WO2012118039A1 - 表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット - Google Patents

表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット Download PDF

Info

Publication number
WO2012118039A1
WO2012118039A1 PCT/JP2012/054837 JP2012054837W WO2012118039A1 WO 2012118039 A1 WO2012118039 A1 WO 2012118039A1 JP 2012054837 W JP2012054837 W JP 2012054837W WO 2012118039 A1 WO2012118039 A1 WO 2012118039A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy film
display device
precipitate
semiconductor device
group
Prior art date
Application number
PCT/JP2012/054837
Other languages
English (en)
French (fr)
Inventor
博行 奥野
釘宮 敏洋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020137022620A priority Critical patent/KR20130121959A/ko
Priority to CN201280010495.5A priority patent/CN103403214B/zh
Priority to US14/001,875 priority patent/US9624562B2/en
Publication of WO2012118039A1 publication Critical patent/WO2012118039A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is used in display devices such as liquid crystal displays and semiconductor devices such as IGBTs, and is useful as an electrode and wiring material that can be processed by both dry etching and wet etching.
  • Al alloy film for semiconductor devices The present invention relates to a display device or a semiconductor device provided with a film, and a sputtering target for forming the Al alloy film.
  • Al alloy films for display devices are mainly used as electrodes and wiring materials.
  • electrodes and wiring materials gate electrodes, source and drain electrodes and wiring materials for thin film transistors in liquid crystal displays (LDC), organic EL (OELD) Gate, source and drain electrodes and wiring materials for thin film transistors, cathode and gate electrodes and wiring materials for field emission display (FED), anode and wiring materials for fluorescent vacuum tube (VFD), address electrodes for plasma display (PDP) and Examples include wiring materials and back electrodes in inorganic EL.
  • Al alloy films for semiconductor devices are mainly used as electrodes and wiring materials.
  • the electrodes and wiring materials include semiconductor emitter electrodes such as IGBTs, wiring materials, collector electrodes, and wiring materials.
  • liquid crystal display is typically taken up and described as a liquid crystal display device, but the present invention is not limited to this.
  • TFTs active matrix liquid crystal displays that use thin film transistors (hereinafter referred to as TFTs) for switching pixels have high-precision image quality. Because it can support high-speed video, it is the mainstay.
  • TFTs using polycrystalline silicon or continuous grain boundary crystalline silicon as a semiconductor layer are used in liquid crystal displays that require further low power consumption and high-speed pixel switching.
  • an active matrix liquid crystal display includes a TFT substrate having a TFT that is a switching element, a pixel electrode made of a conductive oxide film, and a wiring including a scanning line and a signal line. Are electrically connected to the pixel electrode.
  • An Al-based alloy thin film is used as a wiring material constituting the scanning lines and signal lines.
  • a scanning line 25 is formed on a glass substrate 21a, and a part of the scanning line 25 functions as a gate electrode 26 for controlling on / off of the TFT.
  • the gate electrode 26 is electrically insulated by a gate insulating film (such as a silicon nitride film) 27.
  • a semiconductor silicon layer 30 as a channel layer is formed through the gate insulating film 27, and a protective film (silicon nitride film or the like) 31 is further formed.
  • the semiconductor silicon layer 30 is bonded to the source electrode 28 and the drain electrode 29 via the low resistance silicon layer 32 and has electrical conductivity.
  • the drain electrode 29 has a structure in direct contact with a transparent electrode 35 such as ITO (Indium Tin Oxide) [referred to as a direct contact (DC). ]have.
  • a transparent electrode 35 such as ITO (Indium Tin Oxide) [referred to as a direct contact (DC).
  • DC Direct contact
  • Examples of the electrode wiring material used for direct contact include Al alloys described in Patent Documents 1 to 5. This is because Al has a small electrical resistivity and excellent fine workability. These Al alloys are directly connected to the oxide transparent conductive film constituting the transparent electrode or directly to the silicon semiconductor layer without interposing a barrier metal layer made of a refractory metal such as Mo, Cr, Ti, and W. Has been.
  • These wiring films and electrodes are covered with an insulating protective film 33 such as silicon nitride, and supply electricity to the drain electrode 29 through the transparent electrode 35.
  • an insulating protective film 33 such as silicon nitride
  • the manufacturing process of a liquid crystal display or the like includes a heat treatment step for TFTs.
  • a part or the whole of the semiconductor silicon layer 30 having an amorphous structure is microcrystallized / polycrystallized. The degree becomes higher and the response speed of the TFT is improved.
  • the insulating protective film 33 is deposited at a relatively low temperature of about 250 to 350 ° C.
  • a high temperature heat treatment at about 450 ° C. or higher may be performed.
  • such low temperature or high temperature heat treatment may be performed a plurality of times.
  • Patent Document 1 described above discloses that an Al alloy thin film having an electric resistance value of 10 ⁇ cm or less is obtained by precipitating a part or all of a solid solution element in an Al alloy thin film as a metal compound by heat treatment at 100 to 600 ° C.
  • Patent Document 2 discloses heat resistance up to 500 ° C., but does not evaluate heat resistance when exposed to high temperatures of 500 ° C. or higher.
  • Patent Documents 3 to 5 are only 450 ° C. or less and do not evaluate the heat resistance when exposed to high temperatures exceeding 450 ° C. Of course, no consideration is given to the heat resistance when exposed to such high temperatures multiple times.
  • Patent Document 6 discloses an Al alloy film excellent in dry etching processability, but the example shows only a result when heated at a temperature of 350 ° C., and is 450 ° C. or higher. The heat resistance when exposed to high temperatures is not evaluated.
  • Japanese Unexamined Patent Publication No. 7-90552 Japanese Unexamined Patent Publication No. 2003-73810 Japanese Unexamined Patent Publication No. 2002-322528 Japanese Unexamined Patent Publication No. 8-250494 Japanese Patent Laid-Open No. 2001-93862 Japanese Unexamined Patent Publication No. 2000-294556
  • the hydrogenated amorphous silicon is microcrystallized and carrier mobility is improved.
  • the heat treatment temperature is increased, problems such as the occurrence of protrusion-like shape abnormalities (hillocks) occur in the Al alloy wiring thin film due to thermal stress.
  • the temperature was about 350 ° C. at most. Therefore, when heat treatment is performed at a temperature higher than this, a refractory metal thin film such as Mo is generally used, but there is a problem that the wiring resistance is high and the display cannot be enlarged.
  • a display device it may be required to exhibit a low contact resistance (contact resistance) when directly connected to a transparent pixel electrode.
  • the TFT substrate manufacturing process passes through a plurality of wet processes.
  • a metal nobler than Al is added, a problem of galvanic corrosion appears and corrosion resistance deteriorates.
  • an alkaline developer containing TMAH tetramethylammonium hydroxide
  • the barrier metal layer is omitted, the Al alloy film is exposed, and the developer It becomes easy to receive damage by. Therefore, it is required to be excellent in alkali corrosion resistance such as alkali developer resistance.
  • wet etching wiring patterning by chemical etching
  • dry etching reactive plasma etching
  • the present invention has been made in view of the above circumstances.
  • the object of the present invention is to generate no hillock even when exposed to a high temperature of about 450 to 600 ° C. and to be excellent in high-temperature heat resistance. Wiring resistance) is also kept low, and it is also excellent in alkali corrosion resistance such as alkali developer resistance.
  • an Al alloy film for display devices or semiconductor devices that can be processed by both wet etching methods and dry etching methods. It is to provide.
  • Another object of the present invention is to provide an Al alloy film for a display device or a semiconductor device that is excellent in a stripping solution (stripping solution resistance) of a photosensitive resin.
  • Still another object of the present invention is an Al alloy for display devices that has a low contact resistance when directly connected to a transparent pixel electrode (transparent conductive film) and can be directly connected to the transparent conductive film (direct contact). It is to provide a membrane.
  • the present invention provides the following display device or Al alloy film for a semiconductor device, sputtering target, Al alloy wiring, a display device provided with an Al alloy film, and a semiconductor device.
  • An Al alloy film used for a display device or a semiconductor device wherein the Al alloy film has 0.01 to 2.0 atomic% of Ge, Ta, Ti, Zr, Hf, W, Cr, Nb. And at least one element selected from the group consisting of Mo, Ir, Pt, Re, and Os (group X), An Al alloy film for a display device or a semiconductor device, which satisfies the following requirement (1) when the Al alloy film is heated at 450 to 600 ° C.
  • concentration of the equivalent circle diameter of 50 nm or more is a density of 200,000 piece / mm ⁇ 2 > or more.
  • the Al alloy film further includes at least one selected from the group consisting of rare earth elements.
  • the Al alloy film is subjected to a heat treatment at 450 to 600 ° C., the following requirement (3) is further satisfied.
  • the deposit with a circle equivalent diameter of 10 nm or more is 1,000,000. It exists at a density of 000 / mm 2 or more.
  • the Al alloy film further contains at least one element selected from the group consisting of Ni, Co, and Fe.
  • the Al alloy film is subjected to a heat treatment at 450 to 600 ° C., the following ( The Al alloy film for a display device or a semiconductor device according to any one of [1] to [4], which satisfies the requirement 5).
  • Precipitates of 250 nm or more are present at a density of 2,000 pieces / mm 2 or more.
  • the content of at least one element selected from the group consisting of Ni, Co, and Fe is 0.1 to 0.35 atomic%, according to any one of [5] to [12] Al alloy film for display devices or semiconductor devices.
  • the Al alloy film is connected to the transparent conductive film via a film containing at least one element selected from the group consisting of Mo, Ti, W, and Cr [1] to [15] ] Al alloy film for display apparatuses or semiconductor devices as described in any one of.
  • a sputtering target comprising 0.1 to 5 atomic% of at least one element.
  • a display device comprising the Al alloy film for a display device according to any one of [1] to [17].
  • a liquid crystal display comprising the Al alloy film for a display device according to any one of [1] to [17].
  • a field emission display comprising the Al alloy film for a display device according to any one of [1] to [17].
  • a fluorescent vacuum tube comprising the Al alloy film for a display device according to any one of [1] to [17].
  • a plasma display comprising the Al alloy film for a display device according to any one of [1] to [17].
  • a semiconductor device comprising the Al alloy film for a semiconductor device according to any one of [1] to [17].
  • a semiconductor element comprising the Al alloy film for a semiconductor device according to any one of [1] to [17].
  • the first Al alloy film (Al—Ge—X group element) includes a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate). Therefore, it is excellent in heat resistance when exposed to high temperatures of about 450 to 600 ° C., and the electric resistance (wiring resistance) of the film itself after high temperature processing can be kept low, and corrosion resistance, etching Combines processability and resistance to stripping solution.
  • the second Al alloy film (Al—Ge—X group element-rare earth element) according to the present invention, which is a preferred embodiment, includes a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate). ) And the third precipitate (preferably the third precipitate and the fourth precipitate), it exhibits higher heat resistance and also better resistance to alkali corrosion.
  • a third Al alloy film (Al—Ge—X group element— [Ni, Co, Fe] alloy according to the present invention, which is a more preferred embodiment, preferably Al—Ge—X group element—rare earth element— [Ni, Co, Fe] alloy) is a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate, more preferably a first precipitate, a second precipitate and a third precipitate). And, more preferably, the first precipitate, the second precipitate, the third precipitate and the fourth precipitate), and the fifth precipitate. Since low contact resistance with a transparent conductive film can also be achieved, direct connection with a transparent conductive film is possible.
  • the high-temperature heat treatment at about 450 to 600 ° C., and the high-temperature heat treatment is performed at least twice. Even when exposed to harsh high-temperature environments, the carrier mobility of the semiconductor silicon layer is increased, improving the TFT response speed and providing high-performance display devices that can handle energy savings and high-speed video. it can. In wiring processing, both a wet etching method and a dry etching method can be applied.
  • the Al alloy film is excellent in heat resistance (particularly high temperature heat resistance), for example, in the manufacturing process of an IGBT provided with this as an electrode / electric wiring of a semiconductor element, the ion activity of the collector layer Heat treatment for crystallization can be performed at a high temperature. As a result, it is possible to realize a semiconductor element having the Al alloy film and improved characteristics, and the semiconductor device having the semiconductor element and exhibiting excellent characteristics. In wiring processing, both a wet etching method and a dry etching method can be applied.
  • FIG. 1 is a diagram illustrating a cross-sectional structure of a core portion of a thin film transistor.
  • FIG. 2 is a diagram showing a Kelvin pattern (TEG pattern) used for measuring the contact resistance between the Al alloy film and the transparent pixel electrode.
  • FIG. 3 is a schematic cross-sectional view showing an example of a liquid crystal display.
  • FIG. 4 is a schematic cross-sectional view showing an example of an organic EL display.
  • FIG. 5 is a schematic cross-sectional view showing an example of a field emission display.
  • FIG. 6 is a schematic cross-sectional view showing an example of a fluorescent vacuum tube.
  • FIG. 7 is a schematic cross-sectional view showing an example of a plasma display.
  • FIG. 1 is a diagram illustrating a cross-sectional structure of a core portion of a thin film transistor.
  • FIG. 2 is a diagram showing a Kelvin pattern (TEG pattern) used for measuring the contact resistance between the Al alloy film and the transparent pixel electrode.
  • FIG. 8 is a schematic cross-sectional view showing an example of an inorganic EL display.
  • FIG. 9 is a schematic cross-sectional view showing a configuration of a general IGBT.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the dry etching apparatus.
  • the inventors of the present invention have excellent heat resistance at high temperatures without generating hillocks even when exposed to a high temperature of about 450 to 600 ° C., and are sometimes referred to as dry etching characteristics and wet etching characteristics (hereinafter referred to as etching characteristics). ),
  • the electrical resistance (wiring resistance) of the film itself is kept low, and the Al alloy film for a display device (first Al alloy film) having high resistance to alkali corrosion such as an alkali developer and stripping solution.
  • an Al alloy film for a display device which is preferably superior in high-temperature heat resistance (sometimes referred to as a second Al alloy film);
  • the Al alloy film for display devices that can be directly connected to the transparent conductive film (direct contact) because the contact resistance is kept low even when directly connected to the transparent conductive film. 3 To provide may be referred to as Al alloy film.), We have been studying.
  • Al alloy film Al—Ge—X group element alloy alloy film
  • a first Al that satisfies the following requirement (1) It has been found that the alloy film can solve the above problems (high heat resistance and etching characteristics during high temperature processing, low electrical resistance, and high alkali developer resistance and stripping solution resistance).
  • concentration of the equivalent circle diameter of 50 nm or more is 200,000 piece / mm ⁇ 2 > or more in density Exists.
  • the Al alloy film is subjected to a heat treatment at 450 to 600 ° C.
  • the first Al alloy film that satisfies the requirement (1) and satisfies the requirement (2) below is more It was found to show high heat resistance.
  • Al alloy film Al—Ge—X group element-REM alloy film
  • Al—Ge—X group element-REM alloy film Al—Ge—X group element-REM alloy film
  • the above (1) preferably further It was found that the second Al alloy film satisfying the requirement (2) and satisfying the requirement (3) below has better heat resistance than the first Al alloy film.
  • the second Al alloy film satisfies the requirements of the above (1) (preferably further (2) above) and (3) above when subjected to a heat treatment at 450 to 600 ° C., and It turned out that the 2nd Al alloy film which satisfies the requirements of following (4) shows much more excellent heat resistance.
  • the deposit with a circle equivalent diameter of 10 nm or more is 1,000,000. It exists at a density of 000 / mm 2 or more.
  • an Al alloy film (Al—Ge—X group element—REM— [Ni, Co, Fe] alloy film) containing at least one element selected from Ni, Co, and Fe, and having a temperature of 450 to 600 ° C.
  • the above (1) preferably further satisfies any one or more of the above (2), (3), (4) and satisfies the following (5)
  • the third Al alloy film showed low contact resistance even when directly in contact with a transparent conductive film such as ITO, and was found to be more excellent in resistance to stripping solution at high temperatures.
  • the fifth precipitate containing Al, at least one element selected from Ni, Co, and Fe, Ge, and at least one element selected from Group X, has a circle-equivalent diameter of 250 nm or more. Precipitates are present at a density of 2,000 / mm 2 or more.
  • the first Al alloy film contains Ge and a refractory metal X group element (high temperature heat resistance improving element) in the Al alloy, and in the case of a single X group element, a predetermined first precipitate ( In the case of a plurality of X group elements, a predetermined first precipitate (Al—Ge—X1, Al—Ge—X2, etc .: X1 and X2 mean different X group elements ) And second precipitates (Al-X1-X2, Al-X1-X3, Al-X2-X3, etc .: when there are three types of X group elements), Excellent heat resistance) and etching characteristics, high resistance to alkali corrosion and stripping solution, and excellent electrical resistance (wiring resistance) of the film itself, so that wiring such as scanning lines and signal lines for display devices; It is suitably used as a material for electrodes such as a gate electrode, a source electrode, and a drain electrode.
  • a gate electrode of a thin film transistor substrate and a related wiring film material that are easily affected by high temperature thermal history is suitably used as an electrode material such as an electrode of a power semiconductor; an emitter electrode of an IGBT.
  • the second Al alloy film contains a rare earth element in addition to the Ge and refractory metal X group element (high temperature heat resistance improving element) in the Al alloy, thereby forming a single X group element.
  • the predetermined first precipitate Al—Ge—X
  • the third precipitate Al—X—REM: REM is a rare earth element
  • the fourth precipitate Al—Ge—X.
  • -REM and in the case of a plurality of X group elements, it further has a second precipitate (Al-X1-X2 etc.) (the first, third, and fourth precipitates also have an X group element).
  • the heat resistance at high temperatures is particularly higher among the effects of the first Al alloy film, and scanning lines and signal lines Wiring such as:
  • It is suitably used as a material for electrodes such as gate electrodes, source electrodes, and drain electrodes .
  • electrodes such as gate electrodes, source electrodes, and drain electrodes .
  • it is suitably used as a gate electrode of a thin film transistor substrate and a related wiring film material that are easily affected by high temperature thermal history.
  • it is suitably used as an electrode material such as an electrode of a power semiconductor; an emitter electrode of an IGBT.
  • the third Al alloy film is made of Ni, Co, and Fe, which are elements for reducing contact resistance with the transparent conductive film, in addition to the X group element, Ge, and preferably a rare earth element, in the Al alloy.
  • a predetermined fifth precipitate Al—X—Ge— [Ni, Co, Fe] in addition to the precipitates included in the first and second Al alloy films.
  • direct connection to the transparent conductive film is possible without interposing a barrier metal layer.
  • -It is suitably used as a wiring material.
  • high temperature heat resistance means that hillocks do not occur when exposed to a high temperature of at least about 450 to 600 ° C., and preferably, it is repeatedly exposed at least twice or more to the high temperature described above. This means that no hillock will occur.
  • etching characteristics required in the manufacturing process of display devices and semiconductor devices high resistance (corrosion resistance) to chemicals (alkali developer, stripping solution) used in the manufacturing process, transparent conductive film Characteristics such as low contact resistance and low electrical resistance of the Al alloy film itself, but it is characterized in that it can be effectively exhibited not only in the low temperature range below 450 ° C. but also in the high temperature range described above.
  • exposure to an alkaline environment is a stage before receiving a thermal history. Therefore, in the examples described later, the resistance to alkaline developer was examined for an Al alloy film before heating.
  • alkali developer resistance may be referred to as alkali corrosion resistance in a broad sense.
  • the first Al alloy film is at least one selected from the group consisting of Ta, Ti, Zr, Hf, W, Cr, Nb, Mo, Ir, Pt, Re, and Os (X group) in addition to Ge.
  • the group X element (group X element) is composed of a refractory metal having a melting point of approximately 1600 ° C. or higher, and is an element that contributes to improving heat resistance at high temperatures. These elements may be added alone or in combination of two or more. Of the group X elements, Ta, Ti, Zr, and Hf are preferable, and Ta, Zr, and Hf are more preferable.
  • the content of the X group element (when contained alone, it is a single amount, and when two or more types are used in combination) is preferably from 0.1 to 5 atomic%. When the content of the X group element is less than 0.1 atomic%, the above-described effect is not exhibited effectively. On the other hand, when the content of the group X element exceeds 5 atomic%, there arise problems that the electric resistance of the Al alloy film becomes too high and residues are easily generated during wiring processing.
  • a more preferable content of the group X element is 0.3 atomic% or more and 3.0 atomic% or less, and more preferably 2.0 atomic% or less.
  • the first Al alloy film only needs to contain at least the X group element and Ge, and may contain other elements as long as the action of these additive elements is not hindered.
  • the Ge content is preferably 0.01 to 2.0 atomic%. If the Ge content is less than 0.01 atomic%, the desired effect cannot be obtained, and the density of the first precipitate that contributes to further improvement in heat resistance cannot be ensured. On the other hand, when the Ge content exceeds 2.0 atomic%, the electrical resistivity increases.
  • the more preferable content of the element is 0.1 atomic% or more and 1.0 atomic% or less, and more preferably 0.2 atomic% or more and 0.6 atomic% or less.
  • the first Al alloy film essentially contains a first precipitate having a predetermined size and a predetermined density defined in (1) above by high-temperature heat treatment at 450 to 600 ° C., preferably further (2) In this way, it is possible to realize high heat resistance and high resistance to stripping liquid at high temperatures.
  • the first precipitate only needs to contain at least one element selected from Ge and X groups, and may contain other elements as long as the action of the precipitate is not hindered.
  • the 2nd precipitate should just contain the at least 2 sort (s) of element selected from X group element, and may contain the other element, unless the effect
  • the first Al alloy film contains the above elements, and the balance is Al and inevitable impurities.
  • examples of the inevitable impurities include Si and B.
  • the total amount of inevitable impurities is not particularly limited, it may be contained in an amount of about 0.5 atomic percent or less, and each inevitable impurity element is 0.012 atomic percent or less for B and 0.12 atomic percent or less for Si. You may contain.
  • the circle equivalent diameter (size) of the first and second precipitates is 50 nm or more. According to the results of the study by the present inventors, precipitates of less than 50 nm are composed of precipitates containing Al—Ge—X group elements (first precipitates), or precipitates containing Al—X1-X2 Even if it was a thing (2nd precipitate), it turned out that a desired effect is not exhibited.
  • the lower limit of the equivalent circle diameter may be 50 nm, and the upper limit is not particularly limited in relation to the above action, but the size of the precipitate is large. When it becomes a huge precipitate, it may be visually recognized by an inspection with an optical microscope, and an appearance defect is caused. Therefore, the upper limit is preferably 1 ⁇ m.
  • a preferable equivalent circle diameter of the first precipitate and the second precipitate is 50 nm or more and 800 nm or less.
  • the first precipitate is present at a density of 200,000 pieces / mm 2 or more with the equivalent circle diameter of 50 nm or more. According to the examination results of the present inventors, it has been found that even if the size of the first precipitate is 50 nm or more, the desired effect is not exhibited when it is less than 200,000 pieces / mm 2 . In order to effectively exhibit the effect of improving the high temperature heat resistance, the density of the precipitate is preferably as high as possible, and is preferably 2,000,000 pieces / mm 2 or more.
  • the second precipitate is present at a density of 100,000 / mm 2 or more with the equivalent circle diameter of 50 nm or more. According to the examination results of the present inventors, it has been found that even if the size of the second precipitate is 50 nm or more, the desired effect is not exhibited when it is less than 100,000 pieces / mm 2 . In order to effectively exhibit the effect of improving the high temperature heat resistance, the density of the precipitate is preferably as high as possible, and is preferably 1,000,000 pieces / mm 2 or more.
  • the second Al alloy film is an Al—Ge—X group element-REM alloy film containing a rare earth element (REM) in addition to the Ge and X group elements described above.
  • REM rare earth element
  • the rare earth element is an element that contributes to the improvement of the high temperature heat resistance when added in combination with the Ge and X group elements. Furthermore, it has an effect not found in the Ge and X group elements, which is an effect of improving corrosion resistance in an alkaline environment alone.
  • the rare earth element is an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table).
  • the rare earth elements may be used alone or in combination of two or more.
  • the rare earth elements Nd, La, Gd, and Ce are preferable, and Nd and La are more preferable.
  • the rare earth element content (individual amount when contained alone, and total amount when two or more kinds are used in combination) is 0.1. It is preferably from 0.45 atomic%. If the rare earth element content is less than 0.1 atomic%, the effect of improving heat resistance and alkali corrosion resistance is not effectively exhibited. On the other hand, if the content exceeds 0.45 atomic%, the dry etching rate becomes slow. There are problems such as residue. A more preferable content of the rare earth element is 0.15 atomic% or more and 0.4 atomic% or less, and a more preferable content is 0.15 atomic% or more and 0.3 atomic% or less.
  • the second Al alloy film only needs to contain at least the X group element, Ge, and rare earth element, and may contain other elements as long as the action of these additive elements is not hindered.
  • the second Al alloy film contains the above elements, and the balance is Al and inevitable impurities.
  • examples of the inevitable impurities include Si and B.
  • the total amount of inevitable impurities is not particularly limited, it may be contained in an amount of about 0.5 atomic percent or less, and each inevitable impurity element is 0.012 atomic percent or less for B and 0.12 atomic percent or less for Si. You may contain.
  • the second Al alloy film is subjected to a high-temperature heat treatment at 450 to 600 ° C. to form a first precipitate having a predetermined size and a predetermined density as defined in the above (1) to (4) (preferably further the second precipitate).
  • Precipitate) and a third precipitate preferably further a fourth precipitate
  • the third precipitate only needs to contain at least the X group element and REM
  • the fourth precipitate only needs to contain at least the X group element, Ge, and REM. As long as the above is not inhibited, other elements may be contained.
  • the circle equivalent diameter (size) of the third and fourth precipitates is 10 nm or more. According to the examination results of the present inventors, precipitates of less than 10 nm have a composition of precipitates of Al-X group element-REM-containing precipitate (third precipitate), Al-Ge-X group element- It was found that the desired effect was not exhibited even with the REM-containing precipitate (fourth precipitate).
  • the lower limit of the equivalent circle diameter may be 10 nm, and the upper limit is not particularly limited in relation to the above action, but the size of the precipitate is large. When it becomes a huge precipitate, it may be visually recognized by an inspection with an optical microscope, and an appearance defect is caused. Therefore, the upper limit is preferably 1 ⁇ m.
  • a preferable equivalent circle diameter of the third and fourth precipitates is not less than 10 nm and not more than 800 nm.
  • the density of the precipitate is preferably as high as possible and is preferably 3,000,000 pieces / mm 2 or more.
  • the third Al alloy film includes an Al—Ge—X group containing at least one selected from the group consisting of Ni, Co, and Fe in addition to the Ge, X group element, and rare earth element (REM) described above. This is an element-REM- [Ni, Co, Fe] alloy film.
  • Ni, Co, and Fe are elements that enable direct connection (direct contact) with the transparent conductive film. This is because electrical conduction with the transparent conductive film becomes possible through highly conductive [Ni, Co, Fe] -containing Al-based precipitates formed by the thermal history in the TFT manufacturing process. . These may be added alone or both may be added.
  • the content of [Ni, Co, Fe] (single content in the case of single, and total amount in the case of containing both) is 0.1. It is preferable to set it to ⁇ 0.35 atomic%. If the content of [Ni, Co, Fe] is less than 0.1 atomic%, the desired effect cannot be obtained, and the density of the fifth precipitate that contributes to reducing the contact resistance with the transparent conductive film cannot be ensured. That is, since the size of the fifth precipitate is small and the density is also reduced, it is difficult to stably maintain a low contact resistance with the transparent conductive film.
  • the more preferable content of [Ni, Co, Fe] is 0.1 atomic% or more and 0.25 atomic% or less, and more preferably 0.1 atomic% or more and 0.2 atomic% or less.
  • the third Al alloy film only needs to contain Ge, at least one element selected from the X group, and [at least one element selected from the group consisting of Ni, Co, Fe]. Other elements may be contained as long as the action by the elements is not hindered.
  • the third Al alloy film contains the above elements, and the balance is Al and inevitable impurities.
  • examples of the inevitable impurities include Si and B.
  • the total amount of inevitable impurities is not particularly limited, it may be contained in an amount of about 0.5 atomic percent or less, and each inevitable impurity element is 0.012 atomic percent or less for B and 0.12 atomic percent or less for Si. You may contain.
  • the third Al alloy film is subjected to high-temperature heat treatment at 450 to 600 ° C. to form a fifth precipitate (Al—Ge—X group element— [Ni, Co, Fe]), and this makes it possible to realize high resistance to a stripping solution at high temperatures and low contact resistance with a transparent conductive film.
  • the fifth precipitate only needs to contain at least Ge, an X group element, and [at least one selected from the group consisting of Ni, Co, Fe], and unless the action by the precipitate is inhibited, It may contain other elements.
  • the circle equivalent diameter (size) of the fifth precipitate is 250 nm or more. According to the examination results of the present inventors, it has been found that a precipitate having a thickness of less than 250 nm does not exhibit a desired effect even if the composition of the precipitate satisfies the above composition.
  • the lower limit of the equivalent circle diameter may be 250 nm, and the upper limit is not particularly limited in relation to the above action, but the size of the precipitate increases and becomes huge. When it becomes a precipitate, it may be visually recognized by inspection with an optical microscope, and it causes an appearance defect. Therefore, the upper limit is preferably 3 ⁇ m.
  • a more preferable equivalent circle diameter of the fifth precipitate is 250 nm or more and 2 ⁇ m or less.
  • the precipitates having an equivalent circle diameter of 250 nm or more exist at a density of 2,000 / mm 2 or more.
  • the density of the precipitate is preferably as high as possible, and is preferably 5,000 / mm 2 or more.
  • the “containing” or “including” precipitate containing the predetermined element in the first to fifth precipitates preferably contains the predetermined element, and the remainder is Al and inevitable impurities. Inevitable impurities mean meanings other than a predetermined element of each precipitate.
  • the heat treatment for forming the first to fifth precipitates is 450 to 600 ° C., preferably 500 to 600 ° C.
  • This heat treatment is preferably performed in a vacuum or nitrogen and / or inert gas atmosphere, and the treatment time is preferably 1 minute or more and 60 minutes or less. According to the present invention, it has been found that hillocks and the like do not occur even when the above heat treatment (high temperature heat treatment) is performed twice or more.
  • the TFT manufacturing process corresponding to such high temperature heat treatment includes, for example, annealing by laser for crystallizing amorphous silicon, film formation by CVD (chemical vapor deposition) for various thin film formation, impurity diffusion And the temperature of a heat treatment furnace when the protective film is thermally cured.
  • the heat treatment or impurity diffusion for crystallization of amorphous silicon is often exposed to the above-described high temperature.
  • the film thickness of the Al alloy film is preferably 50 nm or more, and more preferably 100 nm or more, particularly in order to ensure high temperature heat resistance, etching characteristics and reduction in wiring resistance.
  • the upper limit is not particularly limited from the above viewpoint, but it is preferably 2 ⁇ m or less, more preferably 600 nm or less in consideration of the wiring taper shape and the like.
  • the Al alloy film is preferably used for various wiring materials such as a source-drain electrode and a gate electrode in a display device.
  • the Al alloy film is more preferably used as a wiring material for a gate electrode requiring high temperature heat resistance.
  • the Al alloy film is preferably used for various electrode materials such as an emitter electrode and a collector electrode in a semiconductor device, and more preferably used as a wiring material for an emitter electrode that requires high temperature heat resistance.
  • the Al alloy film is preferably formed by a sputtering method using a sputtering target (hereinafter also referred to as “target”). This is because a thin film having excellent in-plane uniformity of components and film thickness can be easily formed as compared with a thin film formed by ion plating, electron beam vapor deposition or vacuum vapor deposition.
  • the Al alloy sputtering target having the same composition as that of the desired Al alloy film is used as the target, There is no fear, and an Al alloy film having a desired component composition can be formed.
  • the present invention also includes a sputtering target having the same composition as that of the first, second, or third Al alloy film described above.
  • the target includes (i) 0.01 to 2.0 atomic% of Ge, Ta, Ti, Zr, Hf, W, Cr, Nb, Mo, Ir, Pt, Re, and Os.
  • the shape of the target includes a shape processed into an arbitrary shape (a square plate shape, a circular plate shape, a donut plate shape, etc.) according to the shape and structure of the sputtering apparatus.
  • a method for producing the above target a method of producing an ingot made of an Al-based alloy by a melt casting method, a powder sintering method, or a spray forming method, or a preform made of an Al-based alloy (the final dense body is prepared)
  • Examples thereof include a method obtained by producing an intermediate before being obtained) and then densifying the preform by a densification means.
  • the present invention includes a display device characterized in that the Al alloy film is used in a thin film transistor.
  • the Al alloy film is used for a source electrode and / or a drain electrode and a signal line of a thin film transistor, and the drain electrode is directly connected to a transparent conductive film, or used for a gate electrode and a scanning line. And the like.
  • a refractory metal film or a refractory alloy film (barrier metal) containing at least one element selected from the group consisting of Mo, Ti, W, and Cr is used. Connected to the transparent conductive film.
  • the third Al alloy film when used, it may be through the barrier metal or directly connected to the transparent conductive film without using the barrier metal.
  • the gate electrode and the scanning line, the source electrode and / or the drain electrode, and the signal line are included in the form of an Al alloy film having the same composition.
  • the transparent pixel electrode used in the present invention is not particularly limited, and examples thereof include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the semiconductor layer used in the present invention is not particularly limited, and examples thereof include amorphous silicon, polycrystalline silicon, continuous grain boundary crystalline silicon, and oxide semiconductor materials.
  • the liquid crystal display is typically taken up and described as the liquid crystal display device, but the above-described Al alloy film for display device of the present invention described above can be used for various liquid crystal display devices mainly as electrodes and wiring materials.
  • LDC liquid crystal display
  • OLED organic EL
  • the cathode and gate electrodes and the wiring material in the field emission display (FED) illustrated in FIG. 5 for example, the anode electrode and the wiring material in the fluorescent vacuum tube (VFD) illustrated in FIG. 6, for example, the plasma display illustrated in FIG. 7.
  • PDP Definitive address electrodes and the wiring material, such as the back electrode and the like in the inorganic EL illustrated in Figure 8, for example.
  • the above-described Al alloy film for a semiconductor device of the present invention can be used for various semiconductor devices mainly as electrodes and wiring materials.
  • the emitter and collector electrodes and wiring materials in the IGBT illustrated in FIG. Can be mentioned. It has been confirmed by experiments that the above-mentioned predetermined effect can be obtained when the display device of the present invention and the Al alloy film for a semiconductor device are used for these liquid crystal display devices and semiconductor devices.
  • an Al alloy wiring obtained by etching the Al alloy film with a gas containing a halogen gas or a halogen-containing compound and an Al alloy wiring obtained by etching with an acidic solution having a pH of 3 or less are also included as aspects of the present invention.
  • the etching method and the apparatus used for the etching process are not limited.
  • a general dry etching process can be performed using a general-purpose dry etching apparatus as shown in FIG.
  • an ICP (inductively coupled plasma) type dry etching apparatus shown in FIG. 10 was used.
  • a dielectric window 2 is provided above the chamber 1, and a one-turn antenna 3 is placed on the dielectric window 2.
  • the plasma generator shown in FIG. 10 is a so-called TCP (Transfer Coupled Plasma) in which the dielectric window 2 is a flat plate type.
  • a high frequency power 4 of 13.56 MHz is introduced into the antenna 3 via a matching unit 5.
  • the chamber 1 has a process gas inlet 6 from which an etching gas containing a halogen gas such as Cl 2 is introduced.
  • a substrate (material to be etched) 7 is placed on a susceptor 8.
  • the susceptor 8 is an electrostatic chuck 9 and can be chucked by an electrostatic force due to electric charge flowing into the substrate from the plasma.
  • a member called a quartz glass collar 10 is placed around the susceptor 8.
  • the halogen gas introduced into the chamber 1 is converted into plasma in an excited state by a dielectric magnetic field generated by applying high-frequency power to the antenna 3 on the dielectric window 2.
  • a 400 kHz high frequency power 12 is introduced to the susceptor 8 through the matching unit 11, and a high frequency bias is applied to the substrate (material to be etched) 7 placed on the susceptor 8.
  • a high frequency bias is applied to the substrate (material to be etched) 7 placed on the susceptor 8.
  • a substrate material to be etched in an aqueous solution containing an organic acid (1 to 10% by weight) such as phosphoric acid (45 to 80% by weight), nitric acid (1 to 10% by weight) and acetic acid, and the balance being water. Isotropic etching is possible by immersing or spraying an aqueous solution onto the substrate.
  • Al alloy targets having various compositions prepared by a vacuum melting method were used as sputtering targets.
  • the content of each alloy element in various Al alloy films used in the examples was determined by an ICP emission analysis (inductively coupled plasma emission analysis) method.
  • the Al alloy film formed as described above is subjected to high-temperature heat treatment at 450 to 600 ° C. twice, and the Al alloy film after the high-temperature heat treatment is subjected to heat resistance and electrical resistance (arrangement of the Al alloy film itself). Resistance), dry etching characteristics, alkali developer resistance, stripping liquid resistance, and contact resistance with ITO, and the size and density of the precipitates were measured by the methods described below. For reference, an experiment at 350 ° C. was also conducted for heat resistance. In addition, about alkali developing solution tolerance, it experimented using the Al alloy film after film-forming, and heat processing was not performed.
  • the reason for exposure to an alkaline environment in the TFT manufacturing process is a photolithography process for forming an Al alloy wiring, which is a stage before receiving a thermal history.
  • Ar / Cl 2 300 sccm / 180 sccm
  • Substrate bias 60W
  • Process pressure gas pressure
  • Substrate temperature susceptor temperature (20 ° C)
  • Etching was performed by changing the etching time in a range where the etching depth was 100 to 300 nm, and samples having different etching depths were produced.
  • the photoresist is stripped off using an amine stripping solution or the like, and then using a stylus type film thickness meter (“Dektak II” manufactured by Vecco), pure Al or The etching thickness of the Al alloy film was measured.
  • the dry etching characteristics were evaluated according to the criteria shown in Table 7, and in this example, ⁇ or ⁇ was accepted.
  • the direct contact resistance with ITO was evaluated according to the judgment criteria shown in Table 7. In this example, ⁇ or ⁇ was regarded as acceptable.
  • Substrate temperature 25 ° C (room temperature)
  • the number of crater-like corrosion (pitting corrosion) marks (those with an equivalent circle diameter of 150 nm or more) found on the film surface after immersion was examined (observation magnification was 1000 times).
  • the stripping solution resistance was evaluated according to the criteria shown in Table 7. In this example, ⁇ or ⁇ was regarded as acceptable.
  • Alkali developer resistance (developer etch rate measurement) After masking the Al alloy film formed on the substrate, it was immersed in a developer (aqueous solution containing 2.38% by mass of TMAH) at 25 ° C. for 1 minute and 2 minutes. The etching rate was calculated from the difference in etching amount when immersed for 1 minute and 2 minutes. Alkali developer resistance was evaluated according to the criteria described in Table 7, and in this example, ⁇ or ⁇ was regarded as acceptable.
  • Each of the Al alloy films described in 1-1 to 1-32 corresponds to the third Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and includes the first to fifth
  • it is excellent not only in heat resistance at low temperature (350 ° C.) but also in high temperature heat resistance at 450 to 600 ° C.
  • the dry etching characteristics are good.
  • the electrical resistance after the high-temperature heat treatment has a lower electrical resistance than that of the refractory metal, and the resistance to the alkali developer before the high-temperature heat treatment and the stripping solution after the high-temperature heat treatment is also good.
  • the direct contact resistance with the transparent pixel electrode) could also be greatly reduced.
  • Each of the Al alloy films described in 2-1 to 2-24 corresponds to the third Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and includes the first, third, and third alloy films. Since the requirements (size and density) of the fifth precipitate are also satisfied, it is excellent not only in heat resistance at low temperature (350 ° C.) but also in high temperature heat resistance at 450-600 ° C. Also, the dry etching characteristics are good. Furthermore, the electrical resistance after the high-temperature heat treatment has a lower electrical resistance than that of the refractory metal, and the resistance to the alkali developer before the high-temperature heat treatment and the stripping solution after the high-temperature heat treatment is also good. The direct contact resistance with the transparent pixel electrode) could also be greatly reduced.
  • Each of the Al alloy films described in 3-1 to 3-30 corresponds to the second Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and has the first to fourth
  • it is excellent not only in heat resistance at low temperature (350 ° C.) but also in high temperature heat resistance at 450 to 600 ° C.
  • the dry etching characteristics are good.
  • the electrical resistance after the high temperature heat treatment has an electrical resistance lower than that of the refractory metal, and the resistance to the alkali developer and the stripping solution is also good.
  • direct contact resistance with ITO transparent pixel electrode
  • ITO transparent pixel electrode
  • Each of the Al alloy films described in 4-1 to 4-24 corresponds to the second Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and has the first, third, and third alloy films.
  • the requirements (size and density) of the fourth precipitate are also satisfied, it is excellent not only in heat resistance at low temperature (350 ° C.) but also in high temperature heat resistance at 450 to 600 ° C. Also, the dry etching characteristics are good.
  • the electrical resistance after the high temperature heat treatment has an electrical resistance lower than that of the refractory metal, and the resistance to the alkali developer and the stripping solution is also good.
  • the direct contact resistance with ITO transparent pixel electrode
  • the contact resistance with ITO became high because none of Ni, Co, and Fe was contained.
  • Each of the Al alloy films described in 5-1 to 5-3 corresponds to the first Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and is a first precipitate. Therefore, not only is the heat resistance at low temperature (350 ° C.) excellent, but also the heat resistance at 450 to 600 ° C. is excellent. Also, the dry etching characteristics are good. Furthermore, the electrical resistance after the high temperature heat treatment has an electrical resistance lower than that of the refractory metal, and the resistance to the alkali developer and the stripping solution is also good. Regarding the direct contact resistance with ITO (transparent pixel electrode), the contact resistance with ITO became high because none of Ni, Co, and Fe was contained.
  • Each of the Al alloy films described in 5-4 to 5-5 corresponds to the first Al alloy film according to the present invention, satisfies the alloy composition defined in the present invention, and has the first and second In addition to satisfying the requirements (size and density) of this precipitate, it is excellent not only in heat resistance at low temperature (350 ° C.) but also in high temperature heat resistance at 450 to 600 ° C. Also, the dry etching characteristics are good. Furthermore, the electrical resistance after the high temperature heat treatment has an electrical resistance lower than that of the refractory metal, and the resistance to the alkali developer and the stripping solution is also good. Regarding the direct contact resistance with ITO (transparent pixel electrode), the contact resistance with ITO became high because none of Ni, Co, and Fe was contained.
  • each of the Al alloy films described in 6-1 to 6-7 is an example that does not satisfy the requirements of the first to third Al alloy films defined in the present invention.
  • No. Examples 6-1 to 6-3 are examples that do not satisfy the alloy composition and the precipitate requirement.
  • the wiring resistance shows a relatively good value because the heat resistance of the wiring is poor and the surface is rough.
  • the first Al alloy film (Al—Ge—X group element) includes a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate). Therefore, it is excellent in heat resistance when exposed to high temperatures of about 450 to 600 ° C., and the electric resistance (wiring resistance) of the film itself after high temperature processing can be kept low, and corrosion resistance, etching Combines processability and resistance to stripping solution.
  • the second Al alloy film (Al—Ge—X group element-rare earth element) according to the present invention, which is a preferred embodiment, includes a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate). ) And the third precipitate (preferably the third precipitate and the fourth precipitate), it exhibits higher heat resistance and also better resistance to alkali corrosion.
  • a third Al alloy film (Al—Ge—X group element— [Ni, Co, Fe] alloy according to the present invention, which is a more preferred embodiment, preferably Al—Ge—X group element—rare earth element— [Ni, Co, Fe] alloy) is a predetermined alloy element and a first precipitate (preferably a first precipitate and a second precipitate, more preferably a first precipitate, a second precipitate and a third precipitate). And, more preferably, the first precipitate, the second precipitate, the third precipitate and the fourth precipitate), and the fifth precipitate. Since low contact resistance with a transparent conductive film can also be achieved, direct connection with a transparent conductive film is possible.
  • the high-temperature heat treatment at about 450 to 600 ° C., and the high-temperature heat treatment is performed at least twice. Even when exposed to harsh high-temperature environments, the carrier mobility of the semiconductor silicon layer is increased, improving the TFT response speed and providing high-performance display devices that can handle energy savings and high-speed video. it can. In wiring processing, both a wet etching method and a dry etching method can be applied.
  • the Al alloy film is excellent in heat resistance (particularly high temperature heat resistance), for example, in the manufacturing process of an IGBT provided with this as an electrode / electric wiring of a semiconductor element, the ion activity of the collector layer Heat treatment for crystallization can be performed at a high temperature. As a result, it is possible to realize a semiconductor element having the Al alloy film and improved characteristics, and the semiconductor device having the semiconductor element and exhibiting excellent characteristics. In wiring processing, both a wet etching method and a dry etching method can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 高温耐熱性に優れており、膜自体の電気抵抗(配線抵抗)も低く、アルカリ環境下の耐食性にも優れた表示装置用Al合金膜を提供する。本発明は、Ge(0.01~2.0原子%)と、X群元素(Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、および/またはOs)とを含み、450~600℃の加熱処理を行なったときのAlと、X群元素と、Geを含む析出物における円相当直径50nm以上の析出物の密度を制御したAl合金膜に関する。

Description

表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット
 本発明は、液晶ディスプレイなどの表示装置やIGBTなど半導体装置に使用され、ドライエッチングおよびウェットエッチングの双方で加工可能な電極および配線材料として有用な表示装置および半導体装置用Al合金膜;上記Al合金膜を備えた表示装置乃至半導体装置、および上記Al合金膜を形成するためのスパッタリングターゲットに関するものである。
 表示装置用Al合金膜は主に電極および配線材料として用いられており、電極および配線材料としては、液晶ディスプレイ(LDC)における薄膜トランジスタ用のゲート、ソースおよびドレイン電極並びに配線材料、有機EL(OELD)における薄膜トランジスタ用のゲート、ソースおよびドレイン電極並びに配線材料、フィールドエミッションディスプレイ(FED)におけるカソードおよびゲート電極並びに配線材料、蛍光真空管(VFD)におけるアノード電極および配線材料、プラズマディスプレイ(PDP)におけるアドレス電極および配線材料、無機ELにおける背面電極などが挙げられる。
 また、半導体装置用Al合金膜は主に電極および配線材料として用いられており、電極および配線材料としては、IGBTなどの半導体のエミッタ電極並びに配線材料、コレクタ電極並びに配線材料などが挙げられる。
 以下では、液晶表示装置として液晶ディスプレイを代表的に取り上げ、説明するがこれに限定する趣旨ではない。
 液晶ディスプレイは、最近では100インチを超える大型のものが商品化され、低消費電力技術も進んでおり、主要な表示デバイスとして汎用されている。液晶ディスプレイには動作原理の異なるものがあるが、このうち、画素のスイッチングに薄膜トランジスタ(Thin Film Transistor、以下、TFTと呼ぶ。)を用いるアクティブ・マトリックス型液晶ディスプレイは、高精度画質を有し、高速動画にも対応できるため、主力となっている。そのなかで、更に低消費電力で画素の高速スイッチングが求められる液晶ディスプレイでは、多結晶シリコンや連続粒界結晶シリコンを半導体層に用いたTFTが用いられている。
 例えば、アクティブマトリクス型の液晶ディスプレイは、スイッチング素子であるTFT、導電性酸化膜から構成される画素電極、および走査線や信号線を含む配線を有するTFT基板を備えており、走査線や信号線は、画素電極に電気的に接続されている。走査線や信号線を構成する配線材料には、Al基合金薄膜が用いられている。
 図1を参照しながら、半導体層として水素化アモルファス・シリコンを用いたTFT基板の中核部の構成を説明する。
 図1に示すように、ガラス基板21a上には、走査線25が形成され、走査線25の一部は、TFTのオン・オフを制御するゲート電極26として機能する。ゲート電極26はゲート絶縁膜(窒化シリコン膜など)27で電気的に絶縁されている。ゲート絶縁膜27を介してチャンネル層である半導体シリコン層30が形成され、さらに保護膜(窒化シリコン膜など)31が形成される。半導体シリコン層30は、低抵抗シリコン層32を介して、ソース電極28およびドレイン電極29に接合され、電気的な導通性をもつ。
 ドレイン電極29は、ITO(Indium Tin Oxide)などの透明電極35と直接に接触している構造[ダイレクト・コンタクト(DC)と呼ばれる。]を有している。ダイレクト・コンタクト用に用いられる電極配線材料として、例えば特許文献1~5に記載のAl合金が挙げられる。Alは、電気抵抗率が小さく、微細加工性に優れるためである。これらのAl合金は、Mo、Cr、Ti、Wなどの高融点金属からなるバリアメタル層を介在させずに、透明電極を構成する酸化物透明導電膜と直接、またはシリコン半導体層と直接、接続されている。
 これらの配線膜や電極は、窒化シリコンなどの絶縁性保護膜33で覆われ、透明電極35を通じてドレイン電極29に電気を供給する。
 図1に示すTFTの動作特性を安定して確保するためには、特に半導体シリコン層30におけるキャリア(電子や正孔)の移動度を高める必要がある。そのため、液晶ディスプレイなどの製造プロセスでは、TFTの熱処理工程が含まれており、これにより、アモルファス構造の半導体シリコン層30の一部または全体が微結晶化・多結晶化される結果、キャリアの移動度が高くなり、TFTの応答速度が向上する。
 TFTの製造プロセスにおいて、例えば絶縁性保護膜33の蒸着などは約250~350℃の比較的低い温度で行われる。また、液晶ディスプレイを構成するTFT基板(TFTがアレイ状に配置された液晶ディスプレイ駆動部)の安定性を向上させるために、約450℃以上の高温熱処理が行われる場合がある。実際のTFT、TFT基板、液晶ディスプレイの製造には、このような低温または高温の熱処理が複数回行なわれる場合がある。
 しかしながら、製造プロセス時の熱処理温度が例えば約450℃以上に高くなったり、更にこのような高温加熱処理が長時間に及ぶと、図1に示す薄膜層の剥離や、接触する薄膜間での原子の相互拡散が生じ、薄膜層自体が劣化するため、これまでは、高々300℃以下での熱処理しか行われていなかった。むしろ、加熱処理温度を出来るだけ低くしてもTFTが機能する配線材料や表示デバイスの構造に関する研究開発が集中して行なわれていたというのが実情である。これは、技術的な観点からは、TFT製造プロセスの全てを室温で処理することが理想的であると考えられていたからである。
 例えば前述した特許文献1には、Al合金薄膜中の固溶元素の一部または全部を100~600℃の熱処理により金属化合物として析出させ、電気抵抗値10μΩcm以下のAl合金薄膜を得ることは開示されているが、実施例では最高でも500℃の温度で加熱したときの結果が示されているに過ぎず、500℃以上の高温下に曝されたときの耐熱性は評価していない。同様に、特許文献2には500℃までの耐熱性が開示されているが、500℃以上の高温下に曝されたときの耐熱性は評価していない。また、特許文献3~5は450℃以下に過ぎず、450℃超の高温下に曝されたときの耐熱性は評価していない。勿論、このような高温下に複数回曝されたときの耐熱性については全く考慮していない。
 一方、特許文献6には、ドライエッチング加工性に優れたAl合金膜が開示されているが、実施例では350℃の温度で加熱したときの結果が示されているに過ぎず、450℃以上の高温下に曝されたときの耐熱性は評価していない。
日本国特開平7-90552号公報 日本国特開2003-73810号公報 日本国特開2002-322528号公報 日本国特開平8-250494号公報 日本国特開2001-93862号公報 日本国特開2000-294556号公報
 最近では、高温加熱処理を行なっても耐熱性に優れたAl合金膜の提供が望まれている。これは、TFTの性能を大きく左右する半導体シリコン層のキャリア移動度を出来るだけ高めて、結果的に液晶ディスプレイの省エネと高性能化(高速動画対応など)を進めるというニーズが強まっているからである。そのためには、半導体シリコン層の構成材料である水素化アモルファス・シリコンを結晶化させることが必要である。シリコンは電子の移動度が正孔の移動度より約3倍程度高いが、電子の移動度は連続粒界結晶シリコンでは約300cm/V・s、多結晶シリコンでは約100cm/V・s、水素化アモルファス・シリコンでは約1cm/V・s以下である。水素化アモルファス・シリコンを蒸着した後に熱処理を行えば、水素化アモルファス・シリコンが微結晶化してキャリア移動度が向上する。この熱処理について、加熱温度が高く、加熱時間が長い方が、水素化アモルファス・シリコンの微結晶化は進み、キャリアの移動度は向上する。しかし、熱処理温度を高くすると、熱応力によりAl合金配線薄膜に突起状の形状異常(ヒロック)が発生するなどの問題が生じるため、従来は、Al合金薄膜を用いた場合の熱処理温度の上限を、せいぜい350℃程度にしていた。そのため、これよりも高温で熱処理するときは、Moなどの高融点金属薄膜が一般に用いられているが、配線抵抗が高く表示ディスプレイの大型化に対応できないという問題があった。
 上述した高温耐熱性のほか、表示装置もしくは半導体装置用Al合金膜には、様々な特性が要求される。まず、Al合金膜に含まれる合金元素の添加量が多くなると、配線自体の電気抵抗が増加してしまうため、450~600℃程度の高い熱処理温度を適用した場合でも、電気抵抗を十分に低減できることが求められている。
 また、表示装置においては、透明画素電極と直接接続させた場合に低い接触抵抗(コンタクト抵抗)を示すことも求められる場合もある。
 更には、優れた耐食性の兼備も求められている。特に、TFT基板の製造工程では複数のウェットプロセスを通るが、Alよりも貴な金属を添加すると、ガルバニック腐食の問題が表れ、耐食性が劣化してしまう。例えばフォトリソグラフィー工程では、TMAH(テトラメチルアンモニウムヒドロキシド)を含むアルカリ性の現像液を使用するが、ダイレクト・コンタクト構造の場合、バリアメタル層を省略しているためAl合金膜がむき出しとなり、現像液によるダメージを受けやすくなる。そこで、アルカリ現像液耐性などの耐アルカリ腐食性に優れていることが求められる。
 また、フォトリソグラフィーの工程で形成したフォトレジスト(感光性樹脂)を剥離する洗浄工程では、アミン類を含む有機剥離液を用いて連続的に水洗が行なわれている。ところがアミンと水が混合するとアルカリ性溶液になるため、短時間でAlを腐食させてしまうという別の問題が生じる。ところでAl合金は、剥離洗浄工程を通るより以前にCVD工程を経ることによって熱履歴を受けている。この熱履歴の過程でAlマトリクス中には合金成分が析出物を形成する。しかるに、この析出物とAlの間には大きな電位差があるので、剥離液であるアミンが水と接触した瞬間に前記ガルバニック腐食によってアルカリ腐食が進行し、電気化学的に卑であるAlがイオン化して溶出し、ピット状の孔食(黒点)が形成されてしまう、といった問題がある。そこで、好ましくは感光性樹脂の剥離に用いる剥離液耐性に優れていることが求められる。
 また、配線形成の方法には、ウェットエッチング法(薬液によるエッチングによって配線パターニングを行う方法)と、ドライエッチング法(反応性プラズマによるエッチングによって配線パターニングを行う方法)の2種類が一般的に用いられており、これら双方の方法で加工性に優れていることが求められる。
 本発明は上記事情に鑑みてなされたものであり、その目的は、450~600℃程度の高温下に曝されてもヒロックが発生せず高温耐熱性に優れており、膜自体の電気抵抗(配線抵抗)も低く抑えられており、また、アルカリ現像液耐性などの耐アルカリ腐食性にも優れ、更にウェットエッチング法とドライエッチング法の双方で加工可能な表示装置もしくは半導体装置用Al合金膜を提供することにある。更に本発明の目的は、感光性樹脂の剥離液(剥離液耐性)にも優れた表示装置もしくは半導体装置用Al合金膜を提供することにある。また更に本発明の目的は、透明画素電極(透明導電膜)と直接接続させたときに低い接触抵抗を有し、透明導電膜との直接接続(ダイレクト・コンタクト)が可能な表示装置用Al合金膜を提供することにある。
 本発明は、下記表示装置もしくは半導体装置用Al合金膜、スパッタリングターゲット、Al合金配線、Al合金膜を備えた表示装置、及び半導体装置を提供する。
 [1] 表示装置もしくは半導体装置に用いられるAl合金膜であって、前記Al合金膜は、Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、およびOsよりなる群(X群)から選択される少なくとも一種の元素とを含み、
 前記Al合金膜に450~600℃の加熱処理を行なったとき、下記(1)の要件を満足することを特徴とする表示装置もしくは半導体装置用Al合金膜。
 (1)Alと、前記X群から選択される少なくとも一種の元素と、Geとを含む第1の析出物について、円相当直径50nm以上の析出物が200,000個/mm以上の密度で存在する。
 [2] 前記Al合金膜は、450~600℃の加熱処理を行なったとき、更に下記(2)の要件を満足するものである[1]に記載の表示装置もしくは半導体装置用Al合金膜。
 (2)Alと、前記X群から選択される少なくとも二種の元素を含む第2の析出物について、円相当直径50nm以上の析出物が100,000個/mm以上の密度で存在する。
 [3] 前記Al合金膜は、更に、希土類元素からなる群から選ばれる少なくとも一種とを含み、前記Al合金膜に450~600℃の加熱処理を行なったとき、更に下記(3)の要件を満足するものである[1]または[2]に記載の表示装置もしくは半導体装置用Al合金膜。
 (3)Alと、前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第3の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
 [4] 前記Al合金膜は、450~600℃の加熱処理を行なったとき、更に下記(4)の要件を満足するものである[3]記載の表示装置もしくは半導体装置用Al合金膜。
 (4)Alと、Geと前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第4の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
 [5] 前記Al合金膜は、更にNi、Co、Feからなる群から選ばれる少なくとも1種の元素とを含み、前記Al合金膜に450~600℃の加熱処理を行なったとき、更に下記(5)の要件を満足するものである[1]~[4]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 (5)Alと、Ni、Co、Feからなる群から選ばれる少なくとも一種の元素と、Geと、前記X群から選択される少なくとも一種の元素とを含む第5の析出物について、円相当直径250nm以上の析出物が2,000個/mm以上の密度で存在する。
 [6] 前記第1の析出物の円相当直径は、1μm以下である[1]に記載の表示装置もしくは半導体装置用Al合金膜。
 [7] 前記第2の析出物の円相当直径は、1μm以下である[2]に記載の表示装置もしくは半導体装置用Al合金膜。
 [8] 前記第3の析出物の円相当直径は、1μm以下である[3]に記載の表示装置もしくは半導体装置用Al合金膜。
 [9] 前記第4の析出物の円相当直径は、1μm以下である[4]に記載の表示装置もしくは半導体装置用Al合金膜。
 [10] 前記第5の析出物の円相当直径は、3μm以下である[5]に記載の表示装置もしくは半導体装置用Al合金膜。
 [11] 前記X群の元素の含有量は0.1~5原子%である[1]~[10]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [12] 前記希土類元素の含有量は0.1~0.45原子%である[3]~[11]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [13] 前記Ni、Co、Feからなる群から選ばれる少なくとも1種の元素の含有量は0.1~0.35原子%である[5]~[12]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [14] 前記加熱処理は、500~600℃である[1]~[13]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [15] 前記加熱処理は、少なくとも2回実施されるものである[1]~[14]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [16] 前記Al合金膜は、透明導電膜と直接接続されるものである[5]に記載の表示装置もしくは半導体装置用Al合金膜。
 [17] 前記Al合金膜は、Mo、Ti、W、およびCrよりなる群から選択される少なくとも一種の元素を含む膜を介して透明導電膜と接続されるものである[1]~[15]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜。
 [18] Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、Osよりなる群(X群)から選択される少なくとも一種の元素を0.1~5原子%を含むことを特徴とするスパッタリングターゲット。
 [19] 更に希土類元素からなる群から選ばれる少なくとも一種を0.1~0.45原子%含むものである[18]に記載のスパッタリングターゲット。
 [20] 更にNi、Co、Feから選ばれる少なくとも一種の元素を0.1~0.35原子%含むものである[18]または[19]に記載のスパッタリングターゲット。
 [21] 残部がAlおよび不可避的不純物である[18]~[20]のいずれか一つに記載のスパッタリングターゲット。
 [22] [1]~[17]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜を、ハロゲンガスまたは、ハロゲン含有化合物を含むガスでエッチングしたことを特徴とする、Al合金配線。
 [23] [1]~[17]のいずれか一つに記載の表示装置もしくは半導体装置用Al合金膜を、pH3以下の酸性溶液でエッチングしたことを特徴とする、Al合金配線。
 [24] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えた表示装置。
 [25] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えた液晶ディスプレイ。
 [26] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えた有機ELディスプレイ。
 [27] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えたフィールドエミッションディスプレイ。
 [28] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えた蛍光真空管。
 [29] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えたプラズマディスプレイ。
 [30] [1]~[17]のいずれか一つに記載の表示装置用Al合金膜を備えた無機ELディスプレイ。
 [31] [1]~[17]のいずれか一つに記載の半導体装置用Al合金膜を備えた半導体装置。
 [32] [1]~[17]のいずれか一つに記載の半導体装置用Al合金膜を備えた半導体素子。
 [33] [1]~[17]のいずれか一つに記載の半導体装置用Al合金膜を備えた半導体素子の電極。
 [34] [1]~[17]のいずれか一つに記載の半導体装置用Al合金膜を備えた半導体素子の配線。
 本発明に係る第1のAl合金膜(Al-Ge-X群元素)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物)を含んでいるため、約450~600℃程度の高温下に曝されたときの耐熱性に優れており、且つ、高温処理後の膜自体の電気抵抗(配線抵抗)も低く抑えることができ、また耐食性、エッチング加工性、および剥離液耐性も兼備している。
 好ましい実施形態である本発明に係る第2のAl合金膜(Al-Ge-X群元素-希土類元素)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物)、第3の析出物(好ましくは第3の析出物と第4の析出物)とを含んでいるため、より高い耐熱性を示し、且つ耐アルカリ腐食性も一層良好である。より好ましい実施形態である本発明に係る第3のAl合金膜(Al-Ge-X群元素-[Ni、Co、Fe]合金、好ましくはAl-Ge-X群元素-希土類元素-[Ni、Co、Fe]合金)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物、より好ましくは第1の析出物、第2の析出物と第3の析出物、更に好ましくは第1の析出物、第2の析出物、第3の析出物と第4の析出物)、第5の析出物とを含んでいるため、上記特性のみならず、透明導電膜との低い接触抵抗も達成できるため、透明導電膜との直接接続が可能である。
 本発明によれば、特に、多結晶シリコンや連続粒界結晶シリコンを半導体層に用いる薄膜トランジスタ基板を製造するプロセスにおいて、450~600℃程度の高温加熱処理、更には上記高温加熱処理が少なくとも2回行なわれる苛酷な高温環境下に曝された場合でも、半導体シリコン層のキャリア移動度が高められるため、TFTの応答速度が向上し、省エネや高速動画などに対応可能な高性能の表示装置を提供できる。また、配線加工においては、ウェットエッチング法、ドライエッチング法の双方が適応可能である。
 本発明によれば、Al合金膜の耐熱性(特に高温耐熱性)に優れているため、これを例えば半導体素子の電極・電気配線として備えた、例えばIGBTの製造プロセスにおいて、コレクタ層のイオン活性化等のための熱処理を高温で行うことができる。その結果、上記Al合金膜を備えて特性の向上した半導体素子、またこの半導体素子を備えて優れた特性を発揮する上記半導体装置を実現することができる。また、配線加工においては、ウェットエッチング法、ドライエッチング法の双方が適応可能である。
図1は、薄膜トランジスタの中核部の断面構造を示す図である。 図2は、Al合金膜と透明画素電極の接触抵抗の測定に用いたケルビンパターン(TEGパターン)を示す図である。 図3は、液晶ディスプレイの一例を示す概略断面図である。 図4は、有機ELディスプレイの一例を示す概略断面図である。 図5は、フィールドエミッションディスプレイの一例を示す概略断面図である。 図6は、蛍光真空管の一例を示す概略断面図である。 図7は、プラズマディスプレイの一例を示す概略断面図である。 図8は、無機ELディスプレイの一例を示す概略断面図である。 図9は、一般的なIGBTの構成を示す概略断面図である。 図10は、ドライエッチング装置の構成を示す概略断面図である。
 本発明者らは、約450~600℃の高温下に複数回曝されても、ヒロックが生じず高温耐熱性に優れ、且つ、ドライエッチング特性とウェットエッチング特性(以下、エッチング特性ということがある)に優れ、膜自体の電気抵抗(配線抵抗)も低く抑えられており、また、アルカリ現像液などの耐アルカリ腐食性や剥離液耐性も高い表示装置用Al合金膜(第1のAl合金膜と呼ぶ場合がある。);更に、好ましくはより高い高温耐熱性に優れている表示装置用Al合金膜(第2のAl合金膜と呼ぶ場合がある。);また更に、好ましくは高温下での剥離液耐性にもより優れており、透明導電膜と直接接続しても接触抵抗が低く抑えられるため透明導電膜との直接接続(ダイレクト・コンタクト)が可能な表示装置用Al合金膜(第3のAl合金膜と呼ぶ場合がある。)を提供するため、検討を重ねてきた。
 その結果、Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、Osよりなる群(X群)から選択される少なくとも一種の元素とを含むAl合金膜(Al-Ge-X群元素 合金膜)であって、450~600℃の加熱処理を行なったとき、下記(1)の要件を満足する第1のAl合金膜は、上記課題(高温処理時の高い耐熱性およびエッチング特性、低い電気抵抗、更には高いアルカリ現像液耐性と剥離液耐性)を解決できることが分かった。
 (1)Alと、前記X群から選択される少なくとも一種の元素と、Geとを含む第1の析出物について、円相当直径50nm以上の析出物が200,000個/mm以上の密度で存在する。
 更に、前記Al合金膜は、450~600℃の加熱処理を行なったとき、上記(1)の要件を満足し、且つ、下記(2)の要件を満足する第1のAl合金膜は、より高い耐熱性を示すことがわかった。
 (2)Alと、前記X群から選択される少なくとも二種の元素を含む第2の析出物について、円相当直径50nm以上の析出物が100,000個/mm以上の密度で存在する。
 更に、希土類元素の少なくとも一種とを含むAl合金膜(Al-Ge-X群元素-REM合金膜)であって、450~600℃の加熱処理を行なったとき、上記(1)、好ましくは更に上記(2)の要件を満足し、且つ、下記(3)の要件を満足する第2のAl合金膜は、第1のAl合金膜より優れた耐熱性を示すことが分かった。
 (3)Alと、前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第3の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
 更に、前記第2のAl合金膜は、450~600℃の加熱処理を行なったとき、上記(1)(好ましくは更に上記(2))、および上記(3)の要件を満足し、且つ、下記(4)の要件を満足する第2のAl合金膜は、より一層優れた耐熱性を示すことが分かった。
 (4)Alと、Geと前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第4の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
 更に、Ni、Co、Feから選ばれる少なくとも1種の元素とを含むAl合金膜(Al-Ge-X群元素-REM-[Ni、Co、Fe]合金膜)であって、450~600℃の加熱処理を行なったとき、上記(1)、好ましくは更に上記(2)、(3)、(4)のいずれか1以上の要件を満足し、且つ、下記(5)の要件を満足する第3のAl合金膜は、ITOなど透明導電膜と直接接触しても低いコンタクト抵抗を示し、高温下での剥離液耐性にもより優れていることが分かった。
 (5)Alと、Ni、Co、Feから選ばれる少なくとも一種の元素と、Geと、前記X群から選択される少なくとも一種の元素とを含む第5の析出物について、円相当直径250nm以上の析出物が2,000個/mm以上の密度で存在する。
 上記第1のAl合金膜は、Al合金中に、Geと高融点金属のX群元素(高温耐熱性向上元素)を含み、単一のX群元素の場合は所定の第1の析出物(Al-Ge-X)を有し、複数のX群元素の場合は所定の第1の析出物(Al-Ge-X1、Al-Ge-X2など:X1とX2は異なるX群元素を意味する)や第2の析出物(Al-X1-X2、Al-X1-X3、Al-X2-X3など:X群元素が3種類の場合)を有しているため、高温下の耐熱性(高温耐熱性)およびエッチング特性に優れ、且つ、耐アルカリ腐食性や剥離液耐性も高く、膜自体の電気抵抗(配線抵抗)に優れているため、表示装置用の走査線や信号線などの配線;ゲート電極、ソース電極、ドレイン電極などの電極の材料として好適に用いられる。特に、高温熱履歴の影響を受け易い薄膜トランジスタ基板のゲート電極および関連の配線膜材料として好適に用いられる。また、パワー半導体の電極;IGBTのエミッタ電極など電極の材料として好適に用いられる。
 また上記第2のAl合金膜は、Al合金中に、上記のGeと高融点金属のX群元素(高温耐熱性向上元素)に加え、更に希土類元素を含むことで、単一のX群元素の場合は所定の第1の析出物(Al-Ge-X)、第3の析出物(Al-X-REM:REMは希土類元素)、および/または第4の析出物(Al-Ge-X-REM)を有し、複数のX群元素の場合は更に第2の析出物(Al-X1-X2など)を有しているため(第1、3、4の析出物についてもX群元素の数に応じて複数の組み合わせがあり得る。以下同じ)、上記第1のAl合金膜の有する効果のうち、特に高温下の耐熱性(高温耐熱性)が一段と高くなり、走査線や信号線などの配線;ゲート電極、ソース電極、ドレイン電極などの電極の材料として好適に用いられる。特に、高温熱履歴の影響を受け易い薄膜トランジスタ基板のゲート電極および関連の配線膜材料として好適に用いられる。また、パワー半導体の電極;IGBTのエミッタ電極など電極の材料として好適に用いられる。
 上記第3のAl合金膜は、Al合金中に、上記のX群元素、Geと好ましくは希土類元素に加え、更に透明導電膜との接触抵抗低減化元素であるNi、Co、およびFeよりなる群から選択される少なくとも一種を含み、上記第1や第2のAl合金膜に含まれる析出物に加えて、所定の第5の析出物(Al-X-Ge-[Ni、Co、Fe])を有しているため、上記第1、第2のAl合金膜の有する効果に加えて、バリアメタル層を介在させずに透明導電膜との直接接続が可能となり、ダイレクト・コンタクト用の電極・配線の材料として好適に用いられる。
 本明細書において、高温耐熱性とは、少なくとも450~600℃程度の高温下に曝されたときにヒロックが生じないことを意味し、好ましくは、上記の高温下に少なくとも2回以上繰り返し曝されたときにもヒロックが生じないことを意味する。
 本発明では、高温耐熱性のほか、表示装置や半導体装置の製造過程で必要となるエッチング特性、製造過程で使用される薬液(アルカリ現像液、剥離液)に対する高い耐性(耐食性)、透明導電膜との低い接触抵抗、Al合金膜自体の低い電気抵抗といった特性が得られるが、450℃未満の低温域のみならず、上記の高温域でも有効に発揮されるところに特徴がある。なお、TFT製造過程においてアルカリ環境下に曝されるのは、熱履歴を受ける前の段階であるため、後記する実施例では、加熱前のAl合金膜についてアルカリ現像液耐性を調べたが、本発明によれば、高温加熱処理後のAl合金膜においても、良好なアルカリ現像液耐性が得られることを実験により確認している。なお、アルカリ現像液に対する耐性(アルカリ現像液耐性)は、広義には耐アルカリ腐食性と呼ぶ場合がある。
 以下、本発明に用いられるAl合金膜について詳しく説明する。
 (第1のAl合金膜)
 上記第1のAl合金膜は、Geに加え、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、ReおよびOsよりなる群(X群)から選択される少なくとも一種の元素とを含有するAl-Ge-X群元素合金膜である。
 ここで、上記X群の元素(X群元素)は、融点が概ね1600℃以上の高融点金属から構成されており、単独で高温下の耐熱性向上に寄与する元素である。これらの元素は、単独で添加しても良いし、2種以上を併用しても良い。上記X群元素のうち好ましいのは、Ta、Ti、Zr、Hfであり、より好ましくはTa、Zr、Hfである。
 上記X群元素の含有量(単独で含有する場合は単独の量であり、2種以上を併用するときは合計量である。)は、0.1~5原子%であることが好ましい。X群元素の含有量が0.1原子%未満では、上記作用が有効に発揮されない。一方、X群元素の含有量が5原子%を超えると、Al合金膜の電気抵抗が高くなり過ぎるほか、配線加工時に残渣が発生し易くなるなどの問題が生じる。X群元素のより好ましい含有量は、0.3原子%以上3.0原子%以下であり、更に好ましくは、2.0原子%以下である。
 また、Geは、高温耐熱性向上に寄与し、高温プロセス下でのヒロックの発生を防止する作用を有している。第1のAl合金膜は、少なくとも上記X群元素とGeとを含有していれば良く、これら添加元素による作用を阻害しない限り、他の元素を含有していても良い。
 このような作用を有効に発揮させるためには、Geの含有量を0.01~2.0原子%とすることが好ましい。Geの含有量が0.01原子%未満の場合、所望の効果が得られず、更なる耐熱性向上に寄与する第1の析出物の密度を確保できない。一方、Geの含有量が2.0原子%を超えると、電気抵抗率が上昇するようになる。上記元素のより好ましい含有量は、0.1原子%以上1.0原子%以下であり、更に好ましくは、0.2原子%以上0.6原子%以下である。
 更に上記第1のAl合金膜は、450~600℃の高温加熱処理により、上記(1)に規定する所定サイズと所定密度の第1の析出物を必須的に含み、好ましくは更に(2)に規定する所定サイズと所定密度の第2の析出物を含むものであり、これにより、高温下での高い耐熱性と剥離液耐性を実現できる。第1の析出物は、少なくともGeおよびX群から選択される少なくとも一種の元素を含有していれば良く、当該析出物による作用を阻害しない限り、他の元素を含有していても良い。また第2の析出物は、X群元素から選択される少なくとも二種の元素を含有していれば良く、当該析出物による作用を阻害しない限り、他の元素を含有していても良い。
 上記第1のAl合金膜は、上記元素を含有し、残部:Alおよび不可避的不純物である。
 ここで上記不可避的不純物としては、例えばSi、Bなどが例示される。不可避的不純物の合計量は特に限定されないが、概ね0.5原子%以下程度含有してもよく、各不可避的不純物元素は、Bは0.012原子%以下、Siは0.12原子%以下含有していてもよい。
 上記第1、第2の析出物の円相当直径(サイズ)は、50nm以上である。本発明者らの検討結果によれば、50nm未満の析出物は、たとえ析出物の組成がAl-Ge-X群元素含有析出物(第1の析出物)、或いはAl-X1-X2含有析出物(第2の析出物)であっても、所望の効果が発揮されないことがわかった。なお、高温耐熱性向上作用を有効に発揮させるためには、上記円相当直径の下限が50nmであれば良く、その上限は、上記作用との関係では特に限定されないが、析出物のサイズが大きくなって巨大析出物になると、光学顕微鏡による検査で視認される可能性があり、外観不良を招くため、その上限は1μmであることが好ましい。第1の析出物、および第2の析出物の好ましい円相当直径は、50nm以上800nm以下である。
 更に本発明では、第1の析出物が上記円相当直径50nm以上の析出物が200,000個/mm以上の密度で存在することが必要である。本発明者らの検討結果によれば、第1の析出物のサイズが50nm以上であっても、200,000個/mm未満の場合は、所望の効果が発揮されないことがわかった。高温耐熱性向上作用を有効に発揮させるためには、上記析出物の密度は高い程よく、2,000,000個/mm以上であることが好ましい。
 また、本発明では、第2の析出物が上記円相当直径50nm以上の析出物が100,000個/mm以上の密度で存在することが好ましい。本発明者らの検討結果によれば、第2の析出物のサイズが50nm以上であっても、100,000個/mm未満の場合は、所望の効果が発揮されないことがわかった。高温耐熱性向上作用を有効に発揮させるためには、上記析出物の密度は高い程よく、1,000,000個/mm以上であることが好ましい。
 (第2のAl合金膜)
 上記第2のAl合金膜は、上述したGeおよびX群元素に加えて、希土類元素(REM)を含有するAl-Ge-X群元素-REM合金膜である。
 上記希土類元素(REM)は、上記GeおよびX群元素と複合添加することによって高温耐熱性向上に寄与する元素である。更に、単独でアルカリ環境下での耐食性向上作用という上記GeおよびX群元素にはない作用も有している。
 ここで、希土類元素とは、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群を意味する。本発明では、上記希土類元素を単独で用いても良いし、2種以上を併用しても良い。希土類元素のうち好ましいのは、Nd、La、Gd、Ceであり、より好ましいのは、Nd、Laである。
 希土類元素による上記作用を有効に発揮させるためには、希土類元素の含有量(単独で含有する場合は単独の量であり、2種以上を併用するときは合計量である。)は0.1~0.45原子%であることが好ましい。希土類元素の含有量が0.1原子%未満であると、耐熱性、耐アルカリ腐食性向上効果が有効に発揮されず、一方、0.45原子%を超えると、ドライエッチング速度が遅くなるとともに、残渣などの問題がある。希土類元素のより好ましい含有量は、0.15原子%以上0.4原子%以下であり、更に好ましい含有量は、0.15原子%以上0.3原子%以下である。
 第2のAl合金膜は、少なくとも上記X群元素、Ge及び希土類元素を含有していれば良く、これら添加元素による作用を阻害しない限り、他の元素を含有していても良い。
 上記第2のAl合金膜は、上記元素を含有し、残部:Alおよび不可避的不純物である。
 ここで上記不可避的不純物としては、例えばSi、Bなどが例示される。不可避的不純物の合計量は特に限定されないが、概ね0.5原子%以下程度含有してもよく、各不可避的不純物元素は、Bは0.012原子%以下、Siは0.12原子%以下含有していてもよい。
 更に上記第2のAl合金膜は、450~600℃の高温加熱処理により、上記(1)~(4)に規定する所定サイズと所定密度の第1の析出物(好ましくは更に上記第2の析出物)、且つ第3の析出物(好ましくは更に第4の析出物)を含むものであり、これにより、高温耐熱性が向上し、高温プロセス下でもヒロックの発生を防止できる。第3の析出物は、少なくともX群元素、REMを含有していれば良く、また第4の析出物は、少なくともX群元素、Ge、REMを含有していれば良く、当該析出物による作用を阻害しない限り、他の元素を含有していても良い。
 上記第3、第4の析出物の円相当直径(サイズ)は、10nm以上である。本発明者らの検討結果によれば、10nm未満の析出物は、たとえ析出物の組成がAl-X群元素-REM含有析出物(第3の析出物)、Al-Ge-X群元素-REM含有析出物(第4の析出物)であっても、所望の効果が発揮されないことがわかった。なお、高温耐熱性向上作用を有効に発揮させるためには、上記円相当直径の下限が10nmであれば良く、その上限は、上記作用との関係では特に限定されないが、析出物のサイズが大きくなって巨大析出物になると、光学顕微鏡による検査で視認される可能性があり、外観不良を招くため、その上限は1μmであることが好ましい。第3、第4の析出物の好ましい円相当直径は、10nm以上800nm以下である。
 更に本発明では、上記円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在することが好ましい。本発明者らの検討結果によれば、第3、第4の析出物のサイズが10nm以上であっても、1,000,000個/mm未満の場合は、所望の効果が発揮されないことがわかった。高温耐熱性向上作用を有効に発揮させるためには、上記析出物の密度は高い程よく、3,000,000個/mm以上であることが好ましい。
 (第3のAl合金膜)
 上記第3のAl合金膜は、上述したGe、X群元素および希土類元素(REM)の他、更にNi、Co、およびFeよりなる群から選択される少なくとも一種を含有するAl-Ge-X群元素-REM-[Ni、Co、Fe]合金膜である。
 ここで、Ni、CoおよびFeは、透明導電膜との直接接続(ダイレクト・コンタクト)を可能にする元素である。これは、TFTの製造過程における熱履歴により形成される導電性の高い[Ni、Co、Fe]含有Al系析出物を介して、透明導電膜との電気的な導通が可能となるためである。これらは単独で添加しても良いし、両方を添加しても良い。
 このような作用を有効に発揮させるためには、[Ni、Co、Fe]の含有量(単独の場合は単独の含有量であり、両方を含有する場合は合計量である)を0.1~0.35原子%とすることが好ましい。[Ni、Co、Fe]の含有量が0.1原子%未満の場合、所望の効果が得られず、透明導電膜との接触抵抗低減に寄与する第5の析出物の密度を確保できない。すなわち、第5の析出物のサイズが小さく、密度も減少するため、透明導電膜との低い接触抵抗を安定して維持することが困難になる。一方、[Ni、Co、Fe]の含有量が0.35原子%を超えると、エッチング速度が遅くなるとともに、残渣などの問題がある。[Ni、Co、Fe]のより好ましい含有量は、0.1原子%以上0.25原子%以下であり、更に好ましくは、0.1原子%以上0.2原子%以下である。
 第3のAl合金膜は、Geと、X群から選ばれる少なくとも1種の元素と[Ni、Co、Feよりなる群から選択される少なくとも1種]とを含有していれば良く、これら添加元素による作用を阻害しない限り、他の元素を含有していても良い。
 上記第3のAl合金膜は、上記元素を含有し、残部:Alおよび不可避的不純物である。
 ここで上記不可避的不純物としては、例えばSi、Bなどが例示される。不可避的不純物の合計量は特に限定されないが、概ね0.5原子%以下程度含有してもよく、各不可避的不純物元素は、Bは0.012原子%以下、Siは0.12原子%以下含有していてもよい。
 更に上記第3のAl合金膜は、450~600℃の高温加熱処理により、上記(5)に規定する所定サイズと所定密度の第5の析出物(Al-Ge-X群元素-[Ni、Co、Fe])を含むものであり、これにより、高温下での高い剥離液耐性および透明導電膜との低い接触抵抗を実現できる。第5の析出物は、少なくともGeとX群元素と、[Ni、Co、Feよりなる群から選択される少なくとも一種]とを含有していれば良く、当該析出物による作用を阻害しない限り、他の元素を含有していても良い。
 上記第5の析出物の円相当直径(サイズ)は、250nm以上である。本発明者らの検討結果によれば、250nm未満の析出物は、たとえ析出物の組成が上記組成を満足するものであっても、所望の効果が発揮されないことがわかった。なお、上記作用を有効に発揮させるためには、上記円相当直径の下限が250nmであれば良く、その上限は、上記作用との関係では特に限定されないが、析出物のサイズが大きくなって巨大析出物になると、光学顕微鏡による検査で視認される可能性があり、外観不良を招くため、その上限は3μmであることが好ましい。第5の析出物のより好ましい円相当直径は、250nm以上2μm以下である。
 更に本発明では、上記円相当直径250nm以上の析出物が2,000個/mm以上の密度で存在することが必要である。本発明者らの検討結果によれば、第5の析出物のサイズが250nm以上であっても、2,000個/mm未満の場合は、所望の効果が発揮されないことがわかった。剥離液耐性向上および透明導電膜との接触抵抗低減化の両作用を有効に発揮させるためには、上記析出物の密度は高い程よく、5,000個/mm以上であることが好ましい。
 尚、上記第1~第5の析出物おける上記所定の元素を「含有」または「含む」析出物とは、好ましくは上記所定の元素を含有し、残部Alおよび不可避的不純物である。不可避的不純物とは各析出物の所定の元素以外の意味である。
 以上、本発明のAl合金膜について説明した。
 本発明において、上記の第1~第5の析出物が形成されるための熱処理は、450~600℃であり、好ましくは500~600℃である。この熱処理は、真空または窒素および/または不活性ガス雰囲気中で行われることが好ましく、処理時間は、1分以上60分以下であることが好ましい。本発明によれば、上記の熱処理(高温熱処理)を2回以上行なっても、ヒロックなどが生じないことがわかった。
 このような高温加熱処理に対応するTFT製造プロセスとしては、例えば、アモルファス・シリコンの結晶化のためのレーザーなどによるアニール、各種薄膜形成のためのCVD(化学気相蒸着)による成膜、不純物拡散や保護膜を熱硬化させる際の熱処理炉の温度などが挙げられる。特にアモルファス・シリコンの結晶化のための熱処理や不純物拡散で、上記のような高温下に曝されることが多い。
 上記Al合金膜の膜厚は、特に高温耐熱性、エッチング特性と配線抵抗の低減化を確保するため、50nm以上であることが好ましく、100nm以上であることがより好ましい。なお、その上限は、上記観点からは特に限定されないが、配線テーパ形状などを考慮すると、2μm以下であることが好ましく、より好ましくは600nm以下である。
 上記Al合金膜は、表示装置においてはソース-ドレイン電極やゲート電極などの各種配線材料に好ましく用いられるが、特に、高温耐熱性が要求されるゲート電極の配線材料として、より好ましく用いられる。
 上記Al合金膜は、半導体装置においてはエミッタ電極やコレクタ電極などの各種電極材料に好ましく用いられるが、特に、高温耐熱性が要求されるエミッタ電極の配線材料として、より好ましく用いられる。
 上記Al合金膜は、スパッタリング法にてスパッタリングターゲット(以下「ターゲット」ということがある)を用いて形成することが望ましい。イオンプレーティング法や電子ビーム蒸着法、真空蒸着法で形成された薄膜よりも、成分や膜厚の膜面内均一性に優れた薄膜を容易に形成できるからである。
 また、上記スパッタリング法で上記Al合金膜を形成するには、上記ターゲットとして、前述した元素を含むものであって、所望のAl合金膜と同一組成のAl合金スパッタリングターゲットを用いれば、組成ズレの恐れがなく、所望の成分組成のAl合金膜を形成することができるのでよい。
 従って、本発明には、前述した第1、第2または第3のAl合金膜と同じ組成のスパッタリングターゲットも本発明の範囲内に包含される。詳細には、上記ターゲットとして、(i)Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、およびOsよりなる群(X群)から選択される少なくとも一種の元素を0.1~5原子%を含み、残部:Alおよび不可避的不純物であるターゲット(第1のAl合金膜用ターゲット)、(i)に更に (ii)希土類元素の少なくとも一種を0.1~0.45原子%含むターゲット(第2のAl合金膜用ターゲット)、(i)または(ii)に更に(iii)Ni、Co、およびFeよりなる群から選択される少なくとも一種を0.1~0.35原子%含むターゲット(第3のAl合金膜用ターゲット)が挙げられる。
 上記ターゲットの形状は、スパッタリング装置の形状や構造に応じて任意の形状(角型プレート状、円形プレート状、ドーナツプレート状など)に加工したものが含まれる。
 上記ターゲットの製造方法としては、溶解鋳造法や粉末焼結法、スプレイフォーミング法で、Al基合金からなるインゴットを製造して得る方法や、Al基合金からなるプリフォーム(最終的な緻密体を得る前の中間体)を製造した後、該プリフォームを緻密化手段により緻密化して得られる方法が挙げられる。
 本発明は、上記Al合金膜が、薄膜トランジスタに用いられていることを特徴とする表示装置も含むものである。その態様として、前記Al合金膜が、薄膜トランジスタのソース電極および/またはドレイン電極並びに信号線に用いられ、ドレイン電極が透明導電膜に直接接続されているものや、ゲート電極および走査線に用いられているものなどが挙げられる。第1、第2のAl合金膜を用いる場合は、Mo、Ti、W、およびCrよりなる群から選択される少なくとも一種の元素を含む高融点金属膜または高融点合金膜(バリアメタル)を介して透明導電膜と接続される。一方、第3のAl合金膜を用いる場合は、上記のバリアメタルを介しても良いし、介さずに透明導電膜と直接接続することも可能である。
 また前記ゲート電極および走査線と、前記ソース電極および/またはドレイン電極ならびに信号線が、同一組成のAl合金膜であるものが態様として含まれる。
 本発明に用いられる透明画素電極は特に限定されず、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)などが挙げられる。
 また、本発明に用いられる半導体層も特に限定されず、アモルファス・シリコン、多結晶シリコン、連続粒界結晶シリコン、酸化物半導体材料などが挙げられる。
 本発明のAl合金膜を備えた表示装置を製造するにあたっては、表示装置の一般的な工程を採用することができ、例えば、前述した特許文献1~5に記載の製造方法を参照すれば良い。
 以上、液晶表示装置として液晶ディスプレイを代表的に取り上げ、説明したが、上記説明した本発明の表示装置用Al合金膜は主に電極および配線材料として各種液晶表示装置に用いることができ、例えば図3に例示される液晶ディスプレイ(LDC)における薄膜トランジスタ用のゲート、ソースおよびドレイン電極並びに配線材料、例えば図4に例示される有機EL(OLED)における薄膜トランジスタ用のゲート、ソースおよびドレイン電極並びに配線材料、例えば図5に例示されるフィールドエミッションディスプレイ(FED)におけるカソードおよびゲート電極並びに配線材料、例えば図6に例示される蛍光真空管(VFD)におけるアノード電極および配線材料、例えば図7に例示されるプラズマディスプレイ(PDP)におけるアドレス電極および配線材料、例えば図8に例示される無機ELにおける背面電極などが挙げられる。また、上記説明した本発明の半導体装置用Al合金膜は、主に電極および配線材料として各種半導体装置に用いることができ、例えば図9に例示されるIGBTにおけるエミッタおよびコレクタ電極並びに配線材料などが挙げられる。これら液晶表示装置や半導体装置に本発明の表示装置および半導体装置用Al合金膜を用いた場合に、上記所定の効果が得られることは実験により確認済である。
 また、上記Al合金膜を、ハロゲンガスまたはハロゲン含有化合物を含むガスでエッチングしたAl合金配線、及びpH3以下の酸性溶液でエッチングしたAl合金配線も、本発明の態様として含まれる。
 なお、本発明においては、エッチング処理の方法やエッチング処理に用いられる装置などを限定するものではない。例えば、図10に示すような汎用のドライエッチング用装置を用いて通常のドライエッチング工程を行うことができる。後記する実施例では、図10に示すICP(誘導結合プラズマ)式ドライエッチング装置を用いた。
 以下、図10のドライエッチング用装置を用いた代表的なドライエッチング処理を説明するが、これに限定する趣旨では決してない。
 図10の装置において、チャンバ1上部には誘電窓2があり、誘電窓2の上には1ターンのアンテナ3が載置されている。図10のプラズマ発生装置は、誘電窓2が平板タイプのいわゆるTCP(Transfer Coupled Plasma)と呼ばれるものである。アンテナ3には、13.56MHzの高周波電力4が整合器5を介して導入される。
 チャンバ1にはプロセスガス導入口6があり、ここから、Clなどのハロゲンガスを含むエッチングガスが導入される。基板(被エッチング材)7はサセプタ8上に載置される。サセプタ8は静電チャック9となっており、プラズマから基板に流入した電荷によって静電力でチャッキング可能となっている。サセプタ8の周辺は、石英ガラスのカラー10と呼ばれる部材が載置されている。
 チャンバ1内に導入されたハロゲンガスは、誘電窓2上にあるアンテナ3に高周波電力を印加して生じた誘電磁場により、励起状態となってプラズマ化される。
 更に、サセプタ8には整合器11を介して400kHzの高周波電力12が導入され、サセプタ8に載置された基板(被エッチング材)7に高周波バイアスが印加される。この高周波バイアスによってプラズマ中のイオンが基板に異方性をもって引き込まれ、垂直エッチングなどの異方性エッチングが可能となる。
 以下、酸性溶液を用いた代表的なウェットエッチング処理を説明するが、これに限定する趣旨ではない。
 リン酸(45~80重量%)、硝酸(1~10重量%)、酢酸などの有機酸(1~10重量%)を含有し、残部が水からなる水溶液中に、基板(被エッチング材)を浸漬、もしくは、基板に水溶液を噴霧することで、等方性エッチングが可能となる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 (実施例1)
 表1~6に示す種々の合金組成のAl合金膜(膜厚=300nm)を、DCマグネトロン・スパッタ法(基板=ガラス基板(コーニング社製 Eagle2000)、雰囲気ガス=アルゴン、圧力=2mTorr、基板温度=25℃(室温))によって成膜した。
 尚、上記種々の合金組成のAl合金膜の形成には、真空溶解法で作製した種々の組成のAl合金ターゲットをスパッタリングターゲットとして用いた。
 また実施例で用いた種々のAl合金膜における各合金元素の含有量は、ICP発光分析(誘導結合プラズマ発光分析)法によって求めた。
 上記のようにして成膜したAl合金膜に対し、450~600℃の高温加熱処理を2回行い、高温加熱処理後のAl合金膜について、耐熱性、当該Al合金膜自体の電気抵抗(配抵抵抗)、ドライエッチング特性、アルカリ現像液耐性、剥離液耐性、およびITOとの接触抵抗の各特性、並びに析出物のサイズおよび密度を、それぞれ下記に示す方法で測定した。参考のため、耐熱性については、350℃の実験も行なった。なお、アルカリ現像液耐性については、成膜後のAl合金膜を用いて実験を行い、加熱処理は行わなかった。TFT製造過程においてアルカリ環境下に曝されるのはAl合金配線を形成するフォトリソグラフィ工程であり、熱履歴を受ける前の段階だからである。
 (1)加熱処理後の耐熱性
 成膜後のAl合金膜に対し、不活性雰囲気ガス(N)雰囲気下にて、表1~6に示す各温度にて10分間の加熱処理を2回行ない、その表面性状を光学顕微鏡(倍率:500倍)を用いて観察し、ヒロックの密度(個/m)を測定した。表7に記載の判断基準により耐熱性を評価し、本実施例では◎または○を合格とした。
 (2)ドライエッチング特性
 具体的には、直径4インチ、厚さ0.7mmのシリコン基板上に、厚さ200nmの酸化シリコン(SiOx)膜を成膜した後、Al合金膜を前述した条件で500nmの厚さに成膜した。次いで、g線のフォトリソグラフィーによってポジ型フォトレジスト(ノボラック系樹脂;東京応化工業(株)製のTSMR8900、厚さは1.0μm)を線幅10μmのストライプ状に形成した。次に、前述した図10に示すドライエッチング装置を用い、下記のエッチング条件でドライエッチングを行なった。
 (エッチング条件)
 Ar/Cl:300sccm/180sccm
 アンテナに印加した電力(ソースRF):500W
 基板バイアス:60W
 プロセス圧力(ガス圧):14mTorr
 基板温度:サセプタの温度(20℃)
 エッチングは、エッチング深さが100~300nmとなる範囲において、エッチング時間を変えて行い、エッチング深さの異なるサンプルを作製した。次いで、酸素プラズマによるアッシング工程を経た後、アミン系の剥離液などを用いてフォトレジストを剥離した後、触針式膜厚計(Vecco社製の「Dektak II」)を用いて、純AlまたはAl合金膜のエッチング厚さを測定した。表7に記載の判断基準によりドライエッチング特性を評価し、本実施例では◎または○を合格とした。
 (3)加熱処理後のAl合金膜自体の配線抵抗
 成膜後のAl合金膜に10μm幅のラインアンドスペースパターンを形成したものに、不活性雰囲気ガス(N)雰囲気下にて、450℃、550℃または600℃の各温度にて10分間の加熱処理を2回行ない、4端子法で電気抵抗率を測定した。表7に記載の判断基準により各温度の配線抵抗を評価し、本実施例では◎または○を合格とした。
 (4)透明画素電極とのダイレクト接触抵抗
 成膜後のAl合金膜に対し、不活性雰囲気ガス(N)雰囲気下にて、600℃で10分間の加熱処理を2回行なったものを用意した。このAl合金膜と透明画素電極を直接接触したときの接触抵抗は、透明画素電極(ITO;酸化インジウムに10質量%の酸化スズを加えた酸化インジウムスズ)を、下記条件でスパッタリングすることによって図2に示すケルビンパターン(コンタクトホールサイズ:10μm角)を作製し、4端子測定(ITO-Al合金膜に電流を流し、別の端子でITO-Al合金間の電圧降下を測定する方法)を行なった。具体的には、図2のI-I間に電流Iを流し、V-V間の電圧Vをモニターすることにより、コンタクト部Cのダイレクト接触抵抗Rを[R=(V-V)/I]として求めた。表7に記載の判断基準によりITOとのダイレクト接触抵抗(ITOとのコンタクト抵抗)を評価し、本実施例では◎または○を合格とした。
 (透明画素電極の成膜条件)
 雰囲気ガス=アルゴン
 圧力=0.8mTorr
 基板温度=25℃(室温)
 (5)剥離液耐性
 フォトレジスト剥離液の洗浄工程を模擬し、アミン系フォトレジストと水を混合したアルカリ性水溶液による腐食実験を行った。詳細には、成膜後のAl合金膜に対し、不活性ガス雰囲気(N)中、600℃で20分間の加熱処理を2回行った後、東京応化工業(株)製のアミン系レジスト剥離液「TOK106」水溶液をpH10.5および9.5の各pHに調整したもの(液温25℃)に浸漬させた。具体的には、まず、pH10.5の溶液に1分間浸漬後、連続してpH9.5の溶液に5分間浸漬させた。そして、浸漬後の膜表面にみられるクレータ状の腐食(孔食)痕(円相当直径が150nm以上のもの)の個数を調べた(観察倍率は1000倍)。表7に記載の判断基準により剥離液耐性を評価し、本実施例では◎または○を合格とした。
 (6)アルカリ現像液耐性(現像液エッチングレートの測定)
 基板上に成膜したAl合金膜にマスクを施した後、現像液(TMAH2.38質量%を含む水溶液)中に25℃で1分間および2分間浸漬し、そのエッチング量を触診式段差計を用いて測定し、1分間および2分間浸漬した際のエッチング量の差からエッチングレートを算出した。表7に記載の判断基準によりアルカリ現像液耐性を評価し、本実施例では◎または○を合格とした。
 (7)析出物の測定
 成膜後のAl合金膜に対し、不活性ガス雰囲気(N)中、550℃または600℃で10分間の加熱処理を2回行い、析出した析出物を、平面TEM(透過電子顕微鏡、倍率30万倍)で観察した。析出物のサイズ(円相当直径)および密度(個/mm)は、走査電子顕微鏡の反射電子像を用いて求めた。具体的には、1視野(mm)内に観察される析出物の円相当直径および個数を測定し、3視野の平均値を求めた。析出物に含まれる元素はTEM-EDX分析により判断した。そして表7に記載の判断基準により各析出物のサイズおよび密度を分類した。析出物について、サイズが◎、○、または△であり、且つ、密度が◎または○を満足するものが、本発明の要件を満足するものである。
 なお、下記表1~6中、析出物サイズ及び析出物密度の結果において、左側から順に、それぞれ、第1の析出物、第2の析出物、第3の析出物、第4の析出物、第5の析出物の結果を表している。
 これらの結果を表1~6に記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 まず、表1~6について考察する。これらの表において、析出物サイズ(550℃/600℃)および析出物密度(550℃/600℃)が「◎×◎◎◎」とは、左側から順に第1~第5の析出物の評価が記載されており、この例では、第1、第3~第5の析出物のいずれも、サイズおよび密度が共に「◎」、第2の析出物のサイズおよび密度が共に「×」を意味する。
 表1のNo.1-1~1-32に記載の各Al合金膜は、本発明に係る第3のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1~第5の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、高温加熱処理前のアルカリ現像液および高温加熱処理後の剥離液に対する耐性も良好であり、ITO(透明画素電極)とのダイレクト接触抵抗も大幅に低減することができた。
 次に、表2のNo.2-1~2-24に記載の各Al合金膜は、本発明に係る第3のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1、第3~第5の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、高温加熱処理前のアルカリ現像液および高温加熱処理後の剥離液に対する耐性も良好であり、ITO(透明画素電極)とのダイレクト接触抵抗も大幅に低減することができた。
 次に、表3のNo.3-1~3-30に記載の各Al合金膜は、本発明に係る第2のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1~第4の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、アルカリ現像液および剥離液に対する耐性も良好である。ITO(透明画素電極)とのダイレクト接触抵抗に関しては、Ni、Co、Feのいずれも含んでいないことから高抵抗となり、ITOと直接接触することはできなかった。
 次に、表4のNo.4-1~4-24に記載の各Al合金膜は、本発明に係る第2のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1、第3、第4の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、アルカリ現像液および剥離液に対する耐性も良好である。ITO(透明画素電極)とのダイレクト接触抵抗に関しては、Ni、Co、Feのいずれも含んでいないことからITOとの接触抵抗は高くなった。
 次に、表5のNo.5-1~5-3に記載の各Al合金膜は、本発明に係る第1のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、アルカリ現像液および剥離液に対する耐性も良好である。ITO(透明画素電極)とのダイレクト接触抵抗に関しては、Ni、Co、Feのいずれも含んでいないことからITOとの接触抵抗は高くなった。
 次に、表5のNo.5-4~5-5に記載の各Al合金膜は、本発明に係る第1のAl合金膜に対応しており、本発明で規定する合金組成を満足し、且つ、第1、第2の析出物の要件(サイズおよび密度)も満足しているため、低温(350℃)の耐熱性に優れているだけでなく450~600℃の高温耐熱性にも優れている。また、ドライエッチング特性も良好である。更に、高温加熱処理後の電気抵抗について、高融点金属よりも低い電気抵抗を有しており、アルカリ現像液および剥離液に対する耐性も良好である。ITO(透明画素電極)とのダイレクト接触抵抗に関しては、Ni、Co、Feのいずれも含んでいないことからITOとの接触抵抗は高くなった。
 次に、表6のNo.6-1~6-7に記載の各Al合金膜は、本発明で規定する上記第1~第3のAl合金膜の要件を満たさない例である。No.6-1~6-3では、合金組成および析出物要件を満足しない例である。配線抵抗は比較的良好な値を示しているが、これは配線の耐熱性が悪く表面が荒れた状態となっているためである。またNo.6-4~6-7では合金組成を満足せず、ドライエッチング特性が悪かった。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年2月28日出願の日本特許出願(特願2011-042635)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る第1のAl合金膜(Al-Ge-X群元素)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物)を含んでいるため、約450~600℃程度の高温下に曝されたときの耐熱性に優れており、且つ、高温処理後の膜自体の電気抵抗(配線抵抗)も低く抑えることができ、また耐食性、エッチング加工性、および剥離液耐性も兼備している。
 好ましい実施形態である本発明に係る第2のAl合金膜(Al-Ge-X群元素-希土類元素)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物)、第3の析出物(好ましくは第3の析出物と第4の析出物)とを含んでいるため、より高い耐熱性を示し、且つ耐アルカリ腐食性も一層良好である。より好ましい実施形態である本発明に係る第3のAl合金膜(Al-Ge-X群元素-[Ni、Co、Fe]合金、好ましくはAl-Ge-X群元素-希土類元素-[Ni、Co、Fe]合金)は、所定の合金元素と第1の析出物(好ましくは第1の析出物と第2の析出物、より好ましくは第1の析出物、第2の析出物と第3の析出物、更に好ましくは第1の析出物、第2の析出物、第3の析出物と第4の析出物)、第5の析出物とを含んでいるため、上記特性のみならず、透明導電膜との低い接触抵抗も達成できるため、透明導電膜との直接接続が可能である。
 本発明によれば、特に、多結晶シリコンや連続粒界結晶シリコンを半導体層に用いる薄膜トランジスタ基板を製造するプロセスにおいて、450~600℃程度の高温加熱処理、更には上記高温加熱処理が少なくとも2回行なわれる苛酷な高温環境下に曝された場合でも、半導体シリコン層のキャリア移動度が高められるため、TFTの応答速度が向上し、省エネや高速動画などに対応可能な高性能の表示装置を提供できる。また、配線加工においては、ウェットエッチング法、ドライエッチング法の双方が適応可能である。
 本発明によれば、Al合金膜の耐熱性(特に高温耐熱性)に優れているため、これを例えば半導体素子の電極・電気配線として備えた、例えばIGBTの製造プロセスにおいて、コレクタ層のイオン活性化等のための熱処理を高温で行うことができる。その結果、上記Al合金膜を備えて特性の向上した半導体素子、またこの半導体素子を備えて優れた特性を発揮する上記半導体装置を実現することができる。また、配線加工においては、ウェットエッチング法、ドライエッチング法の双方が適応可能である。
1 チャンバ
2 誘電窓
3 アンテナ
4 高周波電力(アンテナ側)
5 整合器(アンテナ側)
6 プロセスガス導入口
7 基板(被エッチング材)
8 サセプタ
9 誘電チャック
10 カラー
11 整合器(基板側)
12 高周波電力(基板側)
21a ガラス基板
25 走査線
26 ゲート電極
27 ゲート絶縁膜
28 ソース電極
29 ドレイン電極
30 半導体シリコン層
31 保護膜
32 低抵抗シリコン層
33 絶縁性保護膜
35 透明電極

Claims (34)

  1.  表示装置もしくは半導体装置に用いられるAl合金膜であって、前記Al合金膜は、Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、およびOsよりなる群(X群)から選択される少なくとも一種の元素とを含み、
     前記Al合金膜に450~600℃の加熱処理を行なったとき、下記(1)の要件を満足することを特徴とする表示装置もしくは半導体装置用Al合金膜。
     (1)Alと、前記X群から選択される少なくとも一種の元素と、Geとを含む第1の析出物について、円相当直径50nm以上の析出物が200,000個/mm以上の密度で存在する。
  2.  前記Al合金膜は、450~600℃の加熱処理を行なったとき、更に下記(2)の要件を満足するものである請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
     (2)Alと、前記X群から選択される少なくとも二種の元素を含む第2の析出物について、円相当直径50nm以上の析出物が100,000個/mm以上の密度で存在する。
  3.  前記Al合金膜は、更に、希土類元素からなる群から選ばれる少なくとも一種とを含み、前記Al合金膜に450~600℃の加熱処理を行なったとき、更に下記(3)の要件を満足するものである請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
     (3)Alと、前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第3の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
  4.  前記Al合金膜は、450~600℃の加熱処理を行なったとき、更に下記(4)の要件を満足するものである請求項3記載の表示装置もしくは半導体装置用Al合金膜。
     (4)Alと、Geと前記X群から選択される少なくとも一種の元素と、前記希土類元素の少なくとも一種とを含む第4の析出物について、円相当直径10nm以上の析出物が1,000,000個/mm以上の密度で存在する。
  5.  前記Al合金膜は、更にNi、Co、Feからなる群から選ばれる少なくとも1種の元素とを含み、前記Al合金膜に450~600℃の加熱処理を行なったとき、更に下記(5)の要件を満足するものである請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
     (5)Alと、Ni、Co、Feからなる群から選ばれる少なくとも一種の元素と、Geと、前記X群から選択される少なくとも一種の元素とを含む第5の析出物について、円相当直径250nm以上の析出物が2,000個/mm以上の密度で存在する。
  6.  前記第1の析出物の円相当直径は、1μm以下である請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
  7.  前記第2の析出物の円相当直径は、1μm以下である請求項2に記載の表示装置もしくは半導体装置用Al合金膜。
  8.  前記第3の析出物の円相当直径は、1μm以下である請求項3に記載の表示装置もしくは半導体装置用Al合金膜。
  9.  前記第4の析出物の円相当直径は、1μm以下である請求項4に記載の表示装置もしくは半導体装置用Al合金膜。
  10.  前記第5の析出物の円相当直径は、3μm以下である請求項5に記載の表示装置もしくは半導体装置用Al合金膜。
  11.  前記X群の元素の含有量は0.1~5原子%である請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
  12.  前記希土類元素の含有量は0.1~0.45原子%である請求項3に記載の表示装置もしくは半導体装置用Al合金膜。
  13.  前記Ni、Co、Feから選ばれる少なくとも1種の元素の含有量は0.1~0.35原子%である請求項5に記載の表示装置もしくは半導体装置用Al合金膜。
  14.  前記加熱処理は、500~600℃である請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
  15.  前記加熱処理は、少なくとも2回実施されるものである請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
  16.  前記Al合金膜は、透明導電膜と直接接続されるものである請求項5に記載の表示装置もしくは半導体装置用Al合金膜。
  17.  前記Al合金膜は、Mo、Ti、W、およびCrよりなる群から選択される少なくとも一種の元素を含む膜を介して透明導電膜と接続されるものである請求項1に記載の表示装置もしくは半導体装置用Al合金膜。
  18.  Geを0.01~2.0原子%と、Ta、Ti、Zr、Hf、W、Cr、Nb、Mo、Ir、Pt、Re、Osよりなる群(X群)から選択される少なくとも一種の元素を0.1~5原子%を含むことを特徴とするスパッタリングターゲット。
  19.  更に希土類元素からなる群から選ばれる少なくとも一種を0.1~0.45原子%含むものである請求項18に記載のスパッタリングターゲット。
  20.  更にNi、Co、Feから選ばれる少なくとも一種の元素を0.1~0.35原子%含むものである請求項18に記載のスパッタリングターゲット。
  21.  残部がAlおよび不可避的不純物である請求項18に記載のスパッタリングターゲット。
  22.  請求項1に記載の表示装置もしくは半導体装置用Al合金膜を、ハロゲンガス、または、ハロゲン含有化合物を含むガスでエッチングしたことを特徴とする、Al合金配線。
  23.  請求項1に記載の表示装置もしくは半導体装置用Al合金膜を、pH3以下の酸性溶液でエッチングしたことを特徴とする、Al合金配線。
  24.  請求項1に記載の表示装置用Al合金膜を備えた表示装置。
  25.  請求項1に記載の表示装置用Al合金膜を備えた液晶ディスプレイ。
  26.  請求項1に記載の表示装置用Al合金膜を備えた有機ELディスプレイ。
  27.  請求項1に記載の表示装置用Al合金膜を備えたフィールドエミッションディスプレイ。
  28.  請求項1に記載の表示装置用Al合金膜を備えた蛍光真空管。
  29.  請求項1に記載の表示装置用Al合金膜を備えたプラズマディスプレイ。
  30.  請求項1に記載の表示装置用Al合金膜を備えた無機ELディスプレイ。
  31.  請求項1に記載の半導体装置用Al合金膜を備えた半導体装置。
  32.  請求項1に記載の半導体装置用Al合金膜を備えた半導体素子。
  33.  請求項1に記載の半導体装置用Al合金膜を備えた半導体素子の電極。
  34.  請求項1に記載の半導体装置用Al合金膜を備えた半導体素子の配線。
PCT/JP2012/054837 2011-02-28 2012-02-27 表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット WO2012118039A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137022620A KR20130121959A (ko) 2011-02-28 2012-02-27 표시 장치 또는 반도체 장치용 Al 합금막, Al 합금막을 구비한 표시 장치 또는 반도체 장치 및 스퍼터링 타깃
CN201280010495.5A CN103403214B (zh) 2011-02-28 2012-02-27 显示装置或半导体装置用Al合金膜、具备Al合金膜的显示装置或半导体装置、以及溅射靶
US14/001,875 US9624562B2 (en) 2011-02-28 2012-02-27 Al alloy film for display or semiconductor device, display or semiconductor device having Al alloy film, and sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011042635A JP2012180540A (ja) 2011-02-28 2011-02-28 表示装置および半導体装置用Al合金膜
JP2011-042635 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012118039A1 true WO2012118039A1 (ja) 2012-09-07

Family

ID=46757971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054837 WO2012118039A1 (ja) 2011-02-28 2012-02-27 表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット

Country Status (6)

Country Link
US (1) US9624562B2 (ja)
JP (1) JP2012180540A (ja)
KR (1) KR20130121959A (ja)
CN (1) CN103403214B (ja)
TW (1) TW201303051A (ja)
WO (1) WO2012118039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201461A1 (ja) * 2021-03-25 2022-09-29 シャープディスプレイテクノロジー株式会社 表示装置及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6842562B2 (ja) * 2018-06-28 2021-03-17 株式会社アルバック アルミニウム合金膜、その製造方法、及び薄膜トランジスタ
JP6735930B2 (ja) * 2018-06-28 2020-08-05 株式会社アルバック アルミニウム合金ターゲット及びその製造方法
CN113423858B (zh) * 2019-12-13 2024-04-26 株式会社爱发科 铝合金靶材、铝合金布线膜以及铝合金布线膜的制造方法
KR102329426B1 (ko) * 2020-01-03 2021-11-24 와이엠씨 주식회사 배선전극용 합금 조성물 및 그의 제조방법
CN111584501B (zh) 2020-05-07 2021-12-28 武汉华星光电技术有限公司 接触电阻监测器件及其制作方法、显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790552A (ja) * 1993-07-27 1995-04-04 Kobe Steel Ltd Al合金薄膜及びその製造方法並びにAl合金薄膜形成用スパッタリングターゲット
JP2000294556A (ja) * 1999-04-05 2000-10-20 Hitachi Metals Ltd ドライエッチング性に優れたAl合金配線膜およびAl合金配線膜形成用ターゲット
JP2011017944A (ja) * 2009-07-09 2011-01-27 Kobe Steel Ltd 表示装置用Al合金膜、表示装置およびAl合金スパッタリングターゲット

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733006B2 (ja) 1993-07-27 1998-03-30 株式会社神戸製鋼所 半導体用電極及びその製造方法並びに半導体用電極膜形成用スパッタリングターゲット
JP3684354B2 (ja) 1993-07-27 2005-08-17 株式会社神戸製鋼所 Al合金薄膜の製造方法およびAl合金薄膜形成用スパッタリングターゲット
JP3365954B2 (ja) 1997-04-14 2003-01-14 株式会社神戸製鋼所 半導体電極用Al−Ni−Y 合金薄膜および半導体電極用Al−Ni−Y 合金薄膜形成用スパッタリングターゲット
JP4783525B2 (ja) 2001-08-31 2011-09-28 株式会社アルバック 薄膜アルミニウム合金及び薄膜アルミニウム合金形成用スパッタリングターゲット
JP3940385B2 (ja) 2002-12-19 2007-07-04 株式会社神戸製鋼所 表示デバイスおよびその製法
JP2005303003A (ja) 2004-04-12 2005-10-27 Kobe Steel Ltd 表示デバイスおよびその製法
JP4541787B2 (ja) 2004-07-06 2010-09-08 株式会社神戸製鋼所 表示デバイス
JP4330517B2 (ja) 2004-11-02 2009-09-16 株式会社神戸製鋼所 Cu合金薄膜およびCu合金スパッタリングターゲット並びにフラットパネルディスプレイ
JP4579709B2 (ja) 2005-02-15 2010-11-10 株式会社神戸製鋼所 Al−Ni−希土類元素合金スパッタリングターゲット
JP4117001B2 (ja) 2005-02-17 2008-07-09 株式会社神戸製鋼所 薄膜トランジスタ基板、表示デバイス、および表示デバイス用のスパッタリングターゲット
JP4542008B2 (ja) 2005-06-07 2010-09-08 株式会社神戸製鋼所 表示デバイス
US7411298B2 (en) 2005-08-17 2008-08-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Source/drain electrodes, thin-film transistor substrates, manufacture methods thereof, and display devices
US7683370B2 (en) 2005-08-17 2010-03-23 Kobe Steel, Ltd. Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices
US7781767B2 (en) 2006-05-31 2010-08-24 Kobe Steel, Ltd. Thin film transistor substrate and display device
JP2008098611A (ja) 2006-09-15 2008-04-24 Kobe Steel Ltd 表示装置
JP4280277B2 (ja) 2006-09-28 2009-06-17 株式会社神戸製鋼所 表示デバイスの製法
WO2008047726A1 (en) 2006-10-13 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho Thin film transistor substrate and display device
JP2008127623A (ja) 2006-11-20 2008-06-05 Kobelco Kaken:Kk Al基合金スパッタリングターゲットおよびその製造方法
JP4377906B2 (ja) 2006-11-20 2009-12-02 株式会社コベルコ科研 Al−Ni−La系Al基合金スパッタリングターゲット、およびその製造方法
JP4170367B2 (ja) 2006-11-30 2008-10-22 株式会社神戸製鋼所 表示デバイス用Al合金膜、表示デバイス、及びスパッタリングターゲット
JP4355743B2 (ja) 2006-12-04 2009-11-04 株式会社神戸製鋼所 Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット
JP4705062B2 (ja) 2007-03-01 2011-06-22 株式会社神戸製鋼所 配線構造およびその作製方法
JP2009004518A (ja) 2007-06-20 2009-01-08 Kobe Steel Ltd 薄膜トランジスタ基板、および表示デバイス
JP2009008770A (ja) 2007-06-26 2009-01-15 Kobe Steel Ltd 積層構造およびその製造方法
JP2009010052A (ja) 2007-06-26 2009-01-15 Kobe Steel Ltd 表示装置の製造方法
US20090001373A1 (en) 2007-06-26 2009-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Electrode of aluminum-alloy film with low contact resistance, method for production thereof, and display unit
JP5143649B2 (ja) 2007-07-24 2013-02-13 株式会社コベルコ科研 Al−Ni−La−Si系Al合金スパッタリングターゲットおよびその製造方法
JP4611417B2 (ja) 2007-12-26 2011-01-12 株式会社神戸製鋼所 反射電極、表示デバイス、および表示デバイスの製造方法
KR101163329B1 (ko) 2008-02-22 2012-07-05 가부시키가이샤 고베 세이코쇼 터치 패널 센서
WO2009123217A1 (ja) 2008-03-31 2009-10-08 株式会社神戸製鋼所 表示装置、その製造方法およびスパッタリングターゲット
JP5432550B2 (ja) 2008-03-31 2014-03-05 株式会社コベルコ科研 Al基合金スパッタリングターゲットおよびその製造方法
JP5475260B2 (ja) 2008-04-18 2014-04-16 株式会社神戸製鋼所 配線構造、薄膜トランジスタ基板およびその製造方法、並びに表示装置
JP5368867B2 (ja) 2008-04-23 2013-12-18 株式会社神戸製鋼所 表示装置用Al合金膜、表示装置およびスパッタリングターゲット
WO2010001998A1 (ja) 2008-07-03 2010-01-07 株式会社神戸製鋼所 配線構造、薄膜トランジスタ基板およびその製造方法、並びに表示装置
JP2010065317A (ja) 2008-08-14 2010-03-25 Kobe Steel Ltd 表示装置およびこれに用いるCu合金膜
US20110198602A1 (en) 2008-11-05 2011-08-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy film for display device, display device, and sputtering target
JP2010135300A (ja) 2008-11-10 2010-06-17 Kobe Steel Ltd 有機elディスプレイ用の反射アノード電極およびその製造方法
JP4567091B1 (ja) 2009-01-16 2010-10-20 株式会社神戸製鋼所 表示装置用Cu合金膜および表示装置
US20110318607A1 (en) 2009-03-02 2011-12-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy reflective film, automobile light, illuminator, ornamentation, and aluminum alloy sputtering target
JP2010238800A (ja) 2009-03-30 2010-10-21 Kobe Steel Ltd 表示装置用Al合金膜、薄膜トランジスタ基板および表示装置
JP5681368B2 (ja) * 2010-02-26 2015-03-04 株式会社神戸製鋼所 Al基合金スパッタリングターゲット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790552A (ja) * 1993-07-27 1995-04-04 Kobe Steel Ltd Al合金薄膜及びその製造方法並びにAl合金薄膜形成用スパッタリングターゲット
JP2000294556A (ja) * 1999-04-05 2000-10-20 Hitachi Metals Ltd ドライエッチング性に優れたAl合金配線膜およびAl合金配線膜形成用ターゲット
JP2011017944A (ja) * 2009-07-09 2011-01-27 Kobe Steel Ltd 表示装置用Al合金膜、表示装置およびAl合金スパッタリングターゲット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201461A1 (ja) * 2021-03-25 2022-09-29 シャープディスプレイテクノロジー株式会社 表示装置及びその製造方法

Also Published As

Publication number Publication date
KR20130121959A (ko) 2013-11-06
TW201303051A (zh) 2013-01-16
US9624562B2 (en) 2017-04-18
JP2012180540A (ja) 2012-09-20
CN103403214B (zh) 2016-02-17
US20140086791A1 (en) 2014-03-27
CN103403214A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5179604B2 (ja) 表示装置用Al合金膜
WO2012118039A1 (ja) 表示装置もしくは半導体装置用Al合金膜、Al合金膜を備えた表示装置もしくは半導体装置、およびスパッタリングターゲット
TWI356498B (ja)
CN101918888B (zh) 显示装置、其制造方法及溅射靶
JP5032687B2 (ja) Al合金膜、Al合金膜を有する配線構造、およびAl合金膜の製造に用いられるスパッタリングターゲット
JP2009280911A (ja) 表示装置用Al合金膜、表示装置およびスパッタリングターゲット
TW201307586A (zh) Cu合金膜、及具備此之顯示裝置或電子裝置
WO2013047095A1 (ja) 表示装置用配線構造
JP5491947B2 (ja) 表示装置用Al合金膜
JP2006310814A (ja) 薄膜配線層
JP2012189725A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
JP4044383B2 (ja) 半導体デバイス電極/配線の製造方法
JP6002280B2 (ja) 表示装置もしくは半導体装置用Al合金膜
JP5357515B2 (ja) 表示装置用Al合金膜、表示装置およびスパッタリングターゲット
WO2016035554A1 (ja) 薄膜トランジスタの酸化物半導体薄膜、薄膜トランジスタ、およびスパッタリングターゲット
JP2012189726A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
JP2011017944A (ja) 表示装置用Al合金膜、表示装置およびAl合金スパッタリングターゲット
JP2010165865A (ja) 表示装置用Al合金膜、表示装置およびAl合金スパッタリングターゲット
JP2018204059A (ja) フレキシブル表示装置用Al合金膜およびフレキシブル表示装置
JP2012003228A (ja) ウェットエッチング性に優れた表示装置用配線膜
WO2010058825A1 (ja) 表示装置用Al合金膜、薄膜トランジスタ基板およびその製造方法、並びに表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280010495.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137022620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14001875

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12752949

Country of ref document: EP

Kind code of ref document: A1