WO2012117568A1 - 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法 - Google Patents

赤外線温度センサ、電子機器、および赤外線温度センサの製造方法 Download PDF

Info

Publication number
WO2012117568A1
WO2012117568A1 PCT/JP2011/056258 JP2011056258W WO2012117568A1 WO 2012117568 A1 WO2012117568 A1 WO 2012117568A1 JP 2011056258 W JP2011056258 W JP 2011056258W WO 2012117568 A1 WO2012117568 A1 WO 2012117568A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
metal
infrared temperature
temperature sensor
sensor
Prior art date
Application number
PCT/JP2011/056258
Other languages
English (en)
French (fr)
Inventor
朋宏 片岡
伸一 和田
泉 黒瀬
正和 椎木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201180068503.7A priority Critical patent/CN103403508B/zh
Publication of WO2012117568A1 publication Critical patent/WO2012117568A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an infrared temperature sensor that detects the temperature of an object using infrared rays generated by the object.
  • the surrounding environment is detected and the detection result is used for operation control.
  • operation control is performed in which the presence of a person is detected and temperature control is performed targeting a place where the person exists.
  • a sensor device for detecting the surrounding environment is used, and in the air conditioner as described above, an infrared temperature sensor that detects an object temperature in a non-contact manner by radiant heat from the object is used.
  • Patent Document 1 As a conventional infrared temperature sensor, a configuration in which a sensor element and a circuit unit are mounted on a metal stem is well known (for example, Patent Document 1). The configuration of an infrared temperature sensor using a metal stem is shown in FIG.
  • the infrared temperature sensor shown in FIG. 7 includes a sensor element 102 and a circuit unit (not shown) for amplifying and outputting a detection signal of the sensor element 102 on a metal stem 101.
  • the metal stem 101 is provided with an electrode rod 103 penetrating therethrough, and the circuit portion and the mounting substrate are connected via the electrode rod 103.
  • the mounting surface of the sensor element 102 and the circuit unit in the metal stem 101 is covered with a metal cap 104.
  • the metal cap 104 is provided with a window for transmitting infrared rays, and a filter 105 made of glass or transparent resin having high infrared transmittance is attached to the window.
  • the metal stem 101 is used is a countermeasure against errors caused by internal heat. That is, the sensor element 102 receives not only infrared rays that pass through the filter 105 but also infrared rays due to radiant heat inside the sensor. At this time, if the temperature inside the sensor is the same as that of the sensor element 102, the influence of the temperature inside the sensor is canceled and no error occurs. On the other hand, if the temperature inside the sensor is different from the sensor element 102, the temperature inside the sensor will be an error, and the temperature of the measurement object cannot be detected accurately.
  • the conventional infrared temperature sensor has a package structure using a metal stem and a metal cap with high thermal conductivity so that the temperature inside the sensor is uniform.
  • FIG. 8 shows the configuration of an infrared temperature sensor that does not use a metal stem.
  • the infrared temperature sensor shown in FIG. 8 has a configuration in which the sensor chip 202 is directly mounted on the support substrate 201 and the wiring of the support substrate 201 and the sensor chip 202 are connected by wire. Also in the infrared temperature sensor, the sensor chip 202 is covered with a metal cap 203.
  • the cost of the metal stem itself is high.
  • the metal stem has an electrode bar for taking out a sensor signal to the outside of the package, and this electrode bar is insulated from the main body of the stem using low-melting glass or the like, so that the structure is complicated and the member cost is high.
  • the mounting of the metal stem requires a process of inserting the metal rod of the through hole of the mounting board and soldering it manually, which increases the assembly processing cost.
  • the above problem can be solved by making the base material of the support substrate a ceramic base material with good thermal conductivity.
  • the price of the ceramic substrate becomes very high, which is disadvantageous in terms of cost.
  • the present invention has been made in view of the above-mentioned problems, and is low in material cost and assembly processing cost, and is resistant to fluctuations in output to environmental temperature changes comparable to the conventional structure using a metal stem. It aims at providing the infrared temperature sensor which has this.
  • an infrared temperature sensor of the present invention includes a mounting substrate, a metal plate mounted on the mounting substrate, a sensor chip that receives and detects infrared rays mounted on the metal plate, A circuit unit that amplifies a detection signal of the sensor chip mounted on the metal plate; and a metal cap that is placed on the metal plate and covers the sensor chip and the circuit unit. Is provided with an opening, and the electrode on the mounting substrate and the circuit portion are wire-connected through the opening.
  • the sensor chip and the circuit unit are mounted on the metal plate, and a metal cap is placed thereon. That is, the sensor has a structure in which the sensor chip and the circuit unit are accommodated in a package including the metal plate and the metal cap. Since the metal plate and the metal cap have high thermal conductivity, the package has a function of keeping the temperature inside the sensor uniform, and can have high output fluctuation resistance against environmental temperature changes.
  • the metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening.
  • the wire bonding between the mounting substrate and the circuit part can be performed by using the usual COB (Chip On Board) mounting technology. Therefore, the assembly cost is significantly higher than the conventional technology for mounting a sensor using a metal stem. Reduction is possible.
  • the method for manufacturing an infrared temperature sensor of the present invention includes a step of mounting a metal plate provided with an opening on a mounting substrate, a sensor chip for receiving and detecting infrared light on the metal plate, and the sensor chip. Mounting a circuit unit for amplifying the detection signal of the sensor, a step of wire-connecting the electrode on the mounting substrate and the circuit unit through an opening of the metal plate, and the sensor chip on the metal plate And packaging with a metal cap covering the circuit portion.
  • an infrared temperature sensor that is low in material cost and assembly processing cost, and that has an output fluctuation resistance to an environmental temperature change comparable to that of a conventional structure using a metal stem.
  • the infrared temperature sensor of the present invention has a structure in which the sensor chip and the circuit unit are accommodated in a package including the metal plate and the metal cap. Since the package has high thermal conductivity, it has a function of keeping the temperature inside the sensor uniform. For this reason, the infrared temperature sensor has an effect of having high output fluctuation resistance against environmental temperature changes.
  • the metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening.
  • a normal COB mounting technique can be applied.
  • the infrared temperature sensor has an effect that the cost of assembling can be significantly reduced as compared with the conventional technique in which a sensor using a metal stem is mounted.
  • FIG. 1 is a perspective view illustrating a configuration of an infrared temperature sensor according to an embodiment of the present invention. It is a perspective view which shows the shape of the metal plate used with the infrared temperature sensor of FIG. It is a perspective view which shows the mounting method of the metal plate in the infrared temperature sensor of FIG. It is sectional drawing which shows the sealing structure of the metal cap and lens in the infrared temperature sensor of FIG. It is a perspective view which shows the mounting method of the metal cap in the infrared temperature sensor of FIG. It is a graph which shows the output fluctuation tolerance to the environmental temperature change in an infrared temperature sensor. It is sectional drawing which shows the structure of the conventional infrared temperature sensor. It is sectional drawing which shows the structure of the conventional infrared temperature sensor.
  • FIG. 1 is a perspective view showing a configuration of an infrared temperature sensor according to the present embodiment.
  • a part of the infrared temperature sensor is shown in cross section so that the internal structure of the infrared temperature sensor can be seen.
  • the infrared temperature sensor according to the present embodiment can be used in an electronic device (such as an air conditioner) that detects the surrounding environment and uses the detection result for operation control.
  • the infrared temperature sensor shown in FIG. 1 includes a laminated substrate 1, a metal plate 2, a sensor chip 3, an ASIC (Application Specific Integrated Circuit) 4, a metal cap 5, an inner cap 6, and a lens 7.
  • the multilayer substrate 1 is a mounting substrate for mounting the sensor chip 3 and the ASIC 4, and has a wiring layer patterned in a predetermined shape.
  • the sensor chip 3 is an element that receives and detects infrared rays
  • the ASIC 4 is a circuit unit that amplifies and outputs the detection signal of the sensor chip 3.
  • the metal plate 2 is attached on the laminated substrate 1, and the sensor chip 3 and the ASIC 4 are mounted on the metal plate 2.
  • the metal plate 2 is provided with an opening 21 for wire connection between the laminated substrate 1 and the ASIC 4.
  • the shape of the metal plate 2 in the present embodiment is shown in FIG.
  • the sensor chip 3 and the ASIC 4 are covered with a structure including a metal cap 5, an inner cap 6, and a lens 7.
  • the lens 7 is fitted into a recess formed on the upper surface of the inner cap 6, and the metal cap 5 is placed thereon.
  • the metal cap 5 completely accommodates the inner cap 6 and the lens 7 inside thereof, and the lower end thereof is in contact with the metal plate 2.
  • a window portion for taking in infrared rays into the sensor is provided on the upper surface of the metal cap 5, and the lens 7 is disposed immediately below the window portion.
  • the lens 7 collects infrared rays that pass through the window portion of the metal cap 5 on the sensor chip 3. As a result, the infrared temperature sensor can efficiently detect infrared rays.
  • the gap between the metal plate 2 and the metal cap 5 and the gap between the lens 7 and the metal cap 5 are sealed with an adhesive so that the inside of the sensor is sealed.
  • the infrared transmitting member attached to the window portion of the metal cap 5 does not necessarily need to be a lens, and may be a glass plate, a transparent resin plate, or the like if the light condensing function is not required.
  • the infrared temperature sensor configured as described above, a package structure including the metal plate 2 and the metal cap 5 is formed, and the sensor chip 3 and the ASIC 4 are disposed inside the package. For this reason, it becomes possible to keep the temperature in the sensor uniform to the same extent as a sensor having a conventional structure using a metal stem. That is, it is possible to provide an infrared temperature sensor having an output fluctuation resistance to an environmental temperature change comparable to the conventional structure.
  • the material of the metal plate 2 is not particularly limited, iron, copper, aluminum or the like having particularly good thermal conductivity can be preferably used. Further, the metal plate 2 may be subjected to surface coating (for example, nickel plating) in order to prevent rust and ensure solderability described later.
  • surface coating for example, nickel plating
  • the inner cap 6 is made of resin.
  • the main purpose of providing the inner cap 6 is to avoid a sudden change in the temperature in the sensor following the change in the external temperature.
  • the infrared temperature sensor keeps the temperature inside the sensor uniform by the package structure of the metal plate 2 and the metal cap 5. .
  • the temperature in the sensor also changes abruptly.
  • an inner cap 6 made of resin is provided to mitigate the change in the external temperature and avoid a sudden change in the sensor internal temperature.
  • the metal plate 2 is mounted on the multilayer substrate 1 by soldering.
  • soldering process it is possible to use a general soldering method in the mounting technology of electronic components, such as placing the metal plate 2 on the multilayer substrate 1 with cream solder interposed therebetween and heating by reflow. It is.
  • soldering lands are formed in advance on the multilayer substrate 1 (see FIG. 3).
  • the soldering lands are provided in correspondence with at least four positions that extend from the center of the metal plate 2 to the edge of the metal plate 2 at equal positions vertically and horizontally.
  • the soldering lands may be provided at locations corresponding to the four corners or four sides of the metal plate 2 to be mounted.
  • a land corresponding to the center of the metal plate 2 may be one place or a plurality of places.
  • the sensor chip 3 and the ASIC 4 are mounted on the metal plate 2.
  • the sensor chip 3 and the ASIC 4 can be mounted on the metal plate 2 with an adhesive.
  • wiring connection (connection between the sensor chip 3 and the ASIC 4 and connection between the ASIC 4 and the multilayer substrate 1) is performed by wire bonding.
  • the metal plate 2 is provided with the opening 21 for wire connection between the multilayer substrate 1 and the ASIC 4. That is, in the state where the metal plate 2 is mounted on the multilayer substrate 1, the connection pads (electrodes) on the multilayer substrate 1 side are arranged in the region of the opening 21. Therefore, wire bonding between the laminated substrate 1 and the ASIC 4 can be performed through the opening 21.
  • the wire bonding between the multilayer substrate 1 and the ASIC 4 can be performed by using an ordinary COB (Chip On Board) mounting technique, so that the assembly processing cost is significantly reduced as compared with the conventional technique for mounting a sensor using a metal stem. Is possible.
  • COB Chip On Board
  • the metal cap 5, the inner cap 6, and the lens 7 are assembled before mounting on the laminated substrate 1.
  • the lens 7 is fitted into a recess formed on the upper surface of the inner cap 6, and the metal cap 5 is placed thereon.
  • the lens 7 needs to be accurately aligned so that its focal point comes on the sensor chip, but this positioning is facilitated by providing the inner cap 6 with a recess for fitting the lens 7.
  • the peripheral part of the lens 7 is disposed in contact with or close to the metal cap 5, and the gap between the metal cap 5 and the lens 7 is sealed with an adhesive.
  • the adhesive preferably fills substantially the entire gap between the metal cap 5 and the lens 7 (see FIG. 4). This not only enhances the sealing performance, but also improves the thermal conductivity between the metal cap 5 and the lens 7.
  • the metal plate 2 may be provided with cap positioning protrusions 22 (see FIG. 5).
  • the cap positioning protrusions 22 are preferably provided at four corners or four sides of the metal plate 2. Thereby, when mounting the metal cap 5 on the metal plate 2, it can be positioned easily and accurately.
  • FIG. 6 shows output fluctuation tolerance to environmental temperature changes in the infrared temperature sensor according to the present embodiment.
  • FIG. 6 is a graph showing the fluctuation of the output temperature when the ambient temperature of the sensor is increased from 25 ° C. to 35 ° C. (the time required for the temperature fluctuation is about 100 s). Output temperature error is shown.
  • FIG. 6 shows the measurement results of the sensors in Comparative Examples 1 and 2 in addition to the sensor of the present embodiment.
  • Comparative Example 1 corresponds to the conventional structure of Patent Document 1, and is a structure in which a sensor chip is mounted on a mounting substrate via a metal stem.
  • Comparative Example 2 as in the present invention, the sensor chip is mounted on the mounting substrate via the metal plate, but the gap between the lens and the metal cap is not filled with resin. Structure.
  • the error in the output temperature is within about ⁇ 0.5 ° C. despite the sudden change in the ambient temperature, and the error that occurs after the change in the ambient temperature is also returned. fast.
  • the maximum error is close to 0.8 ° C., and an error of 0.5 ° C. or more occurs until a time of about 300 s elapses after the temperature change starts.
  • the sensor according to the present embodiment has an output fluctuation resistance to environmental temperature changes equivalent to or higher than that of a conventional sensor using a metal stem, regardless of an inexpensive structure that does not use a metal stem. You can see that
  • the metal plate 2 is connected to the GND potential on the laminated substrate 1, and the metal plate 2 and the metal cap 5 are electrically connected by a conductive adhesive.
  • the sensor chip 3 and the ASIC 4 are sensitive devices that are easily affected by radio wave noise.
  • the package including the metal plate 2 and the metal cap 5 can have a shielding effect for blocking radio wave noise.
  • the above configuration can be easily realized by connecting at least one of the soldering lands on the multilayer substrate 1 to the GND potential supply wiring.
  • the infrared temperature sensor of the present invention includes a mounting board, a metal plate mounted on the mounting board, a sensor chip that receives and detects infrared light mounted on the metal plate, and the metal plate.
  • a circuit unit that amplifies the detection signal of the sensor chip mounted on the metal plate, and a metal cap that is placed on the metal plate and covers the sensor chip and the circuit unit, and the metal plate has an opening.
  • the electrode on the mounting substrate and the circuit portion are wire-connected through the opening.
  • the sensor chip and the circuit unit are mounted on the metal plate, and a metal cap is placed thereon. That is, the sensor has a structure in which the sensor chip and the circuit unit are accommodated in a package including the metal plate and the metal cap. Since the metal plate and the metal cap have high thermal conductivity, the package has a function of keeping the temperature inside the sensor uniform, and can have high output fluctuation resistance against environmental temperature changes.
  • the metal plate is provided with an opening, and the electrode on the mounting substrate and the circuit part are wire-connected through the opening.
  • the wire bonding between the mounting substrate and the circuit part can be performed by using the usual COB (Chip On Board) mounting technology. Therefore, the assembly cost is significantly higher than the conventional technology for mounting a sensor using a metal stem. Reduction is possible.
  • the metal plate may be connected to the GND potential on the mounting substrate, and the metal cap may be electrically connected to the metal plate.
  • the package made of the metal plate and the metal cap can have a shielding effect for blocking radio noise.
  • the metal plate is mounted on the mounting substrate by soldering, and the soldering lands formed on the mounting substrate have four corners of the metal plate to be mounted or It can be set as the structure provided in the location corresponding to 4 sides, and the location corresponding to the center of a metal plate.
  • the metal plate can be firmly mounted without misalignment by the soldering lands provided at locations corresponding to the four corners or four sides of the metal plate.
  • a land provided at a location corresponding to the center of the metal plate can prevent the metal plate from being bent due to a gap between the metal plate and the mounting substrate.
  • the metal plate may be configured to have a surface coating for ensuring solderability. Thereby, the reliability of solder mounting can be raised.
  • the metal plate may be provided with a cap positioning protrusion for positioning the metal cap. Thereby, when mounting the said metal cap on the said metal plate, it can position easily with sufficient precision.
  • a resin inner cap may be provided inside the metal cap.
  • a window for taking infrared light into the sensor is provided on the upper surface of the metal cap, and infrared light passing through the window is directly below the window on the sensor chip.
  • a lens for condensing light is disposed on the inner cap, and the inner cap has a recess for fitting the lens.
  • the periphery of the lens is disposed in contact with or close to the metal cap, and the gap between the lens and the metal cap is filled with an adhesive. it can. Thereby, the thermal conductivity between the metal cap and the lens can be improved, and the temperature in the sensor can be made uniform.
  • the method for manufacturing an infrared temperature sensor of the present invention includes a step of mounting a metal plate provided with an opening on a mounting substrate, a sensor chip for receiving and detecting infrared light on the metal plate, and the sensor chip. Mounting a circuit unit for amplifying the detection signal of the sensor, a step of wire-connecting the electrode on the mounting substrate and the circuit unit through an opening of the metal plate, and the sensor chip on the metal plate And packaging with a metal cap covering the circuit portion.
  • an infrared temperature sensor that is low in material cost and assembly processing cost, and that has an output fluctuation resistance to an environmental temperature change comparable to that of a conventional structure using a metal stem.
  • the present invention can be used for an electronic device (such as an air conditioner) that detects the surrounding environment and uses the detection result for operation control.
  • an electronic device such as an air conditioner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

 積層基板(1)上に金属板(2)が実装され、センサチップ(3)およびASIC(4)は金属板(2)上に搭載される。センサチップ(3)およびASIC(4)は、金属板(2)上にかぶせられた金属キャップ(5)にて覆われる。金属板(2)には開口部(21)が設けられており、積層基板 (1)上の電極とASIC(4)とは、開口部(21)を通じてワイヤ接続されている。

Description

赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
 本発明は、物体が発生する赤外線によって該物体の温度を検出する赤外線温度センサに関する。
 近年の電子機器においては、周囲環境を検出し、その検出結果を運転制御に利用することが行われている。例えば、エアコンにおいては、人の存在を検知し、人の存在する場所を狙って温度制御するといった運転制御が行われている。このような運転制御においては、周囲環境を検出するためのセンサ装置が用いられ、上記のようなエアコンでは物体からの輻射熱によって非接触で物体温度を検知する赤外線温度センサが用いられる。
 従来の赤外線温度センサとして、金属ステムにセンサ素子と回路部を搭載した構成が良く知られている(例えば特許文献1)。金属ステムを用いた赤外線温度センサの構成を図7に示す。
 図7に示す赤外線温度センサは、金属ステム101上にセンサ素子102および該センサ素子102の検知信号を増幅して出力するための回路部(図示せず)とを搭載している。また、金属ステム101には、これを貫通する電極棒103が設けられており、上記回路部と実装基板との接続は電極棒103を介して行われるようになっている。さらに、金属ステム101におけるセンサ素子102および回路部の搭載面は金属キャップ104によって覆われている。金属キャップ104には赤外線を通すための窓が設けられており、該窓には赤外線の透過率の高いガラスや透明樹脂からなるフィルタ105が取り付けられている。
 上記赤外線温度センサにおいて、金属ステム101を用いている最大の理由は、内部熱による誤差対策である。すなわち、センサ素子102は、フィルタ105を透過する赤外線のみならず、センサ内部の輻射熱による赤外線をも受光する。この時、センサ内部の温度がセンサ素子102と同じであれば、センサ内部温度の影響は相殺されて誤差を生じさせない。一方、センサ内部の温度がセンサ素子102と異なっていれば、センサ内部の温度が誤差としてのってしまい、測定対象物の温度を正確に検知できなくなる。
 このため、従来の赤外線温度センサでは、熱伝導性の高い金属ステムと金属キャップとを用いたパッケージ構造とし、センサ内部の温度が均一となるようにしている。
 また、金属ステムを用いない構造の赤外線温度センサが、例えば特許文献2に開示されている。金属ステムを用いない赤外線温度センサの構成を図8に示す。
 図8に示す赤外線温度センサは、支持基板201上にセンサチップ202を直接搭載し、支持基板201の配線とセンサチップ202とをワイヤ接続する構成となっている。また、上記赤外線温度センサにおいても、センサチップ202は金属キャップ203によって覆われている。
日本国公開特許公報「特開平6-137935号公報(1994年5月20日公開)」 日本国公表特許公報「特表2007-503586号公報(2007年2月22日公表)」
 しかしながら、上述のような従来技術は、以下の問題を有する。
 まず、金属ステムを用いる構造では、金属ステム自体の部材費が高い。金属ステムは、センサ信号をパッケージ外部に取り出すための電極棒を有しており、この電極棒は低融点ガラス等を用いてステム本体と絶縁されるため、構造が複雑であり部材費が高くなる。また、金属ステムの実装は、実装基板のスルーホールの金属棒を差し込んで、人手によって半田付けするといった工程が必要となり、組立加工費も高くなる。
 一方、金属ステムを用いない構造では、支持基板の基材を一般的な樹脂基材とした場合、熱伝導性が悪いことから、センサチップとのキャップとの間に温度差が生じやすい。このため、周辺温度が変化した場合などには、パッケージ内側の放射赤外線によってセンサ出力が変動するといった問題が生じる。
 また、金属ステムを用いない構造では、支持基板の基材を熱伝導性の良いセラミック基材にして、上記問題を解消することができる。しかしながらこの場合には、セラミック基板の価格が非常に高くなり、コスト面で不利となる。
 本願発明は、上記の課題に鑑みてなされたものであり、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することを目的とする。
 上記の課題を解決するために、本発明の赤外線温度センサは、実装基板と、上記実装基板上に実装される金属板と、上記金属板上に搭載される赤外線を受信検知するセンサチップと、上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されていることを特徴としている。
 上記の構成によれば、上記センサチップおよび上記回路部は上記金属板上に搭載され、さらにその上から金属キャップがかぶせられる。すなわち、上記センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記金属板および上記金属キャップを熱伝導性が高いため、上記パッケージはセンサ内部の温度を均一に保つ機能を有し、環境温度変化へ対する高い出力変動耐性を持たせることができる。
 また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。
 また、本発明の赤外線温度センサの製造方法は、実装基板上に、開口部が設けられた金属板を実装する工程と、上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していることを特徴としている。
 上記の構成によれば、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを製造できる。
 本発明の赤外線温度センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記パッケージは、高い熱導電性を有するため、センサ内部の温度を均一に保つ機能を有する。このため、上記赤外線温度センサは、環境温度変化へ対する高い出力変動耐性を有する、といった効果を奏する。
 また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB実装技術が適用できる。このため、上記赤外線温度センサは、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる、といった効果を奏する。
本発明の一実施形態を示すものであり、赤外線温度センサの構成を示す斜視図である。 図1の赤外線温度センサで用いられる金属板の形状を示す斜視図である。 図1の赤外線温度センサにおける金属板の実装方法を示す斜視図である。 図1の赤外線温度センサにおける金属キャップとレンズとの封止構造を示す断面図である。 図1の赤外線温度センサにおける金属キャップの実装方法を示す斜視図である。 赤外線温度センサにおける環境温度変化への出力変動耐性を示すグラフである。 従来の赤外線温度センサの構成を示す断面図である。 従来の赤外線温度センサの構成を示す断面図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態に係る赤外線温度センサの構成を示す斜視図である。図1では、赤外線温度センサの内部構造が分かるように一部を断面としている。本実施の形態にかかる赤外線温度センサは、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)において利用できる。
 図1に示す赤外線温度センサは、積層基板1、金属板2、センサチップ3、ASIC(Application Specific Integrated Circuit)4、金属キャップ5、内側キャップ6、およびレンズ7を備えて構成されている。積層基板1は、センサチップ3およびASIC4を実装するための実装基板であり、所定形状にパターニングされた配線層を有している。センサチップ3は赤外線を受信検知する素子であり、ASIC4はセンサチップ3の検知信号を増幅して出力するための回路部である。
 積層基板1上には金属板2が取り付けられ、センサチップ3およびASIC4は金属板2上に搭載される。また、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。本実施の形態における金属板2の形状を図2に示す。
 センサチップ3およびASIC4上には、金属キャップ5、内側キャップ6、およびレンズ7からなる構造がかぶせられている。レンズ7は内側キャップ6の上面に形成された窪み部に嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。金属キャップ5は、内側キャップ6およびレンズ7をその内側に完全に収容し、その下端は金属板2に接している。また、金属キャップ5の上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、レンズ7は該窓部の直下に配置される。
 レンズ7は、金属キャップ5の窓部を通過する赤外線をセンサチップ3上に集光する。これによって、上記赤外線温度センサは効率のよい赤外線検知が可能となる。
 また、金属板2と金属キャップ5との隙間およびレンズ7と金属キャップ5との隙間、は接着剤にて封止され、センサ内部が密閉されるようになっている。これはもちろん、センサ内部が密閉されていなければ、空気の出入りによってセンサ内部の温度維持が困難になるためである。但し、金属キャップ5の窓部に取り付けられる赤外線透過部材は、必ずしもレンズである必要は無く、上記集光機能を必要としなければガラス板や透明樹脂板等であっても良い。
 上記構成の赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造が形成され、このパッケージ内部にセンサチップ3、ASIC4が配置される。このため、金属ステムを用いる従来構造のセンサと同程度に、センサ内温度を均一に保つことが可能となる。すなわち、従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することができる。
 金属板2の材質は特に限定されないが、特に熱伝導性が良好な、鉄、銅、アルミ等を好適に用いることができる。また、金属板2は、さび防止と、後述する半田付け性を確保するため、表面コーティング(例えばニッケルメッキ)が施されていても良い。
 また、内側キャップ6は樹脂にて形成されている。内側キャップ6を設ける主な目的は、外部温度の変化に追随してセンサ内温度が急激に変化することを避けるためである。上述したように、センサ内温度が不均一であると検出誤差が生じるため、上記赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造によってセンサ内温度を均一に保つようになっている。しかしながら、パッケージにおける熱伝導性を向上させるのみでは、外部温度が急減に変化した場合、センサ内温度も急激に変化する。センサ内温度に関しては、このような急激な温度が生じることも好ましくない。このため、上記赤外線温度センサでは、樹脂にて形成された内側キャップ6を設け、外部温度の変化を緩和して、センサ内温度の急激な変化を避けるようにしている。
 続いて、上記赤外線温度センサの組立手順を説明する。最初に、積層基板1上に金属板2を半田付けにて実装する。この半田付け工程では、間にクリーム半田を介在させた状態で金属板2を積層基板1上に載置し、リフローによって加熱するといった、電子部品の実装技術における一般的な半田付け方法が使用可能である。
 このように、半田付けによって積層基板1上に金属板2を実装するため、積層基板1には半田付け用ランドが予め形成されている(図3参照)。半田付け用ランドは、少なくとも、金属板2の中心から上下左右に均等な位置で金属板2のエッジにかかる4箇所に対応して設けられる。半田付け用ランドは、実装される金属板2の4隅または4辺に対応する箇所に設けられていても良い。また、金属板2のほぼ中央に対応する箇所にも、半田付け用ランドを形成することが好ましい。これは、金属板2の中央部付近で金属板2と積層基板1との間に隙間が生じて、金属板2に撓みが生じることを防ぐためである。金属板2の中央に対応する箇所のランドは、1箇所であっても複数箇所であっても良い。
 続いて、金属板2上にセンサチップ3、ASIC4が搭載される。センサチップ3、ASIC4は、金属板2上に接着剤によって実装することができる。その後、ワイヤボンディングによって配線接続(センサチップ3とASIC4との接続、およびASIC4と積層基板1との接続)がなされる。上述したように、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。つまり、金属板2が積層基板1に実装されている状態で、積層基板1側の接続用パッド(電極)は、開口部21の領域に配置されている。このため、開口部21を通じて積層基板1とASIC4とのワイヤボンディングが可能となる。このような積層基板1とASIC4とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。
 金属キャップ5、内側キャップ6、およびレンズ7については、積層基板1への実装前に、これら部材の組み立てが行われる。まず、内側キャップ6の上面に形成された窪み部にレンズ7が嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。レンズ7はその焦点がセンサチップ上に来るように精度良く位置あわせして組み込む必要があるが、レンズ7をはめ込むための窪み部を内側キャップ6に設けることで、この位置合わせが容易となる。
 レンズ7の周辺部は金属キャップ5に接触または近接して配置されており、金属キャップ5とレンズ7との隙間は接着剤にて封止される。この時、接着剤は、金属キャップ5とレンズ7との隙間の略全体を充填することが好ましい(図4参照)。これは、密閉性を高めるだけでなく、金属キャップ5とレンズ7との間の熱伝導性を向上させる意味がある。
 金属キャップ5、内側キャップ6、およびレンズ7の組立物は、センサチップ3およびASIC4の実装がすんだ積層基板1の金属板2上にかぶせられ、センサがパッケージングされる。この時、金属キャップ5と金属板2とは接着剤にて封止され、赤外線温度センサの内部が密閉される。上記組立物の実装を容易にするため、金属板2には、キャップ位置決め用突起22を設けても良い(図5参照)。キャップ位置決め用突起22は、金属板2の4隅または4辺に設けられていることが好ましい。これにより、金属キャップ5を金属板2に実装する際、容易に精度良く位置決めできる。
 本実施の形態に係る赤外線温度センサにおける環境温度変化への出力変動耐性を図6に示す。図6は、センサの周囲温度を25℃から35℃に上昇させた場合(温度変動に要した時間は約100s)の出力温度の変動をしめすグラフであり、横軸に時間、縦軸にセンサ出力温度誤差を示している。また、図6では、本実施の形態のセンサ以外に、比較例1,2におけるセンサの測定結果を示している。ここで、比較例1は、特許文献1の従来構造に対応するものであり、金属ステムを介して実装基板上にセンサチップが搭載された構造である。また、比較例2は、本発明と同様に、金属板を介して実装基板上にセンサチップが搭載されているが、レンズと金属キャップとの間が樹脂充填されておらず隙間が生じている構造である。
 まず、本実施の形態に係るセンサは、周囲温度の急減な変化にも関わらず、出力温度の誤差はほぼ±0.5℃以内であり、また、周囲温度の変化後に発生する誤差の戻りも早い。一方、比較例1のセンサでは、最大誤差が0.8℃近くあり、温度変化開始後300s程度の時間が経過するまで、0.5℃以上の誤差が発生している。これより、本実施の形態に係るセンサは、金属ステムを用いない安価な構造であるに関わらず、金属ステムを用いた従来センサと同程度かそれ以上の環境温度変化への出力変動耐性を有していることが分かる。
 また、比較例2のセンサでは、2.0℃に近い最大誤差が発生しており、誤差が0.5℃程度に収束するまで700s程度の時間を有している。これより、実装基板とセンサチップとの間に金属板を介して放熱性を高めても、センサ内の密閉性がなければ出力変動耐性を有さないことが分かる。
 本発明の赤外線温度センサにおいては、金属板2は積層基板1上のGND電位に接続され、かつ、金属板2と金属キャップ5とを導電性接着剤にて電気的に接続する構成とすることが好ましい。センサチップ3およびASIC4は電波ノイズの影響を受けやすいセンシティブなデバイスであるが、上記構成とすることで、金属板2および金属キャップ5からなるパッケージに電波ノイズを遮断するシールド効果をもたせることができる。また、上記構成は、積層基板1上の半田付け用ランドの少なくとも一つを、GND電位供給配線と接続しておけば容易に実現できる。
 以上のように、本発明の赤外線温度センサは、実装基板と、上記実装基板上に実装される金属板と、上記金属板上に搭載される赤外線を受信検知するセンサチップと、上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されていることを特徴としている。
 上記の構成によれば、上記センサチップおよび上記回路部は上記金属板上に搭載され、さらにその上から金属キャップがかぶせられる。すなわち、上記センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記金属板および上記金属キャップを熱伝導性が高いため、上記パッケージはセンサ内部の温度を均一に保つ機能を有し、環境温度変化へ対する高い出力変動耐性を持たせることができる。
 また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。
 また、上記赤外線温度センサでは、上記金属板は上記実装基板上のGND電位に接続されており、上記金属キャップは上記金属板に電気的に接続されている構成とすることができる。
 上記の構成によれば、上記金属板および上記金属キャップからなるパッケージに、電波ノイズを遮断するシールド効果を持たせることができる。
 また、上記赤外線温度センサでは、上記金属板は上記実装基板に対して半田付けにて実装されており、上記実装基板に形成される半田付け用ランドは、実装される上記金属板の4隅または4辺に対応する箇所と、金属板の中央に対応する箇所とに設けられている構成とすることができる。
 上記の構成によれば、上記金属板の4隅または4辺に対応する箇所に設けられた半田付け用ランドによって金属板を位置ずれなく強固に実装することができる。金属板の中央に対応する箇所に設けられるランドによって、上記金属板と上記実装基板との間に隙間が生じて上記金属板に撓みが生じることを防ぐことができる。
 また、上記赤外線温度センサでは、上記金属板は、半田付け性を確保するための表面コーティングが施されている構成とすることができる。これにより、半田付け実装の信頼性を上げることができる。
 また、上記赤外線温度センサでは、上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられている構成とすることができる。これにより、上記金属キャップを上記金属板に実装する際、容易に精度良く位置決めできる。
 また、上記赤外線温度センサでは、上記金属キャップの内側には、樹脂製の内側キャップが設けられている構成とすることができる。
 上記構成によれば、外部環境温度の変化に追随してセンサ内温度が急激に変化することを回避でき、センサの環境温度変化への出力変動耐性を向上させることができる。
 また、上記赤外線温度センサでは、上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、上記内側キャップは、上記レンズをはめ込むための窪み部を有している構成とすることができる。
 上記の構成によれば、上記レンズをはめ込むための窪み部を上記内側キャップに設けることで、レンズの焦点をセンサチップ上に合わせるための位置合わせが容易となる。
 また、上記赤外線温度センサでは、上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されている構成とすることができる。これにより、上記金属キャップと上記レンズとの間の熱伝導性を向上させ、センサ内温度の均一化を図ることができる。
 また、本発明の赤外線温度センサの製造方法は、実装基板上に、開口部が設けられた金属板を実装する工程と、上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していることを特徴としている。
 上記の構成によれば、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを製造できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)に利用することができる。
 1  積層基板(実装基板)
 2  金属板
 3  センサチップ
 4  ASIC(回路部)
 5  金属キャップ
 6  内側キャップ
 7  レンズ
21  開口部
22  キャップ位置決め用突起

Claims (10)

  1.  実装基板と、
     上記実装基板上に実装される金属板と、
     上記金属板上に搭載される赤外線を受信検知するセンサチップと、
     上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、
     上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、
     上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されていることを特徴とする赤外線温度センサ。
  2.  上記金属板は上記実装基板上のGND電位に接続されており、
     上記金属キャップは上記金属板に電気的に接続されていることを特徴とする請求項1に記載の赤外線温度センサ。
  3.  上記金属板は上記実装基板に対して半田付けにて実装されており、
     上記実装基板に形成される半田付け用ランドは、実装される上記金属板の4隅または4辺に対応する箇所と、金属板の中央に対応する箇所とに設けられていることを特徴とする請求項1または2に記載の赤外線温度センサ。
  4.  上記金属板は、半田付け性を確保するための表面コーティングが施されていることを特徴とする請求項3に記載の赤外線温度センサ。
  5.  上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられていることを特徴とする請求項1から4のいずれか一項に記載の赤外線温度センサ。
  6.  上記金属キャップの内側には、樹脂製の内側キャップが設けられていることを特徴とする請求項1から5のいずれか一項に記載の赤外線温度センサ。
  7.  上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、
     上記内側キャップは、上記レンズをはめ込むための窪み部を有していることを特徴とする請求項6に記載の赤外線温度センサ。
  8.  上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されていることを特徴とする請求項7に記載の赤外線温度センサ。
  9.  上記請求項1から8のいずれか一項に記載の赤外線温度センサを搭載したことを特徴とする電子機器。
  10.  実装基板上に、開口部が設けられた金属板を実装する工程と、
     上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、
     上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、
     上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していることを特徴とする赤外線温度センサの製造方法。
PCT/JP2011/056258 2011-03-02 2011-03-16 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法 WO2012117568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180068503.7A CN103403508B (zh) 2011-03-02 2011-03-16 红外线温度传感器、电子设备及红外线温度传感器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-045689 2011-03-02
JP2011045689A JP5287906B2 (ja) 2011-03-02 2011-03-02 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法

Publications (1)

Publication Number Publication Date
WO2012117568A1 true WO2012117568A1 (ja) 2012-09-07

Family

ID=46757525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056258 WO2012117568A1 (ja) 2011-03-02 2011-03-16 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法

Country Status (3)

Country Link
JP (1) JP5287906B2 (ja)
CN (1) CN103403508B (ja)
WO (1) WO2012117568A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008215A1 (ja) * 2016-07-04 2018-01-11 株式会社堀場製作所 赤外線検出器及び放射温度計
WO2022038828A1 (ja) * 2020-08-19 2022-02-24 パナソニックIpマネジメント株式会社 赤外線センサ
US11703470B2 (en) 2020-06-22 2023-07-18 Sensirion Ag Sensor device for determining heat transfer parameters of a fluid

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333641B2 (ja) * 2012-10-29 2013-11-06 オムロン株式会社 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
JP6194799B2 (ja) * 2014-01-15 2017-09-13 オムロン株式会社 赤外線センサ
JP6287233B2 (ja) * 2014-01-15 2018-03-07 オムロン株式会社 赤外線検出器のキャップ及び赤外線検出器
JP6469353B2 (ja) * 2014-03-31 2019-02-13 旭化成エレクトロニクス株式会社 赤外線センサ
KR102610102B1 (ko) * 2015-03-25 2023-12-05 세미텍 가부시키가이샤 적외선 온도 센서 및 적외선 온도 센서를 이용한 장치
EA037409B1 (ru) * 2017-03-30 2021-03-25 Агк Гласс Юроп Стекло для беспилотного автомобиля
WO2020240739A1 (ja) * 2019-05-29 2020-12-03 三菱電機株式会社 To-can型光モジュール
CN214471356U (zh) * 2021-02-05 2021-10-22 芯海科技(深圳)股份有限公司 红外温度传感器以及电子设备
CN115655478B (zh) * 2022-12-23 2023-03-21 苏州森斯缔夫传感科技有限公司 一种红外传感器、抗温度变动性方法及测温仪

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145470A (ja) * 1995-11-07 1997-06-06 Unshin Denshi Kaihatsu Kofun Yugenkoshi 周波数移転機能を備えた焦電型赤外線検出器およびその製造方法
JP2000036715A (ja) * 1998-07-17 2000-02-02 Toyo Commun Equip Co Ltd 圧電発振器及びその製造方法
JP2002296108A (ja) * 2001-03-30 2002-10-09 Ihi Aerospace Co Ltd 光検出素子および光透過材固定構造
JP2004028764A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Works Ltd 赤外線検出器
JP2004077461A (ja) * 2002-08-17 2004-03-11 Lg Electronics Inc 赤外線センサ組立体および該赤外線センサを備えた冷蔵庫
JP2005537473A (ja) * 2002-09-02 2005-12-08 キネティック リミテッド 密封封止
WO2006120863A1 (ja) * 2005-05-11 2006-11-16 Murata Manufacturing Co., Ltd. 赤外線センサ
JP2007501404A (ja) * 2003-05-13 2007-01-25 ハイマン・センサー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 最適化された表面を活用する赤外線センサー
JP2007024829A (ja) * 2005-07-21 2007-02-01 Toshiba Corp 温度検知装置及び高周波加熱器
JP2010225761A (ja) * 2009-03-23 2010-10-07 Hitachi Kokusai Electric Inc 電子部品の押さえ部材及びプリント基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202630A (ja) * 1988-02-08 1989-08-15 Nippon Ceramic Kk 赤外線検出器
JPH01242928A (ja) * 1988-03-24 1989-09-27 Nippon Ceramic Kk 焦電型赤外線アレイセンサ
JPH02140427U (ja) * 1989-04-26 1990-11-26
JPH0635924U (ja) * 1992-10-09 1994-05-13 ティーディーケイ株式会社 赤外線検出器
WO2004001908A1 (en) * 2002-06-25 2003-12-31 Matsushita Electric Works, Ltd. Infrared sensor package

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145470A (ja) * 1995-11-07 1997-06-06 Unshin Denshi Kaihatsu Kofun Yugenkoshi 周波数移転機能を備えた焦電型赤外線検出器およびその製造方法
JP2000036715A (ja) * 1998-07-17 2000-02-02 Toyo Commun Equip Co Ltd 圧電発振器及びその製造方法
JP2002296108A (ja) * 2001-03-30 2002-10-09 Ihi Aerospace Co Ltd 光検出素子および光透過材固定構造
JP2004028764A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Works Ltd 赤外線検出器
JP2004077461A (ja) * 2002-08-17 2004-03-11 Lg Electronics Inc 赤外線センサ組立体および該赤外線センサを備えた冷蔵庫
JP2005537473A (ja) * 2002-09-02 2005-12-08 キネティック リミテッド 密封封止
JP2007501404A (ja) * 2003-05-13 2007-01-25 ハイマン・センサー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 最適化された表面を活用する赤外線センサー
WO2006120863A1 (ja) * 2005-05-11 2006-11-16 Murata Manufacturing Co., Ltd. 赤外線センサ
JP2007024829A (ja) * 2005-07-21 2007-02-01 Toshiba Corp 温度検知装置及び高周波加熱器
JP2010225761A (ja) * 2009-03-23 2010-10-07 Hitachi Kokusai Electric Inc 電子部品の押さえ部材及びプリント基板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008215A1 (ja) * 2016-07-04 2018-01-11 株式会社堀場製作所 赤外線検出器及び放射温度計
US11703470B2 (en) 2020-06-22 2023-07-18 Sensirion Ag Sensor device for determining heat transfer parameters of a fluid
WO2022038828A1 (ja) * 2020-08-19 2022-02-24 パナソニックIpマネジメント株式会社 赤外線センサ

Also Published As

Publication number Publication date
CN103403508B (zh) 2016-11-09
CN103403508A (zh) 2013-11-20
JP2012181157A (ja) 2012-09-20
JP5287906B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5287906B2 (ja) 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
US9281301B2 (en) Optoelectronic device and method for producing optoelectronic devices
US8814426B2 (en) Infrared sensor
KR20120089342A (ko) 적외선 센서 모듈
JP5645245B2 (ja) 赤外線センサモジュール
JP4772557B2 (ja) 電子部品、および電子部品用モジュール
JP5451957B2 (ja) 赤外線検出器
JP4807199B2 (ja) 湿度センサ装置
JP5333641B2 (ja) 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
JP4989139B2 (ja) 赤外線検出器
WO2012063915A1 (ja) 赤外線センサモジュールおよびその製造方法
JP5706217B2 (ja) 赤外線センサ
JP5206484B2 (ja) 温度センサ
JP4708175B2 (ja) 固体撮像装置
JP2010054250A (ja) 赤外線検出器
JP6797722B2 (ja) 赤外線センサ
WO2018092795A1 (ja) 赤外線センサ
US12050134B2 (en) Optical sensor
JP2016090377A (ja) 赤外線センサ
JP2014103270A (ja) 半導体モジュール
JP2018151284A (ja) 赤外線センサ
JP6194799B2 (ja) 赤外線センサ
JP6043828B2 (ja) 焦電型赤外線センサ
JP2006153724A (ja) 加速度センサモジュール
JP2015200558A (ja) 赤外線センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859933

Country of ref document: EP

Kind code of ref document: A1