WO2012108408A1 - ジペプチド及びトリペプチドの製造方法 - Google Patents

ジペプチド及びトリペプチドの製造方法 Download PDF

Info

Publication number
WO2012108408A1
WO2012108408A1 PCT/JP2012/052684 JP2012052684W WO2012108408A1 WO 2012108408 A1 WO2012108408 A1 WO 2012108408A1 JP 2012052684 W JP2012052684 W JP 2012052684W WO 2012108408 A1 WO2012108408 A1 WO 2012108408A1
Authority
WO
WIPO (PCT)
Prior art keywords
protected
amino acid
dipeptide
glutamylvalylglycine
tripeptide
Prior art date
Application number
PCT/JP2012/052684
Other languages
English (en)
French (fr)
Inventor
正和 中沢
廣瀬 直子
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2012556889A priority Critical patent/JPWO2012108408A1/ja
Publication of WO2012108408A1 publication Critical patent/WO2012108408A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms

Definitions

  • the present invention relates to a method for efficiently producing a dipeptide such as Val-Gly and a tripeptide such as ⁇ -Glu-X-Gly (X is an amino acid or amino acid derivative) obtained therefrom.
  • Patent Document 1 discloses a synthesis method based on a complete protection method. Improvement of the synthesis method is demanded because it is difficult to improve.
  • N-phthaloylglutamic anhydride when N-phthaloylglutamic anhydride is reacted with an amino acid, a ⁇ -peptide is selectively obtained.
  • hydrazine having mutagenicity is essential for deprotection and is unsuitable for commercial production.
  • a method for producing an N-protected glutamic acid ⁇ -derivative a method is known in which an N-protected glutamic anhydride is reacted with an amino acid or a derivative thereof in the presence of N-hydroxysuccinimide (Patent Document 2).
  • this method can also be suitably applied to the production of ⁇ -Glu-X-Gly, that is, can be suitably applied to the reaction of N-protected glutamic anhydride and X-Gly type peptide. It is not clear whether or not. Therefore, a method for producing ⁇ -Glu-X-Gly efficiently and economically is required.
  • the present inventors reacted N-protected neutral amino acid with N-hydroxysuccinimide to form N-hydroxysuccinimide ester of N-protected amino acid which is an active ester, and further reacted with neutral amino acid.
  • N-protected neutral amino acid with N-hydroxysuccinimide
  • N-hydroxysuccinimide ester of N-protected amino acid which is an active ester
  • neutral amino acid is an active ester
  • a dipeptide in which one of the terminal amino groups is protected can be efficiently produced, particularly when the reaction is carried out under conditions of pH 8.5 to 11.5.
  • this dipeptide is used as a raw material, the terminal amino group is deprotected (N deprotection) and then reacted with N-protected glutamic anhydride in the presence of N-hydroxysuccinimide for efficient and high efficiency.
  • the present invention provides a method for producing a dipeptide having a terminal amino group protected, which comprises reacting a neutral amino acid with an N-hydroxysuccinimide ester of an N-protected neutral amino acid.
  • the present invention also provides a method for producing a dipeptide which performs N deprotection of the dipeptide obtained by the above method.
  • the present invention also provides an N-protected glutamic acid ⁇ , wherein the dipeptide obtained by N deprotection by the above method is reacted with an N-protected glutamic anhydride in the presence of N-hydroxysuccinimide.
  • the present invention also provides Z- ⁇ -glutamylvalylglycine, or a salt thereof. Furthermore, crystals of Z- ⁇ -glutamyl valylglycine are provided.
  • the present invention also provides a method for producing glutamic acid ⁇ -tripeptide, which performs N deprotection of the tripeptide obtained by the above method.
  • the present invention also provides a method for producing Z- ⁇ -glutamylvalylglycine, characterized by reacting valylglycine with Z-glutamic anhydride in the presence of N-hydroxysuccinimide,
  • the present invention also provides a method for producing ⁇ -glutamylvalylglycine, which N-deprotects the obtained Z- ⁇ -glutamylvalylglycine.
  • a dipeptide with a short reaction time and few by-products can be produced.
  • N-protected glutamic acid ⁇ -tripeptide can be produced efficiently and highly selectively, although the raw materials used are inexpensive and the reaction operation is simple.
  • 3 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine A crystal.
  • 3 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine B crystal.
  • 2 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine C crystal.
  • 3 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine D crystal.
  • 3 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine E crystal.
  • 3 shows a powder X-ray crystal diffraction pattern of Z- ⁇ -glutamylvalylglycine F crystal.
  • 2 shows a powder X-ray crystal diffraction pattern of ⁇ -glutamylvalylglycine crystal.
  • the neutral amino acid targeted in the present invention refers to an amino acid having no amino group or carboxyl group in the side chain, and includes glycine (Gly), alanine (Ala), ⁇ -alanine, valine (Val), and leucine (Leu). , Isoleucine (Ile), norvaline (Nva), 2-aminobutanoic acid (Abu), proline (Pro), methionine (Met), serine (Ser), threonine (Thr), phenylalanine (Phe), tyrosine (Tyr) and the like. can give.
  • glycine, alanine, ⁇ -alanine, valine, leucine, isoleucine, norvaline and 2-aminobutanoic acid are preferred.
  • the amino group of the neutral amino acid is protected with a protecting group such as benzyloxycarbonyl group (Z), t-butyloxycarbonyl group (Boc), formyl group, etc. Can be given.
  • a protecting group such as benzyloxycarbonyl group (Z), t-butyloxycarbonyl group (Boc), formyl group, etc.
  • Z benzyloxycarbonyl group
  • Boc t-butyloxycarbonyl group
  • formyl group etc.
  • the same or different amino acid as the N-protected one can be used as the neutral amino acid.
  • N-hydroxysuccinimide ester of N-protected neutral amino acid is 0.5 to 2 moles, preferably 1.0 to 1 mole of N-protected neutral amino acid in an organic solvent such as ethyl acetate, acetonitrile or tetrahydrofuran.
  • the reaction of N-hydroxysuccinimide ester of N-protected neutral amino acid with neutral amino acid is, for example, 0.5 to 2 moles compared to N-hydroxysuccinimide ester of N-protected neutral amino acid, Preferably, 0.8 to 1.2 moles of neutral amino acid is carried out in a solvent at ⁇ 20 to 80 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours. At this time, the reaction is preferably carried out under conditions of pH 8.5 to 10.5, more preferably 8.5 to less than 9.5. Further, when the reaction is carried out at a low temperature, it is also preferably carried out at a pH of 9.5 to 10.5.
  • solvent used in the reaction examples include organic solvents such as ethyl acetate, acetonitrile, tetrahydrofuran, dioxane, chloroform and N, N-dimethylformamide. These solvents may be used as a mixture, or a mixed solvent with water may be used.
  • N deprotection of the dipeptide obtained by the above method is then performed by a conventional method.
  • the dipeptide reaction solution obtained by the above method is preferably substituted with argon, palladium carbon is added, and hydrogen is substituted to deprotect N.
  • the dipeptide obtained by N-deprotection by the above method is then reacted with N-protected glutamic anhydride in the presence of N-hydroxysuccinimide to give N-protected glutamic acid ⁇ -tri A peptide is produced.
  • the N-protected glutamic acid ⁇ -tripeptide means a tripeptide in which the ⁇ -position of N-protected glutamic acid is bound to a dipeptide.
  • Z- ⁇ -glutamylvalylglycine is a novel compound and is extremely useful as an intermediate for production of ⁇ -glutamylvalylglycine.
  • crystals of Z- ⁇ -glutamyl valyl glycine may be obtained. In this case, purification becomes extremely easy, and high purity ⁇ -glutamyl valyl glycine can be produced. .
  • crystals of Z- ⁇ -glutamylvalylglycine have diffraction angles (2 ⁇ ) of 10.9, 16.3, 19.2, 19.7, 20.3 in the powder X-ray diffraction pattern. It is characterized by showing a peak.
  • N-protected glutamic anhydride can be produced by a conventional method such as treating N-protected glutamic acid with a dehydrating agent such as dicyclohexylcarbodiimide (DDC) or acetic anhydride.
  • a dehydrating agent such as dicyclohexylcarbodiimide (DDC) or acetic anhydride.
  • the reaction of the above dipeptide with N-protected glutamic anhydride is, for example, 0.5 to 2-fold mol, preferably 0.8 to 1.2-fold mol of dipeptide with respect to N-protected glutamic anhydride.
  • N-hydroxysuccinimide (HOSu) in a solvent at ⁇ 20 to 80 ° C., preferably 0 to 50 ° C. for 30 minutes.
  • the reaction is preferably carried out in the presence of an alkali metal carbonate.
  • Alkali metal carbonates include normal salts (sodium carbonate, potassium carbonate, etc.) or bicarbonates (sodium bicarbonate, potassium bicarbonate, etc.). Preferred are sodium hydrogen carbonate and potassium hydrogen carbonate.
  • the alkali metal carbonate is preferably used in an amount of 1.0 to 1.2 times the amount of N-protected glutamic acid.
  • the solvent used in the reaction include organic solvents such as ethyl acetate, acetonitrile, tetrahydrofuran, dioxane, chloroform and N, N-dimethylformamide. These solvents may be used as a mixture, or a mixed solvent with water may be used.
  • N deprotection of the tripeptide obtained by the above method is performed by a conventional method.
  • the tripeptide reaction solution obtained by the above method is replaced with argon, palladium carbon is added, and hydrogen is replaced with N. It should be deprotected.
  • the by-product ⁇ -form may be separated from the ⁇ -form by a conventional method such as crystallization or chromatography before or after removal of the protecting group.
  • a conventional method such as crystallization or chromatography before or after removal of the protecting group.
  • the salt of Z- ⁇ -glutamylvalylglycine produced by the method of the present invention include sodium salt and potassium salt.
  • Run 6 was performed as follows. To 1.57 g (1.05 eq) of glycine was dissolved by adding 25 ml of water, and 5.1 g (3.0 eq) of sodium bicarbonate was added and stirred. To this solution, an ethyl acetate solution (19.9 mmol) of hydroxysuccinimide ester of Z-valine was added and stirred at 40 ° C. for 18 hours. 6M hydrochloric acid was added and stirred to adjust the pH to 8. The reaction solution was purged with argon, 0.05 g of 50% wet 10% palladium on carbon was added, purged with hydrogen, and stirred overnight at room temperature. After replacing the reaction solution with argon, palladium carbon was removed by separation. The reaction solution was separated to obtain an aqueous solution of valylglycine. Yield 87.4%
  • the precipitated dicyclohexylurea was separated by filtration and washed with 37 ml of ethyl acetate. An ethyl acetate solution of Z-glutamic anhydride was obtained. 7.36 g (1.0 eq vs. Z-Glu) of sodium hydrogen carbonate was added to and dissolved in the valylglycine aqueous solution (including HOSu) produced in Run 3 of Example 1, and an ethyl acetate solution of Z-glutamic anhydride was added thereto. It was dripped at room temperature over 1.5 hours. After completion of the dropping, the mixture was stirred for 1 hour to obtain a layer separation and an aqueous solution of Z- ⁇ -glutamylvalylglycine.
  • Z- ⁇ -glutamylvalylglycine has the following crystal polymorphs of A crystal to F crystal. Of these, the crystal E is preferred as the crystal.
  • the main peak [diffraction angle (2 ⁇ )] and production examples are shown below.
  • the powder X-ray crystal diffraction patterns of these A crystals to F crystals are shown in FIGS.
  • Crystal A Crystals crystallized acidic (10.9, 16.3, 19.2, 19.7, 20.3)
  • Crystal B Crystal obtained by slurry washing with methanol (6.0, 7.3, 8.3, 15.0, 20.0) 1.5 ml of methanol was added to the crystal A (0.3 g) of the crude Z- ⁇ -glutamylvalylglycine obtained in (3) and stirred at 20 ° C.
  • Crystals Crystal obtained by recrystallizing Crystal A from ethanol (6.1, 15.1, 17.7, 24.6, 26.9) Ethanol (10 ml) was added to the crude Z- ⁇ -glutamylvalylglycine crystal A (1.0 g) obtained in (3), and the mixture was stirred at 30 ° C. for 3 hours and further at 50 ° C. for 1 hour. Thereafter, the mixture was cooled to 20 ° C. over 6 hours and stirred at 20 ° C. overnight. The crystals were separated and dried under reduced pressure overnight at 40 ° C. to obtain 0.85 g of Z- ⁇ -glutamylvalylglycine crystals (C crystals).
  • Crystal D Crystal obtained by recrystallizing Crystal B from ethanol (6.6, 6.7, 19.0, 19.5, 31.9) 108 B of ethanol was added to B crystal (6.0 g) of crude Z- ⁇ -glutamylvalylglycine, and the mixture was stirred at 65 ° C. for 1 hour. Thereafter, the mixture was cooled to 10 ° C. over 10 hours and stirred at 10 ° C. overnight. The crystals were separated and dried under reduced pressure at 40 ° C. overnight to obtain 3.8 g of Z- ⁇ -glutamylvalylglycine crystals (crystal D).
  • Crystal E Crystal obtained by recrystallizing Crystal A from methanol (8.5, 14.1, 18.0, 21.6, 22.9) 73.3 ml of methanol was added to the crude Z- ⁇ -glutamylvalylglycine obtained in (3) above and stirred at 40 ° C. for 3 hours. Thereafter, the mixture was cooled to 10 ° C. over 3 hours and stirred at 10 ° C. overnight. The crystals were separated, washed with 12 ml of methanol, and dried under reduced pressure at 40 ° C. overnight to obtain 8.0 g of Z- ⁇ -glutamylvalylglycine crystals.
  • the precipitated dicyclohexylurea was removed by filtration and washed with 40 ml of ethyl acetate to obtain a solution of Z-glutamic anhydride in ethyl acetate.
  • 7.36 g (1.0 eq vs. Z-Glu) of sodium bicarbonate was added to an aqueous valylglycine solution (including HOSu) and stirred, and the ethyl acetate solution of Z-glutamic anhydride prepared above was added dropwise over 1.5 hours. did. After the dropwise addition, the mixture was stirred at room temperature for 1 hour, 70 ml of THF was added, and the mixture was heated to 40 ° C.
  • Concentrated hydrochloric acid (22 ml) was added to adjust to pH 3.0 and extraction was performed. The layers were separated, and the ethyl acetate layer was washed with 100 ml of water. To the ethyl acetate layer, 120 ml of water and 0.75 g of 50% wet 10% palladium carbon were added to replace with hydrogen, followed by deprotection with stirring at 40 ° C. After completion of the reaction, palladium carbon was filtered and separated. The aqueous layer was concentrated to 100 ml under reduced pressure, insoluble material was removed by Millipore filtration (0.45 ⁇ m), and the mixture was again concentrated to 50 g under reduced pressure.
  • FIG. 7 shows a powder X-ray crystal diffraction pattern of the crystals of ⁇ -glutamylvalylglycine.
  • Example 3 Synthesis of norvalylglycine and ⁇ -glutamylnorvalylglycine (1) Synthesis of hydroxysuccinimide ester of Z (benzyloxycarbonyl) -norvaline Z-norvaline 10 g (39.8 mmol) was dissolved in 60 ml of ethyl acetate, and 4.59 g (1 eq) of N-hydroxysuccinimide (HOSu) was dissolved. ) And cooled to 5 ° C. 8.21 g (1 eq) of N, N-dicyclohexylcarbodiimide was dissolved in 25 ml of ethyl acetate and slowly added at 10 ° C. or lower.
  • the precipitated dicyclohexylurea was removed by filtration and washed with 20 ml of ethyl acetate to obtain a solution of Z-glutamic anhydride in ethyl acetate.
  • 3.68 g (1.0 eq vs. Z-Glu) of sodium hydrogen carbonate was added to an aqueous solution of norvalylglycine (including HOSu) and stirred, and the ethyl acetate solution of Z-glutamic anhydride prepared above was added over 1.5 hours. It was dripped. After dropping, the mixture was stirred at room temperature for 1 hour and heated to 40 ° C. Concentrated hydrochloric acid (11 ml) was added to adjust to pH 3.0 and extraction was performed.
  • the layers were separated, and the ethyl acetate layer was washed with 50 ml of water.
  • the ethyl acetate layer was purged with hydrogen by adding 50 ml of water, 25 ml of methanol, and 0.37 g of 50% wet 10% palladium on carbon, and deprotected by stirring at 20 to 25 ° C.
  • palladium carbon was removed by Millipore filtration (0.45 ⁇ m), and the mixture was concentrated under reduced pressure to 40 g.
  • the mixture was heated to 50 ° C. and 50 ml of methanol was added dropwise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 N-保護中性アミノ酸をN-ヒドロキシコハク酸イミドエステルとした後、中性アミノ酸と反応させて末端アミノ基が保護されたジペプチドを合成し、次いで、N脱保護を行った後、得られたジペプチドを、N-ヒドロキシコハク酸イミドの存在下に、N-保護グルタミン酸無水物と反応させることを含むN-保護グルタミン酸γ-トリペプチドの製造方法によれば、グルタミン酸γ-トリペプチドを効率的に製造できる。

Description

ジペプチド及びトリペプチドの製造方法
 本発明は、Val-Glyなどのジペプチド、及びこれから得られるγ-Glu-X-Gly(Xはアミノ酸またはアミノ酸誘導体)などのトリペプチドを効率的に製造する方法に関する。
 γ-Glu-X-Gly(Xは上記の通りである)などペプチド類は、コク味を有するペプチドとして発見され、食品分野における応用が期待されている(特許文献1)。
 γ-Glu-X-Gly型のペプチドのうち、γ-Glu-Val-Glyの製造方法として、特許文献1に完全保護法による合成方法が開示されているが、保護アミノ酸が高価であり、スケールアップが困難なため、その合成方法の改善が要望されている。
 一方、γ-Glu-X-Glyのように、N末アミノ酸であるグルタミン酸のγ位と縮合したペプチド(以下、「γ-グルタミルペプチド」という。)の合成に関して、グルタミン酸が縮合可能なカルボン酸基を2つ有するため、N-保護グルタミン酸からγ-グルタミルペプチドを選択的に製造することには課題があった。
 すなわち、N-保護グルタミン酸をN-保護グルタミン酸無水物とし、アミノ酸と反応させると、α/γ=2.0/1.0~3.0/1.0とα-ペプチドが優位的に得られることが報告されている。またN-フタロイルグルタミン酸無水物はアミノ酸と反応させるとγ-ペプチドが選択的に得られるが、脱保護に変異原性を有するヒドラジンが必須であり、商業生産には不適であった。
 また、N-保護グルタミン酸γ-誘導体の製法に関し、N-ヒドロキシコハク酸イミドの存在下にN-保護グルタミン酸無水物とアミノ酸またはその誘導体とを反応させる方法が知られている(特許文献2)。しかしながら、この方法が、γ-Glu-X-Glyの製法においても好適に適用可能であるか否か、すなわち、N-保護グルタミン酸無水物とX-Gly型のペプチドとの反応に好適に適応可能であるか否かは明確ではない。
 したがって、効率的かつ経済的に、γ-Glu-X-Glyを製造する方法が求められている。
WO2007/055393号公報 特開平08-119916号公報
 本発明は、中性アミノ酸を2分子結合させてなるジペプチドを効率的に製造できる方法を提供することを目的とする。
 本発明は、又、グルタミン酸γ-トリペプチドを効率的に製造できる方法を提供することを目的とする。
 本発明者らは、N-保護中性アミノ酸をN-ヒドロキシコハク酸イミドと反応させて活性エステルであるN-保護アミノ酸のN-ヒドロキシコハク酸イミドエステルを形成せしめ、さらに、中性アミノ酸と反応させると、特に、pH8.5~11.5の条件下で反応させると、効率的に末端アミノ基の1つが保護されたジペプチドを製造できることを見出した。さらに、このジペプチドを原料として、末端アミノ基の脱保護(N脱保護)を行った後に、N-ヒドロキシコハク酸イミドの存在下に、N-保護グルタミン酸無水物と反応させると、効率的かつ高選択的にN-保護グルタミン酸γ-トリペプチドを製造できることを見いだし、この知見に基づいて本発明を完成したのである。
 すなわち、本発明は、N-保護中性アミノ酸のN-ヒドロキシコハク酸イミドエステルに、中性アミノ酸を反応させることを特徴とする末端アミノ基が保護されたジペプチドの製造方法を提供する。
 本発明は、又、上記方法で得たジペプチドのN脱保護を行うジペプチドの製造方法を提供する。
 本発明は、又、上記方法でN脱保護して得られたジペプチドを、N-ヒドロキシコハク酸イミドの存在下に、N-保護グルタミン酸無水物と反応させることを特徴とするN-保護グルタミン酸γ-トリペプチドの製造方法を提供する。
 本発明は、又、Z-γ-グルタミルバリルグリシン、またはその塩を提供する。更には、Z-γ-グルタミルバリルグリシンの結晶を提供する。
 本発明は、又、上記方法で得たトリペプチドのN脱保護を行うグルタミン酸γ-トリペプチドの製造方法を提供する。
 本発明は、又、バリルグリシンを、N-ヒドロキシコハク酸イミドの存在下に、Z-グルタミン酸無水物と反応させることを特徴とするZ-γ-グルタミルバリルグリシンの製造方法を提供し、更には、得られたZ-γ-グルタミルバリルグリシンのN脱保護を行うγ-グルタミルバリルグリシンの製造方法を提供する。
 本発明によれば、反応時間が短く、副生物の少ないジペプチドを製造することができる。又、本発明によれば、使用原料が安価でかつ反応操作が簡便であるにも係わらず、効率的かつ高選択的にN-保護グルタミン酸γ-トリペプチドを製造できるという利点がある。
Z-γ-グルタミルバリルグリシンA晶の粉末X線結晶回折パターンを示す。 Z-γ-グルタミルバリルグリシンB晶の粉末X線結晶回折パターンを示す。 Z-γ-グルタミルバリルグリシンC晶の粉末X線結晶回折パターンを示す。 Z-γ-グルタミルバリルグリシンD晶の粉末X線結晶回折パターンを示す。 Z-γ-グルタミルバリルグリシンE晶の粉末X線結晶回折パターンを示す。 Z-γ-グルタミルバリルグリシンF晶の粉末X線結晶回折パターンを示す。 γ-グルタミルバリルグリシン結晶の粉末X線結晶回折パターンを示す。
 本発明で対象とする中性アミノ酸としては、側鎖にアミノ基もしくはカルボキシル基を有しないアミノ酸をいい、グリシン(Gly)、アラニン(Ala)、β-アラニン、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、ノルバリン(Nva)、2-アミノブタン酸(Abu)、プロリン(Pro)、メチオニン(Met)、セリン(Ser)、スレオニン(Thr)、フェニルアラニン(Phe)、チロシン(Tyr)等があげられる。これらのうち、グリシン、アラニン、β-アラニン、バリン、ロイシン、イソロイシン、ノルバリン、2-アミノブタン酸が好ましい。
 ここで、N-保護中性アミノ酸としては、上記中性アミノ酸のアミノ基を、例えばベンジルオキシカルボニル基(Z)、t-ブチルオキシカルボニル基(Boc)、ホルミル基等の保護基で保護したものがあげられる。本発明において用いるもう1つの中性アミノ酸としては、アミノ基とカルボキシル基のいずれもが保護されていないもの、すなわちフリーの中性アミノ酸を用いるのが好ましい。本発明では、中性アミノ酸として、N-保護されたものと同じ又は異なったアミノ酸を用いることができる。
 N-保護中性アミノ酸のN-ヒドロキシコハク酸イミドエステルは、N-保護中性アミノ酸を酢酸エチル、アセトニトリル、テトラヒドロフランなどの有機溶媒中、0.5~2倍モル、好ましくは1.0~1.2倍モルのN-ヒドロキシコハク酸イミドと0.5~2倍モル、好ましくは1.0~1.2倍モルのジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDCI.HCl)等の縮合剤と反応させて得ることができる。
 N-保護中性アミノ酸のN-ヒドロキシコハク酸イミドエステルと中性アミノ酸の反応は、例えば、N-保護中性アミノ酸のN-ヒドロキシコハク酸イミドエステルに対して、0.5~2倍モル、好ましくは0.8~1.2倍モルの中性アミノ酸を、溶媒中、-20~80℃、好ましくは0~50℃で30分~24時間行うのがよい。
 この際、反応をpH8.5~10.5の条件下で行うのが好ましく、より好ましくは8.5~9.5未満で行うのがよい。また、反応が低温で行われる場合は、pH9.5~10.5で行うことも好ましい。
 反応に用いられる溶媒としては、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジオキサン、クロロホルム、N,N-ジメチルホルムアミド等の有機溶媒があげられる。
これら溶媒は混合して用いてもよく、また水との混合溶媒を用いてもよい。
 本発明では、次いで、上記の方法で得たジペプチドのN脱保護を常法により行う。例えば、保護基がベンジルオキシカルボニル基の場合は、上記の方法で得たジペプチド反応液をアルゴン置換し、パラジウム炭素を加えて、水素置換してN脱保護させるのがよい。
 本発明では、次いで、上記の方法でN脱保護して得られたジペプチドを、N-ヒドロキシコハク酸イミドの存在下に、N-保護グルタミン酸無水物と反応させて、N-保護グルタミン酸γ-トリペプチドを製造する。尚、N-保護グルタミン酸γ-トリペプチドは、N-保護グルタミン酸のγ位がジペプチドに結合しているトリペプチドを意味する。
 また、本発明の方法で得られうるN-保護グルタミン酸γ-トリペプチドのうち、Z-γ-グルタミルバリルグリシンは新規化合物であり、γ-グルタミルバリルグリシンの製造中間体としてきわめて有用である。また、γ-グルタミルバリルグリシンの製造にあたり、Z-γ-グルタミルバリルグリシンの結晶を取得してもよいが、その場合精製がきわめて容易となり、純度の高いγ-グルタミルバリルグリシンを製造することができる。
 例えば、Z-γ-グルタミルバリルグリシンの結晶(A晶)は、粉末X線回折パターンにおいて、10.9、16.3、19.2、19.7、20.3の回折角(2θ)にピークを示すことを特徴とする。
 ここで、N-保護グルタミン酸無水物は、N-保護グルタミン酸をジシクロヘキシルカルボジイミド(DDC)、無水酢酸等の脱水剤で処理するなどの常法により製造することができる。
 上記ジペプチドとN-保護グルタミン酸無水物の反応は、例えば、N-保護グルタミン酸無水物に対して、0.5~2倍モル、好ましくは0.8~1.2倍モルのジペプチドを、0.2~2倍モル、好ましくは0.5~1.2倍モルのN-ヒドロキシコハク酸イミド(HOSu)の存在下に、溶媒中、-20~80℃、好ましくは0~50℃で30分~24時間行うのがよい。
 この際、反応を炭酸アルカリ金属塩の存在下で行うのが好ましい。炭酸アルカリ金属塩には、正塩(炭酸ナトリウム、炭酸カリウムなど)又は、炭酸水素塩(炭酸水素ナトリウム、炭酸水素カリウムなど)が含まれる。好ましくは炭酸水素ナトリム、炭酸水素カリウムである。炭酸アルカリ金属塩は、N-保護グルタミン酸に対して、1.0~1.2倍モルの量を用いるのが好ましい。
 反応に用いられる溶媒としては、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジオキサン、クロロホルム、N,N-ジメチルホルムアミド等の有機溶媒があげられる。
これら溶媒は混合して用いてもよく、また水との混合溶媒も用いてもよい。
 上記の方法で得たトリペプチドのN脱保護は、常法により行う。例えば、ジペプチドの場合について説明したのと同様に、保護基がベンジルオキシカルボニル基の場合は、上記の方法で得たトリペプチド反応液をアルゴン置換し、パラジウム炭素を加えて、水素置換してN脱保護させるのがよい。
 さらに、グルタミン酸γ-トリペプチドのγ体の比率を高めるために、粗グルタミン酸γ-トリペプチドを水に溶解しメタノールを加えて、晶析して、α体を除去するのがよい。又、副生するα体を、保護基の除去前でも除去後でも、結晶化、クロマトグラフィーなどの常用の方法によりγ-体から分離してもよい。
 尚、本発明の方法により製造されるZ-γ-グルタミルバリルグリシンの塩としては、ナトリウム塩、カリウム塩などがあげられる。
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。
実施例1 Val-Glyの合成
 下記のスキーム1に基づいて、Val-Glyを合成した。
スキーム1
Figure JPOXMLDOC01-appb-I000001
(1)Z(ベンジルオキシカルボニル)-バリンのヒドロキシコハク酸イミドエステルの合成
 Z-バリン20g(79.6mmol)を酢酸エチル120mlに溶解し、N-ヒドロキシコハク酸イミド(HOSu)9.18g(1eq)を加えて5℃に冷却した。N,N-ジシクロヘキシルカルボジイミド16.42g(1eq)を酢酸エチル50mlに溶解して、10℃以下でゆっくりと加えた。5℃で30分、室温(25℃)で一晩撹拌した。析出したジシクロヘキシル尿素をろ過により分離し、酢酸エチル30mlで洗浄した。目的のZ-バリンコハク酸イミドエステルを酢酸エチル溶液として得た。
(2)バリルグリシンの合成(Run1)
 グリシン 6.28g(1.05eq)に水55mlを加えて溶解し、4M水酸化ナトリウム水溶液でpH9.0に調整した。この溶液にZ-バリンのヒドロキシコハク酸イミドエステルの酢酸エチル溶液を室温(20-25℃)で1時間かけて滴下、その後1時間撹拌した。その間4M水酸化ナトリウム水溶液でpH8.5-9.5未満に調整した。6M塩酸を加えて撹拌、pH8に調整した。反応液をアルゴン置換後、50%wet10%パラジウム炭素0.4gを加えて、水素置換して一晩室温で撹拌した。アルゴン置換後、パラジウム炭素を分離により除いた。反応液を分層して、バリルグリシンの水溶液を得た。収率95.6%
(2-1) バリルグリシンの合成(Run2~6)
 Run1の条件を変化させて、バリルグリシンを合成した。変更した合成条件と結果をまとめて、表1に示す。
           表1
Figure JPOXMLDOC01-appb-I000002
 尚、Run6は、次のようにして行った。
 グリシン1.57g(1.05eq)に水25mlを加えて溶解し、炭酸水素ナトリウム5.1g(3.0eq)を加えて撹拌した。この溶液にZ-バリンのヒドロキシコハク酸イミドエステルの酢酸エチル溶液(19.9mmol)を加えて40℃で18時間撹拌した。6M塩酸を加えて撹拌、pH8に調整した。反応液をアルゴン置換し、50%wet10%パラジウム炭素0.05gを加えて、水素置換して一晩室温で撹拌した。反応液をアルゴン置換後、パラジウム炭素を分離により除いた。反応液を分層して、バリルグリシンの水溶液を得た。収率87.4%
実施例2 γ-グルタミルバリルグリシン(γ-Glu-Val-Gly)の合成
 まず、下記のスキーム2に基づいて、Z-Glu(Val-Gly)を合成した。
スキーム2
Figure JPOXMLDOC01-appb-I000003
(3)Z-γ-グルタミルバリルグリシンの合成(粗Z-γ-グルタミルバリルグリシン結晶単離)
 Z-グルタミン酸24.63g(1.1eq vs Z-Val)に酢酸エチル148mlを加えて撹拌、5℃に冷却した。N,N-ジシクロヘキシルカルボジイミド18.1g(1eq)を酢酸エチル62mlに溶解して、10℃以下でゆっくりと加えた。5℃で30分、室温(25℃)で一晩撹拌した。析出したジシクロヘキシル尿素をろ過により分離し、酢酸エチル37mlで洗浄した。Z-グルタミン酸無水物の酢酸エチル溶液を得た。
 実施例1のRun3で製造したバリルグリシン水溶液(HOSuを含む)に炭酸水素ナトリウム7.36g(1.0eq vs Z-Glu)を加えて溶解し、そこにZ-グルタミン酸無水物の酢酸エチル溶液を1.5時間かけて室温で滴下した。滴下終了後1時間撹拌し、分層、Z-γ-グルタミルバリルグリシンの水溶液を得た。収率84.8% γ/α=96.4/3.6
 水240mlに6M塩酸34.5ml(2.6eq)を加えて撹拌し、そこへ上記で得たZ-γ-グルタミルバリルグリシン水溶液を9時間かけてゆっくりと滴下、滴下後一晩室温で撹拌した。析出した結晶を分離、水120mlで洗浄し、wet晶78.95g得た。40℃で一晩減圧乾燥し13.82gの粗Z-γ-グルタミルバリルグリシンの結晶(A晶)を得た。収率68.8% γ/α=97.2/2.8
 なお、Z-γ-グルタミルバリルグリシンには以下のA晶~F晶の結晶多形があることを見出した。これらのうち、結晶としては、E晶が好ましい。主要ピーク[回折角(2θ)]、製造例と共に以下に示す。又、これらのA晶~F晶の粉末X線結晶回折パターンを、図1~6に示す。
A晶:酸性晶析した結晶(10.9、16.3、19.2、19.7、20.3)
B晶:メタノールでスラリー洗浄して得られる結晶(6.0、7.3,8.3,15.0,20.0)
  (3)で得た粗Z-γ-グルタミルバリルグリシンのA晶(0.3g)にメタノール1.5mlを加えて20℃で3日間撹拌した。結晶を分離、40℃で一晩減圧乾燥し0.2gのZ-γ-グルタミルバリルグリシンの結晶(B晶)を得た。
C晶:A晶をエタノールで再晶析した結晶(6.1、15.1、17.7、24.6、26.9)
  (3)で得た粗Z-γ-グルタミルバリルグリシンのA晶(1.0g)にエタノール10mlを加えて30℃で3時間、さらに50℃で1時間撹拌した。その後6時間かけて20℃まで冷却し、一晩20℃で撹拌した。結晶を分離、40℃で一晩減圧乾燥し0.85gのZ-γ-グルタミルバリルグリシンの結晶(C晶)を得た。
D晶:B晶をエタノールで再晶析した結晶(6.6、6.7、19.0、19.5、31.9)
  粗Z-γ-グルタミルバリルグリシンのB晶(6.0g)にエタノール108mlを加えて65℃で1時間撹拌した。その後10時間かけて10℃まで冷却し、一晩10℃で撹拌した。結晶を分離、40℃で一晩減圧乾燥し3.8gのZ-γ-グルタミルバリルグリシンの結晶(D晶)を得た。
E晶:A晶をメタノールで再晶析した結晶(8.5、14.1、18.0、21.6、22.9)
  上記(3)で得た粗Z-γ-グルタミルバリルグリシンにメタノール73.3mlを加えて40℃で3時間撹拌した。その後3時間かけて10℃まで冷却し、一晩10℃で撹拌した。結晶を分離、メタノール12mlで洗浄、40℃で一晩減圧乾燥し8.0gのZ-γ-グルタミルバリルグリシンの結晶を得た。収率45.5% γ/α=99.9/0.1
 1H NMR(DMSO-d6,400MHz):δ0.83(3H,d,J=6.8Hz);0.86(3H,d,J=6.8Hz);1.70-1.81(1H,m);1.93-1.98(2H,m);2.18-2.36(2H,m);3.69(1H,dd,J=17.5,5.8Hz);3.77(1H,dd,J=17.5,5.9);3.90-4.02(1H,m);4.18(1H,dd,J=8.9,6.7Hz);5.03(1H,s);7.26-7.42(5H,m);7.58(1H,d,J=7.9Hz);7.84(1H,d,J=8.9Hz);8.24(1H,dd,J=5.9,5.8Hz)
 13C NMR(DMSO-d6,400MHz):δ18.3,19.5,27.3,30.8,32.0,40.9,53.8,57.8,65.8,128.1,128.2,128.7,137.4,156.5,171.5,171.78,171.84,174.0
 Mass(M+H):438 Mass(M-H):436
F晶:B晶を酸性で再晶析した結晶(6.6、13.5、15.2、20.9)
  粗Z-γ-グルタミルバリルグリシンのB晶(1.0g)にメタノール8mlとZ-グルタミン酸(35mg)を加えて40℃で1時間撹拌した。その後3時間かけて10℃まで冷却し、一晩10℃で撹拌した。結晶を分離、40℃で一晩減圧乾燥し0.35gのZ-γ-グルタミルバリルグリシンの結晶(F晶)を得た。
 次いで、下記のスキーム3に基づいて、γ-Glu-Val-Glyを合成し、単離・精製した。
スキーム3
Figure JPOXMLDOC01-appb-I000004
(4-1)γ-グルタミルバリルグリシン(単離・精製されたZ体を使用)
 Z-γ-グルタミルバリルグリシン(E晶)7.5gに水80ml、メタノール80mlを加えて懸濁し、アルゴン置換した。50%wet10%パラジウム炭素0.2gを加えて水素置換し、40℃で一晩撹拌した。反応液をアルゴン置換後、パラジウム炭素を分離により除いた。ろ過液を約50mlまで減圧濃縮した。ミリポア(0.45μm)ろ過により不溶物を分離、ろ液を約18.5gまで減圧濃縮した。濃縮液を50℃に加温し撹拌した。メタノール56mlを30分かけて滴下し、滴下後50℃で2時間撹拌後、室温で一晩撹拌した。析出した結晶を分離し、メタノール8mlで洗浄した。40℃で一晩減圧乾燥して4.56gのγ-グルタミルバリルグリシンの結晶を得た。収率37.6% from Z-Val γ/α=99.9/0.1
1H NMR(D2O,400MHz):δ0.88(3H,d,J=6.8Hz);0.89(3H,d,J=6.8Hz);1.99-2.10(3H,m);2.40-2.50(2H,m);3.72(1H,t,J=6.4Hz);3.86(1H,d,J=17.8Hz);3.91(1H,d,J=17.8Hz);4.08(1H,d,J=6.8Hz);
13C NMR(D2O,400MHz):δ17.7,18.7,26.5,30.3,31.5,41.7,54.2,60.0,173.9,174.0,174.5,175.3
Mass(M+H):304 Mass(M-H):302
(4-2)γ-グルタミルバリルグリシン(Z体単離・未精製)
 wet粗Z-γ-グルタミルバリルグリシン44.0g(net12.08g、γ/α=96.1/3.9)に水54ml、酢酸エチル60.4ml、メタノール30.2mlを加えて懸濁し、アルゴン置換した。50%wet10%パラジウム炭素0.24gを加えて水素置換し、40℃で一晩撹拌した。反応液をアルゴン置換後パラジウム炭素を分離により除いた。ろ過液を分層し、水層を約60mlまで減圧濃縮した。ミリポア(0.45μm)ろ過により不溶物を分離、ろ液を約30gまで50℃以下で減圧濃縮した。濃縮液を50℃に加温し、種付けをして1時間室温で撹拌した。メタノール54.4mlを30分かけて滴下し、滴下後50℃で2時間、20℃で一晩撹拌した。析出した結晶を分離し、メタノール12.1mlで洗浄した。40℃で一晩減圧乾燥して6.88gのγ-グルタミルバリルグリシンの結晶を得た。収率57.0% from Z-Val γ/α=99.2/0.8であった。
(4-3)γ-グルタミルバリルグリシン(Z体非単離・抽出)
 Z-グルタミン酸24.64g(1.1eq)に酢酸エチル120mlを加えて5℃に冷却、ジシクロヘキシルカルボジイミド18.1g(1.0eq vs Z-Glu)を酢酸エチル40mlに溶解して加えた。5℃で30分、室温で一晩撹拌した。析出したジシクロヘキシル尿素をろ過により除き、酢酸エチル40mlで洗浄、Z-グルタミン酸無水物の酢酸エチル溶液を得た。
 バリルグリシン水溶液(HOSuを含む)に炭酸水素ナトリウム7.36g(1.0eq vs Z-Glu)を加え撹拌し、上記で調製したZ-グルタミン酸無水物の酢酸エチル溶液を1.5時間かけて滴下した。滴下後1時間室温で撹拌し、THF70mlを加えて40℃に加温した。濃塩酸22mlを加えてpH3.0に調整し抽出した。分層し酢酸エチル層を水100mlで洗浄した。酢酸エチル層に水120ml、50%wet10%パラジウム炭素0.75gを加えて水素置換し、40℃で撹拌脱保護した。反応終了後、パラジウム炭素をろ過し分層した。水層を100mlまで減圧濃縮しミリポアろ過(0.45μm)により不溶物を除き、再度50gまで減圧濃縮した。50℃に加温しメタノール60mlを滴下、終了後50℃で3時間、室温で一晩撹拌、晶析した。析出した結晶を分離(wet25.93g)し、メタノール30mlで洗浄した。50℃で一晩減圧乾燥して、γ-グルタミルバリルグリシンの結晶17.73gを得た。収率67.4% γ/α=99.6/0.4
(4-4)γ-グルタミルバリルグリシンの精製
 上記γ-グルタミルバリルグリシンの結晶に水70mlを加えて60℃に加熱溶解した。不溶物をミリポアろ過(0.45μm)し62gまで減圧濃縮した。50℃に加熱しメタノール88mlを加えて種晶を添加、50℃で3時間、室温で一晩撹拌、晶析した。析出した結晶を分離(wet18.2g)し、メタノール35mlで洗浄した。50℃で一晩減圧乾燥して、γ-グルタミルバリルグリシンの結晶14.9gを得た。収率58.0% γ/α=99.9/0.1
 γ-グルタミルバリルグリシンの結晶の粉末X線結晶回折パターンを図7に示す。
実施例3 ノルバリルグリシン及びγ-グルタミルノルバリルグリシンの合成
(1)Z(ベンジルオキシカルボニル)-ノルバリンのヒドロキシコハク酸イミドエステルの合成
 Z-ノルバリン10g(39.8mmol)を酢酸エチル60mlに溶解し、N-ヒドロキシコハク酸イミド(HOSu)4.59g(1eq)を加えて5℃に冷却した。N,N-ジシクロヘキシルカルボジイミド8.21g(1eq)を酢酸エチル25mlに溶解して、10℃以下でゆっくりと加えた。5℃で30分、室温(25℃)で一晩撹拌した。
析出したジシクロヘキシル尿素をろ過により分離し、酢酸エチル15mlで洗浄した。目的のZ-ノルバリンコハク酸イミドエステルを酢酸エチル溶液として得た。
(2)ノルバリルグリシンの合成
 グリシン3.14g(1.05eq)に水28mlを加えて溶解し、4M水酸化ナトリウム水溶液でpH9.0に調整した。この溶液にZ-ノルバリンのヒドロキシコハク酸イミドエステルの酢酸エチル溶液を室温(20-25℃)で1時間かけて滴下、その後1時間撹拌した。その間4M水酸化ナトリウム水溶液でpH9.0-10.0未満に調整した。6M塩酸を加えて撹拌、pH8に調整した。反応液をアルゴン置換後、50%wet10%パラジウム炭素0.2gを加えて、水素置換して一晩室温で撹拌した。アルゴン置換後、パラジウム炭素を分離により除いた。反応液を分層して、ノルバリルグリシンの水溶液を得た。収率90.0%
(3)γ-グルタミルノルバリルグリシン(Z体非単離・抽出)
 Z-グルタミン酸12.31g(1.1eq)に酢酸エチル50mlを加えて5℃に冷却、ジシクロヘキシルカルボジイミド9.0g(1.0eq vs Z-Glu)を酢酸エチル15mlに溶解して加えた。5℃で30分、室温で一晩撹拌した。析出したジシクロヘキシル尿素をろ過により除き、酢酸エチル20mlで洗浄、Z-グルタミン酸無水物の酢酸エチル溶液を得た。
 ノルバリルグリシン水溶液(HOSuを含む)に炭酸水素ナトリウム3.68g(1.0eq vs Z-Glu)を加え撹拌し、上記で調製したZ-グルタミン酸無水物の酢酸エチル溶液を1.5時間かけて滴下した。滴下後1時間室温で撹拌し、40℃に加温した。濃塩酸11mlを加えてpH3.0に調整し抽出した。分層し酢酸エチル層を水50mlで洗浄した。酢酸エチル層に水50ml、メタノール25ml、50%wet10%パラジウム炭素0.37gを加えて水素置換し、20~25℃で撹拌脱保護した。反応終了後、パラジウム炭素をミリポアろ過(0.45μm)により除き、40gまで減圧濃縮した。50℃に加温しメタノール50mlを滴下、終了後50℃で3時間、室温で一晩撹拌、晶析した。析出した結晶を分離し、メタノール12mlで洗浄した。50℃で一晩減圧乾燥して、γ-グルタミルノルバリルグリシンの結晶8.09gを得た。収率67.0% γ/α=99.8/0.2
1H NMR(D2O,400MHz):δ0.81(3H,t,J=7.4Hz); 1.22-1.38(2H,m);1.55-1.73(2H,m);2.02-2.10(2H,m);2.35-2.48(2H,m);3.72(1H,t,J=6.2 Hz);3.84(1H,d,J=17.6Hz);3.89(1H,d,J=18.0Hz); 4.20(1H,dd,J=5.2,5.6Hz);
13C NMR(D2O,400MHz):δ12.7,18.4,26.0,31.1,33.0,41.3,53.7,53.8,173.5,174.8,175.0;
Mass(M+H):304 Mass(M-H):302

Claims (10)

  1.  N-保護中性アミノ酸のN-ヒドロキシコハク酸イミドエステルと、中性アミノ酸とを、pH8.5~11.5の条件下で反応させることを特徴とする末端アミノ基が保護されたジペプチドの製造方法。
  2.  N-保護中性アミノ酸が、N-保護バリンもしくはN-保護ノルバリンであり、中性アミノ酸がグリシンである、請求項1記載のジペプチドの製造方法。
  3.  N-保護中性アミノ酸が、N-保護バリンであり、中性アミノ酸がグリシンである、請求項1記載のジペプチドの製造方法。
  4.  請求項1~3のいずれか1項記載の方法で得たジペプチドのN脱保護を行うジペプチドの製造方法。
  5.  請求項4に記載の方法でN脱保護して得られたジペプチドを、N-ヒドロキシコハク酸イミドの存在下に、N-保護グルタミン酸無水物と反応させることを特徴とするN-保護グルタミン酸γ-トリペプチドの製造方法。
  6.  反応を炭酸アルカリ金属塩の存在下で行う請求項5記載の方法。
  7.  請求項5又は6記載の方法で得たトリペプチドのN脱保護を行うグルタミン酸γ-トリペプチドの製造方法。
  8.  グルタミン酸γ-トリペプチドが、γ-グルタミルバリルグリシンである、請求項7記載の製造方法。
  9.  グルタミン酸γ-トリペプチドが、γ-グルタミルノルバリルグリシンである、請求項7記載の製造方法。
  10.  Z-γ-グルタミルバリルグリシン又はその塩。
PCT/JP2012/052684 2011-02-08 2012-02-07 ジペプチド及びトリペプチドの製造方法 WO2012108408A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012556889A JPWO2012108408A1 (ja) 2011-02-08 2012-02-07 ジペプチド及びトリペプチドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025213 2011-02-08
JP2011-025213 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108408A1 true WO2012108408A1 (ja) 2012-08-16

Family

ID=46638622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052684 WO2012108408A1 (ja) 2011-02-08 2012-02-07 ジペプチド及びトリペプチドの製造方法

Country Status (2)

Country Link
JP (1) JPWO2012108408A1 (ja)
WO (1) WO2012108408A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883960A4 (en) * 2012-08-10 2016-05-18 Ajinomoto Kk PROCESS FOR PRODUCING GLUTAMYL-VALYL-GLYCINE CRYSTAL
CN113969297A (zh) * 2021-10-30 2022-01-25 福州三合元生物科技有限公司 一种寡聚γ-氨基丁酸及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119916A (ja) * 1994-10-20 1996-05-14 Ajinomoto Co Inc N−保護グルタミン酸γ−誘導体の選択的製造法
JP2009514791A (ja) * 2005-11-09 2009-04-09 味の素株式会社 コク味付与剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119916A (ja) * 1994-10-20 1996-05-14 Ajinomoto Co Inc N−保護グルタミン酸γ−誘導体の選択的製造法
JP2009514791A (ja) * 2005-11-09 2009-04-09 味の素株式会社 コク味付与剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDERSON GW. ET AL.: "The Use of Esters of N-Hydroxysuccinimide in Peptide Synthesis", J. AM. CHEM. SOC., vol. 86, no. 9, 1964, pages 1839 - 1842 *
GUARNACCIA R. ET AL.: "Co-oligopeptides of aromatic amino acids and glycine with a variable distance between the aromatic residues. III. Co-oligopeptides of L-phenylalanine, L-tryptophan, and Glycine: synthesis and ultraviolet absorption properties", BIOPOLYMERS, vol. 15, no. 6, 1976, pages 1103 - 1117 *
TAKEDA K. ET AL.: "An Improved Method for the Synthesis of Active Esters of N-Protected Amino Acids and Subsequent Synthesis of Dipeptides", SYNTHESIS, vol. 1991, no. 9, 1991, pages 689 - 691 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883960A4 (en) * 2012-08-10 2016-05-18 Ajinomoto Kk PROCESS FOR PRODUCING GLUTAMYL-VALYL-GLYCINE CRYSTAL
US9512177B2 (en) 2012-08-10 2016-12-06 Ajinomoto Co., Inc. Method for producing γ-glutamyl-valyl-glycine crystal
CN113969297A (zh) * 2021-10-30 2022-01-25 福州三合元生物科技有限公司 一种寡聚γ-氨基丁酸及其制备方法
CN113969297B (zh) * 2021-10-30 2024-03-26 福州三合元生物科技有限公司 一种寡聚γ-氨基丁酸及其制备方法

Also Published As

Publication number Publication date
JPWO2012108408A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6350632B2 (ja) ペプチドの製造方法
WO2019198834A1 (ja) リュープロレリンの製造方法
JPH0196194A (ja) グルタミン誘導体の製造方法
JPH0357118B2 (ja)
Katakai Peptide synthesis using o-nitrophenylsulfenyl N-carboxy. alpha.-amino acid anhydrides
WO2015198505A1 (ja) 合成ペンタペプチドの製造法
WO2012108408A1 (ja) ジペプチド及びトリペプチドの製造方法
CN114213503A (zh) 一种类蛇毒三肽的合成方法
CN107936090B (zh) 一种低成本合成ARK-Cu的方法
US20210253634A1 (en) Process for the liquid phase synthesis of h-inp-(d)bal-(d)trp-phe-apc-nh2, and pharmaceutically acceptable salts thereof
WO2013131978A1 (en) Process for the preparation of intermediates useful in the preparation of a viral protease inhibitor
JP3577756B2 (ja) N−保護グルタミン酸γ−誘導体の選択的製造法
JPH0112751B2 (ja)
HU221619B1 (hu) Eljárás peptidek előállítására és intermedierek
JP3996671B2 (ja) N−アルコキシカルボニル化、n−アルケニルオキシカルボニル化またはn−アリールアルコキシカルボニル化されたアミノ酸類の製造方法
CN108864252B (zh) 制备nrx-1074的方法
JP5807140B1 (ja) 合成ペンタペプチドの製造法
JP6275150B2 (ja) 二置換アミノ酸残基を含むジペプチド誘導体の製造方法
CA2421550C (en) Process for the preparation of midodrine, pharmaceutically-acceptable salts thereof and intermediates
JP2004203822A (ja) テアニンを製造するための新規な中間体
JP2023130120A (ja) ペプチド合成方法
CN117003791A (zh) 一种二苯基膦酰氧基双酚a类化合物及其制备美白九肽-1中的应用
WO2007097254A1 (ja) 新規イソジペプチド
EA041535B1 (ru) Способ получения пептидного эпоксикетонового ингибитора иммунопротеасомы
WO2019066578A1 (ko) 의약품 합성용 중간체 화합물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745271

Country of ref document: EP

Kind code of ref document: A1