高め、粉体状担体による金属ナノ粒子の担持の均等性を向上させる。   According to the metal vapor deposition apparatus of the third aspect, the first is that the container is inclined at a predetermined angle as compared with the swing speed at which the container is swung from the horizontal state in the first direction or the second direction. Since the speed at which the sensor is detected by the second sensor or the second sensor to be in a horizontal state is high, the container is brought into a horizontal state position from an inclined position at a predetermined angle, and one end portion is inclined by the inclination of the container. The degree of agitation is increased by causing the powdery carrier sliding down toward the center of the container to bounce back toward the center of the container, and the uniformity of the loading of the metal nanoparticles by the powdery carrier is improved.

請求項4の金属蒸着装置によれば、容器の底面上に長さ方向と直角な方向の断面を山型とした複数本の桟が揺動軸と平行に設けられているので、滑落する粉末状担体が桟を乗り越える時に粉末状担体の撹拌の度合を高めると共に、桟が障害となって粉末状担体の一部が滑落を阻止されるような問題を発生させない。   According to the metal vapor deposition apparatus of claim 4, since the plurality of bars having a mountain-shaped cross section in a direction perpendicular to the length direction are provided on the bottom surface of the container in parallel with the swing shaft, the powder that slides down The degree of agitation of the powdery carrier is increased when the powdery carrier gets over the crosspiece, and the problem that the crosspiece becomes a hindrance and part of the powdery carrier is prevented from sliding off is prevented.

請求項5の粉末状担体の撹拌方法によれば、金属蒸着装置における真空チャンバ内の容器を水平な状態とし所定回数の真空アーク放電による容器内の粉体状担体への金属の蒸着と間欠的な次の同様な蒸着との間において、容器に設けた揺動軸によって容器を水平な状態から揺動軸の回りに第1の方向または第1の方向と逆の第2の方向へ揺動させることにより傾斜する容器の底面上で粉体状担体を容器の一方の端部の方へ滑落させ、かつ容器が所定角度に傾斜されたことをセンサが検知すると、直ちに揺動の方向を逆にして容器を水平な状態にすると同時に、容器の一方の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻すので、粉体状担体は十分に撹拌され、粉体状担体の全体に金属ナノ粒子を均等に担持させることができる。また上記のような撹拌を間欠的に行なうので、撹拌に要する時間が短く、粉末状担体の硬度が高い場合にも、金属ナノ粒子を坦持させた粉体状担体に対する容器の摩損粉による汚染を大幅に低減させる。   According to the method for stirring a powdery carrier according to claim 5, metal deposition on the powdery carrier in the container is intermittently performed by a predetermined number of times of vacuum arc discharge with the container in the vacuum chamber in the metal vapor deposition apparatus being in a horizontal state. During the next similar deposition, the container is swung from the horizontal state to the first direction or the second direction opposite to the first direction from the horizontal state by the rocking shaft provided on the container. When the sensor detects that the powder carrier has been slid down toward one end of the container on the bottom surface of the inclined container and the container is inclined at a predetermined angle, the direction of oscillation is immediately reversed. In this way, the container is in a horizontal state, and at the same time, the powdery carrier sliding down toward one end of the container is bounced back toward the center of the container, so that the powdery carrier is sufficiently stirred and powdered The metal nanoparticles can be uniformly supported on the entire carrier. In addition, since the stirring is intermittently performed as described above, the time required for stirring is short, and even when the powder carrier has a high hardness, contamination of the powder carrier carrying the metal nanoparticles due to abrasive powder in the container. Is greatly reduced.

上述したように本発明の金属蒸着装置は、粉体状担体へ金属を蒸着させる金属蒸着装置および同装置の真空チャンバ内の容器内に収容された粉体状担体の撹拌方法であって、容器を揺動軸によって揺動軸の回りに第1の方向と、第1の方向とは逆の第2の方向へ揺動させる装置であり、容器を揺動させて内部の粉体状担体を撹拌する方法に関するものである。   As described above, the metal vapor deposition apparatus of the present invention is a metal vapor deposition apparatus for vapor-depositing metal onto a powder carrier and a stirring method for a powder carrier accommodated in a container in a vacuum chamber of the apparatus. Is a device that swings around the swinging shaft by a swinging shaft in a first direction and a second direction opposite to the first direction. It relates to a method of stirring.

上記の金属蒸着装置は粉体状担体の全体に金属ナノ粒子を均等に担持させるために、粉体状担体を十分に撹拌することが望まれる。粉体状担体の撹拌手段として、従来の金属蒸着装置のように、皿状の容器に粉体状担体を収容し、上方から固定羽根を粉体状担体内へ挿入して容器の底面に近接する深さに位置させて容器を回転させる手段は、固定羽根の下端と容器の底面との間で粉体状担体が押圧されるので、粉体状担体の硬度が高い場合には、通常はステンレス製の容器の底面や固定羽根の下端が摩損され、摩損した微粉末が金属ナノ粒子を担持させた粉体状担体を汚染するので好適な手段とは言い難い。従って、粉体状担体が容器の底面に押圧されない撹拌手段が望まれるが、そのような手段の一つとして、粉体状担体を収容した皿状の容器を揺動軸の回りに揺動させ、傾斜する容器の底面上で粉体状担体を下側となる容器の端部の方へ滑落させて粉体状担体を撹拌する手段を採用し得る。   In the metal vapor deposition apparatus described above, it is desirable that the powder carrier is sufficiently stirred in order to uniformly support the metal nanoparticles on the entire powder carrier. As a means for stirring the powder carrier, the powder carrier is housed in a dish-like container like a conventional metal vapor deposition device, and a fixed blade is inserted into the powder carrier from above to approach the bottom of the container. The means for rotating the container positioned at a depth to be pressed is that the powder carrier is pressed between the lower end of the fixed blade and the bottom surface of the container. Since the bottom surface of the stainless steel container and the lower end of the fixed blade are worn away, the worn fine powder contaminates the powder carrier carrying the metal nanoparticles, which is not a preferable means. Therefore, a stirring means in which the powder carrier is not pressed against the bottom surface of the container is desired. As one of such means, a dish-like container containing the powder carrier is swung around the swing shaft. A means for stirring the powder carrier by sliding the powder carrier toward the lower end of the container on the bottom surface of the inclined container may be employed.

更には、容器を揺動させ、その傾斜する底面上で粉体状担体を滑落させるだけでは、短い時間内で粉体状担体の表層と内層とを十分に反転させるような撹拌を期待することは困難であるから、それに対処するために揺動によって容器が所定の傾斜角度に達すると、直ちに揺動の方向を逆にし、上記の揺動によって容器の端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻して粉体状担体を裏返すような撹拌をすることが望ましい。   Furthermore, it is expected that stirring is performed so that the surface layer and the inner layer of the powder carrier are sufficiently reversed within a short period of time by simply swinging the container and sliding the powder carrier on the inclined bottom surface. In order to cope with this, when the container reaches a predetermined inclination angle by swinging, the direction of swinging is immediately reversed, and the powder sliding down toward the end of the container due to the swing described above It is desirable to stir the body carrier so that the powder carrier is turned upside down by bouncing it back to the center of the container.

また、揺動によって容器の底面上で粉体状担体を滑落させるには、滑落が容易に起こる傾斜角度まで容器の底面を傾斜させることを要するが、その角度は容器底面の摩擦係数と粉体状担体が有する粉体の流動性(例えば粉体の安息角によって定義されるような流動性)によって支配される。容器底面の材質を一定とすると、滑落させるに要する容器の傾斜角度は粉体状担体の種類によって決定される。そして、容器を揺動軸の回りに左右へ揺動させる場合には、容器の底面が所定の傾斜角度に達したことをセンサによって検知して揺動の方向を逆にする。容器底面の傾斜角度を検知するセンサには機械的、電気的、および光学的な各種のセンサを使用し得るが、簡易には例えば容器の端部の接触を検知する接触センサを使用してもよい。そして接触センサが容器の衝突を検知する衝突センサであり、容器の端部が衝突した時に容器へ衝撃を与える衝突部材を兼ねるものであれば、その衝撃によって容器底面上での粉体状担体の滑落を助長することができるので好適である。   In addition, in order to slide the powder carrier on the bottom surface of the container by rocking, it is necessary to tilt the bottom surface of the container to an inclination angle at which the sliding easily occurs. The angle depends on the friction coefficient of the bottom surface of the container and the powder. It is governed by the fluidity of the powder (for example, fluidity as defined by the angle of repose of the powder) of the carrier. If the material of the bottom surface of the container is constant, the inclination angle of the container required for sliding down is determined by the type of powder carrier. When the container is swung left and right around the swing shaft, the sensor detects that the bottom surface of the container has reached a predetermined inclination angle and reverses the swing direction. Various sensors such as mechanical, electrical, and optical sensors can be used as the sensor for detecting the inclination angle of the bottom surface of the container. For simplicity, for example, a contact sensor that detects contact at the end of the container may be used. Good. If the contact sensor is a collision sensor that detects a collision of the container and also serves as a collision member that gives an impact to the container when the end of the container collides, the impact of the powder carrier on the bottom of the container by the impact This is preferable because sliding can be promoted.

また、容器の底面上には揺動軸と平行に高さの低い複数本の桟を設けると、傾斜された容器底面上を滑落する粒子状担体は桟を乗り越える時に撹拌が助長されるので、そのような桟の設置は好ましいが、桟の長さ方向と直角な方向の断面形状によっては粒子状担体の一部分の滑落が阻止される場合もあるので、断面を山型の桟とすることが望まれる。   In addition, if a plurality of low beams parallel to the swing axis are provided on the bottom surface of the container, the particulate carrier that slides down on the inclined container bottom surface is facilitated when stirring over the beam, Although installation of such a crosspiece is preferable, depending on the cross-sectional shape in a direction perpendicular to the length direction of the crosspiece, a part of the particulate carrier may be prevented from sliding, so the cross section may be a mountain-shaped crosspiece. desired.

また、本発明の粉体状担体の撹拌方法は、金属蒸着装置が有する粉体状担体の撹拌手段を使用する方法であるが、粉体状担体の容器が水平な状態で所定回数の真空アーク放電によって容器内の粉体状担体へ施す金属の蒸着と間欠的な次の同様な蒸着との間において、容器に設けた揺動軸によって揺動軸の回りに第1の方向と第1の方向とは逆の第2の方向とへ揺動させ、傾斜する容器の底面上で粉体状担体を容器の一方の端部の方へ滑落させて撹拌するだけでなく、揺動によって容器が所定の傾斜角度に達したことをセンサが検知すると、直ちに揺動の方向を逆にして容器を水平な状態とすると共に、上記端部の方へ滑落している粉体状担体を容器の中央側へ跳ね戻して粉体状担体を裏返すように撹拌することが望ましい。   The powder carrier agitation method of the present invention is a method using the powder carrier agitation means of the metal vapor deposition apparatus. The powder carrier is kept in a horizontal state with a predetermined number of vacuum arcs. Between the vapor deposition of the metal applied to the powdery carrier in the container by the discharge and the next similar vapor deposition, the first direction and the first direction around the rocking shaft by the rocking shaft provided in the container. The container is not only swirled in a second direction opposite to the direction and the powder carrier is slid down and stirred toward one end of the container on the inclined bottom surface of the container. When the sensor detects that the predetermined angle of inclination has been reached, the direction of swinging is immediately reversed to bring the container into a horizontal state, and the powdery carrier sliding down toward the end is placed in the center of the container. It is desirable to stir back so that the powder carrier is turned over.

上記における金属の蒸着時間と粉体状担体の撹拌時間とは、粉体状担体に坦持される金属ナノ粒子の均等度に基づいて適宜設定される。例えば一つの方法は、容器の底面を水平な状態として所定回数の真空アーク放電によって粉体状担体へ金属を蒸着した後に、容器を左右の何れか一方、例えば右方へ揺動させ、傾斜する容器の底面上で粉体状担体を容器の右方の端部の方へ滑落させて、容器が所定の傾斜角度に達したことをセンサが検知すると、直ちに揺動の方向を逆にして容器を水平な状態にすると共に、容器の右方へ滑落している粉体状担体を容器の中央部に跳ね戻させた後、容器内の粉体状担体へ所定回数の真空アーク放電によって金属を蒸着するような金属の蒸着と粉体状担体の撹拌とを繰り返してもよい。   The metal vapor deposition time and the powder carrier agitation time in the above are appropriately set based on the uniformity of the metal nanoparticles supported on the powder carrier. For example, in one method, after depositing metal on the powder carrier by a predetermined number of times of vacuum arc discharge with the bottom surface of the container in a horizontal state, the container is swung to the left or right, for example, to the right and tilted. The powder carrier is slid down on the bottom of the container toward the right end of the container, and when the sensor detects that the container has reached a predetermined inclination angle, the direction of swinging is immediately reversed. The powder carrier that is sliding down to the right of the container is bounced back to the center of the container, and then the metal is applied to the powder carrier in the container by vacuum arc discharge a predetermined number of times. You may repeat vapor deposition of the metal which vapor-deposits, and stirring of a powdery support | carrier.

また、容器の底面を水平な状態として所定回数の真空アーク放電によって粉体状担体へ金属を蒸着した後に、上記のような容器の揺動を左右の方向へ連続して複数回繰り返した
後に、水平な状態とした容器内の粉体状担体へ所定回数の真空アーク放電によって金属を蒸着するような金属の蒸着と粉体状担体の撹拌とを繰り返してもよい。何れにしても、粉体状担体へ金属ナノ粒子を均等に担持させるという立場からは、粉体状担体を十分に均等に撹拌し得るように、揺動は左右の方向へ交互に行なうことが好ましい。
In addition, after depositing metal on the powder carrier by vacuum arc discharge a predetermined number of times with the bottom surface of the container in a horizontal state, after repeating the above-mentioned swinging of the container several times in the left and right directions, The deposition of the metal and the stirring of the powder carrier may be repeated such that the metal is deposited on the powder carrier in the horizontal container by vacuum arc discharge a predetermined number of times. In any case, from the standpoint of uniformly supporting the metal nanoparticles on the powder carrier, the rocking can be alternately performed in the left and right directions so that the powder carrier can be sufficiently evenly stirred. preferable.

以下、図面を参照し、本発明を実施例によって具体的に説明する。図1は本発明の金属蒸着装置1を示す概略的な断面図である。図7に示した従来の金属蒸着装置10と比較して、容器41とその撹拌手段は異なるが、それら以外の部分は同様であるので、共通する部分には同一の符号を付して、その部分の説明は省略する。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a metal vapor deposition apparatus 1 of the present invention. Compared with the conventional metal vapor deposition apparatus 10 shown in FIG. 7, the container 41 and its stirring means are different, but the other parts are the same. The description of the part is omitted.

図1において、真空チャンバ11の上部に設けられた触媒活性を有する白金を蒸発させる同軸型真空アーク蒸着源21の下端の開口側に対向して、真空チャンバ11内の底部には被蒸着材であり担体である粉体状アルミナAを収容し撹拌するためのステンレス製の容器41が配置されている。すなわち、真空チャンバ11の外壁に固定された揺動源44の揺動軸45が図示を省略した真空シール機構を介して真空チャンバ11内へ挿通されており、容器41は揺動軸45の先端部に設けた台座46に取り付けられている。そして揺動源44が起動されると、容器41は揺動軸45の回りに左右の方向へ揺動されて底面42が傾斜され、粉体状担体Aは傾斜した底面42上を滑落する。そして揺動される容器41の左右の端部の下方には、該端部の下端を衝突させて容器41が所定の傾斜角度に達したことを検知するための衝突検知センサを兼ねる衝突部材47が、図示せずとも、真空チャンバ11の底面に支持されて配置されている。   In FIG. 1, facing the opening side of the lower end of a coaxial vacuum arc vapor deposition source 21 provided at the upper part of the vacuum chamber 11 for evaporating catalytically active platinum, the bottom of the vacuum chamber 11 is made of a vapor deposition material. A stainless steel container 41 for accommodating and stirring the powdery alumina A as a carrier is disposed. That is, the swing shaft 45 of the swing source 44 fixed to the outer wall of the vacuum chamber 11 is inserted into the vacuum chamber 11 through a vacuum seal mechanism (not shown), and the container 41 is connected to the tip of the swing shaft 45. It is attached to a pedestal 46 provided in the section. When the rocking source 44 is activated, the container 41 is rocked in the left-right direction around the rocking shaft 45, the bottom surface 42 is inclined, and the powder carrier A slides on the inclined bottom surface 42. Then, below the left and right end portions of the container 41 to be swung, a collision member 47 that also serves as a collision detection sensor for detecting that the container 41 has reached a predetermined inclination angle by colliding the lower end of the end portion. However, although not shown, it is supported and arranged on the bottom surface of the vacuum chamber 11.

そして、図2は容器41の平面図であり、図3は図2における[3]−[3]線方向の断面図である。すなわち、容器41の底面42上には揺動軸45と平行に4本の桟43が形成されており、それらの桟43は長さ方向と直角な方向の断面が山型とされている。そして、図4は容器41の斜視図であり、台座46および揺動軸45と共に示されている。   2 is a plan view of the container 41, and FIG. 3 is a cross-sectional view taken along the line [3]-[3] in FIG. That is, four crosspieces 43 are formed on the bottom surface 42 of the container 41 in parallel with the swing shaft 45, and the crosspieces 43 in the direction perpendicular to the length direction are mountain-shaped. 4 is a perspective view of the container 41, which is shown together with a pedestal 46 and a swing shaft 45. FIG.

容器41を水平な状態として、所定回数の真空放電によって容器41内の粉体状アルミナAへ白金が蒸着されると、容器41は揺動軸45の回りに左右何れかの方へ揺動され、傾斜される容器41の底面42上で粉体状アルミナAは容器41の何れか一方の端部の方へ滑落して撹拌される。また、容器41の左右何れかの端部が衝突検知センサを兼ねる衝突部材47に衝突して容器41が所定の傾斜角度に達したことが検知されると、直ちに揺動の方向を逆にして容器41は水平な状態にされると共に、容器41の端部の方へ滑落している粉体状アルミナAは容器41の中央側へ跳ね戻され、粉体状アルミナAは裏返すように撹拌される。その様子を図5によって説明する。   When the container 41 is placed in a horizontal state and platinum is deposited on the powdery alumina A in the container 41 by a predetermined number of times of vacuum discharge, the container 41 is swung around the rocking shaft 45 to the left or right. The powdery alumina A is slid down toward one end of the container 41 on the bottom surface 42 of the inclined container 41 and stirred. Further, when it is detected that the left or right end of the container 41 collides with a collision member 47 that also serves as a collision detection sensor and the container 41 reaches a predetermined inclination angle, the direction of swinging is immediately reversed. While the container 41 is in a horizontal state, the powdered alumina A sliding down toward the end of the container 41 is bounced back to the center side of the container 41, and the powdered alumina A is stirred so as to turn over. The This will be described with reference to FIG.

図5は容器41内の粉体状アルミナAへの白金の蒸着と粉体状アルミナAの撹拌をステップ毎に示す図である。なお、図5は視覚的な理解が容易であるように、粉体径1μm程度である粉体状アルミナAの径を拡大して示すと共に、粉体状アルミナAの量も少なく図示している。図5の(S−1)は、容器41を水平な状態とし、図1に示す同軸型真空アーク蒸発源21が起動され、所定回数の真空アーク放電による粉体状アルミナAへ白金が蒸着されている様子を示す。白金の蒸着は容器41を水平な状態として開始されるが、所定回数、例えば100回の真空アーク放電(放電の周期が1Hzとして100秒間の放電)による白金の蒸着が終わると、揺動軸45を時計方向に揺動させる。   FIG. 5 is a diagram showing the deposition of platinum on the powdered alumina A in the container 41 and the stirring of the powdered alumina A for each step. FIG. 5 shows an enlarged diameter of the powdery alumina A having a powder diameter of about 1 μm and a small amount of the powdery alumina A for easy visual understanding. . 5 (S-1), the container 41 is placed in a horizontal state, the coaxial vacuum arc evaporation source 21 shown in FIG. 1 is activated, and platinum is deposited on the powdery alumina A by a predetermined number of vacuum arc discharges. It shows how it is. The deposition of platinum is started with the container 41 in a horizontal state, but when the deposition of platinum by a predetermined number of times, for example, 100 times of vacuum arc discharge (discharge for 100 seconds with a discharge period of 1 Hz) is finished, the swing shaft 45 is finished. Is swung clockwise.

そして(S−2)に示すように、容器41は右方の端部が下になるように揺動される。すなわち、(S−2)では右下がりとなった底面42上で被蒸着材であり担体である粉体状アルミナAは左方から右方の方へ山型の桟43を乗り越えて滑落し撹拌されるが、容器41の右方の端部が衝突検知センサを兼ねる衝突部材47に衝突し所定の傾斜角度に達したことが検知されると、直ちに揺動軸45は揺動の方向を逆の反時計方向とされて容器41は水平な状態に戻される。この間、容器41が衝突部材47に衝突して受ける衝撃により粉体状アルミナAの滑落が促進され、同時に揺動の方向が逆にされることから、容器41の右端部の方へ滑落している粉体状アルミナAは容器41の中央側へ裏返すように跳ね戻される。その様子は中華鍋を片手で持ち、調理材料を奥の方へ寄せてから素早く鍋返しをして調理材料を手前側へ跳ね戻し表裏を反転させる様子と酷似している。   And as shown to (S-2), the container 41 is rock | fluctuated so that the right end part may become a lower side. That is, in (S-2), the powdery alumina A which is a material to be deposited and the carrier on the bottom surface 42 which has been lowered to the right crosses the mountain-shaped bar 43 from the left to the right and slides down. However, as soon as it is detected that the right end of the container 41 has collided with the collision member 47 which also serves as a collision detection sensor and has reached a predetermined inclination angle, the swing shaft 45 reverses the swing direction. The container 41 is returned to the horizontal state. During this time, the sliding of the powdered alumina A is promoted by the impact received when the container 41 collides with the collision member 47, and at the same time, the direction of swinging is reversed, so that the container 41 slides toward the right end of the container 41. The powdered alumina A is bounced back to the center side of the container 41. The situation is very similar to holding a Chinese wok with one hand, bringing the cooking ingredients to the back, quickly turning the pot back, bouncing the cooking ingredients back, and reversing the front and back.

(S−3)は容器41が水平な状態とされて跳ね戻された粉体状アルミナAへ白金が蒸着されている様子を示す。すなわち、容器41が水平な状態になると、裏返しするように撹拌された粉体状アルミナAに対して間欠的な次の真空アーク放電による白金の蒸着が行なわれる。そして、所定回数のアーク放電による白金の蒸着が終わると、容器41は揺動軸45によって先の揺動とは逆の反時計方向の左方へ揺動される。(S−4)はその揺動を示す図であるが、(S−2)と同等な図であるので、その説明は省略する。このようにして、容器41は当初の(S−1)から、(S−2)、(S−3)、(S−4)の如く、容器41を水平な状態としての粉体状アルミナAへの白金の蒸着と、容器41の左右の方向への揺動による粉体状アルミナAの撹拌とが繰り返されて、所定量の白金の蒸着が完了する。   (S-3) shows a state in which platinum is deposited on the powdery alumina A which is bounced back when the container 41 is in a horizontal state. That is, when the container 41 is in a horizontal state, platinum is vapor-deposited by intermittent next vacuum arc discharge on the powdery alumina A stirred so as to turn over. When platinum deposition by arc discharge is completed a predetermined number of times, the container 41 is swung counterclockwise by the swing shaft 45 in the counterclockwise direction opposite to the previous swing. (S-4) is a diagram showing the swinging, but is a diagram equivalent to (S-2), and the description thereof is omitted. In this way, the container 41 is the powdery alumina A with the container 41 in a horizontal state as shown in (S-2), (S-3), and (S-4) from the initial (S-1). The deposition of platinum on the substrate and the stirring of the powdered alumina A by swinging the container 41 in the left and right directions are repeated to complete the deposition of a predetermined amount of platinum.

図6に示す写真A〜Eは、本発明の金属蒸着装置における撹拌手段、および従来の金属蒸着装置における撹拌手段を用いて、粉体状アルミナAに対し真空アーク放電によって白金を蒸着して、白金ナノ粒子を粉体状アルミナAに坦持させた担持品をガラス瓶に保存した状態で比較して示す写真である。
A:比較のために示す蒸着前の粉体状アルミナAであり、純白な粉体である。
B:本発明の金属蒸着装置を使用した実施例によって得られた担持品である。アーク放電のトータル回数は20000回である。担持品はややクリーム色であり、さらさらしている。
C:図7に示す従来の金属蒸着装置による担持品である。容器31を10rpmで連続的に回転させたものであり、アーク放電のトータル回数は20000回である。坦持品は灰色を呈しており、凝集した状態となっている。なお、白金の蒸着を行なわず、粉状アルミナAを存在させた状態で容器31を回転させるだけでも、粉体状アルミナA は灰色を呈し凝集した状態となった。
D:従来の金属蒸着装置による担持品であり、容器31を100rpmで連続的に回転させて7300回のアーク放電を行なったものである。灰色で凝集した状態となった。
E:従来の金属蒸着装置による担持品であり、容器31を100rpmで連続的に回転させて3000回の真空アーク放電を行なったものである。灰色で凝集した状態となった。
Photographs A to E shown in FIG. 6 deposit platinum by vacuum arc discharge on powdery alumina A using the stirring means in the metal deposition apparatus of the present invention and the stirring means in the conventional metal deposition apparatus, It is a photograph which compares and shows the support | carrier goods which carry | supported the platinum nanoparticle on the powdery alumina A in the state preserve | saved in the glass bottle.
A: It is powdery alumina A before vapor deposition shown for comparison, and is a pure white powder.
B: A carrier obtained by an example using the metal vapor deposition apparatus of the present invention. The total number of arc discharges is 20000. The carrier is a little creamy and smooth.
C: A supported product by the conventional metal vapor deposition apparatus shown in FIG. The container 31 is continuously rotated at 10 rpm, and the total number of arc discharges is 20000 times. The carrying items are gray and in an agglomerated state. Note that the powdery alumina A can be obtained by simply rotating the container 31 in the state where the powdery alumina A is present without depositing platinum. Became gray and agglomerated.
D: A supported product by a conventional metal vapor deposition device, which is obtained by arcing 7300 times by continuously rotating the container 31 at 100 rpm. Aggregated in gray.
E: A product supported by a conventional metal vapor deposition apparatus, in which the container 31 is continuously rotated at 100 rpm and 3000 times of vacuum arc discharge is performed. Aggregated in gray.

上記の結果から、従来の金属蒸着装置を使用した場合には、白金を担持させた粉体状アルミナA が灰色を呈し凝集した状態を示す原因として次のようなことが考えられる。 図7の装置において連続的に回転される容器31の底面と固定羽根36との間で粉体状アルミナAはすり潰されるように押圧されるが、アルミナは硬度が高いので、ステンレス製の容器31や固定羽根36が研磨されてステンレスの粉末を生じ、そのステンレスの粉末が担持品に混入するということである。図6のCにおいて説明したように、白金の蒸着を行なわず、容器31内の粉体状アルミナAを撹拌するだけでも、粉体状アルミナA が灰色となり凝集したことは上記の推測の確かさを裏付ける。 From the above results, when a conventional metal deposition apparatus is used, powdery alumina A carrying platinum is supported. The following can be considered as the cause of the state in which the material is gray and aggregated. In the apparatus of FIG. 7, the powdery alumina A is pressed so as to be crushed between the bottom surface of the container 31 continuously rotated and the fixed blade 36. However, since alumina has high hardness, the container made of stainless steel is used. 31 and fixed blades 36 are polished to produce stainless steel powder, which is mixed into the carrier. As described with reference to FIG. 6C, the powdery alumina A can be obtained by merely stirring the powdery alumina A in the container 31 without depositing platinum. The fact that became gray and aggregated confirms the certainty of the above assumption.

以上、本発明の粉体状担体の撹拌装置および撹拌方法を実施例によって説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although the stirring apparatus and stirring method of the powdery carrier of this invention were demonstrated by the Example, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention. It is.

例えば実施例においては、蒸着開始時の容器41の底面42が水平な状態での100回の真空アーク放電(放電の周期を1Hzとして100秒間の放電)による白金の蒸着に続いて、容器41を右方へ揺動させる粉体状アルミナAの撹拌、容器41の底面42を水平な状態に戻しての100回の真空アーク放電による白金の蒸着、容器41を左方へ揺動させる粉体状アルミナAの撹拌を繰り返す場合を説明したが、当初の蒸着の後、容器41の右方への揺動と左方への揺動とを交互に例えば100秒間繰り返してから、容器41の底面42を水平な状態に戻して次の100回の真空アーク放電による白金の蒸着を施して、粉体状アルミナAを十分に撹拌するようにしてもよい。勿論、容器41の左右への揺動の時間が100秒間に限定されないことは言うまでもない。   For example, in the embodiment, following the deposition of platinum by 100 vacuum arc discharges (discharge for 100 seconds with a discharge period of 1 Hz) with the bottom surface 42 of the container 41 in a horizontal state at the start of deposition, Agitation of powdery alumina A swinging rightward, deposition of platinum by 100 vacuum arc discharges with the bottom surface 42 of the container 41 returned to a horizontal state, powdery swinging the container 41 leftward The case where the stirring of the alumina A is repeated has been described, but after the initial deposition, the container 41 is swung to the right and to the left alternately, for example, for 100 seconds, and then the bottom surface 42 of the container 41. The powdery alumina A may be sufficiently stirred by returning platinum to a horizontal state and performing platinum deposition by the next 100 vacuum arc discharges. Of course, it goes without saying that the swinging time of the container 41 to the left and right is not limited to 100 seconds.

また実施例においては、所定回数の真空アーク放電による白金の蒸着の後に、容器41を右方へ揺動させ、次の同様な白金の蒸着の後には容器41を左方へ揺動させて、容器41の揺動の方向を左右交互に変える場合を説明したが、容器41を例えば右方のみへ揺動させるようにしてもよい。   In the embodiment, after platinum deposition by vacuum arc discharge a predetermined number of times, the container 41 is swung to the right, and after the next similar platinum deposition, the container 41 is swung to the left. Although the case where the swing direction of the container 41 is changed alternately left and right has been described, the container 41 may be swung only to the right, for example.

また実施例においては、粉体状担体の撹拌手段が設けられている金属蒸着装置として、粉体状担体Aへ所定回数の真空アーク放電によって白金を蒸着する金属蒸着装置1を示したが、本発明の粒子状担体の撹拌手段および撹拌方法は、真空アーク放電による金属蒸着装置以外の金属蒸着装置、例えばCVD方式またはスパッタ方式による金属蒸着装置にも適用することができる。   In the embodiment, the metal vapor deposition apparatus 1 that deposits platinum on the powder carrier A by a predetermined number of vacuum arc discharges is shown as the metal vapor deposition apparatus provided with the stirring means for the powder carrier. The particulate carrier stirring means and stirring method of the invention can also be applied to metal vapor deposition apparatuses other than metal vapor deposition apparatuses using vacuum arc discharge, for example, metal deposition apparatuses using CVD or sputtering.

また実施例においては、ステンレス製の容器41内に硬度が高い粉体状アルミナAを収容して撹拌したが、ステンレスが摩損されることを抑制するために、容器41をアルミナ製としてもよく、また鋼製の容器41の内面にアルミナの溶射コーティングを施したものとしてもよい。更には、容器41の底面42上における粉体状アルミナAの滑落を容易化させるように、容器41を4フッ化エチレン系合成樹脂の成形品としてもよく、また鋼製の容器41の内面に4フッ化エチレン系合成樹脂をコーティングしたものとしてもよい。   Further, in the embodiment, the powdered alumina A having high hardness is contained in the stainless steel container 41 and stirred, but the container 41 may be made of alumina in order to prevent the stainless steel from being worn. Further, the inner surface of the steel container 41 may be subjected to a thermal spray coating of alumina. Furthermore, the container 41 may be a molded product of tetrafluoroethylene-based synthetic resin so as to facilitate the sliding of the powdery alumina A on the bottom surface 42 of the container 41, and the inner surface of the steel container 41 may be It may be coated with a tetrafluoroethylene synthetic resin.

実施例で使用した金属蒸着装置を示す断面図である。It is sectional drawing which shows the metal vapor deposition apparatus used in the Example. 図1の金属蒸着装置に使用されている粉体状アルミナAの容器の平面図である。It is a top view of the container of the powdery alumina A used for the metal vapor deposition apparatus of FIG. 図2における[3]−[3]線方向の断面図である。It is sectional drawing of the [3]-[3] line direction in FIG. 図2、図3に示す粉体状アルミナAの容器の斜視図である。FIG. 4 is a perspective view of the powdered alumina A container shown in FIGS. 2 and 3. 同粉体状アルミナAの容器の作用を示す図である。It is a figure which shows the effect | action of the container of the same powdery alumina A. 粉体状アルミナAに対し、本発明の金属蒸着装置、および従来の金属蒸着装置を使用して白金を蒸着して担持させた場合における担持品を比較して示す写真である。It is the photograph which shows the carrying | support product in the case where platinum is vapor-deposited and carry | supported with respect to powdery alumina A using the metal vapor deposition apparatus of this invention, and the conventional metal vapor deposition apparatus. 従来の金属蒸着装置を示す断面図である。It is sectional drawing which shows the conventional metal vapor deposition apparatus.

符号の説明Explanation of symbols

1・・・本発明の金属蒸着装置、 10・・・従来の金属蒸着装置、
11・・・真空チャンバ、 21・・・同軸型真空アーク蒸発源、
31・・・容器、 32・・・回転駆動源、
33・・・回転軸、 36・・・固定羽根、
41・・・容器、 42・・・容器の底面、
43・・・断面が山型の桟、 45・・・揺動軸、
47・・・衝突部材を兼ねる衝突検知センサ、
A・・・・粉体状アルミナ、
DESCRIPTION OF SYMBOLS 1 ... Metal vapor deposition apparatus of this invention, 10 ... Conventional metal vapor deposition apparatus,
11 ... Vacuum chamber, 21 ... Coaxial vacuum arc evaporation source,
31 ... Container, 32 ... Rotation drive source,
33 ... rotating shaft, 36 ... fixed blade,
41 ... container, 42 ... bottom of container,
43 ... Cross-shaped crosspiece, 45 ... Oscillating shaft,
47 ... Collision detection sensor also serving as a collision member,
A ... Powdery alumina,

Claims (5)

真空チャンバと、蒸着材料であり触媒活性を有する金属を成分とするカソード電極、トリガ電極、アノード電極、トリガ電源、およびアーク発生用電源を備えた同軸型真空アーク蒸発源と、前記同軸型真空アーク蒸発源と対向して前記真空チャンバ内に配置され被蒸着体である粉体状担体を収容する皿状の容器と、前記粉体状担体を撹拌する撹拌手段とを備えた金属蒸着装置であって、前記撹拌手段は前記容器に設けられた揺動軸の回りに前記容器を水平な状態から第1の方向および前記第1の方向とは逆の第2の方向へ揺動させる揺動機構と、前記容器が水平な状態から前記第1の方向へ所定角度の傾斜をしたことを検知する第1のセンサと、前記容器が水平な状態から前記第2の方向へ所定角度の傾斜をしたことを検知する第2のセンサとを有しており、前記揺動機構は前記第1のセンサまたは前記第2のセンサからの検知信号に基づいて直ちに揺動の方向を逆にして前記容器を水平な状態にすると共に、前記第1の方向または前記第2の方向への揺動によって傾斜された前記容器の底面上で一方の端部の方へ滑落している前記粉体状担体を前記容器の中央側へ跳ね戻して撹拌することを特徴とする金属蒸着装置。   A coaxial vacuum arc evaporation source having a vacuum chamber, a cathode electrode, a trigger electrode, an anode electrode, a trigger power source, and an arc generating power source, each of which includes a metal having a catalytic activity as an evaporation material, and the coaxial vacuum arc A metal vapor deposition apparatus provided with a dish-like container that is disposed in the vacuum chamber so as to face an evaporation source and accommodates a powdery carrier as a deposition target, and a stirring means for stirring the powdery carrier. The stirring means swings the container from a horizontal state to a first direction and a second direction opposite to the first direction around a swing shaft provided in the container. And a first sensor for detecting that the container is inclined at a predetermined angle from the horizontal state to the first direction, and an inclination of the predetermined angle from the horizontal state to the second direction. Second sensor to detect The swinging mechanism immediately reverses the swinging direction based on a detection signal from the first sensor or the second sensor to bring the container into a horizontal state. The powdery carrier sliding down toward one end on the bottom surface of the container inclined by swinging in the first direction or the second direction is bounced back to the center side of the container and stirred. A metal vapor deposition apparatus characterized by: 前記第1のセンサおよび前記第2のセンサが前記容器の両端部の何れかの衝突を検知する衝突検知センサであり、前記容器の衝突部材であることを兼ねている請求項1に記載の金属蒸着装置。   2. The metal according to claim 1, wherein the first sensor and the second sensor are collision detection sensors that detect a collision at either end portion of the container, and also serve as a collision member of the container. Vapor deposition equipment. 前記容器が水平な状態から前記第1の方向または前記第2の方向へ揺動される揺動速度に比して、前記容器が前記所定角度に傾斜したことを前記第1のセンサまたは前記第2のセンサによって検知されて水平な状態とされる速度が高速とされている請求項1または請求項2に記載の金属蒸着装置。   The first sensor or the first sensor indicates that the container is inclined at the predetermined angle as compared with a swing speed at which the container is swung from the horizontal state in the first direction or the second direction. The metal vapor deposition apparatus according to claim 1, wherein a speed at which the horizontal state is detected by the two sensors is high. 前記容器の底面上に前記揺動軸と平行に、長さ方向と直角な方向の断面が山型とされた複数本の桟が設けられている請求項1から請求項3までの何れかの1項に記載の金属蒸着装置。   4. A plurality of crosspieces having a mountain-shaped cross section in a direction perpendicular to the length direction in parallel to the swing axis on the bottom surface of the container. The metal vapor deposition apparatus of 1 item | term. 真空チャンバと、蒸着材料であり触媒活性を有する金属を成分とするカソード電極、トリガ電極、アノード電極、トリガ電源、およびアーク発生用電源を備えた同軸型真空アーク蒸発源と、前記同軸型真空アーク蒸発源と対向して前記真空チャンバ内の底部に配置され被蒸着体である粉体状担体を収容する皿状の容器と、前記粉体状担体を撹拌する撹拌手段とを備えた金属蒸着装置における前記容器内の粉体状担体の撹拌方法であって、
前記容器を水平な状態としての所定回数の真空アーク放電による前記粉体状担体への前記金属の蒸着と間欠的な次の同様な蒸着との間において、前記容器に設けた揺動軸によって前記容器を水平な状態から前記揺動軸の回りに第1の方向または前記第1の方向と逆の第2の方向へ揺動させることにより傾斜する前記容器の底面上で前記粉体状担体を一方の端部の方へ滑落させ、かつ前記容器が所定角度に傾斜されたことをセンサが検知すると直ちに揺動の方向を逆にして前記容器を水平な状態にすると共に、前記一方の端部の方へ滑落している前記粉体状担体を前記容器の中央側へ跳ね戻すことを特徴とする粉体状担体の撹拌方法。
A coaxial vacuum arc evaporation source having a vacuum chamber, a cathode electrode, a trigger electrode, an anode electrode, a trigger power source, and an arc generating power source, each of which includes a metal having a catalytic activity as an evaporation material, and the coaxial vacuum arc A metal vapor deposition apparatus provided with a dish-like container that is disposed at the bottom of the vacuum chamber so as to face the evaporation source and accommodates a powdery carrier as a deposition target, and a stirring means for stirring the powdery carrier. A method of stirring the powdery carrier in the container in
Between the deposition of the metal on the powdery carrier and the intermittent similar deposition by a predetermined number of times of vacuum arc discharge with the container in a horizontal state, the swing shaft provided in the container causes the The powdery carrier is placed on the bottom surface of the container which is inclined by swinging the container from a horizontal state around the swing axis in a first direction or a second direction opposite to the first direction. As soon as the sensor detects that the container is slid down toward one end and the container is tilted at a predetermined angle, the direction of swinging is reversed to bring the container into a horizontal state, and the one end A method of stirring a powdery carrier, wherein the powdery carrier sliding down toward the center is rebounded toward the center of the container.
JP2007248873A 2007-09-26 2007-09-26 Metal vapor deposition device and powder carrier stirring method in the same Expired - Fee Related JP5039487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248873A JP5039487B2 (en) 2007-09-26 2007-09-26 Metal vapor deposition device and powder carrier stirring method in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248873A JP5039487B2 (en) 2007-09-26 2007-09-26 Metal vapor deposition device and powder carrier stirring method in the same

Publications (2)

Publication Number Publication Date
JP2009079251A true JP2009079251A (en) 2009-04-16
JP5039487B2 JP5039487B2 (en) 2012-10-03

Family

ID=40654228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248873A Expired - Fee Related JP5039487B2 (en) 2007-09-26 2007-09-26 Metal vapor deposition device and powder carrier stirring method in the same

Country Status (1)

Country Link
JP (1) JP5039487B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150802A2 (en) * 2011-05-02 2012-11-08 주식회사 나노케미 Device for preparing nano particle attached to support
WO2012150804A2 (en) * 2011-05-02 2012-11-08 주식회사 나노케미 Method for preparing nano powder using supporter
WO2012164767A1 (en) * 2011-05-27 2012-12-06 株式会社島津製作所 Film forming apparatus and film forming method
WO2014034497A1 (en) 2012-08-29 2014-03-06 日立化成株式会社 Drum sputtering device
US20150211110A1 (en) * 2012-09-21 2015-07-30 Technische Universitat Wien Device for coating a substrate made of particles
EP2891521A4 (en) * 2012-08-29 2016-05-04 Hitachi Chemical Co Ltd Method for manufacturing catalyst for carbon nanotube synthesis
JP2016222530A (en) * 2015-05-28 2016-12-28 コリア インスティチュート オブ エナジー リサーチ Nitrogen-doped porous graphene cover formation process
CN106480412A (en) * 2015-08-24 2017-03-08 圆益Ips股份有限公司 Substrate board treatment and substrate processing method using same
CN114450082A (en) * 2019-09-25 2022-05-06 芝浦机械株式会社 Surface treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287065A (en) * 1988-07-25 1990-03-27 Smithkline Biologicals Sa Human immunity incompetence virus diagnostic method and reagent
JPH07150349A (en) * 1993-11-30 1995-06-13 Futaba Corp Powder agitator
JP2007204810A (en) * 2006-02-01 2007-08-16 Ulvac Japan Ltd Powder treatment device
JP2007204786A (en) * 2006-01-31 2007-08-16 Bridgestone Corp Particle coating method and particle coating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287065A (en) * 1988-07-25 1990-03-27 Smithkline Biologicals Sa Human immunity incompetence virus diagnostic method and reagent
JPH07150349A (en) * 1993-11-30 1995-06-13 Futaba Corp Powder agitator
JP2007204786A (en) * 2006-01-31 2007-08-16 Bridgestone Corp Particle coating method and particle coating apparatus
JP2007204810A (en) * 2006-02-01 2007-08-16 Ulvac Japan Ltd Powder treatment device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484572B1 (en) 2011-05-02 2015-01-20 고석근 Manufacturing device for nano particle attached to support
WO2012150804A2 (en) * 2011-05-02 2012-11-08 주식회사 나노케미 Method for preparing nano powder using supporter
WO2012150802A3 (en) * 2011-05-02 2013-01-17 주식회사 나노케미 Device for preparing nano particle attached to support
WO2012150804A3 (en) * 2011-05-02 2013-03-21 주식회사 나노케미 Method for preparing nano powder using supporter
WO2012150802A2 (en) * 2011-05-02 2012-11-08 주식회사 나노케미 Device for preparing nano particle attached to support
WO2012164767A1 (en) * 2011-05-27 2012-12-06 株式会社島津製作所 Film forming apparatus and film forming method
JPWO2012164767A1 (en) * 2011-05-27 2014-07-31 株式会社島津製作所 Film forming apparatus and film forming method
US9920419B2 (en) * 2012-08-29 2018-03-20 Hitachi Chemical Company, Ltd. Drum sputtering device
KR20150046052A (en) 2012-08-29 2015-04-29 히타치가세이가부시끼가이샤 Drum sputtering device
CN104603322A (en) * 2012-08-29 2015-05-06 日立化成株式会社 Drum sputtering device
US20150307983A1 (en) * 2012-08-29 2015-10-29 Hitachi Chemical Company, Ltd. Drum sputtering device
EP2891521A4 (en) * 2012-08-29 2016-05-04 Hitachi Chemical Co Ltd Method for manufacturing catalyst for carbon nanotube synthesis
WO2014034497A1 (en) 2012-08-29 2014-03-06 日立化成株式会社 Drum sputtering device
US10077495B2 (en) 2012-08-29 2018-09-18 Hitachi Chemical Company, Ltd. Method for manufacturing catalyst for carbon nanotube synthesis
US20150211110A1 (en) * 2012-09-21 2015-07-30 Technische Universitat Wien Device for coating a substrate made of particles
JP2016222530A (en) * 2015-05-28 2016-12-28 コリア インスティチュート オブ エナジー リサーチ Nitrogen-doped porous graphene cover formation process
US9947926B2 (en) 2015-05-28 2018-04-17 Korea Institute Of Energy Research Method of forming nitrogen-doped porous graphene envelope
CN106480412A (en) * 2015-08-24 2017-03-08 圆益Ips股份有限公司 Substrate board treatment and substrate processing method using same
CN106480412B (en) * 2015-08-24 2019-02-05 圆益Ips股份有限公司 Substrate board treatment and substrate processing method using same
CN114450082A (en) * 2019-09-25 2022-05-06 芝浦机械株式会社 Surface treatment device

Also Published As

Publication number Publication date
JP5039487B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5039487B2 (en) Metal vapor deposition device and powder carrier stirring method in the same
Tomboc et al. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance
JP6938078B2 (en) Powder coating equipment
US3926147A (en) Glow discharge-tumbling vapor deposition apparatus
JPWO2009098784A1 (en) Plasma CVD apparatus, plasma CVD method and stirring apparatus
JP2008308735A (en) Method for carrying nanoparticles using coaxial type vacuum-arc vapor deposition source
JP2007204810A (en) Powder treatment device
JP2007204786A (en) Particle coating method and particle coating apparatus
JP5008434B2 (en) Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell
JP2014159623A (en) Coating device and method
JPH1129866A (en) Sputtering device
JP4970191B2 (en) Fine particle formation method
JP6161053B2 (en) Vapor deposition source and fine particle forming device
JP5191691B2 (en) Method for producing catalyst material
JP6902339B2 (en) Powder coating equipment and how to use it
JP5502617B2 (en) Fuel cell electrode manufacturing apparatus and method
JP5436198B2 (en) Fine particle forming apparatus and method thereof
JP6865071B2 (en) Powder coating equipment and how to use it
JP6612198B2 (en) Powder coating apparatus and method of using the same
KR101985830B1 (en) physical vapor deposition apparatus
KR101515378B1 (en) Plasma coating apparatus and deposition system
JP6452297B2 (en) Fine particle forming device
JPH032392A (en) Method and device for coating powder
JP4901709B2 (en) Vacuum arc evaporation system
JP2009045528A (en) Nanoparticle support device equipped with source of coaxial type vacuum arc vapor deposition and supporting method of nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees